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Abstract

New machine learning methods and parallel computation opened the door to many

applications in computer vision. While computer vision is progressing rapidly be-

cause of that, there are not as many and as successful real world applications in

robotics. In this thesis, we investigate two possible causes of this problem and we

provide potential solutions. In particular, using recurrent networks to deal with

temporal information and using human robot interaction for incremental learning.

Robotics is time dependent. The environment is perceived through time and

tasks are being performed by time indexed trajectories. This important property has

been generally neglected in the deep learning community. The main focus instead

is on improving benchmarks on single image tasks or analyzing videos in batches.

Consequently, real-time video analysis received less attention. But this is exactly

what robots need to have. Processing single images will not provide sufficient in-

formation to observe the environment and processing a batch of images will be too

delayed to be used for planning and decision-making in real-time. As a solution to

this problem, we propose a recurrent fully convolutional neural network(RFCNN)

for segmentation, which is very useful in different robotics scenarios. This type

of network accepts a series of images ending with the current image to infer the

segmentation for the last image. We showed how such networks can be designed

and trained in an end-to-end fashion. An extensive set of experiments on several

different architectures and benchmarks were made. We observed a consistent im-

provement by using RFCNN over non-recurrent counterparts.

While deep learning methods are the most general machine learning solutions

available, they still suffer from the change in the data distribution between training

and test. Even though it is not limited to robotics, their effect is most apparent
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there. It is mostly due to the fact that robots need to learn complicated reasoning

using a limited train data. This combination leads to severe overfitting which will

become obvious during the test in a slightly different environment. To mitigate this

problem, we suggest a novel paradigm in which new perception information can

be thought to the robot through Human-Robot Interaction(HRI). A complete HRI

system is developed that allows human-friendly communication using speech and

gesture. An incremental learning method is designed to improve an object detection

network by using human inputs. The system is tested on simulated data and real

experiments with success. We showed that humans can easily teach new objects to

the robot and the robot is able to learn and use this information later.
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Preface

This thesis is an original work by Sepehr Valipour. Two referenced works in

the Chapter 3 and one referenced work in Chapter 4 have been previously pub-
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presented in WACV 2017 [75] and ”Recurrent Fully Cnvolutional Network for

Video Segmentation” to be presented at ICIP 2017 [67] , are collaborative works
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I was mainly responsible for the system design. ”Incremental Learning for Robots
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Chapter 1

Introduction

Moving robotics more and more to unstructured environment and use them for mul-

tiple tasks rather than specific applications was, and is, a goal of the community.

This goal, however, was beyond traditional engineering approaches where a robot is

designed and programmed for a very limited task. To overcome this issue, machine

learning is used as it can deal with a broader range of situations. This paradigm

is growing in popularity especially after successful applications of deep learning in

image analysis.

Main motivation behind using deep learning in robotics is that they are signif-

icantly more general than any other learning algorithm. It has been demonstrated

that deep networks are capable high level reasoning and abstraction. Therefore, it

makes them an idea choice for robotics in unstructured environment. Additionally,

thanks to advances in parallel processing and sophisticated numerical libraries, deep

networks have become very efficient. Time critical robotics tasks need processing

module with high frequency response rate to be able to control the motion. Deep

networks on GPUs can deliver this.

These being said, there is still a large gap between practical applications of

deep learning in image processing compared to their usage in robotics. Below, I

enumerate few reasons for this gap.

• Temporal information: Robotics applications are time dependent by nature.

Robots work in dynamic environments, their actions are time indexed and

what they perceive is a function of time. For example, a tennis player robot

need to track the ball over time and based on its speed and angle generate a
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time indexed trajectory for a successful hit. Note that, information for such

an action cannot be derived from a single image as velocity is not observable.

Majority of computer vision community are not concerned with such scenar-

ios and therefore, most of deep architectures are designed for single image

processing.

• Training data As it was mentioned, deep networks are very capable mapping

function and are able to learn any non-linear function from input to output.

This, however, is coming at a cost. The training data that is needed for a

deep network to learn a general function for a task grows proportional to the

task complexity. For example, distinguishing black from white pictures may

only require a handful of samples with different shades but differentiating

cats from dogs require thousands. Note that the accuracy of the network may

suffer as more and more data sample with different appearance are provided.

Robotics is an extreme case. Consider a household assistant robot and assume

that we managed to collect enough data in the lab to train it to perform basic

object handling task. The robot is then shipped to a customer house, and

unlucky us, the objects in the house look very different than the objects that

we had in the lab. Current solution of the computer vision community for this

problem is to increase the training data to incorporate similar samples to the

possible test scenario.

In this work, I tried to provide possible solutions to these problems by leverag-

ing functionalities in the robots that are generally ignored by the vision community.

Namely, the availability of temporal data (video, sensor signals, etc.) and the human

robot interaction.

Firstly, in chapter 2 background information and related works needed to under-

stand rest of the paper is presented. In the next chapter 3 we explain our possible

solution for incorporating temporal data for video analysis. In particular, we de-

scribe a fully convolutional recurrent network for video segmentation. Later, in

chapter 4 we introduce an incremental learning approach in which robots can learn

from humans through natural interaction. Our contributions can be listed as follow:
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• Novel video segmentation method based on recurrent networks, suitable for

online processing in robotics.

• Extensive experiments showing the superiority of this method over single

image segmentation.

• Introducing an incremental learning model to dynamically update a deep net-

work using natural human interaction.

• Implementing and testing a complete interaction system and demonstrating

its viability.

In the last chapter 5 summarize this manuscript and propose a unifying framework

that can make use of the HRI through interactions and recurrent network for tem-

poral signal analysis.
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Chapter 2

Background and Literature Review

2.1 Deep Learning

The term Deep learning is loosely associated with a broad range of neural network

architectures [28]. Common properties of these architectures can be listed as fol-

low:

• A graph structure where each node (commonly referred to as neurons) is con-

nected to either input signal or other nodes with weighted edges. The output

of node is the linear combination of edge weights and the inputs and possibly

followed by a non-linear function.

• This graph defines a cost function C = F (XXX,WWW,YYY ). Where XXX is the input

signal and WWW represents all the edge weights and YYY is a set targets given the

corresponding input.

• The cost function is minimized with respect toWWW using non-linear optimiza-

tion techniques (mostly gradient decent or its variants).

While variety of graph structures were tested, still, a layered network is the most

common design. In this design, each layer is only receiving signal from the nodes

in the previous layers and its output is only fed into the next. Figure 2.1 showcases

a very simple neural network with one hidden layer. Lets assume that the networks

outputOOO is a regression vector. The cost function can be defined in 2.1, where x is
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Figure 2.1: A simple example of a neural network.

a single input sample and y is the corresponding target.

C =
∑
x

(OOO(xi)− yi)2 (2.1)

To find WWW such that WWW = argminwC using gradient decent, the gradients of

cost with respect toWWW should be computed andWWW optimized accordingly. This can

be done using back-propagation. Formally, ∂C
∂WWW

needs to be computed.

While computing this derivative is straight forward for the last set of weights

(WWW 2), it is increasingly more difficult for the previous weights. To perform the

back-propagation in a more systematic way, we can employ chain rule 2.2. In this

equation n indicates the last layer and hn = OOO. Note that the computed derivatives

for the higher layer can be reused as we back-propagate and there for the process

can be done efficiently.

∂C

∂W iW iW i
= (

i+1∏
j=n

∂hj

∂hj−1hj−1hj−1
)
∂hi

∂W jW jW j
(2.2)

Neural networks were used since 1990s. They have been revitalized thanks to, first,

better processors (especially GPUs) and , secondly, introducing convolutional fil-

ters into neural networks (CNN). CNNs are bio-inspired variant of fully connected

neural networks where they operate on a region of the input signal, in contrast with

single element. Therefore they can exploit local connectivity in visual data. E.g.
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Figure 2.2: Modern classifier deep network. It incorporates multiple layers of con-
volutional filters with few fully connected layers.

the neighbor pixel values are related to each other. CNN provides a very efficient

way to process images which lead to its popularity in the computer vision and ma-

chine learning community. Using CNN in conjunction with fully connected layers,

produced modern neural network architecture for classification 2.2,

In the following sections, three specific neural network architectures will be

discussed which later will be used in our systems.

Fully Convolutional Networks for Segmentation

In convolutional neural networks that are used for classification, the few last fully

connected layers are responsible for the classification part. But, with pixel-wise

labelling, there is a need for dense predictions on all the pixels. In [44] the idea of

using a fully convolutional neural network that is trained for pixel-wise semantic

segmentation is presented. It is shown that it surpasses the state of the art in seman-

tic segmentation on PASCAL VOC, NUYDv2, and SIFT Flow datasets. The FCN

method is briefly discussed in what follows.

FCN architecture is based on VGG [68] architecture due to its success in clas-

sification tasks. However, due to the fully connected layers that these networks

have, they can only accept fixed size input and produce a classification label. To

overcome this problem, it is possible to convert a fully connected layer into a con-

volutional layer. Convolution filters are independent of the input size and therefore

can operate on any input spatial size. So if we substitute fully connected layers
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with convolutional layers, the network can produce a coarse map instead of a sin-

gle prediction. Moreover, the learned filters can be used on images with different

resolutions to some extent(large difference will decrease the performance).

In order to have dense prediction from this coarse map, it needs to be up-

sampled to the original size of the input image. The up-sampling method can be a

simple bi-linear interpolation. In [44] a new layer that applies upsampling within

the network was presented. It makes it efficient to learn the up-sampling weights

within the network using back-propagation. The filters of the deconvolution layer

act as the basis to reconstruct the input image. Another idea for up-sampling is

to stitch together output maps from shifted version of the input. But It was men-

tioned in [44] that using up-sampling with deconvolution is more effective. In [50]

the idea of having a full deconvolution network with both deconvolution layers and

unpooling layers is presented. Figure 2.3 depicts the difference between a fully

connected network used for classification and a fully convolutional networks used

for segmentation.

Figure 2.3: A fully connected network for classification (top) versus a fully convo-
lutional network for segmentation (bottom). The main difference is the removal of
fully connected layer in the FCN.

The FCN architecture has been tried in different applications. In [31] it is used
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for object localization. A single FCN network was used to predict bounding box

locations from a pyramid of the input image. It was shown that the network can

be trained for multiple task (segmentation and localization) and perform better in

either. In [78] a modified architecture was used for visual object tracking. Feature

maps from different layers passed through two separate FCN branches and joined

for a better tracking. Finally for semantic segmentation in [50] a full deconvolution

network is presented with stacked deconvolution layers. Having multiple deconvo-

lution layers showed to have positive effects an the accuracy of segmentation.

2.1.1 Recurrent Networks

Recurrent Neural Networks [76] are designed to incorporate sequential information

into a neural network framework. These networks are capable of learning complex

dynamics by utilizing a hidden unit in each recurrent cell. This unit works like a

dynamic memory that can be changed based on the state that the unit is in. Ac-

cordingly, the process of each unit yields to two outcomes. Firstly, an output is

computed from the current input and the hidden units values (the networks mem-

ory). Secondly, the network updates its memory based on, again, current input and

hidden units value. The simplest recurrent unit can be modeled as Eq 2.3.

ht = θφ(ht−1) + θxxt (2.3a)

yt = θyφ(ht) (2.3b)

Here, h is the hidden layer, x is the input layer and y is the output layer and φ is the

activation function. θ, θx and θy are the unit’s learnable weights.

Recurrent networks were successful in many tasks in speech recognition and

text understanding [69] but they come with their challenges. Unrestricted data flow

between units causes problems with vanishing and exploding gradients [7]. During

the back propagation through recurrent units, the derivative of each node is depen-

dent of all the proceeding nodes. This is shown in equations 2.4,2.5 and 2.6 where

E is the loss of the layer. To compute ∂ht

∂hk
a series of multiplication from k = 1 to

k = t− 1 is required. Assume that φ̇ is bounded by α then || ∂ht

∂hk
|| < αt−k
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∂E

∂θ
=

t=S∑
t=1

∂Et

∂θ
(2.4)

∂Et

∂θ
=

k=t∑
k=1

∂Et

∂yt

∂yt
∂ht

∂ht
∂hk

∂hk
∂θ

(2.5)

∂ht
∂hk

=
t∏

i=k+1

∂hi
∂hi−1

=
t∏

i=k+1

θTdiag[φ̇(hi−1)] (2.6)

A solution to this problem is to use gated structures. The gates can control

back propagation flow between each node. Long-Short Term Memory [30] is the

first such proposed architecture and it is still popular. A more recent architecture is

Gated Recurrent Unit [13] which has simpler cells yet with competent performance

[14].

Long Short Term Memory (LSTM)

As mentioned, LSTM uses a gated structure where each gate controls the flow of

a particular signal. Each LSTM node has three gates that are input, output and

forget gate each with learnable weights. These gates can learn the optimal way

to remember useful information from previous states and decide the current state.

In equations 2.7 the procedure of computing different gates and hidden states is

shown, where it, ft and ot are input, forget and output gates respectively. While

ct denote the cell internal state, and ht is the hidden state. The operator � is the

element-wise product.

it = σ(Wxixt +Whiht−1 + bi) (2.7a)

ft = σ(Wxfxt +Whfht−1 + bf ) (2.7b)

ot = σ(Wxoxt +Whoht−1 + bo) (2.7c)

gt = σ(Wxcxt +Whcht−1 + bc) (2.7d)

ct = ft � ct−1 + it � gt (2.7e)

ht = ot � φ(ct) (2.7f)
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Gated Recurrent Unit (GRU)

The Gated Recurrent Unit, similar to LSTM, utilizes a gated structure for flow-

control. However, it has a simpler architecture which makes it both faster and less

memory consuming. The model is shown in Figure 2.4 and described in 2.8 where

rt, zt is the reset and update gate respectively. While ht is the hidden state.

zt = σ(Whzht−1 +Wxzxt + bz) (2.8a)

rt = σ(Whrht−1 +Wxrxt + br) (2.8b)

ĥt = Φ(Wh(rt � ht−1) +Wxxt + b) (2.8c)

ht = (1− zt)� ht−1 + z � ĥt (2.8d)

GRU does not have a direct control over memory content exposure while LSTM

has it by having an output gate. These two are also different in the way that they

update the memory nodes. LSTM updates its hidden state by summation over flow

after input gate and forget gate. GRU however, assumes a correlation between how

much to keep from the current state and how much to get from the previous state

and it models this with the zt gate.

Figure 2.4: GRU Architecture.

2.1.2 Object Detection and Recognition Networks

The goal of object detection methods is to find the best-fit bounding boxes around

”objects” in a possibly cluttered scene. Traditionally, for still images, the object

detection was done using image gradient and finding salient boundaries between an
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object and the background or patches with a solid color. Using videos would allow

detecting moving object much easier by incorporating temporal filters.

More recent works saw extensive use of SIFT [47] and HOG [19] features. Ad-

mitted by most researchers in the field, this period brought very little improvement

mostly by using ensemble models and combining different low level and high-level

filters. Region proposal was also a general theme with different detection tech-

niques. These methods are either based on super-pixel grouping or sliding window.

They, however, are extremely inefficient. Their accuracy depends on the fineness

of sampling which directly affects the computation cost. To be more practical re-

searchers usually limit the range of classes to be detected to avoid too small or very

large objects.

The next leap in object detection framework came after the introduction of modern

Convolutional Neural Networks by [38]. Deep networks were shown to be able to

extract better features than traditional HOG and SIFT for object classification. The

question then was how the success of deep networks in classification extends to de-

tection. Multiple concurrent works were done to investigate this problem.

Szegedy et al. [71] formulates the detection problem as a direct regression to find

a bounding box. However, they showed that this approach does not work well in

practice. Sliding window was also tried in [66] for pedestrian detection and in over-

feat [65] for general object detection. While they were state of the art at the time

they had few drawbacks. Firstly, using sliding window caused computation prob-

lems as mentioned. Secondly, using convolutional networks with pooling layers put

restrictions on the minimum size of the input image. Therefore, either the spatial

resolution should be low or the depth of the network small. Both cases would de-

crease the accuracy.

To overcome problems with sliding window approach, Girshik et al. [60] proposed

a within-network object proposal techniques. This method does not rely on an ex-

ternal proposal method such as the sliding window. Instead, it internally generates

the proposals and evaluates them using a deep network. Therefore, region proposal

could be learned and improved. It also reduced the inference time drastically as

now the whole system can run on the GPU. Region proposal networks and their
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variants are current state of the art in object detection.

Object detection systems are commonly accompanied by a recognition mechanism.

A simple, yet inefficient, way to achieve recognition is to crop the detected region

on the original image and input it to a classifier network. It is inefficient since we

are recomputing very similar features to what was already extracted with the de-

tection network. A better approach would be to use intermediate features of the

detection network along with a classifier on top of them in order to recognize the

object. Moreover, training a detection and recognition network together can deal

better with overfitting.

2.2 Human Robot Interaction

Autonomous robots have become a consistent part of the manufacturing process in

large companies. However, due to their limitations in terms of tasks that they can

perform, their usage in smaller companies or household are less viable. Such en-

vironments require more flexible robots that can perform a range of tasks without

needing to go through a rigorous reprogramming of the robot every time. Especially

since the reprogramming needs to be done by experts. While robots with full au-

tonomy are not yet available for these scenarios, there exists a great opportunity for

other solutions. The human-robot collaboration paradigm is one of those solutions.

Human-Robot Interactions (HRI) spans a broad range of robots and applica-

tions. There are several factors that affect the design of an HRI system. The list

below, enumerates the key elements.

• Human Proximity: Depending on the physical location of the robot and the

user, the HRI system needs to be modified. If the robot and the user are in

the same location, the human can preserve the environment through its own

sensor. But, if the robot is in a remote location, the user’s sole source of

information is what the robot is transmitting.

• Robot’s Design: The HRI system is limited by the robot’s capabilities. For

example, robotic arms are ideal for physical interaction but they have a very
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short range. In the other end, there are UAV’s with extreme range but close

to none physical interaction.

• Medium and Form of the Communication HRI systems can be designed

to support one or more type of communications medium (speech, gesture,

physical, etc). They can also define their own communication protocols (how

a message is interpreted by either party).

• Application The application directly influences the choice for the HRI sys-

tem. For example, designing an interaction software for an arm robot for

surgery and another arm robot for operating in space is very different. Even

though the hardware is quite similar, the type of applications that are meant

for drastically change the design. For the space robot, latency and gravity

should be taken into account. For a surgical robot, accurate haptic feedback

and exact workspace boundaries are important.

• Autonomy HRI systems can differ based on the level of the autonomy that

is expected from the robot. In one end, there are fully autonomous robots

that operate near humans. Roomba vacuum robot is a great example of such

systems where it only operates based on it sensory inputs. At the other end

of the spectrum, there are teleoperated robots that are fully controlled by the

human user.

A right combination of autonomy and interaction, however, could do much

better than these two extremes. Semi-autonomy a incorporates advantages of

both systems to overcome their disadvantages. In this paradigm, the human

does not attain the full control of every actuator and will let the robot take care

of laborious part of the control. At the same time, the robot can utilize human

guidance which circumvents difficult high-level reasoning by the robot.

A good example is [59]. Understanding the concept of making pizza, what

are the ingredients are or how to combine them is extremely challenging for

robots. At the same time, the physical aspect of the task is too repetitive

and time consuming for humans. A good collaboration can form where the

human instructs the robot on how to make a pizza and the robot takes care of
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the physical part2.5.

Figure 2.5: The pizza maker robot using human robot interaction proposed by [59].
The human instructs the robot about the process using a combination of gestures
and pointing. The robot percepts these instruction and performs the action

In the past, the main focus of HRI was to develop more convenient ways for

humans to control robots [22]. A shift in paradigm has brought the focus to ways

to improve robot’s understanding of humans’ methods of communications for a

more humanly natural interaction. Main modalities of natural communications are

[10], speech, body language, facial expressions, and physical interaction. The term

”natural” refers to the fact that no prior knowledge or specific device is needed for

the human to be able to communicate with the robot. This requirement places a

burden on the robot’s perception module as it needs to understand human affect

through these medians. Such robots are also called social robots.

In the following, I will review prominent works that have addressed perception

problems for Social HRI systems. But first, lets look at three main components of

a social HRI system.

• Perception: Possibly, the most important part of a social HRI robot. It is
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responsible for converting raw signals that sensors have received from the

environment to something meaningful for the robot. A few examples are

mapping, image recognition/detection/tracking, voice recognition, and etc.

• Intermediate: This module encapsulates a robot’s world representation. One

can also refer it as the brain. It is responsible for using the information from

the perception in decision making. For example, a nurse robot should give

appropriate drugs to patients. A face recognition signal is provided by the

perception. Intermediate here, should categorize patients by their faces and

administer correct drug for each.

• Action: The last component is acting. At this point, the robot has perceived

the world and made a decision based on it, now, it wants to perform an action

or communicate its conclusion to the human. The action module will do

so through different medias such as speech synthesis, gesture, digital (text,

images), facial expression, etc.

Figure 2.6: Examples of social robots. a) Rackham [15] is a representative robot
that operates as a tour guide. b) Asimo [29] is a humanoid capable of showing
human-like characteristics. It has been used for HRI studies. c) ICub [51] is a
child-like robot with dexterous hands and several perception modules to detect and
track objects of interests. d) Kismet [9] one of the earliest social robots. It can
communicate using facial expressions.
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Two of earliest successful works are Kismet by MIT [9] and Asimov by Honda

[29]. Asimov is a humanoid robot capable of showing human-like characteristics.

It has been used as an assistant that collaborates with humans. Kismet has facial

features and can use it to some extent to communicate. It has been widely used for

HRI studies.

ICub [51] is another example of social robots that is mostly designed for further

study on this subject. It is built similar to a 5-year-old in shape. It has dexterous

hands and neck and can manipulate objects and track them with its head. It is

capable of recognizing faces and detecting and tracking humans.

Social robots have been used as representatives or tour guides as well. RobotX

[32] and Rackham [15] were tour guides at Swiss national science expo and the

BioSpace Exhibition, respectively. They were responsible for communicating with

the guests and ask their desired destination and guide them to there. They were

equipped with speech recognition and synthesis and navigation modules. Their

other capabilities include, face recognition, motion detection, and gesture classifi-

cation.

16



Chapter 3

Recurrent Fully Convolutional
Networks for Video Segmentation

The recent trend in convolutional neural networks has dramatically changed the

landscape in computer vision. The first task that was improved with this trend

was object recognition [38] [68] [70]. An even harder task that greatly progressed

is semantic segmentation, which provides per pixel labelling as introduced in [46]

[81] [77]. In [46] fully convolutional network was introduced. These networks yield

a coarse segmentation map for any given image, and it is followed by upsampling

within the network to get dense predictions. This method enabled an end-to-end

training for the task of semantic segmentation of images. However, one missing

element in this recent trend is that real-world is not a set of static images. Large

portion of the information that we infer from the environment comes from motion.

For example, in an activity recognition task, the difference between walking and

standing is only profound if you consider a sequence of images.

The conventional Convolutional Neural Networks (CNN) are not designed to in-

clude temporal changes. The simplest way to include temporal information in CNN

is to concatenate multiple frames and feed it as a single input. Small variations of

this method are used for context classification on one million youtube videos [35].

Surprisingly, it could not improve on single frame prediction by much which can

indicate the inefficiency of this approach. Michalski et al. [48] created a network

which learns transformations between frames of a long video sequence. In [72] a

convolutional restricted Boltzman machine is introduced which learns optical-flow-
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Figure 3.1: Overview of the Proposed Method of Recurrent FCN. The recurrent
part is unrolled for better visualisation

like features from input image sequence. Another proposed method [52] uses Re-

current Neural Networks (RNN) which have shown their power in different tasks.

It introduces a combination of CNN and RNN for video segmentation. However,

their RNN architecture is sensitive to initialization, and training is difficult due to

the vanishing gradient problem. Their design does not allow usage of a pre-trained

network and it cannot process large input images as the number of parameters in

their network grows exponentially with the input size.

Several architectures are proposed that aim to solve the main bottleneck of re-

current networks namely, vanishing or exploding gradients. In [30] Long Short

Term Memory (LSTM) is presented. It is used for various applications such as

generating sequences for text [24], dense image captioning [33] and video cap-

tioning [21]. Another recently proposed architecture is the Gated Recurrent Unit

(GRU) [13]. It was shown in [14] that LSTM and GRU outperform other tradi-

tional recurrent architectures, and that GRU showed similar performance to LSTM

but with reduced number of parameters. One problem with these previous archi-

tectures is that they only work with vectorized sequences as input. Thus, they are

incapable of handling data where spatial information is critical like images or fea-

ture maps. Another work [4] uses convolutional GRU for learning spatiotemporal

features from videos that tackle this issue. In their work, experiments on video

captioning and human action recognition were conducted.
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The usage of fully convolutional networks (FCN) combined with recurrent gated

units can solve many of the pitfalls of the previous approaches. In this paper, we

present : (1) A novel architecture that can incorporate temporal data directly into

FCN for video segmentation. We have chosen the Recurrent Neural Network as the

foundation of our structure since it is shown to be effective in learning temporal dy-

namics. (2) An end-to-end training method for online video segmentation that does

not need to process data offline. Overview of the suggested method is presented in

Figure 3.1, where a sliding window over the frames is used and passed through the

recurrent fully convolutional network(RFCN). To our knowledge, this is the first

work that presents a recurrent fully convolutional network for pixel-wise labeling.

3.1 Methodology

In an abstract view, we use a recurrent fully convolutional network (RFCN) that

utilizes the temporal as well as spatial information for segmentation. The general

theme in the design is to use recurrent nodes that combine fully convolutional net-

work with a Recurrent unit(RU). The recurrent unit denotes either LSTM, GRU or

Conv-GRU (which is explained in 3.1.2). In all of our networks, we aim for online

segmentation in contrast to batch/offline version which needs the whole video as in-

put. This is done by using a sliding window over the frames. Then, each window is

propagated through the RFCN and yields a segmentation corresponding to the last

frame in the sliding window. The recurrent layer can be employed to a sequence of

feature maps or heat maps where each element in the series is the result of an image

forward pass through an FCN network (Figure 3.1). The whole network is trained

end-to-end using pixel-wise classification logarithmic loss. We designed different

network architectures to this end using conventional and also convolutional recur-

rent unit 3.1.

3.1.1 Conventional Recurrent Unit for Segmentation

Our first architecture uses the Lenet network converted to a fully convolutional net-

work as the base. Lenet is a well known and shallow network and as it is common,
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we used it for early experiments. We embed this model in a recurrent node to allow

the network to use temporal data. In Table 3.1, RFC-Lenet is delineating this archi-

tecture. The output of deconvolution inside the fcn is a 2D map of dense predictions

that is then flattened into 1D vector as input to the recurrent unit. The recurrent unit

takes a vector from each frame in the sliding window and outputs the segmentation

of the last frame (Figure 3.1).

Note that utilizing the first architecture requires using large weight matrix in

the RU layer since it operates on the flattened vectors of the full sized image. To

lessen this problem, we can apply the deconvolution layer after the recurrent node.

This will lead to our second architecture. The RU receives a vector of the flattened

coarse map as its input and outputs the coarse predictions of the last frame in the

sliding window. Then, deconvolution of this coarse map is used to get dense predic-

tions. This proved to be useful with larger input images that lead to large number

of parameters in the RU. Decreasing their size, allows the optimizer to search in

a smaller state space and find a more generalized local minima in a faster training

time. RFC-12s in the Table 3.1 is an example of this approach. This network is

slightly modified version of the Lenet FCN. The main difference is that now the

deconvolution comes as the last step after recursion being done.

3.1.2 Convolutional Gated Recurrent Unit (Conv-GRU) for Seg-
mentation
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Figure 3.2: The architecture of RFC-VGG. Images are fed frame by frame into a recurrent FCN. A Conv-GRU layer is applied on the
feature maps produced by the preceding network at each frame. The output of this layer goes to one more convolutional layer to generate
heat maps. Finally, a deconvolution layer up-samples the heat map to the desired spatial size.
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Conventional recurrent units are capable of processing temporal data however,

their architecture is not suitable for working on images/feature maps for two rea-

sons. 1) weights matrix size, 2) ignoring spatial connectivity. Assume a case where

a recurrent unit is placed after a feature map with the spatial size of h×w and have a

number of channels c. After flattening, it will turn into a c×h.w long matrix. There-

fore, weights of the recurrent unit will be of size c × (h.w)2 which is power four

of spatial dimension. These matrices for weights can only be maintained for small

feature maps. Even if the computation was not an issue, such design introduces too

much variance in the network which prevents generalization. In Convolutional re-

current units, similar to regular convolutional layer, weights are three dimensional

and they convolve with the input instead of dot product. Accordingly, the cell’s

model, in the case of a GRU architecture, will turn into equations 3.1 where the dot

products are replaced with convolutions. In this design, weights matrices are of size

kh × kw × c× f where kh, kw, c and f are kernel’s height, kernel’s width, number

of input channels, and number of filters, respectively. In Figure 2.4 the operations

applied on the input and the previous step will all be convolutions instead. Since

we can assume spatial connectivity in feature maps, kernel size can be very small

compared to feature map’s spatial size. Therefore, this architecture is much more

efficient and weights are easier to learn due to smaller search space.

We employ this approach for segmentation in a fully convolutional network. It is

possible to apply this layer on either heat maps or feature maps. In the first case,

the output of this layer will directly feed into the deconvolution layer and produces

the pixel-wise probability map. In the latter case, at least one CNN layer needs to

be used after the recurrent layer to convert its output feature maps to a heat map.

RFC-VGG in the Table 3.1 is an example of the second case. It is based on VGG-

F [68] network. Initializing weights of our filters by VGG-F trained weights, al-

leviates over-fitting problems as these weights are the result of extensive training

on the imagenet. The network is cast to a fully convolutional one by replacing the

fully connected layers with convolutional layers. The last two pooling layers are

dropped from VGG-F to allow a finer segmentation. Then a convolutional gated

recurrent unit is used followed by one convolutional layer and then deconvolution
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for up-sampling. Figure 3.2 shows the detailed architecture of RFC-VGG.

zt = σ(Whz ∗ ht−1 +Wxz ∗ xt + bz) (3.1a)

rt = σ(Whr ∗ ht−1 +Wxr ∗ xt + br) (3.1b)

ĥt = Φ(Wh ∗ (rt � ht−1) +Wx ∗ xt + b) (3.1c)

ht = (1− zt)� ht−1 + z � ĥt (3.1d)

3.2 Experiments

This section presents our experiments and results. First, we describe the datasets

that we used then, we discuss our training methods and hyper-parameters settings.

Finally, quantitative and qualitative results are shown.

All the experiments are performed on our own implemented library. To our

knowledge, there is no open source framework that accommodates RFCNN archi-

tecture. Therefore, we built our own library on top of Theano [5] to create arbitrary

networks that have can have FCN as a recursive module. Key features of this imple-

mentation are: (1) Supports networks with the temporal operation for images. The

architecture can be any arbitrary CNN and an arbitrary number of recurrent layers.

The network supports any length input. (2) Three gated architecture, LSTM, GRU,

and Conv-GRU is available for the recurrent layer. (3) Deconvolution layer and skip

architecture to support segmentation with FCN.

3.2.1 Datasets

In this paper four datasets are used: 1) The Moving MNIST. 2) Change detection

[23]. 3) Segtrack version 2 [43]. 4) Densely Annotated VIdeo Segmentation (Davis)

[53]. Figure 3.4 shows samples from the latter two.

The Moving MNIST dataset is synthesized from original MNIST by moving

the characters in random but consistent directions. The labels for segmentation is

generated by thresholding input images after translation. We consider each trans-

lated image as a new frame. Therefore we can have arbitrary length sequence of

images.
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Figure 3.3: Qualitative comparison between FCN and RFCN on SegtrackV2

Change Detection Dataset [23] This dataset provides realistic, diverse set of

videos with pixel-wise labeling of moving objects. The dataset includes both in-

door and outdoor scenes. It focuses on moving object segmentation. In the mo-

tion detection, we were looking for videos that have similar moving objects, e.g.

cars or humans so that there would be semantic correspondences among sequences.

Accordingly, we chose six videos: Pedestrians, PETS2006, Badminton, CopyMa-

chine, Office, and Sofa.

SegTrack V2 [43] is a collection of fourteen video sequences with objects of

interest manually segmented. The dataset has sequences with both single or multi-

ple objects. In the latter case, we consider all the segmented objects as one and we

perform foreground segmentation.
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Figure 3.4: Qualtitative results over Segtrack V2 and Davis datasets, where top
image has overlay of FC-VGG and bottom has RFC-VGG segmentation.
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Table 3.1: Details of proposed networks. F (n) denotes filter size of n × n. P (n)
denotes total of n zero padding around the feature map. S(n) denotes stride of
length n for the convolution. D(n) denotes number of output feature maps from a
particular layer n for a layer (number of feature maps is same as previous layer if
D is not mentioned).

Network Architectures
RFC-Lenet RFC-12s RFC-VGG
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Conv: F(11), S(4),
P(40), D(64)

Relu Relu Relu
Pool 2×2 Pool 2×2 Pool 3×3

Conv: F(5),
D(50)

Conv: F(5),
D(50)

Conv: F(5), P(2)
D(256)

Relu Relu Relu
Pool(2×2) Pool(2×2) Pool(3×3)
Conv: F(3),

D(500)
Conv: F(3),

D(500)
Conv: F(3), P(1)

D(256)
Relu Relu Relu

Conv: F(1), D(1) Conv: F(1), D(1) Conv: F(3), P(1)
D(256)

- -

Relu
Conv: F(3), P(1)

D(256)
Relu

Conv: F(3), D(512)
Conv: F(3), D(128)

DeConv: F(10),
S(4)

Flatten ConvGRU: F(3),
D(128)

Flatten GRU:
W(100×100)

Conv: F(1), D(1)

GRU:
W(784×784)

DeConv: F(10),
S(4)

DeConv: F(20), S(8)

Davis [53] dataset has fifty high resolution and densely annotated videos with

pixel accurate groundtruth. The videos include multiple challenges such as occlu-

sions, fast motion, nonlinear deformation and motion blur.

Synthia [61] is a synthetic semantic segmentation dataset for urban scenes. It

contains pixel level annotations for thirteen classes. It has over 200,000 images

with different weather conditions (rainy, sunset, winter) and seasons (summer, fall).
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Since the dataset is large only a portion of it from Highway sequence for summer

condition is used for our experiments.

CityScapes [17] is a real dataset focused on urban scenes gathered by cap-

turing videos while driving in different cities. It contains 5000 finely annotated

20000 coarsely annotated images for thirty classes. The coarse annotation includes

segmentation for all frames in the video and each twentieth image in the video se-

quence is finely annotated. It provides various locations (fifty cities) and weather

conditions throughout different seasons.

3.2.2 Results

The main experiments are conducted using Adadelta [80] for optimization that prac-

tically gave much faster convergence than standard stochastic gradient descent. The

logistic loss function is used and the maximum number of epochs used for the train-

ing is 500. The evaluation metrics used are precision, recall, F-measure and IoU,

shown in equation 3.2 and 3.4 where tp, fp, fn denote true positives, false positives,

and false negatives respectively.

precision =
tp

tp+ fp
, recall =

tp

tp+ fn
(3.2)

F −measure =
2 ∗ precision ∗ recall
precision+ recall

(3.3)

IoU =
tp

tp+ fp+ fn
(3.4)

Table 3.2: Comparison of RFC-VGG with its baseline counterpart on DAVIS and
SegTrack

Precision Recall F-measure IoU

SegTrack V2
FC-VGG 0.7759 0.6810 0.7254 0.7646

RFC-VGG 0.8325 0.7280 0.7767 0.8012

DAVIS
FC-VGG 0.6834 0.5454 0.6066 0.6836

RFC-VGG 0.7233 0.5586 0.6304 0.6984
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In this set of experiments, a fully convolutional VGG is used as a baseline de-

noted as FC-VGG. It is compared against the recurrent version RFC-VGG. The

initial five convolutional layers are not finetuned and are from the pretrained VGG

architecture to avoid overfitting the data. The results of the experiments on Seg-

TrackV2 and Densely Annotated VIdeo Segmentation (DAVIS) datasets are pro-

vided in 3.2. In these experiments, the data of each sequence is divided into two

splits with half as training data and the other half as keep out test data. It is ap-

parent in the results that RFC-VGG outperforms the FC-VGG architecture on both

datasets with about 3% and 5% on DAVIS and SegTrack respectively.

Figure 3.4 shows the qualitative analysis of RFC-VGG against FC-VGG. It

shows that utilizing temporal information through the recurrent unit gives better

segmentation for the object. This can be explained due to the implicit learning of

the motion that segmented objects undergo in the recurrent units. It also shows

that using conv-GRU as the recurrent unit can enable the extraction of temporal in-

formation from feature maps due to the reduced parameter set. Thus the recurrent

unit can learn the motion pattern of the segmented objects by working on richer

information from these feature maps. It’s also worth noting that the performance of

the RFCN network depends on its baseline fully convolutional counter part. Thus

with an enhanced fully convolutional network using skip architecture, to get finer

segmentation, the recurrent version should improve as well.
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Figure 3.5: Qualitative results of experiments with Synthia, where network predic-
tion are overlaid on the input. Odd rows are FC-VGG output and Even rows are
their corresponding RFC-VGG outputs.
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Figure 3.6: Qualitative results of experiments with cityscapes datasets, where net-
work prediction are overlaid on the input. Odd rows are FCN-8s and even rows are
their corresponding: RFCN-8s output.
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Table 3.3: Semantic Segmentation Results on Synthia Highway Summer Sequence for RFC-VGG compared to FC-VGG

Mean Class IoU
Per-Class IoU

Car Pedestrian Sky Building Road Sidewalk Fence Vegetation Pole

FC-VGG 0.755 0.504 0.275 0.946 0.958 0.840 0.957 0.762 0.883 0.718

RFC-VGG 0.812 0.566 0.487 0.964 0.961 0.907 0.968 0.865 0.909 0.742

Table 3.4: Semantic Segmentation Results on CityScapes for RFCN-8s compared to FCN-8s

Category IoU
Per-category IoU

Flat Nature Sky Construction Vehicle

FCN-8s 0.53 0.917 0.710 0.792 0.683 0.585

RFCN-8s 0.565 0.928 0.739 0.814 0.719 0.652
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The same architecture was used for semantic segmentation on synthia dataset

after modifying it to support the thirteen classes. A comparison between FC-VGG

and RFC-VGG is presented in terms of mean class IoU and per-class IoU for some

of the classes. Table3.3 presents the results on synthia dataset. RFC-VGG has 5.7%

over FC-VGG in terms of mean class IoU. It also shows the per-class IoU gener-

ally improves in the case of RFC-VGG. Interestingly, the highest improvement is

with the car and pedestrian class that benefits the most from a learned motion pat-

tern compared to sky or buildings that are mostly static. Figure3.6 first row shows

the qualitative analysis on Synthia. The second image shows the car’s enhanced

segmentation with RFC-VGG.

Finally, experimental results on cityscapes dataset using FCN-8s and its recur-

rent version RFCN-8s is shown in Table3.4. It uses mean category IoU and per-

category IoU for the evaluation. It clearly demonstrates that RFCN-8s outperforms

FCN-8s with 3.5% on mean category IoU. RFCN-8s generally improves on the

per-category IoU, with the highest improvement in vehicle category. Hence, again

the highest improvement is in the category that is affected the most by temporal

data. Figure 3.6 bottom row shows the qualitative evaluation on cityscapes data to

compare FCN-8s versus RFCN-8s. The third image clearly shows that the moving

bus is better segmented with the recurrent version. Note that the experiments were

conducted on images with less resolution than the original data and with a reduced

version of FCN-8s due to memory constraints. Therefore, finer categories such as

human and object are poorly segmented. However, using original resolution will

fix this problem and its recurrent version should have better results as well.

3.2.3 Further Analysis

In this section, we present our experiments using conventional recurrent layers for

segmentation. These experiments provide further analysis on different recurrent

units. They also compare end-to-end architecture versus the decoupled one. We

use moving MNIST and change detection datasets for this part.

Images of MNIST dataset are relatively small (28×28) which allows us to test our

RFC-Lenet(a) network 3.1. A fully convolutional Lenet is compared against RFC-
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Lenet(a). Table 3.5 shows the results that were obtained. The results of RFC-Lenet

with GRU is better than FC-Lenet with 2% improvement. But segmentation of

MNIST characters is an easy task as it ends up to learning thresholding. Note also

that GRU gave better results than LSTM.

Table 3.5: Precision, Recall, and F-measure on FC-Lenet, LSTM, GRU, and RFC-
Lenet tested on synthesized MNIST dataset

Precision Recall F-measure

FC-Lenet 0.868 0.922 0.894

LSTM 0.941 0.786 0.856

GRU 0.955 0.877 0.914

RFC-Lenet 0.96 0.877 0.916

The second set of experiments is conducted on real data from the motion detec-

tion benchmark using RFC-12s. Throughout these experiments, the training consti-

tutes 70% of the sequences and 30% for the test set. The experiments compared the

recurrent convolutional network trained in an end-to-end fashion denoted as RFC-

12s with its baseline, the fully convolutional network FC-12s. It is also compared

against the decoupled training of the FC-12s and the recurrent unit. Where GRU

is trained on the probability maps output from FC-12s. Table 3.6 shows the results

of these experiments, where the RFC-12s network had a 1.4% improvement over

FC-12s. We observe less relative improvement compared to using Conv-GRU be-

cause in regular GRU spatial connectivities are ignored. However, incorporating

the temporal data still helped the segmentation accuracy.

3.3 Discussion

We proposed a recurrent fully convolutional network for video segmentation. The

designed network were tested on several datasets and improved the results on all of

them. In the list below different choices for hyper-parameters and their effect on

the results are analyzed.

33



Table 3.6: Precision, Recall, and F-measure on architectures FCN-12s, GRU pre-
training on coarse map from FCN-12s, RFC-12s on six sequences from motion
detection benchmark on the test set. (D) and (EE) indicate the decoupled and the
end-to-end integration of recurrent units with the FCN, respectively.

Precision Recall F-measure

FC-12s 0.827 0.585 0.685

RFC-12s (D) 0.835 0.587 0.69

RFC-12s (EE) 0.797 0.623 0.7

• Number of Layers: It is known that increasing number of layers may cause

overfitting. Yet, the network should have a sufficient depth to be able to

learn the desired task. As the dataset gets more challenging (more classes,

smaller regions, more variance in images) the minimum required depth in-

creases. For example, in the relatively simple SegTrackV2 (binary segmenta-

tion, dominant ROI), even the shallow LeNet could get a good performance.

Cityescapes and Synthia needed significantly deeper networks for a decent

performance. RFCN and FCN acted similarly in this regard.

• Location of the Recurrent Layer: We varied the position of the recurrent

layer from the third layer all the way to last layer. This choice has a signifi-

cant impact on both computation and performance. On early layers where the

feature maps spatial size are large, recurrent layer becomes too expensive to

train. However, we suspect that it could have better captured the dynamics.

Because, multiple pooling layers will make the output insensitive to locations

of the objects in the image which contradicts with extracting dynamics. Gen-

erally, we saw that putting the recurrent layer earlier helps performance given

that it is trained properly (it takes much longer to train as it gets closer to the

firs layer). We were restricted for the choice of this layer by the skip architec-

ture. The recurrent layer should come either after all the skip layers or before

the first one.

• Size of the Moving Window: We tested windows sizes between 1 to 5 (size 1
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would be just an extra convolutional layer with a gate. We observed marginal

change for size 1, as expected. As the size grows, the performance improves

at the cost of more difficult training which eventually reduces the perfor-

mance. We saw a peak at window size of 3. To jump start the training for

larger window sizes, we used trained recurrent layers from networks with

smaller window size as initial weights.

• Training FCN vs RFCN: RFCN networks took about twice as much time as

FCN networks to train. Both networks were trained better using Adadelta vs

SGD. We did not see much sensitivity to the batch-size in either one. Inter-

estingly, we observed that once RFCN gets to a reasonable accuracy, it tends

to improve steadier and smoother than FCN.

RFCN architecture is very generic and allows many extensions. It can be used

to incorporate non-visual series. It can prove very useful for mobile robots or self-

driving car where accurate pose information is available from their SLAM system.

Network can potentially learn a next image predictor from this pose information.

To enforce RFCN to learn the dynamics, one can add optical flow as an auxiliary

objective. This task can be learn simultaneously with the main segmentation objec-

tive.

35



Chapter 4

Incremental Learning through
Human Robot Interaction

A current research aim is to develop robot assistants for helping humans in everyday

manipulation tasks. However, only a few robot platforms have been successful in

home environments. Commercial robots have been designed to perform a specific

task, e.g., robot vacuums, robot lawnmowers. By contrast, multi-purpose robots,

that can perform a broad variety of household tasks are still not realized. One key

reason is that current robots do not interact well with humans. By considering

HRI as a core component during the system design, it will be easier to integrate

robots within humans’ daily activities. Yanco etal [79] conducted a study during

the recent DARPA robotics challenge [55]. Their results show that although every

team used similar methods and technologies, one of the main reasons for different

performance was the quality of the human-robot interface presented to the human

operators during the challenge. Researchers have realized this and instead of aiming

for autonomy, have shifted focus to the user interaction focusing on the human-in-

the-loop paradigm. In this paradigm, the human’s knowledge and guidance are

used whenever the robot cannot make a decision on its own [25,40,58]. To provide

this guidance, it is important to have the capacity to establish a common ground

knowledge (discourse) shared between the human and robot, just as humans do.

For example, a new apprentice in a metal workshop needs to quickly get familiar

with different types of materials (Steel, bronze, nylon, etc.) and machines (Lathe,

drilling, milling, boring, shaping etc.). Otherwise, it will be difficult to understand

36



the information that is passed to it. Therefore, a more experienced worker tries to

first establish a common ground knowledge, like names of tools and materials, by

interacting with the apprentice.
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Figure 4.1: Incrementing robot knowledge through HRI:
A) The human asks the robot to bring the multimeter while working on a circuit
board. The robot does not know what is a multimeter. The human asks for the
robot’s world representation.
B) The robot iterates through the detected objects by pointing and saying each ob-
ject label.
C) The human points and corrects the “multimeter” label which was initially rec-
ognized as a “cell phone”.
D) The robot gets close to the pointed object and collects images of the corrected
object.
E,F) The human asks again to bring the multimeter. This time the robot succeeds in
his task. Demonstration of our interface can be seen in the supplementary video [3].

The same principals should also be considered for robots. However, robots need
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to have a basic world understanding before they can start learning from guidance.

This basic understanding can be in terms of object localization and object class

recognition. Deep learning was shown to outperform many classic computer vision

approaches in this matter. Overfeat [65] was one of the earliest attempts. A convo-

lutional neural network (CNN) was used to generate bounding boxes of each object

and label them according to their class. This work used a regression network to

predict a possible bounding box for an object given a grid of proposed regions with

different scales. In this approach, increasing number of region proposals proved to

be both crucial for accuracy and at the same time, unfortunately, computationally

expensive. Therefore, more recent attempts [60] [33] utilized Region Proposal Net-

works (RPN) to regress bounding boxes. RPN can operate on feature maps instead

of the input image and by doing so, it bypasses the need for recomputing the feature

maps.

CNN models have achieved the state of the art in object recognition on a wide

variety of datasets. However, their implicit assumption is that all the possible ob-

ject categories are included in the dataset for batch off-line training. Unfortunately,

real world recognition is different. At prediction time, the algorithm will frequently

face objects that are not in the training data or they can look very different compared

to training examples. Accordingly, the need for updating robot’s knowledge over

time arises. In the literature these problems are addressed by Incremental Machine

Learning (IML) [18, 54] and Open Set Recognition(OSR) [6, 11, 63, 64]. The main

focus of the IML is to handle new instances of known classes. OSR methods, how-

ever, need to deal with two more challenges. One is to continuously detect novel

categories and two is to update the method so that it will include the new category.

These are difficult problems to solve, especially, recognizing an object as a novel

class since it could involve a long reasoning chain. For example, a sugar box and a

detergent box look very similar and without semantic cues like reading the label or

using the context that they are in, it is near impossible to differentiate them. How-

ever, we can utilize a robot’s discourse as a solution to this problem. In particular,

robots can interact with humans and get guidance or instructions from them. They

are also able to explore the environment using an onboard camera.
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Along with this general direction, we propose a new method to improve the

robot’s visual perception incrementally. Our purpose is to recognize and localize

objects. Furthermore to have the capacity of learning new objects and correcting

false interpretations through HRI. Our contribution is two-fold. (1) A deep learning

based localization and recognition method that uses our robotic-vision interface to

incrementally improve its object knowledge through interaction with a human. (2)

A robot-vision system capable of interacting naturally with a human to establish a

common ground knowledge of the objects in a shared environment.

4.1 Incremental Learning from Humans

In the literature, robot learning from humans is commonly named as Programming

by Demonstration (PbD), Learning from Demonstration (LfD) or Imitation Learn-

ing. It should be contrasted with the automatic learning methods that do not involve

active human interaction during the learning process such as reinforcement learn-

ing. The main body of work in this field focuses on learning motion trajectory

from user demonstrations to perform tasks. While improving the robot’s percep-

tual prowess is neglected in the field, still, some of the fundamental challenges

are shared. In particular, interfaces for information exchange and methods for in-

cremental learning. A brief summary of research on these challenges is provided

below.

Since the main focus in the field was to learn trajectories that were required to do

actions, most interfaces are optimized to capture teacher’s trajectories. Tracking hu-

man body motion [39] [73] [36] [49], using kinesthetic teaching where the human

guides the robot to perform the task [62] and teleoperation where the teacher con-

trols robots effectors directly through an interface [16] [26] are the main approaches

for this purpose. Even though these interfaces are good for recovering the demon-

strated trajectory, they are not natural in terms of human interaction. So other, more

natural, interfaces were developed. Using speech [12] [20] and gestures [27] as
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additional information are among these. In most incremental learning methods, the

robot uses new demonstration to bootstrap its current skill and gradually improving

it [82].

4.1.1 Deep Learning for Robotics

The success of deep learning in computer vision has inspired some application in

robotics. One of the main challenges of using robots in an unrestricted environment

was the lack of robust and generic algorithms. Deep learning (DL) methods showed

that now it is possible to achieve accurate and robust performance in many appli-

cations. Particularly, image classification and natural language processing have

benefited greatly from this new technology.

DL models can be used as a pre-processing module, mostly on images and lan-

guage, that converts raw sensor data into a lower dimensional feature space that the

can be used for control. Detecting robotic grasp [41] is using raw images to detect

grasping point for various objects which can later be used for grasping. DL can

also be used in an end-to-end fashion where the network is responsible for process-

ing raw input all the way to generating the control signal for the robot’s effectors.

Levine et al. [42] implemented such network and demonstrated its feasibility by

completing a few tasks. The idea of end-to-end networks for control is appeal-

ing, as in principle, it alleviates the need for detailed engineering for each module.

However, it became apparent that in these networks many other hand tunings of hy-

perparameters and special care for training is needed and at the end, they are very

limited in practice. The main reason is that all the approaches that have proposed

so far, need much more training data than what is practically viable. This forced

the designer to come up with training speed-ups such as learning from demonstra-

tions techniques. Moreover, it is yet to be shown that deep network are capable of

learning highly complex decision making needed in robots even if enough data is

available. Therefore, we think that using DL enablers as modules is more practical

at the moment. Because, these modules have trained on appropriate amount of data

for a particular task and have a decent performance on it.
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Object Localization and Detection Networks

The goal of object localization and detection methods is to localize all the objects

in a scene, commonly by bounding boxes and label them according to their class.

Such methods are quite useful for scene understanding and many applications of

them can be envisioned in robotics. Overfeat [65] was one of the earliest attempts

for the used CNN for this task. This work used a regression network to predict a

possible bounding box for an object given a grid of proposed regions with different

scales. In this approach, increasing number of region proposals proved to be both

crucial for accuracy and at the same time, computationally expensive. Therefore,

more recent attempts [60] [33] utilized Region Proposal Networks (RPN) to regress

bounding boxes. RPN can operate on feature maps instead of the input images and

by doing so, it bypasses the need for recomputing the feature maps. The details of

this method will be further discussed later.

4.1.2 Multi-Class Open Set Recognition

CNN models have achieved the state of the art in object recognition on a wide va-

riety of datasets. Their implicit assumption is that all the possible object categories

are included in the dataset. However, the situation in the real world recognition is

widely different. At prediction time, the algorithm will face objects that were not

in the training datasets. This is especially important for household and assistive

robots. Objects in each household and workplace are different and having an inclu-

sive dataset of all of these objects is not possible. The problem is not only about

objects. For example, an assistant robot in a hospital should treat each patient dif-

ferently and it needs to recognize the patient to do so. But, the current recognition

methods cannot do better than recognizing the patient only as a person.

This problem is addressed by Incremental Machine Learning(IML) and Open Set

Recognition(OSR) in the literature. Main focus of the IML [54] [18] is to handle

new instances of known classes. OSR methods [64] [63] [6] however, need to deal

with two more challenges. The first is to continuously detect novel categories and

the second is to update the method so that it will include the new category.
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4.2 system

Figure 4.2: System block diagram.

Our system uses a 7-DOF WAM arm [2] instrumented with eye-in-hand-cameras,

a microphone, Kinect camera and speakers. It is composed of 7 modules as shown

in Fig. 4.2. All modules are fully integrated with ROS [56].

• The speech recognition module integrates the CMU Sphinx toolkit [1]. It

provides basic word and sentence recognition used by the robot to shift states

during the interaction.

• The speech synthesis module relies on the Festival speech synthesis sys-

tem [8] and provides feedback to the human in a verbal channel.

• The object localization and detection module provides labels and 2D loca-

tions of the objects in the scene. For a detail description see section 4.3.

• The Incremental learning module uses HRI, to permit changes in the robot’s

world representation. For a detail description see section 4.3.

• The gesturing module is based on our previous work [57,59], where we pro-

posed a non-verbal robot-vision system capable of inferring human pointing
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and perform simple pick and place tasks based on human gesture commands.

We integrate this capability into our system to reduce speech description and

make the interaction more human like.

• The robot controller module commands robot movements and generates:

pointing gestures, robot data collection and pick-up object actions [59].

• The interaction controller module is in charge of orchestrating the complete

system. It supports the different interactions that are shown in Fig. 4.1 and

it is based on a finite state machine that is triggered by gesture or speech

coming from the human and/or robot.

In Fig. 4.1 four important interactions of our system are highlighted. Verbal

interaction, by using both speech recognition and synthesis the human and the

robot can establish basic verbal communication. The world representation refers

to both verbal and gesture interaction performed by the robot. The recognition and

localization module provides 2D bounding boxes and labels of the detected objects.

The system verbally informs the object class and at the same time the robot arm

points to the object 3D centroid. The centroid is calculated by using the RGB to

depth camera correspondence from the objects bounding box (See Fig. 4.3). In the

correct interaction, human uses both verbal and gesture communication to anno-

tate a particular object in the scene that needs to be corrected. Fig 4.3 shows both

RGB and Point cloud visualization. The head and hand of the human are tracked as

two points. With a verbal triggering, a 3D ray is constructed from these two points,

hitting the target object. The robot is then commanded to collect data with this 3D

object location. The data collection is performed through the eye-in-hand camera

by moving the end-effector in a parameterized helix curve keeping the camera fac-

ing to the object location. During the collection state, a TLD tracker [34] is used to

guarantee the cropping of the object during the data collection (See Fig.4.6). The

initial bounding box of the tracker is given as the whole image when the robots

starts the collection close to the object.
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Figure 4.3: A) RGB visualization. Objects in the scene are detected and localized.
The human points to the rubik’s cube to correct its label. Note: the font and the
line-width of the bounding boxes are enlarged from the original image for clarity.
B) Point cloud visualization. Using the 2D to 3D correspondence, 2D bounding
boxes centroids are used to find 3D objects centroids (green spheres).
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4.3 Methodology

An interaction example using our proposed interface is shown in Fig. 4.1. Our ex-

ample shows a person soldering a circuit board. During this work, he needs to use a

multimeter, that is out of his reach. He asks his robot assistant to bring the multime-

ter. (Fig. 4.1A). The robot is equipped with a recognition module. The multimeter

class was not found as a recognizable object. The person then asks the robot what

it sees (given its current world representation) (Fig. 4.1A), to figure out if the robot

is detecting the object under another name/category or if it does not detect it at all.

Through speech, the robot communicates the type of detected objects in the scene,

and by using pointing gestures the robot provides the objects’ locations (Fig. 4.1B).

Pointing allows the robot to skip complex spatial sentences, (e.g. ”from my point of

view the laptop is on the left top corner of the table”). After communicating which

objects were recognized and localized by the robot the human can interact through

gestures and speech to correct or add a particular object (Fig. 4.1C), in this case,

the multimeter. After the addition or correction, the robot collects several images

on-line of the target object (Fig. 4.1D) which is used to modify the current world

representation. This procedure needs to be done only once for each new class but

can be repeated to achieve better performance. Finally, the person asks again to

bring the multimeter (Fig. 4.1E). This time the robot succeeds on recognizing the

object and executes a picking task to bring the multimeter. (Fig. 4.1F).

In the following two subsections, we describe our localization and recognition net-

work and our open-set recognition approach.

4.3.1 Localization and Recognition Network

The network can be divided into three parts, see Fig.4.4. The first part is a fully con-

volutional network that extracts feature maps from the input image. Second, is the

localization network that takes feature maps from the first part and finds the possi-

ble bounding boxes of objects and objectness score corresponding to each bounding

box. The third part is the recognition network. It takes a fixed size feature map input

corresponding to each bounding box and produces predictions for each bounding
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box.

We used the first 30 layers of vgg-16 [68] (counting pooling and activation layers),

trained on image-net [38] for the first part of the network. We chose vgg-16 due to

its state of the art performance in object recognition.

The structure of our localization network is based on the Densecap [33] which in

turn is a modified version of the Faster RCNN [60]. In this model, the localization

receives a feature map that is computed by a convolutional layer. Using this feature

map and convolutional anchors, a regression network finds the transformation that

is required to take an anchor to a bounding box of an object. Convolutional anchors

can be viewed as a fixed and multi-scale proposed bounding boxes in the image

space that are centered to the spatial correspondence of a pixel in the feature map.

Using this scheme, greatly improves the inference time. After predicting a bound-

ing box, the recognition network finds a fixed size feature map corresponding to

that bounding box. It does so by first, projecting the bounding box into feature map

space, then transferring the arbitrary size selection of the feature maps into a fixed

size, using bi-linear interpolation. The network also has a regressor branch that

predicts the objectness of the fixed size feature map.

For the recognition network, we again used the last three fully connected layer of

vgg-16 as our recognition structure with the weights initialized by the weights of a

trained vgg-16 model. Same as the Densecap, we predict the objectness score and

position of bounding box one more time in the recognition network. Lastly, this

network predicts the category of the object inside of each bounding box.

For the base training of our model, we used Microsoft COCO dataset [45]. This

dataset consists of about 328 thousand images with 2.5 million labeled instances of

80 common objects in their common context. We used the objects’ bounding box

data and their category as our supervised data. The loss function is defined in 4.1.

In this equation ŷbb1, ŷbb2,ŷo1, ŷo2, ŷc are prediction for first and second bounding

box regression, first and second objectness score regression and classification prob-

ability, respectively. ybb, yo, yc are ground truth for locations of bounding boxes,

binary value indicating the existence of an object and the one hot vector indicating

the category, respectively. k is the number of proposed regions for each image and
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flogloss is the logarithmic loss function.
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(4.1)

Figure 4.4: Main recognition and localization model. Components from left to
right, Conv Net: first 30 layers of VGG16 [68] (counting pooling and activation
layers). Localization Net: Object proposal and detection network based on Dense-
cap [33]. FC Net: Last 6 fully connected layers of VGG16. Loss Function: ex-
plained in Eq.4.1

During the training, the weights of the first part of the network are kept constant.

Since it is taken from a trained model, they are suitable for extracting features. The

weights of the rest of the network are initialized with samples taken from a normal

distribution with zero mean and 0.01 deviation [38]. As for the optimizer, we use

ADAM [37] due to its easy tuning. The initial learning rate is set to 10−4. To

reduce inference time, we reshape all images to 400 × 400 which is smaller than

conventional implementations and we also decreased the number of bounding box

proposals to 200.
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4.3.2 Open-Set Recognition Facilitated by Human Guidance

As mentioned before, discriminating between a novel and known objects is one

of the main challenges in Open-set Recognition. However, human guidance can

circumvent this problem. The user can reliably introduce novel objects to the sys-

tem and therefore the incremental learning approach can use this guidance as the

ground truth. Accordingly, in this section, we assume that reliable positive samples

of a novel object is given to the incremental learning module through the user’s in-

teraction with the robot.

The incremental learning method has to have four main features for it to be feasible

for a continuous and life long learning through HRI. 1) Allow Adding new classes.

2) Update its knowledge on already known classes as new human guidance comes

in. 3) Preserve its learned knowledge after possibly many training phases. 4) Fi-

nally, it should not require storing the base data and new data inputs.

We investigated two approaches and compared their performance. First Approach

We start off with our recognition network explained in 4.3.1 and trained with base

dataset. We aim to improve it over time through HRI. To enable the network to

recognize a new class, we modify the last fully connected layer that performs the

classification by adding a new set of weights corresponding to the new class. Con-

cretely, if we denote the weights of this layer as Θn = [θ1θ2...θn] where θi is the ith

column of the weight matrix then,

Θn+1 = [θ1θ2...θnθn+1]

θn+1 is a randomly initialized vector. For adding the new category only the weights

in this layer is modified and the rest of the network stays constant. Using one-vs-all

classification scheme, the newly added weight vector is trained. We use the first

part of the recognition and localization network to extract features from input im-

ages and using these features, we optimize the weights for the classification loss

function. Stochastic Gradient Descent is used for training this layer.

To perform one-vs-all classification, in addition to positive samples, a set of neg-

ative samples is also needed. We extract a subset of images from MS-COC0 and

images that were taken for the already added classes. We assign a probability for
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drawing samples from each known class based on how likely it is that they get mis-

taken with the new class 4.2. In equation 4.2 Ci denotes the i-th class and Xn+1 is

the positive samples set. This sub-sampling procedure forces the classifier to dis-

criminate better between similar classes.

It is expected that the recognition accuracy degrades as number of new objects in-

creases. It is mostly due to the fact that the network is only partially trained for the

new object. It is not a recommended approach in a batch dataset scenario where

the data for all classes is available. However, as it is explained earlier, having an

exhaustive dataset of all object is close to impossible. In addition, for most cases

in robotics, a local representation of objects is enough, and even desired, since the

robot is mostly interacting with one particular environment.

Pdraw{Ci} = P{pred(Xn+1) = Ci} (4.2)

Second Approach

Same as the first approach, we start off with a base recognition network but

we employ a different incremental learning technique. Similar to [11], instead of

storing the training data itself, we store the number of seen samples CiCiCi for the ith

class and the meanµiµiµi and the standard deviation σiσiσi of their corresponding extracted

convolutional features. These variables will be updated as a new sample comes in.

If the new sample is from a novel class, a new node will be added to the last layer

of the recognition network as shown in Fig. 4.5. CCC,µµµ,σσσ and the network weights

W will also be extended appropriately to include the new class. We use the loss

function defined in 4.3. Where, {x, y} is a new sample image and its label that is

indicated by the user.

L = Ls(x, y,W ) + Lm(CCC,µµµ,σσσ,W ) (4.3)

Ls 4.1 is the loss attributed to the incoming sample. o is the output of the Recogni-

tion network indicating the probability of the input x belonging to each class.

Ls = flogloss(o(x,W ), y) (4.4)

Optimizing 4.4 pushes the network to correctly predict the new sample. However,
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Algorithm 1 Incremental Learning
1: procedure INPUT: x, y,W,CCC,µµµ,σσσ.
2: for each new sample {x,y} do:
3: if y is a new class then
4: appendCCC,µµµ,σσσ with a new element
5: append a new output node to the network.
6: Append the new node weights to W .
7: end if
8: L = Ls(x, y,W ) + Lm(CCC,µµµ,σσσ,W )
9: W = W + adam( ∂L

∂W
)

10: updateCCC,µµµ,σσσ
11: end procedure

if only this loss is used, the network will soon start drifting and would forget the

previously learned weights. To prevent this, a second loss with respect to the stored

statistics is added in equation 4.5. The first summation over n (number of current

classes) is weighted according to the number of seen sample for each classCiCiCi. The

inner summation is the average logarithmic loss of the network from m indepen-

dently and identically distributed (i.i.d) samples drawn from N (µ, σ2). Note that i

is the label of the ith class. We realized that if only the loss w.r.t the µiµiµi is measured,

the weights will overfit to that overtime. So instead, we draw m random samples

from the distribution and compute their average loss. This decreases the bias and

prevents overfitting. We found m ranging between 50 to 200 works well. If chosen

smaller it may cause instability during training and if larger, it would not be variant

enough to prevent overfitting. The incremental learning procedure for each new

batch of incoming data is delineated in the Algorithm 1.

Lm =
n∑

i=1

CiCiCi
1

m

m∑
flogloss(o(iid(µµµi,σiσiσi

2),W ), i) (4.5)

4.4 Experiments

To validate our approach we tested three main components of our method. Namely,

The object detection and recognition baseline, incremental learning algorithm and

finally incremental learning through human guidance. Additionally, a human-human
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Figure 4.5: Incremental Learning model. Sample images from the HRI system are
fed to the convolutional network and their features are extracted. Samples can be
from a new class or a seen class. In case of the new class, a node and its weights
will be added to the last fully connected layer. The memory is also extended. The
features and the class labels will be used to first compute the loss with given the
statistics memory. Then, the memory is updated.

interaction experiment was conducted to determine the gold standard for an object

sorting and handling assistive robot.

4.4.1 Incremental Learning Through HRI

In this experiment we aim to emulate a real scenario with an assistant robot in an

electronics workshop. The robot starts by having a pre-trained baseline object de-

tection and recognition ability and we try to teach it to recognize new objects in

the workshop. Accordingly, using our system 4.2, we introduced new objects, one

at a time, to the robot. The robot collected images from each new object using its

eye-in-hand camera. Samples of these images can be seen in Fig. 4.6. After each

collection, the new object is appended to the robots detection module in real-time

and then we move to append another object in the same fashion. After adding each

new class, we re-evaluate the recognition accuracy on the MS-COCO test set plus

the test portion of the newly added class. After evaluation of each new class, we

include their test portion into our dynamic test dataset. Since the MS-COCO test

set is significantly larger than test portion of new classes, to capture the variance

in accuracy, we vary the ratio between number of samples from the new object and

number of samples from old objects. We change this ratio from 0.05 to 0.5 with
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the step size of 0.02. It gives a better estimation of the network’s performance in a

real scenario with an unknown distribution of encountering different classes. Both

incremental learning approaches were tested in a same manner

Figure 4.7 and 4.8 summarizes the results of this experiment for the first and the

Figure 4.6: Sample images of the data collected by the robot and TLD tracker.

second approach respectively. All the shown values are top 1 accuracy. As we ex-

pected, the accuracy is decreasing slightly by adding new objects however, this drop

is not significant and the slope is low especially in the second approach. In which,

we only observed a total of 5% drop after adding 11 new objects/ Accordingly, we

can say that the accuracy stays in a usable range even after adding many new ob-

jects. Also note that the baseline model already includes 80 common objects and

therefore not too many additions is expected.

4.4.2 Object Detection and Recognition Baseline

We can get near real-time performance from our detection and recognition system

with the simplifications that was made in the network4.3.1. Our model’s inference
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Figure 4.7: Recognition performance in an incremental learning scenario using the
first approach. New objects are introduced by user one by one and their images
are collected by the robot. Shown values are top 1 accuracies. Boxplots capture
the variance in accuracy as the ratio between test samples from new class and test
sample from old classes changes from 0.05 to 0.5. Green line is the accuracy for
when this ratio is 0.1.

time is 150ms for doing both the detection and the recognition on a GeForce 960

GPU. It is more than twice as fast as R-CNN with 350ms on Titan X GPU [33].

In the object detection task, we reached Average Precision (AP) of 0.2026 which is

comparable with the state of the art at 0.224 [60]. Based on AP metric, a detection

is counted correct if it has IoU of more than 0.5 with the ground truth.

We measured baseline model top-1 accuracy for recognition. The prediction is

correct if the class with the highest probability is similar to the ground truth. We

achieved recognition accuracy of 0.45. We are not aware of any recognition perfor-

mance reported on MS-COCO. But considering the difficulty of MS-COCO com-

pared to imagenet, an accuracy close to this value is expected.

The total accuracy of the model is 0.1704. To compute this accuracy we use the

precision metric as follow. A prediction is counted correct if it satisfies both local-

ization with IoU greater than 0.5 and also recognizes the object.
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Figure 4.8: Recognition performance in an incremental learning scenario using the
second approach. New objects are introduced by user one by one and their images
are collected by the robot. Shown values are top 1 accuracies. Boxplots capture
the variance in accuracy as the ratio between test samples from new class and test
sample from old classes changes from 0.05 to 0.5. Green line is the accuracy for
when this ratio is 0.1.

4.4.3 Our Incremental Learning Approach

To make our approach verifiable by researchers, we tested our incremental learn-

ing system using publicly available datasets. In this experiment, we started with

our baseline model trained on MS-COCO and then we incrementally added new

classes to the model. These new classes are randomly chosen from imagenet [38].

We followed the same procedure for evaluation as the first experiment 4.4.1 with

one exception that now, the labeled data for new object comes from imagenet rather

than HRI. The results are summarized as the same fashion in Figures 4.9 and 4.10

for the first and the second approach respectively.

By comparing real collected images and imagenet images we observe a slight per-

formance gain with the imagenet data compared to the robot’s collected data. It can

be attributed to the diversity of the images in imagenet and therefore, decreasing

the chance of over-fitting. However, this small difference shows that the images

that the robot has collected work nearly as good as a generic dataset, at least for a

local use which is our intended purpose.
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Figure 4.9: Recognition performance after incrementally adding new classes using
the first approach. The data for new classes are taken from imagenet. Shown values
are top 1 accuracies. Boxplots capture the variance in accuracy as the ratio between
test samples from new class and test sample from old classes changes from 0.05 to
0.5. Green line is the accuracy for when this ratio is 0.1

4.4.4 Mock Human-Human Interaction Performance Evaluation

We designed and conducted an experiment to find a gold standard interaction in-

terface for a collaborative sorting task. The goal of the task is to sort 10 common

household objects into 2 bins. Two humans engage in the experiment. One is the

instructor that tells the actor what object to pick and where to drop them. Each

experiment session starts with the objects randomly placed on a table and finished

when all objects are sorted into two bins. Four interaction medians were tested and

are listed below.

• Pointing: The instructor indicates the objects and target bins by pointing at

respectively. The actor follows the hand pointings and possibly the direction

of the gaze to locate the object and the bin.
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Figure 4.10: Recognition performance after incrementally adding new classes using
the second approach. The data for new classes are taken from imagenet. Shown
values are top 1 accuracies. Boxplots capture the variance in accuracy as the ratio
between test samples from new class and test sample from old classes changes from
0.05 to 0.5. Green line is the accuracy for when this ratio is 0.1

• Speech: The instructor describes the object to be picked up by speech and

indicates the bins by saying left are right which are the relative locations of

the bins with respect to the instructor. The actor only performs the task only

by listening to the instructor without any eye contact or other indicative body

gestures.

• Clicking: This interface uses a monitor which is visible by both the instructor

and the actor. The instructor selects objects by clicking on them and then se-

lect the appropriate bin. The actor sees the monitor and performs the actions

according to the clicks.

• Pointing and Speech In this interface, the instructor can use both speech

and pointing to communicate its intentions. The actor both listens to the

instructors and also follows their pointing and eye gaze direction to find the

object and the bins.

We tested these medians in the same fashion with the same test group. The ac-

tor kept the same for all experiments. To evaluate the interfaces, we used standard
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NASA Task Load Index (TLX) surveys [?]. We also timed the task completion. A

summary of results can be seen in Figure 4.11. While there is no clear winner, the

combination of pointing and speech has a minor edge over the rest. In particular,

in terms of the task completion time and effort. Pointing would be second due to

its clear edge in the mental demand axis. The next one would be clicking. It was

the most accurate yet it required the most effort and took long to finish. The least

favored interface was the speech. Even though it had an obvious advantage in terms

of physical demand (which is important for physically impaired), it performs badly

in terms of time and mental demand. Clearly, describing an object tended to more

challenging than pointing in many cases. A take home lesson from this experi-

ment is to incorporating bodily gestures into the interface is much more natural and

convenient for humans. Also, including the speech helps especially if the task was

more complicated and required higher level communications between the instructor

and the actor.

Figure 4.11: NASA Task Load Index evaluation for 4 tested interfaces. Lower
values are better in all dimensions.
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4.5 Discussion

We proposed and developed a complete HRI system that aims to use human knowl-

edge to improve robot’s perception. Our system is able to learn appearance of a new

object by human guidance and add it to its knowledge base. The natural interface

allows humans to easily see the holes in the robots perception and correct it just by

gesturing and speech.

We proposed two suitable incremental learning framework to be used in our

setup. The methods were tested and compared. The second incremental learning

approach proved to be more efficient by showing less decrease in performance as

new objects being added.

While we only showed the incremental learning for the visual tasks, the idea

is not limited to it and can be extended to teaching actions. In fact, transferring

trajectory generation skills from humans to robot is very well studied. We worked

on learning from demonstration systems and have used it on our robots. We are yet

to incorporate it into the incremental learning system.
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Chapter 5

Conclusion and Future Work

In this thesis we reviewed some issues with using deep learning methods in robotics.

Namely the lack of utilizing temporal information and relying solely on the train

data that is initially available. Then we discussed how robots can circumvent these

problems to some extent by using their sensors and the capability of interacting with

humans and the environment.

We introduced recurrent fully convolutional networks for video segmentation

that fits nicely with many robotics tasks such as self-driving cars. We showed how

such a network can be designed and trained and then the experiments were made

on popular video segmentation benchmarks. We observed consistent improvement

by using our method compared to regular fully convolutional networks.

We also looked into object detection and recognition problem in a robotics sce-

nario and proposed a novel method for using human robot interaction to improve

robots perception. We designed a full interaction interface that allows the human

and robot to communicate through, speech, gesture, and vision. We showed how

such interaction can provide additional data for the robot to learn from. Two dif-

ferent incremental learning methods were incorporated into deep object detection-

recognition module and tested. We showed that how our system is capable of im-

proving the robot’s perception on both a simulated scenario using imagenet data

and also real tests with everyday objects.

An important aspect of robots is their ability to manipulate their environment.

But learning such skills has proven difficult. While there exist engineers approaches

for some manipulation tasks a general solution is still out of the reach. But, similar
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to perceiving objects, the robot does not need to know how to perform all the ma-

nipulations tasks to be useful as long as it can learn these skills easily when needed.

With this approach, one can imagine an incremental learning process for actions and

trajectory generation. We are experimenting with a Learning from Demonstration

system that uses a deep network (an RNN to be exact) for trajectory learning. This

allows easier incorporation of different signals and possibly a more general system.

We have developed a simulation environment to test such a system. A 7 DoF robot

is being controlled for a reaching task with the simulator path planner. The trajec-

tories are recorded and used to train a multi-layered GRU which given the current

states, produces the next control signal. Early results are promising and indicate

that the network is able to learn the task. However, we see a lack of generalization

that one expects from a deep network. A possible solution is to use the visual input

directly in the system. An RFCNN is suitable as it can incorporate image sequences

as well as other sensory signals. The segmentation task can be used as an auxiliary

objective to guide the training while the main objective is to produce correct con-

trol signal. For the future work, we will investigate this path further and explore

possible techniques that can be used to guide and improve the network. Some pos-

sibilities are, memory networks to store different skills separately and load them in

appropriate time. A combination of visual servoing and LfD can also be beneficial.
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