Download the full-sized PDF of Genome-wide association analyses for carcass quality in crossbred beef cattleDownload the full-sized PDF



Permanent link (DOI):


Export to: EndNote  |  Zotero  |  Mendeley


This file is in the following communities:

Roy Berg Kinsella Research Ranch


This file is in the following collections:

Journal Articles (Kinsella Ranch)

Genome-wide association analyses for carcass quality in crossbred beef cattle Open Access


Author or creator
Lu, D.
Sargolzaei, M.
Kelly, M.
Voort, G. V.
Wang, Z.
Mandell, I.
Moore, S.
Plastow, G.
Miller, S.
Additional contributors
chromosome regions
single nucleotide polymorphism
beef carcass quality
Type of item
Journal Article (Published)
Background Genetic improvement of beef quality will benefit both producers and consumers, and can be achieved by selecting animals that carry desired quantitative trait nucleotides (QTN), which result from intensive searches using genetic markers. This paper presents a genome-wide association approach utilizing single nucleotide polymorphisms (SNP) in the Illumina BovineSNP50 BeadChip to seek genomic regions that potentially harbor genes or QTN underlying variation in carcass quality of beef cattle. This study used 747 genotyped animals, mainly crossbred, with phenotypes on twelve carcass quality traits, including hot carcass weight (HCW), back fat thickness (BF), Longissimus dorsi muscle area or ribeye area (REA), marbling scores (MRB), lean yield grade by Beef Improvement Federation formulae (BIFYLD), steak tenderness by Warner-Bratzler shear force 7-day post-mortem (LM7D) as well as body composition as determined by partial rib (IMPS 103) dissection presented as a percentage of total rib weight including body cavity fat (BDFR), lean (LNR), bone (BNR), intermuscular fat (INFR), subcutaneous fat (SQFR), and total fat (TLFR). Results At the genome wide level false discovery rate (FDR < 10%), eight SNP were found significantly associated with HCW. Seven of these SNP were located on Bos taurus autosome (BTA) 6. At a less stringent significance level (P < 0.001), 520 SNP were found significantly associated with mostly individual traits (473 SNP), and multiple traits (47 SNP). Of these significant SNP, 48 were located on BTA6, and 22 of them were in association with hot carcass weight. There were 53 SNP associated with percentage of rib bone, and 12 of them were on BTA20. The rest of the significant SNP were scattered over other chromosomes. They accounted for 1.90 - 5.89% of the phenotypic variance of the traits. A region of approximately 4 Mbp long on BTA6 was found to be a potential area to harbor candidate genes influencing growth. One marker on BTA25 accounting for 2.67% of the variation in LM7D may be worth further investigation for the improvement of beef tenderness. Conclusion This study provides useful information to further assist the identification of chromosome regions and subsequently genes affecting carcass quality traits in beef cattle. It also revealed many SNP that acted pleiotropically to affect carcass quality. This knowledge is important in selecting subsets of SNP to improve the performance of beef cattle.
Date created
License information
Attribution 4.0 International

Citation for previous publication
Lu, D., Sargolzaei, M., Kelly, M., Voort, G.V., Wang, Z., Mandell, I., Moore, S., Plastow, G., Miller, S. (2013). Genome-wide association analyses for carcass quality in crossbred beef cattle. BMC Genetics, 14(80), 80.

Link to related item

File Details

Date Uploaded
Date Modified
Audit Status
Audits have not yet been run on this file.
File format: pdf (Portable Document Format)
Mime type: application/pdf
File size: 1305459
Last modified: 2016:06:24 18:54:01-06:00
Filename: BMC_GEN_14(80)
Original checksum: 444fa5fb0e45c4d945280814a7c86eb8
Copyright note: ??? 2013 Lu et al.; licensee BioMed Central Ltd.
Well formed: true
Valid: true
File title: Abstract
File title: Genome-wide association analyses for carcass quality in crossbred beef cattle
Page count: 10
Activity of users you follow
User Activity Date