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Abstract

Let X ⊂ Pn+r be an n dimensional smooth complex projective complete intersection

of type (d1, . . . , dr). CHr(X) denotes the Chow group of codimension r algebraic

cycles on X modulo rational equivalence and Ar(X) denotes the subgroup of the

codimension r algebraic cycles that are algebraically equivalent to zero. In 1990

James D. Lewis made a conjecture on the representability of Ar(X). We will show

that his conjecture holds for smooth complex complete intersections satisfying a

numerical condition and consider some applications to motives.
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Chapter 1

Introduction

1.1 Introduction (for the layperson)

In nature we can find different geometric objects like points, lines, spheres, etc. We
can express these objects mathematically as the zero sets of some polynomials. Clas-
sifiying these geometric objects is one of the main problems of algebraic geometry.
Examining the smaller parts of an object can give information that can be used to
compare with other objects and hence to classify. Let us consider the pictures below.

Picture of Klein bottle is taken from http://www.maa.org/features/lego.html.
Picture of conic section is taken from http://en.wikipedia.org/wiki/Conic section.
Third picture is taken from http://en.wikipedia.org/wiki/Constructive solid geometry.

The first picture shows a Klein bottle that is built from rectangle shapes like legos.
This is an example of obtaining new objects from existing ones by gluing method.
Intersecting two objects is another way to get a new object as in the second picture
that shows conic sections or we can use these methods together as in the third pic-
ture. Analogues of these ideas can be found in algebraic geometry; a manifold can
be built by gluing together the corresponding coordinate charts, subvariety of an
algebraic variety can be obtained by intersecting appropriate number of hyperplanes
with the variety.

In this thesis we will work with complex projective algebraic manifolds and use spe-
cial subvarieties called algebraic cycles to get information about our objects. We
will specially focus on Chow groups that are formed from algebraic cycles by intro-
ducing adequate equivalence relations that enables one to introduce ring structures
(e.g. multiplication via intersection pairings). Of particular relevance in our situa-
tion is rational equivalence. By the equivalence relations one cuts algebraic cycles
into smaller parts so that we can at least understand parts of these huge groups.
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One interesting thing about Chow groups is that although they are formed from
geometric objects, algebraic cycles, they may not be represented as a geometric ob-
ject. There is the well-known Abel-Jacobi map from algebraic Chow groups of a
projective variety to the Jacobian of that projective variety, which in some cases
represents algebraic Chow groups as tori. For example, for a projective algebraic
manifold X, A1(X) ' J1(X), where A1(X) is a certain divisor subgroup of a Chow
group of algebraic cycles of codimension one on X, and J1(X) is a complex torus
called the (first) Jacobian of X (also called the Picard variety of X), and where the
identification is given by an integration over cycle map called the Abel-Jacobi map.
This situation forces one to explore the question; under which conditions is it possi-
ble to represent algebraic Chow groups of any codimension as a geometric object? In
the path of answering this question, the range of the Abel-Jacobi map is modified to
yield a surjective map from the analogous higher codimension Chow groups Ar(X)
to the algebraic Jralg(X) of Jr(X), namely a certain compact complex torus called
an abelian variety. Hence, our first enquiry boils down to the question of under
what conditions is it possible to ensure that the Abel-Jacobi map Ar(X) � Jralg(X)
is injective, say for all r > 0?

We will explore this question for complex projective complete intersections and find
a numerical condition on complex projective complete intersections that will imply
the injectivity of the Abel-Jacobi map and hence the representability of algebraic
Chow groups of any codimension. The motivation for looking at complete intersec-
tions came from a result of James D. Lewis. In 1990 he made a conjecture on the
representability of algebraic Chow groups generalizing a conjecture of Bloch. We will
explore the Lewis conjecture for smooth complex projective complete intersections
satisfying a numerical condition with the guidance of [Lewis1].
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1.2 Precise Results (for the expert)

As we mentioned in the introduction our main interest is to understand algebraic
cycles. In 1950 William V.D. Hodge introduced a conjecture, namely the Hodge
conjecture, that relates codimension r algebraic cycles to (r,r)-forms with integral
periods via the cycle class map. He conjectured that the cycle class map is surjec-
tive, that is every (r,r)-form with integral periods is supported on a codimension r
algebraic cycle. This raised another issue about the kernel of the cycle class map.
There are attempts to understand this kernel and subgroups of the kernel of the
cycle class map, that lie in a certain filtration level.

In the first chapter we will give the construction of the cycle class map and (Gen-
eralized) Hodge Conjecture. We will also give the construction of Abel-Jacobi map
that is induced from the kernel of the cycle class map, which will be used to study
the Algebraic Chow groups.

In the second chapter we will give the statement of the Lewis conjecture which co-
incides with Bloch’s conjecture in the case of a smooth complex projective surface.
The importance of this conjecture is that it tells us that the Algebraic Chow groups
A•(X) ⊂ CH•(X) for projective algebraic manifolds X with Level(H∗(X)) ≤ 1 are
representable, that is they can be identified with compact complex tori. We will
prove Lewis conjecture for smooth complex complete intersections, say X, by using
ΩX , the Fano variety of k-planes inside X, where the calculation of k is defined in
[SGA7] with Level(H∗(X)) = n − 2k. The relation between the dimension of ΩX

and Level(H∗(X)) will give us a numerical condition on page 21 that is needed to
show surjectivity of cohomology of ΩX and X. We state this result as Corollary
?? which is a generalization of Corollary 3.8 in [Lewis1] to complete intersections.
The surjectivity of the cohomology groups will be then used to show that a special
case of General Hodge Conjecture holds for smooth complex complete intersections
satisfying a numerical condition (Proposition ??). This result is needed for proving
one part of the Lewis Conjecture that we stated as Corollary ??.

In section 2.3 we generalized the Theorem 1.1 (ii) of [Lewis-Sertoz] to complete in-
tersections and get a short exact sequence of Chow groups (Theorem ??). In section
2.4 Theorem ?? is used as a main tool for the proof of Theorem ?? which states
that Lewis conjecture holds for smooth complete intersection satisfying a numerical
condition. In Proposition ?? we give a list of all possible complete intersections that
satisfy the numerical condition and have representable Algebraic Chow groups.

Lastly in Chapter 3, we generalize Theorem 1.1 (i) of [Lewis-Sertoz] to complete
intersections, that gives an isomorphism between the motive of ΩX and X (Theorem
??). For the proof we make two reasonable assumptions which are consequences of
the existence of a Bloch-Beilinson filtration.
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1.3 Preliminaries

Throughout the thesis our main object will be a smooth complex projective complete
intersection. So let us start with the definition of a complete intersection:

Definition 1 Let z = (z0, . . . , zn+r) and assume given {f1, . . . , fr} homogeneous
polynomials of degrees (d1, . . . , dr) in z such that the corresponding ideal µ = (f1, . . . , fr)
is prime and that X = V (µ) ⊂ Pn+r is of dimension n. Then X is called a complete
intersection variety of type (d1, . . . , dr). X is called smooth if at every point of X,
its Jacobian has the full rank.

Example 2

1. Fermat’s cubic X = V (z3
0 +z3

1 +z3
2 +z3

3) ⊂ P3 is a projective algebraic manifold:
It is given by the zeros of an irreducible cubic homogenous polynomial and
X ∩ Ui = V (1 + x3 + y3 + z3) for Ui = {[z0, . . . , z3]|zi 6= 0} where variables
x, y, z adjusted according to the coordinate charts Ui ∼= C3. Then the Jacobian
of the polynomial has rank 1 at everywhere on X hence X is smooth.

Picture of Fermat’s cubic is taken from http://en.wikipedia.org/wiki/Fermat cubic.

2. Let X = V (z2
0 − z0z2− z1z3, z1z2− z0z3− z2z3) ⊂ P3. Then we have X ∩U0 =

V (1 − y − xz, xy − z − yz), X ∩ U1 = V (x2 − xy − z, y − xz − yz), X ∩ U2 =
V (x2 − x − yz, y − xz − z), X ∩ U3 = V (x2 − xz − y, yz − x − z). Then one
can check the Jacobian of these all have rank 2, hence X is a smooth complete
intersection. It is called the elliptic quartic curve in P3.

3. Let X be a complete intersection K3 surface, then X has the form

X =
{ V (F ) ⊂ P3 d = 4
V (F1, F2) ⊂ P4 d1 = 2, d2 = 3
V (F1, F2, F3) ⊂ P5 d1 = d2 = d3 = 2

.

1.3.1 Algebraic Cycles

In the introduction we mentioned that algebraic cycles are the objects that we
will use to get information about complex projective manifolds. Now let X be a
projective algebraic manifold of dimension n. Then
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Definition 3 A codimension r algebraic cycle V on X is a Z formal sum of codi-
mension r irreducible subvarieties Vi, i.e. V =

∑k
i=1 niVi, ni ∈ Z.

The group of codimension r algebraic cycles is denoted by Zr(X) = free abelian
group generated by subvarieties of codim r in X, equivalently Zn−r(X)= free abelian
group generated by subvarieties of dimn− r in X.

Example 4 Let X be the Fermat’s cubic in P3. Let’s examine algebraic cycles on
X. Note that dimX = 2. Then

- Z2(X) = Z0(X)=linear combination of points in X,

- Z1(X) = Z1(X)=linear combination of curves in X,

- Z0(X) = Z2(X)=linear combination of surfaces in X

If Y is a closed subset of an irreducible finite dimensional topological space X and
if dimY = dimX then Y = X.
For Y ∈ Z0(X), Y = nX, n ∈ Z⇒ Z0(X) = Z2(X) = Z{X}.

We want to use algebraic cycles to get information about algebraic varieties. There is
a commonly used tool, (co-)homology, for classifing algebraic varieties by attaching
algebraic datum like rings, groups, modules, algebras to these varieties in order to
compare two varieties. Now let X ⊂ PN be a complex projective manifold with
dimX = n. Let H ⊂ PN be a hyperplane. We can obtain information of the
(co)homology of X by considering how a generic hyperplane intersects X.

Theorem 5 (Lefschetz’s (Weak)Hyperplane Theorem) Let H ⊂ PN be a hyperplane
for which H ∩X is smooth. Then the restriction map H i(X,Z) −→ H i(X ∩H,Z)
is an isomorphism for i < n− 1 and is an injection for i = n− 1.

Note that [X ∩H] ∈ H2(X) represents the hyperplane class which is independent
of the choice of hyperplane. It is the Poincaré dual of X ∩H, a hyperplane section
of X. Since cohomomology has a ring structure, multiplication by the hyperplane
class defines a map:
L : H i(X) −→ H i+2(X). This leads us to:

Theorem 6 (Strong Lefschetz Theorem) Multiplication by powers of the hyperplane
class defines isomorphisms Li : Hn−i(X,Q) −→ Hn+i(X,Q).
In particular the map L : Hk(X,Q) −→ Hk+2(X,Q) is injective if k < n so that
dimHk(X,Q) ≤ dimHk+2(X,Q) and is surjective if k+2 > n so that dimHk(X,Q) ≥
dimHk+2(X,Q).

Note that Lefschetz’s theorems do not hold for singular spaces using singular coho-
mology, but there is a (co-)homology theory where they do hold, namely ’intersection
(co-)homology’ invented by R. MacPherson and M. Goresky.

1.3.2 Cycle Class Map and Hodge Conjecture

There is a relation between algebraic cycles and cohomology of X. Let V ∈ Zr(X),
then V = n1V1 + . . . + nlVl where nj ∈ Z and Vj ’s are irreducible subvarieties of
codimension r in X. Note that V may have singularities. In 1964, Heisuke Hironaka
proved that every variety is birationally equivalent to a smooth projective variety:

5



Theorem 7 (Hironaka’s Desingularization Theorem) ([Sim]) Let X be a com-
plex quasi-projective variety. Then there exists a smooth quasi-projective variety X̃
and a projective birational morphism X̃

π→ X. Furthermore π may be assumed to
be an isomorphism on the smooth locus of X, and if X is a projective variety, then
so is X̃.

We have a cycle class map which gives a relation between algebraic cycles and
cohomology. We will recall topological and analytic constructions of the cycle class
map:
Topological Construction:
The topological definition comes from the following observation: Let V ∈ Zr(X), V
may have singularities and by Hironaka’s theorem one can find a desingularization
σ : Ṽ → V with Ṽ − σ−1(Vsing) ≈ V − Vsing. Note that Ṽ is a smooth complex
projective variety and dimR V = dimR Ṽ = 2n − 2r. Since complex manifolds are
always orientable and triangulable, one can triangulate Ṽ with oriented simplices
such that there is a fundamental class generator {Ṽ } ∈ Hsing

2n−2r(Ṽ ,Z) ∼= Z. Now

consider the composition Ṽ σ→ V
j→ X where j is the inclusion map. Then we have

the corresponding homology maps: Hsing
2n−2r(Ṽ ,Z) σ∗→ Hsing

2n−2r(V,Z)
j∗→ Hsing

2n−2r(X,Z)

with {Ṽ } ∈ Hsing
2n−2r(Ṽ ,Z)

(j◦σ)∗→ [V ] ∈ Hsing
2n−2r(X,Z) ∼= H2r

sing(X,Z), given by the
Poincaré duality, and we get our map:

Definition 8 The cycle class map [ ] : Zr(X) → H2r
sing(X,Z) is given by the fun-

damental class description above.

Analytical Construction:
Now we will look at the analytical definition of the cycle class map: We choose a
desingularization σ : Ṽ → V with Ṽ − σ−1(Vsing) ≈ V − Vsing. We can assume
σ−1(Vsing) is a normal crossing divisor, i.e. locally in Ṽ with local coordinates
(z0, . . . , zn−r), σ−1(Vsing) is given by zi1 . . . zil = 0. So σ−1(Vsing) has Lebesgue
measure zero. Then our analytical cycle class map is defined as taking a cycle
V ∈ Zr(X) and sending to the fundamental class [V ] ∈ H2r

deR(X,C) which is defined
by the formula:

[V ] : H2n−2r
deR (X,C) −→ C, w 7→

∫
V
w =

∫
V−Vsing

w <∞.

We have
∫
V−Vsing

w =
∫
Ṽ−σ−1(Vsing)

σ∗(w) =
∫
Ṽ
σ∗(w). This is finite since Ṽ is

compact and σ∗(w) is C∞.

Definition 9 The cycle class map [ ] : Zr(X) → H2r
deR(X,C) is given by the inte-

gration above.

Note that the definition of the cycle class map obtained from topological and analyt-
ical methods agree in H2r

de R(X,C), i.e. up to torsion, by considering H2r
sing(X,Z)→

H2r
sing(X,C) ∼= H2r

deR(X,C) by the De Rham isomorphism theorem and Poincaré
Duality.

Definition 10 The cycle class map [ ] : Zr(X) → H2r
sing(X,Z) → H2r

deR(X,C) is
given by the two equivalent descriptions above.
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One has a decomposition of the DeRham cohomology into Dolbeault cohomologies
by the Hodge (p, q) decomposition theorem:

Theorem 11 Let X be a compact complex Kähler manifold. Then Hr
deR(X,C) =⊕

p+q=rH
p,q(X) with Hp,q(X) = Hq,p(X), and Dolbeault cohomology Hp,q(X) is

identified with the subspace of d-closed (p, q) forms. Under this decomposition Hr
deR(X,R)

corresponds to the real subspace of real valued forms in the RHS and Hr
deR(X,C) =

Hr
deR(X,R)⊗R C.

Corollary 12 Let V ∈ Zr(X) then [V ] ∈ Hr,r(X).

Now let us label the second map in the cycle class map

[ ] : Zr(X)→ H2r
sing(X,Z)→ H2r

deR(X,C)

as λ : H2r
sing(X,Z) → H2r

deR(X,C) and call Hr,r(X,Z) = λ−1(Hr,r(X)). Also by
ignoring torsion we can identify H2r(X,Z) with its image in H2r(X,C) and then
[V ] ∈ Hr,r(X,Z) = H2r(X,Z) ∩Hr,r(X).
Then our cycle class map becomes

[ ] : Zr(X)→ Hr,r(X,Z)

One can also describe Hr,r(X,Z) in terms of integration as

Hr,r(X,Z) = {γ ∈ H2n−2r(X,Z)|
∫
γ
w = 0,∀w ∈ Hp,q(X), p+q = 2n−2r, p > n−r}

Note that modulo torsion one has

H2r(X,Z) ∼= {w ∈ H2r
deR(X,C)|

∫
γ
w ∈ Z, ∀γ ∈ H2r(X,Z)}

Hence every codimension r algebraic cycle corresponds to a (r, r)-form, with integral
periods. What about the converse? Can we have any (r, r)-form with integral
periods supported on codimension r algebraic cycles? This is the Hodge Conjecture
which was introduced by William Hodge in 1950 at the International Congress of
Mathematics:

Conjecture 13 (Hodge) Let X be a projective algebraic manifold, r ∈ Z. Then
[ ] : Zr(X) −→ Hr,r(X,Z) is surjective.

This conjecture is a generalization of the Lefschetz’s (1, 1) theorem which says the
conjecture is true for the case r = 1:

Theorem 14 (Lefshetz (1,1) theorem) Let X be a projective algebraic mani-
fold. Then H2(X,Z)alg = H1,1(X,Z), where H2(X,Z)alg = [Z1(X)]= the sub-
group of algebraic cocyles in H2(X,Z) and H1,1(X,Z) = {β ∈ H2(X,Z)|

∫
β w =

0,∀holomorphic 2-forms w on X}.

However, for r > 1 in 1962 Atiyah-Hirzebruch found non-algebraic torsion classes:
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Theorem 15 There exists a projective algebraic X for which H2r(X,Z) supports
non-analytic torsion for certain r > 1

This showed that the Hodge Conjecture is false for r > 1 with integer coefficients.
But their example was a torsion class so there was a hope that the conjecture may
hold for H2r(X,Z) which are torsion free. In 1990 Kollár (Trento) showed even for
torsion-free H2r(X,Z) the conjecture is false. Hence the conjecture is revised with
the rational coefficients:

Conjecture 16 [ ] : Zr(X)⊗Q −→ Hr,r(X,Q) = H2r(X,Q)∩Hr,r(X) is surjective
for all r ∈ Z.

We denote by Hodger,r(X,Q) to mean the Hodge conjecture holds for codimension
r algebraic cycles.
Some examples where the Hodge conjecture is known to hold:
Assume X is complex projective algebraic manifold and dimX = n.

1. Hodge1,1(X,Q) follows from the Lefschetz (1,1) theorem.

2. For 2p ≤ n Hodgep,p(X,Q) ⇒ Hodgen−p,n−p(X,Q) by the Strong Lefschetz
Theorem.

3. The Hodge Conjecture holds for any projective algebraic manifold X with
dimX ≤ 3 by 1. and 2.

1.3.3 General Hodge Conjecture

For our purpose of proving Lewis’ conjecture for smooth complex projective complete
intersection we will need the statement of the General Hodge Conjecture. So we
will explain the statement and some properties of the conjecture. For the statement
we need the definition of Hodge filtrations and Hodge structures:

Definition 17

1. Let HR be a finite dimensional real vector space with a lattice HZ ⊂ HR, and
let HC = HR ⊗ C. Let k ∈ Z. A (pure) Hodge structure of weight k is a
decomposition HC = ⊕p+q=kHp,q with Hp,q = Hq,p(Hodge Symmetry).

2. hp,q = dimCH
p,q are called Hodge numbers.

Example 18 Let X be any projetive algebraic manifold. Then [Hk(X,Z), Hk(X,C)]
is a Hodge structure of weight k.

Remark 19

1. A variant of the above definition is obtained by replacing the lattice HZ with
a Q-vector space HQ.

2. Each Hodge structure of weight k has a decreasing filtration
HC ⊃ . . . ⊃ F l ⊃ F l+1 ⊃ . . . ⊃ {0}, where F lHC = ⊕p+q=k,p≥lHp,q, satisfying:
(i) Hp,q = F pHC ∩ F qHC where p+ q = k

(ii) HC = F lHC ⊕ F k−l+1HC for all l.

8



3. Alternatively, one can define a Hodge structure of weight k as follows:
A lattice HZ ⊂ HR and a decreasing filtration HC ⊃ . . . ⊃ F l ⊃ F l+1 ⊃ . . . ⊃
{0} satisfying HC = F l ⊕ F k−l+1 for all l.

Definition 20

1. Let H, H
′

be two Hodge structures of weights k, k
′

respectively, such that k
′

=
k+ 2r for some integer r. A morphism of type (r, r) between Hodge structures
H and H

′
is a rationally defined linear map ψ : HC −→ H ′C satisfying either

of the two equivalent conditions below:

(a) ψ(F p) ⊂ F ′p+r

(b) ψ(Hp,q) ⊂ H ′p+r,q+r for all p,q with p+ q = k

2. H ⊂ H is called a sub-Hodge structure if H is a Hodge structure and the
inclusion homomorphism is a morphism of the Hodge structures.

Now we can state the motivation for the General Hodge Conjecture which comes
from the following question:

• Question: Let X be a projective algebraic manifold of dimension n. Is it
possible to describe the Hodge decomposition of Hn(X,C) by the Hodge de-
composition of Hn−2k(Y,C) where Y is a codimension k subvariety of X?
Furthermore is it possible to describe the sub-Hodge structures of Hn(X,C)
by looking at Hn−2k(Y,C)?

Remember that we started at the beginning with the idea that we want to figure out
if we can get information about X from the smaller objects (subvarieties) inside X.
So we consider a subvariety Y ⊂ X and the difference X−Y . Also we are interested
in the cohomology of X with coefficients in Q. The statement of the General Hodge
Conjecture is given as

GHC(p, l,X) : NpH l(X,Q) = F phH
l(X,Q)

where F phH
l(X,Q) = largest sub-Hodge structure in {F pH l(X,C)}∩ {H l(X,Q)} is

called a rational Hodge filtration and

Proposition-Definition 21 The coniveau filtration {NpH∗(X,Q)}p≥0 of H∗(X,Q)
is given by either of the two equivalent formulation below:

1. NpH l(X,Q) = {γ ∈ H l(X,Q)|γ ∈ ker (i∗) : H l(X,Q) −→ H l(X − Y,Q) for
some Y ⊂ X of pure dimension q ≥ p in X}.
[Restatement: NpH l(X,Q)= those cohomology classes which vanish on the
complement of a Zariski closed subset of pure codimension q, where q ≥ p].

2. NpH l(X,Q) = { Gysin images σ∗ : H l−2q(Ỹ ,Q) −→ H l(X,Q)|codimXY = q
(pure) q ≥ p and Ỹ = desing(Y )}.
[Restatement: NpH l(X,Q)= those (co)homology classes which are supported
on an algebraic subset of pure codimension q, and where q ≥ p].

9



Some cases of GHC:

1. GHC(k, 2k,X) is just the usual Hodge conjecture.

• Assume we have NkH2k(X,Q) = F khH
2k(X,Q). Then by definition

NkH2k(X,Q) = Gysin Image{
⊕

codimY=q≥kH
2k−2q(Ỹ ,Q) −→ H2k(X,Q)}.

Note that q = k is the only possibility otherwise 2k−2q < 0 which means
H2k−2q(Ỹ ,Q) = 0. So we get

NkH2k(X,Q) = Gysin Image{
⊕

codimY=k

H0(Ỹ ,Q) −→ H2k(X,Q)}

We have
⊕

codimY=kH
0(Ỹ ,Q) ∼=

⊕
codimY=kH2n−2k(Ỹ ,Q) = Zk(X)⊗Q.

Hence NkH2k(X,Q) = [Zk(X)⊗Q]. Also F khH
2k(X,Q) = Hk,k(X,Q) is

a Hodge structure.
Hence GHC(k, 2k,X) =Hodge(k, k,X).

2. GHC(m, 2m + 1, X), i.e. NmH2m+1(X,Q) = largest sub-Hodge structure in
{Hm+1,m(X)⊕Hm,m+1(X)} ∩H2m+1(X,Q).

3. GHC(1, n,X) where n = dimX for the case X is a complete intersection with
Pg(X) = 0. This says that Hn(X,Q) = N1Hn(X,Q)[Lewis2, Lecture 13].

4. Let X,Y be two projective algebraic manifolds of same dimension n. If X and
Y are birationally equivalent then GHC(1, n,X) ⇔ GHC(1, n, Y ).([Lewis2],
Corollary 13.4)

5. Let X be a fourfold. Then GHC(1, 4, X)⇒Hodge(2, 2, X):

• Assume we have GHC(1, 4, X). That is N1H4(X,Q) = F 1
hH

4(X,Q).

Note that H2,2(X,Q) ⊂ F 1
hH

4(X,Q). On the other hand

N1H4(X,Q) := Gysin Im{
⊕

codimY=r≥1

H4−2r(Ỹ ,Q) −→ H4(X,Q)}

= {
⊕

codimY=1

H2(Ỹ ,Q) σ1→ H4(X,Q)} ⊕ {
⊕

codimY=2

H0(Ỹ ,Q) σ2→ H4(X,Q)}

From here we have⊕
codimY=1

H1,1(Ỹ ,Q)⊕
⊕

codimY=2

H0,0(Ỹ ,Q)
σ1+σ2
� H2,2(X,Q)

and a commutative diagram:
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⊕
codimY=1

Z1(Ỹ )⊗Q⊕
⊕

codimY=2

Z0(Ỹ )⊗Q Z2(X)⊗Q

⊕
codimY=1

H1,1(Ỹ ,Q)⊕
⊕

codimY=2

H0,0(Ỹ ,Q) H2,2(X,Q)

-

?
?

-

By Lefschetz (1,1) theorem we have Z1(Ỹ )⊗Q −→ H1,1(Ỹ ,Q) is surjec-
tive, also Z0(Ỹ ) ⊗ Q ' H0,0(Ỹ ,Q) ' QỸ . Hence from the assumption
GHC(1, 4, X) and Lefschetz’s theorem we get Z2(X)⊗Q � H2,2(X,Q),
that is Hodge(2, 2, X).

1.3.4 Abel-Jacobi map

In previous sections we examined the cycle class map [ ] : Zr(X)⊗Q −→ H2r(X,Q)
for a smooth projective algebraic manifold. We have the Hodge Conjecture which
gives information about the image of this map. We want to examine this map
further in order to get more information about Zr(X). Note that Zr(X) is a free
abelian group which can be huge in general. Hence we want to introduce equivalence
relations on it so that we can work on smaller objects, and also arrive at a ring
structure.

Definition 22

1. Let ξ1, ξ2 ∈ Zr(X). ξ1, ξ2 are homologically equivalent if ξ1 − ξ2 ∈ ker ([ ]).

2. Let ξ1, ξ2 ∈ Zr(X). ξ1, ξ2 are rationally equivalent if there exists a cycle
w ∈ Zr(P1 ×X) in general position (i.e. pure dim {w ∩ ({t} ×X)} = n − r)
such that ξ1 − ξ2 = w(0)− w(∞) where w(t) := Pr2,∗{(w ∩ {t} ×X)P1×X}.

3. If we replace P1 by any irreducible curve Γ and {0,∞} by any two points
P,Q ∈ Γ, we obtain another equivalence relation called algebraic equivalence.

We will consider the following three subgroups of algebraic cycles (homologously,
rationally, algebraically) equivalent to the zero cycle:

• Zrhom(X) = {ξ ∈ Zr(X)|ξ ∼hom 0} = ker ([ ]),

• Zralg(X) = {ξ ∈ Zr(X)|ξ ∼alg 0}

11



• Zrrat(X) = {ξ ∈ Zr(X)|ξ ∼rat 0}.

Note that we have Zrrat(X) ⊂ Zralg(X) ⊂ Zrhom(X).

As we mentioned we have the cycle class map [ ] : Zr(X) −→ H2r(X,Z) and a
statement for the image of this map namely the Hodge Conjecture.
What about the kernel of this map? We defined above the kernel as Zrhom(X). To
understand this group we will construct another map.
Now to define a map from Zrhom(X), take an element ξ ∈ Zrhom(X). This means
[ξ] = 0 and

{ξ} ∈ H2n−2r(X,Z) =
{ker ∂ : C2n−2r(X,Z) −→ C2n−2r−1(X,Z)}
{Im(∂) : C2n−2r+1(X,Z) −→ C2n−2r(X,Z)}

implying ξ = ∂(ϕ) for some ϕ ∈ C2n−2r+1(X,Z). Then one can define integration
of a form w ∈ H2n−2r+1(X,C) over ϕ. Hence our domain for the map will be
Zrhom(X) and the codomain will be H2r−1(X,C) by the fact (H2n−2r+1(X,C))∨ ∼=
H2r−1(X,C). To be able to define a well-defined map we will modify our codomain.
We can write H2r−1(X,C) in terms of filtration as

H2r−1(X,C) = F rH2r−1(X,C)⊕ F rH2r−1(X,C)

By Poincaré and Kodaira-Serre dualities we have a perfect pairing:

H2r−1(X,C)/F rH2r−1(X,C)× Fn−r+1H2n−2r+1(X,C) −→ C

Hence
H2r−1(X,C)/F rH2r−1(X,C)) ' (Fn−r+1H2n−2r+1(X,C))∨

By the following result of Dolbeault (see [Lewis3]):

Proposition 23 F kH l(X,C) = {ker d : F kElX −→ F kEl+1
X }/d(F kEl−1

X ), where
ElX is the vector space of C∞ C-valued l-forms.

we get our map

φ : Zrhom(X) −→ H2r−1(X,C)/(H2r−1(X,Z)⊕ F rH2r−1(X,C))

defined by ξ = ∂(ϕ) −→ φ(ξ) : {w} ∈ Fn−r+1H2n−2r+1(X,C) −→
∫
ϕ
w

This map is well-defined as it is independent of the choice of w and ϕ. [Lewis2, 12.12]
Independence of ϕ is quaranteed by taking the quotient by H2r−1(X,Z). This map
also forms the well-known Abel-Jacobi map:

φ : Zrhom(X) −→ Jr(X)

Here the compact complex torus Jr(X) = F rH2r−1(X,C)/H2r−1(X,Z), is called
the Griffiths’ intermediate Jacobian. Note that

F rH2r−1(X,C)/H2r−1(X,Z) ∼= H2r−1(X,C)/(H2r−1(X,Z)⊕ F rH2r−1(X,C))
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1.3.5 Chow Groups

We defined three equivalence relations on the algebraic cycles of X. By taking
quotients with respect to those equivalence relations we will get smaller groups,
namely Chow groups, which we will define below.

Definition 24

• The quotient of the group of codimension r algebraic cycles by the group of
codimension r algebraic cycles that are rationally equivalent to zero is called
the rthChow group denoted by CHr(X) := Zr(X)/Zrrat(X).

• CHr
hom(X) = Zrhom(X)/Zrrat(X)

• CHr
alg(X) = Ar(X) = Zralg(X)/Zrrat(X) is called the continuous part of CHr(X).

Chow groups are built directly from the algebraic subvarieties and we will see the
relation to (co)homology groups via the cycle class map. In fact calculating Chow
groups for arbitrary varieties would amount to solving the Hodge conjecture and
other conjectures related to motives.

Example 25

• CHn−r(Pn) = CHr(Pn) = Z{Pr}

• CH1(X) ∼= Pic(X)

• CH1
hom(X) = CH1

alg(X) ∼= Pic0(X) ∼= J1(X)

Recall the cyle class map [ ] : Zr(X) −→ Hr,r(X,Z). Since [Zrrat(X)] = 0 this
induces a map on Chow groups [ ] : CHr(X) −→ Hr,r(X,Z). Hence we have the
Hodge conjecture on the level of Chow groups as well:

Conjecture 26 (Hodge) The cycle class map [ ] : CHr(X) ⊗ Q −→ Hr,r(X,Q) is
surjective.

Also we have the Abel-Jacobi map for Chow groups, induced from the Abel-Jacobi
map defined above, which is also called the Abel-Jacobi map

φ : CHr
hom(X) −→ Jr(X)

This induces the map:
φ : Ar(X) −→ Jr(X)

In general, except when r = 1, φ is neither injective nor surjective. The image of this
map φ(Ar(X)) = Jralg(X) is called the rth Lieberman Jacobian which is an abelian
variety. This follows from a proposition [Lewis2,12.23]:

Proposition 27 Let A be a complex torus and let λ : Ar(X) −→ A be an analytic
map. Then Im(λ) is an Abelian subvariety of A.

In fact we know the description of Jralg(X) explicitly as

Jralg(X) =
[N r−1H2r−1(X,Q)]⊗ C

F r(numerator)⊕ (H2r−1(X,Z) ∩ (numerator))

This comes from the observation N r−1H2r−1(X,Q) = {[w]∗(H1(Γ))|Γ curve , w ∈
CHr(Γ×X)}.
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Chapter 2

Representability

2.1 Representability and Lewis Conjecture

In this section we will explore the representability of algebraic Chow groups of any
codimension. For that purpose with the guidance of [Lewis1] we will explore the
Lewis conjecture, a generalization of a conjecture of Bloch, for smooth complex
projective complete intersections.

Conjecture 28 (Lewis) Let X be a projective algebraic manifold then

A∗(X) ∼= J∗alg(X)⇔ Level(H∗(X)) ≤ 1

where A∗(X) =
⊕n

l=1A
l(X), J∗alg(X) =

⊕n
l=1 J

l
alg(X), J lalg(X) is the lth Lieberman

Jacobian, Level(H∗(X)) = maxl (level(H l(X))) = maxl {|p− q||Hp,q(X) 6= 0, p+ q = l}.

Example 29

1. Let E be a compact complex Riemann surface with genus g. Then
H0(E) ∼= Q, H1(E) = H0,1(E) ⊕ H1,0(E) with H0,1(E) ∼= H1,0(E) ∼= Qg 6=
0 ↔ g ≥ 1, hence level(H1(E)) ≤ 1. H2(E) = H0,2(E) ⊕H1,1(E) ⊕H2,0(E)
with H0,2(E) = H2,0(E) = 0 and H1,1(E) ∼= Q hence level(H2(X)) = 0.
So we have Level(H∗(E)) ≤ 1 with equality if and only if g ≥ 1.
On the other hand A∗(E) = A1(E) and J∗(E) = J1(E). By the Abel-Jacobi
map we get A∗(E) ∼= J∗(E) = J∗alg(E)

2. Let X be a smooth complex projective surface. Then Lewis conjecture is the
same as the

• Bloch conjecture: Let X be a nonsingular surface with Pg(X) = 0. Then
A0(X) is finite dimensional.

Note that Pg > 0, i.e. H0,2(X) 6= 0, if and only if Level(H∗(E))=2. [
H3,0(X) = H0,3(X) = H4,0(X) = H0,4(X) = H1,3(X) = H3,1(X) = 0 due to
dimension].
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Observation on the cohomology of complete intersections

Let X ⊂ PN be a complete intersection of dimension n given by r homogeneous
polynomials, this means X is obtained by taking exactly r hypersurface sections of
PN , i.e. X = V (f1, . . . , fr). By the weak Lefschetz theorem for i < n we have:

H i(PN ,Z)
∼=→ H i(X,Z)

Recall the cohomology groups of PN ;

H i(PN ,Z) =

{
Z if 0 ≤ i ≤ 2N is even
0 otherwise

Now by the strong Lefschetz theorem: Hn−i(X,Q) ∼= Hn+i(X,Q), 0 ≤ i ≤ n, hence
the only ‘nontrivial’ cohomology of X is Hn(X,Q).
Hence for X ⊂ Pn+r a smooth complete intersection of type (d1, . . . , dr) with
dimX = n we have Level(H∗(X)) = level(Hn(X)) provided Hn(X) 6= 0. In fact we
know the value of the level from [SGA7] where the Hodge level of Hn(X) is given
by n− 2k with

k = [(n−
∑
s 6=i

(di − 1) + 1)/ds]

and ds = max {d1, . . . , dr}. Note that this means we have Hn(X,C) = F kHn(X,C).
With this observation on the cohomology of smooth complete intersections we can
show one side of the Lewis Conjecture. For that purpose we need couple more
definitions and results from [Lewis2].

Definition 30 Let p, q be integers ≥ 0 such that p + q is even. A linear map
λ : Hp(X,Q) −→ Hq(Y,Q) is said to be algebraic if it is induced by an algebraic
cycle ξ ∈ Z(2n−p+q)/2(X × Y )⊗Q. [Lewis2,7.4]

• Under the assumption of the Hodge Conjecture, λ is algebraic ⇒ λ is a mor-
phism of Hodge structures of type (1/2(q − p), 1/2(q − p)).

Conjecture 31 (Standard Lefschetz Conjecture) Let X be a projective algebraic
manifold of dimension n. Assume 0 ≤ i ≤ n and let LX be the operator of taking
cup product with the hyperplane class on X. Recall the strong Lefschetz theorem

Ln−iX : H i(X,Q)
∼=→ H2n−i(X,Q)

Then for all i satisfying 0 ≤ i ≤ n

(B(X)) The inverse Λn−iX : H2n−i(X,Q)
∼=→ H i(X,Q)

to Ln−iX is algebraic.

In fact B(X) is equivalent to saying that Λn−iX is induced by an algebraic cycle
ξ ∈ Zi(X ×X)⊗Q. B(X) is known to hold for

1. For all X with dimX ≤ 2 by Lefschetz’s (1,1) theorem

15



2. Flag manifolds X, using H∗(X,Q) is generated by algebraic cocyles

3. Abelian varieties due to D. Lieberman

4. Complete Intersections by Lefschetz’s theorems

Let’s examine the complete intersection case. LetX ⊂ PN be a complete intersection
given by r homogeneous polynomials, this means X is obtained by taking exactly
r hypersurface sections of PN . Hence by the weak Lefschetz theorem for i < n we
have:

H i(PN ,Z)
∼=→ H i(X,Z)

Then considering Ln−iX for i = n we see that Ln−iX = L0
X is the identity map induced

by the class ∆X ∈ Zn(X ×X), and Λ0
X = L0

X .

Definition 32

1. [N r−`H2r−`(X,Q)⊗ C]r,r−` = Prr,r−`(N r−`H2r−`(X,Q)⊗ C) where
Prr,r−` : H2r−`(X,C) −→ Hr,r−`(X) is the projection map.

⇒ [N r−`H2r−`(X,Q)⊗ C]r,r−` ⊂ Hr,r−`(X)

2. N r−`H2r−`(X,Q) ⊗ C = [N r−`H2r−`(X,Q) ⊗ C]r−`,r ⊕ [N r−`H2r−`(X,Q) ⊗
C]r−`+1,r−1 ⊕ . . .⊕ [N r−`H2r−`(X,Q)⊗ C]r,r−`

Remark 33 level(N•H∗(X)) ≤ level(H∗(X)), where equality holds if GHC holds
for X.

Definition 34 A∗(X) is said to be finite dimensional if ∃ a (possibly reducible)
smooth curve Γ and a cycle w ∈ CHr(Γ × X) such that w∗ : A1(Γ) −→ Ar(X) is
surjective.

That is every cycle in Ar(X) comes from a cycle in A1(Γ) = A0(Γ)= degree zero
points. Now we have

Lemma 35 Ar(X) ' Jralg(X)⇒ Ar(X) finite dimensional.

Our next step is to consider Theorem (15.36) from [Lewis2] that links [N r−`H2r−`(X,Q)⊗
C]r,r−` to the structure of A∗(X).

Theorem 36 Assume the standard Lefschetz conjecture B(∗). If [N r−`H2r−`(X,Q)⊗
C]r,r−` 6= 0 for some ` ≥ 2, then Ar(X) is infinite dimensional.

For our purpose we will state a version of Corollary 15.42 from [Lewis2]:

Corollary 37 Let X = V (f1, . . . , fr) ⊂ Pn+r be a projective smooth complete
intersection of dimension n. Assume B(∗) and the GHC(k, n,X) holds where k =
[(n−

∑
s 6=i(di − 1) + 1)/ds] and ds = max {d1, . . . , dr}. Then

A∗(X) ∼= J∗alg(X)⇒ Level(H∗(X)) ≤ 1
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Proof.
The assumption GHC(k, n,X) holds implies Level(Nn−2kHn(X,Q)⊗C) =Level(Hn(X))
=Level(H∗(X)). Now assume to the contrary that Level(H∗(X)) ≥ 2, i.e. n− 2k ≥
2. Let ` = n− 2k. Then r in Theorem ?? becomes k. By Theorem ?? An−k(X) is
infinite dimensional, which means A∗(X) � J∗alg(X).

Hence in order to show Lewis Conjecture for complete intersections we need to show
that the special version of GHC holds for them. In the following section we will find
a numerical condition that will guarantee that special version of GHC holds for
smooth projective complete intersections.
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2.2 A Special Case of General Hodge Conjecture for
Complete Intersections

In this section we will prove one step towards Lewis’ conjecture for certain complete
intersections. This will be done by showing GHC(k, n,X) for X ⊂ Pn+r a smooth
complete intersection of type (d1, . . . , dr) with dimension n and then using Corollary
??. For that purpose we will study the cylinder homomorphism of the Fano variety
of Pk’s, k-planes in X, where k is related to the Hodge level of Hn(X) described in
the previous section. We will find a numerical condition depending on the dimension
and degree of X to guarantee a sufficiently large family of Pk’s lying on X. This
condition then will be used to show the surjectivity of the map from the cohomology
of the Fano variety to the cohomology of X, induced by the cylinder homomorphism
and this surjectivity will imply GHC(k, n,X) for X.

Definition 38 G(k+1, N+1) = {k+1− dimensional subspaces Ck+1 ⊂ CN+1} =
{k − dimensional subspaces Pk ⊂ PN} is a Grassmannian space with dimension
(k + 1)(N + 1− (k + 1)) = (k + 1)(N − k).

Definition 39 Let X ⊂ PN be a variety. Then ΩX(k) = {Pk’s in X} ⊂ G(k +
1, N + 1) is called the Fano variety of Pk’s in X.

We have the following result for ΩX(k):

Theorem 40 (Bo) Let X ⊂ Pn+r be a generic complete intersection of type (d1, . . . , dr).
Then ΩX(k) is non-empty and smooth of (pure) dimension δ = (k+ 1)(n+ r− k)−∑r

j=1

(dj+k
k

)
, provided δ ≥ 0 and X is not quadric. In the case X a quadric, we

require n ≥ 2k. Furthermore, if δ > 0 or if in the case X quadric, n− 2k > 0, then
ΩX(k) is connected (hence irreducible).

Idea of the formula: We have ΩX(k) ⊂ G(k+1, n+r+1) and dimG(k + 1, n+ r + 1) =
(k + 1)(n + r + 1 − (k + 1)) = (k + 1)(n + r − k). Then consider the vector bun-
dle E = OPn+r(d1) ⊕ . . . ⊕ OPn+r(dr) over Pn+r where OPn+r(di) means the dth

i

power of the hyperplane line bundle over Pn+r. Then X = V (s) for a section
s ∈ Γ(E). Now consider P (Pn+r) = {(p, l)|p ∈ l} ⊂ Pn+r × G(k + 1, n + r + 1)
with projective maps π1 : P (Pn+r) −→ Pn+r, a G(k, n + r) bundle over Pn+r ,and
π2 : P (Pn+r) −→ G(k+ 1, n+ r+ 1), a Pk bundle over G(k+ 1, n+ r+ 1). Then we
have the following commutative diagram:

Pn+r P (Pn+r) G(k + 1, n+ r + 1)

E π∗1(E) π2,∗π
∗
1(E) = ε

� π1 -π2

6

�
π1,∗

6

-
π2,∗

6

So we have ΩX(k) = V (s̃) where s̃ ∈ Γ(ε), s̃ = π2,∗π
∗
1(s) and rank(ε) =

∑r
j=1

(dj+k
k

)
.
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Example 41

1. Let X ⊂ P3 be a smooth cubic surface. That is X = V (f), where f is a
cubic homogenous polynomial with a Jacobian of rank 1. Then dimX = 2
and degX = 3. Lets calculate δ for k = 1, n = 2, r = 1 and d = 3: δ =
(1 + 1)(3 − 1) −

(
3+1

1

)
= 4 − 4 = 0. By Theorem ??, ΩX(1) is non-empty

smooth of dimension 0, implying ΩX(1) consists of points. In fact, it is a
well-known result that there are 27 lines on a cubic smooth surface on P3.
Hence ΩX(1) consists of 27 points.

2. Let X ⊂ P5 be a generic quintic fourfold. That is n = dimX = 4, d = degX =
5, r = 1. Lets calculate δ for k = 1. We have δ = (1 + 1)(5 − 1) −

(
5+1

1

)
=

8 − 6 = 2. Also n − 2k = 4 − 2 > 0 so by Theorem ??, ΩX(1) is smooth
irreducible of dimension 2.

Next we will define the cylinder correspondence and cylinder homomorphism which
will be used to get a surjective map between the (co)homologies of ΩX(k) and X.

Definition 42 P (X) = {(c, p) ∈ ΩX(k) × X|p ∈ Pkc} is called the cylinder corre-
spondence and the cylinder homomorphism map φ∗ is induced by the intersection
with P (X); φ∗ : Hn−2k(ΩX(k),Q) −→ Hn(X,Q) given by φ∗(γ) = Pr2,∗((γ ×X ∩
P (X))ΩX(k)×X).

Example 43 Let X ⊂ P6 be a smooth complete intersection cut out by two quadric
polynomials. That is dimX = 4, r = 2, (d1, d2) = (2, 2) ⇒ k = [4 − 2 + 2/2] = 2.
Consider ΩX(2) = {P2’s ⊂ X}. By Theorem ?? we have dim ΩX(2) = (2 + 1)(4 +
2− 2)−

(
2+2

2

)
−
(

2+2
2

)
= 0⇒ there are finitely many P2’s in X.

H0(ΩX(2),Q) H0(ΩX(2)×X,Q) H2(ΩX(2)×X,Q)

[c] [{c} ×X] [{c} × {p ∈ X|p ∈ P2
c}]

[P2
c ] ∈ H4(X,Q)

- -

-
H
HHH

HHH
HHH

HHj

φ∗

-
∩P (X)

?

Projection

Another way to see that we get a map φ∗ : Hn−2k(ΩX(k),Q) −→ Hn(X,Q) is
to consider P (X) and the surjective map π : P (X) −→ ΩX(k) with fibers Pk.
Then dimP (X) = dim ΩX(k) + dim fibers⇒ dimP (X) = δ + k, dim ΩX(k)×X =
δ + n ⇒ codimΩX(k)×X(P (X)) = n − k ⇒ P (X) ∈ Zn−k(ΩX(k) × X). By
proposition 7.4 of [Lewis2] P (X) induces a morphism of Hodge structures of type
(n − k − δ, n − k − δ), ρP (X) : H2δ+2k−n(ΩX(k),Q) −→ Hn(X,Q). By Poincaré
duality we have our map φ∗.

Now let’s consider H2δ+2k−n(ΩX(k),C). We have the Hodge decomposition

H2δ+2k−n(ΩX(k),C) = H0,2δ−(n−2k)(ΩX(k))⊕ . . .⊕H2δ−(n−2k),0(ΩX(k))
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and under ρP (X), denote this by φ∗ as well, this is mapped into

Hn−δ−k,δ+k(X)⊕ . . .⊕Hδ+k,n−δ−k(X) ⊂ Hn(X,C)

Recall in [SGA7] the Hodge level of Hn(X) is given by n − 2k where k = [(n −∑
s 6=i(di − 1) + 1)/ds] and ds = max {d1, . . . , dr}. Also we can assume n − 2k ≥ 0,

since otherwise Hn(X,C) = 0. In summary φ∗ to be surjective implies

dim ΩX(k) = δ ≥ n− 2k. (2.2.1)

So far we found a necessary condition for the surjectivity of the cylinder map φ∗.
For finding the sufficent condition and actually showing it is surjective we will use
another smooth complete intersection Z ⊂ Pn+1+r of dimension n + 1 such that
X = Z ∩ Pn+r. We will show that Z is covered by Pk’s by showing through every
point there passes a family of Pk’s. The reason to use such a Z is that we may not
be able to cover X by Pk’s. That is there may be some points in X such that there
is no Pk’s passing through that point.

Example 44 Let X = V (F ) ⊂ P5 be a general quintic fourfold, i.e. dimX =
4,degX = 5. We have k = [5/5] = 1, level H4(X,C) = n − 2k = 2 and

dim ΩX(1) = (2)(5− 1)− (
5 + 1

1
)= 8-6=2. So X contains P1’s parametrized by a

2-dimensional manifold. Hence the family of lines in X sweeps out a threefold in
X. Thus through a generic point p ∈ X we may not find a family of P1’s passing
through p.
Alternatively, by a PGL action we can assume p = [1, 0, 0, 0, 0, 0] ∈ X ⊂ P5.
Then F = z4

0F1 + . . . + F5 where Fi are homogenous polynomials of degree i. Lets
consider the affinization of F by considering the affine coordinates (x1, . . . , x5) =
(z1/z0, . . . , z5/z0). We have f = F/z5

0 = f1 + . . . + f5, where fi = z5−i
0 Fi/z

5
0 ho-

mogenous of degree i. Note that p ∈ X ⊂ P5 corresponds to (0, . . . , 0) ⊂ C5. So any
P1 ⊂ P5 containing p corresponds to C1 ⊂ C5 in affine coordinates which contains
(0, . . . , 0). So we have ΩX(1)p = {P1 ⊂ P5|p ∈ P1 ⊂ V (F )} ∼= {C1 ⊂ C5|0 ∈ C1 ⊂
V (f)}. Now let C1 ⊂ C5 generated by {v}. Then C1 ⊂ V (f)⇔ f(tv) = 0, ∀t ∈ C⇔
fi(tv) = 0, ∀t ∈ C, ∀i = 1, . . . , 5. Hence ΩX(1)p ∼= {P0 ⊂ P4|P0 ⊂ V (f1, . . . , f5)}.
For general F , dim ΩX(1)p = 4 − 5 < 0. This again tells us that through a general
point p on a general X we do not have a P1.
Alternatively, if we do the calculations for Z ⊂ P6 with dimZ = 5 and degZ = 5
then we have dim ΩZ(1)p ≥ 0, that is through every point of Z there is at least a
finite number of P1’s, and this will be the case for a general such point.

From now on X ⊂ Pn+r will be a generic smooth complete intersection of type
(d1, . . . , dr) and Z ⊂ Pn+1+r will be a generic smooth complete intersection of type
(d1, . . . , dr) such that X = Z ∩ Pn+r.

Proposition 45 Let Z ⊂ Pn+1+r be a generic complete intersection of type (d1, . . . , dr)
and assume ` ≥ 0 where ` = k(n+ 1 + r−k) + r−

∑r
j=1

(dj+k
k

)
. Then through every

point of Z there passes a Pk ⊂ Z. In particular, there is an `-dimensional family of
Pk’s in a general Z passing through a generic point p ∈ Z. Finally we have ` ≥ 0⇔
condition (2.2.1) holds for X = Z ∩ Pn+r.
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Proof. The proof is similar to that in [Lewis1], but generalized to complete
intersections.
Let Z ⊂ Pn+1+r a complete intersection of type (d1, . . . , dr), i.e. Z = V (F1, . . . , Fr)
where Fi are homogenous polynomials of degree di in coordinates of Pn+1+r. Let
[z0, . . . , zn+1+r] be homogenous coordinates of Pn+1+r. Let p be a generic point
in Z. By a PGL action we can assume p = [1, 0, . . . , 0] ∈ Z ⊂ Pn+1+r. Then
Fi =

∑di
j=1 z

di−j
0 F ij (z1, . . . , zn+r), where F ij are homogenous of degree j. Now con-

sider the affine coordinates (x1, . . . , xn+1+r) = (z1/z0, . . . , zn+1+r/z0), and note that
p corresponds to (0, . . . , 0) in these coordinates. So any Pk ⊂ Pn+1+r containing p
corresponds in affine coordinates to Ck ⊂ Cn+1+k with (0, . . . , 0) ∈ Ck.
Now write fi(x1, . . . , xn) = Fi/z

di
0 = f1

i + . . . + fdii , where fαi ’s are homogenous
polynomials of degree α = 1, . . . , di. Let Ck ⊂ Cn+1+r be the subspace generated
by {v1, . . . , vk}.
Then Ck ⊂ V (f1, . . . , fr)⇔ fi(

∑k
j=1 tjvj) = 0, ∀(t1, . . . , tk) ∈ Ck, i = 1, . . . , r.

⇔ fαi (
∑k

j=1 tjvj) = 0,∀(t1, . . . , tk) ∈ Ck, i = 1, . . . , r, α =
1, . . . , di. Hence ΩV (F1,...,Fr),p := {Pk ⊂ Pn+1+r|p ∈ Pk ⊂ V (F1, . . . , Fr)}

∼= {Pk−1 ⊂ Pn+r|Pk−1 ⊂ V (f1
1 , . . . , f

d1
1 , . . . , f1

r , . . . , f
dr
r ) ⊂ Pn+r}.

By genericity of Z and a deformation argument, we can reduce to the case where
V (f1

1 , . . . , f
d1
1 , . . . , f1

r , . . . , f
dr
r ) defines a complete intersection of dimension (n+r)−∑r

j=1 dj (i.e. we can choose f1
1 , . . . , f

d1
1 , . . . , f1

r , . . . , f
dr
r to set a complete intersec-

tion of dimension (n+ r)−
∑r

j=1 dj and then construct F1, . . . , Fr accordingly). By
Theorem ?? ΩV (F1,...,Fr),p is non-empty and has dimension (k − 1 + 1)(n+ r − (k −
1))−

∑r
i=1

∑di
j=1

(
j+k−1
k−1

)
.

Observe that,
∑d

j=1

(
j+k−1
k−1

)
+1 = dim{vector space of polynomials g(y1, . . . , yk)| deg(g) ≤

d} = dim{vector space of homogenous polynomials h(x1, . . . , xk)| deg(h) = d} =(
d+k
k

)
.

Hence we have
∑di

j=1

(
j+k−1
k−1

)
=
(
di+k
k

)
− 1 ⇒ dim ΩV (F1,...,Fr),p = `. Hence if ` ≥ 0

then through every point there passes a Pk and in fact there is a `-dimensional
family of Pk’s in Z passing through a generic point p ∈ Z.
Lastly, observe that δ = ` + (n − 2k). Recall the condition (2.2.1) which says that
δ ≥ n− 2k. Hence condition (2.2.1) holds ⇔ ` ≥ 0.

Corollary 46 Given Z in Proposition ??. If the condition (2.2.1) holds, then Z
is covered by a family of Pk’s; moreover, for a general Z and a generic point p ∈ Z,
there passes an `-dimensional family of Pk’s.

Proof. If the condition (2.2.1) holds then we have ` ≥ 0 by proposition ?? and
again by proposition ?? we have through every p ∈ Z there passes a Pkp implying
Z = ∪p∈ZPkp.

We would like to see the relation between the homology of X and the homology
of ΩX(k) the Fano variety of Pk’s in X. We already mentioned that cylinder ho-
momorphisms induces a map φ∗ : Hn−2k(ΩX(k),Q) −→ Hn(X,Q) which has the
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possibility to be surjective provided condition (2.2.1) holds. We will show that con-
dition (2.2.1) is sufficient to guarantee φ∗ to be surjective. To do this we will get
help from Z and ΩZ(k). Note that we can view X as a hyperplane section of Z with
the inclusion j : X ↪→ Z. Then by Theorem ?? and Corollary ?? we have:

(i) ΩX(k) is non-empty, smooth and of pure dimension (n − 2k) + ` = δ, where
` ≥ 0 is given in Proposition ??.

(ii) ΩZ(k) is non-empty, smooth and of pure dimension (n + 1 − k) + `. In fact
ΩZ(k) is irreducible by Theorem ?? but we don’t need this.

(iii) Through a generic point of Z there passes an `-dimensional family of Pk’s.

Justifications:

(i) By Theorem ?? dim(ΩX(k)) = δ = (k + 1)(n + r − k)−
∑r

j=1

(dj+k
k

)
, and by

Proposition ?? ` = k(n+ 1 + r − k) + r −
∑r

j=1

(dj+k
k

)
.

Hence `+ n− 2k = kn+ k+ kr− k2 + r+ n− 2k−
∑r

j=1

(dj+k
k

)
= n(k+ 1)−

(k2 + k(1 − r) − r) −
∑r

j=1

(dj+k
k

)
= n(k + 1) − (k − r)(k + 1) −

∑r
j=1

(dj+k
k

)
= (k + 1)(n+ r − k)−

∑r
j=1

(dj+k
k

)
.

(ii) `+n+ 1− k = k(n+ 1 + r− k) + r−
∑r

j=1

(dj+k
k

)
+n+ 1− k = kn+ k+ kr−

k2 + r+n+ 1−k−
∑r

j=1

(dj+k
k

)
= n(k+ 1)− (k2−kr− (r+ 1))−

∑r
j=1

(dj+k
k

)
= (k + 1)(n+ 1 + r − k)−

∑r
j=1

(dj+k
k

)
. Note that dimZ = n+ 1 and by the

definition of ΩZ(k) we have k < n + 2 which implies this expression is larger
than zero.

Now consider one of the irreducible components of ΩZ(k) which describes a covering
family of Pk’s on Z, let us denote it by ΩZ . Let ΩZ be a subvariety cut out by `
general hyperplane sections of ΩZ and define ΩX = ΩX(k) ∩ ΩZ . We will need to
make use of the following theorems;

Theorem 47 (Bertini’s theorem) Let X ⊂ PN be a smooth projective variety of
dimension n. Then there is a non-empty Zariski open subset U∗ ⊂ PN,∗ such that
for any t ∈ U∗:
(a) PN−1

t ∩X is smooth (i.e. PN−1
t is nowhere tangent to X)

(b) if n ≥ 2 then PN−1
t ∩X is irreducible.

Theorem 48 (Second Theorem of Bertini) A generic element of a linear system
on an algebraic variety X cannot have singular points that are not base points of the
linear system or singular points of X.

Recall that PN,∗ = {PN−1’s ⊂ PN} =G(N,N + 1), where [a0, . . . , aN ] ∈ PN,∗ corre-
sponds to PN−1 = V (a0z0 + . . .+ aNzN ) ⊂ PN .
By Bertini’s theorem we can assume:

(iv) ΩZ is smooth and irreducible of dimension n+1−k. [Note that ΩZ ⊂ ΩZ(k),
dim(ΩZ(k)) = n+ 1− k + l and ΩZ = V (f1, . . . , fl), hence dim(ΩZ) = n+ 1− k ]

(v) ΩX is smooth and of pure dimension n− 2k.
Next let us recall the cylinder correspondence for X and Z, namely P (X) = {(c, p) ∈
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ΩX(k)×X|p ∈ Pkc} and P (Z) = {(d, q) ∈ ΩZ(k)×Z|q ∈ Pkd}. We have a commuta-
tive diagram where the j’s are inclusions, π’s and ρ’s are projections:

P (X) X

X̃

P (Z) Z

ΩX ΩZ

-πX

?

ρX

Q
Q
Qs

j1 S
S
S
S
S
Sw

j�
�
��3π

?

ρ

Q
Q
Qs

j2

-πZ

�
��+

ρZ

-j0

We have

(a) X̃ := π−1
Z (X) is smooth by the Second Theorem of Bertini. [ X̃ is a general

member of a linear system on P (Z) with no base points, obtained by the pullback
of linear systems on Z to P (Z). ]

(b) π and πZ are generically finite to one and onto of degree q say.

(c) ρX : P (X) −→ ΩX and ρZ : P (Z) −→ ΩZ are Pk bundles as being the pullback
of the projectivization of a corresponding universal bundle over the Grassmanian
to ΩZ . (i.e. ρ−1

X (c) = Pkc since ρ−1
X (c) = {(c, p)|p ∈ Pkc} and P (X) is a manifold.)

(d) ρ̃ := ρ|
X̃−P (X)

= ρ− ρX : X̃ − P (X) −→ ΩZ − ΩX is a Pk−1 bundle.

[We have X̃ = {(c, p) ∈ ΩZ(k)×X|p ∈ Pkc} and P (X) = {(c, p) ∈ ΩX(k)×X|p ∈
Pkc}. Let Pkc ⊂ Z i.e. c ∈ ΩZ . There are two possibilities: (1) Pkc is contained
in X, (2) Pkc not contained in X. Now X = Z ∩ Pn. So if Pkc not contained
in X then Pk−1

c = Pkc ∩ Pn ⊂ Z ∩ Pn = X. Hence if we consider the map
ρ̃ : X̃ − P (X) −→ ΩZ − ΩX , in fact we are looking at Pkc ’s in Z which do not
lie in X, hence ρ̃−1(c) = Pk−1

c = Pkc ∩ Pn ⊂ Z ∩ Pn = X].

(e) dim(X) = dim(X̃) = n, dim(Z) = dim(P (Z)) = n + 1,dim(P (X)) = n −
k, dim(ΩX) = n− 2k, dim(ΩZ) = n− k + 1.
[Recall that all varieties here are smooth. We have dim(P (Z)) = dim(ΩZ) +
dim(fibers of ρZ)=n−k+1+k = n+1, also dim(P (X)) = dim(ΩX)+dim(fibers
of ρX)=n− 2k + k = n− k].
Now let HZ := Pn+1 ∩ Z be a general hyperplane section of Z, and set HX =
HZ ∩X. Then let

(f) µ = π−1(HX), µ̃ = µ ∩ {X̃ − P (X)}, µZ = π−1
Z (HZ), µX = π−1

X (HX). We will
identify these with their respective cohomology classes.

Now lets consider X̃ = π−1
Z (X). Note that π : X̃ −→ X is generically finite to one

and onto with degree q and so dim X̃ = dimX = n. Also Hn(X̃,Q) −→ Hn(X,Q)
is surjective by the fact that π∗π∗ = ×q. Here we will first consider Hn(X̃,Z)
and relate it to Hn−2k(ΩX ,Z). For that purpose we will use two maps from the
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commutative diagram we had, j1 : P (X) −→ X̃ and X̃ −P (X) ↪→ X̃. Applying the
Borel-Moore homology functor to these maps we get a long exact sequence

. . . −→ Hn(P (X),Z) −→ Hn(X̃,Z) −→ Hn(X̃ − P (X),Z) −→ . . .

Note that ΩX ↪→ G(k + 1, n + r + 1) and P (X) is a smooth projective algebraic
manifold as being the projectivization of the pull-back of the universal bundle U(k+
1, n + r + 1). Since X̃ − P (X) is a smooth quasi-projective algebraic manifold, we
can use Poincaré Duality in our homology sequence and get

. . . −→ Hn−2k(P (X),Z) −→ Hn(X̃,Z) −→ Hn(X̃ − P (X),Z) −→ . . .

Now to get information aboutHn(X̃,Z) we will look atHn−2k(P (X),Z) andHn(X̃−
P (X),Z).
Lets start with Hn−2k(P (X),Z):
We have the surjective map ρX : P (X) −→ ΩX which is a Pk bundle. We will use the
Leray spectral sequence Ep,q2 = Hp(ΩX , R

qρ∗XZ) abutting to Hp+q(P (X),Z) with
Rqρ∗XZ associated to ρX . Recall that Rqρ∗XZ is a Leray cohomology sheaf defined
as the sheaf associated to the presheaf in the strong topology: for open U ⊂ ΩX

−→ Hq(ρ−1
X (U),Z) ' Hq(Pk,Z) over U since ρX : P (X) −→ ΩX is a Pk bundle. So

Rqρ∗XZ = Hq(Pk,Z) =

{
Z if 0 ≤ q = 2l ≤ 2k
0 otherwise

Remember we want to calculate Hn−2k(P (X),Z), so here p+ q = n− 2k.
Now for q = 2l, 0 ≤ l ≤ k we have p = n− 2k − 2l. Hence

Hn−2k(P (X),Z) ∼=
k⊕
l=0

Hn−2k−2l(ΩX ,Z)

Next we will look at Hn(X̃ − P (X),Z):
We have a projection ρ̃ : X̃ − P (X) −→ ΩZ − ΩX which is a Pk−1 bundle. We will
use the Leray spectral sequence Ep,q2 = Hp(ΩZ−ΩX , R

qρ̃∗Z) abutting to Hp+q(X̃−
P (X),Z) with Rqρ̃∗Z associated to ρ̃. In this case

Rqρ̃∗Z = Hq(Pk−1,Z) =

{
Z if 0 ≤ q = 2l ≤ 2(k − 1)
0 otherwise

We want to calculate Hn(X̃ − P (X),Z) so p+ q = n and p = n− 2l. We get

Hn(X̃ − P (X),Z) ∼=
k−1⊕
l=0

Hn−2l(ΩZ − ΩX ,Z)

Now we have results from [Lewis1] which also hold for general complete intersections
satisfying the conditions we examined above.

Proposition 49 There is an isomorphism{
⊕k−1
l=0 H

n−2l(ΩZ ,Z)
}
⊕Hn−2k(ΩX ,Z) ≈→ Hn(X̃,Z)

given by (
∑k−1

l=0 µ
l ◦ ρ∗) + j1,∗ ◦ ρ∗X where µ = π−1(HX).
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Idea of the proof: We follow closely the idea in [Lewis1].
We have a long exact sequence

. . . −→ Hn−2k(P (X),Z) −→ Hn(X̃,Z) −→ Hn(X̃ − P (X),Z) −→ . . .

Also we get

Hn−2k(P (X),Z) ∼=
k⊕
l=0

Hn−2k−2l(ΩX ,Z) and Hn(X̃−P (X),Z) ∼=
k−1⊕
l=0

Hn−2l(ΩZ−ΩX ,Z)

Now we will relate Hn(X̃,Z) to cohomology of ΩZ . For that consider the map
ρ : X̃ −→ ΩZ , note that ρ∗ preserves codimension and ρ∗ preserves dimension. Then
one has ρ∗ ◦ µk−1−l : {ρ∗(Hn−2l(ΩZ ,Z))} ∧ µl ∼= Hn−2l(ΩZ ,Z), and ρ∗ ◦ µk−1 ◦ ρ∗
identity on Hn−2l(ΩZ ,Z) (1).
On the other hand consider ρ∗ ◦ µk−1+r−l ◦ ρ∗(Hn−2r(ΩZ ,Z)) ⊂ Hn−2l(ΩZ ,Z).

Claim 50 For r < l we see that ρ∗ ◦ µk−1+r−l ◦ ρ∗(Hn−2r(ΩZ ,Z)) = 0 (2).

Proof of the Claim (Outline) We have ρ : X̃ −→ ΩZ with (c, p) ∈ ΩZ ×
X −→ c ∈ ΩZ . Now let γ be a topological cycle of real codimension n − 2r.
Roughly ρ∗(γ) = ρ−1(γ) counted with multiplicity. We may assume that γ meets
ΩX properly. So for general c ∈ |γ|, ρ−1(c) = Pk−1. We have ρ∗ ◦ µk−1+r−l ◦
ρ∗(c) = ρ∗(Pk ∩ µk−1+r−l) = ρ∗(Pl−r+1). Now for r < l, l − r + 1 > 1 we have
dim ρ(Pl−r+1) = 0 < dimPl−r+1 = l− r+ 1 forcing ρ∗ ◦ µk−1+r−l ◦ ρ∗(γ) to be zero.
Now let

λ1 =
k−1⊕
l=0

ρ∗ ◦ µk−1−l : Hn(X̃,Z) −→
k−1⊕
l=0

Hn−2l(ΩZ ,Z)

λ2 =
k−1∑
l=0

µl ∧ ρ∗ :
k−1⊕
l=0

Hn−2l(ΩZ ,Z) −→ Hn(X̃,Z)

Let ξ = (ξ0, ξ1, . . . , ξk−1) ∈
⊕k−1

l=0 H
n−2l(ΩZ ,Z). Then

λ2(ξ) = ρ∗(ξ0) + µρ∗(ξ1) + . . .+ µk−1ρ∗(ξk−1)

λ1(λ2(ξ)) = (ρ∗µk−1(λ2(ξ)), ρ∗µk−2(λ2(ξ)), . . . , ρ∗(λ2(ξ)))

From the properties (1) and (2) we see that ρ∗(λ2(ξ)) = ρ∗µ
k−1ρ∗(ξk−1) = ξk−1.

So (λ1 ◦ λ2(ξ)− ξ) = (∗, ∗, . . . , ∗, 0).
Now let T = λ1◦λ2 and consider T (T (ξ)−ξ)−(T (ξ)−ξ). By the same reasoning one
gets T (T (ξ)− ξ)− (T (ξ)− ξ) = (∗, ∗, . . . , ∗, 0, 0). Hence we get T 2(ξ)− 2T (ξ) + ξ =
(∗, ∗, . . . , ∗, 0, 0). By recursion one gets a polynomial P (T ) = T k + bk−1T

k−1 +
bk−2T

k−2 + . . .+ b1T ± I, with bj ∈ Z and P (T ) = 0 on
⊕k−1

l=0 H
n−2l(ΩZ ,Z). From

here we can write P (T ) ± I = Tf(T ) for some f(T ) and we have ∓f(T )T = I on⊕k−1
l=0 H

n−2l(ΩZ ,Z). Now we have a commutative diagram:

H
n−1

(X̃) H
n−1

(X̃ − P (X)) H
n−2k

(P (X)) H
n

(X̃) H
n

(X̃ − P (X))

k−1⊕
l=0

H
n−1−2l

(ΩZ)

k−1⊕
l=0

H
n−1−2l

(ΩZ − ΩX )

k⊕
l=1

H
n−2k−2l

(ΩX )

k−1⊕
l=0

H
n−2l

(ΩZ)

k−1⊕
l=0

H
n−2l

(ΩZ − ΩX )

-

?

-

?
∼=

-
j1,∗

?

-

?
∓f(T )◦λ1

?
∼=

- - - -

By diagram chasing and by the following lemma we can get the isomorphism
given in the proposition.
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Lemma 51 Hn(X̃) = j1,∗ ◦ ρ∗X(Hn−2k(ΩX)) + λ2(⊕k−1
l=0 H

n−2l(ΩZ)) where

λ2 =
k−1∑
l=0

µl ∧ ρ∗ : ⊕k−1
l=0 H

n−2l(ΩZ ,Z) −→ Hn(X̃,Z)

Now put φ∗ = π∗ ◦ j1,∗ ◦ ρ∗X : Hn−2k(ΩX ,Z) −→ Hn(X,Z).

Corollary 52

(a) If n is odd, then φ∗ is surjective.

(b) If n is even and n − 2k > 0, then φ∗ ⊗ Q : Hn−2k(ΩX ,Q) −→ Hn(X,Q) is
surjective.

Idea of the proof:([Bloch-Murre]) We can assume X is generic hyperplane section
of Z. Then we can find a Lefschetz pencil {Xt}t∈P1 of hyperplane sections of Z with
X = Xt0 a generic member of that Lefschetz pencil. Let Xt1 , Xt2 , . . . , XtN denote
the singular members of the Lefschetz pencil [Lewis2, Lecture6]. For each Xti there
is a corresponding vanishing cycle δi ∈ Hn(X,Z) generating the group of vanishing
cycles, Hn(X,Z)v. Then for j : X ↪→ Z, the inclusion map we have

Hn(X,Z) = j∗(Hn(Z,Z))⊕Hn(X,Z)v

Recall that Z is a complete intersection hence j∗(Hn(Z,Z)) =

{
0 if n is odd
Z[Hm

X ] if n = 2m is even
Hence for any odd n, Hn(X,Z) = Hn(X,Z)v
Recall Proposition ??{

⊕k−1
l=0 H

n−2l(ΩZ ,Z)
}
⊕Hn−2k(ΩX ,Z) '→ Hn(X̃,Z)

and the map π : X̃ −→ X that is finite to one and onto with degree q.
From here we get two maps

(i) φ∗ = π∗ ◦ j1,∗ ◦ ρ∗X : Hn−2k(ΩX ,Z) −→ Hn(X,Z) (cylinder homomorphism)

(ii) π∗◦(
∑k−1

l=0 µ
l◦ρ∗) : ⊕k−1

l=0 H
n−2l(ΩZ ,Z) −→ Hn(X,Z) with π∗◦(

∑k−1
l=0 µ

l◦ρ∗) =
j∗(Hn(Z,Z)).

To be able to show the surjectivity in the case n is odd we need to investigate the
map π∗ : Hn(X̃,Z) −→ Hn(X,Z) = Hn(X,Z)v. For that consider the map πZ :
P (Z) −→ Z, we have π−1

Z (X) = X̃. For each Xt from the Lefschetz pencil there is
the corresponding X̃t = π−1

Z (Xt). Now let pi = Sing(Xti) where ti ∈ {t1, t2, . . . , tN}
is a singular point over which πZ is étale. For t near ti one can find a corresponding
δ̃t ∈ Hn(X̃t,Z) which maps to δt. Then one has Hn(X̃,Z) � Hn(X,Z) as the
vanishing cycles are conjugate under the monodromy group action [CMP, Section
4.2]. From here with the Poincaré duality and horizontal displacement one gets
Hn(X̃,Z) � Hn(X,Z). Hence we get{

⊕k−1
l=0 H

n−2l(ΩZ ,Z)
}
⊕Hn−2k(ΩX ,Z) '→ Hn(X̃,Z) � Hn(X,Z)
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From (ii) above with n being odd, the cylinder homomorphism φ∗ : Hn−2k(ΩX ,Z) −→
Hn(X,Z) is surjective.

Now for the case n even we will consider Proposition ?? with rational coefficients{
⊕k−1
l=0 H

n−2l(ΩZ ,Q)
}
⊕Hn−2k(ΩX ,Q) ≈→ Hn(X̃,Q)

and the map π : X̃ −→ X that is finite to one and onto with degree q which implies

Hn(X̃,Q) �π∗ Hn(X,Q)

as for any γ ∈ Hn(X,Q) we have 1/qπ∗(γ) ∈ Hn(X̃,Q) is mapped to γ under π∗.

Hence by Proposition ?? with rational coefficients and (ii) above we get

Hn−2k(ΩX ,Q)
φ∗→ Hn(X,Q) � Hn(X,Q)/j∗(Hn(Z,Q))

Note that n− 2k > 0 ⇒ Hn(X,Q) 6= H
n
2
,n
2 (X,Q). Now consider a Lefschetz pencil

of hyperplane sections of Z, {Xt}t∈P1 , with X = Xt0 for some generic t0 ∈ P1. For
generic t ∈ P1 there is the corresponding ΩXt with dimension n − 2k for Xt. For
a projective embedding ΩZ −→ PN , Et = ΩXt ∩ PN−(n

2
−k) defines a codimension

n
2 − k cycle in ΩXt for a generic t ∈ P1. Hence [Et0 ] ∈ Hn−2k(ΩX ,Q) and φ∗(Et0) is
an effective cycle in X of codimension n

2 . We need:

Theorem 53 (Wirtinger’s theorem) Let X,Y be compact complex manifolds of di-
mensions n and m respectively. Assume Y is an embedded submanifold of X and
that X is Kähler with Kähler form w. Then 1

m!

∫
Y w

m = Vol (Y ).

By Wirtinger’s theorem we have φ∗([Et0 ]) 6= 0. Also note that φ∗([Et0 ]) ∈ Hn(X,Q)π1(U)

where U = P1−{t1, . . . , tN} and φ∗([Et0 ]) ∈ H
n
2
,n
2 (X). For details see [Lewis2, pages

205-206].
We have

Hn(X,Q) = j∗(Hn(Z,Q))⊕Hn(X,Q)v

and the fact that φ∗([Et0 ]) is invariant under the monodromy group action and
Hn(X,Q) 6= H

n
2
,n
2 (X) implies φ∗([Et0 ]) ∈ j∗(Hn(Z,Q)) and hence j∗(Hn(Z,Q)) ⊂

φ∗(Hn−2k(ΩX ,Q)).
By this we get φ∗ : Hn−2k(ΩX ,Q) −→ Hn(X,Q) surjective.

Remark 54 n− 2k = 0
In this case we have Hn(X,Q) = H

n
2
,n
2 (X,Q) and note that k > 0 for the case to

be interesting. We can examine this case by the number of polynomials determining
X;
When X is determined by one polynomial, X will be a cubic surface in P3 or an
even dimensional quadric in P2k+1. In the cubic surface case, we have

H0(ΩX ,Q) � H2(X,Q)/QHX

For a cubic surface HX = L1 + L2 + L3 where L1, L2, L3 are lines in X. By the
definition of ΩX there exists c1, c2, c3 ∈ ΩX such that P1

c1 = L1,P1
c2 = L2,P1

c3 = L3
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with φ∗(c1 + c2 + c3) = HX implying H0(ΩX ,Q) � H2(X,Q) via Poincáre duality.
When X is determined by two polynomials then X will be an even dimensional
complete intersection of two quadratics in P2k+2. When X is determined by more
than two polynomials, X will be one of the above types since at least one of the
polynomials will be linear. For the quadratic cases we mentioned above we have

H0(ΩX ,Q) � H2k(X,Q)/QHk
X

Note that dim ΩX = 0 and it will consist of points ci corresponding to k-planes in
X. Also a smooth quadratic hypersurface can be identified with the Grassmanians,
that is if X ⊂ P2k+1 with dimX = 2k a quadratic hypersurface then the Gauss
map X −→ G(2k + 1, 2k + 2) sending p ∈ X to Tp(X) is an isomorphism. Then
Hk
X =

∑
j Lj where Lj = Pkcj since the fibers of the map P (X) −→ G(k + 1, 2k + 2)

are isomorphic to Pk. Hence Hk
X = φ∗(

∑
j cj) ∈ φ∗(H0(ΩX ,Q)) which gives the

surjectivity we want. One can argue similarly for the intersection of two quadratics
by identifying each with the corresponding Grassmanians.

By Corollary ?? we get

Proposition 55 Let X ⊂ Pn+r be a generic smooth complete intersection of di-
mension n with degree (d1, . . . , dr) satisfying the condition (2.2.1). Then we have
GHC(k, n,X).

Proof. Let Y = πX(P (X)|ΩX ) = ∪c∈ΩXPkc , i.e. Y is swept out by {Pkc ’s |c ∈ ΩX}.
Then dimY = n− k. Next the cylinder map factors through Hn(Y,Q):

Hn−2k(ΩX ,Q) −→ Hn(Y,Q) −→ Hn(X,Q), defined as

{γ} ∈ Hn−2k(ΩX ,Q) −→ ∪c∈γPkc ∈ Hn(Y,Q)→ Hn(X,Q).

Thus Hn(X,Q) = NkHn(X,Q). Remember that we start with the result saying
that the Hodge level of Hn(X,Q) is n− 2k, this means F kHn(X,C) = Hn(X,C) =
Hk,n−k(X) ⊕ . . . ⊕ Hn−k,k(X). Hence F khH

n(X,Q) = Hn(X,Q) = NkHn(X,Q),
which means GHC(k, n,X) holds for general complete intersection X ⊂ Pn+r of
dimension n and degree (d1, . . . , dr) satisfying (2.2.1).
In fact, GHC(k, n,X) holds for all smooth complete intersections X of dimension
n, satisfying condition (2.2.1). This can be shown by applying deformation theory
as in Chapter 13 of [Lewis2]. We have:

Corollary 56 Let X ⊂ Pn+r be a generic smooth complete intersection of dimen-
sion n with degree (d1, . . . , dr) satisfying the condition (2.2.1). Then

A∗(X) ∼= J∗alg(X)⇒ Level(H∗(X)) ≤ 1

Proof. (Outline)
We had Corollary ?? which says if B(∗) and GHC(k, n,X) holds then A∗(X) ∼=
J∗alg(X) ⇒ Level(H∗(X)) ≤ 1. We need to show that condition (2.2.1) guarantees
the assumptions of Corollary ?? holds. By Proposition ?? GHC(k,n,X) holds if
condition (2.2.1) is satisfied.
Note that the role of the assumption B(∗) in Corollary ?? is that one can find a
projective algebraic submanifold S of dimension l and an algebraic surjective map
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H l(S,Q) −→ H2r−l(X,Q) where 1 ≤ r ≤ dimX. That is the surjective map is
induced by an algebraic cycle from CHk(S ×X). This is then used to arrive at the
result if Level(H∗(X)) > 1 then A∗(X) will be infinite dimensional so it can not
be isomorphic to J∗alg(X). The details of this proof can be found in the proof of
Theorem 15.36 from [Lewis2].
Now note that by Corollary ?? we have a surjective map φ∗ : Hn−2k(ΩX ,Q) −→
Hn(X,Q) which is induced by P (X) ∈ CHn−k(ΩX × X). Hence without the as-
sumption of B(∗) we have the necessary objects S = ΩX and P (X), the algebraic
cyle inducing the surjective map, with l = n − 2k, r = n − k. Then the rest of the
proof follows from the proof of Theorem 15.36 of [Lewis2].

In order to show the other direction of the Lewis conjecture holds for complete inter-
sections satisfying the condition (2.2.1) we need an analogue of the weak Lefschetz
theorem for Chow groups.
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2.3 Analogue of Weak Lefschetz Theorem for Chow Groups
of Complete Intersections

Let X ⊂ Pn+r be a n-dimensional smooth complete intersection of type (d1, . . . , dr),
i.e. X = V (F1, . . . , Fr) where Fi are homogenous polynomials of degree di and
consider Z = V (G1, . . . , Gr) ⊂ Pn+r+1 where Gi = Fi for all i = 1, . . . , r − 1,
Gr = Fr + zdrn+r+1.
Note that X = Z ∩ V (zn+r+1) = Z ∩ Pn+r. Now consider the projection map
vp : Z −→ Pn+r from a point p ∈ Pn+r+1 − Z where p = [0, . . . , 0, 1]. Then
vp = v is given by [z0, . . . , zn+r+1] v→ [z0, . . . , zn+r]. Let W = v(Z) that is for
p = [p0, . . . , pn+r+1] ∈ Z, v[p0, . . . , pn+r+1] = [p0, . . . , pn+r] ∈ W . Note that
p = [p0, . . . , pn+r+1] ∈ Z means Fi(p0, . . . , pn+r) = 0 for i = 1, . . . , r − 1, and
Fr(p0, . . . , pn+r) + pdrn+r+1 = 0. There are two possibilities:

1. pn+r+1 = 0⇒ [p0, . . . , pn+r] ∈ X

2. pn+r+1 6= 0⇒ [p0, . . . , pn+r] /∈ X

Hence X ⊂ W . Also note that W is determined by the zeros of the poynomials
F1, . . . , Fr−1. Hence W = V (F1, . . . , Fr−1).

Now consider the inclusion maps j : X ↪→ Z, i : X ↪→W we get:

Proposition 57 X,Z and W be given as above. Then the following diagram is
commutative:

X Z

W

-j

@@Ri ?v

Proof. To check the commutativity of the diagram we will show:
vj = i: Let [p0, . . . , pn+r] ∈ X, then vj([p0, . . . , pn+r]) = v([p0, . . . , pn+r, 0]) =
[p0, . . . , pn+r] ∈W . Also i([p0, . . . , pn+r]) = [p0, . . . , pn+r]

Claim 58 If X = V (F1, . . . , Fr) ⊂ Pn+r is a n-dimensional smooth complete inter-
section of type (d1, . . . , dr) and W = V (F1, . . . , Fr−1) ⊂ Pn+r, described as above, is
smooth complete intersection of type (d1, . . . , dr−1) then Z = V (F1, . . . , Fr−1, Fr +
zdrn+r+1) ⊂ Pn+r+1 is a n + 1-dimensional smooth complete intersection of type
(d1, . . . , dr)

Proof. Note that a variety Y ⊂ PN is smooth if and only if Cone(Y ) − {0} ⊂
CN+1 is smooth.
From our assumptions Cone(X) − {0} = V (F1, . . . , Fr) ⊂ Cn+r+1 and ConeW −
{0} = V (F1, . . . , Fr−1) ⊂ Cn+r are smooth complete intersections. That means that
Jacobian of both have full rank at every point of theirs.
Lets consider the Jacobian of Cone(Z)− {0}:
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Jacobian of Cone(Z) − {0} =

 Jacobian of Cone(W )− {0}
0
...
0

∂Fr
∂z0

· · · ∂Fr
∂zn+r

drz
dr
n+r+1

 Now let

p = [p0, p1, . . . , pn+r+1] be any point in Z. Then

1. If pn+r+1 = 0 then from the proof of Proposition ??, [p0, . . . , pn+r] ∈ X∩W and

Jacobian of Cone(Z) − {0} =

 Jacobian of Cone(X)− {0}
0
...
0

 Then in

this case the Jacobian of Cone(Z)−{0} will have full rank at (p0, p1, . . . , pn+r+1)
as the Jacobian of Cone(X)− {0} has rank r at (p0, . . . , pn+r).

2. If pn+r+1 6= 0 then [p0, . . . , pn+r] ∈ W −X from proof of Proposition ?? and
the fact that [0, 0, . . . , 0, 1] /∈ Z. Then Jacobian of Cone(W ) − {0} will have
rank r− 1 at (p0, . . . , pn+r) implying Jacobian of Cone(Z)−{0} will have full
rank at (p0, p1, . . . , pn+r+1).

Hence in any case Jacobian of Cone(Z) − {0} will have full rank at every point of
Cone(Z) − {0}, implying Z is a smooth complete intersection of dimension n + 1
[Lewis2, Lecture 1, 1.17].

Proposition 59 Let X,Z,W be given as above, then the following diagram is
commutative:

CH•(Z) CH•(X)

CH•(W )

-drj
∗

HHj
v∗

6i∗

Proof. We already saw that for [p0, . . . , pn+r] ∈W we have v−1([p0, . . . , pn+r]) ∼=
{pn+r+1 ∈ C|Fr(p0, . . . , pn+r) + pdrn+r+1 = 0}. Hence v|Z−j(X) : Z − j(X) −→
W − i(X) is unramified of degree dr and v : j(X) −→ i(X) completely ramifies
over X. Now let ξ1 = graph(v) ∈ Z ×W and ξ2 = graphT (i) ∈ W ×X. Consider
ξ1◦ξ2 = Pr13,∗(Pr∗12(ξ1)∩Pr∗23(ξ2)) ∈ Z×X. Then |ξ1◦ξ2| = |graphT (j)| irreducible.
Since ξ1 ◦ξ2 and graphT (j) supports the same family we have i∗ ◦v∗ = d0j

∗ for some
integer d0. Now d0{X} = d0j

∗(Z) = i∗ ◦ v∗(Z) = i∗([C(Z) : C(v(Z))]v(Z)) =
i∗([C(Z) : C(W )]W ) = i∗(drW ) = dri

∗(W ) = dr{X}. Hence we have i∗ ◦ v∗ = drj
∗.

Corollary 60 Let X,Z,W be given as above, we get the following commutative
diagram:

A•(Z) A•(X)

A•(W )

-drj
∗

Q
Qs
v∗

6i∗

Furthermore, we have j∗(A•(Z)) = i∗(A•(W )) from the divisibility of A•(−).

Proposition 61 Let X ⊂ Pn+r be a general complete intersection of type (d1, . . . , dr)
satisfying condition (2.2.1) and let Z ⊂ Pn+r+1 be given as above. Then ΩZ(k) is
smooth and of (pure) dimension (n+ 1− k) + `, where ` is given in proposition ??.
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Proof. The proof is similar to that in [Lewis1]. We write out the details to
account for any new details. Let X = V (F1, . . . , Fr) ⊂ Pn+r be a general complete
intersection of type (d1, . . . , dr). Then we have Fi(z0, . . . , zn+r) =

∑
[αi]=di

aαiz
αi ,

for αi = (αi0, . . . , αi(n+r)) ∈ Zn+r
+ for all i = 1, . . . , r. Here [αi] = αi0 + . . .+αi(n+r)

and zαi = zαi00 . . . z
αi(n+r)

n+r . Let ai = (. . . , aαi , . . .) ∈ CNi+1 where Ni =
(
n+r+di

di

)
.

Now for λ ∈ C let t = [a1, . . . , ar−1, (ar, λ)] ∈ PN1 × PN2 × . . .× PNr−1 × PNr+1 and
consider Zt = V (F1, . . . , Fr−1, Fr + λzdrn+r+1) ⊂ Pn+r+1. By examining Zt we will
show that ΩZ(k) = {Pk’s ⊂ Z} is smooth.
Let L = Pk ⊂ Pn+r+1 be given. L is a k-plane so it has the form L = {τ0w0 + . . .+
τkwk|τj ∈ C, wk ∈ Pn+1+r}. Let PG ⊂ Aut(Pn+r+1) be the subgroup given by

PG =

{ [A]
0
...
0

0 · · · 0 1

∣∣∣A ∈ GL(n+ r + 1,C)

}

Under the action of PG we can write w0 = (β, 0, . . . , 0, η0) with either β 6= 0 or
η0 6= 0, w1 = (0, 1, . . . , 0, η1), . . . , wk = (0, . . . , 0, 1, 0 . . . , 0, ηk).
So L = {(τ0β, τ1, . . . , τk, 0, . . . , 0,

∑k
j=0 τjηj) ∈ Pn+r+1}.

L ⊂ Zt ⇔ Fi(τ0β, τ1, . . . , τk, 0, . . . , 0) = 0 and λ(
k∑
j=0

τjηj)dr+Fr(τ0β, τ1, . . . , τk, 0, . . . , 0) = 0

for ∀i = 1, . . . , r − 1,∀τ = (τ0, . . . , τk) ∈ Ck+1. From here we have

1. Fi(τ0β, τ1, . . . , τk, 0, . . . , 0) = 0⇔
∑

[αi]=di
aαi(τ0β)αi0(τ1)αi1 . . . (τk)αik = 0 ∀τ ∈

Ck+1

2. λ(
∑k

j=0 τjηj)
dr + Fr(τ0β, τ1, . . . , τk, 0, . . . , 0) = 0⇔

0 = λ
∑

[γ]=dr

(vγ(τ0η0)γ0 . . . (τkηk)γk) +
∑

[γ]=dr

aγ(τ0β)γ0τγ1
1 . . . τγkk

=
∑

[γ]=dr

(τγ0
0 . . . τγkk )(λvγη

γ0
0 . . . ηγkk + aγβ

γ0)

⇒ λvγη
γ0
0 . . . ηγkk + aγβ

γ0 = 0

Here coefficients vγ are coming from the expansion of (
∑k

j=0 τjηj)
dr . Now from the

last equation we have two possible cases:

• β 6= 0 then the last equation defines a linear system in t ∈ PN1 × PN2 × . . .×
PNr−1 × PNr+1 of rank

(
k+dr
dr

)
. Also from the first equations, that is given by

Fi = 0 for i = 1, . . . , r − 1 we have linear systems in t ∈ PN1 × PN2 × . . . ×
PNr−1 × PNr+1 of ranks

(
k+di
di

)
for i = 1, . . . , r − 1 respectively.

• β = 0 this implies η0 6= 0⇒ [0, . . . , 0, 1] ∈ Z and so forces λ = 0 which implies
Zt is singular. Also note that β = 0 with η0 6= 0 implies p = [0, . . . , 0, 1] ∈
L ⊂ Zt
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Observe that p ∈ Pn+r+1 is the only point that is fixed under the PG action. Let
L be given with p ∈ L. Then any k-plane L′ in Pn+r+1 is PG equivalent to L if
and only if p ∈ L′. Now let us consider the k-planes that are PG equivalent to L.
For that consider the Grassmannian variety G(k + 1, n + r + 2) = {Pk ⊂ Pn+r+1}
and then define Σ = {c ∈ G|p ∈ Pkc} the parameterizing space of the k-planes PG
equivalent to L. Then consider Λ = {(c, t) ∈ G× PN1+...+Nr−1+Nr+1|Pk ⊂ Zt} with
the projection maps π1 : Λ −→ G and π2 : Λ −→ PN1+...+Nr−1+Nr+1. Now let

• U1 = G− Σ, parameterizing space of k- planes that that does not contain p

• U2 = {t ∈ PN1 × PN2 × . . .× PNr−1 × PNr+1|Zt is smooth }

• Λ0 = π−1
1 (U1) ⊃ {(c, t) ∈ G × PN1 × PN2 × . . . × PNr−1 × PNr+1|Pk ⊂

Zt, Zt is smooth}

Hence we have

1. π−1
2 (U2) ⊂ Λ0 and π2 : Λ0 −→ PN1×PN2× . . .×PNr−1×PNr+1 is a dominating

morphism.

2. For c ∈ U1, π−1
1 (c) ∼= PN where N = N1 + . . . + Nr + 1 −

∑r
i=1

(
k+di
di

)
for all

c ∈ U1.

3. Note that Λ0 is cut out by
∑r

i=1

(
k+di
di

)
. Note that Λ0 can be viewed as

the zero set of
∑r

i=1

(
k+di
di

)
equations that are defined above. Also we have

Λ0 ⊂ G×PN1×PN2×. . .×PNr−1×PNr+1 and the differentials of the
∑r

i=1

(
k+di
di

)
equations defining Λ0 have independent differentials in the direction of t over
Λ0. Hence by the implicit function theorem Λ0 is smooth of dimension N1 +
. . . + Nr + 1 + (k + 1)(n + r + 1 − k) −

∑r
i=1

(
k+di
di

)
Recall from Proposition

??, ` = k(n+ 1 + r− k) + r−
∑r

i=1

(
k+di
k

)
. Note that (k+ 1)(n+ r+ 1− k) =

n + 1 − k + k(n + 1 + r − k) + r, hence N1 + . . . + Nr + 1 + (k + 1)(n + r +
1− k)−

∑r
i=1

(
k+di
di

)
= (N1 + . . .+Nr + 1) + n+ 1− k + `.

Now consider the map π2 : Λ0 −→ PN1×PN2× . . .×PNr−1×PNr+1. This map
is dominating and we have PN1 ×PN2 × . . .×PNr−1 ×PNr+1−U2 has measure
zero. For a general t ∈ PN1×PN2× . . .×PNr−1×PNr+1, π−1

2 (t) = ΩZt where Zt
is smooth. Then dim Λ0 = dimPN1 × PN2 × . . .× PNr−1 × PNr+1 + dim fibers
implies dim ΩZt = n+ 1− k+ ` and by SARD’s lemma the fibers are smooth,
i.e. ΩZt is smooth.

Remember we had a commutative diagram:

P (X) X

X̃

P (Z) Z

ΩX ΩZ

-πX

?

ρX

@
@R
j1 A

A
A
A
AAU

j
�
��π

?

ρ

@
@R
j2

-πZ

�
�	

ρZ

-j0
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where X̃ = π−1
Z (X) = {Pk’s ⊂ Z|Pk ⊂ X} ∪ {Pk’s ⊂ Z|Pk ∩X 6= ∅}

Proposition 62 Let X = V (F1, . . . , Fr) ⊂ Pn+r be a n-dimensional general com-
plete intersection of type (d1, . . . , dr) satisfying condition (2.2.1), and consider Z =
V (G1, . . . , Gr) ⊂ Pn+r+1 where Gi = Fi for all i = 1, . . . , r − 1, Gr = Fr + zdrn+r+1.
Then X̃ is smooth.

Proof. Same as in [Lewis1]
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2.4 The cylinder homomorphism for Chow groups of
complete intersections

Let X ⊂ Pn+r be a general complete intersection of type (d1, . . . , dr) and dimension
n. We will consider the cylinder homomorphism between the Chow group of the
Fano variety of k-planes in X and the Chow group of X. Recall the cylinder corre-
spondence P (X) = {(c, p) ∈ ΩX(k) × X|p ∈ Pkc} and the cylinder homomorphism
φ∗ induced by intersection with P (X). Then we have

φ∗ : CH•−k(ΩX(k)) −→ CH•(X)

given by φ∗(ξ) = Pr2,∗(Pr∗1(ξ)∩P (X)). Now consider X̃ and recall that the surjec-
tive finite to one degree q map π : X̃ −→ X . Then we have CH•(X̃) ⊗ Q −→
CH•(X) ⊗ Q surjective by the fact that π∗π∗ = ×q. Hence we will consider
CH•(X̃) and relate it to CHn−k(ΩX). For that we will consider the inclusion map
j1 : P (X) −→ X̃ and the projection map ρ̃ : X̃ −→ X̃ −P (X) given in the previous
sections. Remember that dimP (X) = n − k where k = [(n + 1 −

∑
i 6=s di)/ds],

ds = max {d1, . . . , dr}. Note that P (X) is closed in X̃ with codimP (X) = k. Now
we will use the following result from [Bloch]:
Let CH•(X,n), n ≥ 0 denote the higher Chow groups of X quasi-projective over a
field k then

(1) (Theorem 4.1) CH•(X,n) is covariant for proper maps, contravariant for flat
map. Contravariant for arbitrary maps when X is smooth.

(2) (Theorem 3.1) For Y ⊂ X closed, pure codimension d, we have a long exact
sequence

→ CH•−d(Y, n)→ CH•(X,n)→ CH•(X − Y, n)→ CH•−d(Y, n− 1)→ . . .

. . .→ CH•−d(Y, 0)→ CH•(X, 0)→ CH•(X − Y, 0)→ 0

(3) CH•(X, 0) = CH•(X)

(4) (Theorem 7.1, Projective Bundle Theorem) Let E be a rank n vector bundle on
the quasi-projective X over a field k, and let ξ be the first Chern class of O(1)
on π : P(E) −→ X. Then for any m ≥ 0 one has

n−1⊕
i=0

ξiπ∗ :
n−1⊕
i=0

⊕
p≥0

CHp(X,m) '→
⊕
q≥0

CHq(P(E),m)

Now from (2) and (3) we have a long exact sequence

. . .→ CH•(X̃ − P (X), 1)→ CH•−k(P (X))
j1,∗→ CH•(X̃)→ CH•(X̃ − P (X))→ 0

Recall that P (X) is a Pk bundle over ΩX and X̃ − P (X) is a Pk−1 bundle over
ΩZ − ΩX . Hence by the Projective Bundle Theorem we have

CH•−k(P (X)) ' ⊕kr=0CH
•−k−r(ΩX) and CH•(X̃−P (X)) ' ⊕k−1

r=0CH
•−r(ΩZ−ΩX)
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Note that ΩX ⊂ ΩZ closed and has pure codimension k + 1, so by (2) and (3) we
get a long exact sequence
. . .→ ⊕k−1

r=0CH
•−r(ΩZ−ΩX , 1)→ ⊕kr=1CH

•−k−r(ΩX)→ ⊕k−1
r=0CH

•−r(ΩZ)→ ⊕k−1
r=0CH

•−r(ΩZ−ΩX)→ 0

Hence we get a commutative diagram

. . .→ • CH•−k(P (X)) CH•(X̃) CH•(X̃ − P (X))→ 0

. . .→ • ⊕k
r=1CH

•−k−r(ΩX) ⊕k−1
r=0CH

•−r(ΩZ) ⊕k−1
r=0CH

•−r(ΩZ − ΩX)→ 0

-

?

'

-
j1,∗

?

'

-

? ?

'

- - -

Now we have results from [Lewis1] that also holds for general complete intersections
satisfying the conditions we examined.

Proposition 63 (
∑k−1

r=0 µ
r ◦ ρ∗) + j1,∗ ◦ ρ∗X : {⊕k−1

r=0CH
•−r(ΩZ)} ⊕CH•−k(ΩX) ∼=

CH•(X̃) is an isomorphism.

Remark 64 Proof is essentially the same as the proof of Proposition ??. Generally
this results holds for any “good” cohomology theory.

Corollary 65 (
∑k−1

r=0 µ
r ◦ ρ∗) + j1,∗ ◦ ρ∗X : {⊕k−1

r=0A
•−r(ΩZ)}⊕A•−k(ΩX) ∼= A•(X̃)

is an isomorphism.

Recall φ∗ := πX,∗ ◦ ρ∗X . Now with these results and Proposition ?? and Corollary
?? we get

Theorem 66 Let X ⊂ Pn+r be a general complete intersection of type (d1, . . . , dr)
satisfying condition (2.2.1) with k = [(n + 1 −

∑
i 6=s di)/ds], ds = max{d1, . . . , dr}.

Then the following homomorphisms are surjective:

1. φ∗ : CH•−k(ΩX)⊗Q −→ {CH•(X)/j∗(CH•(Z))} ⊗Q

2. φ∗ : A•−k(ΩX) −→ A•(X)/j∗(A•(Z))

Corollary 67 φ∗ : A•−k(ΩX) −→ A•(X)/i∗(A•(W )) is surjective.

Proof. For X = V (F1, . . . , Fr) ⊂ Pn+r smooth complete intersection of type
(d1, . . . , dr) satisfying condition (2.2.1) we defined W = v(Z) = V (F1, . . . , Fr−1) ⊂
Pn+r where v is the projection from a point [0, . . . , 0, 1] ∈ Pn+r+1 − Z. Now the
corollary follows from Proposition ??; drj∗(CH•(Z)) = i∗(CH•(W )), together with
divisibility.

Now we will view φ∗ and φ∗ in terms of the cylinder correspondence, that is φ∗ =
[P (X)]∗ and φ∗ = [P (X)T ]∗. Our main aim now is to show ker (φ∗ ◦ φ∗) = ker (φ∗)
for the map φ∗ : A•−k(ΩX) −→ A•(X)/i∗(A•(W )).
First let us recall the commutative diagram:

P (X) X

X̃

P (Z) Z

ΩX ΩZ

-πX

?

ρX

QQs
j1

S
S
SSw

j��3
π

?

ρ

QQs
j2

-πZ

+
ρZ

-j0
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Recall
φ∗ := πX,∗ ◦ ρ∗X = [P (X)]∗ : CH•−k(ΩX) −→ CH•(X)

Note that
φ∗ : CH•(X) −→ CH•−k(ΩX)

Let us call σ = φ∗ ◦ φ∗, then

σ = φ∗ ◦ φ∗ = (P (X)T ◦ P (X))∗ : CH•(ΩX) −→ CH•(ΩX)

Proposition 68 σ(σ −m) = 0 modulo φ∗(i∗CH•(W )), where m = (−1)kq.

Proof. Consider the composition

π∗ ◦ φ∗ : CH•−k(ΩX)
φ∗→ CH•(X) π∗→ CH•(X̃)

Recall from Proposition ??

(
k−1∑
r=0

µr ◦ ρ∗) + j1,∗ ◦ ρ∗X : {⊕k−1
r=0CH

•−r(ΩZ)} ⊕ CH•−k(ΩX) ∼= CH•(X̃)

Hence for ξ ∈ CH•−k(ΩX) we get π∗ ◦ φ∗(ξ) = (
∑k−1

r=0 µ
r ◦ ρ∗(ξr)) + j1,∗ ◦ ρ∗X(ξ̃) for

ξr ∈ CH•−r(ΩZ) and for some ξ̃ ∈ CH•−k(ΩX).
From the definition of σ we have σ(ξ) = ρX,∗ ◦ j∗1 ◦ π∗ ◦ φ∗(ξ). Applying ρX,∗ ◦ j∗1 to
π∗ ◦ φ∗(ξ) we get

ρX,∗ ◦ j∗1 ◦ π∗ ◦ φ∗(ξ) = ρX,∗ ◦ j∗1 ◦ (
k−1∑
r=0

µr ◦ ρ∗(ξr)) + ρX,∗ ◦ j∗1 ◦ j1,∗ ◦ ρ∗X(ξ̃)

From [Lewis-Sertoz] we have the following result

• (Corollary 4.2) For any ξ ∈ CH•(ΩX) we have ρX,∗ ◦ j∗1 ◦ j1,∗ ◦ρ∗X(ξ) = (−1)kξ
where k stands for the k-planes that we consider.

By this result we get

σ(ξ) = ρX,∗ ◦ j∗1 ◦ (
k−1∑
r=0

µr ◦ ρ∗(ξr)) + (−1)kξ̃

Note that since ρX,∗ ◦ j∗1 maps the cycle (
∑k−1

r=0 µ
r ◦ ρ∗(ξr)) ∈ CH•(X̃) to smaller

dimensional cycle in CH•−k(ΩX), it follows that ρX,∗ ◦ j∗1 ◦ (
∑k−1

r=0 µ
r ◦ ρ∗(ξr)) = 0.

Hence we have

ξ̃ = (−1)kσ(ξ)⇒ π∗ ◦ φ∗(ξ) = (
k−1∑
r=0

µr ◦ ρ∗(ξr)) + (−1)kj1,∗ ◦ ρ∗X(σ(ξ))

Now apply π∗ to the above map on the left:

π∗ ◦ π∗ ◦ φ∗(ξ) = π∗(
k−1∑
r=0

µr ◦ ρ∗)(ξr) + (−1)kπ∗ ◦ j1,∗ ◦ ρ∗X(σ(ξ))

(2) qφ∗(ξ) = π∗(
k−1∑
r=0

µr ◦ ρ∗)(ξr) + (−1)kφ∗(σ(ξ))
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Now to conclude our proof let us consider π∗(
∑k−1

r=0 µ
r ◦ ρ∗). From the commutative

diagram above we see that

π∗◦(
k−1∑
r=0

µr◦ρ∗) = π∗◦(
k−1∑
r=0

µr◦j∗2◦ρ∗Z) = π∗◦j∗2◦(
k−1∑
r=0

µrZ◦ρ∗Z) = j∗◦πZ,∗◦(
k−1∑
r=0

µrZ◦ρ∗Z)

Hence Im(π∗◦(
∑k−1

r=0 µ
r◦ρ∗)) = j∗(CH•(Z)). By Proposition ?? we have j∗(CH•(Z)) =

i∗(CH•(W )). Hence

π∗(
k−1∑
r=0

µr ◦ ρ∗) = 0 modulo i∗(CH•(W ))

Applying φ∗ to (2) with this result we get modulo φ∗(i∗(CH•(W )))

qφ∗ ◦ φ∗(ξ) = (−1)kφ∗ ◦ φ∗(σ(ξ))
qσ(ξ) = (−1)kσ ◦ σ(ξ)

(σ ◦ σ − (−1)kqσ)(ξ) = 0
σ ◦ (σ −m) = 0

One can also show that σ ◦ (σ − m) = 0 on CH•−khom(ΩX ,Q)/φ∗(i∗(CH•hom(W ))).
Then we get

Theorem 69 There is a short exact sequence

0→
(σ −m)CH•−k(hom)(ΩX ,Q)

φ∗(i∗(CH•(hom)(W,Q))) ∩ ((σ −m)CH•−k(hom)(ΩX ,Q))
↪→

CH•−k(hom)(ΩX ,Q)

φ∗(i∗(CH•(hom)(W,Q)))

φ∗→
CH•(hom)(X,Q)

i∗(CH•(hom)(W,Q))
→ 0

and

φ∗ : σ(
CH•−k(hom)(ΩX ,Q)

φ∗(i∗(CH•(hom)(W,Q)))
)
∼=→

CH•(hom)(X,Q)

i∗(CH•(hom)(W,Q))

Note 70 For X ⊂ Pn+1 a general smooth hypersurface of dimension n the short
exact sequence above becomes

0 −→ (σ −m)CH•−k(hom)(ΩX ,Q) ↪→ CH•−k(hom)(ΩX ,Q)
φ∗→ CH•(hom)(X,Q) −→ 0

and
φ∗ : σ(CH•−k(hom)(ΩX ,Q))

∼=→ CH•(hom)(X,Q)

Since in this case W = V (0) = Pn+1 and CH•(hom)(P
n+1) = 0.

Proof.
From Theorem ?? we have the surjectivity part of the short exact sequence. The in-

jective part is also clear. We need to show ker (φ∗) =
(σ−m)CH•−k

(hom)
(ΩX ,Q)

φ∗(i∗(CH•
(hom)

(W,Q)))∩((σ−m)CH•−k
(hom)

(ΩX ,Q))
.

From (2), which is also valid in the case we tensored the Chow groups with Q, we
get modulo i∗(CH•(hom)(W,Q))

qφ∗(ξ) = (−1)kφ∗(σ(ξ))
(−1)kqφ∗(ξ) = φ∗(σ(ξ))

φ∗(σ − (−1)kq)(ξ) = 0
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Hence (σ − m)
CH•−k

(hom)
(ΩX ,Q)

φ∗(i∗(CH•
(hom)

(W,Q))) ⊂ ker (φ∗). But σ = φ∗ ◦ φ∗ implies modulo

φ∗(i∗(CH•(hom)(W,Q)))

Im(σ −m) ⊂ ker (φ∗) ⊂ ker (σ).

Now consider (σ−m)(ker (σ)) = −m ker (σ) = m ker (σ) ⊂ Im(σ−m), the inclusion
here follows from Proposition ??. Hence we have

m ker (σ) ⊂ Im(σ −m) ⊂ ker (φ∗) ⊂ ker (σ).

Since we are working with Q-coefficients ker (σ) is m-divisible, hence kerφ∗ =
Im (σ −m) modulo φ∗(i∗(CH•(hom)(W,Q))).

Corollary 71 Let us assume that ker (σ) on A•(ΩX) is m-divisible. Then there is
a short exact sequence

0 −→ (σ −m)A•−k(ΩX)
φ∗(i∗(A•(W ))) ∩ ((σ −m)A•−k(ΩX))

↪→ A•−k(ΩX)
φ∗(i∗(A•(W )))

φ∗→ A•(X)
i∗(A•(W ))

−→ 0 ;

and ker (φ∗) = ker (σ) in the above short exact sequence.
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2.5 Representability for Complete Intersections

Recall that in the previous section we showed that representability of A∗(X) implies
Level(H∗(X)) ≤ 1. Now we will show that the converse implication holds as well.

Theorem 72 Let X = V (F1, . . . , Fr) ⊂ Pn+r be a smooth generic complete inter-
section of type (d1, . . . , dr) satisfying condition (2.2.1). Then Level(H∗(X)) ≤ 1 ⇒
A∗(X) ∼= J∗alg(X) = J∗(X)

Remark 73 Let X a smooth generic complete intersection of dimension n satisfy-
ing condition (2.2.1) and having Level(H∗(X)) ≤ 1 then J∗(X)alg = J∗(X). Here
is the reason:
By definition

Jr(X) =
H2r−1(X,C)

H2r−1(X,Z)⊕ F rH2r−1(X,C)
and Jr

alg(X) =
[Nr−1H2r−1(X,Q)]⊗ C

F r(numerator)⊕ (H2r−1(X,Z) ∩ (numerator))

Since X is a complete intersection if 2r − 1 6= n then Jr(X) = 0 = Jr(X)alg. So
lets consider the case 2r − 1 = n; we are looking at X with Level(H∗(X)) ≤ 1,
if Level(H∗(X)) = 0 then H2r−1(X,C) = 0 ⇒ Jr(X) = 0 = Jr(X)alg. Now
for Level(H∗(X)) = 1 = n− 2k we have H2r−1(X,C) = Hr−1,r(X)⊕Hr,r−1(X) =
F r−1
h H2r−1(X,Q). Also note that r−1 = k and by Proposition ?? we have GHC(k,n,X)

implying F r−1
h H2r−1(X,Q) = N r−1H2r−1(X,Q) ⇒ Jr(X) = Jr(X)alg ⇒ J∗(X) =

J∗(X)alg.

Before giving the proof of the Theorem ??, lets look at the all possible cases of a
complete intersection satisfying condition (2.2.1) and have level less than or equal
to 1.

Proposition 74 All possible cases with k ≥ 0, Level(H∗(X)) ≤ 1 and Condition
(2.2.1) satisfied other than PN , N ≥ 1
r n d1 d2 d3

1 1 d ≥ 2
1 2 2
1 2 3
1 3 2
1 3 3
1 3 4
1 4 2
1 5 2
1 5 3
1 n ≥ 6 2
2 1 2 d2 ≥ 2
2 1 3 d2 ≥ 3
2 2 2 2
2 3 2 2
2 3 2 3
2 n ≥ 4 2 2
3 1 2 2 d3 ≥ 2
3 3 2 2 2

Here r =number of the polynomial defining X, di = degree of the ith polynomial,
n = dimension of X.
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Proof. Recall that Level(H∗(X)) =level(Hn(X)) = n− 2k where

k = [(n−
∑
s 6=i

(di − 1) + 1)/ds] = [(n+ r −
∑
s 6=i

di)/ds]

We assume 2 ≤ d1 ≤ d2 ≤ . . . ≤ dr, hence ds = dr.
We want n− 2k =Level(H∗(X)) ≤ 1 and k ≥ 0. This implies

n− 1
2
≤ k ≤

n+ r −
∑r−1

i=1 di
dr

We have 2 ≤ d1 ≤ d2 ≤ . . . ≤ dr−1 ≤ dr so

n− 1
2
≤ k ≤ n+ r − 2(r − 1)

dr
⇒ r ≤ n− dr

2
(n− 1) + 2 ≤ n− (n− 1) + 2 = 3

Hence Level(H∗(X)) ≤ 1 can only be satisfied if r ≤ 3. Now lets look at the possible
n values for r ≤ 3.

1. r=1; We have

n− 1
2
≤ k = [

n+ 1
d

] ≤ n+ 1
d
⇒ n(d− 2) ≤ d+ 2

There are two possibilities either d = 2 or d > 2

(a) d=2; Consider n = 2a, a ∈ N then k = a and the condition (2.2.1) will

become a(2a+ 2− a) + 1−(
2 + a
a

) = a2+a
2 ≥ 0

Now consider n = 2a+ 1, a ∈ N then k = a+ 1 and the condition (2.2.1)
will be

(a+ 1)(2a+ 1 + 1 + 1− a− 1) + 1−(
2 + a+ 1
a+ 1

) = a2+a
2 ≥ 0

(b) d > 2; We have n ≤ d+2
d−2 = 1 + 4

d−2 . In this case
• d = 3⇒ n ≤ 5
• d = 4⇒ n ≤ 3

• d ≥ 5⇒ n ≤ 1

(n, d) in the above range satisfies the condition (2.2.1) but (4, 3) and (2, 4)
does not satisfy level condition.

2. r=2; We have

n− 1
2
≤ k = [

n+ 2− d1

d2
] ≤ n+ 2− d1

d2
⇒ n(d2 − 2) ≤ 4− 2d1 + d2

There are two possibilities either d2 = 2 or d2 > 2

(a) d2 = 2 ⇒ d1 = 2; Consider n = 2a, a ∈ N then k = a and the condition
(2.2.1) will be

a(2a+ 1 + 2− a) + 2− 2(
2 + a
a

) =0

Now consider n = 2a+ 1, a ∈ N then k = a and the condition (2.2.1) will
be

a(2a+ 1 + 1 + 2− a) + 2− 2(
2 + a
a

) = a ≥ 0
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(b) d2 > 2; We have n ≤ 4−2d1+d2
d2−2 = 1 + 6−2d1

d2−2 ≤ 1 + 2
d2−2 In this case

• d2 = 3⇒ n ≤ 3, and for each those n, d1 ≤ 3
• d2 = 4⇒ n ≤ 2, and for n = 1, d1 ≤ 3, n = 2, d1 ≤ 4
• d2 ≥ 5⇒ n ≤ 1, and d1 ≤ 3
One can check easily that these (n, d1, d2) satisfies the condition (2.2.1)
but the tuples (2, 2, 4), (2, 3, 4), (2, 4, 4), (2, 2, 3), (2, 3, 3) and (3, 3, 3) do
not satisfy the level condition.

3. r=3; We have

n− 1
2
≤ k = [

n+ 3− d1 − d2

d3
] ≤ n+ 3− d1 − d2

d3
⇒ n(d3−2) ≤ 6−2d1−2d2+d3

There are two possibilities either d3 = 2 or d3 > 2

(a) d3 = 2 ⇒ d1 = d2 = d3 = 2; Consider n = 2a, a ∈ N then k = a− 1 and
the condition (2.2.1) will be

(a − 1)(2a + 1 + 3 − (a − 1)) + 3 − 3(
2 + a− 1
a− 1

) = −(a−4)(a−1)
2 and

−(a−4)(a−1)
2 ≥ 0 for a = 1, 2, 3, 4 that is n = 2, 4, 6, 8. But these do not

satisfy the level condition.
Now let n = 2a+ 1, a ∈ N then k = a and the condition (2.2.1) will be

a(2a + 1 + 1 + 3 − a) + 3 − 3(
2 + a
a

) = a(1−a)
2 and a(1−a)

2 ≥ 0 only for

a=0 and a=1, and this gives n = 1 and n = 3.

(b) d3 > 2; We have

n ≤ 6− 2d1 − 2d2 + d3

d3 − 2
= 1 +

8− 2d1 − 2d2

d3 − 2
≤ 1

So we have either n = 0 or n = 1. Now for n = 1 consider k = [4−d1−d2
d3

].
We want k ≥ 0 hence d1 = d2 = 2 is the only possibility which makes
k = 0 and condition (2.2.1) satisfied.

Proposition 75 Let X be a smooth generic complex projective complete intersec-
tion with Level (H∗(X)) ≤ 1. If X does not satisfy (2.2.1) then X ⊂ Pn+3 is a
complete intersection of type (2,2,2) with odd dimesion n ≥ 5.

Proof.
Recall that Level(H∗(X)) =level(Hn(X)) = n− 2k where

k = [(n−
∑
s 6=i

(di − 1) + 1)/ds] = [(n+ r −
∑
s 6=i

di)/ds]

We assume 2 ≤ d1 ≤ d2 ≤ . . . ≤ dr, hence ds = dr.
We have n− 2k =Level(H∗(X)) ≤ 1. This implies

n− 1
2
≤ k ≤

n+ r −
∑r−1

i=1 di
dr
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drn−dr ≤ 2n+2r−2d1−2d2−. . .−2dr−1 ⇒ n(dr−2) ≤ 2r−2d1−2d2−. . .−2dr−1+dr

• For dr > 2

⇒ n ≤ 2r − 2d1 − . . .− 2dr−1 + dr
dr − 2

= 1 +
2(r + 1− d1 − d2 − . . .− dr−1)

dr − 2

• If d1 + d2 + . . .+ dr−1 ≥ r + 1 then n = 1 or n = 0. In either case k = 0 and
the condition (2.2.1) will be satisfied.

• If d1 + d2 + . . .+ dr−1 < r + 1; we have di ≥ 2

⇒ 2(r − 1) ≤ d1 + . . .+ dr−1 < r + 1

This is possible only when r=1 and r=2 (as in this case 2 < r+1
r−1 = 1 + 2

r−1).
So lets consider each case

1. r = 1

n− 1
2
≤ n+ 1

d
⇒ d(n− 1) ≤ 2(n+ 1)⇒ n ≤ 1 +

4
d− 2

For d > 2 we have n = 1 and k = 0 which implies condition (2.2.1) holds.
For d = 2 from Proposition ?? we have condition (2.2.1) satisfied.

2. r = 2

n− 1
2
≤ n+ 2− d1

d2
⇒ n ≤ 4− 2d1 + d2

d2 − 2
= 1 +

2(3− d1)
d2 − 2

For d1 = d2 = 2 we have from the Proposition ?? that condition (2.2.1)
will be satisfied.
For d2 > 2 we can have

d1 ≥ 3⇒ n = 1⇒ k = 0 so the condition will be satisfied.
d1 = 2, d2 = 3⇒ n = 3⇒ k = 1 and condition will be satisfied.
d1 = 2, d2 ≥ 4⇒ n = 1, k = 0 and condition will be satisfied.

• For dr = 2⇒ d1 = d2 = . . . = dr = 2

n− 1
2
≤ k ≤

n+ r −
∑r−1

i=1 di
dr

=
n+ r − (r − 1)2

2
=
n− r + 2

2
=
n− 1

2
+

3− r
2

This is possible when r ≤ 3. For r = 1 and r = 2 we covered them above. Now for
r=3; if we consider n = 2a, a ∈ N then n − 2k = 2 so it will not satisfy the level
condition. Then when we consider n = 2a+ 1 then k = a and the condition (2.2.1)
will not be satisfied for a values such that a(1−a)

2 < 0 this implies a > 1 ⇒ n ≥ 5
odd number.

Example 76 In the Appendix one can find the examples of hypersurfaces and com-
plete intersections which satisfy condition (2.2.1) but has Level(H∗(X)) > 1.
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From the list given in Proposition ?? we can see that for X satisfying condition
(2.2.1) and having level less than or equal to 1, one also has condition (2.2.1) holds
for the W obtained from that X. Now we can give the proof of Theorem ??.

Proof. of Theorem ??
We will use induction on the number of polynomials defining X. Let us first show
the case for r = 1

Proposition 77 Let X = V (F1) ⊂ Pn+1 a general hypersurface satisfying condition
(2.2.1). Then

Level(H∗(X)) ≤ 1⇒ A∗(X) ∼= J∗(X).

Proof. For X = V (F1) ⊂ Pn+1 a general hypersurface, then W = Pn+1 ⇒ A•(W ) =
0. Then from Theorem ?? (2) we have surjective homomorphism

φ∗ : A•−k(ΩX) −→ A•(X)

Note that dim ΩX = n− 2k =Level(H∗(X)) ≤ 1 by our assumption.

1. For • − k > 1 or • − k ≤ 0; A•−k(ΩX) = 0⇒ A•(X) = 0. Also A•(X) = 0⇒
J•(X) = 0 since by Abel-Jacobi map A•(X) −→ J•(X) is surjective.

2. For • − k = 1; whe have the surjective map φ∗ : A1(ΩX) −→ Ak+1(X). Note
that A1(ΩX) ∼= J1(ΩX) by Abel-Jacobi map φ1. Then from the functoriality
of A∗(−) we have

A1(ΩX) Ak+1(X)

J1(ΩX) Jk+1(X)

-φ∗

?
∼=

?
φk+1

-

We want to show φk+1 is an isomorphism and for that we will consider a special
version of the short exact sequence given in the Corollary ?? with the Abel-Jacobi
maps:

Corollary 78 There exists a short exact sequence

0 −→ (σ −m)A1(ΩX) ↪→ A1(ΩX)
φ∗→ Ak+1(X) −→ 0

and ker (φ∗) = ker (σ).

Proof.
Injectivity is clear, surjectivity follows from Corollary ?? . We will show ker (φ∗) =
ker (σ) = Im (σ −m).

1. Im(σ −m) ⊂ ker (φ∗) ⊂ ker (σ):
We have σ = φ∗ ◦φ∗, so ker (φ∗) ⊂ ker (σ). On the other hand from (2) we get
φ∗(σ −m) = 0 on A1(ΩX)⇒ Im (σ −m) ⊂ ker (φ∗).

2. ker (σ) = Im (σ −m):
We have the quadratic relation σ ◦ (σ −m) = 0 and this is the assumption I
in [Bloch-Murre](7.1) and by Lemma 7.2 in [Bloch-Murre] we get
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(a) {kerσ}0 = Im (σ − m) and {ker (σ −m)}0 = Im (σ), where {· · · }0
means connected component of identity.

(b) {kerσ}0 + {ker (σ −m)}0 = J1(ΩX) and {kerσ}0 ∩ {ker (σ −m)}0 ⊂
J1(ΩX)m where J1(ΩX)m is the (m)−torsion subgroup of J1(ΩX).

Now let τ : {kerσ}0 × {ker (σ −m)}0 −→ J1(ΩX) defined by (x, y) −→ x+ y
then one has ker τ = {(x,−x) ∈ {kerσ}0 × {ker (σ −m)}0|x ∈ {kerσ}0 ∩
{ker (σ −m)}0 ⊂ J1(ΩX)m}. Also consider the projection map pr2 : {kerσ}0×
{ker (σ −m)}0 −→ {ker (σ −m)}0 then by lemma 7.7 in [Bloch-Murre] we
have the following equivalent statements

(a) {kerσ}0 = kerσ

(b) Pr2(ker τ) = {ker (σ −m)}0m
(c) j∗2(τ∗θ) = mE with E a divisor on {ker (σ −m)}0, j2 : {ker (σ −m)}0 −→
{kerσ}0 × {ker (σ −m)}0 −→ {ker (σ −m)}0 and θ is a principal polar-
ization of J1(ΩX).

Lemma 7.11 in [Bloch-Murre] implies this equivalent conditions holds for σ and
hence ker (σ) = Im (σ − m) ⇒ ker (φ∗) = ker (σ) = Im (σ − m). So we get the
following commutative diagram of short exact sequences:

0 (σ −m)A1(ΩX) A1(ΩX) Ak+1(X) 0

0 (σ −m)J1(ΩX) J1(ΩX) Jk+1(X) 0

- -

?
∼=

-φ∗

?
∼=

-

?
φk+1

- - - -

Now from five lemma we get Ak+1(X) ∼= Jk+1(X) = and hence A∗(X) ∼= J∗(X).
Note that J∗alg(X) = J∗(X) as we have surjective map from J1(ΩX) −→ J∗(X).
This proves Proposition ??.
Now with having r = 1 case covered, assume our result is true for complete intersec-
tions determined by r− 1 polynomials, satisfying condition (2.2.1) and having level
less than or equal to 1. Note that W = V (F1, . . . , Fr−1) ⊂ Pn+1+(r−1) has dimension
n + 1. And as X satisfies condition (2.2.1) W also satisfies condition (2.2.1) from
the observation we had above. To apply our induction hypothesis to W we should
show it also have Level (H∗(W )) ≤ 1.

Proposition 79 Level(H∗(X)) ≥ Level(H∗(W )).

Proof.
Note that W is also a complete intersection with dimW = n + 1 and dimen-
sion of X is n. Let’s consider Level(H∗(X)) = max {0, n− 2kX}, where n −
2kX =level(Hn(X)), and kX = [(n + r −

∑
i 6=s di)/ds], ds = max d1, . . . , dr. Also

Level(H∗(W )) = max {0, n+ 1− 2kW } where n + 1 − 2kW =level(Hn+1(W )) and
kW = [(n+r−

∑
i 6=s′ di)/ds′ ], ds′ = max d1, . . . , dr−1. We will show that n+1−2kw ≤

n− 2kX which is equivalent to showing kW − 1
2 ≥ kX .

As before assume ds = dr and ds′ = dr−1. Then

kX = [
n+ r − (d1 + . . .+ dr−1)

dr
], kW = [

n+ r − (d1 + . . .+ dr−2)
dr−1

]
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⇒ kW −
1
2

= [
n+ r − (d1 + . . .+ dr−2)

dr−1
]− 1

2
≥ [

n+ r − (d1 + . . .+ dr−2)
dr−1

− 1]

⇒ kW −
1
2
≥ [

n+ r − (d1 + . . .+ dr−1)
dr−1

]

We have dr−1 ≤ dr

⇒ kW −
1
2
≥ [

n+ r − (d1 + . . .+ dr−1)
dr−1

] ≥ [
n+ r − (d1 + . . .+ dr−1)

dr
] = kX

⇒ kW −
1
2
≥ kX ⇒ n+ 1− 2kW ≤ n− 2kX

Hence Level(H∗(X)) ≥ Level(H∗(W )).
From this proposition we have for X satisfying condition (2.2.1), Level(H∗(X)) ≤
1⇒ Level(H∗(W )) ≤ 1. Now by induction hypothesis A∗(W ) ∼= J∗(W ).
From Theorem ?? (2) we have surjective homomorphism

φ∗ : A•−k(ΩX) −→ A•(X)/j∗(A•(Z)) = A•(X)/i∗(A•(W ))

Recall dim ΩX = n − 2k, and with our assumption Level(H∗(X)) = n − 2k ≤ 1,
dim ΩX ≤ 1. Then we have the following cases:

1. • − k > 1⇒ A•−k(ΩX) = 0⇒ A•(X) = i∗(A•(W ))

2. • − k ≤ 1 then we have two possibilities

(a) • − k = 1 we get a surjective map A1(ΩX) −→ Ak+1(X)/i∗(Ak+1(W ))
and by induction Ak+1(W ) ∼= Jk+1(W ). Since W is also a complete
intersection we have

i. Jk+1
alg (W ) = 0 for k 6= n

2 or n odd ⇒ i∗(Ak+1(W )) = 0
ii. for k = n

2 and n even, dim ΩX = n − 2k = 0 ⇒ A1(ΩX) = 0 ⇒
A
n
2

+1(X) = i∗(A
n
2

+1(W )) ∼= i∗(J
n
2

+1(W )). Also 0 = A1(ΩX) ∼=
J1(ΩX) ⇒ J

n
2

+1(X) ∼= i∗(J
n
2

+1(W )). Now by the weak Lefschetz
theorem, J

n
2

+1(X) = 0 which implies i∗(J
n
2

+1(W )) = 0 and hence
A
n
2

+1(X) = i∗(A
n
2

+1(W )) = 0.
(b) • − k < 1⇒ •− k ≤ 0⇒ A•−k(ΩX) = 0⇒ A•(X) = i∗(A•(W ))

As a summary

• For • 6= k + 1 we have a commutative diagram with i∗ and φ surjective

A•(W ) A•(X)

J•(W ) J•(X)

-i
∗

?
'

?
φ

-i
∗

If we have J•(W ) = 0 then we can conclude A•(X) ' J•(X). Since W is a
complete intersection there is a possibility of J•(W ) 6= 0 if (2•−1) = dimW =
n+ 1⇒ n must be an even number. This forces Level(H∗(X)) = n− 2k = 0
(Otherwise n−2k = 1). By Proposition ?? we get 0 = Level(H∗(W )) =level(H2•−1(W ))⇒
H2•−1(W ) = 0⇒ J•(W ) = 0. Hence A•(X) ' J•(X).
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• For • = k + 1 we have either Ak+1(X) = Jk+1(X) = 0 or a surjective map

A1(ΩX) −→ Ak+1(X)

Hence to show A•(X) ∼= J•(X) we only need to consider the case when • − k = 1.
The proof of this case is the same as the case • − k = 1 in the proof of Proposition
??.
With this result we can state the following theorem proving Lewis’ conjecture for
complete intersections satisfying a certain condition:

Theorem 80 Let X ⊂ Pn+r be a general smooth complete intersection of type
(d1, . . . , dr) satisfying condition (2.2.1). Then Level(H∗(X)) ≤ 1 ⇔ A∗(X) ∼=
J∗(X).

Corollary 81 If X ⊂ Pn+1 is a general smooth hypersurface satisfying condition
(2.2.1). Then Level(H∗(X)) ≤ 1⇔ A∗(X) ∼= J∗(X).
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Chapter 3

Motives

Algebraic cycles of codimension higher than one is a mysterious subject in that we
do not have a complete description of these objects. In the previous sections we gave
a partial description of algebraic cycles of complete intersection (satisfying certain
property). For a complete understanding of algebraic cycles and Chow groups, a
conjectural filtration on the Chow groups was introduced by Bloch and Beilinson
[Jann2]. One approach to constructing such a (candidate) filtration is via the work
of J. Murre [Mur, page 149], where a decomposition of the Chow motive of projective
algebraic manifolds, on the level of rational equivalence, is used to construct such a
filtration. In this section our goal is to compute the motive of a smooth projective
complete intersection in terms of the motive of its Fano variety, as a way of arriving
at partial results for the aforementioned filtration. In particular, we will examine one
of Murre’s conjectures on Chow motives of complex projective complete intersections
in terms of a corresponding statement about its Fano variety.

3.1 Pure Chow Motives

The theory of motives was created by Grothendieck in mid 1960’s and these objects
carry all different cohomology groups associated to a projective variety. Motives
arise from the phenomena of what is in common with all cohomology theories.
They can be thought as a universal cohomology theory carrying properties of other
cohomology theories. We have an explicit definition for the construction of motives
however, the properties that it satisfies are conjectural.
We will work with pure motives constructed from smooth projective varieties that
are defined over C. For the construction we need to fix an equivalence relation ∼
on the algebraic cycles of X.

Definition 82 The group of correspondences between two smooth projective vari-
eties X and Y with respect to ∼ is defined as

Corr∼(X,Y ) := C∼(X × Y,Q) =
d+e⊕
i=0

Ci∼(X × Y,Q)

where d = dimX, e = dimY,Ci∼ = Zi(X×Y )
Zi∼(X×Y )

.

If this ∼ is the rational equivalence we write Corr(X × Y ) = CH(X × Y,Q).
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Definition 83

1. Let f ∈ Corr∼(X,Y ) and g ∈ Corr∼(Y, Z) then g • f ∈ Corr∼(X,Z) where

g • f = prXZ{(gr(f)× Z) ∩ (X × gr(g))}

2. The category of pure motives is denoted by M∼(C) with

- Objects: M = (X, p,m) where X is a smooth projective variety defined over
C, p is a projector of X and m ∈ Z

- Morphisms: If M = (X, p,m) and N = (Y, q, n) then

HomM∼(M,N) = q • Corrn−m∼ (X,Y ) • p

3. Objects M = (X, p,m) are called motives with respect to ∼. If ∼ is the rational
equivalence then M is called a Chow motive.

Definition 84 A correspondence p ∈ Corr0
∼(X,X) is called a projector of X with

respect to ∼ if p • p = p. Two projectors are called orthogonal if p • q = q • p = 0.

Example 85 Let X be a smooth complex projective variety of dimension n. Let ∼
be the rational equivalence then

1. Corr0
∼(X,X) = CHn(X ×X,Q) and Id = ∆X = {(x, x)|x ∈ X} ∈ CHn(X ×

X) is a projector of X.

2. If p is a projector on X then ∆X−p is also a projector on X. As (∆X−p)2 =
∆2
X −∆X • p− p •∆X + p2 = ∆X − p− p+ p = ∆X − p.

3. We can write (X, Id) = (X, p)⊕ (X, Id− p) since p and Id− p are orthogonal
as p ◦ (Id− p) = p− p2 = p− p = 0.

Now we can state our main theorem for this section:

Theorem 86 Let X ⊂ Pn+r be a smooth complete intersection of type (d1, . . . , dr)
and W ⊂ Pn+r be the projection from [0, . . . , 0, 1] of Z ⊂ Pn+r+1 where X = Z ∩
Pn+r. Assume (k, n, d) is given with k = [

n−
∑
i6=s di+1

ds
] where ds = max {d1, . . . , dr}

satisfying

k(n+ 1 + r − k) + r −
r∑
j=1

(
dj + k
k

)
≥ 0

Then modulo two assumptions ?? and ?? below, one can find a motivic decomposition
for ΩX

(ΩX , Id) = (ΩX , τ̃)⊕ (ΩX , Id− τ̃)

where
(ΩX , τ̃ , 0) ' (X, π̃Xn ,−k)

as pure motives, π̃Xn is a certain primitive projector associated to the middle dimen-
sional cohomology of X.

For the proof of our theorem we need to clarify the aforementioned assumptions
and construct projectors on ΩX and X which will give an isomorphism between the
motive of X and the motive of ΩX . We will do these in the following sections.
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3.2 Chow-Künneth Decomposition for Complete Inter-
sections

Recall that for X ⊂ Pn+r an n-dimensional smooth complete intersection of type
(d1, . . . , dr) the corresponding object in the category of pure motives is (X, p,m),
where p ∈ CHn(X × X,Q) is a projector and m ∈ Z. For the construction of
projectors on X and ΩX we will use Chow-Künneth Decomposition.

Definition 87 Let X be a smooth projective algebraic manifold of dimension n.
X is said to have a Chow-Künneth decomposition if there exists a projector πi ∈
CHn(X ×X,Q) for 0 ≤ i ≤ 2n such that

(i) πi • πj =
{ πi if i = j

0 if i 6= j

(ii) ∆X =
∑

i πi

(iii) (∆X)2n−i,i = πi (modulo homological equivalence), i.e. the usual ith Künneth
component.

The existence of a Chow-Künneth decomposition for any smooth projective algebraic
manifold was conjectured by Jacob P. Murre in [Mur], where a number of other
conjectures are stated:

Conjecture 88 ([Mur]) Let X be any smooth projective algebraic manifold of di-
mension n. Then

1. Conjecture I: There exists a Chow-Künneth decomposition for X.

2. Conjecture II: The π2n, π2n−1, . . . , π2j+1 and π0, . . . , πj−1 operate as zero on
CHj(X,Q) where 0 ≤ j ≤ n.

3. Conjecture III: The filtration defined below is independent of the ambiguity in
the choices of πi:
Assuming Conjecture I and II define the filtration on CHj(X,Q):

F 0 := CHj(X,Q)

F 1 := ker (π2j)

F 2 := ker (π2j−1|F 1) = ker (π2j) ∩ ker (π2j−1)

inductively

F v := ker (π2j−v+1|F v−1) = ker (π2j) ∩ ker (π2j−1) ∩ . . . ∩ ker (π2j−v+1)

4. Conjecture IV: F 1 := CHj
hom(X,Q)

It was shown in [Jann2] that if all of Murre’s Conjectures hold then Bloch-Beilinson
filtration exists and vice versa. For certain manifolds some of the Murre’s Conjec-
tures are known to hold. Here is a list of manifolds and the Murre’s conjectures
that are known to hold:
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(a) Curves ; Conjectures I-IV (Manin)

(b) Surfaces ; Conjectures I-IV (Murre)

(c) Complete intersections; Conjecture I (Lewis)

(d) Threefolds that are product of a surface and a curve; Conjectures I-IV (Murre)

(e) Abelian varieties; Conjecture I and part of Conjectures II-IV (Shermenev, Deninger-
Murre, Künnemann)

(f) Some modular varieties ; Conjecture I (Gordon-Murre, Gordon-Hanamura-Murre,
Miller-Muller-Stach-Wortmann-Yang-Zuo)

(g) Product of two surfaces; Conjecture II and part of Conjecture IV (Murre)

(h) Product of two curves and a surface; Conjecture IV (Kimura)

Conjecture I holds for smooth complete intersections. Let us give an explicit con-
struction of a Chow-Künneth decomposition of X. Let HX be a hyperplane section
of X and recall that by Lefschetz’s theorems for i 6= n

H i(X,Q) =

{
Q · (Pn+r−m ∩X) = Q ·Hm

X if i = 2m for 0 ≤ m ≤ n
0 if i is odd

For p+ q = 2n, we set

∆X(p, q) =

{
1

degX (H l
X ⊗H

n−l
X ) if (p, q) = (2l, 2n− 2l) 6= (n, n)

0 if p or q is odd

and we have
∆X(n, n) = ∆X −

∑
(p,q) 6=(n,n)

∆X(p, q)

In CHn(X ×X,Q) put,

πXl =


1

deg(X)(Hn−l/2
X ×H l/2

X ) if l 6= n is even

0 if l 6= n is odd
∆X(n, n) if l = n

Then we have
πXm ◦ πXm = πXm and πXm ◦ πXl = 0 for m 6= l

[Justification: Consider X ×X ×X with the corresponding projections then for

- m 6= n = dimX

πXm ◦ πXl = Pr13,∗(Pr∗12(πXl ) ∩ Pr∗23(πXm))

= Pr13,∗(degX−1H
n−l/2
X ×H l/2

X ×X ∩ degX−1X ×Hn−m/2
X ×Hm/2

X )

= degX−1Pr13,∗(H
n−l/2
X × (H l/2

X ∩H
n−m/2
X )×Hm/2

X )
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Note that H l/2
X ∩H

n−m/2
X 6= 0 if n−m/2 + l/2 ≤ n⇒ l ≤ m, if this is the case we

have
πXm ◦ πXl = degX−1H

n−l/2
X ×Hm/2

X

and this is non zero if n − l/2 + m/2 ≤ n ⇒ m ≤ l. Hence πXm ◦ πXm = πXm and
πXm ◦ πXl = 0 for m 6= l.

- For m=n, we have πXn ◦ πXn = πXn .

Hence we get

Proposition 89 Let X ⊂ Pn+r be a smooth complete intersection. Then we have
a Chow-Künneth decomposition via the projectors {πXl }

∆X = πX0 + . . .+ πX2n

Remark 90 Let X and W be two complete intersections with Chow-Künneth de-
composition via the projectors {πXi } and {πWj }. Then the product X×W also has a
Chow-Künneth decomposition with projectors {πX×Wl } where πX×Wl =

⊕
i+j=l π

X
i ×

πWj .

Now let us examine Murre’s II Conjecture on X smooth complete intersection of
dimension n with Chow-Künneth projectors πXl , l = 0, 1, . . . , 2n:

• For l 6= n we have

πl,∗CH
r(X,Q) = ∆X(2n− l, l)∗CHr(X,Q) = Gr2r−l

F CHr(X,Q)

From here we see that for 2r − l < 0 ⇒ l > 2r and 2r − l > r ⇒ l < r, πl,∗
operate as zero on CHr(X,Q).
In addition to this for ξ ∈ CHr(X,Q) and l 6= n we have

πl,∗CH
r(X,Q) = ∆X(2n− l, l)∗CHr(X,Q) = Pr2,∗(Pr∗1(ξ) ∩ 1

degX
H
n−l/2
X ×H l/2

X )

= Pr2,∗(ξ ×X ∩
1

degX
H
n−l/2
X ×H l/2

X )

Note that codim(ξ ∩ Hn−l/2) = n + r − l/2, πl,∗ will operate as zero on
CHr(X,Q) for l such that r − l/2 > 0 ⇒ l < 2r. Hence πl,∗ operate as
zero on CHr(X,Q) for l 6= n and l 6= 2r. So to check if Murre’s II Conjecture
holds for X we need to check only the case l = n.

• For l = n < r we have CHr(X,Q) = 0 because of the dimension. For l = n >
2r consider the diagram

CHr(X,Q) CHr(X,Q)

H2r(X,Q) H2r(X,Q)
?

clr

-
πn,∗

?
clr

-
πn,∗

Since n > 2r we have πn,∗ = 0 on H2r(X,Q), hence πn,∗(CHr(X,Q)) ⊂
CHr

hom(X,Q).
The question of whether Murre’s II Conjecture holds for X translates to the
question of whether CHr

hom(X,Q) = 0 for r < n/2, which is the question of
Hartshorne in [Har2](page 142).

52



Assumption 91 There exists a Künneth formula

CHn(X ×W,Q) =
n⊕
l=0

CHn−l(X,Q)⊗ CH l(W,Q)

for our X and W defined above.

Example 92 In the case r = 1, we have W = Pn+1 hence we get such a decompo-
sition from the projective bundle theorem on page 35.

Assumption 93 For any such 0 ≤ l ≤ n either

CHn−l(X,Q) = QHn−l
X

or
CH l(W,Q) = QH l

W

Example 94 Recall Hartshorne’s conjecture: For a smooth compelete intersection
Z of dimension m, CHr

hom(Z) = 0 for r < m
2 . This means Zrhom(Z) = Zrrat(Z),

and with the cycle class map being surjective by the Hodge conjecture, CHr(Z,Q) '
H2r(Z,Q) = QHr

Z .

Proposition 95 If Hartshorne’s conjecture holds, then Assumption ?? holds.

Proof. Let X be a smooth complete intersection of dimension n and W be a smooth
complete intersection of dimension n+1, then for n− l < n

2 we have CHn−l(X,Q) =
QHn−l

X and for l < n+1
2 we have CH l(W,Q) = QH l

W by Hartshorne’s conjecture.
Now lets consider the other possible values of n− l and l.
For n − l > n

2 ⇒ 2l < n and l > n+1
2 ⇒ 2l > n + 1. This implies n > 2l > n + 1

which is not possible. Hence Assumption ?? follows.
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3.3 Chow Motive of X and Its Fano Variety

In this section we will prove Theorem ??. For that we will construct projectors of
X, ΩX and W that will relate the motives of these objects.
Lets start with X;

Consider π̃Xn = πXn −hXn where πXn = ∆X(n, n) and hXn =
{ 1

deg(X)(Hn/2
X ×Hn/2

X ) if n is even
0 if n is odd

.

Note that
hXn ◦ hXn = hXn and πXn ◦ hXn = hXn ◦ πXn = hXn

Then we have π̃Xn is a projector of X which is orthogonal to hXn since

[π̃Xn ]2 = (πXn )2 − πXn ◦ hXn − hXn ◦ πXn + (hXn )2 = πXn − hXn = π̃Xn

and
π̃Xn ◦ hXn = hXn ◦ π̃Xn = 0

To be able to give a relation between the motive of X and ΩX we will consider the
following results:

Proposition 96 Let X = V (F1, . . . , Fr) ⊂ Pn+r be a smooth projective complete
intersection of type (d1, . . . , dr) satisfying condition (2.2.1) introduced in section 2.2.
Then φ∗ ◦ φ∗ = ×m on CH•(X,Q)/i∗(CH•(W,Q)) where W = V (F1, . . . , Fr−1) ⊂
Pn+r is a projective algebraic manifold.

Proof. Recall that for X satisfying the above properties we get a surjective map

φ∗ : CH•−k(ΩX ,Q) −→ CH•(X,Q)/i∗(CH•(W,Q))

with φ∗ ◦ φ∗ = ×(−1)kq = ×m where q is the order of the map π : X̃ −→ X.
Now consider φ∗ ◦ φ∗ ◦ φ∗ = φ∗ ◦ (×m) = mφ∗. By the surjectivity of the map φ∗
we get our result.
Next we will consider the diagrams obtained by applying X×:

X ×X X × Z

X ×W

-1×j

Q
QQs

1×i
?
1×v

X × P (X) X ×X

X × X̃

X × P (Z) X × Z

X × ΩX X × ΩZ

-1×πX

?

1×ρX

H
HHj
1×j1

@
@
@
@@R

1×j��
�*1×π

?

1×ρ

HHHj
1×j2

-1×πZ

�
���

1×ρZ

-1×j0

Using the same methods we did for the previous diagrams we will get the results:

1. 1×φ∗ : CH•−k(X×ΩX ,Q) −→ CH•(X×X,Q)/i∗(CH•(X×W,Q)) is surjective

2. 1× (φ∗ ◦ φ∗) = ×m on CH•(X ×X,Q)/i∗(CH•(X ×W,Q))
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Hence for • = n we have

[1× (φ∗ ◦ φ∗)−×m] = 0 on CHn(X ×X,Q)/i∗(CHn(X ×W,Q))

Proposition 97

P (X) ◦ P (X)T −m∆X = 0 in CHn(X ×X,Q)/i∗(CHn(X ×W,Q))

Hence
π̃Xn ◦ P (X) ◦ P (X)T = mπ̃Xn in CHn(X ×X)

Proof. Recall that φ∗ = [P (X)], φ∗ = [P (X)T ] and from Proposition ?? we have
1×φ∗ ◦φ∗ = ×m on CHn(X ×X,Q)/i∗(CHn(X ×W,Q)). Now the fact that for a
smooth projective variety Y and a correspondence E ⊂ Y ×Y , (∆Y ×E)∗(∆Y ) = E
gives

P (X) ◦ P (X)T −m∆X = 0 in CHn(X ×X,Q)/i∗(CHn(X ×W,Q))

To show the second part let’s examine i∗(CHn(X ×W,Q)) and π̃Xn (i∗(CHn(X ×
W,Q))). From Assumption ?? and Assumption ?? we have

CHn(X ×W,Q) =
n⊕

l<n+1
2

CHn−l(X,Q)⊗Q{H l
W } ⊕

n⊕
l≥n+1

2

Q{Hn−l
X } ⊗ CH l(W,Q)

Note that i∗(H•W ) = H•X . Then

i∗(CHn(X×W,Q)) =
n⊕

l<n+1
2

CHn−l(X,Q)⊗Q{H l
X}⊕

n⊕
l≥n+1

2

Q{Hn−l
X }⊗i∗(CH l(W,Q))

We have i∗(CH•(W,Q)) ⊂ CH•(X,Q) so

i∗(CHn(X×W,Q)) ⊂
n⊕

l<n+1
2

CHn−l(X,Q)⊗Q{H l
X}⊕

n⊕
l≥n+1

2

Q{Hn−l
X }⊗CH l(X,Q)

Now lets apply π̃Xn = ∆X − 1
degX

⊕n
p=0Q{H

p
X ⊗H

n−p
X } to i∗(CHn(X ×W,Q))

π̃Xn (i∗(CHn(X×W,Q))) ⊂ π̃Xn (
n⊕

l<n+1
2

CHn−l(X,Q)⊗Q{H l
X}⊕

n⊕
l≥n+1

2

Q{Hn−l
X }⊗CH l(X,Q))

We will first consider the sum over l < n+1
2 :

π̃Xn (
n⊕

l<n+1
2

CHn−l(X,Q)⊗Q{H l
X}) =

n⊕
l<n+1

2

CHn−l(X,Q)⊗Q{H l
X}

−
n⊕

l<n+1
2

n⊕
r=0

Pr13,∗(CHn−l(X,Q)⊗Q{H l
X} ×X ∩X ×Q{Hr

X ⊗Hn−r
X })
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=
n⊕

l<n+1
2

CHn−l(X,Q)⊗Q{H l
X} − CHn−l(X,Q)⊗Q{H l

X} = 0

Now for the second sum over l ≥ n+1
2 we will take the transpose of the first sum as

(π̃Xn )T in CHn(X ×X) with (π̃Xn )T = π̃Xn . Hence

π̃Xn ◦ P (X) ◦ P (X)T ◦ (π̃Xn )T = mπ̃Xn ◦ (π̃Xn )T = mπ̃Xn ⇒

π̃Xn ◦ P (X) ◦ P (X)T ◦ π̃Xn = mπ̃Xn in CHn(X ×X,Q)

Next we will construct a projector for ΩX in order to show the relation between the
motives of X and ΩX . For that let

τ̃ =
1
m
P (X)T ◦ π̃Xn ◦ P (X) ∈ CHn−2k(ΩX × ΩX ,Q)

We have τ̃ is a projector on ΩX since

τ̃ ◦ τ̃ =
1
m
P (X)T ◦ π̃Xn ◦ P (X) ◦ 1

m
P (X)T ◦ π̃Xn ◦ P (X)

=
1
m
P (X)T ◦ 1

m
[π̃Xn ◦ P (X) ◦ P (X)T ◦ π̃Xn ] ◦ P (X)

=
1
m
P (X)T ◦ 1

m
mπ̃Xn ◦ P (X) =

1
m
P (X)T ◦ π̃Xn ◦ P (X)

= τ̃

⇒ τ̃ ◦ τ̃ = τ̃

Now we can prove our main Theorem ??
Proof. We want to show that the motive (ΩX , τ̃ , 0) is isomorphic to the mo-
tive (X, π̃Xn ,−k). For that we will consider the correspondences α = 1

mP (X)T ∈
CHn−k(X×ΩX ,Q) and β = P (X) ∈ CHn−k(ΩX×X,Q) which give the morphisms

π̃Xn ◦ α ◦ τ̃ : (ΩX , τ̃ , 0) −→ (X, π̃Xn ,−k)

and
τ̃ ◦ β ◦ π̃Xn : (X, π̃,−k) −→ (ΩX , τ̃ , 0)

By the relations we have for τ̃ and π̃Xn we get

π̃Xn ◦ β ◦ τ̃ ◦ α ◦ π̃Xn = π̃Xn

and
τ̃ ◦ α ◦ π̃Xn ◦ β ◦ τ̃ = τ̃

which gives the isomorphism between our motives.
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3.4 Bloch-Beilinson Filtration

In this section we will show that the existence of Bloch-Beilinson filtration implies
Assumption ?? and also Hartshorne’s conjecture by [Jann2]. This also shows the
usefulness of the assumption of Bloch-Beilinson filtration in our main Theorem ??
whose proof depends on both Assumption ?? and Hartshorne’s conjecture.

Definition 98 (Bloch-Beilinson Filtration)[Jann2] Let X be a smooth complex pro-
jective variety of dimension n. There exists a descending filtration F on CHj(X,Q)
with the following properties:

1. F 0CHj(X,Q) = CHj(X,Q), F 1CHj(X,Q) = CHj(X,Q)hom for some fixed
Weil cohomology theory.

2. F rCHj(X,Q) ·F sCHj(X,Q) ⊂ F r+sCHj(X,Q) under the intersection prod-
uct

3. Assuming the algebraicity of the Künneth components of the diagonal, GrvFCH
j(X,Q) =

F vCHj(X,Q)/F v+1CHj(X,Q) depends only on the motive (X,∆2n−2j+v,2j−v, 0)
modulo homological equivalence (i.e. CHd(X ×X)hom)

4. F vCHj(X,Q) = 0 for v >> 0

Let X ⊂ Pn+r be a smooth projective complete intersection of type (d1, . . . , dr)
satisfying condition (2.2.1) introduced in section 2.2. Recall that X = Z ∩ Pn+r+1

where Z ⊂ Pn+r+1 was a complete intersection of type (d1, . . . , dr) and we obtained
W ⊂ Pn+r a complete intersection of type (d1, . . . , dr−1) as the projection of Z to
Pn+r. Let us show that the existence of Bloch-Beilinson filtration implies Assump-
tion ??:

Claim 99 (Assumption ??) We have a Künneth formula

CHn(X ×W,Q) =
n⊕
l=0

CHn−l(X,Q)⊗ CH l(W,Q)

for our X and W defined above.

Proof. Recall that X ⊂ Pn+r a complete intersection and W ⊂ Pn+r given by
the projection from Z ⊂ Pn+r+1. Hence dimW = n + 1 and W is a complete
intersection. By the Bloch-Beilinson filtration (equivalently if Murre’s Conjectures
hold) one gets a (noncanonical) decomposition for any smooth projective variety V

CHk(V,Q) ∼=
k⊕
l=0

GrlFCH
k(V,Q)

With the assumption that the Künneth components of the diagonal class are alge-
braic one gets

CHk(V,Q) =
k⊕
l=0

∆(2 dimV − 2k + l, 2k − l)∗CHk(V,Q)
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For our purpose, k = n and V = X ×W , if ∆X and ∆W have algebraic Künneth
components then so has ∆X×W . Hence we get

CHn(X ×W,Q) =
n⊕
l=0

∆(2(2n+ 1)− 2n+ l, 2n− l)∗CHn(X ×W,Q)

=
n⊕
l=0

∆(2n+ 2 + l, 2n− l)∗CHn(X ×W,Q)

Note that

[∆(2n+2+l, 2n−l)] ∈ (H2n+2+l(X×W,Q)⊗H2n−l(X×W,Q))∩H2n+1,2n+1(X×W×X×W )

Lets consider H2n+2+l(X ×W,Q) =
⊕

p+q=2n+2+lH
p(X,Q)⊗Hq(W,Q) and

H2n−l(X ×W,Q) =
⊕

p+q=2n−lH
p(X,Q) ⊗ Hq(W,Q). The only nontrivial coho-

mologies are Hn(X,Q) and Hn+1(W,Q) as X,W are complete intersections. Hence
the only terms needed to be considered are

• Hn(X,Q) ⊗ Hn+2+l(W,Q) ⊕ Hn+1+l(X,Q) ⊗ Hn+1(W,Q) ⊂ H2n+2+l(X ×
W,Q)

• Hn(X,Q)⊗Hn−l(W,Q)⊕Hn−1−l(X,Q)⊗Hn+1(W,Q) ⊂ H2n−l(X ×W,Q)

Now let us consider the nontrivial parts of H2n+2+l(X ×W,Q)⊗H2n−l(X ×W,Q).
We know that odd degree cohomologies other than middle dimensions of complete
intersections are zero. Hence

1. if n, l are both even or both odd we get
Hn(X,Q)⊗Hn+2+l(W,Q)⊗Hn(X,Q)⊗Hn−l(W,Q) ⊂ H2n+2+l(X×W,Q)⊗
H2n−l(X ×W,Q)

2. otherwise we get
Hn+1+l(X,Q)⊗Hn+1(W,Q)⊗Hn−1−l(X,Q)⊗Hn+1(W,Q) ⊂ H2n+2+l(X ×
W,Q)⊗H2n−l(X ×W,Q)

The cycle corresponding to the case (1) is given by Pr∗13(∆X(n, n))∩Pr∗24(∆W (n+
2 + l, n − l)), and to the case (2) is given by Pr∗13(∆X(n + 1 + l, n − 1 − l)) ∩
Pr∗24(∆W (n+ 1, n+ 1)).
We will show CHn(X ×W,Q) =

⊕
p+q=nCH

p(X,Q)⊗ CHq(W,Q).

• Case (1):

Let ξ ∈ CHn(X ×W ), consider

Pr14,∗[Pr∗12(ξ) ∩ Pr∗13(∆X(n, n)) ∩ Pr∗24(∆W (n+ 2 + l, n− l))]

= Pr14,∗[(ξ ×X ×W ) ∩ (X ×H
n+2+l

2
W ×X ×H

n−l
2

W ) ∩ Pr∗13(∆X(n, n))]

= Pr14,∗(ξ ∩ (X ×H
n+2+l

2
W )×X ×H

n−l
2

W ∩ Pr∗13(∆X(n, n)))
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Now codimX×W (ξ) = n, codimX×W (X ×H
n+2+l

2
W ) = n+2+l

2 , so codimX×W (ξ ∩ (X ×

H
n+2+l

2
W )) = 3n+2+l

2 . We have dim (ξ ∩ (X ×H
n+2+l

2
W )) = n−l

2 in X ×W , under the
projection it is mapped to a cycle ξX in X of codimension n− n−l

2 = n+l
2 .

We have the following diagram

ξ ∩ (X ×H
n+2+l

2
W )×X ×H

n−l
2

W ∈ X ×W ×X ×W

ξX ×X ∈ X ×X ξW ×H
n−l
2

W ∈W ×W

ξ̃ ∈ X H
n−l
2

W ∈W

��
���

���
���

����

HH
HHH

HHH
HHH

HHj

?

∆X(n,n)∗

?

pr2

Note that codim (ξ̃) = n+l
2 , so we have

Pr14,∗[Pr∗12(ξ)∩Pr∗13(∆X(n, n))∩Pr∗24(∆W (n+2+l, n−l))] = ξ̃×H
n−l

2
W ∈ CH

n+l
2 (X,Q)⊗CH

n−l
2 (W,Q)

Also with the trivial cases we get

CHn(X ×W,Q) =
⊕
p+q=n

CHp(X,Q)⊗ CHq(W,Q)

• Case (2):

Let ξ ∈ CHn(X ×W ), consider

Pr14,∗[Pr∗12(ξ) ∩ Pr∗13(∆X(n+ 1 + l, n− 1− l)) ∩ Pr∗24(∆W (n+ 1, n+ 1))]

= Pr14,∗[(ξ ×X ×W ) ∩ (H
n+1+l

2
X ×W ×H

n−1−l
2

X ×W ) ∩ Pr∗24(∆W (n+ 1, n+ 1))]

= Pr14,∗(ξ ∩ (H
n+1+l

2
X ×W )×H

n−1−l
2

X ×W ∩ Pr∗24(∆W (n+ 1, n+ 1)))

Now codimX×W (ξ) = n, codimX×W (H
n+1+l

2
W × W ) = n+1+l

2 , so codimX×W (ξ ∩

(H
n+1+l

2
X ×W )) = 3n+1+l

2 . We have dim (ξ ∩ (H
n+1+l

2
X ×W )) = n+1−l

2 in X ×W ,
under the projection it is mapped to a cycle ξW in W of codimension n+1− n+1−l

2 =
n+1+l

2 .
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We have the following diagram

ξ ∩H
n+1+l

2
X ×W ×H

n−1−l
2

X ×W ∈ X ×W ×X ×W

ξX ×H
n−1−l

2
X ∈ X ×X ξW ×W ∈W ×W

H
n−1−l

2
X ∈ X ξ̃ ∈W

��
���

���
���

����

HH
HHH

HHH
HHH

HHHj

?

pr2

?

∆W (n+1,n+1))∗

Note that codim (ξ̃) = n+1+l
2 , so we have

Pr14,∗[Pr∗12(ξ) ∩ Pr∗13(∆X(n+ 1 + l, n− 1− l)) ∩ Pr∗24(∆W (n+ 1, n+ 1))]

= H
n−1−l

2
X × ξ̃ ∈ CH

n−1−l
2 (X,Q)⊗ CH

n+1+l
2 (W,Q)

Also with the trivial cases we get CHn(X×W,Q) =
⊕

p+q=nCH
p(X,Q)⊗CHq(W,Q).

Hence for X and W complete intersections with dimension n, n+ 1 respectively we
have Künneth formula

CHn(X ×W,Q) =
⊕
p+q=n

CHp(X,Q)⊗ CHq(W,Q)

In [Jann2] it was shown that existence of a Bloch-Beilinson filtration implies Murre’s
conjectures. So if we assume the existence of Bloch-Beilinson filtration we will have
Murre’s conjectures and in section 3.2 we saw that for smooth complete intersections
Murre’s II Conjecture is equivalent to Hartshorne’s conjecture. Hence the existence
of Bloch-Beilinson filtration implies Hartshorne’s conjecture for smooth complete
intersections.
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Chapter 4

Appendix

Let X ⊂ Pn+r be a n-dimensional smooth complex projective complete intersection
of type (d1, . . . , dr). Assume di ≤ dj whenever i ≤ j.
We have k = [(n −

∑
s 6=i(di − 1) + 1)/ds] = [(n + r −

∑
s 6=i di)/ds] where ds =

max {d1, . . . , dr}.

• Note that k < 0 for n+ r <
∑

s 6=i di which implies condition

(1) k(n+ 1 + r − k) + r −
∑r

j=1(
dj + k
k

)≥ 0 does not hold.

Now lets look at examples where k ≥ 0.

1. Examples with k ≥ 0 and Level(H∗(X)) ≤ 1 other than PN , N ≥ 1
r n d1 d2 d3

1 1 d ≥ 2
1 2 2
1 2 3
1 3 2
1 3 3
1 3 4
1 4 2
1 5 2
1 5 3
1 n ≥ 6 2
2 1 2 d ≥ 2
2 1 3 d ≥ 3
2 2 2 2
2 3 2 2
2 3 2 3
2 5 2 2
2 n ≥ 6 2 2
3 1 2 2 d3 ≥ 2
3 n = odd ≥ 3 2 2 2
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2. All possible cases with k ≥ 0, Level(H∗(X)) ≤ 1 and Condition (1) satisfied
other than PN , N ≥ 1
r n d1 d2 d3

1 1 d ≥ 2
1 2 2
1 2 3
1 3 2
1 3 3
1 3 4
1 4 2
1 5 2
1 5 3
1 n ≥ 6 2
2 1 2 d2 ≥ 2
2 1 3 d2 ≥ 3
2 2 2 2
2 3 2 2
2 3 2 3
2 n ≥ 4 2 2
3 1 2 2 d3 ≥ 2
3 3 2 2 2

3. Examples with k ≥ 0 but Condition (1) is not satisfied
r n d
1 9 5
1 11 4
1 11 6
1 12 4
1 12 6
1 13 6
1 13 7
1 14 5
1 14 7
1 15 4
1 15 5
1 15 7
1 15 8
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r n d
1 16 4
1 16 5
1 16 7
1 16 8
1 17 3
1 17 4
1 17 5
1 17 6
1 17 7
1 17 8
1 17 9
1 18 4
1 18 5
1 18 6
1 18 8
1 18 9
1 19 4
1 19 5
1 19 6
1 19 8
1 19 9
1 19 10
1 20 3
1 20 4
1 20 5
1 20 6
1 20 7
1 20 8
1 20 9
1 20 10
1 21 3
1 21 4
1 21 5
1 21 6
1 21 7
1 21 8
1 21 9
1 21 10
1 21 11
1 22 4
1 22 5
1 22 6
1 22 7
1 22 9
1 22 10
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r n d
1 22 11
1 23 3
1 23 4
1 23 5
1 23 6
1 23 7
1 23 8
1 23 9
1 23 10
1 23 11
1 23 12
1 24 3
1 24 4
1 24 5
1 24 6
1 24 7
1 24 8
1 24 9
1 24 10
1 24 11
1 24 12
1 25 3
1 25 4
1 25 5
1 25 6
1 25 7
1 25 8
1 25 9
1 25 10
1 25 11
1 25 12
1 25 13
1 26 3
1 26 4
1 26 5
1 26 6
1 26 7
1 26 8
1 26 9
1 26 10
1 26 11
1 26 12
1 26 13
1 27 3
1 27 4
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r n d
1 27 5
1 27 6
1 27 7
1 27 8
1 27 9
1 27 10
1 27 11
1 27 12
1 27 13
1 27 14
1 28 3
1 28 4
1 28 5
1 28 6
1 28 7
1 28 8
1 28 9
1 28 10
1 28 11
1 28 12
1 28 13
1 28 14
1 29 3
1 29 4
1 29 5
1 29 6
1 29 7
1 29 8
1 29 9
1 29 10
1 29 11
1 29 12
1 29 13
1 29 14
1 29 15
1 30 3
1 30 4
1 30 5
1 30 6
1 30 7
1 30 8
1 30 9
1 30 10
1 30 11
1 30 12
1 30 13
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r n d1 d2

1 30 14
1 30 15
2 7 3 3
2 8 2 4
2 9 2 3
2 9 3 4
2 10 2 5
2 10 3 3
2 10 3 4
2 10 4 4
2 11 2 5
2 11 3 3
2 11 3 5
2 11 4 4
2 12 2 3
2 12 2 4
2 12 2 6
2 12 3 3
2 12 3 5
2 12 4 4
2 12 4 5
2 13 2 4
2 13 2 6
2 13 3 3
2 13 3 4
2 13 3 5
2 13 3 6
2 13 4 5
2 13 5 5
2 14 2 4
2 14 2 6
2 14 2 7
2 14 3 3
2 14 3 4
2 14 3 6
2 14 4 4
2 14 4 5
2 14 4 6
2 14 5 5
2 15 2 3
2 15 2 5
2 15 2 7
2 15 3 3
2 15 3 4
2 15 3 6
2 15 3 7
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r n d1 d2 d3

2 15 4 4
2 15 4 5
2 15 4 6
2 15 5 5
2 15 5 6
3 n = odd ≥ 5 2 2 2
3 7 2 2 3
3 8 2 3 3
3 9 2 2 4
3 9 2 3 3
3 9 3 3 3
3 10 2 2 2
3 10 2 2 3
3 10 2 3 4
3 10 3 3 3
3 11 2 2 3
3 11 2 2 5
3 11 2 3 3
3 11 2 3 4
3 11 2 4 4
3 11 3 3 3
3 11 3 3 4
3 12 2 2 2
3 12 2 2 5
3 12 2 3 3
3 12 2 3 5
3 12 2 4 4
3 12 3 3 3
3 12 3 3 4
3 12 3 4 4
3 13 2 2 2
3 13 2 2 3
3 13 2 2 4
3 13 2 2 6
3 13 2 3 3
3 13 2 3 5
3 13 2 4 4
3 13 2 4 5
3 13 3 3 3
3 13 3 3 4
3 13 3 3 5
3 13 3 4 4
3 13 4 4 4
3 14 2 2 2
3 14 2 2 3
3 14 2 2 4
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r n d1 d2 d3

3 14 2 2 6
3 14 2 3 3
3 14 2 3 4
3 14 2 3 5
3 14 2 3 6
3 14 2 4 4
3 14 2 4 5
3 14 2 5 5
3 14 3 3 3
3 14 3 3 5
3 14 3 4 4
3 14 3 4 5
3 14 4 4 4
3 15 2 2 3
3 15 2 2 4
3 15 2 2 6
3 15 2 2 7
3 15 2 3 3
3 15 2 3 4
3 15 2 3 6
3 15 2 4 4
3 15 2 4 5
3 15 2 4 6
3 15 2 5 5
3 15 3 3 3
3 15 3 3 4
3 15 3 3 5
3 15 3 3 6
3 15 3 4 4
3 15 3 4 5
3 15 3 5 5
3 15 4 4 4
3 15 4 4 5

4. Examples with k ≥ 0 and Condition (1) satisfied but Level(H∗(X)) > 1
r n d1 d2

1 2 d ≥ 4
1 3 d ≥ 5
1 4 d ≥ 3
1 5 d ≥ 4
1 6 d ≥ 3
1 7 d ≥ 3
1 8 d ≥ 3
1 8 d ≥ 3, d 6= 5
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r n d1 d2 d3

1 10 d ≥ 3
1 11 d ≥ 3, d 6= 4, 6
1 12 d ≥ 3, d 6= 4, 6
1 13 d ≥ 3, d 6= 6, 7
1 14 d ≥ 3, d 6= 5, 7
1 15 d ≥ 3, d 6= 4, 5, 7, 8
1 16 d ≥ 3, d 6= 4, 5, 7, 8
1 17 d ≥ 10
1 18 3
1 18 7
1 18 d ≥ 10
1 19 3
1 19 7
1 19 d ≥ 11
1 20 d ≥ 11
1 21 d ≥ 12
1 22 3
1 22 8
1 22 d ≥ 12
1 23 d ≥ 13
1 24 d ≥ 13
1 25 d ≥ 14
1 26 d ≥ 14
1 27 d ≥ 15
1 28 d ≥ 15
1 29 d ≥ 16
1 30 d ≥ 16
2 n ≥ 2 2 d2 ≥ 3
2 n ≥ 2 3 d2 ≥ 3
2 n ≥ 2 4 d2 ≥ 4

2 n ≥ 2
... d2 ≥

...
2 n ≥ 2 n+ 2 d2 ≥ n+ 2
3 n = even ≥ 2 2 2 d3 ≥ 2
3 n = even ≥ 2 2 3 d3 ≥ 3

3 n = even ≥ 2 2
... d3 ≥

...
3 n = even ≥ 2 2 n d3 ≥ n
3 n = odd ≥ 3 2 2 d3 ≥ 3
3 n = odd ≥ 3 2 3 d3 ≥ 3

3 n = odd ≥ 3 2
... d3 ≥

...
3 n = odd ≥ 3 2 n d3 ≥ n
3 n ≥ 3 3 3 d3 ≥ 3

3 n ≥ 3 3
...

...
3 n ≥ 3 3 n d3 ≥ n
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r n d1 d2 d3

3 n ≥ 5 4 4 d3 ≥ 4

3 n ≥ 5 4
...

...
3 n ≥ 5 4 n− 1 d3 ≥ n− 1
3 7 5 5 d3 ≥ 5

5. Examples with k ≥ 0 and Level(H∗(X)) ≤ 1 but Condition (1) is not satisfied
r n d1 d2 d3

3 n = odd ≥ 5 2 2 2

6. Examples with k ≥ 0 and Condition (1) satisfied.
r n d1 d2 d3

1 n ≥ 5 2 2 2
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