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Abstract

This thesis deals with the creation, calibration and performance of the camera system to

be installed in the SNO+ experiment. A system of six cameras in underwater enclosures

will be used to monitor the position of the acrylic vessel and its hold-down rope net

during the course of the experiment. The system will also be used to triangulate the

positions of calibration sources lowered into the detector to an expected accuracy of

±1.5 cm at a distance of 9 meters. This is an improvement to the previous ±5 cm

accuracy given by the rope manipulator system used to lower calibration sources into

the detector. This result will not be subject to the same position-dependent systematic

effects that dominated the previous system. The procedure of testing and calibrating

the cameras before their installation is explained in this thesis.
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Chapter 1

Introduction

1.1 The SNO+ Detector

The SNO+ detector will make use of most of the equipment from its predeces-

sor, SNO (Sudbudy Neutrino Observatory), which has previously made accurate mea-

surements of the 8B solar neutrino flux [1]. The detector is located in Vale’s Creighton

mine near Sudbury, Ontario, Canada. It resides at a depth of 1783 m with a rock

overburden of 5890 meters water equivalent (mwe) to shield it from cosmic rays and

atmospheric muons. A sketch of the detector is shown in Fig. 1.1.

The previous experiment, SNO, consisted of a 12 m diameter acrylic vessel

(AV) surrounded by a geodesic stainless steel support structure (PSUP) supporting 9456

highly sensitive, inward-looking photomultiplier tubes (PMTs). The PMTs detect the

light produced when high energy particles such as neutrinos pass through the detector

and interact with the kilotonne of heavy water contained in the AV. Heavy water,

a compound where the hydrogen atom in a water molecule is replaced with a more

massive deuteron, was used in SNO to detect the oscillation of solar electron neutrinos

into muon and tau neutrinos. In SNO+ this medium is being replaced with liquid

organic scintillator to lower the energy threshold of detectable interactions, explained

further in Sec. 1.3.

The detector is located in one of the large halls of SNOLAB, an underground

research facility in the Creighton mine housing SNO+ and other low background exper-

iments. At its depth the detector has an average of 70 muon interactions per day.
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Figure 1.1: A cutaway diagram of the SNO experiment.

The detector medium in the AV is shielded from possible radiation from the

PMTs by a 2 m thick buffer (1700 tonnes) of ultra pure water, with another 5300 tonnes

of ultrapure water shielding the PSUP from radioactive decay in the walls of the cavity.

Radon ingress into the cavity is minimized with thick layers of Urylon coating the inner

walls of the cavity. The entire experiment is kept very clean to reduce radioactive

backgrounds, and this has enabled SNO to make world-leading measurements of solar

neutrino fluxes [1].
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Figure 1.2: Generated image of SNO+ showing the camera locations and hoses in

red and the hold-down rope net in yellow. The hold-up rope net is not represented

in this image.

1.2 Upgrading to SNO+

To upgrade to the new SNO+ detector, several changes are being made to the

existing detector. The heavy water of SNO is being replaced with liquid organic scintil-

lator, lowering the energy threshold for detectable particles. A scintillator-filled detector

will produce approximately 50 times more light than a water-filled C̆erenkov detector,

allowing observation of these lower-energy particle interactions [2]. Electrons passing

through the detector easily excite the molecules of scintillator, causing light emission at

a far greater rate than through C̆erenkov light emission alone. The cleanroom rating

and depth of the experiment results in an low background rate, allowing SNO+ to make

a more competitive measurement of solar and geo-neutrinos than similar scintillation

experiments, KamLAND and Borexino. The 6000 mwe of shielding from atmospheric

particles reduces activation of 11C in the scintillator from muon-spallation events. All
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of these properties contribute to give SNO+ the ability to make a precise measurement

of neutrinoless double beta decay.

The buoyancy of the liquid scintillator requires a means of holding down the

AV inside the detector cavity. In SNO, a hold-up rope system was required to support

the AV under the weight of the heavy water it contained. For SNO+, a rope net was

added, this time to apply an even downward force on the AV (Fig. 1.2) to counter the

buoyant force of the scintillator. The net is anchored at the bottom of the cavity and

is monitored by load cells.

New techniques are being designed for calibrating the PMT timing and energy

resolution, including an upgraded laserball and PSUP-mounted LED calibration system,

ELLIE (Sec. 1.5). To reduce internal backgrounds in the AV, the top 2 µm of acrylic will

be sanded from the inside of the vessel, removing radon daughters that have deposited

on the vessel from exposure to mine air, which has high concentrations of radon.

1.3 Replacing D2O with Scintillator

An organic scintillator for a large-scale particle detector is generally made

up of two or three components: a solvent, which is an aromatic hydrocarbon that

becomes efficiently excited by the passage of charged particles and forms the bulk of

the scintillator; a fluor, typically 2,5-diphyniloxazole (PPO) at a level of a few g/L

which collects the excitations via dipole interactions and emits them as photons; and

occasionally a wavelength shifter at the level of a few mg/L which captures the light

emitted by the fluor and re-emits it at a longer wavelength to reduce the chance of

self-absorption by the scintillator [3].

The scintillator chosen for SNO+ is linear alkyl benzene (LAB) due to its

relatively high light output and its compatibility with acrylic. LAB was compared to

several other scintillators including diisopropylnaphthalene (DIN), but the latter was

decided against due to observations of possible acrylic erosion. Degradation of acrylic

was noticed in the Palo Verde experiment [4], where it was exposed to pseudocumene

diluted to 20% in mineral oil. Visible changes were noticed in the acrylic, and these

changes would not be acceptable in the high-stress application of the SNO+ acrylic

vessel.
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The testing of LAB’s effect on acrylic was carried out by members of the

SNO+ collaboration. Extensive work was done developing Monte Carlo models for

light propagation from a neutrino event in the scintillator, with the results promising

adequate light output with robust signal extraction [3].

One further adaptation required for using scintillator in the detector is the

addition of a hold-down rope net. Due to its density, scintillator would cause the AV

to float in the surrounding light water. A study of the stresses on the AV was done in

SNO+ and a rope net designed was designed to hold down the AV and reduce these

stresses [5]. A sketch of this rope net is shown in Fig. 1.2.

1.4 Research Aims of SNO+

There are several areas of physics research where SNO+ will be able to con-

tribute with new measurements and data. Of main interest is the study of neutrinoless

double beta decay, low energy solar reactions such as the CNO, 7Be, and pep chains,

geo-neutrinos produced from Uranium and Thorium decay in the Earth’s crust and

mantle, and reactor anti-neutrinos arriving from two nearby nuclear reactors.

1.4.1 Neutrinoless Double Beta Decay

One of the main aspects of SNO+ will be the search for neutrinoless double

beta decay. A two neutrino double beta decay (2νββ) is a rare second order weak process

which occurs when a single double beta decay from (Z,A) to (Z +1, A) is energetically

unfavorable, but a double beta decay is allowed.

(Z,A) → (Z + 2, A) + e−1 + e−2 + ν̄e1 + ν̄e2 (1.1)

This effect has been previously observed in some even-even nuclei such as 48Ca, 76Ge,

96Zr, 136Xe, and 150Nd [6, 7].

A potential different decay mode is the neutrinoless double beta decay (0νββ),

(Z,A) → (Z + 2, A) + e−1 + e−2 (1.2)
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where the two nucleons exchange a virtual neutrino rather than emitting two neutri-

nos. In order for this process to occur the neutrino has to be massive and invariant

under charge conjugation, as this decay mode violates lepton number conservation. If

this is the case, then the neutrino would be classified as a “Majorana particle”, where

the antiparticle does not differ from the particle. If neutrinoless double beta decay is

not observed, then a strong case is made for the neutrino to be classified as a “Dirac

particle”, where a particle is distinct from its antiparticle.

Observing neutrinoless double beta decay involves observing a large number of

decays while searching for a small mono-energetic neutrinoless double beta decay peak

at the end of a larger two-neutrino double beta decay continuum [3]. The requirements

for a double beta decay experiment are a sufficient detector resolution such that the

2νββ signal does not “smear out” the 0νββ signal, very low backgrounds in the 0νββ

peak region, and a large number of decays in order to collect sufficient statistics in the

0νββ region.

The double beta decay experiment will be conducted in SNO+ by suspending

neodymium in the scintillator. Natural neodymium contains 5.9% 150Nd, which decays

to 150Sm with an endpoint energy of 3.37 MeV, and a half-life of (9.2± 0.8)× 1018 a for

the 2νββ decay mode [8].

Loading the detector with more 150Nd will increase the observed decay rate,

but comes at a price of reduced light transmittance in the scintillator. The neodymium

will be loaded in the scintillator at 0.1% by weight, which optical studies have confirmed

as being tolerable [3]. This will result in 48 kg of the 150Nd isotope being suspended

in 860 tonnes of liquid scintillator, a competitive amount compared to other 0νββ

experiments. A second route is also being pursued by the SNO+ collaboration to obtain

enriched neodymium at 50% 150Nd. This would be result in a detector containing 480

kg of isotope, making it one of the largest double beta decay experiments currently

envisioned [3].

1.4.2 Solar Neutrinos

With an energy threshold below 0.5 MeV, SNO+ will be sensitive to solar

neutrinos that SNO could not previously detect, namely those from the pep and CNO
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chains. Accurate measurements of these fluxes can help constrain helioseismological

models and shed light on different aspects of neutrino physics [9].

Since the pep flux has an energy of 1.44 MeV, it falls between the low energy

region where vacuum oscillations have dominant effect on νe survival rate (Pee), and

the high energy region where the MSW effect dominates. Measuring the flux at this

region can make a more accurate measurement of ∆m2
12, and help constrain certain

neutrino-matter interaction models [3].

SNO+ will also be able to measure the flux of neutrinos from the CNO pro-

cess. Where the pp chain reactions produce about 98.5% of the Sun’s energy, 1.5%

comes from CNO cycle. The CNO chain depends greatly on the metalicity of the

Sun, namely the content of N, O, and especially C [10]. Measuring the contribution

of the CNO cycle would help resolve the discrepancies between spectroscopic measure-

ments of the solar metalicity, and the metalicity required to reproduce helioseismological

models.1. Reduced C11 backgrounds in SNO+ will also give it an advantage over the

KamLAND detector, where the pep flux is obscured by C11 backgrounds generated by

muon-spallation events in the detector [11].

1.4.3 Geo-neutrinos

Internal radioactivity of the Earth contributes to its overall heat flux, and

is an area of active research [12]. The radioactive contribution from the crust is well

constrained through geological measurements, but the contribution of the mantle is not

yet well understood [13]. By measuring the flux of anti-neutrinos resulting from the

decay of U and Th chains, SNO+ can help place constraints on the radioactivity of the

mantle and its resulting contribution to the Earth’s total energy loss [14].

Uranium and thorium chains have members that undergo beta decay, releasing

anti-neutrinos which can be detected in SNO+. Anti-neutrinos interact with protons in

the scintillator via the inverse beta decay reaction, producing a neutron and a positron:

p+ ν̄e → n+ e+ (1.3)

1Two types of models, one type based on spectroscopic measurements of the Sun and the other on
helioseismology, reproduce differing abundances of heavy elements in the Sun [9] The predictions for
13N and heavier elements differ by over 30%.
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The positron annihilates with a nearby electron almost immediately, while the neutron

travels on average 200 µs through the scintillator until it captures on a proton, releasing

a monoenergetic 2.2 MeV γ-ray. This “delayed coincidence” signal provides a powerful

method for extracting these interactions from the single-event backgrounds [3].

SNO+ is in a position to make an important contribution to the study of

geo-neutrinos already started at KamLAND and Borexino. It is located in a well-

studied region of continental crust that has higher concentrations of U and Th, whereas

KamLAND is surrounded by both continental and oceanic crust (depleted in U and

Th by comparison). The largest fraction (80%) of signal comes from the crustal rock,

with most of it (70 − 80%) originating from rock that is within 1200 km, allowing it

to be measured through other geological methods [14]. This will deconvolve the crustal

contribution from that of the mantle, giving insight into the heat production of the deep

Earth.

There is also benefit from the lower reactor neutrino rate around SNO+. The

closest nuclear reactor, the Bruce generating station, will produce a reactor neutrino

rate of 179 events per 1032 proton-years, of which only 49 lie in the same spectral region

as the geo-neutrinos [14]. The signal-to-background in SNO+ is 51/49, or roughly

1:1. KamLAND has 165 reactor background events per 1032 proton-years, giving it a

signal-to-reactor background ratio of 1:4. Further detail including spectral plots is given

in [14].

1.4.4 Reactor Anti-Neutrinos

Nuclear reactors emit anti-neutrinos generated from the beta decay of the re-

actor fuel’s fission products. The energy spectrum of these neutrinos is usually known,

and their flux is tightly constrained by the carefully measured power output of the reac-

tor. Using this information along with the distance to a reactor, it is possible to perform

long-baseline neutrino measurements to determine the effects vacuum oscillations have

on the neutrinos.

Anti-neutrinos would be detected in SNO+ through the inverse beta decay

reaction with delayed coincidence, the same process as geo-neutrino detection. SNO+

is located 240 km from the Bruce nuclear generating station and about 330 km from
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reactors in Pickering and Darlington. Due to the baselines between the SNO+ and

the reactors, it happens that the second oscillation minimum from the Bruce reactor

coincides with the third oscillation minimum from the Pickering and Darlington reactors.

This feature will make SNO+ very sensitive to ∆m2
12 mass splitting [3], and it has even

been suggested [15] that this favorable reactor positioning may allow SNO+ to make a

more precise measurement of ∆m2
12 than KamLAND. More detail of the mathematics

behind making these measurements in SNO+ can be found in [3].

1.5 Calibration of the SNO+ Detector

It is important to distinguish here between calibration of the SNO+ detector

and calibration of the camera system. Calibration of the detector involves placing

an enclosed radioactive source or light emitter into the detector and observing the

response of the PMTs. During a calibration run the position of each physics event is

reconstructed, and an important check on the accuracy of the reconstruction is knowing

the location of the source producing these events. Previously this was done using the

rope manipulator system. This thesis outlines how the camera system will be used to

triangulate the source location to greater precision.

In order to ensure that the camera system is calculating accurate source posi-

tions, it itself needs to be calibrated beforehand. This is a separate calibration from the

detector calibration and will be done by photographing the PMTs with the installed

cameras and mapping their positions onto the camera’s pixel space. The mathematics

behind the process is explained in Chapter 5 and the procedure is described in Chapter 7.

The general goals of the detector calibration are to understand the energy

response of the detector in the range of ∼ 0.1–10 MeV, including focusing on the low

energy threshold of 0.1–0.2 MeV, and the double beta endpoint energy of 3.37 MeV.

Neutron detection efficiency must also be understood, as this process is highly dependent

on event position when taking place near the edge of the AV. Gamma rays resulting

from neutron capture near the edge of the detector can escape the scintillator volume

resulting in less observed light, which limits the fiducial volume of the detector. The

electronics and DAQ must be calibrated, and these calibrations will also be used to

create useful Monte Carlo models of events in the SNO+ detector [16].
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Figure 1.3: Schematic of the source (rope) manipulator system used in SNO and

SNO+ to lower calibration sources such as the laserball into the detector. Ad-

justable ropes allow the source to be positioned across all three axes in the acrylic

vessel.

1.5.1 Point Sources

To calibrate the energy response of the detector, various radioactive point

sources will be used. Using the source manipulator system (Fig. 1.3, reproduced from [17]),

these sources can be lowered into the detector to various positions where they will un-

dergo decay and emit γ-rays into the detector. These γ-rays will Compton scatter off of

the electrons in the scintillator and create scintillation light. By using different mono-

energetic γ-ray sources, the dependence of light yield on γ-ray energy can be determined.

Additional point sources, including a C̆erenkov source and β source (8Li), are still under

study and would provide useful information when implemented. An Americium/Beryl-

lium (AmBe) neutron source will be used to study the position dependence of neutron



11

capture light yield and how sharply it varies for events close to the edge of the detector.

1.5.2 Laser Ball

Optical calibrations of the detector are done using a “laserball” [18]. The

laserball is a 109 mm diameter quartz flask filled with diffuser. Laser light generated on

the SNO+ deck is transported into the quartz flask using optical fibers, where it emits

isotropically. Lowered into the detector with the source manipulator system, it is used

to calibrate the PMT response.

1.5.3 ELLIE

ELLIE, or Embedded Light Injection Entity, is a system of optical fibers

mounted on the PSUP which transports light into the detector after it has been gen-

erated by LEDs or lasers on the deck surface [16]. This system is divided into several

subsystems. Timing calibration is tested by TELLIE, which consists of 91 optical fibers

emitting 432 nm LED light, covering all of the SNO+ PMTs [18]. Changes in absorption

lengths in the scintillator are measured using AMELLIE, which can inject LED gener-

ated light in two different directions from four different source points [19]. Scattering

measurements in the LAB are measured using SMELLIE, a system which emits light in

three different directions using multiple wavelengths from lasers [20].

Since this calibration system is mounted on the PSUP, it has the advantage

that it does not have to be redeployed each time it is used. This reduces the possibility

of contaminating the scintillator with radon from the mine air. A second advantage of a

stationary PSUP-mounted calibration system is that the light can be used as additional

reference points for calibrating the camera system.
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Chapter 2

Camera System

Vital to the calibration of PMTs is knowledge of the calibration source position

within the detector. Previously this was calculated by measuring the rope lengths of

the source manipulator system. This could determine the source position to within 5

cm just below the neck of the AV, but suffered higher uncertainty when the source was

moved away from the center of the detector [21, 22].

A camera system was proposed to photograph the source and triangulate its

location as a more accurate means of source localization. This will lead to better PMT

calibrations and more accurate physics measurements from the SNO+ detector. The

camera system also allows monitoring of the physical state of the detector, including

the position of the rope net and the movement of the AV. The software written for the

purpose of triangulation is detailed in the following chapters of this thesis.

The camera system hardware was principally designed by P. Gorel, with soft-

ware work done by the author. Additional valuable input was given by A. Hallin and

other members of the SNO+ collaboration. The design of the camera system was in-

spired in part by the camera system developed at Borexino [23]. This chapter of the

thesis will focus on the hardware aspect of the project, including details of the camera

enclosures and a summary of the camera system installation status.
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2.1 Overview

The camera system consists of six Nikon D5000 cameras in watertight, stain-

less steel enclosures with clear acrylic dome-shaped viewports. The cameras are to be

mounted on the PSUP looking inwards on the SNO+ AV in six symmetrically spaced

locations.

Each camera will have a full view of the vessel owing to its fish eye lens, a

Nikon AF-S DX 10.5mm F2.8G Lens. This lens has a 180◦ picture angle allowing for

wide-angle shots such as those in Fig. 2.5. The entire detector is visible and will be in

focus once the cavity is filled with water and AV is filled with scintillator. The water

and scintillator fill will improve the camera focus as their indices of refraction closer

match that of acrylic than does air.1

The symmetric spacing of the camera mounting shown in Fig. 2.1, with three

on the bottom hemisphere of the PSUP and three on the top, ensures that a calibration

source placed inside the detector will be visible from all directions. This symmetry in

the cameras’ arrangement also serves to reduce systematic errors when triangulating

the source position.

Each camera is connected to the control deck of the SNO+ experiment through

a 25 m long hose.2 Each hose contains wires for power, RJ45 (ethernet) signal cable,

and plastic hose for a N2 gas flush system to remove moisture from the enclosure. The

camera hoses penetrate the deck at two locations (top of Fig. 2.1) where they pass

through a manifold that separates the deck surface from the detector underneath. After

reaching the surface, each group of three hoses reaches a control box (Fig. 2.3) that

manages the electrical connections and monitors gas flow.

From these boxes, the signal from each camera passes to an on-deck computer

capable of remote near-simultaneous operation of the cameras. This computer will also

provide an internet connection so that users can operate the camera system remotely

and view photographs taken by it. This system is still in development.

As a precaution, the cameras also underwent small hardware modifications to

avoid damaging the SNO+ PMTs while the camera system is in operation. The LEDs

1Water has an index of refraction nw = 1.33, acrylic nacr = 1.49, scintillator ns = 1.48, while air has
nair = 1.00. Thus, the photographs in air appear more blurry than underwater photographs.

2Commonly termed the “umbilical”.
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Figure 2.1: Camera positions relative to the PSUP. The six cameras are labeled P

(prototype), followed by 1, . . . , 5. The camera cables are shown in red travelling

to two locations underneath the deck surface above the cavity, and the hold-down

rope net is shown in yellow. The hold-up rope net is not shown.
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Figure 2.2: CAD drawing of camera enclosure showing the aluminum brackets inside

for mounting the camera.

on the outside of the camera were disabled by carefully disassembling each camera and

cutting the wires leading to the LEDs. The flash was also disabled by cutting the power

wire leading to it. A flash accidentally going off during operation of the PMTs could

damage them due to the amount of light being suddenly produced.

2.2 Camera Enclosures

Each camera enclosure (Fig. 2.2) has a clear acrylic dome, 144 mm in diameter

and 5 mm thickness, sealed with a pair of O-rings. These domes3 were chosen for their

optical clarity and lack of visible distortions. A benefit of acrylic is that it contains

less radioactivity than glass (which was used for the domes in the camera system at

Borexino [23]), while making it somewhat more difficult to achieve a good optical inter-

face. The O-rings are standard Buna-N nitrile O-rings, used commonly in SNO+ and

deemed safe for the experiment in terms of Rn emanation. The back of each enclosure

3Manufactured by a local supplier, PG Plastics.
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has mounting brackets for attachment to the PSUP frame, and a feed-through port for

carrying cable and tubing to the SNO+ deck surface via the umbilical hose.

Each stainless steel enclosure contains a single camera secured inside on an

aluminum mounting bracket. The camera was mounted inside such that the effective

focal point of the camera would be at the center of the optical dome4. The cameras were

also set for a near focus5 of approximately 18 cm which would give the correct focus

when the enclosures were submerged in water. This is the reason why photographs of

the AV taken in air appear slightly blurry as in Fig. 2.5.

Different types of polyurethane hoses were tested at the University of Alberta

Low Background Counting lab by A. Hallin of SNO+. All hoses tested were strong,

flexible and suitable for the task of carrying wires underwater in SNO+. However,

low backgrounds are critical to maintaining the low energy sensitivity threshold of the

detector. The hose6 with the lowest radioactivity was selected for the enclosures, to

minimize radioactive contamination of the SNO+ detector. Cables were fed through

the hose by attaching a thin, metal lead-wire to a small ball slightly smaller than the

inner diameter of the hose (12.7 mm), and “sucking” it through with a vacuum cleaner

placed on the other side. The lead-wire would then be used to pull a cable through the

entire 23 m length of the hose.

The prototype (P) enclosure was sent to Queen’s University where it underwent

water pressure tests to test the strength of the acrylic domes. For each test, a dome was

mounted on the P enclosure (the only existing enclosure at the time) and was subjected

to gauge pressures of up to 90 PSI. The results are detailed in Table 2.1.

Machining for the prototype stainless steel enclosure as well as inner mounting

brackets was done at the University of Alberta physics machine shop. The other five

enclosures had their flanges and front and back pieces machined at a local machine

shop,7 with all welding done at the University of Alberta. Each enclosure was tested at

the University of Alberta by pressurizing it while it was emersed in a bucket of water

and looking for bubbles. Some welds were redone as a result of these tests.

4The effective focal point of the camera was measured to be in the center of the lens, just behind
the painted gold ring on the lens.

5Calculations for this were done by P. Gorel.
6Blue polyurethane air hose, 1/2′′ ID, 11/16′′ OD, #54085K14 from McMaster-Carr.
7Precimax Mfg. Ltd.
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Dome Water (PSI) Vacuum (PSI) Gauge (PSI) Passed

1 44 0 44 Yes

2 44 0 44 No

3 45 15 60 Yes

4 45 15 60 Yes

5 45 15 60 Yes

6 75 15 90 Yes

7 75 15 90 Yes

Table 2.1: Pressure test results, courtesy of [24]. Dome 2 suffered a crack in the

acrylic during the tests. This was thought to be due to a defect in the dome.

As Table 2.1 shows, the second dome suffered cracks during the test. It was

not used further, and was replaced with a spare dome. Since the highest pressure that a

camera8 will experience in SNO+ is 27 PSI of water pressure against the acrylic dome,

these tests show that the camera enclosures should fare well once the cavity is filled

with water.

In addition to wires, the umbilical hose also contained 1/8′′ plastic tubing for

the N2 gas flush system. This system was designed to operate at a low flow rate (a few

L/h) and is meant to carry away moisture than will seep into the enclosure or condense

out of the air over a period of months or years. The N2 gas flows in through the tubing

and flows out through the bulk of the umbilical hose. A N2 cylinder on the SNO+ deck

will be used to supply the gas once the system is in operation.

2.3 Cable Boxes

Two identical cable boxes were designed and constructed at the U of A to

contain the power and signal wires, as well as the N2 gas flush tubing and flow meters.

Each box (Fig. 2.3) contains three smaller boxes, one for each camera hose. On the

surface of each larger box are mounted six flow meters: three for input flow and three

for output flow.

8Camera 4, the lowest camera in SNO+ coordinates, will be at a water depth of 18.8 m.
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Figure 2.3: A schematic showing the general layout of a camera cable box. Two of

these are used, one of each side of the SNO+ deck.
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The smaller boxes were designed with IP67 rated9 connectors. Since the return

line of the N2 gas is the interior of the umbilical hose, this gas must be trapped within

the small box to which the hose connects and funneled out towards a single exhaust

port. This gas port then sends the gas through a second flow meter, confirming that

gas is circulating through the camera enclosures.

The camera boxes are designed to use a bottle of N2 gas for its air supply.

Power will come from a standard 110 V wall socket converted to 2.3 A at 48 V for each

large box. All six ethernet cables will connect to a USB hub before reaching the control

computer.

2.4 Installation of the Bottom Cameras

The three bottom cameras were installed in a week in October 2011. The

cavity was empty at the time to allow replacement of damaged PMTs, replacement of

the cavity liner, installation of the hold-down rope net anchors, and other cavity work.

Using scaffolding and a Genie R© lift, the bottom three cameras were installed in their

respective positions on the PSUP. Table 2.2 shows the bottom three camera positions

relative to the PSUP coordinate system.

Camera X Y Z Notes

P 7289.7 193.5 4246.6 Water-fill

1 -7256.2 -31.6 -4538.6 Installed

2 2230.82 -6941.3 -4291.6 Installed

3 -3666.4 -5050.2 5621.7 Water-fill

4 3669.5 5049.3 -5697.1 Installed

5 -2194.6 6952.5 4175.4 Water-fill

Table 2.2: Coordinates of the individual cameras relative to the PSUP coordinate

system, given in units of mm. Three of the cameras are installed as of May 2012.

The other three will be installed during the water-fill of the SNO+ detector cavity.

9The IP67 rating means that the device is dust-tight, and may be submerged in water for 30 minutes
without harmful ingress of water.
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Installation of the cameras involved first lowering the cameras down into the

cavity by basket. The hoses were then fed down into the cavity through two ports on

opposite sides of the deck, being sure to pass them along the side of the PSUP to avoid

having them get caught among the PMTs. All six hoses were lowered into the cavity.

The end of each hose was sealed with a plastic cap, ensuring that unconnected hoses

would remain safe and not take in water during the water-fill of the cavity. The three

hoses for cameras 1, 2, and 4 had their caps removed and were connected to the installed

cameras, ensuring a watertight seal.

Several pictures were taken with the cameras to ensure that they worked,

shown in Fig. 2.5. These pictures appear slightly blurry due to the fact that the focus

was set for submersion in water and not air.

The remaining three camera locations are inaccesable from the cavity floor and

will have to be accessed by boat during the water-fill phase of SNO+. This is planned

for 2013.
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(a) Camera 1 installed amongst the SNO+ PMTs. The black

plastic visible creates a boundary between the water within the

PSUP, and the water without.

(b) Front of Camera 4, taken from within the

AV.

(c) Back of Camera 4, with mounting brackets

and umbilical hose visible.

Figure 2.4: Pictures of the installed bottom cameras.
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(a) Camera 1.

(b) Camera 2.

(c) Camera 4.

Figure 2.5: Pictures of the AV taken by lower three cameras after installation. The

photographs are slightly out of focus as the cameras were set to be in focus only

when submerged in water, and not in air.
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Chapter 3

Camera Light Sensitivity

This section details the studies done on the light sensitivity of the cameras.

This was done in order to ensure that an LED bright enough to be detected by the

cameras in the SNO+ AV would not emit so much light that it would damage the

surrounding PMTs. A PMT supplied with high voltage is sensitive to single photons,

and even a single bright LED could produce enough light to overload and damage a

PMT. The camera system must therefore be able to detect relatively dim LEDs when

performing triangulation during a PMT calibration run when the PMTs are in use.

These tests were done to discover the minimum light sensitivity threshold of

the cameras. Results show that when a camera would first detect an LED’s light, the

surrounding SNO+ PMTs would be detecting a flux of 40kHz of photons. This rate is

safe for the PMTs, as shown in Sec. 3.3.

3.1 LED Output

The experiment was carried out in a dark room at the University of Alberta

Physics Electronics Shop by first using a 38mm diameter Hamamatsu 9902B PMT to

detect photons emitted from an LED. The light was channeled through an optical fiber

towards the PMT. The goal was to determine the LED’s light output curve before

placing a camera in front of the LED.

The LED was set up to receive 20ns pulses from a digital delay/width gener-

ator. The signal from this generator also went through a gate generator, which would
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Figure 3.1: Schematic of the setup used to determine the emission response of the

LED and the camera’s sensitivity.

stretch the pulse length by a factor of 10 to create a coincidence window during which

the PMT could detect a photon from the LED. This coincidence window helped to

reduce noise from stray photons in the dark box. The setup is shown in Fig. 3.1.

The LED was initially supplied with a low frequency of 20 ns pulses (< 104 Hz),

with the amplitude of the pulses tuned until the PMT was receiving an average of one

hit for every 50 pulses delivered to the LED. Previous experiments determined that the

LED delivered mainly single photons at this rate [25]. The data are shown in Fig. 3.2.
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Figure 3.2: Rate of coincident PMT hits vs. frequency of single photons emitted

by LED. Blue points are data, and the red cross shows the lower threshold where

the camera was first able to resolve light from the LED.

3.2 Camera Sensitivity

After determining the light output curve of the LED, the PMT was replaced

with a camera and the test was repeated. The camera’s threshold light sensitivity would

be determined by increasing the light output of the LED until a visible spot was resolved

in a 30 second exposure taken by the camera.

The camera had its ISO settings tuned to provide it with the greatest light

exposure possible. The ISO setting plays two roles - the higher the number, the more

light is allowed in the aperture per exposure. Raising the ISO setting also reduces the

suppression of pixel noise which can result in a photograph with more “grain” [26]. The

camera was set to the highest ISO setting for all exposures taken of the LED1.

At an LED pulse rate of 150 kHz, indicated by the red cross in Fig. 3.2, the

1The camera’s ISO setting and exposure time can be controlled remotely from a laptop. This means
the cameras can alternate between taking regular photographs of the AV for calibration purposes and
taking long exposures with high ISO for capturing an LED during a calibration run.
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(a) 100 kHz (b) 150 kHz

(c) 200 kHz (d) 300 kHz

Figure 3.3: Photographs taken with a Nikon D5000 camera at various LED emission

rates for 30 second exposures.

camera was able to resolve a spot of light. Pictures taken at and around this frequency

are shown in Fig. 3.3.

3.3 Results

At the point where the camera first resolved a spot of light, the ratio of emitted

to detected photons was 44 to 1. This equates to a flux of 3.4 kHz of photons detected

by the PMT. To scale up to the light incident on a 20 cm diameter SNO+ PMT, the size

of the camera lens needs to be compared to the SNO+ PMT size2. Scaling from a 60

2The size of the PMT in the dark box does not come into account because the fiber was placed
against the PMT face.
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mm fisheye lens to a 20 cm diameter SNO+ PMT gives a factor of 11 increase in area.

Assuming the SNO+ PMTs have the same quantum efficiency as the Hamamatsu PMT

used for the experiment equates to a 40 kHz detected flux of photoelectrons incident

on the SNO+ PMTs. This excludes amplification of light from the light concentrators

surrounding the PMTs, which may add an additional 50% to the light flux.

The PMTs in SNO+ will have a maximum allowed anode current of approxi-

mately 100 µA. A quick calculation shows the anode current that 40 kHz of photoelec-

trons would produce in a PMT:

(4 · 104 e−/s)× (1.60 · 10−19J/e−)× (Gain of 107) = 64 nA (3.1)

This is far below the bias current of 100 µA and suggests that the camera

system may be safely used to triangulate an LED’s position during a calibration run in

the detector.
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Chapter 4

Underwater Camera Tests

The cameras were tested at the University of Alberta’s West Pool in June and

September of 2011. These tests had several purposes. The functionality of the cameras

and camera control software had to be confirmed. The stainless steel enclosures, hoses,

and seals had to be checked to see if they were watertight during normal operation

of the cameras. These tests were also necessary to acquire photographs of calibration

targets from which a 3D → 2D pixel mapping could be designed and tested. Finally, a

test was set up in order to perform triangulations once the cameras were calibrated.

4.1 June 2011 Pool Test

In June 2011, the first pool test confirmed the cameras’ ability to take clear

and focused pictures underwater without any leaks in the enclosures.

Cameras were set up on sawhorse ladders in two groups of three (Fig. 4.1a).

The enclosures were assembled in the lab before bringing them to the pool. This in-

cluded attaching the acrylic domes in place overtop of the cameras and feeding all cable

connections into the hose through the back panel of the enclosures. The screws had

to be torqued precisely to prevent any water leaks, and also with care to prevent any

damage to the acrylic dome.

Each cable-carrying hose was wound onto a spool, which would be unwound

once at the pool (Figs. 4.1a and 4.1b). The spools were kept out of the water on the

pool deck. The CAT5 cables fed into a central hub that was connected via USB to a
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laptop controlling the cameras, with a lab power supply providing current for all six

cameras. All of the cables were run through the hoses to the underwater cameras.

A calibration target consisting of a 2.5m × 3m tarp covered in a grid of 720

circular, white reflectors was used for this experiment (Fig. 4.1d). The reflectors were

3 cm in diameter with adhesive on one side, and were spaced 10 cm apart from their

centers on the tarp. The tarp was supported on a rectangular frame made up of one-inch

diameter stainless steel piping. It was secured to the frame with bolts along one side

and a bungee cord stretching the tarp along the other three sides, with 15 cm of space

between tarp and frame on the bungee side. It was waterproof and easily dismantled,

allowing it to be positioned in various ways in the pool.

The target was set up in both the deep end and the shallow end of the pool

(Fig. 4.2). After measuring the positions of the sawhorses, which would later be used

to calculate the positions of the cameras, sets of pictures were taken with each camera.

Included were pictures taken with the pool lights turned off, and pictures with and

without flash.1 Seven sets of pictures were taken in total with some examples shown in

Fig. 4.3.

When the pictures were analyzed afterwards, it was found that the tarp had

been placed at a distance further than needed to effectively calibrate the camera’s entire

field of view.2 Pictures taken in the deep end covered approximately 15% of the field

of view in both the x- and y-direction for a total of 2% total coverage. Pictures in the

shallow end were taken closer to the target, resulting in 4% total coverage, but were

unusable for calibration because the position of the tarp was poorly defined there. In

all positions the tarp showed too much flexibility (bending and folding) to have the

location of the reflectors accurately known.

4.2 September 2011 Pool Test

After examining pictures taken in the shallow end it was noticed that the pool

tiles were resolvable in these pictures and very uniform across the camera’s field of view.

1The flash was later disabled to avoid potentially damaging the PMTs when the cameras are in
operation in SNO+. This modification is discussed is Chapter 2.

2The test did demonstrate, however, that the cameras could hold in focus a target as close as 2 m
and as far away as 15 m.
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(a) Cameras set up on sawhorses. (b) Alexandra Bialek, a postdoc with SNO+,

helping manage the spools of CAT5 and power

cables.

(c) Cameras being set in place for deep end pho-

tographs.

(d) Reflectors on tarp (without frame) being

photographed before the pool test.

Figure 4.1: Setup pictures for the June 2011 pool test at the U of A West Pool.
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Figure 4.2: Schematic of where the pool tests were carried out. Test 1 was done

using the black tarp with reflectors as a calibration target, and Test 2 was done

using the pool wall tiles as a calibration target. The colored circles represent ap-

proximate positions of cameras during the different phases of the experiment. The

star represents the target which was triangulated during Test 2.
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(a) Camera 2, deep end. (b) Camera 5, shallow end.

(c) Camera 1, shallow end; lights off and flash

used. The reflection of the gold band around

the lens is clearly visible in the acrylic dome.

(d) Camera 3, shallow end; neighboring cameras

visible.

Figure 4.3: A sample of photographs from the first swimming pool test.
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(a) A view of the entire pool. (b) Close-up showing uneven nature of pool

floor on small scales.

Figure 4.4: U of A West Pool during cleaning in Sept. 2011.

This prompted the decision to perform a second swimming pool test, this time placing

the cameras nearer to the underwater pool wall and using the tiles as targets for pixel

mapping.

The timing of the second test included the advantage of being able to measure

the dimensions of the West Pool while it was drained of water for its annual cleaning

during the first week of September (Fig. 4.4a). This allowed the shallow end of the

pool to be measured and mapped out a week before running the test with cameras.

Measuring the pool features, such as the distance between yellow and green lines and

the distance to the wall, was important for accurately interpolating the positions of pool

tiles used in creating a pixel map for the cameras. Appendix A gives exact positions of

the pool tiles and cameras used in the calibrations.

This test proceeded similarly to the one done in June, though all photos were

taken in the shallow end. The cameras were first placed in a row about 3 meters away

from the pool wall (Fig. 4.2). Here photos were taken of the pool wall, making use of

the tiles as an already existing grid for calibration. These pictures were also used for

the main triangulation test. The cameras were also rotated an angle ψ = 180◦ around

their z-axis so that they were upside down for a set of pictures in order to increase the
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(a) Camera 1, no rotation (b) Camera 1, after 180◦ rotation around ψ axis.

Figure 4.5: Photographs from the second swimming pool test, used for camera

calibration. The blue camera hoses are visible floating on the surface of the water.

The limit of total internal reflection is also seen at the water’s surface.

pixel space available for mapping.3

Once these pictures were taken, the cameras were moved to their new positions

for a second triangulation test. They were placed facing each other, 3 meters apart

(Fig. 4.2 and Fig. 4.6). A bright sticker on a metal pole was placed in view of all six

cameras for one set of photos, and then moved for a second set. Photos were taken with

a personal camera to record the positions of the sawhorses and triangulation target.

This would allow their positions to be calculated later during analysis.

The target position is shown in Fig. 4.6. These pictures were analyzed and

triangulation was performed, but it was not used in the final analysis. This was due to a

lack of statistics from having only one target and systematic errors from having moved

the cameras. Further uncertainties arose from deducing the position of the sticker on

the metal pole. It contained uncertainties on the order of 1 cm since the pool tiles were

not flat on the scale of the target base (Fig. 4.4b).

The pool tiles visible in Fig. 4.5a proved to be the most reliable targets for

triangulation analysis. In addition to being regularly spaced and easily measured, they

spanned a large portion of the cameras’ field-of-view; 65% in the horizontally direction

3This extra information was not used in calibrations done in this work due to the difficulty of
merging two photographs or performing two simultaneous fits. Focus instead went into understanding
and improving the calibrations for the regularly aligned photographs.
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Figure 4.6: A view of the first triangulation target (red arrow) as seen by Camera

1.

and 25% in the vertical direction was mapped. This was an approximately 7-fold increase

in covered area from the first pool test. The full triangulation analysis is detailed in

Chapter 6.

4.3 From Swimming Pool to SNO+

To operate the cameras in SNO+ it will be necessary to translate the work done

in the swimming pool at the University of Alberta to the detector cavity in SNO+. This

will involve re-calibrating the cameras to map the larger field of view occupied by the

AV (Fig. 4.7). The camera orientation4 will have to be re-calculated for each camera,

with the new positions given in Table 2.2. All other parameters will be recalculated

for the new field of view, since triangulating outside of the mapped area leads to high

4Camera orientation relative to the global coordinate system is given by three angles: θ, φ, and ψ.
Further explanation of these parameters and coordinates is given in Appendix A.
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Figure 4.7: Calculated image points (cyan) drawn over actual image points (red,

barely visible) as calculated using the best-fit 19-parameter model for Camera 4

are superimposed over a photograph of the SNO+ acrylic vessel. The cameras will

have to be re-calibrated once installed to map the larger field of view.

inaccuracy (Fig. 6.2).

The most likely target candidate for the calibration in place of pool tiles will

be the PMTs, as they are numerous, visible throughout the entire photograph, and

have well-known locations. The procedure given in Chapter 7 will have to be adapted

for the new environment and is still under development. One major adaptation will

include changing the algorithm which sorts the target points (Sec. 7.3) to account for

the triangular grouping of PMTs in contrast to the grid-like arrangement of the pool

tiles.
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Chapter 5

Calibration

To perform a triangulation with multiple cameras, it is first necessary to con-

struct a mapping of object positions from a 3D global coordinate system to a 2D pixel

space, or f(X,Y, Z) → (xpixel, ypixel). This transformation is shown in Fig. 5.1.

This is done in two steps: first the object in the global reference frame is

transformed into the camera’s reference frame. In the camera frame, the camera sits at

the origin. This transformation is done using Euler rotation matrices and is described

in greater detail in Appendix A. Once the object is in the camera’s reference frame,

it can be transformed into the pixel coordinate system, which essentially projects the

object onto the imaging plane of the camera. The geometry of this projection depends

on the lens used by the camera, and is explained in Sec. 5.1.

A good calibration requires a large set of known points spanning the field-of-

view of the camera. The width of this field-of-view depends on the application of the

cameras, or in this case, the distance they will be from the AV in SNO+.

Once the calibration is complete, multiple cameras can be used to triangulate

the position of an object. A minimum of two cameras is needed to perform a trian-

gulation. However, accuracy increases with the number of cameras used, and a source

placed anywhere in the AV will always be visible by all six cameras. The field of view

mapped in the pool tests overlayed on the AV for reference can be seen on Fig. 4.7.
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Figure 5.1: Calibrating the cameras requires predicting how an object’s position

in a global reference frame transforms to a coordinate in the pixel frame. These

transformations are described in this chapter and in Appendix A.

5.1 Projection Models

5.1.1 Central Perspective Projection Model

The central perspective projection model accurately describes a pinhole camera

where the angle of projection of an incident light ray is proportional to its angle of

incidence [27]. This geometry, shown in Fig. 5.2a, adequately models a camera with a

standard lens. However, the fisheye lens used in this project has a field-of-view of 180◦

which, when using the central perspective model, would result in light rays incoming at

90◦ to be projected at infinity. Hence, the central perspective model cannot be used to

mathematically describe the fisheye lens projection geometry.

5.1.2 Fisheye Projection Model

The basic geometry in the fisheye projection model is that the distance between

the projection point and principle point (center point) is proportional to the angle of

incidence of the incident light ray [27, 28]. As seen in Fig. 5.2b, an object with an

angle of incidence of 90◦ would be mapped to a distance of R, or radius of the image.
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(a) Central (Pinhole) (b) Fisheye

Figure 5.2: Geometries of the central and fisheye projection models.

Similarly, an object with an angle of incidence of 45◦ would be mapped to a distance of

R/2.

In order to map an object’s 3D location to a camera’s 2D pixel space, the

object’s location must first be transformed from the global coordinate system to the

camera coordinate system. Here it will have a location of (Xc, Yc, Zc). This is done

using an Euler rotation matrix:
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(5.1)

where:

Xc, Yc, Zc = Object location in camera coordinate system

aij = Elements of Euler rotation matrix

X,Y, Z = Object location in global coordinate system

X0, Y0, Z0 = Camera location in global coordinate system
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A review of Euler rotation matrices as well as detailed explanation of the global

coordinate system can be found in Appendix A. Once in the camera coordinate system,

it can be shown [27] that a point ~Xc = (Xc, Yc, Zc) can be mapped to a pixel x′ via the

following relation:

x′ =
Xc

|Xc|

2

π

tan−1

(

√

X2
c+Y 2

c

−Zc

)

√

Y 2
c

X2
c

+ 1
(5.2)

and similarly for y′:

y′ =
Yc
|Yc|

2

π

tan−1

(

√

X2
c+Y 2

c

−Zc

)

√

X2
c

Y 2
c

+ 1
(5.3)

The scaling factor of R present in [27] is removed here and added later as a

separate scaling factor for x′ and y′. Equations 5.2 and 5.3 are constructed to include

the geometry of Fig. 5.2b, namely the relation between incidence angle and projection

on the imaging plane,

α1

d1
=
α2

d2
(5.4)

After conversion to (x′, y′), it is necessary to include the parameters ~d which

will map the distortions present due to the refraction at the air-plastic interface of the

dome, imperfections in the dome itself, and lens defects.

xcalc = gx(x
′, y′; ~d)

ycalc = gy(x
′, y′; ~d)

(5.5)

These equations were incorporated into a Minuit2 [29] fit to find the best

parameter set ~d. This set was defined as the one that would minimize the square

deviation:

χ2 =

i=N
∑

i=1

(xcalc,i − xpic,i)
2 + (ycalc,i − ypic,i)

2 (5.6)

where χ2 is calculated assuming errors of 1 for x and y and (xpic, ypic) are object locations

in pixels as they appear on the picture. The fitter will generate coordinates (xcalc, ycalc)



41

for each of N points used in the fit using the parameter set ~d. The creation of the

parameter set ~d is defined in Sec. 5.2.

5.2 Creation of the Distortion Model

Choosing a model with the best parameters required a systematic approach.

The general procedure was to add parameters to ~d of Eq. 5.5 as a function of x′ and

y′ and then observe the resulting residuals in x and y, in addition to the total square

residual χ2 from Eq. 5.6. The total residual represented the overall goodness of fit.

The shape of the residuals in x and y is what guided the choice of the next

parameters to add. The residuals for all the cameras were compared after each fit.

Fig. 5.3 shows plots of x- and y-residuals for Camera 4 as they vary with the number of

parameters added to the fitting functions, Eqs. 5.5. These plots guided the choosing of

parameters for the model. Fig. 5.3a shows the residuals of the data set modeled with:

xcalc = x0 + x1x
′

ycalc = y0 + y1y
′

(5.7)

These parameters center and scale the object locations, respectively. As can be

seen in Fig. 5.3b, this works well for the y-direction, but leaves an x-dependent residual

in x. Expanding to a third-order polynomial gives:

xcalc = x0 + x1x
′ + x2x

′2 + x3x
′3

ycalc = y0 + y1y
′ + y2y

′2 + y3y
′3

(5.8)

This largely eliminates the x-dependent residual in x in Fig. 5.3a, leaving

residuals x as a function of y and residuals in y as a function of x, shown in Fig. 5.3b.

Neither of these residuals can be removed with further expansion of the polynomial

model used thus far. To act on this, a set of radial distortion parameters are added:

xcalc = x0 + x1x
′ + x2x

′2 + x3x
′3 + k1r

2 + k2r
4 + k3r

6

ycalc = y0 + y1y
′ + y2y

′2 + y3y
′3 + k1r

2 + k2r
4 + k3r

6

where

r2 = (x1x
′ + x0 − xr)

2 + (y1y
′ + y0 − yr)

2

(5.9)
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(a) 10 parameter model (Eq. 5.7). Note: the points at zero in the central negative region

on the x-histogram are artifacts of binning.

(b) 14 parameter model (Eq. 5.8).

(c) 19 parameter model (Eq. 5.9).

Figure 5.3: The left column shows x-residuals while the right column shows y-

residuals as a function of pixel location for Camera 4. The residual was calculated

as (xcalc − xpic) and (ycalc − ypic) for x- and y-residual plots, respectively. Note:

points beyond the z-axis range are drawn with the same color as the respective

minimum or maximum.
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The radial distortion parameters, being a function of both x′ and y′, manage

to effectively reduce the remaining residuals when added to the polynomial model. The

remaining residuals for Camera 4 are now on the order of a pixel, as seen in Fig. 5.3c.

5.3 Calibration Conclusion

Applying the 19 parameter model (Eq. 5.9) to all six cameras resulted in

the residuals shown in Table 5.1. Each camera was fit with the same equation, with

individual distortion parameters saved for later triangulations.

RMS Residuals (pixels)

Camera P 1 2 3 4 5

x 2.01 1.32 6.14 3.27 0.86 1.06

y 1.73 1.31 5.77 2.64 0.75 0.80

total 2.65 1.86 8.43 4.20 1.14 1.33

Table 5.1: Residuals from fitting with the 19 parameter model (Eq. 5.9).

Camera 4, which was used to produce the plots in Fig. 5.3, typically had the

smallest residuals of all six cameras. Camera 5 was also well behaved. Cameras 2 and

3 still require additional parameters to minimize their residuals and bring them on par

with Cameras 4 and 5. This works remains to be done at the time of writing of this thesis.

It is believed that through careful addition of parameters the high residuals in Cameras

2 and 3 can be reduced through the same process shown in Fig. 5.3 with Camera 4.

The challenge remains to conduct a thorough test of a wide range of parameters to see

which can mimic the shape of the remaining residuals.
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Chapter 6

Triangulation

6.1 Triangulation Setup

After the cameras have been calibrated, they can be used to triangulate the

position of an object. This was tested using pictures and measurements taken during

the second swimming pool test in September, 2011. The same pictures were used for

the calibration and triangulation, with the intersections of pool tile grout being used as

targets for both procedures.

The first advantage of this method was keeping variables such as camera po-

sition and orientation constant from one test to the next, thus reducing the systematic

errors in the procedure. The second advantage was that the positions of the pool tiles

were already well-defined from being measured when the pool was dry, allowing for

precise calculation of residuals and better understanding of error.

For reference, a sketch of approximate camera locations in the global coordinate

system is given in Fig. 6.1. Exact locations of cameras with a detailed explanation of

how the global coordinate system was constructed is given in Sec. A.2 of the appendices.

Three separate triangulations were done, using 30 points within the calibrated

region of the camera’s pixel space, 30 points just outside of the calibrated region, and 6

points farther outside of this region (Fig. 6.2). These points were chosen such that they

could be resolved by all six cameras, and thus appear in the central region between the

two camera sawhorses.
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Figure 6.1: Bird’s eye view showing the arrangement of cameras during the triangu-

lation done in the second swimming pool test. The regularly spaced tiles of the pool

wall were used as both calibration and triangulation targets. A detailed schematic

with exact camera locations can be found in Sec. A.2.

6.2 Algorithm

The algorithm for triangulation is similar to that of calibration, though differ-

ent parameters are held constant or allowed to float. To triangulate the location of a

single point it is necessary to input its pixel location for each camera, and the set of

distortion parameters ~d for each camera as described in Eq. 5.9. The result of the mini-

mization gives the coordinates (X,Y, Z) which best translate into the pixel coordinates

as seen by each camera. This is in contrast to the calibration procedure which takes
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3D positions as fixed input and returns the distortion parameters which were allowed

to float. The pixel position of each point is held constant in both procedures.

The quantity being minimized in this algorithm is the residual between each

calculated (xcalc, ycalc) pixel position and the observed (xpic, ypic) position, summed over

all cameras:

χ2 =

i=Ncam
∑

i=1

(xcalc,i − xpic,i)
2 + (ycalc,i − ypic,i)

2 (6.1)

This is similar to Eq. 5.6 except here the summation is over the number of

cameras Ncam for a single point as opposed to the number of points N for a single

camera. This procedure is repeated for each point triangulated in a photograph.

6.3 Residuals

Residuals for the first 30 point fit (1st target set in Fig. 6.2) of the parameters

in Eq. 5.9 are shown in Fig. 6.4. Due to the imperfections in its dome, excluding

Camera 2 from the fit produces smaller variations in the residuals (Fig. 6.4b). The

residuals are tabulated in Table 6.1. These results show that inside the calibrated region

the triangulations are accurate to within 5 mm at a distance of 3 meters. Precision is

dominated by statistical errors in this region. This extrapolates to an expected accuracy

of 1.5 cm at 9 meters within the AV in SNO+.

Another set of 30 points (2nd target set in Fig. 6.2) was chosen to lie just

outside of the calibrated zone. Horizontally it was within the limits of the calibrated

region, but vertically it was located at a distance of 110%–150% past the calibrated

region’s height. The residuals from this test are provided in Table 6.2. Here, it is seen

that the results exhibit a systematic drift. It is most prominent in the x and z directions,

corresponding to the horizontal and vertical, respectively. This is due to the fact that

the fitting function will calculate pixel positions that diverge from the actual positions

once past the calibrated region.

In the final test, points were taken far outside of the calibrated region in the

vertical direction. Here, the residuals are dominated by systematic errors caused by

extrapolation of the fitting function.
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Residuals within calibrated region (cm)

Residual
All six Exclude Camera 2

µ (cm) σ (cm) µ (cm) σ (cm)

x 0.0930 0.2783 0.0932 0.2507

y -0.0489 0.3966 -0.1049 0.2654

z -0.0325 0.2203 0.0147 0.1377

sum 0.0109 0.5322 0.1411 0.3901

Table 6.1: Average residual values with standard deviation for 30 points within the

1st target set (calibrated region).

Residuals just outside calibrated region (cm)

Residual
All six Exclude Camera 2

µ (cm) σ (cm) µ (cm) σ (cm)

x 0.2821 0.2084 0.2905 0.1864

y 0.2830 0.2776 0.2369 0.2144

z -0.4012 0.2548 -0.4890 0.1827

sum 0.5662 0.4306 0.6161 0.3378

Table 6.2: Average residual values with standard deviation for 30 points within the

2nd target set (just outside calibrated region).

Residuals far outside calibrated region (cm)

Residual
All six Exclude Camera 2

µ (cm) σ (cm) µ (cm) σ (cm)

x 0.4274 0.3472 0.3261 0.1202

y 5.1312 1.0323 3.6869 0.6044

z 1.3681 0.4123 -0.6450 0.1343

sum 5.3276 1.1649 3.7571 0.6307

Table 6.3: Average residual values with standard deviation for 6 points within the

3rd target set (further outside calibrated region).
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6.4 Summary

The residuals lead to the conclusion that for triangulation to be done accu-

rately, the entire pixel space in which the triangulation is to be performed must be

calibrated and fitted with a pixel mapping. When triangulating points outside of the

calibrated region, systematic errors grow high. Inside of the calibrated region, however,

the errors are dominated by statistics. In this area an accuracy of 0.1± 0.3 cm can be

achieved for each of the three dimensions.

The geometry of the cameras in SNO+ will further balance out the residuals

between the three dimensions. In these swimming pool tests the y dimension tended

to have the highest systematic drift due to the setup of the cameras. In SNO+ this

systematic effect will not be present since the cameras will surround the source being

photographed rather than view it along one axis.
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Figure 6.2: Calibrated regions and triangulation regions for Camera 0. Here dv is

the height from the center of the calibrated region to its edge. The center of the

second region is located at approximately 1.2dv and the center of the third region

is at approximately 2.3dv.
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(a) Pixel residuals for points inside the cali-

brated region (1st target set).

(b) Pixel residuals for points just outside the

calibrated region (2nd target set).

(c) Pixel residuals for points far outside the cal-

ibrated region (3rd target set).

Figure 6.3: Pixel residuals for different triangulation data sets showing systematic

drift from individual cameras. Fig. 6.3a shows how Camera 2 tends to oppose the

location suggested by the other 5 cameras when triangulating the position of a

point. Camera 3 does this to a lesser extent. This is due to their fits having a

residual that is 3–7 times higher than the other cameras. Figs. 6.3b and 6.3c show

separation of different cameras’ predictions as systematic effects begin to dominate

outside of their calibrated zones. Moving a target outside of this zone causes a

different effect based on each camera’s individual calibration parameters.
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(a) Distance residuals using all six cameras.

(b) Distance residuals excluding camera 2.

Figure 6.4: Residuals of triangulations performed for 30 points within the calibrated

region (1st target set). Camera 2 is excluded for the second triangulation, resulting

in lower residuals. This shows the effect its distortions have on the analysis.
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Chapter 7

Procedure of Calibration and

Triangulation

This chapter focuses on the technical detail of performing calibration and tri-

angulation with the camera system and is intended to be a guide for a user operating

the system.

Various pieces of code are used to process a photograph to calibrate a camera,

from extracting target points in the picture to fitting these points with various functions

until the best fit is found. The parameters that make up this fit would then allow the

camera system to perform accurate triangulations.

Some additional user interaction is necessary in this process, since operations

like picking out targets in a photo require “guiding” the computer at first. The steps

undertaken in the entire process will be detailed in this chapter.

All code used in this section was written by the author including

image2hist.c, image2spectrum.c, slope_sort, Intrinsics_Solve_final, and

Position_Solve_final. It is available in Appendix B and as an electronic attachment

to the thesis.

7.1 Selecting Target Points

The target points used for calibration need to be chosen as a set of features with

each position known spanning the largest possible field of view (FOV) in a photograph.
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They do not necessarily have to be the same features for all six cameras.

In the June swimming pool test (Sec. 4.1) the target features were the re-

flectors on the black tarp that was submerged in the pool. The difficulty with using

these features is that though they were resolvable, they did not span a wide area of

each camera’s FOV as a result of their being placed too far away. For the September

swimming pool test (Sec. 4.2) the tiles on the swimming pool wall were chosen because

they spanned the entire FOV for each camera and were close enough to be resolved. To

recalibrate the cameras when they are deployed in SNO+, targets such as the PMTs

or the centers of PMT clusters could be chosen as calibration targets. They span the

entire FOV of each camera, and the position of each PMT is well known.

The pixel position of an object in a photograph needs to relate to its position

in the environment in order to construct a 3D → 2D mapping. For the tests done in

September, measurements were made inside the pool while it was empty of water. After

measuring the distances between pool features such as formations of yellow and green

tiles, the location of each tile could be interpolated and stored in a global coordinate

system. The coordinate system may be seen in Fig. 6.1.

The targets used for the calibration were chosen to be the intersections of pool

tile grout, the “glue” in between the tiles. The thin lines were easy to trace and map

out in a graphics editor, and the locations of the intersections were calculated in the

global coordinate system. These locations were saved in a .txt file, with points ordering

left-to-right, bottom-to-top when viewed in a photograph. The pixel position of the

points were ordered in the same way. For reference, here are the first few lines of the

3D coordinate file for Camera 1 in the September pool test, in space-separated (x, y, z)

format:

$ head -n3 3d_cam.txt

-305.6 545.7 27.12

-300.517 545.7 27.12

-295.434 545.7 27.12

To pick out the corresponding points from a photograph, the computer had to

first be guided to find the targets. This was done by using Photoshop CS5 and GIMP

graphics editing software to draw lines on the pool tile grout and then extract the
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intersections of these lines. GIMP can be used for the first step instead of Photoshop,

but the paths stored in GIMP are harder to copy and manipulate after they have been

set. Photoshop is simpler to work with in this case.

Here are the steps taken in guiding the computer towards finding the calibra-

tion targets in a photograph:

1. Open the photograph of the target points in Photoshop CS5. Using the Path

tool, draw paths across the pool tile grout - first a horizontal path, then a separate

vertical path. Once the paths are drawn, Stroke each path onto a separate layer

with a 3 pixel wide brush (Fig. 7.1). Using two different colors makes it easier

to distinguish between paths. Tip: Paths may be copied and used on other

photographs with slight adjustment to avoid having to redraw them.

2. Save the Photoshop file and re-open it in GIMP. Using the Layers dialog, select

the topmost layer and set Mode to Difference. This will cause the intersection

of lines to stand out in a different color, as shown in Fig. 7.1b. (The Subtraction

and Darken Only modes will produce similar effects and may be also used.)

3. Hide the background layer by clicking its eye-shaped icon in the Layers dialog,

leaving only the lines visible. Create a new layer by selecting Layer → New

Layer From Visible.

4. Hide all of the original layers, leaving only the recently created layer visible. To

isolate the intersections, select that layer and then open Colors → Threshold.

Adjust the sliders until the intersections appear as white dots and the rest of the

lines are black (Fig. 7.2a).

5. Finally, fill in the rest of the background with the Bucket Fill Tool, using the

Fill Similar Colors option (Fig. 7.2b). Save the working file and select Save a

Copy to save the top layer as a .png file.

If we start with the original photograph Camera1_09.jpg we get the Photoshop

working file Camera1_09.psd and our saved copy of the white dots on black background,

Camera1_09_dots.png.
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A 3 pixel wide brush stroke is used to draw the paths because it is the smallest

possible brush stroke that preserves symmetry. Theoretically, a 1 pixel wide stroke

would be ideal for precision, creating line intersections of exactly 1 pixel in area. The

problem with this is that lines sometimes miss each other (due to aliasing when stroking

the path) causing gaps to appear in the grid of points. A stroke of 2 pixels causes a

row of pixels to be drawn either above or below the path on the photo, leading to

asymmetry. A 3 pixel stroke creates symmetry in the lines that are drawn, and the

resulting intersection points are still small at approximately 9-11 pixels in area.

When creating these files in environments where the geometry does not follow

horizontal and vertical lines as pool tiles do, a different method may be chosen to create

the points on the photo. For SNO+, PMTs could be chosen as the calibration targets1.

Points could be manually applied onto a separate layer over a photograph of SNO+

PMTs, and this layer taken directly to step 4 to create the white-on-black photograph.

7.2 Extracting Positions Using ROOT

Once the black and white photograph has been generated, the points can be

easily extracted by the TSpectrum2 routine in ROOT [29]. This is done by opening

ROOT in a terminal and running the macro image2hist.c on the photograph that was

just generated.

$ image2hist(Camera1_09_dots.png)

This creates a file titled Camera1_09_dots.root. The macro takes an image file

and converts it to a two dimensional histogram. Since each pixel of the image contains

information on its red, green and blue content, these values can be added together with

coefficients to get a grayscale version of the picture. This single grayscale value of each

pixel is stored in the histogram, creating peaks in place of the white dots. The pixels

have a one-to-one correspondence with the bins in the histogram, preserving the original

image dimensions.

1Calibrating the installed cameras would have to be done once the AV is filled with scintillator and
the cavity is filled with water, since the similar indices of refraction of the fluids and acrylic would lead
to less distortion of ray geometry. In fact, calibrating in air and then again after the cavity fill can give
a handle on the effect that the acrylic vessel has on refraction.
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(a) Horizontal lines drawn first.

(b) Vertical lines placed overtop, intersections visible as green squares.

Figure 7.1: Example showing the blending of horizontal line layer with a vertical

line layer in GIMP using the Difference mode.
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(a) Using the Threshold command to make the intersections appear as white dots.

(b) Applying a Bucket Fill to turn the entire background black.

Figure 7.2: After creating a new layer from the overlapping horizontal and vertical

lines, the layer is modified to create a high-contrast photograph of the target points.
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Using the peak-finding macro

1 $ .L image2spectrum.c

2 $ image2spectrum(2,"Camera1_09_dots.root",3,10,1)

The peaks in this histogram can then be found with ROOT’s two-dimensional

peak finder, TSpectrum2. This is done by running the macro image2spectrum.c on the

root file with the following arguments:

$ image2spectrum(int dim, string "file", double sigma, double thresh, bool

write)

The first argument dim takes an input of either 2 or 3, and changes only whether

the histogram is displayed in 2D or 3D format. It has no effect on the stored histogram.

The second argument takes the name of the .root file generated by image2hist.c with

the name in quotations. The third and fourth arguments are inputs to the TSpectrum2

function inside the macro. Inputting sigma will tell it the width of the peaks for which

it should be looking in units of pixels, and threshold is a percentage of the highest peak

(up to 100) below which the function will not search for peaks. It is used to reduce

false peaks caused by background, but if the image was processed according to Sec. 7.1

to eliminate background, the default value of 10 will suffice. The boolean value write

decides if the peaks found by TSpectrum2 will be written to file or not.

Here the macro is used on the histogram previously generated. Since most of

the dots have a width of 3 units, setting sigma to 3 will typically find all of them.

The macro will output how many peaks were found along with a plot of the

peaks, providing a visual check that the peaks were found correctly. The locations

of the peaks are written to file in (xpic, ypic) format. In this case, the file is named

Camera1_09_dots.txt.

The sigma and thresh values can be changed if the picture contains, for ex-

ample, PMTs that all have a bright central region. The PMTs can then be found

directly with this macro, thus allowing a user to bypass steps 1-5 in Sec. 7.1. It can take

some creativity and trial-and-error to prepare a picture that can be passed successfully
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Figure 7.3: TSpetrum2 plot showing all 2037 peaks found overlayed on the his-

togram Camera1_09_dots.root.

through image2spectrum.c with all the peaks found; Sec. 7.1 shows only one way of

doing it for the case of pool tiles being used as targets.

7.3 Sorting Points

Now that we have found the points, plotting them in Fig. 7.4 shows that they

are roughly sorted left-to-right, but are sorted unpredictably in the vertical direction.

For the mapping to succeed, the pixel positions must follow the same ordering as the

measured 3D locations of these points. The points are stored as space-separated values

like the 3D position file 3d_cam.txt.

Unsorted (x, y) pixel positions

$ head -3 Camera1_09_dots.txt
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Figure 7.4: Output points from image2spectrum.c before sorting. There is a single

line connecting them, but the ordering of points is hard to predict or reproduce.

The points must be sorted before they can be used.

749.038025 1075.972412

749.011230 1102.950684

749.011292 1129.950684

The 2D pixel file must be modified to match the order of the 3D position file.

To achieve cohesion between the two files, we apply a sorting algorithm to the pixel file.

The algorithm slope_sort.cpp was written specifically to sort points that ap-

pear in straight rows and columns, and later modified to account for the fisheye effect

on the straight lines. This modified version requires more input from the user and can

take several attempts to succeed in sorting points, but there are methods in place that

can help guide the user to the correct choice of input parameters.

The program slope_sort is run in a terminal with the following input:

$ slope_sort Camera1_09_dots.txt 97 10 0.2 3000
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The first argument to the program is the name of the file containing the un-

sorted pixel positions, here being Camera1_09_dots.txt. The second argument, 97, is

the number of points per row. As the program scans from left to right, this number

dictates when to return to the left of the picture to start scanning again. This makes

it necessary that the each row contain the same number of points if the file is to be

ordered with this algorithm.

The third argument in the example, 10, is the “x-exclusion width”. This is

the number of pixels in the x-direction that are skipped when searching for the second

point in a row, and is dependent upon the spacing between points. It prevents the scan

from hopping into a higher row at the beginning of a line.

The fourth argument, 0.2, is the “y-tolerance” variable. It prevents the scan

from hopping into a higher row once more than 2 points have been scanned. Using

the slope between the n and n − 1 points, the algorithm can narrow down where to

find the n + 1 point. A cone of allowed points, starting at the nth point, opens with

an angle proportional to the y-tolerance (Fig. 7.6) along the vector
∣

∣

∣

~dn − ~dn−1

∣

∣

∣
. This

parameter needs to be tuned correctly, as choosing too large of a y-tolerance will create

a very large cone of accepted points that may cause the scan to jump to a higher row.

However, choosing a y-tolerance that is too small can cause a point in a row to be

skipped (Fig. 7.5). Both instances will lead to errors that halt the sorting program due

to internal memory errors2.

The fifth and final parameter is the “stop-and-draw” parameter. This is used

for debugging when the program fails to sort the points. When the program displays

error messages of bad memory allocation either a point was skipped in a line, or that

the scan jumped to a higher line before completing the scan of the current line. Fig. 7.5

shows a scan stopped on a line where a point was missed due to a y-tolerance that was

too small. To simplify the debugging process, this parameter is used to stop the scan

and display all found points up until the chosen point. Entering any number greater

than the number of points in the file will let the program complete its scan of the entire

2As the algorithm scans a row from left to right, it shifts the leftmost limit to the last found point
while still expecting to find the same fixed amount of points per row. If a point is skipped, it creates the
condition where the algorithm reaches the rightmost point in a row before having found the expected
number of points (and reseting the left limit). This creates a memory allocation error. Using the
“stop-and-draw” parameter allows the user to stop the program before it crashes to see where point was
skipped and adjust the tolerances accordingly.
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Figure 7.5: Output from slope_sort showing a skipped point due to a small y-

tolerance. Running the algorithm to the end of the current row of points will cause

it to crash. Increasing the y-tolerance from 0.1 to 0.2 fixes this problem.

Figure 7.6: Figure showing how the slope_sort algorithm uses the slope between

previous points to narrow the search for the next point. Increasing the y-tolerance

variable ytol will increase the height of the cone h when it reaches a candidate point

at ~dn+1.
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Figure 7.7: Output from slope_sort after sorting the points. A line connects the

points in the order they appear in the file. It travels left to right, bottom to top.

file without stopping.

A set of sorted points may be seen in Fig. 7.7. Once the points have been

sorted to match the 3D position file, the camera is ready to be calibrated. Depending

on the targets chosen for calibration in SNO+, a different sorting program may need to

be written for the target points.

7.4 Running the Calibration Code

Once the sets of pixel positions and matching object positions have been gen-

erated for each camera it is possible to create a mapping which will result in a calibrated

camera. A program called Intrinsics_Solve was written to run the calibration fit, with

the latest version called Intrinsics_Solve_final. This program calibrates one camera

at a time, taking the pixel positions and object positions as input, along with the camera

number. The position of the camera is taken as a fixed variable and is currently stored

inside the program, chosen via its number.

The program is run with the following input:
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$ Intrinsics_Solve_final 3d_cam1.txt Camera1_09_dots_ORDERED.txt 81

The first argument is the name of the 3D object position file, and the sec-

ond is the pixel position file after being ordered in the same way at the 3D file. The

third argument chooses which camera to use. The number 81, in this case, signifies

the eighth model being used for Camera 1. The program can be changed to take the

coordinates of the camera as input instead of a number (1 in this case) as it will al-

low for greater flexibility in editing the positions. In addition to supplying the three

(X,Y, Z) coordinates of the camera, the approximate orientation of the camera in terms

of the three Euler angles θ, φ, ψ in the global coordinate system should also be supplied.

Intrinsics_Solve_final uses these as a first guess in the fit it performs, but they are

currently hard-coded into the program.

The program uses the Minuit2 fitting algorithm to fit the chosen fitting function

to the data in the two files of positions. With each iteration, the fitter compares the

given pixel position as it appears in the photograph, (xpic, ypic), with the position that

a point at (X,Y, Z) would transform to with a transformation given by the fitting

function used. The squared difference between the generated (xcalc, ycalc) position and

given (xpic, ypic) position is summed for each points, and this value is reduced with each

successful iteration of the fitter.

Upon completion of the fit, the program will output all of the parameters in

the fit with their value and error, along with whether they were fixed or floated in the

fit. The total squared residual of the fit is also given, in addition to an average residual

per point, in pixels. The overall squared residual is what allows cameras to be easily

compared to one another.

The program will also display plots of the main fit and plots of the residuals,

separated into x and y residuals. These residual plots are useful for deciding how

the model can be changed to reduce residuals and give a better overall fit. This is

described in more detail in Chapter 5. Finally, the program also displays a 3D map of

the swimming pool shallow end. The map shows the position of the camera used in the

fit in its calibrated orientation along with the other cameras. Several different views of

this map are shown in Fig. A.4 in Appendix A. This helps confirm that the fit makes
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sense physically and the camera is not, for example, facing backwards. It can be useful

in the more serious debugging sessions when working with a new fitting model.

The parameters from the fit are written to file as

PAR_Camera1_09_dots_ORDERED.txt. This fit needs to be carried out on all six cam-

eras, with each one producing a separate parameter file. Once all of the cameras have

corresponding parameter files, they are ready to be used in the final step, triangulation.

7.5 Triangulation Process

A second program was written to perform the triangulation minimization,

called Position_Solve_final. It uses the same minimizer as the calibration program,

but is different enough to have its own program. The triangulation code takes pixel

locations of a target as seen from each camera as input, along with each camera’s set of

parameters calculated from calibration. It will then float an (X,Y, Z) location for each

point in the calibration and determine which is the most likely location for the object.

The program is run with the following input:

$ Position_Solve_final Params.txt Pixels.txt 3d_coords.txt

The first argument is a file containing the parameters from all six cameras.

For six cameras, the first line would contain all of Camera P’s parameters, the second

would contain Camera 1’s parameters, and so on. A shell script is used to combine all

six individual parameter files into this larger file.

The second argument is a collection of the pixel locations of all the points as

seen by each camera, and each following the same order. The pixel locations of each

target need to be extracted and sorted (Sec. 7.2 and 7.3) as detailed previously. The

sorting may be different, however, if the cameras are in place as they will be in SNO+.

Essentially, the nth line in a pixel position file for each camera needs to refer to the nth

object to be triangulated. A shell script may be used to combine all six of these files

into one larger file to be used by the triangulation program.

The third argument to the program is a file containing the actual 3D positions

of the object being triangulated, if they are known. This is used to determine the error

on the triangulation algorithm by calculating and plotting the residuals of calculated
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position versus actual position for each object. These plots are presented in Chapter 5

for 30 points chosen from the swimming pool test pictures.

After running Position_Solve_final with these arguments, the position of

each point triangulated is displayed on screen and can be written to file. In SNO+

there will likely be no prior position to which the result can be compared if the target is

a calibration source for the PMTs. This may be untrue, however, if the camera system

result is compared to the result given by measurements from the rope system used to

lower the calibration source into the AV.

Since the cameras will be run in near darkness during a PMT calibration run,

the only source of light will be the LED situated on the calibration source. Extracting

this from each photo taken is a straightforward process, involving only step 4 in the point

extraction procedure (Sec. 7.2). If there is only LED present, it will also be unnecessary

to sort the points for each camera as they will be singular. The pixel locations can be

promptly passed to the triangulation routine and a position calculated within about 10

minutes of taking the photographs. Ideally, the whole process will automated with the

user being able to check on the intermediate steps to make sure everything is working

correctly.
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Chapter 8

Conclusion

The camera system was developed in order to accurately determine the po-

sition of radioactive sources used during PMT calibration runs in the SNO+ neutrino

experiment, and to monitor the AV over the course of the experiment. Six watertight

stainless steel enclosures were developed to house single Nikon D500 cameras behind

acrylic dome viewports. The cameras have a fixed focus and are aimed at the center of

the acrylic vessel. To date, three have been installed and have demonstrated the ability

to be operated remotely from the SNO+ deck.

After being tested in a swimming pool at the University of Alberta, the camera

system was shown to triangulate a point 3 m away to an accuracy of 0.5 cm. This

extrapolates to an accuracy of 1.5 cm at the center of the AV, approximately 9 meters

away from each camera. This result improves upon the previous accuracy of the rope

manipulator system which could measure to an accuracy of 5 cm.

Further work includes installing the last 3 cameras during the water-fill phase

of SNO+ in late 2012. Once the detector is filled with liquid scintillator a calibration

will still need to be done in the same vein as the swimming pool calibration to ensure

that the entire field of view of the cameras is mapped. Using the well-known positions

of every PMT and the positions of the installed cameras, this should bring the system

to full operational readiness for triangulation of calibration sources when the SNO+

experiment begins operation in 2013.
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Appendix A

Pool Test Coordinates

This appendix will give further details on the September 2011 pool test, de-

scribed in Chapter 4. It will also provide a brief summary of the Euler angle transfor-

mations used in the development of the coordinate systems and calibration described

in Chapter 5.

A.1 Euler Angles

Chapter 5 discusses the transformation of an object’s position from the global

coordinate system to the camera coordinate system. The Euler rotation matrix in

Eq. 5.1 has nine elements, (a12, a12, . . . , a33). It is constructed by applying three suc-

cessive rotational transformations to a coordinate system. These three rotations can be

represented by a matrix A = BCD, where each matrix describes a rotation around a

different axis. (Fig. A.1).

The rotations are given by the following matrices:

D =









cosφ sinφ 0

− sinφ cosφ 0

0 0 1









C =









1 0 0

0 cos θ sin θ

0 − sin θ cos θ









B =









cosψ sinψ 0

− sinψ cosψ 0

0 0 1









(A.1)
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Figure A.1: Diagram demonstrating the effect of the three Euler angles: φ, θ, and

ψ. The first is a rotation φ about the original z-axis (D), followed by rotation θ

about the new x-axis (C), and finally a rotation ψ about the new z-axis (B). The

matrices are described in Eq. A.1. Figure reproduced from [30].

This results in the rotation matrix A having the following elements:

a11 = cosψ cosφ− cos θ sinφ sinψ

a12 = cosψ sinφ+ cos θ cosφ sinψ

a13 = sinψ sin θ

a21 = − sinψ cosφ− cos θ sinφ cosψ

a22 = − sinφ sinφ+ cos θ cosφ cosψ

a23 = cosψ sin θ

a31 = sin θ sinφ

a32 = − sin θ cosφ

a33 = cos θ

(A.2)

These matrix elements are used in the program Intrinsics_Solve_final (Chap-

ter 7) to transform the position of an object from the global coordinate system into the

camera coordinate system in Eq. 5.1. This transformation is shown in Fig. A.2 and has

the effect of lining up the x and y axes of the camera coordinate system with that of the

photograph. All three angles are allowed to float in the fit, but φ and ψ remain close

to zero while θ usually takes on a value close to π/2.
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Figure A.2: Conversion from the global coordinate system to the camera coordinate

system is done by a transformation of π/2 through θ. The new coordinates make

it simpler to interpret a projection from a camera frame coordinate to a pixel

coordinate, as the x and y axes now line up.

A.2 Global Coordinate System and Locations of Cameras

All locations of cameras and pool tiles are given with respect to the global

coordinate system. Fig. A.3 shows the origin and setup of the coordinate system. Once

the global coordinate system was set up, the locations of cameras and calibration objects

could be given in this system. All position measurements are given in centimeters,

including in the code. The locations of the cameras are given in Table A.1.

The locations of the tiles were generated by measuring the position of the

bottom-left tile and then calculating the position of all other tiles using the known

spacing between the tiles, measured as 5.083 ± 0.001 cm1. Each camera used a grid of

calibration points spanning 97×21 lines, chosen such that it was approximately centered

in the camera’s field-of-view. This resulted in the best possible resolution of tiles on the

edge of the grid.

1The average size of a pool tile with grout was calculated by measuring the distance spanned by
several meters’ worth of tiles and dividing by the number of tiles within that set.
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Figure A.3: The global coordinate system used for camera calibrations has its

origin located at the bottom-left corner of the second segmented yellow line in the

University of Alberta West Pool, 545.7 cm south of the north wall. Due to the

slight downward slope of the floor (1.23◦) away from the target wall, the origin was

chosen to be 11.7 cm above the pool floor so that z = 0 would coincide with the

bottom of the north wall.

In the code snippet, x1, y1 and z1 constitute the position of the bottom-left

“starting point” from which all other tile positions are extrapolated. These points are

given in Table A.2. The positions of all 2037 points are stored in the arrays xpos[],

ypos[] and zpos[] and output the generated points to a .txt file in a left-to-right,

bottom-to-top manner as outlined in Sec. 7.3. The generated points were compared to

photographs of the target wall to ensure that the extrapolations were still accurate to

1 mm in the last generated column.

An extra visual tool in understanding the calibrations done in the pool is

the 3D viewer in ROOT. The locations of walls and colored floor tiles were coded in

to accurately show the relative positions of the cameras and calibration points. This



75

Camera P 1 2 3 4 5

X0 -73.5 -45.6 -17.6 143.8 172.0 199.5

Y0 264.2 264.2 264.2 264.2 264.2 264.2

Z0 94.5 94.5 94.5 94.5 94.5 94.5

Table A.1: Camera positions from the Sept. 2011 pool test, used in Eq. 5.1. All

values are given in centimeters.

Generating a grid of target calibration points

1 // Generate a grid in XZ plane (constant Y)

2 int nx = 97; // # of markers in x-direction

3 int ny = 1; // # of markers in y-direction

4 int nz = 21; // # of markers in z-direction

5 int npoints = nx*ny*nz; // total # of markers

6 double sp = 5.083; // spacing between points (cm)

7 for(int j=0; j<nz; j++) {

8 for(int i=0; i<nx; i++) {

9 int n = j*nx+i; // counter

10 xpos[n] = double(i)*sp + x1; // single tile spacing in x

11 ypos[n] = y1; // constant y (flat wall)

12 zpos[n] = double(j)*sp + z1; // single tile spacing in z

13 }

14 }

system was also an invaluable tool in understanding the Euler rotations of the cameras -

including when they went wrong due to a misbehaving program. Several different views

of a calibration done for Camera 4 are given in Fig. A.4.
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Figure A.4: Graphical representations of the Sept. 2011 pool tests. The six maroon

vertices represent the camera coordinate system unique to each camera. The black

vertex represents the global coordinate system. Each vertex is centered on its

respective coordinate system.
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Camera P 1 2 3 4 5

x1 -331.1 -305.6 -254.8 -66.8 -66.8 -51.5

y1 545.7 545.7 545.7 545.7 545.7 545.7

z1 27.1 27.1 27.1 27.1 27.1 27.1

Table A.2: Coordinates of the bottom-left point, used to generate the entire cali-

bration grid for each camera. All values are given in centimeters.



78

Appendix B

Algorithms

This section contains the code used in the image editing, calibration and tri-

angulation done in this body of work. Programs were compiled with standard ROOT

libraries as well as several header files written by the author, also included in this section.

B.1 image2hist.c

// Author: Zachary Petriw
// March 17, 2011 (started Dec. 2010)

// image2hist.c
// Importing an image as grayscale and converting it to a histogram
// for later analysis

#include "TColor.h"
#include "TImage.h"
#include <string>
#include <stdio>

using namespace std;

Double_t getgray (UInt_t col)
{ //returns a grayscale value of the color

// ITU color standard
return (0.299f*((col & 0xff0000) >> 16) +

0.587f*((col & 0xff00) >> 8) +
0.114f*(col & 0xff));

}

Double_t getred (UInt_t col)
{ return ((col & 0xff0000) >> 16); }
Double_t getgreen (UInt_t col)
{ return ((col & 0xff00) >> 8); }
Double_t getblue (UInt_t col)
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{ return (col & 0xff); }

void image2hist (TString fname, UInt_t binning = 10) {
gStyle->SetPalette(1);

// Time the process
TStopwatch *sw = new TStopwatch();

// *** EDIT this if you are changing DIRECTORIES!!! ***
// string dir = "˜Desktop/Camera_work/Minimization/"+fname;
// ****************************************************
TImage *img = TImage::Open(fname.Data());

UInt_t w = img->GetWidth();
UInt_t h = img->GetHeight();
UInt_t *argb = img->GetArgbArray(); // hex colors i.e. 0xffeeddcc
Double_t grayscale[15000000]; // grayscale version of *argb,

// large enough for ˜15Mb

cout << endl;
cout << "w = " << w << endl;
cout << "h = " << h << endl;
cout << "w*h = " << w*h << endl;

TH2D *grid = new TH2D("Grayscale", "Grayscale", w, 0, w, h, 0, h);
grid->SetStats(0); // remove statistics box because it gets in the way

// scan all pixels in image
// make a grayscale version of the image
for(UInt_t i=0; i<h; i++) {

for(UInt_t j=0; j<w; j++) {

Int_t idx = i*w + j;
grayscale[idx] = getgray(argb[idx]);
grid->SetBinContent(j,h-i,grayscale[idx]);

}
}

TString s1(".root");
// replace the 4 char after the last period with s1
TString filename = fname.Replace(fname.Last(’.’),4,s1);
TFile *f = new TFile(filename.Data(), "RECREATE");
grid->Write();
f->Close();
cout << "Wrote histogram to " << filename << endl;

TH2 *gridbin = grid->Rebin2D(binning, binning, "Grayscale2");
TCanvas *cfit = new TCanvas("cfit", "Grayscale Image", 0, 0, 1800, 1000);
cfit->Divide(2,2);
cfit->SetFillColor(17);

cfit->cd(1); grid->Draw("colz");
cfit->cd(2); gridbin->Draw("surf3");
cfit->cd(3); gridbin->Draw("lego2");
cfit->cd(4); img->Draw();

// Stop timing
sw->Stop();
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sw->Print("u");
cout << endl;
}
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B.2 image2spectrum.c

// Auther: Zachary Petriw
// March 17, 2011 (started Dec. 2010)

// image2spectrum.c
// Find peaks in a 2D histogram - lots borrowed from Src.C from ROOT

#include <iostream>
#include <string>
#include "TSpectrum2"
#include "TH2.h"

void image2spectrum (Int_t dim = 2, TString rootfile, Double_t sigma,
Double_t thresh, Int_t write = 0) {

TFile *f = new TFile(rootfile.Data());
search = (TH2D*)f->Get("Grayscale");

Int_t i,j,nfound;
Int_t nbinsx = search->GetNbinsX();
Int_t nbinsy = search->GetNbinsY();
cout << "nbinsx = " << nbinsx << endl;
cout << "nbinsy = " << nbinsy << endl;
Double_t xmin = 0;
Double_t xmax = (Double_t)nbinsx;
Double_t ymin = 0;
Double_t ymax = (Double_t)nbinsy;
Float_t fPositionX[5000];
Float_t fPositionY[5000];
Float_t ** source = new Float_t* [nbinsx];
for (i=0; i<nbinsx; i++)

source[i] = new Float_t[nbinsy];
Float_t ** dest = new Float_t* [nbinsx];
for (i=0; i<nbinsx; i++)

dest[i] = new Float_t[nbinsy];

TCanvas *Searching = new TCanvas("Searching","High resolution peak searching
",10,10,1000,700);

search->SetStats(0); // remove stats box because it is currently useless
gStyle->SetPalette(1); // rainbow color scale

// Set maximum number of peaks higher than the default 100
TSpectrum2 *s = new TSpectrum2(5000);

for (i = 0; i < nbinsx; i++){
for (j = 0; j < nbinsy; j++){

source[i][j] = search->GetBinContent(i + 1,j + 1);
}

}

// Time this sucker
TStopwatch *sw = new TStopwatch();

nfound = s->SearchHighRes(source, dest, nbinsx, nbinsy, sigma, thresh,
kTRUE, 3, kFALSE, 3);
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printf("Found %d candidate peaks\n",nfound);

// set up marker coordinates
Float_t* posx = new Float_t [nfound]; // x-positions from TSpectrum2

posx = s->GetPositionX();
Float_t* posy = new Float_t [nfound]; // y-positions from TSpectrum2

posy = s->GetPositionY();
Float_t* bincon = new Float_t [nfound]; // content of each bin
Float_t* ptr = new Float_t [nfound*3]; // for TPolyMarker3D
Int_t binx, biny;

for (i=0; i<nfound; i++) {
binx = 1 + Int_t(posx[i]); // for proper rounding
biny = 1 + Int_t(posy[i]);
bincon[i] = search->GetBinContent(binx, biny);
ptr[i*3] = posx[i]; ptr[i*3+1] = posy[i]; ptr[i*3+2] = bincon[i];

}

// WRITE MARKER COORDINATES TO FILE IF LAST PARAM != 0
if(write != 0) {
TString ext(".txt");
// replace the 5 char after the last period (including period) with ’ext’
TString file_out = rootfile.Replace(rootfile.Last(’.’),5,ext);
FILE *fp;
fp = fopen(file_out.Data(), "w");
for(Int_t i=0; i<nfound; i++) {

fprintf(fp, "%f %f\n", posx[i], posy[i]);
}
fclose(fp);
cout << "Wrote marker positions to " << file_out << endl;
}

// 2D CASE ONLY
if(dim == 2) {
search->Draw("colz");
TPolyMarker *poly2d = new TPolyMarker(nfound, posx, posy);
poly2d->SetMarkerStyle(23);
poly2d->SetMarkerSize(1);
poly2d->SetMarkerColor(1);
poly2d->Draw("same");
}

// 3D CASE ONLY
else if(dim == 3) {
search->Draw("surf1");
TPolyMarker3D *poly3d = new TPolyMarker3D(nfound, ptr, 23);
poly3d->SetMarkerStyle(23);
poly3d->SetMarkerSize(1);
poly3d->SetMarkerColor(1);
poly3d->Draw("same");
}

// Read the stopwatch
sw->Stop();
sw->Print("u");
}
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B.3 Intrinsics_Solve_final.cpp

// Zachary Petriw
// May 20, 2011 (day before the Rapture?)

// Intrinsics_Solve_final.cpp

// Changes made on Sept 16, 2011:
// Decoupling of the radial distortion parameters,k1,k2,k3, and
// tangental parameters, p1,p2, from the x,y offsets: xh,yh.

// The variables xh,yh have been replaced with xr,yr when calculating
// radial/tangental distortions.

// [NEW] Dec. 2, 2011
// Added the possibility of using a second fitting fuction, one
// which uses a polynomial expansion for the distortion parameters
// To use the second function, use camera parameter sets 20-25, or
// 30-25.

// The polynomial fit has a different number (15) of parameters than
// the radial distortion model.

// [NEW] Dec. 28, 2011
// Rewritten as Intrinsics_Solve_final. It will include the functions
// Residual and ResidualFCN. Should be more lightweight.

#include <iostream>
#include <vector>
#include <fstream>
#include <sstream>
#include "TStopwatch.h"
#include "TVector2.h"
#include "TVector3.h"
#include "TMath.h"
#include "TStopwatch.h"
#include "TApplication.h"
#include "TCanvas.h"
#include "TGraph.h"
#include "TGraphErrors.h"
#include "TMultiGraph.h"
#include "TAxis.h"
#include "TPolyMarker.h"
#include "TMarker.h"
#include "TArrow.h"
#include "TPolyMarker3D.h"
#include "TPolyLine3D.h"
#include "TView.h"
#include "TH1.h"
#include "TH2.h"
#include "TStyle.h"
#include "DrawFunc.h"
#include "DrawResiduals.h"
#include "Residual.h"
#include "ResidualFCN.h"
#include <Minuit2/FunctionMinimum.h>
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#include <Minuit2/MnPrint.h>
#include <Minuit2/VariableMetricMinimizer.h>
#include <Minuit2/MnMigrad.h>
#include <Minuit2/MnMinos.h>
#include <Minuit2/MnContours.h>
#include <Minuit2/MnPlot.h>
#include "TAxis3D.h"

using namespace TMath;
using namespace ROOT::Minuit2;
using namespace std;

// ****************************************************************** //
// *********************** Main program ***************************** //
// ****************************************************************** //

int main (int argc, char* argv[]) {

cerr << endl;
// TStopwatch *sw;

// Oct 15,2011 - added a 4th argument, removed the option for 5
// Fourth argument chooses which camera to use, to avoid constantly
recompiling the code

if( argc != 4 ) {
cerr << "Usage: ./Intrinsic_Solve markercoords(3xN).txt pixelcoords
(2xN).txt Camera_number" << endl;

cerr << endl;
return -1;
}

string mkname = argv[1]; // Name of file containing marker positions
string pxname = argv[2]; // Name of file containing pixel positions (
TSpectrum2 output)

int camera_num = atoi(argv[3]); // Camera parameters to use, 0-5 (0
= P)

// (Nov 8, 2011) 10-15 will be used
for triangulation pic sets

// Check that the inputs are .txt files
size_t check1, check2;
check1 = mkname.find_last_of("."); // Look for the .txt extension
check2 = pxname.find_last_of(".");
string exten1 (mkname, check1+1, 3); // turn the extension into a string
string exten2 (pxname, check2+1, 3);

if((exten1 != "txt") || (exten2 != "txt")) {
cerr << "Both input files need to be .txt files!" << endl;
cerr << "Buh-bye!" << endl << endl;

return -2;
}

// Open the marker position file
ifstream mkfile;
mkfile.open(mkname.data());

if(!mkfile) {
cerr << "...Cannot open markercoord file" << endl;
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return -3;
}

// Open the pixel position file
ifstream pxfile;
pxfile.open(pxname.data());

if(!pxfile) {
cerr << "...Cannot open pixelcoord file" << endl;

return -4;
}

cerr << "The files we are opening are:" << endl;
cerr << " " << mkname << ", and " << endl;
cerr << " " << pxname << endl << endl;

// Get each file’s size and make sure they are the same
Int_t fsize; // file size, pending both files have the
same size

Int_t mksize = 0; // marker file size
Int_t pxsize = 0; // pixel file size
string dummy; // dummy string to hold lines from file

// Read in each line of marker file
while(getline(mkfile,dummy))

++mksize;
// Read in each line of pixel file
while(getline(pxfile,dummy))

++pxsize;

// Compare the two
if(mksize == pxsize) {

fsize = mksize;
cerr << "Both files have " << mksize << " lines" << endl;

}
else {

cerr << "Files aren’t the same size!" << endl;
cerr << "marker file has " << mksize << " lines" << endl;
cerr << "pixel file has " << pxsize << " lines" << endl;

return -5;
}

// So far, so good
mkfile.clear(); // clear the eof() flag that we hit while
checking the file size

pxfile.clear();
mkfile.seekg(0, ios::beg); // Reset counter back to beginning
pxfile.seekg(0, ios::beg);
// cerr << "tellg after reseting counter = " << mkfile.tellg() << endl <<
endl;

// cerr << "tellg after reseting counter = " << pxfile.tellg() << endl <<
endl;

// Read in the files’ lines and append to vectors
// It needs to be in vector format for Minuit2 to work
vector<TVector3> Markers; // Marker coords
vector<TVector2> Pixels; // Pixel coords
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double mx,my,mz,px,py; // dummy variables to hold Marker, Pixel
values

TVector3 mkdum; // dummy TVector3
TVector2 pxdum; // dummy TVector2
double* xpic = new double [fsize]; // x pixel coords from input file
double* ypic = new double [fsize]; // y pixel coords from input file
double* xloc = new double [fsize]; // x coord of 3D marker location
double* yloc = new double [fsize]; // y coord of 3D marker location
double* zloc = new double [fsize]; // z coord of 3D marker location
double* ptr = new double [fsize*3]; // xyz coords of 3D marker locations

mkfile.precision(9); // # of sig figs to read (set to max)
for(int i=0; i<fsize; i++) {

// Marker coords
mkfile >> mx >> my >> mz;

// cerr << "mx = " << mx << ", my = " << my << ", mz = " << mz << endl;
mkdum.SetXYZ(mx,my,mz); // Set x,y,z of marker TVector3

// mkdum.Print();
Markers.push_back(mkdum); // Append to marker vector
xloc[i] = mx; // x coord of 3D marker location
yloc[i] = my; // y coord of 3D marker location
zloc[i] = mz; // z coord of 3D marker location

// xyz of marker locations
ptr[i*3] = mx;
ptr[i*3+1] = my;
ptr[i*3+2] = mz;

// Pixel coords
pxfile >> px >> py;

pxdum.Set(px,py); // Set x,y of pixel TVector2
// pxdum.Print();

Pixels.push_back(pxdum); // Append to pixel vector
xpic[i] = px; // x-coord of pixel, to be plotted
ypic[i] = py; // y-coord of pixel, to be plotted

}

// Close the files
mkfile.close();
pxfile.close();

// Return sizes if you are interested
cerr << "Markers.size() = " << Markers.size() << endl;
cerr << "Pixels.size() = " << Pixels.size() << endl;

// [Dec. 2, 2011] Here we need to decide on which model to use.
// This will affect the number of parameters we will be using (parsize)
int parsize;
if(camera_num < 10)

parsize = 16; // radial distortion model
else if(camera_num < 20)

parsize = 19; // polynomial, cameras facing each other
else if(camera_num < 30)

parsize = 9; // simpler model
else if(camera_num < 40)

parsize = 10; // split Rx and Ry
else if(camera_num < 50)
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parsize = 14; // polynomial
else if(camera_num < 70)

parsize = 19; // polynomial + radial
else if(camera_num < 80)

parsize = 24; // extra polynomial + radial model
else if(camera_num < 90)

parsize = 25; // extra polynomial + radial model + sine correction
to y

else if(camera_num < 100)
parsize = 27; // extra polynomial + radial model + extra poly
corrections

// Initial starting parameters
// [NEW] (09/16/11) r2 is now calculated with xr,yr
// [NEW] (09/16/11) parsize is now 16, up from 14
// X0,Y0,Z0, phi,theta,psi, R,xh,yh, k1,k2,k3, p1,p2, xr,yr
// [NEW] (11/07/11) modified camera y-coords to account for slight
backwards tilt of sawhorse

double* p = new double [parsize];

double cpos0[] = {-73.5,264.2,94.5,0,1.57,0}; // shallow
end positions

double cpos1[] = {-45.6,264.2,94.5,0,1.57,0};
double cpos2[] = {-17.6,264.2,94.5,0,1.57,0};
double cpos3[] = {143.8,264.2,94.5,0,1.57,0};
double cpos4[] = {172.0,264.2,94.5,0,1.57,0};
double cpos5[] = {199.5,264.2,94.5,0,1.57,0};

double cpos10[] = {-101.6,337.3,96.1,-1.57,1.57,3.14}; // deep end
positions

double cpos11[] = {-101.6,309.4,95.5,-1.57,1.57,0};
double cpos12[] = {-101.6,281.4,94.9,-1.57,1.57,0};
double cpos13[] = {235.5,275.2,94.7,1.57,1.57,0};
double cpos14[] = {235.5,303.4,95.3,1.57,1.57,0};
double cpos15[] = {235.5,330.9,95.9,1.57,1.57,0};

// shallow end, facing wall - old model
double par0[] =
{-73.5,264.2,94.5,0,1.57,0,2573,2144,1424,0,0,0,0,0,-3952,4109};
// P

double par1[] =
{-45.6,264.2,94.5,0,1.57,0,2573,2144,1424,0,0,0,0,0,6567,1303};
// 1

double par2[] =
{-17.6,264.2,94.5,0,1.57,0,2573,2144,1424,0,0,0,0,0,-1886,3179};
// 2

double par3[] =
{143.8,264.2,94.5,0,1.57,0,2573,2144,1424,0,0,0,0,0,-6901,776};
// 3

double par4[] =
{172.0,264.2,94.5,0,1.57,0,2573,2144,1424,0,0,0,0,0,5997,-1402};
// 4

double par5[] =
{199.5,264.2,94.5,0,1.57,0,2573,2144,1424,0,0,0,0,0,-4474,887};
// 5

// shallow end, facing each other - 19 par newest model
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double par10[] =
{-101.6,337.3,96.1,-1.57,1.57,3.14,2172.92,1435.16,3105.15,
3242.26,-40.2643,1010.44,-163.938,1718.33,-1.12473e-08,2.51707e-15,
-1.4499e-22,3956.27,1994.82};

double par11[] =
{-101.6,309.4,95.5,-1.57,1.57,0,2277.12,1432.38,3121.58,3164.76,
-117.705,566.093,-192.253,1814.93,-9.63161e-09,1.02525e-15, -6.79423e
-23,3531.15,1850.72};

double par12[] =
{-101.6,281.4,94.9,-1.57,1.57,0,2347.23,1624.34,3420.93,3731.89,
-398.695,2654.86,-848.247,6617.94,-4.7948e-08,5.6652e-15, -2.06951e
-22,4298.71,1747.79};

double par13[] =
{235.5,275.2,94.7,1.57,1.57,0,2044.49,1462.85,3138.89,3165.51,
97.8946,84.9701,39.2842,-1844.25,1.70956e-08,-2.3151e-14, 4.26948e
-21,2115.72,1589.74};

double par14[] =
{235.5,303.4,95.3,1.57,1.57,0,2131.4,1456.23,2532.68,2557.07,
10.4175,8.1809,-50.0431,-473.786,3.40054e-09,3.26501e-17, -5.4104e
-25,9957.1,-720.805};

double par15[] =
{235.5,330.9,95.9,1.57,1.57,0,2202.2,1449.21,2983.39,3001.71,
-36.5552,-133.436,-114.38,-728.171,1.44658e-08,-1.86841e-15, 6.86229e
-23,121.8,1711.55};

double par20[] = {-73.5,264.2,94.5,0,1.57,0,3020,0,0}; // P
double par21[] = {-45.6,264.2,94.5,0,1.57,0,3020,0,0}; // 1
double par22[] = {-17.6,264.2,94.5,0,1.57,0,3020,0,0}; // 2
double par23[] = {143.8,264.2,94.5,0,1.57,0,3020,0,0}; // 3
double par24[] = {172.0,264.2,94.5,0,1.57,0,3020,0,0};
double par25[] = {199.5,264.2,94.5,0,1.57,0,3020,0,0}; // 5

// 10 parameter fit - x0,y0,x1,y1
double par30[] = {-73.5,264.2,94.5,0,1.57,0,3020,3020,0,0};
double par31[] = {-45.6,264.2,94.5,0,1.57,0,3020,3020,0,0};
double par32[] = {-17.6,264.2,94.5,0,1.57,0,3020,3020,0,0};
double par33[] = {143.8,264.2,94.5,0,1.57,0,3020,3020,0,0};
double par34[] = {172.0,264.2,94.5,0,1.57,0,3020,3020,0,0};
double par35[] = {199.5,264.2,94.5,0,1.57,0,3020,3020,0,0};

// 14 parameter fit - x0,..,x3,y0,..,y3
double par40[] = {-73.5,264.2,94.5,0,1.57,0,0,0,0,0,0,0,0,0};
double par41[] = {-45.6,264.2,94.5,0,1.57,0,0,0,0,0,0,0,0,0};
double par42[] = {-17.6,264.2,94.5,0,1.57,0,0,0,0,0,0,0,0,0};
double par43[] = {143.8,264.2,94.5,0,1.57,0,0,0,0,0,0,0,0,0};
double par44[] = {172.0,264.2,94.5,0,1.57,0,0,0,0,0,0,0,0,0};
double par45[] = {199.5,264.2,94.5,0,1.57,0,0,0,0,0,0,0,0,0};

// 19 parameter fit - x0,..,x3,y0,..,y3, k1,k2,k3,xr,yr
// last two elements need to be estimated correctly - most sensitive to
bad guesses

double par50[] = {-73.5,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,1e3,3e3};

double par51[] = {-45.6,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,5e3,3e3};

double par52[] = {-17.6,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,6e3,3e3};

double par53[] = {143.8,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,4e3,3e3};



89

double par54[] = {172.0,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,8e3,1e3};

double par55[] = {199.5,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,0,3e3};

// 19 parameter fit - x0,..,x3,y0,..,y3, k1,k2,k3,xr,yr
// *** Used for scanning over 2d space spanned by xr,yr ***
double par60[] = {-73.5,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,0,0};

double par61[] = {-45.6,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,0,0};

double par62[] = {-17.6,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,0,0};

double par63[] = {143.8,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,0,0};

double par64[] = {172.0,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,0,0};

double par65[] = {199.5,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,0,0};

// more parameter fit - x0,..,x3,y0,..,y3, k1,k2,k3,xr,yr,
// last two elements need to be estimated correctly - most sensitive to
bad guesses

double par70[] = {-73.5,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,1e3,3e3,0,0,0,2.5e3,1e3};

double par71[] = {-45.6,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,5e3,3e3,0,0,0,2.5e3,1e3};

double par72[] = {-17.6,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,6e3,3e3,0,0,0,2.5e3,1e3};

double par73[] = {143.8,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,4e3,3e3,0,0,0,2.5e3,1e3};

double par74[] = {172.0,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,8e3,1e3,0,0,0,2.5e3,1e3};

double par75[] = {199.5,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,0,3e3,0,0,0,2.5e3,1e3};

// 19 parameter fit - x0,..,x3,y0,..,y3, k1,k2,k3,xr,yr
// last two elements need to be estimated correctly - most sensitive to
bad guesses

double par80[] = {-73.5,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,1e3,3e3,5,2200,500,1000,500,0};

double par81[] = {-45.6,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,5e3,3e3,5,2200,500,1000,500,0};

double par82[] = {-17.6,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,6e3,3e3,5,2200,500,1000,500,0};

double par83[] = {143.8,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,4e3,3e3,5,2200,500,1000,500,0};

double par84[] = {172.0,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,8e3,1e3,5,2200,500,1000,500,0};

double par85[] = {199.5,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,0,3e3,5,2200,500,1000,500,0};

// 27 parameter fit - x0,..,x3,y0,..,y3, k1,k2,k3,xr,yr, x1y,x2y,x3y,y1x,
y2x,y3x,b1x,b1y

// last two elements need to be estimated correctly - most sensitive to
bad guesses

double par90[] = {-73.5,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,1e3,3e3,0,0,0,0,0,0,0,0};
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double par91[] = {-45.6,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,5e3,3e3,0,0,0,0,0,0,0,0};

double par92[] = {-17.6,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,6e3,3e3,0,0,0,0,0,0,0,0};

double par93[] = {143.8,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,4e3,3e3,0,0,0,0,0,0,0,0};

double par94[] = {172.0,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,8e3,1e3,0,0,0,0,0,0,0,0};

double par95[] = {199.5,264.2,94.5,0,1.57,0,2e3,1500,3e3,3e3
,0,0,0,0,0,0,0,0,3e3,0,0,0,0,0,0,0,0};

// Make a larger array that can hold all these parameters, for easier
accessing

// This may have caused a memory bug - ?
double** pc = new double* [6];
for(int i=0; i<6; i++)

pc[i] = new double [parsize];
if (camera_num < 10) {

for(int i=0; i<6; i++) {
pc[0][i] = cpos0[i];
pc[1][i] = cpos1[i];
pc[2][i] = cpos2[i];
pc[3][i] = cpos3[i];
pc[4][i] = cpos4[i];
pc[5][i] = cpos5[i];

}
}
else if (camera_num < 20) {

for(int i=0; i<6; i++) {
pc[0][i] = cpos10[i];
pc[1][i] = cpos11[i];
pc[2][i] = cpos12[i];
pc[3][i] = cpos13[i];
pc[4][i] = cpos14[i];
pc[5][i] = cpos15[i];

}
}

else if (camera_num < 100)
{

for(int i=0; i<6; i++) {
pc[0][i] = cpos0[i];
pc[1][i] = cpos1[i];
pc[2][i] = cpos2[i];
pc[3][i] = cpos3[i];
pc[4][i] = cpos4[i];
pc[5][i] = cpos5[i];

}
}

for(int i=0; i<parsize; i++) {
if(camera_num == 0) p[i] = par0[i];
else if(camera_num == 1) p[i] = par1[i];
else if(camera_num == 2) p[i] = par2[i];
else if(camera_num == 3) p[i] = par3[i];
else if(camera_num == 4) p[i] = par4[i];
else if(camera_num == 5) p[i] = par5[i];
else if(camera_num == 10) p[i] = par10[i];
else if(camera_num == 11) p[i] = par11[i];
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else if(camera_num == 12) p[i] = par12[i];
else if(camera_num == 13) p[i] = par13[i];
else if(camera_num == 14) p[i] = par14[i];
else if(camera_num == 15) p[i] = par15[i];
else if(camera_num == 20) p[i] = par20[i];
else if(camera_num == 21) p[i] = par21[i];
else if(camera_num == 22) p[i] = par22[i];
else if(camera_num == 23) p[i] = par23[i];
else if(camera_num == 24) p[i] = par24[i];
else if(camera_num == 25) p[i] = par25[i];
else if(camera_num == 30) p[i] = par30[i];
else if(camera_num == 31) p[i] = par31[i];
else if(camera_num == 32) p[i] = par32[i];
else if(camera_num == 33) p[i] = par33[i];
else if(camera_num == 34) p[i] = par34[i];
else if(camera_num == 35) p[i] = par35[i];
else if(camera_num == 40) p[i] = par40[i];
else if(camera_num == 41) p[i] = par41[i];
else if(camera_num == 42) p[i] = par42[i];
else if(camera_num == 43) p[i] = par43[i];
else if(camera_num == 44) p[i] = par44[i];
else if(camera_num == 45) p[i] = par45[i];
else if(camera_num == 50) p[i] = par50[i];
else if(camera_num == 51) p[i] = par51[i];
else if(camera_num == 52) p[i] = par52[i];
else if(camera_num == 53) p[i] = par53[i];
else if(camera_num == 54) p[i] = par54[i];
else if(camera_num == 55) p[i] = par55[i];
else if(camera_num == 60) p[i] = par60[i];
else if(camera_num == 61) p[i] = par61[i];
else if(camera_num == 62) p[i] = par62[i];
else if(camera_num == 63) p[i] = par63[i];
else if(camera_num == 64) p[i] = par64[i];
else if(camera_num == 65) p[i] = par65[i];
else if(camera_num == 70) p[i] = par70[i];
else if(camera_num == 71) p[i] = par71[i];
else if(camera_num == 72) p[i] = par72[i];
else if(camera_num == 73) p[i] = par73[i];
else if(camera_num == 74) p[i] = par74[i];
else if(camera_num == 75) p[i] = par75[i];
else if(camera_num == 80) p[i] = par80[i];
else if(camera_num == 81) p[i] = par81[i];
else if(camera_num == 82) p[i] = par82[i];
else if(camera_num == 83) p[i] = par83[i];
else if(camera_num == 84) p[i] = par84[i];
else if(camera_num == 85) p[i] = par85[i];
else if(camera_num == 90) p[i] = par90[i];
else if(camera_num == 91) p[i] = par91[i];
else if(camera_num == 92) p[i] = par92[i];
else if(camera_num == 93) p[i] = par93[i];
else if(camera_num == 94) p[i] = par94[i];
else if(camera_num == 95) p[i] = par95[i];

}

// standard minimization using MIGRAD
// create MINUIT parameters with names
MnUserParameters upar;

upar.Add("X0", p[0], 0.1); // name, initial value, error;
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upar.Add("Y0", p[1], 0.1);
upar.Add("Z0", p[2], 0.1);
upar.Add("phi", p[3], 0.1);
upar.Add("theta", p[4], 0.1);
upar.Add("psi", p[5], 0.1);

// old 16 parameter model
if(camera_num < 10) {

upar.Add("R", p[6], 0.1);
upar.Add("xh", p[7], 0.1);
upar.Add("yh", p[8], 0.1);
upar.Add("k1", p[9], 1e-9);
upar.Add("k2", p[10], 1e-16);
upar.Add("k3", p[11], 1e-24);
upar.Add("p1", p[12], 1e-7);
upar.Add("p2", p[13], 1e-7);
upar.Add("xr", p[14], 0.1);
upar.Add("yr", p[15], 0.1);

}
// 19 parameter model
else if(camera_num < 20) {

upar.Add("x0", p[6], 0.1);
upar.Add("y0", p[7], 0.1);
upar.Add("x1", p[8], 0.1);
upar.Add("y1", p[9], 0.1);
upar.Add("x2", p[10], 0.1);
upar.Add("y2", p[11], 0.1);
upar.Add("x3", p[12], 0.1);
upar.Add("y3", p[13], 0.1);
upar.Add("k1", p[14], 0.1);
upar.Add("k2", p[15], 0.1);
upar.Add("k3", p[16], 0.1);
upar.Add("xr", p[17], 0.1);
upar.Add("yr", p[18], 0.1);

}

else if(camera_num < 30) {
upar.Add("R", p[6], 0.1);
upar.Add("xh", p[7], 0.1);
upar.Add("yh", p[8], 0.1);

}
// 10 parameter model
else if(camera_num < 40) {

upar.Add("Rx", p[6], 0.1);
upar.Add("Ry", p[7], 0.1);
upar.Add("xh", p[8], 0.1);
upar.Add("yh", p[9], 0.1);

}
// 14 parameter model
else if(camera_num < 50) {

upar.Add("x0", p[6], 0.1);
upar.Add("y0", p[7], 0.1);
upar.Add("x1", p[8], 0.1);
upar.Add("y1", p[9], 0.1);
upar.Add("x2", p[10], 0.1);
upar.Add("y2", p[11], 0.1);
upar.Add("x3", p[12], 0.1);
upar.Add("y3", p[13], 0.1);

}
// 19 parameter model
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else if(camera_num < 70) {
upar.Add("x0", p[6], 0.1);
upar.Add("y0", p[7], 0.1);
upar.Add("x1", p[8], 0.1);
upar.Add("y1", p[9], 0.1);
upar.Add("x2", p[10], 0.1);
upar.Add("y2", p[11], 0.1);
upar.Add("x3", p[12], 0.1);
upar.Add("y3", p[13], 0.1);
upar.Add("k1", p[14], 0.1);
upar.Add("k2", p[15], 0.1);
upar.Add("k3", p[16], 0.1);
upar.Add("xr", p[17], 0.1);
upar.Add("yr", p[18], 0.1);

}
// Extra parameters model
else if(camera_num < 80) {

upar.Add("x0", p[6], 0.1);
upar.Add("y0", p[7], 0.1);
upar.Add("x1", p[8], 0.1);
upar.Add("y1", p[9], 0.1);
upar.Add("x2", p[10], 0.1);
upar.Add("y2", p[11], 0.1);
upar.Add("x3", p[12], 0.1);
upar.Add("y3", p[13], 0.1);
upar.Add("xk1", p[14], 0.1);
upar.Add("xk2", p[15], 0.1);
upar.Add("xk3", p[16], 0.1);
upar.Add("xxr", p[17], 0.1);
upar.Add("xyr", p[18], 0.1);
upar.Add("yk1", p[19], 0.1);
upar.Add("yk2", p[20], 0.1);
upar.Add("yk3", p[21], 0.1);
upar.Add("yxr", p[22], 0.1);
upar.Add("yyr", p[23], 0.1);

}
// 25 parameter model
else if(camera_num < 90) {

upar.Add("x0", p[6], 0.1);
upar.Add("y0", p[7], 0.1);
upar.Add("x1", p[8], 0.1);
upar.Add("y1", p[9], 0.1);
upar.Add("x2", p[10], 0.1);
upar.Add("y2", p[11], 0.1);
upar.Add("x3", p[12], 0.1);
upar.Add("y3", p[13], 0.1);
upar.Add("k1", p[14], 0.1);
upar.Add("k2", p[15], 0.1);
upar.Add("k3", p[16], 0.1);
upar.Add("xr", p[17], 0.1);
upar.Add("yr", p[18], 0.1);
upar.Add("sa", p[19], 0.1);
upar.Add("sxo", p[20], 0.1);
upar.Add("sxf", p[21], 0.1);
upar.Add("syo", p[22], 0.1);
upar.Add("syf", p[23], 0.1);
upar.Add("sdum", p[24], 0.1);

}
else if(camera_num < 100) {
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upar.Add("x0", p[6], 0.1);
upar.Add("y0", p[7], 0.1);
upar.Add("x1", p[8], 0.1);
upar.Add("y1", p[9], 0.1);
upar.Add("x2", p[10], 0.1);
upar.Add("y2", p[11], 0.1);
upar.Add("x3", p[12], 0.1);
upar.Add("y3", p[13], 0.1);
upar.Add("k1", p[14], 0.1);
upar.Add("k2", p[15], 0.1);
upar.Add("k3", p[16], 0.1);
upar.Add("xr", p[17], 0.1);
upar.Add("yr", p[18], 0.1);
upar.Add("x1y", p[19], 0.1);
upar.Add("x2y", p[20], 0.1);
upar.Add("x3y", p[21], 0.1);
upar.Add("y1x", p[22], 0.1);
upar.Add("y2x", p[23], 0.1);
upar.Add("y3x", p[24], 0.1);
upar.Add("b1x", p[25], 0.1);
upar.Add("b1y", p[26], 0.1);

}

// The function to be minimized, defined in Residual.h,*.cpp and
ResidualFCN.h,*.cpp

ResidualFCN func(Markers,Pixels); // ResidualFCN(vector<TVector3>, vector
<TVector2>)

// create MIGRAD minimizer
MnMigrad migrad(func, upar); // function, user parameters
// This creates a function Residual(Markers,Pixels,Params), which can be
used later

// to reproduce useful parameter things such as calculated points and
residuals

// Fix x,y,z location of camera
for(int i=0; i<3; i++)

migrad.Fix(i);

// New [11/24/2011] minimization routine that hopefully works.
// Fix xr, fit yr, then fix yr, fit xr. Repeat a few times.
// Note: [12/28/2011] The parameters xr,yr are flat for most
// of their parameter space, and only spike up at one end. This
// can make it difficult to fit for them.

gErrorIgnoreLevel = kFatal; // silences minuit2 output
TStopwatch s;
s.Start();

FunctionMinimum min = migrad();
int count = 0;

// Done for the cameras facing each other to get the correct Euler angles
out of the fit.

if(camera_num >= 10 && camera_num < 20) {
for(int i=0; i<parsize; i++) {
if(i<3 || i>5) // fix all but Euler angles

migrad.Fix(i);
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} // end for
min = migrad();
} // end if

// This is for the 19 parameter model - polynomial/radial mix
else if(camera_num < 60 && camera_num >= 50) {
// Here we run the fit 10 times, alternating between fixed ’xr’, free ’yr’

and free ’xr’, fixed ’yr’.
// Alternating like this allows the res to drop and make the fit better.
for(int i=0; i<5; i++) {
migrad.Fix("xr");

min = migrad();
cerr << endl << "*** min totalres (" << i*2 << ") = " << min.
UserState().Fval() << " ***" << endl;

cerr << "xr = " << migrad.Value("xr") << ", yr = " << migrad.Value("
yr") << endl;

// cerr << min;
migrad.Release("xr");
migrad.Fix("yr");

min = migrad();
cerr << endl << "*** min totalres (" << i*2 + 1 << ") = " << min.
UserState().Fval() << " ***" << endl;

cerr << "xr = " << migrad.Value("xr") << ", yr = " << migrad.Value("
yr") << endl;

// cerr << min;
migrad.Release("yr");
count += 2;
} // end for
} // end if

// This section of the code will scan over a large range of xr,yr values
and

// create a histogram that will contain the residuals for each pair. It
should

// help identify local minima so small ones can be avoided.

// A fit with the basic parameters will still be performed and displayed
as output.

else if(camera_num < 70 && camera_num >= 60) {

int range = 31; // number of iterations in x and y
double scanstep = 1000; // scan step for xr,yr
double hlim = scanstep*double(range)/2; // histogram lower and upper

limits
double xoff = 0;
double yoff = 0;
cerr << "hlim = " << hlim << ", xoff = " << xoff << ", yoff = " << yoff
<< endl;

size_t pos = pxname.find("/");
string htitle = "Residual Scan for " + pxname.substr(pos+1,7);
TH2D *scanres = new TH2D("scanres",htitle.data(),range,-hlim+xoff,hlim+
xoff,range,-hlim+yoff,hlim+yoff);

for(int i=0; i<range; i++) {
for(int j=0; j<range; j++) {



96

ResidualFCN func(Markers,Pixels); // ResidualFCN(
vector<TVector3>, vector<TVector2>)

MnMigrad migrad(func,upar); // function, user
parameters

migrad.Fix("X0"); migrad.Fix("Y0"); migrad.Fix("
Z0");

migrad.Fix("xr"); migrad.Fix("yr");

migrad.SetValue("xr",p[17] + xoff + scanstep*(double(i) -
double(range-1)/2));

migrad.SetValue("yr",p[18] + yoff + scanstep*(double(j) -
double(range-1)/2));

cerr << "i = " << i << ", j = " << j << endl;
min = migrad();
cerr << "xr = " << migrad.Value("xr") << ", yr = " << migrad
.Value("yr") << endl;

cerr << "min.UserState.Fval() = " << min.UserState().Fval()
<< endl;

scanres->Fill(migrad.Value("xr"),migrad.Value("yr"),min.
UserState().Fval());

}
} // end for(i<range)

string dir = "˜/Desktop/Camera_work/Photos/Swimming_Pool_Test_Sept7_2011
/Analysis/Thesis_Plots/";

string parout = dir + "Scanhist_" + pxname.substr(pos + 1,10) + ".root";
TFile *f = new TFile(parout.data(), "RECREATE");
scanres->Write();
cerr << "Wrote scanres histogram to " << parout << endl;
f->Close();

migrad.Release("xr");
migrad.Release("yr");

} // end if

// for the 24 parameter model - polynomial + radial + y-only radial
else if(camera_num < 80 && camera_num >= 70) {
// Here we run the fit several times, alternating between fixed ’xr’, free

’yr’ and free ’xr’, fixed ’yr’.
// Alternating like this allows the residual to drop and make the fit
better.

for(int i=0; i<5; i++) {
// float xr
migrad.Fix(18); migrad.Fix(22); migrad.Fix(23);

min = migrad();
cerr << endl << "*** min totalres (" << i*4 << ") = " << min.
UserState().Fval() << " ***" << endl;

cerr << "xxr = " << migrad.Value("xxr") << ", xyr = " << migrad.
Value("xyr") << endl;

cerr << "yxr = " << migrad.Value("yxr") << ", yyr = " << migrad.
Value("yyr") << endl;

migrad.Release(18); migrad.Release(22); migrad.Release(23);
// float yr
migrad.Fix(17); migrad.Fix(22); migrad.Fix(23);

min = migrad();
cerr << endl << "*** min totalres (" << i*4 + 1 << ") = " << min.
UserState().Fval() << " ***" << endl;
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cerr << "xxr = " << migrad.Value("xxr") << ", yr = " << migrad.Value
("xyr") << endl;

cerr << "yxr = " << migrad.Value("yxr") << ", yyr = " << migrad.
Value("yyr") << endl;

migrad.Release(17); migrad.Release(22); migrad.Release(23);
// float yxr
migrad.Fix(17); migrad.Fix(18); migrad.Fix(22);

min = migrad();
cerr << endl << "*** min totalres (" << i*4 + 2 << ") = " << min.
UserState().Fval() << " ***" << endl;

cerr << "xxr = " << migrad.Value("xxr") << ", xyr = " << migrad.
Value("xyr") << endl;

cerr << "yxr = " << migrad.Value("yxr") << ", yyr = " << migrad.
Value("yyr") << endl;

migrad.Release(17); migrad.Release(18); migrad.Release(22);
// float yyr
migrad.Fix(17); migrad.Fix(18); migrad.Fix(23);

min = migrad();
cerr << endl << "*** min totalres (" << i*4 + 3 << ") = " << min.
UserState().Fval() << " ***" << endl;

cerr << "xxr = " << migrad.Value("xxr") << ", yr = " << migrad.Value
("xyr") << endl;

cerr << "yxr = " << migrad.Value("yxr") << ", yyr = " << migrad.
Value("yyr") << endl;

migrad.Release(17); migrad.Release(18); migrad.Release(23);
count += 4;
} // end for
} // end if

// other 24 (25) parameter model - polynomial + radial + sin correction to
y

else if(camera_num < 90 && camera_num >= 80) {
// Here we run the fit 10 times, alternating between fixed ’xr’, free ’yr’

and free ’xr’, fixed ’yr’.
// Alternating like this allows the res to drop and make the fit better.
for(int i=0; i<5; i++) {
migrad.Fix("xr");

min = migrad();
cerr << endl << "*** min totalres (" << i*2 << ") = " << min.
UserState().Fval() << " ***" << endl;

cerr << "xr = " << migrad.Value("xr") << ", yr = " << migrad.Value("
yr") << endl;

// cerr << min;
migrad.Release("xr");
migrad.Fix("yr");

min = migrad();
cerr << endl << "*** min totalres (" << i*2 + 1 << ") = " << min.
UserState().Fval() << " ***" << endl;

cerr << "xr = " << migrad.Value("xr") << ", yr = " << migrad.Value("
yr") << endl;

// cerr << min;
migrad.Release("yr");
count += 2;
} // end for
} // end if

// polynomial + radial + extra polynomial
else if(camera_num < 100 && camera_num >= 90) {



98

// Here we run the fit 10 times, alternating between fixed ’xr’, free ’yr’
and free ’xr’, fixed ’yr’.

// Alternating like this allows the res to drop and make the fit better.
for(int i=0; i<5; i++) {
migrad.Fix("xr");

min = migrad();
cerr << endl << "*** min totalres (" << i*2 << ") = " << min.
UserState().Fval() << " ***" << endl;

cerr << "xr = " << migrad.Value("xr") << ", yr = " << migrad.Value("
yr") << endl;

// cerr << min;
migrad.Release("xr");
migrad.Fix("yr");

min = migrad();
cerr << endl << "*** min totalres (" << i*2 + 1 << ") = " << min.
UserState().Fval() << " ***" << endl;

cerr << "xr = " << migrad.Value("xr") << ", yr = " << migrad.Value("
yr") << endl;

// cerr << min;
migrad.Release("yr");
count += 2;
} // end for
} // end if

// Fitting one last time with xr, yr free gives the correct number of free
parameters

min = migrad();
cerr << endl << "*** min totalres (" << count << ") = " << min.UserState()
.Fval() << " ***" << endl;

cerr << min;

// Initialize parameters for residual plots
vector<double> Params;
for(int i=0; i<parsize; i++)

Params.push_back(min.UserState().Value(i));

// Initialize the function so we can use its stored values
Residual Res(Markers,Pixels,Params);

double* xcalc = new double [fsize];
double* ycalc = new double [fsize];
double* xres = new double [fsize]; // xcalc-xpic
double* yres = new double [fsize]; // xcalc-xpic
double totalres = Res.ResidualSum2(); // sum of xˆ2 + yˆ2
residuals

double xrestot = 0; // sum of xˆ2 residuals
double yrestot = 0; // sum of yˆ2 residuals

for(int i=0; i<fsize; i++) {
xcalc[i] = Res.Xcalc()[i];
ycalc[i] = Res.Ycalc()[i];
xres[i] = Res.Xres()[i];
yres[i] = Res.Yres()[i];
xrestot += xres[i]*xres[i];
yrestot += yres[i]*yres[i];

}
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// Count number of free parameters to calculate Chi2 correctly
int nfreepar = 0;
for(int i=0; i<parsize; i++) {

if(min.UserState().Parameter(i).IsFixed()) {
}
else {

nfreepar += 1;
}

}

cerr << "*****************************************************" << endl;
cerr << "Total residual = " << totalres << endl;
// Find average residual
cerr << "*****************************************************" << endl;
cerr << "Average residual r.m.s. length (pixels) = " << sqrt(totalres/
double(fsize)) << endl;

// Find the average x and y residuals
double xresrms = sqrt(xrestot/double(fsize)); // r.m.s. of x-
residual

double yresrms = sqrt(yrestot/double(fsize)); // r.m.s. of y-
residual

cerr << "xres r.m.s. = " << xresrms << ", yres r.m.s. = " << yresrms <<
endl;

cerr << "*****************************************************" << endl;

// ******************************************************
// ********** Begin: Save parameters to file ************
// ******************************************************
{
// Write the parameters to a file, and name it accordingly
string directory = "/home/zack/Desktop/Camera_work/Photos/
Swimming_Pool_Test_Sept7_2011/Analysis/PAR_directory/";

size_t pos = pxname.find("/");
string parout = directory + "PAR_" + pxname.substr(pos + 1);
ofstream prfile (parout.data());
if (prfile.is_open()) {

for(int i=0; i<parsize; i++) {
prfile << min.UserState().Value(i) << " ";

}
prfile << endl << totalres << " " << sqrt(totalres/double(fsize)) <<

" ";
prfile << xresrms << " " << yresrms << endl;
// needs a space to be prettyyyyy
cerr << "Wrote to " << parout << endl;
prfile.close();

}
else cerr << "Unable to open write-file" << endl;
}
// ******************************************************
// ************ End: Save parameters to file ************
// ******************************************************

// Display graphs and all else
TApplication *tapp = new TApplication("Graph", &argc, argv);

// ******************************************************
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// ******* Begin: Mainfit and Marker Locations **********
// ******************************************************
{

TCanvas *c3 = new TCanvas("c3", "Marker locations", 100, 100, 1600, 600);
// Bonus graphs

c3->Divide(3,1);
TCanvas *c2 = new TCanvas("c2", "Main fit", 100, 100, 1800, 1000);

// Main picture

TGraph *gpic = new TGraph(fsize, xpic, ypic); // coords from
picture

TGraph *gcalc = new TGraph(fsize, xcalc, ycalc); // predicted coords
after fit

TGraph *gloc = new TGraph(fsize, xloc, zloc); // x-z coords from 3
D locations

gpic->SetTitle("Picture marker locations (from TSpectrum2)");
gcalc->SetTitle("Fitted marker locations (reproduced after fitting for
unknowns)");

gloc->SetTitle("x,z coordinates from 3D marker locations");
gloc->GetXaxis()->SetTitle("x location (cm)");
gloc->GetYaxis()->SetTitle("z location (cm)");
gloc->GetYaxis()->SetLabelSize(0.03);
gloc->GetXaxis()->SetLabelSize(0.03);
gloc->GetYaxis()->SetTitleSize(0.03);
gloc->GetYaxis()->SetTitleOffset(1.5);
gloc->GetXaxis()->SetTitleSize(0.03);
gpic->SetMarkerStyle(20);
gpic->SetMarkerColor(3); // pic = green
gcalc->SetMarkerStyle(20);
gcalc->SetMarkerColor(2); // calc = red
gloc->SetMarkerStyle(20);
gloc->SetMarkerColor(4); // x,y from 3D = blue

// Draw the multigraph on the large canvas
TMultiGraph *mg = new TMultiGraph();
mg->Add(gpic);
mg->Add(gcalc);
c2->cd(); mg->Draw("AP");
mg->SetTitle("Picture locations (green) vs. Fitted locations (red)");
mg->GetXaxis()->SetTitle("x (pixels)");
mg->GetYaxis()->SetTitle("y (pixels)");
c2->cd(); mg->Draw("AP");

// Mark the principal (x,y) point with a black cross
c2->cd();
TMarker *mr = new TMarker(Params[6],Params[7],1);
mr->SetMarkerStyle(34);
mr->SetMarkerColor(1);
mr->Draw("same");

// Draw arrows from pic[i] to calc[i] points
TArrow** arrow = new TArrow* [fsize];
for(Int_t i=0; i<fsize; i++) {

arrow[i] = new TArrow(xpic[i],ypic[i],xcalc[i],ycalc[i],0.01,"|-|");
arrow[i]->SetAngle(50);
arrow[i]->SetLineWidth(2);
arrow[i]->Draw();
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}

// Draw the individual graphs on the small canvas
c3->cd(1); gpic->Draw("APL");
c3->cd(2); gcalc->Draw("APL");
c3->cd(3); gloc->Draw("APL");

}
// ******************************************************
// **********End: Mainfit and Marker Locations **********
// ******************************************************

// ************************************************************* //
// ******************* Shallow end ***************************** //
// ************************************************************* //
{
// draw_vertices(TCanvas, x, y, z, phi, theta, psi, length, color)
// draw_grid(TCanvas, x1, x2, y1, y2, z1, z2, nlinesx, nlinesy, color,
style)

// draw_line(TCanvas, x1, y1, z1, x2, y2, z2, color, style)
// draw_marker(TCanvas, x, y, z)

TCanvas *c = new TCanvas("c3D","3D Shallow End",1600,1000);
TView *view2 = TView::CreateView(1); // some vaguely defined ROOT

stuff from TPolyLine3D
// SetRange(x1,y1,z1, x2,y2,z2) I think
double ran2[] = {-400,0,0,500,545.7,200}; // Range to be used in view
->SetRange()

view2->SetRange(ran2[0],ran2[1],ran2[2],ran2[3],ran2[4],ran2[5]); //
what is this I don’t even

// Draws the entire shallow end
draw_shallowend(c);

// Draw camera location and direction it’s facing
// draw_vertices(c,Params[0],Params[1],Params[2],Params[3],Params[4],
Params[5],50,2);

/*
// Draw other cameras
for(int i=0; i<6; i++) {

draw_line(c,pc[i][0],pc[i][1],pc[i][2],pc[i][0],pc[i][1],flht(pc[i
][1]),1,2);

if(camera_num-10 != i) // So we don’t redraw the fitted
camera, only surrounding cameras

draw_vertices(c,pc[i][0],pc[i][1],pc[i][2],pc[i][3],pc[i
][4],pc[i][5],50,633);

}
*/

// Draw markers on the floor where the cameras would be
for(int i=0; i<6; i++) {

draw_marker(c,pc[i][0],pc[i][1],flht(pc[i][1]));
}

// Draw a line showing object height
draw_line(c,0,0,0,0,0,flht(0),2,2); // origin vertex to -11.75
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// Draw markers for object positions
TPolyMarker3D *polymark = new TPolyMarker3D(fsize, ptr, 20);
polymark->SetMarkerColor(4);
polymark->SetMarkerSize(0.20);
polymark->Draw();

// view2->SetPerspective(); // gives it a proper 3D
perspective view
view2->ShowAxis();
TAxis3D *axis = TAxis3D::GetPadAxis();
axis->SetAxisColor(kGreen+1,"Y");
axis->SetLabelColor(kGreen+1,"Y");
axis->SetXTitle("");
// axis->ToggleZoom(); // lets you adjust the axes
// axis->SetLabelColor(kBlack);
// axis->SetAxisColor(kBlack);
}
// ************************************************************* //
// ********************* Residual Plots ************************ //
// ************************************************************* //
{

TCanvas *c = new TCanvas("cres","Residuals",100,100,1900,1000);
draw_residuals(c,fsize,xcalc,ycalc,xres,yres,xpic,ypic);

}
cerr << "Real time = " << s.RealTime() << " and Cpu time = " << s.CpuTime
() << endl;

tapp->Run();

return 0;
}
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B.4 Position_Solve_final.cpp

// Zachary Petiw
// Jan 30, 2012

// Position_Solve_final.cpp

// This program takes camera position, angle and distortion parameters
// that we found before using Intrinsic_Solve, and together with x,y pixel
// coordinates of an object (objects), will solve for that object’s 3-space
// position.

// Modification of Intrinsics_Solve_decouple.cpp.

// [NEW] (01/30/11) Changes made from Intrinsics_Solve_decouple.cpp to
include

// models with different sizes. Minuit2 functions must be rewritten to allow
// this.

#include <iostream>
#include <vector>
#include <fstream>
#include <sstream>
#include <stdio.h>
#include <iomanip>
#include "TVector2.h"
#include "TVector3.h"
#include "TRotation.h"
#include "ChiFcnSolve.h"
#include "TMath.h"
#include "TStopwatch.h"
#include "TF2.h"
#include "TApplication.h"
#include "TCanvas.h"
#include "TPad.h"
#include "TGraph.h"
#include "TMultiGraph.h"
#include "TAxis.h"
#include "TPolyMarker.h"
#include "TMarker.h"
#include "TArrow.h"
#include "TPolyMarker3D.h"
#include "TPolyLine3D.h"
#include "TView.h"
#include "TH1.h"
#include "DrawFunc.h"
#include "DrawResiduals.h"
#include "Triang.h"
#include "TriangFCN.h"
#include "gStyles.h" // my own gStyles
#include "TPaveText.h"
#include "TLegend.h"
#include "TAxis3D.h"
#include "TROOT.h"
#include <Minuit2/FunctionMinimum.h>
#include <Minuit2/MnPrint.h>
#include <Minuit2/VariableMetricMinimizer.h>
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#include <Minuit2/MnMigrad.h>
#include <Minuit2/MnMinos.h>
#include <Minuit2/MnContours.h>
#include <Minuit2/MnPlot.h>

using namespace ROOT::Minuit2;
using namespace std;

// This function will create a stats box for the x,y,z residuals of a TGraph
// Graphstats(number_of_points, array_x_residuals, array_y_residuals,
array_z_residuals)

TPaveText* graphstats(int npoints, double* x, double* y, double* z) {

TPaveText *pt = new TPaveText(0.19,0.69,0.57,0.87,"NDC");
string pts[3];
pts[0] = "Avg. X residual: ";
pts[1] = "Avg. Y residual: ";
pts[2] = "Avg. Z residual: ";
double** v = new double* [3];
v[0] = x; v[1] = y; v[2] = z;

for(int i=0; i<3; i++) {
ostringstream mean,rms;
mean << fixed << setprecision(4) << Mean(npoints,v[i]);
rms << fixed << setprecision(4) << RMS(npoints,v[i]);
pts[i] = pts[i] + mean.str() + " +/- " + rms.str() + " cm";
pt->AddText(pts[i].data());
pt->SetBorderSize(3);

}

return pt;

} // end TPaveText statistics box

// Some marker styles - 20,21,22,31,33,34
int mstyle(int c) {

if(c%6==0) return 20;
else if(c%6==1) return 21;
else if(c%6==2) return 22;
else if(c%6==3) return 31;
else if(c%6==4) return 33;
else if(c%6==5) return 34;
else return 20;

}

// Some colors
int mcolor(int c) {

if(c%6==0) return 632; // kRed
else if(c%6==1) return 418; // kGreen+2
else if(c%6==2) return 600; // kBlue
else if(c%6==3) return 807; // kOrange+7
else if(c%6==4) return 617; // kMagenta+1
else if(c%6==5) return 870; // kAzure+10
else return 1;

}

// ******************************************* //
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// *********** Main program ****************** //
// ******************************************* //

int main (int argc, char* argv[]) {

cerr << endl;

if(argc != 4) {
cerr << "Usage: Position_Solve Parameters.txt Pixels_P12345.txt 3
d_coords.txt (if known)" << endl;

cerr << endl;
return -1;
}

string parname = argv[1]; // File containing rows of camera parameters
string pxname = argv[2]; // File containing rows of pixel positions

(TSpectrum2 output)
string coname = argv[3]; // File of 3d coordinates if known

// Open the camera parameters file
ifstream parfile;
parfile.open(parname.data());

if(!parfile) {
cerr << "...Cannot open camera parameters file" << endl;

return -3;
}

// Open the pixel position file
ifstream pxfile;
pxfile.open(pxname.data());

if(!pxfile) {
cerr << "...Cannot open pixelcoord file" << endl;

return -4;
}

cerr << "The files we are opening are:" << endl;
cerr << " " << parname << ", and " << endl;
cerr << " " << pxname << endl << endl;

// Get each file’s size and make sure they are the same
string dummy; // dummy string to hold lines from file
double dpar; // dummy parameter holder
int ncam = 0; // number of cameras used = number of lines
in parameter file

int npar = 0; // number of parameters in a line (or in the
model)

int totalpar = 0; // total parameters in file, used as a check
I suppose

vector<double> Params; // Camera parameters, npar*
ncam

// Read in the number of lines in parameter file, and the parameters as
well

// can use is.str() to view contents of istringstream object, or view the
components separately

while(getline(parfile,dummy)) {
++ncam;
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istringstream is(dummy);
while(is >> dpar) {

Params.push_back(dpar);
++totalpar;
if(ncam == 1) ++npar;

}
}
cerr << "npar = " << npar << endl;

int pxsize = 0; // pixel file size
vector<TVector2> Pixels; // Pixel coords[ n_cam *
n_points ]

double xdum,ydum; // dummy x,y pixel
coordinates

TVector2 pxdum; // dummy TVector2

// Input all the 2d pixel coords to the Pixels vector
// This will contain ncam*npoints entries, i.e. 24 lines for all 6 cameras

and 4 points
// Should be structured: CameraP coords, Camera1 coords, etc.

while(getline(pxfile,dummy)) {
++pxsize;
istringstream is(dummy);
is >> xdum >> ydum;
pxdum.Set(xdum,ydum);
Pixels.push_back(pxdum);

}

int npoints = pxsize/ncam; // number of points
used in the fit

cerr << " Our dear parameters: " << endl;
for(int i=0; i<totalpar; i++) {

cerr << Params[i] << " ";
if((i+1)%npar==0)

cerr << endl;
}
cerr << endl;

cerr << "ncam = " << ncam << " and npoints = " << npoints << endl;

cerr << "Parameter file has " << ncam << " lines" << endl;
cerr << "Pixel file has " << pxsize << " entries for " << npoints << "
point(s)" << endl;

if(pxsize%ncam != 0) {
cerr << "Pixel file and parameter file don’t add up! Remainder of "
<< pxsize%ncam << endl;

cerr << "Exiting.... try again, foo" << endl;
return -1;

}

if(totalpar%ncam != 0) {
cerr << "Parameter file and number of cameras doesn’t add up!
Remainder of " << npar%ncam << endl;

cerr << "Exiting.... try again, foo" << endl;
return -1;

}
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cerr << "npar = " << npar << endl;

// We also read in the 3d values so that we can compare them later
int n3d = 0; // number of entries in 3d
file

vector<double> Realpos; // actual 3d positions from
file

ifstream cofile;
cofile.open(coname.data());
while(getline(cofile,dummy)) {

++n3d;
istringstream is(dummy);
while(is >> dpar)

Realpos.push_back(dpar);
}

// Return sizes if you are interested
cerr << "Params.size() = " << Params.size() << endl;
cerr << "Pixels.size() = " << Pixels.size() << endl;
cerr << "Realpos.size() = " << Realpos.size() << endl;
cerr << endl;

TApplication *app = new TApplication("Viewer", &argc, argv);
TCanvas *c2 = new TCanvas("c2", "Viewer", 100, 100, 1600, 900); //
our 3d viewer

draw_shallowend(c2); // draw shallow end
in 3D on chosen canvas

// We need to make a loop here that will select a set of 6 (x,y) locations
and send

// them to a function that will triangulate the point off of which they
are based.

vector<double> Pos; // This will store the positions
from each triangulation

gErrorIgnoreLevel = kFatal; // silences Minuit2 output

TGraph** gcam = new TGraph* [ncam]; // One graph for each camera’s pixel
residuals, all-camera fit

TGraph** gres = new TGraph* [3]; // One graph for each dimension, all
-camera fit

TGraph** gres5 = new TGraph* [ncam*3]; // One graph for each
dimension * each camera in 5 camera fits

for(int i=0; i<ncam; i++)
gcam[i] = new TGraph(npoints);

for(int i=0; i<3; i++)
gres[i] = new TGraph(npoints);

for(int i=0; i<ncam*3; i++)
gres5[i] = new TGraph(npoints);

double f5min = 1e9; // global variable for highest point
in 5 cam graphs

double f5max = -1e9; // global variable for lowest point
in 5 cam graphs

for(int k=0; k<npoints; k++) {
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// First we create a subset of the total Pixels vector to isolate
one set with ’ncam’ values

vector<TVector2> Pixcopy;
Pixcopy.clear();
for(int i=0;i<ncam;i++) {

Pixcopy.push_back(Pixels[(i*npoints)+k]);
}

// Initial starting parameters - X,Y,Z position of object
double p[] = {100,500,100};

MnUserParameters upar;
// name, initial value, error;
upar.Add("X", p[0], 0.1);
upar.Add("Y", p[1], 0.1);
upar.Add("Z", p[2], 0.1);

TriangFCN func(Params,Pixcopy); // Triang(vector<double>,
vector<TVector2>)

MnMigrad migrad(func, upar); // migrad minimizer(
function, user parameters )

FunctionMinimum min = migrad(); // minimize

for(int i=0; i<3; i++)
Pos.push_back(min.UserState().Value(i)); //
store the results

vector<double> pos (Pos.begin()+k*3,Pos.begin()+(k+1)*3); //
vector of this result

Triang Result(Params,Pixcopy,pos);

double res = Result.ResidualSum();
double* xcalc = new double [ncam]; // calculated x-
pixel point for a camera

double* ycalc = new double [ncam]; // calculated y-
pixel point for a camera

double* xres = new double [ncam]; // xcalc-xpic
double* yres = new double [ncam]; // xcalc-xpic

for(int i=0; i<ncam; i++) {
xcalc[i] = Result.Xcalc()[i];
ycalc[i] = Result.Ycalc()[i];
xres[i] = Result.Xres()[i];
yres[i] = Result.Yres()[i];

}

for(int i=0; i<ncam; i++) {
gcam[i]->SetPoint(k,Result.Xres()[i],Result.Yres()[i]);

}

// Fill the graphs of X,Y, and Z residuals
for(int i=0; i<3; i++)

gres[i]->SetPoint(k,k,pos[i]-Realpos[k*3+i]);

// Draw the real position from the 3d.txt file
draw_marker(c2,Realpos[k*3],Realpos[k*3+1],Realpos[k*3+2],4);
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draw_line(c2,Realpos[k*3],Realpos[k*3+1],Realpos[k*3+2],Realpos[k
*3],Realpos[k*3+1],flht(Realpos[k*3+1]));

// Draw the points we solved for
draw_marker(c2,pos[0],pos[1],pos[2],2);
draw_line(c2,pos[0],pos[1],pos[2],pos[0],pos[1],flht(pos[1]));

delete xcalc;
delete ycalc;
delete xres;
delete yres;

cerr << k << "... ";

// Another loop where we exlude one camera and repeat the test
for(int m=0; m<ncam; m++) {

vector<TVector2> Pixels5 (Pixcopy); // Copy of
pixel coords

vector<double> Params5 (Params); // Copy of
camera parameters, npar*ncam

// Need to remove a line from Pixels and Params in order to
exclude a camera

Pixels5.erase (Pixels5.begin()+m);
Params5.erase (Params5.begin()+m*npar, Params5.begin()+(m+1)
*npar);

TriangFCN func(Params5, Pixels5);
MnMigrad migrad(func, upar); // function, user
parameters

FunctionMinimum min5 = migrad();

vector<double> pos5;
pos5.clear();
for(int i=0; i<3; i++)

pos5.push_back(min5.UserState().Value(i)); //
store the resulting positions

// Fill the graph of X,Y,Z residuals for each of the 5-
camera fits

for(int i=0; i<3; i++) {
gres5[m*3+i]->SetPoint(k,k,pos5[i]-Realpos[k*3+i]);
// record if a new fmin or fmax was exceeded
if((pos5[i]-Realpos[k*3+i]) > f5max)

f5max = pos5[i]-Realpos[k*3+i];
if((pos5[i]-Realpos[k*3+i]) < f5min)

f5min = pos5[i]-Realpos[k*3+i];
}

} // end short m for-loop

} // end longer k for-loop

// *** Draw the multigraph
{
MyThesisStyle(); // This sets the graph display style

- all white, more formal
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TCanvas *cres1 = new TCanvas("cres1", "Pixel Residuals for Each Camera"
,100,50,600,500); // px residuals, all 6

TCanvas *cres2 = new TCanvas("cres2", "cm Residuals for Each Camera"
,700,50,600,500); // cm residuals, all 6

TMultiGraph *mg = new TMultiGraph(); // store the 2d
camera-specific residuals

TMultiGraph *mgres = new TMultiGraph(); // store the 3d
residuals

for(int i=0; i<ncam; i++) {
gcam[i]->SetMarkerColor(mcolor(i));
gcam[i]->SetMarkerStyle(mstyle(i));

// gcam[i]->SetFillColor(424); // defines box color
in TLegend

// gcam[i]->SetFillStyle(3003); // box style in
TLegend - sparse dots

ostringstream os;
os << i;
string gname = "Camera " + os.str();
gcam[i]->SetTitle(gname.data());
mg->Add(gcam[i]);

}

cres1->cd();
gPad->SetGrid(); // gPad = pointer to current pad
mg->Draw("AP");
mg->SetTitle("Residuals for Each Camera");
mg->GetXaxis()->SetTitle("x residual (pixels)");
mg->GetYaxis()->SetTitle("y residual (pixels)");

TLegend *legr = new TLegend(0.20,0.65,0.45,0.88);
for(int i=0; i<ncam; i++)

legr->AddEntry(gcam[i],gcam[i]->GetTitle(),"pl");
legr->SetMargin(0.4);
legr->Draw();

for(int i=0; i<3; i++) {
gres[i]->SetMarkerColor(mcolor(i));
gres[i]->SetMarkerStyle(mstyle(i));
mgres->Add(gres[i]);

}
gres[0]->SetTitle("X residual");
gres[1]->SetTitle("Y residual");
gres[2]->SetTitle("Z residual");

cres2->cd();
gPad->SetGridy(); // gPad = pointer to current pad
gPad->SetTicky();
mgres->Draw("APL");
mgres->SetTitle("Calculated Position Residuals");
mgres->GetXaxis()->SetTitle("Point number");
mgres->GetYaxis()->SetTitle("Residual in position (cm)");
double fmin,fmax; // min/max values on axis,
so that they can be shifted down

fmin = mgres->GetYaxis()->GetXmin();
fmax = mgres->GetYaxis()->GetXmax();
mgres->GetYaxis()->SetRangeUser(fmin, (fmax - 0.3*fmin)/0.7);
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// change this to build a legend

TLegend *leg = new TLegend(0.61,0.69,0.88,0.87);
for(int i=0; i<3; i++)

leg->AddEntry(gres[i],gres[i]->GetTitle(),"pl");
leg->SetMargin(0.4);
leg->Draw();

// graphstats(npoints, x_array, y_array, z_array)
graphstats( npoints, gres[0]->GetY(), gres[1]->GetY(), gres[2]->GetY() )->
Draw();

} // end create main multigraph

/************************************************************/

{ // begin create 5 camera multigraphs

TCanvas *cress = new TCanvas("cress", "cm residuals for a single camera"
,1000,50,600,500); // cm residuals, single graph to duplicate

TCanvas *cres5 = new TCanvas("cres5", "Residual for Each Camera, minus one
",100,100,1600,900);

cres5->Divide(3,2);
TMultiGraph** mg5 = new TMultiGraph* [ncam];
for(int i=0; i<ncam; i++)

mg5[i] = new TMultiGraph();

int chosen_cam = 2;
for(int i=0; i<ncam; i++) {

for(int j=0; j<3; j++) {
gres5[i*3+j]->SetMarkerColor(mcolor(j));
gres5[i*3+j]->SetMarkerStyle(mstyle(j));
gres5[i*3+j]->SetFillColor(424); //
defines box color in TLegend

gres5[i*3+j]->SetFillStyle(3003); //
box style in TLegend - sparse dots

mg5[i]->Add(gres5[i*3+j]);
}

gres5[i*3]->SetTitle("X residual");
gres5[i*3+1]->SetTitle("Y residual");
gres5[i*3+2]->SetTitle("Z residual");

// do some ostringstream magic here
ostringstream os, oss;
os << i;
oss << i+1;
string rtitle = "Calculated Position Residuals, minus Camera " + os.
str();

string pname = cres5->GetName();
pname += "_" + oss.str();

TPad *cpad = (TPad*) cres5->GetListOfPrimitives()->FindObject(pname.
data());

cpad->cd();
cpad->SetGridy(); // gPad = pointer to current pad
cpad->SetTicky();
mg5[i]->Draw("APL");
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mg5[i]->SetTitle(rtitle.data());
mg5[i]->GetXaxis()->SetTitle("Point number");
mg5[i]->GetYaxis()->SetTitle("Residual in position (cm)");
mg5[i]->GetYaxis()->SetRangeUser(f5min,(f5max-0.3*f5min)/0.7);

TLegend *leg = new TLegend(0.61,0.69,0.88,0.87);
for(int n=0; n<3; n++)

leg->AddEntry(gres5[i*3+n],gres5[i*3+n]->GetTitle(),"pl");
leg->SetMargin(0.4);
leg->Draw();

// draw an extra graph on a separate canvas if this is the chosen
graph

if(i == chosen_cam) {
cress->cd();
cress->SetGridy();
cress->SetTicky();\
TMultiGraph *mg5copy(mg5[i]); // create a copy so we can edit
RangeUser

mg5copy->GetYaxis()->SetRangeUser(-1,1.5);
mg5copy->Draw("APL");
leg->Draw();
}

// draw the custom stats box
graphstats( npoints, gres5[i*3]->GetY(), gres5[i*3+1]->GetY(), gres5
[i*3+2]->GetY() )->Draw();

} // end of ncam-loop
} // end create 5 camera multigraphs

// ************************************************************
// ******* Draw stuff *****************************************
// ************************************************************

// draw_grid(TCanvas, x1, x2, y1, y2, z1, z2, nlinesx, nlinesy, color) -
no style

// draw_line(TCanvas, x1, y1, z1, x2, y2, z2, color, style)
// draw_vertices(TCanvas, x, y, z, phi, theta, psi, length, color)

// Draw the x,y,z axes for each camera’s internal coordinate system
// draw_vertices(TCanvas, X0, Y0, Z0, phi, theta, psi, magnitude = 1,
color = 2)

for(int i=0; i<ncam; i++) {
draw_vertices(c2,Params[i*npar],Params[i*npar+1],Params[i*npar+2],
Params[i*npar+3],Params[i*npar+4],Params[i*npar+5],50);

draw_line(c2,Params[i*npar],Params[i*npar+1],Params[i*npar+2],Params
[i*npar],Params[i*npar+1],flht(Params[i*npar+1]),1,2);

}

// Draw the superior coordinate system axes
draw_vertices(c2,0,0,0,0,0,0,100,1);
draw_line(c2,0,0,0,0,0,flht(0),1,2);

TView *view = TView::CreateView(1); // you need this
view->SetRange(-200,0,0,300,500,200);
view->ShowAxis();
TAxis3D *axis = TAxis3D::GetPadAxis();
axis->SetLabelColor(kBlack);
axis->SetAxisColor(kBlack);
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/*
// Draw the actual position
draw_marker(c2,realx[0],realx[1],realx[2],3);
draw_line(c2,realx[0],realx[1],realx[2],realx[0],realx[1],flht(realx[1]));

// Draw the other points from solving 5 at a time
for(int i=0; i<ncam; i++) {

draw_marker(c2,result5[i][0],result5[i][1],result5[i][2],4);
draw_line(c2,result5[i][0],result5[i][1],result5[i][2],result5[i
][0],result5[i][1],flht(result5[i][1]));

}
*/

app->Run();

} // end of main()
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B.5 slope_sort.cpp

// Zachary Petriw
// Based on corner_sort.cpp from May 31, 2011

// slope_sort.cpp

// Adjustments made on Aug 26, 2011 - allows use of slope to find next point

// Works like corner_sort, looking for the lowest x+y sum to find the bottom
-

// left corner, but it also uses the slope between points n and n-1 to
choose

// a suitable n+1 y-value. Once it hits the end of the row, the slope is
reset

// and it starts again. The value "exclusion_width" will therefore only be
// critical for finding the correct 2nd point in a row and setting up a
// suitable slope. It will no longer be responsble for finding every point
// after the 1st in a row.

// To be used in conjunction with with the other camera calibration software
.

// Usage:
// ./slope_sort.cpp file.txt rowsize exclusion_width ytolerance
stop_and_draw

#include <string>
#include <vector>
#include <iostream>
#include <fstream>
#include <sstream>
#include <math.h>
#include "TMath.h"
#include "TApplication.h"
#include "TCanvas.h"
#include "TGraph.h"
#include "TImage.h"
#include "TASImage.h"
#include "TMarker.h"
#include "TPolyMarker.h"
#include "TROOT.h"
#include "TColor.h"
#include "TBox.h"

using namespace std;
using namespace TMath;

int main(int argc, char* argv[]) {

if(argc != 6) {
cout << "Usage: ./slope_sort.c file.txt rowsize x_exclusion_width y-
tolerance stop_and_draw " << endl;

return -1;
}

string fname = argv[1]; // Name of file containing x,y pairs
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int rowsize = atoi(argv[2]); // Rowsize, for sorting purposes
double exc = atof(argv[3]); // Size of x-exclusion range
double ytol = atof(argv[4]); // y-tolerance: should take values
of about 1-5 pixels, but not 30

int stop = atoi(argv[5]); // Stop and draw after this many
iterations

// Display things
TApplication *graphwin = new TApplication("Graph", &argc, argv);

// Check that the input is actually a .txt file
size_t check;
check = fname.find_last_of("."); // find where the .txt or .csv
extension is

string exten (fname, check+1, 3); // turn the extension into a string

if((exten != "txt") && (exten != "csv")) {
cout << "You need to input a .txt or .csv file!" << endl;
cout << "Stop trying to break things." << endl;

return -2;
}

cout << endl << "The file you are trying to open is = " << fname << endl;

// Open the file
ifstream infile;
infile.open(fname.data(), ios::in);

if(!infile) {
cout << "...Cannot open file" << endl;
return 1;

}

// Get file size before you store the values
Int_t fsize = 0; // Number of x,y pairs in file
string dummy; // dummy string to hold a line from
the file

// Read in each line
while(getline(infile,dummy)) {

++fsize;
}

// Reset eof bit so that tellg() and seekg() will actually work
// If the eof bit remains at 1, seekg() and tellg() won’t work properly!!!
infile.clear();

double* xval = new double [fsize]; // Array of x values
double* yval = new double [fsize]; // Array of y values

// Read the file and store the values
infile.seekg(0, ios::beg); // Reset counter back to
beginning

infile.precision(9);
cout.precision(9);
for(Int_t i=0; i<fsize; i++) {

infile >> xval[i] >> yval[i]; // Read in the values
}
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// Stick the points into vectors
// This will allow points to be removed as they are sorted out
vector<double> xvec (xval, xval + fsize);
vector<double> yvec (yval, yval + fsize);

// Debugging canvas
TCanvas *cdebug = new TCanvas("cdebug","cdebug",100,100,1200,850);

// To sort, we need to first find the bottom left corner by
// summing x and y and finding the minimum value. Then we move
// across to the left until we have found npoints == rowsize,
// and reset to the left.
double* sortxval = new double [fsize]; // Sorted x coords
double* sortyval = new double [fsize]; // Sorted y coords

double tempsum; // to be compared against xysum
double leftlim; // left x-limit of searchable area
double prevd; // previous distance between last
point and current point

double currd; // current distance between last
point and current point

int idx; // index of current lowest sum

// Made functional Aug 26, 2011.
// This variable will place a tolerance on the next y-value that can
// be accepted. The x-value already has a tolerance that it must be
// larger than the previous x-value (unless we are at the end of a row)

double slope; // (y2 - y1)/(x2 - x1)
double dy,dx; // (y2 - y1), (x2 - x1)
double yhi; // slope*(xn+1 - xn) + ytol
double ylo; // slope*(xn+1 - xn) - ytol
double ytols; // ytol scaled by current distance:
ytol*currd

// Sort through one row at a time
for(int i=0; i<(fsize/rowsize); i++) {

leftlim = -9999; // Reset the searchable area
for(int j=0; j<rowsize; j++) { // Sort through a single row

// it’s over 9000!!one1
double xysum = 9001; // current lowest x,y sum
idx = 9999; // resets value, can be used

to debug
prevd = 99998; // resets previous distance
to something large for a new row

// Find the bottom left corner of available points
// Sum over current vector size

if(j>1) { // Using the slope condition for points 3
and up

dy = sortyval[j + i*rowsize -1] - sortyval[j + i*rowsize
-2]; // y2 - y1

dx = sortxval[j + i*rowsize -1] - sortxval[j + i*rowsize
-2]; // x2 - x1

slope = dy/dx;
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cout << "slope for (" << i << "," << j << ") = " << slope <<
endl;

// Choose an (x,y) pair from the remaining pairs for examination
for(unsigned int k=0; k<xvec.size(); k++) {

currd = sqrt(pow(xvec[k] - sortxval[j+i*rowsize-1],2) + pow(yvec[k
] - sortyval[j+i*rowsize-1],2));

if(currd < prevd) {

// Check that it’s to the right of the previous point
if(xvec[k] > leftlim) {

// Check that it passes the slope condition
ytols = currd*ytol;
yhi = sortyval[j+i*rowsize -1] + slope*(xvec[k]-sortxval[j+i
*rowsize -1]) + ytols;

ylo = sortyval[j+i*rowsize -1] + slope*(xvec[k]-sortxval[j+i
*rowsize -1]) - ytols;

if((yvec[k] < yhi) && (yvec[k] > ylo)) {

prevd = currd; // Store the lowest distance so far
idx = k; // Store the index of the lowest sum
} // end if &&

} // end if xvec[k] > leftlim
} // end if currd < prev
} // end for k loop
} // end for point 2 and up

else { // No slope condition for points 1 and 2 in
row

// if we are on point j=0 or j=1, we can’t get a slope yet from two
previous points
for(unsigned int k=0; k<xvec.size(); k++) {

tempsum = 0.7*xvec[k] + yvec[k];// Oct.25/11 - reducing x-
weight of corner, can remove later

if((xvec[k] > leftlim) && (tempsum < xysum)) {
xysum = tempsum; // Store the lowest sum
idx = k; // Store the index of the
lowest sum

} // end if &&
} // end for k loop

} // end for points 0 and 1

// Once the corner point is found, record it and remove it from this
vector

sortxval[j + i*rowsize] = xvec[idx]; // record
sortyval[j + i*rowsize] = yvec[idx];
xvec.erase(xvec.begin() + idx); // remove
yvec.erase(yvec.begin() + idx);

// Shift the searchable area to the right of the last found point
leftlim = sortxval[j + i*rowsize] +exc;

// Make and draw a graph a million goddamn times to find bugs
if(j+i*rowsize == stop) {
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TGraph *gde = new TGraph(j+i*rowsize+1,sortxval,sortyval);
ostringstream oss;
oss << stop;
string title = "Stop and draw at point " + oss.str();
cdebug->cd();
gde->SetTitle(title.data());
gde->SetMarkerStyle(20);
gde->SetMarkerColor(4);
gde->Draw("APL");
graphwin->Run();

} // End if rowsize
} // End of row
} // End of all points

// Modify original file name to get a new file name, to which we will
write

size_t pos;
pos = fname.find_last_of("."); // find where the .txt or .csv
extension is

string writename = fname.insert(pos, "_ORDERED");
cout << "my write-file will be: " << writename << endl;

// Write to a new file
ofstream writefile (writename.data());
writefile.precision(9);
if (writefile.is_open()) { // and it should be...

for(Int_t i=0; i<fsize; i++) {
writefile << sortxval[i] << " " << sortyval[i] << endl;

}
writefile.close();

}
else cout << "Unable to open file" << endl; // which would be
unfortunate

TCanvas *c3 = new TCanvas("c3", "c3", 100, 10, 1600, 1000);
TCanvas *c2 = new TCanvas("c2", "c2", 200, 10, 1200, 1000);
TCanvas *c2sep = new TCanvas("c2sep", "c2sep", 200, 10, 1200, 700); //
for thesis presentation

c2->Divide(1,2);
TGraph *g1 = new TGraph(fsize, xval, yval);
TGraph *g2 = new TGraph(fsize, sortxval, sortyval);
ostringstream os;
os << fsize;
string title = fname + " - " + os.str() + " sorted points";
g1->SetTitle("Unsorted Points");
g2->SetTitle(title.data());
g1->SetMarkerStyle(20);
g1->SetMarkerColor(2);
g2->SetMarkerStyle(20);
g2->SetMarkerColor(2);

// Draw the graphs
c2->cd(1); g1->Draw("APL");
c2->cd(2); g2->Draw("APL");
c2sep->cd(); g2->Draw("APL");

// A box to show where the algorithm cannot look for points after the
first corner
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TBox *box = new TBox(sortxval[0],sortyval[0],sortxval[0]+exc,sortyval
[0]-10);

box->SetFillColor(4);
box->Draw("same");

// Import the original picture and overlay the points
string picname = fname;
picname.erase(pos);
picname.append(".png");
cout << "picname = " << picname << endl;

TImage *img = TImage::Open(picname.data());
if (!img) {

cout << "Could not open the image... bye bye" << endl;
return -3;

}

c3->cd();
img->Draw();
for(Int_t i=0; i<fsize; i++) {

img->PutPixel(sortxval[i],img->GetHeight()-sortyval[i],"#ff00ff");
img->PutPixel(xval[i],img->GetHeight()-yval[i],"#008080");

}
img->Draw();
graphwin->Run();

return 0;
}
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B.6 DrawFunc.h

// Zachary Petriw
// Dec. 22, 2011

// DrawFunc.h

// This header file contains useful drawing functions for drawing dots,
// lines, grids, vertices and other things in 3D plots. Good for drawing
// the swimming pool when doing fits.

// Originally written in Intrinsics_Solve_decouple.cpp

#include "TVector2.h"
#include "TVector3.h"
#include "TRotation.h"
#include "TMath.h"
#include "TPolyMarker.h"
#include "TMarker.h"
#include "TArrow.h"
#include "TPolyMarker3D.h"
#include "TPolyLine3D.h"
#include "TStyle.h"
#include "TCanvas.h"

// This function will draw the x,y,z axes of each camera so that we can see
// where it is looking. It will make a TVector3 for each axis, and rotate
// each one by phi, theta and psi (Euler angles). It will then draw it on
our

// canvas of choice.

void draw_vertices(TCanvas* c, double x, double y, double z, double phi = 0,
double theta = 0, double psi = 0, double mag = 1, int color = 2) {

c->cd();
// Unit x,y,z axes in 3-space
TVector3* vec = new TVector3 [3];
vec[0].SetXYZ(1,0,0); // x-axis
vec[1].SetXYZ(0,1,0); // y-axis
vec[2].SetXYZ(0,0,1); // z-axis

// Rotate the vector with Euler angles
TRotation a,b;
a.SetXEulerAngles(-phi,-theta,-psi);
b = a.Inverse(); // read about TRotation class to see why
this is done

for(int i=0; i<3; i++)
vec[i].Transform(b);

TPolyLine3D** ax = new TPolyLine3D* [3];
for(int i=0; i<3; i++) {

vec[i].SetMag(mag);
ax[i] = new TPolyLine3D(2);
ax[i]->SetPoint(0,x,y,z); //
start point

ax[i]->SetPoint(1, x+vec[i].X(), y+vec[i].Y(), z+vec[i].Z()); //
end point
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ax[i]->SetLineColor(color);
ax[i]->SetLineWidth(double(i)*2);
ax[i]->Draw();

}
} // end of draw_vertices

void draw_marker(TCanvas* c, double x, double y, double z, int color = 2) {
c->cd();
// Draw a polymarker showing where the object is
double* obj = new double [3];
obj[0] = x;
obj[1] = y;
obj[2] = z;

TPolyMarker3D *polyobj = new TPolyMarker3D(1,obj,20);
polyobj->SetMarkerColor(color); // red color by
default

polyobj->Draw();
} // end of draw_marker

void draw_line(TCanvas* c, double x1, double y1, double z1, double x2,
double y2, double z2, int color = 1, int style = 1) {
c->cd();
// Draw a line from x1,y1,z1 to x2,y2,z2
TPolyLine3D* line = new TPolyLine3D(2);
line->SetPoint(0,x1,y1,z1);
line->SetPoint(1,x2,y2,z2);
line->SetLineColor(color); // ROOT color
line->SetLineStyle(style); // ROOT line style
line->Draw();
} // end of draw_line
// A function to draw a grid defined by two opposite corners, and the amount

of lines to use in x- and y-directions

void draw_grid(TCanvas *c, double x1, double x2, double y1, double y2,
double z1, double z2, int xlines, int ylines, int color = 38, int style =
2) {

double dx = (x2-x1)/xlines; // x-increment of grid
double dy = (y2-y1)/ylines; // y-increment of grid
double dz = (z2-z1)/ylines; // z-increment of grid

for(double i=0; i<xlines+1; i++)
draw_line(c,x1+i*dx,y1,z1,x1+i*dx,y2,z2,color,style); // parallel
to y-axis

for(double i=0; i<ylines+1; i++)
draw_line(c,x1,y1+i*dy,z1+i*dz,x2,y1+i*dy,z1+i*dz,color,style);
// parallel to x-axis

} // end of draw_grid

// Draws a grid in a perpendicular orientation compared to the first grid
type

void draw_grid2(TCanvas *c, double x1, double x2, double y1, double y2,
double z1, double z2, int xlines, int ylines, int color = 38, int style =
2) {

double dx = (x2-x1)/xlines; // x-increment of grid
double dy = (y2-y1)/ylines; // y-increment of grid
double dz = (z2-z1)/xlines; // z-increment of grid
for(double i=0; i<xlines+1; i++)
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draw_line(c,x1+i*dx,y1,z1+i*dz,x1+i*dx,y2,z1+i*dz,color,style); //
parallel to y-axis

for(double i=0; i<ylines+1; i++)
draw_line(c,x1,y1+i*dy,z1,x2,y1+i*dy,z2,color,style); //
parallel to x-axis

} // end of draw_grid

// Calculates floor height (flht) of the shallow end of the swimming pool at
a given y-value

double flht(double y) {
return -11.75 + y*0.02152;
}

// Draw the shallow end of the swimming pool using the above functions
void draw_shallowend (TCanvas *c)
{
// draw_grid(canvas,x1,x2,y1,y2,z1,z2,n_xlines,n_ylines,color,style)

// Draw the yellow and green lines for reference
draw_grid(c,-400,500,427.0,452.4,flht(427.0),flht(452.4),177,5,5,1);

// long yellow line

draw_grid(c,0,132.2,213.5,238.9,flht(213.5),flht(238.9),26,5,5,1);
// middle x yellow line - big y

draw_grid(c,-203.3,-71.2,213.5,238.9,flht(213.5),flht(238.9),26,5,5,1);
// neg x yellow line - big y

draw_grid(c,208.4,340.6,213.5,238.9,flht(213.5),flht(238.9),26,5,5,1);
// pos x yellow line - big y

draw_grid(c,0,132.2,0,25.4,flht(213.5),flht(238.9),26,5,5,1); //
middle x yellow line - low y

draw_grid(c,-203.3,-71.2,0,25.4,flht(213.5),flht(238.9),26,5,5,1); //
neg x yellow line - low y

draw_grid(c,208.4,340.6,0,25.4,flht(213.5),flht(238.9),26,5,5,1); //
pos x yellow line - low y

draw_grid(c,122.0,218.6,325.3,350.7,flht(325.3),flht(350.7),19,5,8,1);
// pos green top line

draw_grid(c,-84.9,11.7,325.3,350.7,flht(325.3),flht(350.7),19,5,8,1);
// neg green top line

draw_grid(c,157.6,183.0,0,325.3,flht(0),flht(325.3),5,64,8,1);
// pos green long line

draw_grid(c,-52.4,-23.9,0,325.3,flht(0),flht(325.3),5,64,8,1);
// neg green long line

// Draw a grids for the shallow end floor and wall
double yshl = 545.7;
draw_grid(c,-400,500,0,540,flht(0),flht(540),45,27,17); // shallow
end floor (minor)

draw_grid(c,-400,500,0,500,flht(0),flht(500),9,5); // shallow
end floor (major)

draw_grid(c,-400,500,yshl,yshl,0,200,45,10,17); // shallow
end wall (minor)

draw_grid(c,-400,500,yshl,yshl,0,200,9,2); // shallow
end wall (major)

// Draw the superior coordinate system axes
// draw_vertices(c,0,0,0,0,0,0,100/*mag*/,1/*color*/);
// draw_line(c,0,0,0,0,0,flht(0),1,2);
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draw_marker(c,0,0,0,1);
}
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B.7 DrawResiduals.h

// Zachary Petriw
// Dec 31, 2011 - last day of the year to write code

// DrawResiduals.h

// This header file will draw residuals plots given arrays
// of x and y residuals.

#include "TMath.h"
#include "TH2.h"
#include "TStyle.h"
#include "TGraph.h"
#include "TMultiGraph.h"
#include "TFile.h"
#include <iostream>
#include <sstream>
#include <string>
#include <iomanip>
#include "gStyles.h" // my custom paint job for histograms and
canvases

using namespace TMath;
using namespace std;

// Returns the mainfit multigraph
TMultiGraph* gmain (int fsize, double *xcalc, double *ycalc, double *xpic,
double *ypic)

{
TMultiGraph *mg = new TMultiGraph("mg","");
TGraph *gcalc = new TGraph(fsize,xcalc,ycalc);
TGraph *gpic = new TGraph(fsize,xpic,ypic);

gcalc->SetMarkerColor(2);
gcalc->SetMarkerStyle(20);
gcalc->SetMarkerSize(0.5);
gpic->SetMarkerColor(4);
gpic->SetMarkerStyle(20);
gpic->SetMarkerSize(0.5);
mg->Add(gpic);
mg->Add(gcalc);

mg->Draw("AP");
mg->SetTitle("Picture locations (blue) vs. Fitted locations (red)");
mg->GetXaxis()->SetTitle("x (pixels)");
mg->GetYaxis()->SetTitle("y (pixels)");
mg->Draw("AP");

return mg;
}

void draw_residuals (TCanvas *c, int fsize, double *xcalc, double *ycalc,
double *xres, double *yres, double *xpic, double *ypic)

{
MyThesisStyle2(); // load my custom style
double* xres2 = new double [fsize]; // (xcalc-xpic)ˆ2
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double* yres2 = new double [fsize]; // (ycalc-ypic)ˆ2
double* rres = new double [fsize]; // (xcalc-xpic)ˆ2 + (ycalc-
ypic)ˆ2

double totalres = 0; // total residual before
normalization

double yrestot = 0; // total y-residual before
double xrestot = 0; // total x-residual before

// Populate the residual arrays and calculate total residual values
for(int i=0; i<fsize; i++) {

xres2[i] = xres[i]*xres[i];
yres2[i] = yres[i]*yres[i];
rres[i] = xres2[i] + yres2[i];
xrestot += xres[i]*xres[i];
yrestot += yres[i]*yres[i];
totalres += xres[i]*xres[i] + yres[i]*yres[i];

}

// Set up the titles of histograms to include the total residuals they
represent

// 2 digits after decimal
ostringstream osx; osx << fixed << setprecision(3) << sqrt(xrestot/
double(fsize));

ostringstream osy; osy << fixed << setprecision(3) << sqrt(yrestot/
double(fsize));

ostringstream ost; ost << fixed << setprecision(3) << sqrt(totalres/
double(fsize));

string xtit = "X r.m.s. = "; xtit += osx.str();
string ytit = "Y r.m.s. = "; ytit += osy.str();
ytit += ", Total r.m.s. = "; ytit += ost.str();

TH2D** hres = new TH2D* [6];
int bins = 30;

int xmin = LocMin(fsize,xcalc);
int xmax = LocMax(fsize,xcalc);
int ymin = LocMin(fsize,ycalc);
int ymax = LocMax(fsize,ycalc);

double dimB[] = {xcalc[xmin]-100,xcalc[xmax]+100,ycalc[ymin]-100,ycalc[
ymax]+100};

hres[0] = new TH2D("hx",xtit.data(),bins,dimB[0],dimB[1],bins,dimB[2],dimB
[3]);

hres[1] = new TH2D("hy",ytit.data(),bins,dimB[0],dimB[1],bins,dimB[2],dimB
[3]);

hres[2] = new TH2D("hr","Total r (xpic-xcalc)ˆ2 + (ypic-ycalc)ˆ2",bins,
dimB[0],dimB[1],bins,dimB[2],dimB[3]);

hres[3] = new TH2D("hx2","X residualsˆ2 ",bins,dimB[0],dimB[1],bins,dimB
[2],dimB[3]);

hres[4] = new TH2D("hy2","Y residualsˆ2 ",bins,dimB[0],dimB[1],bins,dimB
[2],dimB[3]);

hres[5] = new TH2D("hw","Weight of bins",bins,dimB[0],dimB[1],bins,dimB
[2],dimB[3]);

for(int i=0; i<6; i++) {
hres[i]->GetXaxis()->SetTitle("x (pixels)");
hres[i]->GetYaxis()->SetTitle("y (pixels)");
hres[i]->UseCurrentStyle();
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}

hres[0]->FillN(fsize,xcalc,ycalc,xres); // Fill with x
residuals

hres[1]->FillN(fsize,xcalc,ycalc,yres); // Fill with y
residuals

hres[2]->FillN(fsize,xcalc,ycalc,rres); // Fill with xˆ2+yˆ2
residualsˆ2

hres[3]->FillN(fsize,xcalc,ycalc,xres2); // Fill with x
residualsˆ2

hres[4]->FillN(fsize,xcalc,ycalc,yres2); // Fill with y
residualsˆ2

// This records bin entries for normalization
double *ones = new double [fsize];
for(int i=0; i<fsize; i++) ones[i] = 1.;

hres[5]->FillN(fsize,xcalc,ycalc,ones);

for(int i=0; i<5; i++)
hres[i]->Divide(hres[5]);

// Note: SURF1 is a nice draw option, but hard to see the whole field of
view

TMultiGraph *mg(gmain(fsize,xcalc,ycalc,xpic,ypic));
c->Clear();
c->Divide(3,2);
c->cd(1); hres[0]->Draw("COLZ");
c->cd(2); hres[1]->Draw("COLZ");
c->cd(3); mg->Draw("AP");
cerr << "Graph name is: " << mg->GetName() << endl;
c->cd(4); hres[0]->Draw("LEGO2Z 0");
c->cd(5); hres[1]->Draw("LEGO2Z 0");
c->cd(6); hres[2]->Draw("COLZ");

// Write (append) the first three plots to a file
string dir = "˜/Desktop/Camera_work/Photos/Swimming_Pool_Test_Sept7_2011/
Analysis/Thesis_Plots/";

string fname = dir + "ResHistograms.root";
TFile *f = new TFile(fname.data(), "UPDATE");
hres[0]->Write(); cerr << "Wrote xres hist..." << endl;
hres[1]->Write(); cerr << "Wrote yres hist..." << endl;
mg->Write(); cerr << "Wrote mg..." << endl << " to " << fname <<
endl;

f->Close();
}

TH2D* reshist (int fsize, double *xcalc, double *ycalc, double *res)
{
int bins = 30;
int xmin = LocMin(fsize,xcalc);
int xmax = LocMax(fsize,xcalc);
int ymin = LocMin(fsize,ycalc);
int ymax = LocMax(fsize,ycalc);

TH2D* hresr = new TH2D();
TH2D* hresw = new TH2D();

double dim[] = {xcalc[xmin]-100,xcalc[xmax]+100,ycalc[ymin]-100,ycalc[ymax
]+100};
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hresr->SetBins(bins,dim[0],dim[1],bins,dim[2],dim[3]);
hresw->SetBins(bins,dim[0],dim[1],bins,dim[2],dim[3]);
hresr->GetXaxis()->SetTitle("x (pixels)");
hresr->GetYaxis()->SetTitle("y (pixels)");
hresr->GetYaxis()->SetTitleOffset(1.3);
hresr->SetStats(0);
hresr->FillN(fsize,xcalc,ycalc,res); // Fill with x residuals

// This records bin entries for normalization
double *ones = new double [fsize];
for(int i=0; i<fsize; i++) ones[i] = 1.;
hresw->FillN(fsize,xcalc,ycalc,ones);
hresr->Divide(hresw); // Normalize

return hresr;
}

void draw_yres (TCanvas *c, int pad, int fsize, double *xcalc, double *ycalc
, double *yres)

{
TH2D** hres = new TH2D* [2];
int bins = 30;
int xmin = LocMin(fsize,xcalc);
int xmax = LocMax(fsize,xcalc);
int ymin = LocMin(fsize,ycalc);
int ymax = LocMax(fsize,ycalc);

double dimB[] = {xcalc[xmin]-100,xcalc[xmax]+100,ycalc[ymin]-100,ycalc[
ymax]+100};

hres[0] = new TH2D("hy","Y residuals (ycalc-ypic)",bins,dimB[0],dimB[1],
bins,dimB[2],dimB[3]);

hres[1] = new TH2D("hw","Weight of bins",bins,dimB[0],dimB[1],bins,dimB
[2],dimB[3]);

for(int i=0; i<2; i++) {
hres[i]->GetXaxis()->SetTitle("x (pixels)");
hres[i]->GetYaxis()->SetTitle("y (pixels)");
hres[i]->GetYaxis()->SetTitleOffset(1.3);
hres[i]->SetStats(0);

}

hres[0]->FillN(fsize,xcalc,ycalc,yres); // Fill with y residuals

// This records bin entries for normalization
double *ones = new double [fsize];
for(int i=0; i<fsize; i++) ones[i] = 1.;

hres[1]->FillN(fsize,xcalc,ycalc,ones);

// Normalize
hres[0]->Divide(hres[1]);

// Note: SURF1 is a nice draw option, but hard to see the whole field of
view

gStyle->SetPalette(1);
c->cd(pad); hres[0]->Draw("COLZ");
}
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B.8 gStyles.h

// Zachary Petriw
// Feb. 6, 2011

// gStyles.h

// This header file contains some of the gStyle settings that I often use.
#ifndef _gStyles_H_ // This prevents the errors from
including the file more than once

#define _gStyles_H_
#include "TText.h"
#include "TString.h"
#include "TColor.h"
#include "TStyle.h"

void MyStyle() {

// graph and histogram stuff
gStyle->SetPalette(1);
gStyle->SetOptStat(1111);
gStyle->SetLineWidth(2.);
gStyle->SetTextSize(1.1);
gStyle->SetTitleSize(0.07,"");
gStyle->SetLabelSize(0.05,"xyz");
gStyle->SetTitleSize(0.06,"xyz");
gStyle->SetTitleOffset(0.9,"x");
gStyle->SetTitleOffset(1.2,"y");

// Pad size and border
gStyle->SetPadTopMargin(0.11);
gStyle->SetPadRightMargin(0.07);
gStyle->SetPadBottomMargin(0.13);
gStyle->SetPadLeftMargin(0.16);
gStyle->SetPadBorderMode(0);
gStyle->SetPadColor(38);

// the background area of a graph or hist, "inside" the pad region
gStyle->SetFrameFillColor(424);

// Canvas color and border
gStyle->SetCanvasBorderMode(0);
gStyle->SetCanvasColor(0);

// Extra axes drawn for graphs
gStyle->SetPadGridY(1);
gStyle->SetPadTickY(1);

// Legend settings
gStyle->SetLegendBorderSize(3);
} // end MyStyle()

void MyThesisStyle() {

// graph and histogram stuff
gStyle->SetPalette(1);
gStyle->SetOptStat(1111);
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gStyle->SetLineWidth(2.);
gStyle->SetTextSize(1.1);
gStyle->SetTitleSize(0.07,"");
gStyle->SetLabelSize(0.05,"xyz");
gStyle->SetTitleSize(0.06,"xyz");
gStyle->SetTitleOffset(0.9,"x");
gStyle->SetTitleOffset(1.2,"y");

// Pad size and border
gStyle->SetPadTopMargin(0.11);
gStyle->SetPadRightMargin(0.07);
gStyle->SetPadBottomMargin(0.13);
gStyle->SetPadLeftMargin(0.16);
gStyle->SetPadBorderMode(0);
gStyle->SetPadColor(0);

// the background area of a graph or hist, "inside" the pad region
gStyle->SetFrameFillColor(0);

// Canvas color and border
gStyle->SetCanvasBorderMode(0);
gStyle->SetCanvasColor(0);

// Extra axes drawn for graphs
gStyle->SetPadGridY(1);
gStyle->SetPadTickY(1);

// Legend settings
gStyle->SetLegendBorderSize(3);
}

// Same as before, but meant for DrawResidual for x- and y-residual plots
// - no horizontal guide lines
// - better right side margins
void MyThesisStyle2() {

// graph and histogram stuff
gStyle->SetPalette(1);
gStyle->SetOptStat(0);
gStyle->SetLineWidth(2.);
gStyle->SetTextSize(1.1);
gStyle->SetTitleSize(0.05,"");
gStyle->SetLabelSize(0.05,"xyz");
gStyle->SetTitleSize(0.06,"xyz");
gStyle->SetTitleOffset(0.9,"x");
gStyle->SetTitleOffset(1.2,"y");

// Pad size and border
gStyle->SetPadTopMargin(0.11);
gStyle->SetPadRightMargin(0.11);
gStyle->SetPadBottomMargin(0.13);
gStyle->SetPadLeftMargin(0.16);
gStyle->SetPadBorderMode(0);
gStyle->SetPadColor(0);

// the background area of a graph or hist, "inside" the pad region
gStyle->SetFrameFillColor(0);

// Canvas color and border
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gStyle->SetCanvasBorderMode(0);
gStyle->SetCanvasColor(0);
}
#endif
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B.9 Triang.h

// Zachary Petriw
// Jan. 31, 2012

// Triang.h

// This is a header file that will work with Triang.cpp to minimize
// the position of an object during a triangulation. It will initialize
// the variables and possibly return them if needed.

#ifndef Triang_H
#define Triang_H
#include <vector>
#include <iostream>
#include "TMath.h"
#include "TVector2.h"
#include "TVector3.h"

using namespace std;

class Triang {

private:

// inputs to object
vector<double> Params; // ncamera*npar (specific to

model)
vector<TVector2> Pixels; // ncamera
vector<double> Coords; // (X,Y,Z)

// from initialization
double X0,Y0,Z0,phi,theta,psi;
double R,xh,yh,k1,k2,k3,p1,p2,xr,yr,Rx,Ry; // original model parameters
double x0,x1,x2,x3,y0,y1,y2,y3; // polynomial parameters

vector<double> euler_elem;
vector<TVector3> rotmark; // rotated marker position,
one for each cam. coord. system

// constructed with ResidualSum()
vector<double> xcalc;
vector<double> ycalc;
vector<double> xres;
vector<double> yres;
double totalres;
int fcalls; // number of times a function was called, to

be inserted somewhere
int npar; // number of parameters used in the model

public:

// default contructor with all 3 arguments
Triang(const vector<double>& params, const vector<TVector2>& pixels,

const vector<double>& coords) :
Params(params), Pixels(pixels), Coords(coords)

{
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totalres = 0; // total residual of the fit
fcalls = 0; // incremented when a
specific function is called

npar = Params.size()/Pixels.size();

double X = Coords[0]; // x-coordinate of target triangulation
point, sup. coord. system

double Y = Coords[1]; // y-coordinate of target triangulation
point, sup. coord. system

double Z = Coords[2]; // z-coordinate of target triangulation
point, sup. coord. system

for(unsigned int i=0; i<Pixels.size(); i++) {
X0 = Params[i*npar]; // Camera x position in
superior coordinate system

Y0 = Params[i*npar+1]; // Camera y position in
superior coordinate system

Z0 = Params[i*npar+2]; // Camera z position in
superior coordinate system

phi = Params[i*npar+3]; // Camera orientation -
first Euler angle

theta = Params[i*npar+4]; // Camera orientation -
second Euler angle

psi = Params[i*npar+5]; // Camera orientation -
third Euler angle

// constructs Euler matrix elements
euler_elem.clear(); // 2-3 days to find this bug
.

euler_elem.push_back( cos(psi)*cos(phi) - cos(theta)*sin(phi)*sin(
psi) );

euler_elem.push_back( cos(psi)*sin(phi) + cos(theta)*cos(phi)*sin(
psi) );

euler_elem.push_back( sin(psi)*sin(theta) );
euler_elem.push_back( -sin(psi)*cos(phi) - cos(theta)*sin(phi)*cos(
psi) );

euler_elem.push_back( -sin(psi)*sin(phi) + cos(theta)*cos(phi)*cos(
psi) );

euler_elem.push_back( cos(psi)*sin(theta) );
euler_elem.push_back( sin(theta)*sin(phi) );
euler_elem.push_back( -sin(theta)*cos(phi) );
euler_elem.push_back( cos(theta) );

// make a vector of the target position, rotated into each camera’s
coordinate system

double Xc,Yc,Zc;
Xc = euler_elem[0]*(X-X0) + euler_elem[1]*(Y-Y0) + euler_elem[2]*(Z
-Z0);

Yc = euler_elem[3]*(X-X0) + euler_elem[4]*(Y-Y0) + euler_elem[5]*(Z
-Z0);

Zc = euler_elem[6]*(X-X0) + euler_elem[7]*(Y-Y0) + euler_elem[8]*(Z
-Z0);

TVector3 dum(Xc,Yc,Zc);
rotmark.push_back(dum);

} // end of for-loop
} // *** end of constructor

˜Triang() {}
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double ResidualSum(); // residual
calculations, main function

vector<double> GetParams() const {return Params;}
vector<TVector2> GetPixels() const {return Pixels;}
vector<double> GetCoords() const {return Coords;}
vector<double> Xcalc() const {return xcalc;}
vector<double> Ycalc() const {return ycalc;}
vector<double> Xres() const {return xres;}
vector<double> Yres() const {return yres;}
double TotalRes() const {return totalres;}
int Fcalls() {return fcalls;}

};
#endif // Triang_H
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B.10 Triang.cpp

// Zachary Petriw
// Jan. 31, 2012

// Triang.cpp

// This code contains the calculations called by TriangFCN.cpp and TriangFCN
.h.

// It is used with the triangulation code, and should allow for multiple
models

// to be used, just like the Residual/ResidualFCN functions. The model used
// will be chosen based on the size of the Params input/ number of cameras,
// or Params.size()/Pixels.size()

#include "Triang.h"
#include "TF2.h"
#include <iostream>
#include <math.h>

using namespace std;

//________________________________________________________________________
// This function figures out what model is being used and does the brunt
// of the residual calculation needed for triangulation.
double Triang::ResidualSum()
{
totalres = 0;

// cerr << "Params.size()/Pixels.size() = " << Params.size()/Pixels.size()
<< endl;

// cerr << "npar = " << npar << endl;

// model with x0,y0,x1,y1,x2,y2,x3,y3,k1,k2,k3,xr,yr
if(npar==19) {

// R removed from this part
// x = Xc, y = Yc, [0] = Zc
TF2 *fxt = new TF2("xp", "x/TMath::Abs(x)*2/TMath::Pi()*TMath::ATan(TMath
::Sqrt(xˆ2+yˆ2)/-[0])/TMath::Sqrt((y/x)ˆ2+1)", -50000, 50000, -50000,
50000);

TF2 *fyt = new TF2("yp", "y/TMath::Abs(y)*2/TMath::Pi()*TMath::ATan(TMath
::Sqrt(xˆ2+yˆ2)/-[0])/TMath::Sqrt((x/y)ˆ2+1)", -50000, 50000, -50000,
50000);

double xt,yt,xcal,ycal,r2;

xcalc.clear(); ycalc.clear();
xres.clear(); yres.clear();
for(unsigned int i=0; i<Pixels.size(); i++) {

x0 = Params[i*npar+6]; y0 = Params[i*npar+7];
x1 = Params[i*npar+8]; y1 = Params[i*npar+9];
x2 = Params[i*npar+10]; y2 = Params[i*npar+11];
x3 = Params[i*npar+12]; y3 = Params[i*npar+13];
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k1 = Params[i*npar+14]; k2 = Params[i*npar+15]; k3 =
Params[i*npar+16];

xr = Params[i*npar+17]; yr = Params[i*npar+18];

// single parameter setting
fxt->SetParameter(0,rotmark[i].Z());
fyt->SetParameter(0,rotmark[i].Z());

xt = fxt->Eval(rotmark[i].X(),rotmark[i].Y()); //
xt, or x’

yt = fyt->Eval(rotmark[i].X(),rotmark[i].Y()); //
yt, or y’

r2 = pow(xt*x1 +x0 -xr,2) + pow(yt*y1 +y0 -yr,2); //
Centered on x0,y0

xcal = x0 + x1*xt + x2*pow(xt,2) + x3*pow(xt,3) + xt*x1*(k1*r2 + k2*
r2*r2 + k3*pow(r2,3));

ycal = y0 + y1*yt + y2*pow(yt,2) + y3*pow(yt,3) + yt*y1*(k1*r2 + k2*
r2*r2 + k3*pow(r2,3));

xcalc.push_back(xcal); // calculated values
accessible

ycalc.push_back(ycal);
xres.push_back(xcal-Pixels[i].X()); // unsquared
residuals (with directionality)

yres.push_back(ycal-Pixels[i].Y());

totalres += pow(Pixels[i].X() - xcal,2) + pow(Pixels[i].Y() - ycal
,2);

} // end for
} // end if Params == 19

return totalres;

} // end of Triang::ResidualSum()
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B.11 TriangFCN.h

// Zachary Petriw
// Jan 31, 2012

// TriangFCN.h

// This header file is used in conjuction with TriangFCN.cpp and a main
// program to fit using Minuit2.

#ifndef MN_TriangFCN_H_
#define MN_TriangFCN_H_
#include "Minuit2/FCNBase.h"
#include <vector>
#include "TVector2.h"

namespace ROOT {
namespace Minuit2 {

class TriangFCN : public FCNBase {

public:
TriangFCN(const std::vector<double>& params,

const std::vector<TVector2>& pixels) :
Params(params), Pixels(pixels), theErrorDef(1.) {}

˜TriangFCN() {}

double Up() const {return theErrorDef;}
double operator()(const std::vector<double>&) const;

std::vector<double> params() const {return Params;}
std::vector<TVector2> pixels() const {return Pixels;}

void setErrorDef(double def) {theErrorDef = def;}

private:

std::vector<double> Params;
std::vector<TVector2> Pixels;
double theErrorDef;

};

} // Minuit2
} // ROOT
#endif //MN_TriangFCN_H_
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B.12 TriangFCN.cpp

// Zachary Petriw
// Jan. 30, 2012

// TriangFCN.cpp

// This program contains the operator () as required by Minuit2.
// It works with Triang.h, Triang.cpp and TriangFCN.h to return
// an (x,y,z) location for a target, the position of which is being
// minimized.

#include "TriangFCN.h"
#include "Triang.h"
#include <iostream>

namespace ROOT {
namespace Minuit2 {

double TriangFCN::operator()(const std::vector<double>& coords) const {

// create the function that will do the hard work
Triang func(Params,Pixels,coords);
return func.ResidualSum();

} // that’s it

} // Minuit2
} // ROOT
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B.13 Residual.h

// Zachary Petriw
// Dec. 20, 2011

// Residual.h

// Accompanies cpp file, Residual.cpp
// This is a header file that will do the brute calculation work for
minimization.

// It will store all the relevant variables, hopefully, and return them when
needed.

// It can be called and constructed by the main FCNBase type function that
is needed

// by MnMigrad.

#ifndef Residual_H
#define Residual_H
#include <vector>
#include <cassert>
#include "TMath.h"
#include "TVector2.h"
#include "TVector3.h"

using namespace std;

class Residual {

private:

// inputs to object
vector<TVector3> Markers; // npoints*(X,Y,Z)
vector<TVector2> Pixels; // npoints*(x_pic,y_pic)
vector<double> Params; // npar (specific to model)

// from initialization
double X0,Y0,Z0,phi,theta,psi;
double R,xh,yh,k1,k2,k3,p1,p2,xr,yr,Rx,Ry; // original model parameters
double x0,x1,x2,x3,y0,y1,y2,y3; // polynomial parameters
// double xy1,yacx,ypcx,yasy,ypsy; // additional sin/cos
parameters - they kinda suck
double yk1,yk2,yk3,yxr,yyr; // radial correction to y
double xk1,xk2,xk3,xxr,xyr; // radial correction to x
double sa,sxo,sxf,syo,syf,sdum; // sine corrections to y (
camera 2 specific)

double x1y,x2y,x3y,y1x,y2x,y3x,b1x,b1y; // more polynomial
corrections

vector<double> euler_elem;
vector<TVector3> rotmark; // rotated marker positions

// constructed with ResidualSum2()
vector<double> xcalc;
vector<double> ycalc;
vector<double> xres;
vector<double> yres;
double totalres;
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int fcalls; // number of times a function was called, to
be inserted somewhere

public:

// default constructor with all 3 arguments
Residual(const vector<TVector3>& markers, const vector<TVector2>& pixels,

const vector<double>& params) :
Markers(markers), Pixels(pixels), Params(params)

{
totalres = 0; // total residual of the fit
fcalls = 0; // incremented when the function
using it is called

assert(Markers.size() == Pixels.size());

X0 = Params[0]; // Camera x position in superior coordinate
system

Y0 = Params[1]; // Camera y position in superior coordinate
system

Z0 = Params[2]; // Camera z position in superior coordinate
system

phi = Params[3]; // Camera orientation - first Euler angle
theta = Params[4]; // Camera orientation - second Euler angle
psi = Params[5]; // Camera orientation - third Euler angle

// constructs Euler matrix elements
euler_elem.push_back( cos(psi)*cos(phi) - cos(theta)*sin(phi)*sin(psi) );
euler_elem.push_back( cos(psi)*sin(phi) + cos(theta)*cos(phi)*sin(psi) );
euler_elem.push_back( sin(psi)*sin(theta) );
euler_elem.push_back( -sin(psi)*cos(phi) - cos(theta)*sin(phi)*cos(psi) );
euler_elem.push_back( -sin(psi)*sin(phi) + cos(theta)*cos(phi)*cos(psi) );
euler_elem.push_back( cos(psi)*sin(theta) );
euler_elem.push_back( sin(theta)*sin(phi) );
euler_elem.push_back( -sin(theta)*cos(phi) );
euler_elem.push_back( cos(theta) );

// make a vector of rotated Marker positions
for(unsigned int i=0; i<Markers.size(); i++) {

double Xc,Yc,Zc;
double X = Markers[i].X();
double Y = Markers[i].Y();
double Z = Markers[i].Z();
Xc = euler_elem[0]*(X-X0) + euler_elem[1]*(Y-Y0) + euler_elem[2]*(Z
-Z0);

Yc = euler_elem[3]*(X-X0) + euler_elem[4]*(Y-Y0) + euler_elem[5]*(Z
-Z0);

Zc = euler_elem[6]*(X-X0) + euler_elem[7]*(Y-Y0) + euler_elem[8]*(Z
-Z0);

TVector3 dum(Xc,Yc,Zc);
rotmark.push_back(dum);

} // end of for-loop

} // *** end of constructor

˜Residual() {}
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// ***** Functions needed for
calculating pixel locations

vector<double> Rotate(unsigned int n); // returns vector of Xc,Yc,
Zc

double FX(unsigned int n); // x’
double FY(unsigned int n); // y’
double GX(double xt, double yt); // x_calc
double GY(double xt, double yt); // y_calc
double Res(double p, double c); // (pic-calc)ˆ2 for a single

event
void ResidualSum(); // residual calculations and

assignment
double ResidualSum1(); // residual calculations
done inline

double ResidualSum2(); // residual calculations
done inline

// a few simple function
declarations

vector<TVector3> GetMarkers() const {return Markers;}
vector<TVector3> GetRotMarkers() const {return rotmark;}
vector<TVector2> GetPixels() const {return Pixels;}
vector<double> GetParams() const {return Params;}
vector<double> EulerMat() const {return euler_elem;}
vector<double> Xcalc() const {return xcalc;} // calculated x-
points

vector<double> Ycalc() const {return ycalc;} // calculated y-
point

vector<double> Xres() const {return xres;} // x-residuals,
unsquared for direction

vector<double> Yres() const {return yres;} // y-residuals,
unsquared for direction

double TotalRes() const {return totalres;} // total residual
after running ResidualSum*()

int Fcalls() {return fcalls;} // insert in a
function you want to count

};
#endif // Residual_H
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B.14 Residual.cpp

// Zachary Petriw
// Dec. 20, 2011

// Residual.cpp

// Accompanying cpp file to go with the header file, Residual.h
// Here the class functions will be defined. It will calculated the
// residual given a set of 3d point, 2d pixels, and parameters[parsize].

// I hope it works.

#include "Residual.h"
#include "TF2.h"
#include <iostream>
#include <math.h>

using namespace std;

//________________________________________________________________________
double Residual::ResidualSum2()
{
fcalls++;
totalres = 0;

// Model with R,xh,yh,k1,k2,k3,p1,p2,xr,yr
if(Params.size()==16) {

// x = Xc, y = Yc, [0] = Zc, [1] = R
TF2 *fxt = new TF2("xp", "x/TMath::Abs(x)*2*[1]/TMath::Pi()*TMath::ATan(
TMath::Sqrt(xˆ2+yˆ2)/-[0])/TMath::Sqrt((y/x)ˆ2+1)", -50000, 50000,
-50000, 50000);

TF2 *fyt = new TF2("yp", "y/TMath::Abs(y)*2*[1]/TMath::Pi()*TMath::ATan(
TMath::Sqrt(xˆ2+yˆ2)/-[0])/TMath::Sqrt((x/y)ˆ2+1)", -50000, 50000,
-50000, 50000);

// These need to be initialized separately, as they will change
// from model to model
R = Params[6]; // Radius of image
xh = Params[7]; // principal (central) x point
yh = Params[8]; // principal (central) y point
k1 = Params[9]; // 1st radial distortion parameter
k2 = Params[10]; // 2nd radial distortion parameter
k3 = Params[11]; // 3rd radial distortion parameter
p1 = Params[12]; // 1st tangental distortion parameter
p2 = Params[13]; // 2nd tangental distortion parameter
xr = Params[14]; // x-center of radial/tang distortion
yr = Params[15]; // y-center of radial/tang distortion

xcalc.clear(); ycalc.clear();
xres.clear(); yres.clear();
for(unsigned int i=0; i<Markers.size(); i++) {

double xt,yt,r2,xcal,ycal;
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fxt->SetParameters(rotmark[i].Z(),R);
fyt->SetParameters(rotmark[i].Z(),R);

xt = fxt->Eval(rotmark[i].X(),rotmark[i].Y()); // xt,
or x’

yt = fyt->Eval(rotmark[i].X(),rotmark[i].Y()); // yt,
or y’

r2 = pow(xt-xr,2) + pow(yt-yr,2); // Note: the spread of xt
centers on the origin

xcal = xt + xt*(k1*r2 + k2*pow(r2,2) + k3*pow(r2,3)) + 2*p1*yt + p2
*(r2+2*pow(xt,2)) + xh;

ycal = yt + yt*(k1*r2 + k2*pow(r2,2) + k3*pow(r2,3)) + p1*(r2+2*pow(
yt,2)) + 2*p2*xt + yh;

xcalc.push_back(xcal); // calculated values
accessible

ycalc.push_back(ycal);
xres.push_back(xcal-Pixels[i].X()); // unsquared
residuals (with directionality)

yres.push_back(ycal-Pixels[i].Y());

totalres += pow(Pixels[i].X() - xcal,2) + pow(Pixels[i].Y() - ycal
,2);

} // end for

delete fxt; // you need to include this or it
will eat RAM forever

delete fyt;

} // end if Params == 16

// model with R,xh,yh
else if(Params.size()==9) {

R = Params[6]; // Radius of image
xh = Params[7]; // principal (central) x point
yh = Params[8]; // principal (central) y point

// x = Xc, y = Yc, [0] = Zc, [1] = R
TF2 *fxt = new TF2("xp", "x/TMath::Abs(x)*2*[1]/TMath::Pi()*TMath::ATan(
TMath::Sqrt(xˆ2+yˆ2)/-[0])/TMath::Sqrt((y/x)ˆ2+1)", -50000, 50000,
-50000, 50000);

TF2 *fyt = new TF2("yp", "y/TMath::Abs(y)*2*[1]/TMath::Pi()*TMath::ATan(
TMath::Sqrt(xˆ2+yˆ2)/-[0])/TMath::Sqrt((x/y)ˆ2+1)", -50000, 50000,
-50000, 50000);

xcalc.clear(); ycalc.clear();
xres.clear(); yres.clear();
for(unsigned int i=0; i<Markers.size(); i++) {

double xt,yt,xcal,ycal;

fxt->SetParameters(rotmark[i].Z(),R);
fyt->SetParameters(rotmark[i].Z(),R);

xt = fxt->Eval(rotmark[i].X(),rotmark[i].Y()); // xt,
or x’

yt = fyt->Eval(rotmark[i].X(),rotmark[i].Y()); // yt,
or y’
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xcal = xt + xh;
ycal = yt + yh;

xcalc.push_back(xcal); // calculated values
accessible

ycalc.push_back(ycal);
xres.push_back(xcal-Pixels[i].X()); // unsquared
residuals (with directionality)

yres.push_back(ycal-Pixels[i].Y());

totalres += pow(Pixels[i].X() - xcal,2) + pow(Pixels[i].Y() - ycal
,2);

} // end for

delete fxt; // you need to include this or it
will eat RAM forever

delete fyt;

} // end if Params == 9

// model with Rx,Ry,xh,yh
else if(Params.size()==10) {

Rx = Params[6]; // x radius of image
Ry = Params[7]; // y radius of image
xh = Params[8]; // principal (central) x point
yh = Params[9]; // principal (central) y point

// x = Xc, y = Yc, [0] = Zc, [1] = R
TF2 *fxt = new TF2("xp", "x/TMath::Abs(x)*2*[1]/TMath::Pi()*TMath::ATan(
TMath::Sqrt(xˆ2+yˆ2)/-[0])/TMath::Sqrt((y/x)ˆ2+1)", -50000, 50000,
-50000, 50000);

TF2 *fyt = new TF2("yp", "y/TMath::Abs(y)*2*[1]/TMath::Pi()*TMath::ATan(
TMath::Sqrt(xˆ2+yˆ2)/-[0])/TMath::Sqrt((x/y)ˆ2+1)", -50000, 50000,
-50000, 50000);

xcalc.clear(); ycalc.clear();
xres.clear(); yres.clear();
for(unsigned int i=0; i<Markers.size(); i++) {

double xt,yt,xcal,ycal;

fxt->SetParameters(rotmark[i].Z(),Rx);
fyt->SetParameters(rotmark[i].Z(),Ry);

xt = fxt->Eval(rotmark[i].X(),rotmark[i].Y()); // xt,
or x’

yt = fyt->Eval(rotmark[i].X(),rotmark[i].Y()); // yt,
or y’

xcal = xt + xh;
ycal = yt + yh;

xcalc.push_back(xcal); // calculated values
accessible

ycalc.push_back(ycal);
xres.push_back(xcal-Pixels[i].X()); // unsquared
residuals (with directionality)

yres.push_back(ycal-Pixels[i].Y());



144

totalres += pow(Pixels[i].X() - xcal,2) + pow(Pixels[i].Y() - ycal
,2);

} // end for

delete fxt; // you need to include this or it
will eat RAM forever

delete fyt;

} // end if Params == 10

// model with x0,y0,x1,y1,x2,y2,x3,y3
else if(Params.size()==14) {

x0 = Params[6];
y0 = Params[7];
x1 = Params[8];
y1 = Params[9];
x2 = Params[10];
y2 = Params[11];
x3 = Params[12];
y3 = Params[13];

// R removed from this part
// x = Xc, y = Yc, [0] = Zc
TF2 *fxt = new TF2("xp", "x/TMath::Abs(x)*2/TMath::Pi()*TMath::ATan(TMath
::Sqrt(xˆ2+yˆ2)/-[0])/TMath::Sqrt((y/x)ˆ2+1)", -50000, 50000, -50000,
50000);

TF2 *fyt = new TF2("yp", "y/TMath::Abs(y)*2/TMath::Pi()*TMath::ATan(TMath
::Sqrt(xˆ2+yˆ2)/-[0])/TMath::Sqrt((x/y)ˆ2+1)", -50000, 50000, -50000,
50000);

xcalc.clear(); ycalc.clear();
xres.clear(); yres.clear();
for(unsigned int i=0; i<Markers.size(); i++) {

double xt,yt,xcal,ycal;

// single parameter setting
fxt->SetParameter(0,rotmark[i].Z());
fyt->SetParameter(0,rotmark[i].Z());

xt = fxt->Eval(rotmark[i].X(),rotmark[i].Y()); // xt,
or x’

yt = fyt->Eval(rotmark[i].X(),rotmark[i].Y()); // yt,
or y’

xcal = x0 + x1*xt + x2*pow(xt,2) + x3*pow(xt,3);
ycal = y0 + y1*yt + y2*pow(yt,2) + y3*pow(yt,3);

xcalc.push_back(xcal); // calculated values
accessible

ycalc.push_back(ycal);
xres.push_back(xcal-Pixels[i].X()); // unsquared
residuals (with directionality)

yres.push_back(ycal-Pixels[i].Y());

totalres += pow(Pixels[i].X() - xcal,2) + pow(Pixels[i].Y() - ycal
,2);

} // end for
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delete fxt; // you need to include this or it
will eat RAM forever

delete fyt;

} // end if Params == 14

// model with x0,y0,x1,y1,x2,y2,x3,y3,k1,k2,k3,xr,yr
else if(Params.size()==19) {

x0 = Params[6]; y0 = Params[7];
x1 = Params[8]; y1 = Params[9];
x2 = Params[10]; y2 = Params[11];
x3 = Params[12]; y3 = Params[13];

k1 = Params[14]; k2 = Params[15]; k3 = Params[16];
xr = Params[17]; yr = Params[18];

// R removed from this part
// x = Xc, y = Yc, [0] = Zc
TF2 *fxt = new TF2("xp", "x/TMath::Abs(x)*2/TMath::Pi()*TMath::ATan(TMath
::Sqrt(xˆ2+yˆ2)/-[0])/TMath::Sqrt((y/x)ˆ2+1)", -50000, 50000, -50000,
50000);

TF2 *fyt = new TF2("yp", "y/TMath::Abs(y)*2/TMath::Pi()*TMath::ATan(TMath
::Sqrt(xˆ2+yˆ2)/-[0])/TMath::Sqrt((x/y)ˆ2+1)", -50000, 50000, -50000,
50000);

xcalc.clear(); ycalc.clear();
xres.clear(); yres.clear();
for(unsigned int i=0; i<Markers.size(); i++) {

double xt,yt,xcal,ycal,r2;

// single parameter setting
fxt->SetParameter(0,rotmark[i].Z());
fyt->SetParameter(0,rotmark[i].Z());

xt = fxt->Eval(rotmark[i].X(),rotmark[i].Y()); // xt,
or x’

yt = fyt->Eval(rotmark[i].X(),rotmark[i].Y()); // yt,
or y’

r2 = pow(xt*x1 +x0 -xr,2) + pow(yt*y1 +y0 -yr,2); //
Centered on x0,y0

// if(i%100==0) cerr << xt*x0 << " " << yt*y0 << " ";

xcal = x0 + x1*xt + x2*pow(xt,2) + x3*pow(xt,3) + xt*x1*(k1*r2 + k2*
r2*r2 + k3*pow(r2,3));

ycal = y0 + y1*yt + y2*pow(yt,2) + y3*pow(yt,3) + yt*y1*(k1*r2 + k2*
r2*r2 + k3*pow(r2,3));

xcalc.push_back(xcal); // calculated values
accessible

ycalc.push_back(ycal);
xres.push_back(xcal-Pixels[i].X()); // unsquared
residuals (with directionality)

yres.push_back(ycal-Pixels[i].Y());

totalres += pow(Pixels[i].X() - xcal,2) + pow(Pixels[i].Y() - ycal
,2);
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} // end for

delete fxt; // you need to include this or it
will eat RAM forever

delete fyt;

} // end if Params == 19

// model with x0,y0,x1,y1,x2,y2,x3,y3,k1,k2,k3,xr,yr, yk1,yk2,yk3,yxr,yyr
else if(Params.size()==24) {

x0 = Params[6]; y0 = Params[7];
x1 = Params[8]; y1 = Params[9];
x2 = Params[10]; y2 = Params[11];
x3 = Params[12]; y3 = Params[13];

xk1 = Params[14]; xk2 = Params[15]; xk3 = Params[16];
xxr = Params[17]; xyr = Params[18];

yk1 = Params[19]; yk2 = Params[20]; yk3 = Params[21];
yxr = Params[22]; yyr = Params[23];

// R removed from this part
// x = Xc, y = Yc, [0] = Zc
TF2 *fxt = new TF2("xp", "x/TMath::Abs(x)*2/TMath::Pi()*TMath::ATan(TMath
::Sqrt(xˆ2+yˆ2)/-[0])/TMath::Sqrt((y/x)ˆ2+1)", -50000, 50000, -50000,
50000);

TF2 *fyt = new TF2("yp", "y/TMath::Abs(y)*2/TMath::Pi()*TMath::ATan(TMath
::Sqrt(xˆ2+yˆ2)/-[0])/TMath::Sqrt((x/y)ˆ2+1)", -50000, 50000, -50000,
50000);

xcalc.clear(); ycalc.clear();
xres.clear(); yres.clear();
for(unsigned int i=0; i<Markers.size(); i++) {

double xt,yt,xcal,ycal,xr2,yr2;

// single parameter setting
fxt->SetParameter(0,rotmark[i].Z());
fyt->SetParameter(0,rotmark[i].Z());

xt = fxt->Eval(rotmark[i].X(),rotmark[i].Y()); // xt,
or x’

yt = fyt->Eval(rotmark[i].X(),rotmark[i].Y()); // yt,
or y’

xr2 = pow(xt*x1 +x0 -xxr,2) + pow(yt*y1 +y0 -xyr,2); //
Centered on x0,y0

yr2 = pow(xt*x1 +x0 -yxr,2) + pow(yt*y1 +y0 -yyr,2); //
Centered on x0,y0

// if(i%100==0) cerr << xt*x0 << " " << yt*y0 << " ";

xcal = x0 + x1*xt + x2*pow(xt,2) + x3*pow(xt,3) + xt*x1*(xk1*xr2 +
xk2*xr2*xr2 + xk3*pow(xr2,3));

ycal = y0 + y1*yt + y2*pow(yt,2) + y3*pow(yt,3) + yt*y1*(yk1*yr2 +
yk2*yr2*yr2 + yk3*pow(yr2,3));

// ycal += yt*y1*(yk1*yr2 + yk2*yr2*yr2 + yk3*pow(yr2,3)); //
extra radial correction to y
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xcalc.push_back(xcal); // calculated values
accessible

ycalc.push_back(ycal);
xres.push_back(xcal-Pixels[i].X()); // unsquared
residuals (with directionality)

yres.push_back(ycal-Pixels[i].Y());

totalres += pow(Pixels[i].X() - xcal,2) + pow(Pixels[i].Y() - ycal
,2);

} // end for

delete fxt; // you need to include this or it
will eat RAM forever

delete fyt;

} // end if Params == 24

// model with x0,y0,x1,y1,x2,y2,x3,y3,k1,k2,k3,xr,yr, sa,sxo,sxf,syo,syf,
sdum

else if(Params.size()==25) {

x0 = Params[6]; y0 = Params[7];
x1 = Params[8]; y1 = Params[9];
x2 = Params[10]; y2 = Params[11];
x3 = Params[12]; y3 = Params[13];

k1 = Params[14]; k2 = Params[15]; k3 = Params[16];
xr = Params[17]; yr = Params[18];

sa = Params[19]; sxo = Params[20]; sxf = Params[21];
syo = Params[22]; syf = Params[23]; sdum = Params[24];

// R removed from this part
// x = Xc, y = Yc, [0] = Zc
TF2 *fxt = new TF2("xp", "x/TMath::Abs(x)*2/TMath::Pi()*TMath::ATan(TMath
::Sqrt(xˆ2+yˆ2)/-[0])/TMath::Sqrt((y/x)ˆ2+1)", -50000, 50000, -50000,
50000);

TF2 *fyt = new TF2("yp", "y/TMath::Abs(y)*2/TMath::Pi()*TMath::ATan(TMath
::Sqrt(xˆ2+yˆ2)/-[0])/TMath::Sqrt((x/y)ˆ2+1)", -50000, 50000, -50000,
50000);

xcalc.clear(); ycalc.clear();
xres.clear(); yres.clear();
for(unsigned int i=0; i<Markers.size(); i++) {

double xt,yt,xcal,ycal,r2;

// single parameter setting
fxt->SetParameter(0,rotmark[i].Z());
fyt->SetParameter(0,rotmark[i].Z());

xt = fxt->Eval(rotmark[i].X(),rotmark[i].Y()); // xt,
or x’

yt = fyt->Eval(rotmark[i].X(),rotmark[i].Y()); // yt,
or y’

r2 = pow(xt*x1 +x0 -xr,2) + pow(yt*y1 +y0 -yr,2); //
Centered on x0,y0

// yr2 = pow(xt*x1 +x0 -xr,2) + pow(yt*y1 +y0 -yr,2); //
Centered on x0,y0
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// if(i%100==0) cerr << xt*x0 << " " << yt*y0 << " ";

xcal = x0 + x1*xt + x2*pow(xt,2) + x3*pow(xt,3) + xt*x1*(k1*r2 + k2*
r2*r2 + k3*pow(r2,3));

ycal = y0 + y1*yt + y2*pow(yt,2) + y3*pow(yt,3) + yt*y1*(k1*r2 + k2*
r2*r2 + k3*pow(r2,3));

ycal += sa*sin(pow((xt*x1 - sxo)/sxf,2) + (yt*y1 - syo)/syf);
// extra radial correction to y

xcalc.push_back(xcal); // calculated values
accessible

ycalc.push_back(ycal);
xres.push_back(xcal-Pixels[i].X()); // unsquared
residuals (with directionality)

yres.push_back(ycal-Pixels[i].Y());

totalres += pow(Pixels[i].X() - xcal,2) + pow(Pixels[i].Y() - ycal
,2);

} // end for

delete fxt; // you need to include this or it
will eat RAM forever

delete fyt;

} // end if Params == 25

else if(Params.size()==27) {

x0 = Params[6]; y0 = Params[7];
x1 = Params[8]; y1 = Params[9];
x2 = Params[10]; y2 = Params[11];
x3 = Params[12]; y3 = Params[13];

k1 = Params[14]; k2 = Params[15]; k3 = Params[16];
xr = Params[17]; yr = Params[18];

x1y = Params[19]; x2y = Params[20]; x3y = Params[21];
y1x = Params[22]; y2x = Params[23]; y3x = Params[24];
b1x = Params[25]; b1y = Params[26];

// R removed from this part
// x = Xc, y = Yc, [0] = Zc
TF2 *fxt = new TF2("xp", "x/TMath::Abs(x)*2/TMath::Pi()*TMath::ATan(TMath
::Sqrt(xˆ2+yˆ2)/-[0])/TMath::Sqrt((y/x)ˆ2+1)", -50000, 50000, -50000,
50000);

TF2 *fyt = new TF2("yp", "y/TMath::Abs(y)*2/TMath::Pi()*TMath::ATan(TMath
::Sqrt(xˆ2+yˆ2)/-[0])/TMath::Sqrt((x/y)ˆ2+1)", -50000, 50000, -50000,
50000);

xcalc.clear(); ycalc.clear();
xres.clear(); yres.clear();
for(unsigned int i=0; i<Markers.size(); i++) {

double xt,yt,xcal,ycal,r2;

// single parameter setting
fxt->SetParameter(0,rotmark[i].Z());
fyt->SetParameter(0,rotmark[i].Z());
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xt = fxt->Eval(rotmark[i].X(),rotmark[i].Y()); // xt,
or x’

yt = fyt->Eval(rotmark[i].X(),rotmark[i].Y()); // yt,
or y’

r2 = pow(xt*x1 +x0 -xr,2) + pow(yt*y1 +y0 -yr,2); //
Centered on x0,y0

// yr2 = pow(xt*x1 +x0 -xr,2) + pow(yt*y1 +y0 -yr,2); //
Centered on x0,y0

// if(i%100==0) cerr << xt*x0 << " " << yt*y0 << " ";

xcal = x0 + x1*xt + x2*pow(xt,2) + x3*pow(xt,3) + xt*x1*(k1*r2 + k2*
r2*r2 + k3*pow(r2,3));

ycal = y0 + y1*yt + y2*pow(yt,2) + y3*pow(yt,3) + yt*y1*(k1*r2 + k2*
r2*r2 + k3*pow(r2,3));

xcal += x1y*yt + x2y*pow(yt,2) + x3y*pow(yt,3) + b1x*xt*yt;
ycal += y1x*xt + y2x*pow(xt,2) + y3x*pow(xt,3) + b1y*xt*yt;

xcalc.push_back(xcal); // calculated values
accessible

ycalc.push_back(ycal);
xres.push_back(xcal-Pixels[i].X()); // unsquared
residuals (with directionality)

yres.push_back(ycal-Pixels[i].Y());

totalres += pow(Pixels[i].X() - xcal,2) + pow(Pixels[i].Y() - ycal
,2);

} // end for

delete fxt; // you need to include this or it
will eat RAM forever

delete fyt;

} // end if Params == 25

return totalres;
}
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B.15 ResidualFCN.h

// Zachary Petriw
// Dec. 21, 2011

// ResidualFCN.h

// This header file is used in conjuction with ResidualFCN.cpp and a main
// program to fit using Minuit2.

#ifndef MN_ResidualFCN_H_
#define MN_ResidualFCN_H_
#include "Minuit2/FCNBase.h"
#include <vector>
#include "TVector3.h"
#include "TVector2.h"

namespace ROOT {
namespace Minuit2 {

class ResidualFCN : public FCNBase {

public:
ResidualFCN(const std::vector<TVector3>& marker_pos,

const std::vector<TVector2>& found_points) :
Marker_Pos(marker_pos), Points(found_points), theErrorDef(1.) {}

˜ResidualFCN() {}

double Up() const {return theErrorDef;}
double operator()(const std::vector<double>&) const;

std::vector<TVector3> marker() const {return Marker_Pos;}
std::vector<TVector2> points() const {return Points;}

void setErrorDef(double def) {theErrorDef = def;}

private:

std::vector<TVector3> Marker_Pos;
std::vector<TVector2> Points;
double theErrorDef;

};

} // Minuit2
} // ROOT
#endif //MN_ResidualFCN_H_
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B.16 ResidualFCN.cpp

// Zachary Petriw
// Dec. 21, 2011

// ResidualFCN.cpp

// This program is structured as required by the Minuit2 minimizer to
// take use the operator() and return a residual. The argument to ()
// is tweaked until the residual is at a minimium.

#include "ResidualFCN.h"
#include "Residual.h"
#include <iostream>

namespace ROOT {
namespace Minuit2 {

double ResidualFCN::operator()(const std::vector<double>& par) const {

// create the function that will do the hard work
Residual func(Marker_Pos,Points,par);
return func.ResidualSum2();

} // that’s it

} // Minuit2
} // ROOT


