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Abstract: The vibration signal carries the signature of faults in most rotating
equipments, and early fault detection is possible by analyzing the signal using
different signal processing techniques. In this paper we consider a gearbox as a
typical representation of a rotating or cyclo-stationary process. Faults in gearboxes
leave their signature on the vibration signal and generally manifest themselves as a
non-linear transformation in the signal. Bicoherence analysis detects and quantifies
the presence of non-linearity in the signal and thus indicates the severity of the
fault in the gearbox. In this work, time synchronous averaging is used to find the
proper representation of one period of the cyclo-stationary vibration signal. A pilot
scale gearbox case study is presented to demonstrate the practicality and utility
of the proposed technique. Copyright c© 2006 IFAC
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1. INTRODUCTION

Vibration signal analysis is widely used to detect
early faults in rotating machineries, such as gear-
boxes, turbines, compressors etc. In this paper
we consider gearboxes as a typical representation
of a rotating or cyclo-stationary process. There
are many techniques that have been developed
to detect progressing faults in gearboxes. Many
of these methods assume that the signal is er-
godic and stationary, and therefore the variance
or the power spectra of the signal can serve as
indicators of severe faults in the machineries. But
these methods may fail to perform properly in
noisy industrial environments when the noise en-
compasses the frequency bandwidth of interest in
the signal that carries the fault signature of such
equipment (McCormick and Nandi, 1998).

1 Corresponding author. Tel +1 780 492 5162; Fax +1 780
492 2881; Email sirish.shah@ualberta.ca

The presence of non-linearity in a vibration sig-
nal can also serve as a indicator of fault(s) in
the rotating machineries. Failure of a mechani-
cal system is always preceded with changes from
linear or weakly non-linear to strong non-linear
dynamics. As faults develop in the system the
process becomes chaotic and the amount of non-
linearity in the system increases. Therefore, a
measure of non-linearity in the vibration signal
would give a measure of deviation of the process
from normal operation to the emergence of a fault
in the process. Higher Order Statistics (HOS) can
be used to detect and quantify the presence of a
non-linearity in the vibration signals (Choudhury
et al., 2005). Bicoherence successfully detects the
emergence of new frequencies due to generation of
faults in the system. But like many other methods,
bicoherence requires that process under investiga-
tion be stationary.
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In rotating machine vibration analysis, the overall
response is a combination of deterministic peri-
odic components dominated by the machine rota-
tion, with stochastic random signals, generated by
the surroundings or machine imperfections. Due
to the periodic and time varying nature of the
response signal, the notion of stationarity does
not hold (Antoniadis and Glossiotis, 2001). The
best approach to overcome this is to exploit the
natural periodicity of the signals by extracting
a synchronous average of the signal (McCormick
and Nandi, 1998). Assuming the signal is averaged
over a large number of rotations, this method re-
moves the stochastic part efficiently and produces
a single period of a deterministic periodic signal.
Bicoherence can then be applied on this averaged
period to detect the presence of non-linearity in
the rotating machinery.

This paper proposes the use of time synchronous
average to preprocess the cyclo-stationary vibra-
tion signal, and the use of bicoherence analysis to
detect non-linearity in vibration signals, leading
to the detection of the severity of the faults in
rotating machineries. The technique was applied
on real data from a test rig with two levels of
severity of faults.

2. BICOHERENCE ANALYSIS

The first and second order statistics (e.g., mean,
variance, autocorrelation, power spectrum) are
popular signal processing tools and have been
used extensively for the analysis of process data.
However second order statistics are only sufficient
for describing linear processes. In practice, there
are many situations when the process deviates
from linearity and exhibits nonlinear behavior.
Such type of processes can be conveniently stud-
ied using Higher Order Statistics (HOS). There
are three main reasons for using Higher Order
Statistics (HOS): to extract information due to
deviations from Gaussianity, to recover the true
phase character of the signals, and to detect and
quantify nonlinearities in the time series (Nikias
and Petropulu, 1993). Time domain data itself is a
good source of information. Many statistical mea-
sures, e.g., moments, cumulants, auto-correlation,
cross-correlation have been developed to measure
the time domain information in such data. Not
all the information content of a signal can be
necessarily and easily obtained from time domain
statistical analysis of the data. Transforming the
signal from time to frequency domain can expose
the periodicities of the signal, can detect the non-
linearities present in the signal and can also aid in
understanding the signal generating process. Just
as the power spectrum is the frequency domain
counterpart of the second order moment of a sig-
nal and represents the decomposition or spread
of the signal energy over the frequency channels
obtained from the Fast Fourier Transform, the bis-
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Fig. 1. Time Trend and Power Spectrum plots of
the Linear and Non-Linear Signals.

pectrum is the frequency domain representation of
the third order cumulants. It is defined as

B (f1, f2) = DDFT [c3(τ1, τ2)]

≡ E[X(f1)X(f2)X∗(f1 + f2)] (1)

where, B(f1, f2) is the bispectrum in the bifre-
quency (f1, f2), DDFT stands for Double Dis-
crete Fourier Transformation, c3(τ1; τ2) is the
third order cumulant, τ1 and τ2 are the time-lag
variables, X(f) is the discrete Fourier transform
of any time series x(k), and ‘*’ denotes complex
conjugate. Equation 1 shows that the bispectrum
is a complex quantity having both magnitude and
phase. It can be plotted against two independent
frequency variables, f1 and f2 in a three dimen-
sional (3d) plot.

In order to remove the undesired property of
the variance of the estimated bispectrum (Hinich,
1982), the bispectrum can be normalized in such a
way that it gives a new measure called bicoherence
whose variance is independent of the signal energy
(Fackrell, 1996). Bicoherence is defined as:

bic2(f1, f2) , |B(f1, f2)|2
E

[
|X(f1)X(f2)|2

]
E

[
|X(f1 + f2)|2

] (2)

where ’bic’ is known as the bicoherence function.
A useful feature of bicoherence function is that it
is bounded between 0 and 1.

For details of estimating the bispectrum/bicoherence,
see (Nikias and Petropulu, 1993; Choudhury et
al., 2002).

2.1 Bicoherence of a nonlinear sinusoid signal
with noise

The objective of this example is to demonstrate
the power of the bicoherence in the detection
of nonlinearity. An input signal was constructed
by adding two sinusoids, each having a different
frequency and phase. That is,

x
′
(k) = sin(2πf1k + φ1) + sin(2πf2k + φ2)

x(k) = x
′
(k) + d(k)

y(k) = x
′
(k) + 0.1x

′
(k)2 + d(k) (3)

where, f1 = 0.12, f2 = 0.30 on the normalized
frequency scale, and d(k) is a white noise sequence
with variance 0.04.
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Fig. 2. Bicoherence Analysis of Linear and Non-
Linear Signals.

The left panel of the figure 1 shows the time series
while the right panel shows the power spectrum
of the signal x and y, respectively. Neither of
these plots help in distinguishing the two signals.
However, the use of higher order statistics can
successfully detect the nonlinearities present in
y. Figure 2 shows the three dimensional squared
bicoherence plots of x and y, respectively. For the
signal x, the plot shows no peaks and thus clearly
indicates that the signal is linear. On the other
hand, for the signal y, the plot shows significant
peaks indicating the presence of non-linearity in
the signal.

The peaks in the bifrequency plane can be ex-
plained by rewriting the expression for y as:

y(k) = sin(2πf1k + φ1) + sin(2πf2k + φ2)

+0.1[1− cos(2(2πf1k + φ1))− cos(2(2πf2k + φ2))

+ cos(2π(f2 − f1)k + φ2 − φ1)

− cos(2π(f1 + f2)k + φ1 + φ2)] + d(k) (4)

The nonlinearities are caused by the interactions
of any two of the signals with frequencies f1,
f2, 2f1, 2f2, f2-f1, and f1 + f2. For the out-
put signal y, the squared bicoherence plot shows
peaks at (0.12,0.12), (0.12,0.18), (0.30,0.30), and
(0.12,0.30) bifrequencies. These bifrequencies cor-
respond to (f1, f1),(f1, f2-f1), (f2, f2),and (f1,
f2), respectively. Therefore, the bicoherence plot
correctly identifies the frequency interactions that
resulted from the presence of nonlinearity in the
signal.

3. CYCLOSTATIONARITY

Vibration signals from a gearbox are a combi-
nation of periodic signals with random noises

and the combination of these two components
produces a signal that have a periodically time-
varying statistics. For a stationary signal the sta-
tistics does not change with time and the moments
of the signal remain constant. If the statistics of
the signal has a periodically time varying compo-
nent it is identified as a cyclostationary signal.
The weak or wide sense cyclostationarity of a
signal refers only to the variations of the mean
and autocorrelation of the signal.

3.1 Definition:

A random process x(t) is cyclostationary of order
N with period T , if for every n = 1, N and time
instants t1, t2,. . . ,tn, the probability distribution
function Px(t) is periodic with period T :

Px(t) = Px(t+T )

Px(t) = Prob{x(t + t1) ≤ X1, x(t + t2)

≤ X2, ..., x(t + tn) ≤ Xn} (5)

As a direct consequence of Equation 5, the mo-
ments and cumulants of x(t) also vary periodically
with time:

E{
N∏

i=1

x(ti)} = E{
N∏

i=1

x(ti + T )} (6)

where N denotes the order of the statistic func-
tion and E{.} denotes the statistical expectation
operator (Antoniadis and Glossiotis, 2001). If the
process is assumed cycloergodic, the statistical
expectation operator E{.} in Equation 6 can be
replaced by the time average operator 〈.〉 which
can be defined as:

Continuous : 〈x(t)〉 ≡ lim
T→∞

1

2T

T∫

−T

x(t)dt (7)

Discrete : 〈x(n)〉 ≡ lim
M→∞

1

(2M + 1)

M∑
j=−M

x(j) (8)

A first order cyclostationary process, N = 1, can
be represented by the time periodical mean (first
order moment):

m(t) = E{x(t)} = m(t + T ) (9)

An example of this process is a sinusoidal signal
with added white noise.

3.2 Time Synchronous Averaging

The vibration signal of a gearbox can be cate-
gorized as a weak or wide sense cyclostationary
signal. If only Equation 6 is valid, the random
signal x(t) is cyclostationary in a weak or wide
sense. Techniques that require the assumption of
stationarity cannot be used to analyze this signal
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as these methods may produce erratic results if
a periodic disturbance is present within the fre-
quency range at which the fault of the gearbox
is being investigated. To generate a stationary
signal that can represent the deterministic part
of the original signal, the natural periodicity of
the signal can be extracted and organized by ex-
tracting a synchronous average of the signal. If
the signal is synchronously averaged over a large
number of rotations of a gear, it can remove the
stochastic part of the signal keeping only the peri-
odic deterministic part of the signal harmonically
related to the rotational period of the gear. It is
assumed that the stochastic or noise component
has a zero mean. This would produce a single
period representation of the vibration signal and
is known as the Time Synchronous Average of
the signal (McCormick and Nandi, 1998). First
order cyclostationarity is exploited in condition
monitoring applications through the use of time
synchronous averaging. According to this method,
a vibration signal x(t) is averaged for one rotation
period by calculating the mean of the samples that
have been measured for a number of rotations N
separated by a time interval T of one period of
rotation:

m(t) =
1

(N − 1)

N−1∑
l=0

x(t + lT ) (10)

From the time synchronous average, non-linearity
in the vibration signal of the rotating machine can
be identified using bicoherence.

4. GEARBOX FAULT DETECTION

The vibration signal of a gearbox carries the sig-
nature of the faults in the gears. Faults in gearbox
are associated with some non-linear mode of op-
eration. A fault free machine running smoothly in
normal operation would generate linear periodic
vibrations. Faults manifest themselves as non-
linear elements, typically due to the presence of
new frequencies and interactions between these
frequencies. This non-linearity would increase as
the process deviates more from its normal op-
eration. Therefore, a measure of non-linearity of
the process would give a measure of deviation
of the process from normal operation and the
emergence of a fault in the process. Bicoherence
analysis can be used to detect non-linearity in the
vibration signal of a gearbox and a measure of the
non-linearity can be obtained. But since vibration
signals from a gearbox are cyclostationary, direct
application of bicoherence technique would lead to
unpredictable results. The cyclo-stationarity and
zero-mean noise components are first removed us-
ing Time Synchronous Averaging technique over
one period of rotation. The resulting averaged
signal should then be analyzed using bicoherence
analysis to detect the amount of non-linearity
within the system.
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Fig. 3. Plot showing (a) one period of the sim-
ulated time series (b) simulated time series
before adding noise (c) simulated time series
after adding noise with a SNR of 1 (first 1500
samples have been shown) (d) time synchro-
nous average of the simulated signal.

5. ILLUSTRATIVE EXAMPLE

A simulation example is presented here to illus-
trate the use of bicoherence technique on cyclosta-
tionary vibration signal from a gearbox. A time
series signal xp(t) of 500 samples has been gen-
erated with the 3 frequencies 0.2, 0.08, and 0.15
Hz of the same amplitude. Assuming that non-
linearity exists only for half of the time of one
period, a signal with frequency 0.28 (sum of 0.2
and 0.08) Hz is added to the signal xp(t) for the
first 250 samples only to introduce non-linearity.
Figure 3(a) shows the signal xp(t). This short
time series of 500 samples has been repeated 30
times to generate the time series xc(t) so that
xp(t) represents a period of the periodic signal
xc(t). Figure 3(b) shows the signal xc(t), clearly
depicting the periodic nature of the time series.
White noise ε, such that the signal to noise ratio
is 1, has been added to xc(t) to generate the
noise corrupted signal xn(t) shown in Figure 3(c).
The signal xp(t), which is a period of the deter-
ministic part of the signal xn(t), is a stationary
signal. Application of bicoherence analysis on this
signal generates the plot shown in Figure 4(a).
The figure confirms that bicoherence detects the
presence of non-linearity in the signal. However if
bicoherence analysis is applied to the generated
noisy signal xn(t), it fails to detect the presence
of any non-linearity. Figure 4(b) shows the plot
for bicoherence analysis on the simulated noisy
signal xn(t). The failure of the technique is due to
the fact that signal xn(t) is cyclostationary and
it does not meet the requirements for bicoherence
analysis. To detect the non-linearity present in the
simulated signal xn(t), the signal is first treated
with time synchronous averaging technique. At
least 10 periods of data samples is required in the
signal to compute the time synchronous average
that can properly represent one period of the
signal. The time synchronous average xtsa(t) of
the signal xn(t) is calculated by the equation
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Fig. 4. Bicoherence analysis of the simulated signal.

xtsa(t) =
1

(30− 1)

30−1∑
l=0

xn(t + l× 500)

where, t = 1, 2, . . . , 500 as each period has 500
samples. Figure 3(d) shows the time synchronous
average xtsa(t) of the simulated signal xn(t). Bi-
coherence analysis can now be applied on the
stationary signal xtsa(t) and the resulting plot
is shown in Figure 4(c). The plot clearly shows
significant peaks, indicating the presence of non-
linearity in the time synchronous averaged signal.
It confirms that bicoherence analysis applied on
the time synchronous average of a cyclostationary
signal can clearly identify non-linearity within the
cyclostationary signal, whereas the technique fails
if the time synchronous averaging is not performed
before bicoherence is applied.

6. PILOT PLANT CASE STUDY

A pilot plant case study was performed to assess
the effectiveness of the proposed technique in early
detection of gear faults. Data was generated using
a test rig that could simulate single and multiple
faults. The rig is located in the Reliability Lab
in the Mechanical Engineering Building at the
University of Alberta, Canada (Tian et al., 2002).
The configuration of the test rig is shown in Figure
5. The gearbox had 3 shafts with a total of 4
gears a, b, c and d. A brake was used to create
the desired load of operation. Normal gear a was
later replaced by the damaged gear a′, which had
a chipped tooth. Similarly, normal gear d was
later replaced by the damaged gear d′, which had
a missing tooth. Both damaged gears were also
used at the same time to simulate multiple faults.
Shafts 1, 2 and 3 were rotating at 10, 3.3 and 5
Hz respectively during data collection. The gear
meshing frequency was 160 Hz or 0.125 Hz in the
normalized frequency.

6.1 Data Description

A total of three data sets were collected from
the test rig. The data sets were collected as
accelerometer measurement from sensors. Every
time series had 8192 samples collected at 1280

Fig. 5. Configuration of the test rig used to gen-
erate data for the case study. 1-Motor, 2-
Variable Speed Motor Controller, 3-Gearbox,
4-Brake Controller, 5-Brake, 6-Siglab Vibra-
tion Analyzer, 7-Computer.
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Fig. 6. Time Trend and Power Spectrum plots of
the data sets generated from the test rig for
case study (only first 1024 samples have been
shown).

Hz. The three data sets were collected under the
following conditions:

(1) All normal gears used
(2) One damaged gear with a Chipped tooth

used - gear a was replaced by a′

(3) One damaged gear with a Chipped tooth and
another damaged gear with a Missing tooth
used - both gear a and d were replaced by a′

and d′

The time-trend plots (with only the first 1024 data
samples) and the power spectra of the three data
sets are shown in Figure 6. Clearly, the data are
noisy and it is hard to conclude anything from
power spectrum.

6.2 Bicoherence Analysis

Figure 7 shows the bicoherence analysis of the
three data sets after time synchronous averaging.
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(c) two damaged gears

Fig. 7. Bicoherence analysis of real data from rig.

The Least Common Multiple (LCM) of the peri-
ods of the shafts under investigation was 0.2 sec-
onds (LCM of 0.1 and 0.2 seconds corresponding
to 10 and 5 Hz respectively). This LCM was used
as the period to calculate the time synchronous
average of the signals. Therefore each time syn-
chronous average represents 2 periods of the gear
a and 1 period of the gear d. Brief explanations of
the plots are given below.

6.2.1. Normal Gears Figure 7(a) depicts the bi-
coherence analysis plot for the data set generated
from normal gears. No significant peaks can be
observed in the plot since the gears had no fault
in their teeth. The maximum bicoherence is 0.15
which in this case can be taken as negligible.

6.2.2. One damaged Gear Figure 7(b) shows
the bicoherence analysis plot for the data set
generated from one damaged gear. The 2 large
peaks in the plot indicate the non-linearity present
in the data set. The maximum bicoherence is
0.57 which is significant. It should be noted that
the peaks usually show up at the gear meshing
frequency of the gearbox.

6.2.3. Two damaged gears Figure 7(c) shows
the bicoherence analysis plot for the data set
generated from two damaged gears. This time
the plot has multiple significant peaks and they
are spread over a wider range of frequencies. The
extent of non-linearity has clearly increased in
this data set. Though the maximum bicoherence
is 0.42 (less than that of one damaged gear) the
larger number of peaks indicate the non-linearity
in the data set is higher than the one for one
damaged gear.

7. CONCLUSION

The application of bicoherence analysis combined
with time synchronous averaging has been pro-
posed here to detect the severity of faults present
in gearboxes. The presence of faults in rotating
machineries are accompanied by the increased
presence of non-linearity in the vibration signal.
Bicoherence successfully detects and quantifies

the amount of non-linearity present in the signal
provided the signal is stationary. Since the vibra-
tion signal from a gearbox is cyclo-stationary it is
first transformed to a clean signal representing one
period of rotation by time synchronous averaging.
The peaks in the plots of bicoherence analysis
indicates the presence of non-linearity which in
turn indicates the presence of faults. The number
of significant peaks in the plots increases with an
increase in the number of faults present. There-
fore bicoherence analysis successfully detects the
severity of the faults present in the gearbox. The
proper application of the technique on real vibra-
tion data from the rig demonstrates the strength
and efficacy of the technique.
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