Download the full-sized PDF of Development of carcass cuts, organs, body tissue and chemical body composition during growth of pigsDownload the full-sized PDF



Permanent link (DOI):


Export to: EndNote  |  Zotero  |  Mendeley


This file is in the following communities:

Roy Berg Kinsella Research Ranch


This file is in the following collections:

Journal Articles (Kinsella Ranch)

Development of carcass cuts, organs, body tissue and chemical body composition during growth of pigs Open Access


Author or creator
Landgraf, S.
Susenbeth, A.
Knap, P. W.
Looft, H.
Plastow, G. S.
Kalm, E.
Roehe, R.
Additional contributors
carcass composition
body composition
Type of item
Journal Article (Published)
A serial slaughter trial was carried out to examine the developmental change of physical and chemical body composition in pigs highly selected for lean content. A total of 48 pigs (17 females and 31 castrated males) were serially slaughtered and chemically analysed. Eight pigs were slaughtered at 20, 30, 60, 90, 120 and 140 kg live weight, (LW) respectively. The carcass was chilled and the left carcass side was dissected into the primal carcass cuts ham, loin, shoulder, belly and neck. Each primal carcass cut was further dissected into lean tissue, bones and rind. Additionally, the physical and chemical body composition was obtained for the total empty body as well as for the three fractions soft tissue, bones and viscera. Viscera included the organs, blood, empty intestinal tract and leaf fat. The relationship between physical or chemical body composition and empty body weight (EBWT) at slaughter was assessed using allometric equations (log10 y=log10 a+b log10 EBWT). Dressing percentage increased from 69·4 to 85·2% at 20 to 120 kg and then decreased to 83·1% at 140 kg LW, whereas percentage of soft tissue, bones and viscera changed from 23·5 to 33·0%, 10·1 to 6·3% and 14·7 to 10·3%, respectively, during the entire growth period. Substantial changes in proportional weights of carcass cuts on the left carcass side were obtained for loin (10·5 to 17·5%) and belly (11·3 to 13·8%) during growth from 20 to 140 kg. Soft tissue fraction showed an allometric coefficient above 1 ( b=1·14) reflecting higher growth rate in relation to the total empty body. The coefficients for the fractions bones and viscera were substantially below 1 with b=0·77 and 0·79, respectively, indicating substantial lower growth relative to growth of the total empty body. Lean tissue allometric growth rate of different primal cuts ranged from b=1·02 (neck) to 1·28 (belly), whereas rates of components associated with fat tissue growth rate ranged from b=0·62 (rind of belly) to 1·79 (backfat). For organs, allometric growth rate ranged from b=0·61 (liver) to 0·90 (spleen). For the entire empty body, allometric accretion rate was 1·01, 1·75, 1·02 and 0·85 for protein, lipid, ash and water, respectively. Extreme increase in lipid deposition was obtained during growth from 120 to 140 kg growth. This was strongly associated with an increase in backfat and leaf fat in this period. Interestingly, breeds selected for high leanness such as Piétrain sired progeny showed an extreme increase in lipid accretion at a range of LW from 120 to 140 kg, which indicates that selection has only postponed the lipid deposition to an higher weight compared with the normally used final weight of 100 kg on the performance test. The estimates obtained for allometric growth rates of primal carcass cuts, body tissue and chemical body composition can be used to predict changes in weight of carcass cuts, determine selection goals concerning lean tissue growth, food intake capacity, etc. and generally as input parameters for pig growth models that can be used to improve the efficiency of the entire pig production system for pigs highly selected for lean content.
Date created
License information
@2006 Landgraf, S., Susenbeth, A., Knap, P. W., Looft, H., Plastow, G. S., Kalm, E., Roehe, R. This version of this article is open access and can be downloaded and shared. The original author(s) and source must be cited.
Citation for previous publication
Landgraf, S., Susenbeth, A., Knap, P.W., Looft, H., Plastow, G.S., Kalm, E., and Roehe, R. (2006). Development of carcass cuts, organs, body tissue and chemical body composition during growth of pigs.Animal Science, 82(6) 889-899.

Link to related item

File Details

Date Uploaded
Date Modified
Audit Status
Audits have not yet been run on this file.
File format: pdf (Portable Document Format)
Mime type: application/pdf
File size: 1755403
Last modified: 2016:06:24 18:10:07-06:00
Filename: AS_82_06
Original checksum: db3ac9838e88f71047ac77d4a0ba872a
Well formed: true
Valid: true
Page count: 12
Activity of users you follow
User Activity Date