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Abstract

The use of Wireless Sensor Networks (WSNs) in various surveillance and monitor-

ing tasks have attracted a wide and growing attention in recent years. The thesis

considers a class of intrusion detection problems where an unauthorized person or

object aims to traverse part of the geographical area guarded by a WSN. In each

problem, the objective is to quantify the likelihood that an intrusion event can be

jointly detected and reported to a sink node in a network whose nodes can fail ran-

domly.

The thesis considers three types of intrusion paths: paths across the network

with known entry and exit points, paths across the network among a set of entry-

exit pairs of points outside the network, and paths from outside the network to an

area of interest inside the network. For each of the above types of intrusion paths,

the thesis formalizes a corresponding reliability problem that calls for computing

the probability that the collaborative work of all nodes in the network succeeds in

detecting and reporting an intrusion event.

Our results show that all formalized problems are computationally intractable

(#P-hard). Consequently, the thesis focuses on constructing optimized iterative al-

gorithms that utilize special problem structures, known as pathsets and cutsets, for

computing exact solutions as well as computing lower and upper bounds. We con-

clude by presenting some possible future research problems.
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Chapter 1

Introduction

1.1 Introduction

Using wireless sensor networks (WSNs) has recently received great attention in

many applications such as environmental, medical, military and petroleum appli-

cations. A wireless sensor network consists of energy constraint sensor nodes that

sense some physical phenomena of importance and send the sensed information to

one, or more, sink nodes that perform various control and monitoring functions.

The main reasons of using WSNs instead of wired communication in industry are:

the high installation cost and maintenance of the wired communication and the de-

mand of continuous growth and safety for industrial environments.

Extensive research work in WSNs has been done over the past decade in many

directions such as: energy aware routing, medium access control protocol, topology

control, security, privacy and data aggregation.

In harsh industrial environments, however, the communication and sensing ca-

pabilities of wireless sensor nodes are subject to random failure due to the presence

of obstacles and other interference sources. Analyzing WSNs under node failure

effects have not received much attention in existing literature. The research work

done in the thesis fills a gap in the current literature by dealing with a number of

WSN problems that need to be analyzed in an environment where nodes fail ran-

domly. This work involves formalizing suitable network reliability measures for the

problems dealt with, investigating the computational complexity of the formalized

problems, as well as investigating the design of efficient algorithms for computing
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or approximating the resulting reliability measures, and evaluating the performance

of the developed algorithms.

In particular, we investigate reliability problems with node failure in the broad

class of path exposure and intruder detection problems. Problems in this class con-

cern the ability of a WSN to jointly detect and report to the sink node events of

interest. A challenging class of such node events include the detection of unau-

thorized traversal of a mobile object across a geographic area guarded by a WSN.

Chapters 3 to 6 present original new results on several node failure reliability prob-

lems in this context.

In the WSN literature, the class of path exposure and intruder detection prob-

lems is closely related to two other classes of problems: localization problems, and

tracking problems. Localization problems concern the need for a WSN to self lo-

calize the positions of its nodes, as well as localize external targets, or positions of

certain monitored events. On the other hand, tracking problems concern detection

and timely identification of a target as it moves in the area guarded by the WSN.

Each of the above classes of problems have received significant research attention.

Despite the existence of many results on problems in these classes, not as much

results appear in the context of investigating the network reliability aspects under

node failure. In this thesis, we develop methodologies for tackling path exposure

and intruder detection reliability problems. The developed methodologies seem to

apply to localization and tracking problems. In chapter 2, we give an overview of

some existing work on such problems.

The developed methodologies in this thesis have foundations that have been

established in the area of investigating combinatorial network reliability problems

[15]. In section 1.2, we give an overview of some existing work in this direction. In

section 1.3, we present the main aspects of the path exposure and intruder detection

problems dealt with in the thesis, and section 1.4 we outline the main contributions

of the thesis.
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1.2 Network Reliability Problems

In this section, we give an overview of some important existing results in the area

of combinatorial network reliability [15]. The majority of existing results in this

area have considered various connectivity based and flow based reliability mea-

sures. Both types of measures are fundamental in the analysis of various types of

transportation and communication networks. Currently, there is a wealth of results

on the above measures that forms the basis of our work here. WSN reliability prob-

lems, however, typically have joint sensing and connectivity requirements. Thus,

tackling WSN reliability problems requires revisiting and extending previously ob-

tained results on connectivity and flow based reliability measures. Not as much

work, however, has been done on WSN reliability problems. To provide a back-

ground on existing work, we discuss the following important aspects. We follow

the presentation in [15, 47] closely.

1.2.1 Basic Definitions and Classes of Reliability Problems

In a connectivity-based (or flow-based) reliability problem, a network is considered

operational if it satisfies a certain requirement on node connectivity (respectively,

a condition on the amount of flow supported by the network) in an environment

where nodes and/or edges of the given network fail. The analysis of such problems

utilizes the concept of probabilistic graphs.

A probabilistic graph G = (V,E, p) is a graph on a set V of vertices, and a set

E of edges (that can be directed or undirected) where each node v and/or edge e

operates with a given probability, denoted p(v) (or, p(e)), and fails with probability

q(v) = 1 − p(v) (respectively, q(e) = 1 − p(e)). In such a 2-state model, each

component (node or edge) can be either in one of two possible states (operating or

failed). The obtained results in the literature concern cases where only nodes can

fail, only edges can fail, or both nodes and edges can fail. For convenience, we

focus in this section on cases where only edges can fail. In many cases, similar

results can be obtained assuming failure of other components.

After an event of random failure, a network whose edges only are subject to

3



failure can be in any one of a possible set of states, where a state S is a subset of

operating edges after the event (all remaining edges in E \ S are failed). Each such

a state S arises with probability Prob(S) =
∏

e∈S p(e)
∏

e/∈S q(e) (where q(e) =

1−p(e)). Thus, if |E| = m then the probabilistic graph G has 2m states. For a given

reliability measure, we denote the set of operating states of the probabilistic graph

G by OP (G). The reliability of G is defined as Rel(G) =
∑

S∈OP (G) Prob(S).

The 2-terminal reliability problem, denoted Rel2, is a basic problem in this

class. Here, the probabilistic graph G has two distinguished nodes (terminals) de-

noted s and t. A state S is operating if it provides a path from s to t. In figure

1.1, for example, S = {e1, e2, e5} is an operating state. We also need the following

definitions:

• A configuration of G is a partial state where some edges (but not necessarily

all) are assigned an operating/failed state; the remaining unassigned edges are

don’t care or free edges.

• A pathset is a subset of components (e.g., edges) whose operation yields

an operating configuration. A minpath is a minimal pathset. For example,

in figure 1.1, when each edge in {e1, e2, e5} operates, and regardless of the

states of the other edges, the source s has an operating path to the destination

t. Thus, {e1, e2, e5} is a pathset, and in fact, it is a minpath.

• A cutset is a subset of components (e.g., edges) whose failure yields a failed

configuration even if all unassigned edges operate. A mincut is a minimal

cutset. For example in figure 1.1, when each edge in {e1, e4} is failed, and

regardless of the states of the other edges, there is no possible path between

s and t. Thus, {e1, e4} is a cutset, and in fact, it is a mincut.

Existing results on connectivity-based reliability problems have considered many

cases including the following:

• The probabilistic graph G can be either undirected or directed.

• Component failure can affect edges only, nodes only, or both nodes and edges.
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Figure 1.1: An instance of the two terminal reliability problem on terminals s and t

• Component failure probabilities can be either identical for all components or

different among the components.

• The reliability measure of interest may consider communication between 2

nodes only, a subset of nodes, or all nodes.

For example, restricting attention to cases where edges only can fail, and edge

operational probabilities can be different, gives rise to the following problems:

• For undirected graphs: The 2-terminal reliability (Rel2), the k-terminal re-

liability (Relk) where k > 2, and the all-terminal reliability (Relall) problems

• For directed graphs: The 2-terminal connectedness (CONN2), the k-terminal

connectedness (CONNk) where k > 2, and the all-terminal reachability

(CONNA) problems

1.2.2 Reliability Polynomials

When all edge operation probabilities are equal to p, Rel(G, p) can be expressed

using the following polynomials:

• Pathset Polynomials:

Rel(G, p) =
m
∑

i=0

Nip
i(1− p)m−i (1.1)

where m is the number of edges in the graph G, p is the operating probability

of each edge, and Ni is the number of operating subgraphs with exactly i op-

erating edges, and m− i failed edges (also called i-edge operating subgraph).

For example, in figure 1.1, N2 = 0 and N3 = 3.
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• Pathset-Complement Polynomials:

Rel(G, p) =
m
∑

i=0

Fip
m−i(1− p)i (1.2)

where Fi is the number of i-edge subgraphs that are complement of pathsets.

That is, Fi = Nm−i. For example, in figure 1.1, F4 = 3 and F5 = 0.

• Cutset Polynomials:

Rel(G, p) = 1−
m
∑

i=0

Cip
m−i(1− p)i (1.3)

where Ci is the number of i-edge cutsets. A graph is in a failed state when

the i edges of a cutset are failed and the remaining m− i edges are operating.

Thus, Ni + Cm−i = (mi ).

Some of the uses of reliability polynomials include the following:

• Knowing the coefficients of any polynomial simplifies the following tasks:

computing Rel(G, p) for any value p, comparing the reliability of two given

networks G1 and G2, and analyzing the effect of small changes in p over

Rel(G, p).

• Knowing some of the coefficients of any polynomial can be used to derive

lower and upper bounds on the unknown coefficients in the same polynomial.

Using results in this direction allows deriving lower and upper bounds on the

reliability of the entire network.

• Showing that computing certain coefficients to be #P-hard (or NP-hard) can

be used to show that computing Rel(G) is #P-hard (respectively, NP-hard).

1.2.3 Computational Complexity

The class of #P-hard (or #P-complete) problems has been introduced in [50] to

capture the computational complexity of counting problems. All the 6 network reli-

ability problems introduced above have been shown to be #P-complete on arbitrary

graphs even in cases of equal operating probabilities. We note the following:
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• For radio networks where communication between any two nodes depends

on the distance between the nodes, the unit disk graph (UDG) model is use-

ful. UDGs are not arbitrary graphs. Hence, complexity results on UDGs are

valuable in the analysis of radio networks.

• Grid graphs where nodes lie on integer coordinates of the infinite grid are all

UDGs.

• In [1], the authors show that the Rel2 on grid graphs is #P-complete.

1.2.4 Exact Algorithms

Given the hardness results of almost all network reliability problems studied in the

literature, it is unlikely that exact efficient algorithms exist for solving such prob-

lems on arbitrary graphs. Research that aims to find exact solutions has considered

the following directions:

1. Graph simplifications (transformations and reductions): This approach

relies on identifying topological and reliability transformations to convert a

given graph G to another graph G′ such that: (i) Rel(G) is related to Rel(G′),

and (ii) G′ is either smaller in size or have some special properties that sim-

plifies the computations. Examples of such reductions include removal of

irrelevant edges, series reduction, degree-2 reductions, ∆ − Y transforma-

tion, and Y −∆ transformation.

2. Exact algorithms on special classes of graphs: Some network reliability

problems have been shown to admit polynomial time exact solutions on some

special classes of graphs. For example, the following problems are known to

have efficient solutions on the following classes of graphs:

• Rel2, Relk, and Relall can be solved on trees, series parallel graphs [13],

and more generally, the classes of partial k−trees [4,5,9], for any k ≥ 1.

• Reachability can be solved in polynomial time on directed acyclic graphs.
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3. Exact algorithms on minpaths and mincuts: For any network reliability

problem, exact solutions can be computed from the set of all minpaths or

mincuts. This follows since the reliability is the probability that at least one

minpath operates (respectively, one minus the probability that all edges in at

least one mincut fail). However, the events considered in computing such

probabilities are not statistically disjoint, and there is a need to use a suit-

able inclusion-exclusion formula. Research in this direction has considered

achieving efficiency in evaluating such expansion in special classes of prob-

lems.

In another direction, research efforts considered the possibility of obtaining

exact solutions in time that is polynomial in the number of minpaths and

mincuts. For example, [43] has shown that Rel2 can be solved in time which

is polynomial in the number of mincuts. In contrast, it has been shown that

computing CONN2 is #P-hard even a list of all minpaths is given as part of

the input.

1.2.5 Bounding Techniques

Given the computational intractability of various network reliability problems, many

research results have focused on obtaining lower and upper bounds on the exact so-

lution. The following describes some existing approaches:

• Bounds from reliability polynomials: As mentioned above, in cases where

all edges have equal operating probability p, the exact reliability can be ex-

pressed as a polynomial in p. Thus, a lower (or upper) bound on the exact

solution can be obtained by establishing lower (respectively, upper) bound on

each coefficient in such a polynomial. In [15], several results in this direction

are presented.

• Bounds from subgraphs (or supergraphs): In cases where edges fail but

nodes are reliable, one can obtain bounds on a given network reliability prob-

lem by the following means:
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1. Approximating the structure of a given graph G by a subgraph G′ to get

a lower bound (or, a supergraph G′′ to get an upper bound).

2. Decomposing a graph G into a set of edge-disjoint subgraphs G1, G2, · · ·

, Gr.

In point (1), we seek a subgraph G′ (or a supergraph G′′) that has a special

structure that enables exact solution of the given reliability problem.

In point (2), we compute a lower bound on Rel(G) using the probability that

at least one of the r edge-disjoint subgraphs is operating.

• Bounds from pathsets and cutsets: Given a set of pathsets {P1, · · · , Pr},

one can compute a lower bound on the exact reliability by computing the

probability that at least one pathset is operating. Similarly, given a set of

cutsets {C1, · · · , Cr}, one can compute an upper bound on the exact relia-

bility by computing the probability that at least one edge in each cutset is

operating. Existing results in this direction obtain bounds from pathsets (or

cutsets) that are either edge-disjoint, or have a special property, called the

consecutive [47, 49] set property.

In addition, one can obtain bounds from operating (or failed) configurations

that are statistically disjoint (abbreviated s-disjoint): Two configurations are

s-disjoint if and only if there exists at least one edge that is assigned two

different states in the two configurations.

1.3 WSNs Detection Reliability Problems

In this section, we describe three types of WSN detection problems that are inves-

tigated in the thesis.

1. The Path Exposure Problem: The notion of path exposure in WSNs is a

fundamental notion that has been investigated in the early work of [39]. In-

formally, exposure is a measure of how well an object moving on an arbitrary

path can be observed by the sensor network over a period of time [39]. Fac-

tors that determine path exposure in a WSN include: the amount of emitted
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energy from the target that is received by the sensor nodes (including noise

effects), the target moving speed, the sampling rate adopted by the sensor

nodes, and the data fusion method that determines target detection from the

sensed data.

In [14], target detection probability is analyzed under two data fusion models.

In value fusion, a center node gathers energy measurements from all sensors

and use the aggregate information to reach a decision. In decision fusion,

each sensor processes its own sensed data and reach an individual decision.

Such decisions are forwarded to a sink node that decides whether or not an

object has moved along some path in the network. In [38], the authors have

investigated the best and worst exposed paths (called maximal support path

and maximal breach path, respectively).

Given the importance of the path exposure problem, we conclude that it is

worthwhile quantifying the network’s ability to successfully detect and report

an intrusion through a given network in an environment where nodes fail

independently of each other.

2. Breach Path Detection Problem: In the class of path exposure problems

discussed above, the path along which a target moves across the network is

either given as part of the input, or we seek to find a path of minimum or

maximum exposure. More generally, one may only know the start and end

points, outside the area guarded by the WSN, of the path across the network

used by an intruder. In this more general class of problems, the intruder is

free to use any possible path across the network whose start and end points

are prescribed. We want to analyze the likelihood that the WSN will be able

to jointly detect and report intrusion.

3. Breach Path to Target Area Reliability Problem: In the previous class of

problems, the intruder’s trajectory lies across the network. In this class of

problems, the intruder seeks to enter the network from outside to reach a

particular area of interest inside the network. As above, we want to analyze

the likelihood that the WSN will be able to jointly detect and report intrusion.
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1.4 Thesis Contributions and Organization

In this section, we summarize the main contributions of the thesis. The contribu-

tions concern the following four path intrusion network reliability problems. In

each problem, we aim at quantifying the likelihood that the collaborative work of

all nodes in the network succeeds in jointly detecting and reporting a path traversal

across the network.

1. In Chapter 3, we formulate a path exposure reliability problem, denoted

EXPO, where an intruder path is given, and the sensing and communica-

tion modules of each node can fail independently of each other. The network

is operational if it succeeds to detect and report to the sink the given path.

2. In Chapter 4, we formulate a breach path detection reliability problem, de-

noted BPDREL, where a set of entry-exit sides of possible intrusion paths

are given. The network is operational if it succeeds in detecting and reporting

intrusion along any possible path.

3. In Chapter 5, we formulate a directional breach path detection reliability

problem, denoted DIR-BPDREL. This problem extends the BPDREL

problem to networks with nodes equipped with directional sensing and com-

munication modules.

4. In Chapter 6, we formulate a breach path to target area reliability problem,

denoted BPTA-REL. In this problem, an intruder aims to reach an area of

interest inside the network.

We show that each of the above problems is #P-hard. This motivates further work

to find effective algorithms to handle the problems. To this end, we adopt a frame-

work that yields lower bounds (LBs) and upper bounds (UBs) on exact solutions.

The framework is based on using an iterative algorithm that utilizes pathsets (and

cutsets) to derive LBs (respectively, UBs). The algorithm can produce exact solu-

tions if allowed to execute for a sufficient number of iterations.

A core step in the iterative algorithm is to extend a given input configuration

to a pathset (or a cutset). Recall that, an input configuration assigns the operating
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Table 1.1: A summary of contributions

Problem Complexity
Node Re-

liability

Model

Extension to a Pathset E2P Extension to a Cutset E2C

Complexity Ability to recog-

nize all extensible

inputs

Complexity Ability to recog-

nize all extensible

inputs

EXPO #P-hard 3-state Yes Yes

BPDREL #P-hard 2-state NP-c Yes P Exact

DIR-BPDREL #P-hard 3-state NP-c Yes Yes

BPTA-REL #P-hard 2-state Yes Yes

(or failed) state to some nodes, and keeps the remaining unassigned nodes as free

nodes. We note that each of the above mentioned four WSN reliability problems,

one can decide in polynomial time whether a given configuration is a pathset, or a

cutset. Therefore, a simple algorithm to extend an input configuration to a pathset

(if one exists) may proceed by assigning the operating state to a sufficient number

of free nodes so as to obtain a pathset. Likewise, extending an input configuration

to a cutset (if one exists) proceeds by failing a sufficient number of free nodes.

In each core step, it is desirable to compute an extension to a pathset (or a

cutset) that has the highest occurrence probability. The use of an extension that has

a high occurrence probability increases the benefit of each iteration at the cost of

increasing the running time per iteration. For each of the four reliability problems,

we formulate a corresponding optimal extension to a pathset (E2P) problem, and

an optimal extension to a cutset (E2C) problem. And, we devise algorithms for

each of the resulting E2P and E2C problems (a total of 8 problems). The following

table summarizes our contributions.

In the table, a 2-state node reliability model refers to a model where each node

can either be operating or failed. Here, a node fails if either its sensing module fails

or its communication module fails. In a 3-state node reliability model, a node can

either be in a communicate and sense state, a communicate but not sense state, or a

failed state. Here, a failed node can not communicate with its neighbors.

1.5 Concluding Remarks

In this chapter, we have motivated research work on developing efficient algorithms

for assessing the reliability of WSNs in an environment where nodes fail randomly.

12



We have included a review of some of the main research directions considered

in the literature for analyzing connectivity-based reliability problems. We have

also presented the main problems investigated in the thesis and outlined the thesis

contributions.
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Chapter 2

Literature Review

Our focus in this thesis is on the class of path exposure and intrusion detection

reliability problems. In the WSN literature, the three classes of localization, intru-

sion detection, and intrusion tracking are closely related to each other. For a broad

understanding of the relation of the problems dealt with in the thesis with other

problems, we review in this chapter some results in all three classes. we remark

that our presentation in chapters 3 to 6 are intended to be self-contained that does

not depend on the detailed information provided in this chapter.

2.1 Localization in WSNs

The operation of many WSNs require the ability to determine the location of the

monitored targets or events. However, generally, in a randomly deployed WSN,

nodes are not initially aware of their locations in either absolute or relative coor-

dinates. The purpose of a localization algorithm is to enable the network to self

localize its nodes over time. A vast amount of results appear on localization algo-

rithms (see, e.g., the surveys in [11,29]). Existing approaches refer to the following

concepts:

• The nodes in a WSN are assumed to include anchor (or landmark) nodes that

know their position either in absolute coordinates (e.g., using Global Posi-

tioning System(GPS)), or relative to each other. Other nodes are initially not

aware of their positions. Such nodes are sometimes referred to as unknown

nodes.
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• In range-based localization methods, a node estimates its distance and/or an-

gle to a collection of anchor nodes. To achieve this purpose, a node can exam-

ine physical quantities such as received signal strength indicator (RSSI), time

of arrival (TOA), time difference of arrival (TDOA), angle of arrival (AOA),

etc. (chapter 1 in [6], [11], and chapter 11 in [12])

• In range-free localization, only connectivity and routing information are used

to estimate distances between landmarks and other nodes. No direct mea-

surement of distances or angles is used. Therefore, range-free localization

methods do not require any additional equipment in the localization process.

On the other hand, range-free localization methods generally have lower ac-

curacy than range-based localization methods.

• In centralized localization approaches, distance and/or angle information col-

lected by all nodes are transmitted to a central node that computes the position

of each node. Alternatively, in distributed localization approaches, each node

collects distance and/or angle information from a sufficient number of neigh-

bouring anchor nodes and executes an algorithm to infer location information

(e.g., trilateration, maximum likelihood multilateraion, or triangulation al-

gorithms) [11, 12].

The above concepts have been developed and applied largely in the context

of WSNs where all nodes (anchor and ordinary nodes) are stationary. Motivated

by applications where some of these nodes are mobile, recent research work has

developed localization algorithms to deal with the following cases (see, e.g., the

survey in [29]):

• WSNs with static landmarks and mobile nodes (5 papers introduced in [29]):

In [29], the authors identify two classes of algorithms where ordinary nodes

are mobile.

– In the class of historical information localization algorithms, a predic-

tive location estimation technique is used to estimate future locations of

mobile nodes based on their previous locations. The use of predictive
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methods are necessary where no enough landmark nodes exist, or when

noise affects the localization process.

– In the class of cluster-based localization algorithms, the deployment

area is divided into clusters where each cluster contains some land-

marks. The landmarks associated with each cluster are responsible for

localizing unknown nodes inside their associated cluster only.

• WSNs with mobile landmarks and static nodes (9 papers are introduced in

[29]): One objective of localization algorithms in such networks is to min-

imize the number of mobile landmarks needed in the localization process.

The mobile landmarks are assumed to have enough power to move through

the entire network. Therefore, each unknown node can estimate its location

by connecting to the mobile landmarks. The classification introduced in [29]

identify the following classes.

– In the class of geometric localization algorithms, some geometric prop-

erties are used to estimate the locations of the unknown nodes.

– In the class of path planning algorithms, the general objective is to op-

timize the path taken by the mobile landmark nodes with respect to a

given objective function.

Other localization algorithms for the class of WSNs with mobile landmarks and

mobile nodes are surveyed in [29].

2.2 Detection in WSNs

A core operation of any WSN is to detect events of interest and report such events

to the sink nodes. To determine the location of a target, it is assumed that each node

knows its location (e.g., using one of the localization algorithms discussed in the

previous section), and that the target or event of interest is detected by a sufficient

number of nodes. Work in the literature on detection is diversified since it typically

considers many factors such as:
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• The physical layer models and parameters used in describing the quality of

node sensing (e.g., the node’s sensing sensitivity function, sensor sampling

rate, and target speed)

• The exact method of fusing the collected sensed data to decide on target pres-

ence, or event occurrence

• The type of target or event under consideration (e.g., a discrete object crossing

the boundary, or a continuous object like a spreading fire)

In this section, we present a few selected results that are representatives of the

following directions:

• Detection using directional sensor nodes

• Detection in presence of obstacles

• Detection enhancement in randomly deployed networks

2.2.1 Detection Using Directional Sensor Nodes

In [37], the authors have considered path exposure problems in WSNs employing

directional sensors. As described below, the concept of path exposure used in the

paper quantifies the cumulative amount of energy sensed from all points on a given

path. Given two end points, the paper first develops a quantitative model to compute

path exposure for a given path between two given end points. Subsequently, the pa-

per devises a discretized method to find an approximation of a path with minimum

exposure. The main idea of the devised method has been previously used in [39] for

WSNs with omnidirectional sensors. We briefly introduce some key notation and

quantities in [37] used in the analysis.

For a sensor node si and a target point T , we have the following quantities:

• d(Li, T ): the distance between the location of si (denoted Li) and the location

of T

• φ(
−→
Vi ,

−−→
LiT ): the angle between the direction of sensor si (i.e., the direction of

maximum reception), and the line segment between Li and T
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• ω(si, T ): the sensitivity of sensor si to a target at point T

• µ, β, and γ: parameters used in the next equation to model ω(si, T )

Using the above notation, the authors adopt the following sensitivity model

where attenuation occurs if distance increases and/or the angle φ increases:

ω(si, T ) =
µ(cos[φ(

−→
Vi,

−−→
LiT )
2

])β

[d(Li, T )]γ
(2.1)

The exposure of a horizontal line segment ea,b = ((xa, ycommon), (xb, ycommon))

is computed as follows (similar definitions apply to a vertical line segment ea,b):

1. For a single node si, the exposure of the line segment ea,b to sensor si is given

by Ei(ea,b) =
∫ xb

xa
ω(si, p)dx, where p = (x, ycommon) is any point in the line

segment.

2. When the all-sensor field intensity function is used in a WSN with S nodes,

the exposure is given by Ei(ea,b) =
∫ xb

xa

∑

si∈S
ω(si, p)dx

3. When the maximum field intensity function is used in a WSN with S nodes,

the exposure is given by Ei(ea,b) =
∫ xb

xa
maxsi∈S(ω(si, p))dx

To approximate the problem of finding a path with minimum exposure, the au-

thors confine the search to paths composed of horizontal and vertical edges of a

grid superimposed on the WSN’s area. Moreover, the approximation neglects the

contribution of a sensor si to point p if ω(si, p) < ε, for some desired threshold

ε. A path is between two end points corresponding to the intruder’s entry and exit

points. The methodology involves the following steps:

1. Using either the all-sensor field intensity function (point 2 above), or the

maximum field intensity function (point 3 above), compute the exposure of

every edge in the grid

2. Using a shortest path algorithm, compute a path through the grid with a min-

imum cumulative exposure of all of its edges. The computed path is the

desired approximation to the solution of the problem.
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2.2.2 Detection in Presence of Obstacles

In [41], the authors have considered a WSN deployed in a rough terrain with obsta-

cles that can obstruct sensing. The network guards against unauthorized traversal

through the monitored region. The following assumptions and notation are used to

define the problem in [41]:

• The deployment area is modelled by a long narrow rectangular grid of di-

mensions N ×M , where N > M . The grid serves as a segmentation of the

continuous area monitored by the WSN (so, sensor nodes do not necessarily

lie on grid points).

• One long side of the grid, say the top side, separates a secure area in the field

from the area monitored by the WSN (i.e., the grid area). The other long

side, say the bottom side, separates an insecure area from the grid area. The

intruder aims at crossing the grid from the insecure area to the secure area.

• Sensing through an obstacle is impossible. Thus, a sensor can detect a target

point only if there is an unobstructed line-of-sight between the sensor and the

point. Grid points inside an obstacle are therefore deleted from the grid. We

denote by G the partial grid obtained by deleting grid points that lie inside

each obstacle.

• Each grid point p has an associated exposure level, denoted I(p), correspond-

ing to the probability that the overall WSN can detect a target at that point.

• For a given path P of grid points, the detection probability of P is the maxi-

mum exposure level of a grid point on P . We denote such a value by Imax(P )

(this notation is not in [41]).

• The weakest breach path, denoted P ∗, is defined as a path crossing the net-

work from the insecure area to the secure area with the minimum possible

detection probability.

• The deployment quality measure (DQM ) is the value Imax(P
∗).
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The problem defined in [41] is to compute the DQM for a given WSN. The

work in [41] defines a graph, denoted H , that is typically smaller than the partial

grid G. The authors utilize such a graph H to solve the DQM problem in polyno-

mial time. The main solution strategy, however, can be explained using the partial

grid G instead of using the smaller graph H . In more detail, the solution strategy

using the grid can be explained as follows:

• Construct a graph Gs,d by adding two new nodes, denoted s and d, where s

(respectively, d) is connected to every grid point on the secure (respectively,

insecure) side of the grid. Thus, every (s, d)−path across the WSN is a breach

path.

• Construct a list L of exposure levels of the grid nodes sorted from highest to

lowest. Search L for the smallest value of x such that if one omits from Gs,d

all grid points whose exposure level is above x then Gs,d continues to have

(s, d)−path. Set DQM = x

The work in [41] considers the following additional details:

• Constructing a graph H that is typically smaller than the partial grid G utilizes

the following observations.

– A path P that has a small detection probability Imax(P ) follows grid

points that are either (a) most distant from sensor nodes, or (b) provide

a passage around an obstacle. Type (a) points correspond to grid points

of G whose exposure satisfy a local minima property. By connecting

such grid points, one obtains a set of contours that include the weakest

breach path. Fig. 2.1 shows an example of such contours that are used

to obtain possible intruder’s breach paths.

– The authors remark that the use of Voroni diagrams are not suitable

to identify such contours due to the existence of obstacles. Instead, a

segmentation method (due to [53]) that borrows ideas from image seg-

mentation (and segmentation of topological maps) is used in [41].
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Figure 2.1: An example of possible intruder breach paths

• The paper utilizes a sensor sensitivity model where the probability of de-

tecting a target by a sensor decays exponentially with the sensor-to-target

distance.

• The paper experiments with 4 different functions to determine the exposure

level I(p) for any point p in the field. The four functions differ in the use of

the number of sensor nodes participating in the function, and the sensitivity

of each of the involved sensors.

2.2.3 Detection Enhancement in Randomly Deployed Networks

In [31], the authors consider random deployment of a WSN to protect a circular

area, denoted A, against unauthorized traversal. The following assumptions and

notation are used to define the problem:

• The sink node lies at the center of the circle A at (x, y)−coordinates (0, 0).

• The quality of coverage requirements to be achieved by the devised deploy-

ment scheme are specified by the following input values:

– P ∗
s : a sensing coverage probability requirement for a border area of cir-

cle A. This requirement translates to (a) identifying a circular ring area

on the perimeter of circle A, and (b) ensuring that the probability that

each point in this identified ring ≥ P ∗
s . The sensing coverage require-

ment aims at controlling the distance that the intruder traverses within

A before detection.
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– P ∗
c : a connectivity probability for the communication graph induced by

all sensor nodes deployed in the circle A. Achieving higher connectivity

of such a graph provides better protection, especially to the central area

of A.

The paper introduces a random network deployment scheme that allows for

optimizing the number of deployed nodes while achieving the required P ∗
s and P ∗

c

levels. The scheme utilizes the following two random distributions.

• Uniform random deployment using a 2-dimentional Poisson point process of

density λ: A randomly deployed network using this distribution over a region

D of area |D| deploys an average of α = λ|D| nodes in the area. Thus,

the number of nodes deployed in the area, denoted N(D), obeys the Poisson

distribution: P (N(D) = k) = αke−α

k!
. The authors remark that although

a uniform random deployment over the circle A can be tuned to satisfy the

required coverage and connectivity levels, it is not particularly efficient if

certain areas within A (e.g., the central area) needs extra coverage.

• Deployment using a 2-dimentional Gaussian distribution with mean point

(xi, yi) and variances (σx, σy). This distribution provides a means of provid-

ing better protection to the area in the vicinity of the mean point (xi, yi). In

the paper, the central area is assumed to require more protection, hence, the

paper sets (xi, yi) = (0, 0).

The main idea of the paper is to achieve the coverage, and connectivity require-

ments (i.e., P ∗
s and P ∗

c ) by utilizing a hybrid deployment scheme, called Gaussian-

Ring scheme, where a Gaussian distribution is used to cover the whole area A, and

a Poisson distribution is used to add more nodes to the identified border ring. In

more detail, if rs and rc denote the sensing radius, and the communication radius

of each sensor node, respectively, and R denotes the radius of circle A, then the

analysis decomposes A to k = dR/rce rings, where each ring has width ≤ rc. The

innermost ring (with index i = 1) is a circle of radius rc. The outermost ring (with

index k) may have width ≤ rc. The analysis utilizes the following two important

results.
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• In [36], the authors obtain asymptotic results on the sensing coverage of an

area by sensors deployed according to a Poisson distribution with density

λ. Results on deployment in two types of areas are reported: large areas,

and long rectangular strips of width W (W is the smaller dimension of the

strip). Both the Boolean sensing model and a more general sensing model

are considered. In each case, sensors of sensing radius rs are deployed. In

cases of the Boolean sensing model, and either a large area, or a long strip

area, where W >> rs, the authors show that the probability that a point p is

covered by at least one sensor node is

fa = 1− e−λπr2s (2.2)

• In [7], the author obtains asymptotic results on the connectivity of sensors de-

ployed according to a Poisson distribution with density λ. The author shows

that if n nodes are deployed, and the communication radius of each node

is rc then the probability that no node is isolated (i.e., the minimum degree

dmin > 0) is given by

P (dmin > 0) = (1− e−λπr2c )n (2.3)

Thus, rc achieves a desired P (dmin > 0) = p value if

rc ≥

√

−ln(1− p1/n)

λπ
(2.4)

The author combines the above result with a result of [42] that shows that if

n is high enough then as rc increases, the resulting random geometric graph

becomes k−connected at the moment it achieves a minimum degree of k. The

combined result is that the bound given by equation (2.3) is tight to achieve

1−connectedness.

We now outline the approach devised in [31] to optimize the number of nodes

deployed by the Gaussian-ring scheme. Below, Ng and Nu denote the average num-

ber of nodes deployed by the Gaussian distribution and the uniform (i.e., Poisson)

distribution, respectively. So, we wish to minimize Ng + Nu. In addition, we as-

sume that P ∗
c , P ∗

s , rc, rs, and σx = σy = σ are given (note: another optimization

problem arises if σ is not given as part of the input).
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1. To find the minimum acceptable number Ng of nodes, the paper applies the

following steps.

(a) Find E(Ng,k), the expected number of Gaussian nodes that fall in the

outermost ring k

(b) Denote the area of ring k by |Ak|, compute the density λ = E(Ng, k)/|Ak|

of Gaussian nodes that fall in ring k

(c) Assuming that the Gaussian nodes in ring k form a Poisson distribution

with density λ, the paper uses equation (2.3) to find Ng that gives the

desired connectivity probability P ∗
c in ring k

(d) Since inner rings have higher density of Gaussian distributed nodes, the

connectivity probability P ∗
c is also satisfied in each inner ring.

2. To find the minimum acceptable number Nu of nodes deployed in ring k to

achieve the desired coverage probability P ∗
s , the paper uses equation (2.2) to

find the minimum density λ required to achieve P ∗
s in area |Ak|, and then sets

Nu = λ|Ak|.

Similar to points 1.c and 1.d, connectivity of the overall graph with probability

P ∗
c relies on having a subset of Poisson distributed points with density satisfying

equation (2.3) where P (dmin > 0) = P ∗
c .

2.3 Tracking in WSNs

WSNs are also used to track movement of both discrete and continuous objects

over time. Discrete objects have fixed shape and size whereas continuous objects

change their size and shape over time (e.g., wild fire, and bio-chemical material). In

general, continuous objects tend to diffuse, and can split into multiple smaller con-

tinuous objects. Tracking involves periodic detection, localization, and reporting of

such objects. Many research results exist in this area (cf., the surveys in [8,17,40]).

The results span both networking algorithms and protocols, and signal processing

algorithms (e.g., [35]). In this section, we briefly mention some of the techniques,
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classifications, and performance metrics that have received attention in the network-

ing literature.

Tracking algorithms are sometimes considered in conjunction with techniques

from the following areas.

• Data aggregation techniques that aim at reducing and compressing data ex-

changed during the tracking process so as to reduce energy consumption (see,

e.g., [25–27])

• Data fusion techniques that aim at obtaining inference about the collected

data and reducing error by eliminating noisy sensed measurements (see, e.g.,

the survey in [48])

• Mobility prediction techniques that aim at predicting the movement direc-

tion and speed of the target object over a short future period of time (see,

e.g., [54])

In [8,40], the authors classify many of the existing results in the tracking litera-

ture along the following dimensions. (To elaborate on the classification further, we

include the number of papers cited under each of the identified classes.)

• Classification with respect to the network structure: Various network

topologies are considered for usage in tracking tasks. Typical examples in-

clude tree-based networks (8 papers cited in [8]), cluster-based networks (14

papers cited in [8]), and leader-based networks (4 papers cited in [40]).

• Classification with respect to the number of objects tracked: Results on

both single target tracking (4 papers in [40]), and multi-target tacking (8 pa-

pers in [40]) appear in the litrature.

• Classification with respect to the type of object tracked: Work on both

discrete object tracking (12 papers in [40]), and continuous object tracking (2

papers in [40]) exist in the literature.

Many performance metrics are used in analyzing the proposed tracking algo-

rithms and protocols. Of the available metrics, we mention the following:
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• Latency until the network estimates the target location since its first presence

in the monitored area

• Latency of reporting to the sink node the estimated target location

• Energy consumed by the active nodes required to track the object

2.4 Concluding Remarks

In this chapter, we have discussed three fundamental categories of WSN tasks: lo-

calization, detection, and tracking tasks. The negative effect of node failure in each

of the above tasks can be quantified in a measurable way. For example, node failure

may result in

• a large fraction of unlocalized nodes in a localization task,

• a large rate of false negatives in a target detection task,

• a high probability of losing the itinerary of an object in a tracking task.

In the next chapters, we present our obtained results on analyzing a number of

target detection problems in an environment where nodes fail independently of each

other.

26



Chapter 3

Path Exposure Problem in WSNs

In this chapter, we consider wireless sensor networks for surveillance

applications where a node’s ability to detect and report intrusion is de-

scribed probabilistically. In addition, intruders traversing an area may

probabilistically disrupt sensors by spreading jamming devices. We

formalize a problem called the path exposure (EXPO) problem that

quantifies the likelihood that a WSN can detect and report intrusion

events. Our main contributions in this chapter are as follows:

1. We show that the EXPO problem is #P-hard even on grid net-

works.

2. We introduce an algorithm for computing lower and upper bounds

on the solution for networks with arbitrary topology where the

sink location is unconstrained. The algorithm extends the idea of

factoring algorithm presented in [15] to work on networks with

3-state nodes.

3. We present simulation results analyzing various aspects and ap-

plications of the algorithm. One application concerns an intruder

traversing a path across the network and using jamming devices.

Some of the results in this chapter appear in [24].
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3.1 System Model

3.1.1 Network Connectivity

Path exposure problems in the literature are typically discussed using a graph model

for the underlying WSN. We denote such graph by G = (V
⋃

{s}, E), where s is

a sink node that performs various network control and data collection tasks, and

E a set of communication links. For simplicity of presenting the algorithm, we

assume that links are bidirectional. The algorithm, however, can be adapted to use

directional links.

Due to operation in harsh environments, possible energy depletion, and effect

of intentional jamming, a node x is assumed to succeed in communicating with its

neighbours with a probability, denoted prelay(x).

3.1.2 Probabilistic Sensing Model

Many existing work on target detection and path exposure relies on the following

relations. Given a sensor node x and a static target at a point p that is d units

away from x, the average power emitted by the target and received by x fades as d

increases according to some path loss model.

To detect a target, a sensor node performs a number of detection attempts. In

each attempt, the sensor accumulates the received energy over some period of time

that depends on the sensor technology. By considering the average received energy

and noise power in a time period ∆t one can determine the probability psense(x, p)

of detecting the target point.

A target moving along a path P that crosses x’s sensing region may be detected

by a number of detection attempts where each attempt is associated with a segment

traversed by the mobile target. The probability of detecting the target in any of these

segments is denoted psense(x, P ).

Thus, psense(x, P ) is likely to decrease as the target moves fast since the number

of probing segments of P may decrease, and/or the frequency of detection attempts

may decrease. In both cases, the received energy collected from the target is likely

to decrease. In our model, the intruder may follow a path of arbitrary shape (e.g., a
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wavy curve). We simplify the notation psense(x, P ) to psense(x).

3.1.3 Intruder Jamming

In addition, we assume that an intruder can spread a number of jamming devices to

hamper the network’s communication and/or sensing ability. Each jamming device

has a radius of effect, denoted Rjam. In our model, its effect is captured by reducing

prelay(x) and/or psense(x) of each affected node x.

3.2 Problem Formulation and Remarks

We now define the path exposure on probabilistic WSNs problem. To focus on the

combinatorial aspects of the problem, our definition assumes that for any node x,

the sensing probability psense(x) and the relaying probability prelay(x), have been

precomputed from physical problem parameters such as the specified intruder path,

the intruder’s speed, the frequency of detecting attempts performed by sensor nodes,

and so on. We also assume that nodes fail to sense events and relay data indepen-

dently of each other. The sink is assumed to be perfectly reliable, but it does not

participate in sensing activity.

Definition (the EXPO Problem): Given a WSN G = (V, {s}, E) where s is the

sink node, a path P , and integer kreq ≥ 1, where each node x ∈ V has a proba-

bility psense(x) of detecting the path P , and a probability prelay(x) of successfully

forwarding data to its neighbours, compute the probability Expo(G,P, kreq) that P

can be detected by kreq or more sensor nodes connected to the sink node. �

Throughout the chapter, we also use the abbreviated notation Expo(G), Expo(G,

P ), and Expo(G, kreq) to emphasize important parameters in a specific context.

3.2.1 Complexity Analysis

Theorem 3.1 The EXPO problem is #P-hard.

Proof. In [1], the authors have shown that computing the two-terminal reliability of
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a wireless partial grid network (2REL) is #P-Complete even when the problem is

restricted to partial grid networks of equal operating probabilities and equal com-

munication ranges. An instance (G, s, t) of the 2REL problem is specified by a

probabilistic graph G = (V,E) on a set V of nodes, a set E of links, and two distin-

guished nodes s and t. The problem asks for the computing the probability, denoted

Rel(G, s, t), that at least one operating path between s and t exists in the network.

To show that EXPO is #P-hard, we reduce in polynomial time any given in-

stance (G, s, t) of the wireless 2REL problem to an instance (G,P, kreq) of the

EXPO problem. The reduction works as follows:

1. For each node x ∈ V in the constructed EXPO instance, set prelay(x) =

p(x) (p(x) is the operating probability of node x in the 2REL instance).

2. Set t as the sink node in the EXPO instance.

3. In the EXPO instance, set psense(s) = 1, and set psense of other nodes to

zero.

4. Fix a path P in the EXPO instance to be any path that can be sensed by node

s, and set kreq = 1.

The proof follows since Rel(G, s, t) = Expo(G,P, kreq). �

3.3 States, Configurations, Pathsets, and Cutsets

In this section, we define the concepts of node states, network states, network con-

figurations, pathsets, and cutsets. These concepts are needed to present our main

algorithm.

3.3.1 Node States

A non-sink node x can be in any one of 3 possible states. State rs where x can per-

form both relaying and sensing. So, prs(x) = prelay(x) · psense(x). State rns where

x can perform relaying but not sensing. So, prns(x) = prelay(x) · (1 − psense(x)).

State fail where x can not perform relaying. So, pfail(x) = 1− prelay(x).
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3.3.2 Network States

When each node in G assumes one of the 3 possible states, we obtain a state of

the network G (thus, G has 3|V | states). Any such state T is defined by 3 disjoint

subsets of nodes: Trs (nodes in state rs), Trns (nodes in state rns), and Tfail (failed

nodes), where V = Trs ∪ Trns ∪ Tfail.

If kreq ≥ 1 is the minimum number of sensor nodes required to detect intrusion

then a state T is operating only if |Trs| ≥ k, and at least k of the sensors in Trs

reach the sink. The probability that state T arises is

Pr(T ) =
∏

v∈Trs

prs(v)
∏

v∈Trns

prns(v)
∏

v∈Tfail

pfail(v).

And, the required exposure function Expo(G, kreq) =
∑

Pr(T : T is an operating

state).

The above expression can be used to evaluate the exposure function by exhaus-

tively generating all distinct states of the network and summing over the set of op-

erational states. For a network with |V | = n nodes, such algorithm requires O(3n)

time. Hence, its practical use is limited to networks of small sizes.

671

2 3 4 5

sink

intruder 

path

Figure 3.1: An instance of the EXPO problem

Example. Fig. 3.1 illustrates an instance of the EXPO problem where the network

G has |V | = 7 nodes. Thus, G has 37 states. We assume that only nodes represented

with dotted circles can sense the intrusion path, other nodes can only relay data.

Consider the network state T where Trs = {5}, Trns = {3, 4}, and the remaining

non-sink nodes are failed. If kreq = 1 then T is an operating state. Else (if kreq ≥ 2),

then T is a failed state. �
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3.3.3 Network Configurations

A network configuration assigns a state to some (but not necessarily all) nodes. For

a node v and a state sv ∈ {rs, rns, fail}, we write (v, sv) to mean that node v

is in state sv. We also find it convenient to write a probability psv(v) as p(v, sv).

For example, in the network of Fig. 3.1, assume that kreq = 1. Thus, configuration

C = ((5, rs), (4, rns), (3, rns)) is operating regardless of the state of the remaining

nodes in V .

Two configurations C1 and C2 are statistically disjoint (s-disjoint) iff at least

one node that occurs in both configurations is assigned different states in the con-

figurations. Thus, Pr(C1 ∪ C2) = Pr(C1) + Pr(C2).

3.3.4 Pathsets and Cutsets

A pathset is an operating configuration. In Fig. 3.1, e.g., C = ((5, rs), (4, rns),

(3, rns)) is a pathset assuming kreq = 1. A cutset is a configuration that can not be

extended to a pathset. In Fig. 3.1, e.g., C = ((3, fail), (7, fail)) is a cutset for any

kreq ≥ 1.

The main idea used in our devised algorithm to obtain a lower bound on the ex-

posure function is to compute a number of pairwise s-disjoint pathsets, say P1, P2, · · ·

, Pr, and use the inequality Expo(G, kreq) ≥
∑r

i=1 Pr(Pi) where the RHS is the

computed lower bound. To compute an upper bound, our algorithm computes a

number of pairwise s-disjoint cutsets, say U1, U2, · · · , Ur, and use the inequality

Expo(G, kreq) ≤ 1−
∑r

i=1 Pr(Ui) where the RHS is the computed upper bound.

Similar inequalities have been used by various authors in the literature. In [30],

e.g., the authors discuss numerical results obtained by using similar inequalities in

the context of analyzing network reliability problems with 2-state links.

3.4 The Factoring Theorem

Our method for systematically generating the required s-disjoint pathsets and cut-

sets is based on extending the factoring theorem discussed, e.g., in [15, 30] in the
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context of evaluating the reliability of networks with 2-state (operate or fail) ele-

ments. Our extension concerns using the theorem with 3-state nodes, as required

by the EXPO problem. We are not aware of other results that use the factoring

theorem to analyze networks with k-state elements where k ≥ 3.

To start, we introduce the following notation. Let G be a WSN where v is non-

sink node, and sv ∈ {rs, rns, fail} be a possible state of v. Denote by G • (v, sv)

the constrained network G where node v is in state sv. We now state the factoring

theorem on 3-state nodes.

Theorem 3.2

Expo(G) = p(v, rs) · Expo(G • (v, rs))+
p(v, rns) · Expo(G • (v, rns))+
p(v, fail) · Expo(G • (v, fail))

Proof. The theorem follows since the right hand side (RHS) exhausts all possible

states of the node v. �

Our method of using the theorem avoids enumerating all network states. In-

stead, we use the theorem to generate s-disjoint pathsets (in LB computations) and

cutsets (in UB computations). The rationale is that the number of s-disjoint pathsets

(or cutsets) is typically much smaller than the number of states in a network. Thus,

the time spent in extending configurations to pathsets (or cutsets) pays off in terms

of improving the running time of the algorithm. (A similar approach is used in [2]

for computing lower bounds on a network reliability problem with 2-state nodes.)

In addition, an effort is expended in generating pathsets (or cutsets) with minimal

sets of nodes, so as to obtain good bounds.

We now introduce the following extended notation. First, we extend the notation

G • (v, sv) to the notation G •C, where C is a configuration. The notation refers to

a constrained network G where for each pair (v, sv) ∈ C, node v is assigned state

sv.

Second, we assign integer values to the 3 states rs, rns, and fail to use modulo

3 addition. For example, we set rs = 0, rns = 1, fail = 2. Thus, if si is a state

and ki = 0, 1, or 2 is a shift amount then si + ki (mod 3) refers to a valid state.
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Now, suppose that C = ((v1, s1), (v2, s2), · · · , (vr, sr)) is a configuration on r

nodes. Applying the factoring theorem to v1 gives an expansion:

Expo(G) =
3

∑

i=1

Pr(Ci) · Expo(G • Ci)

where
C1 = ((v1, s1))
C2 = ((v1, s1 + 1))
C3 = ((v1, s1 + 2)).

Subsequently, applying the theorem using v2 to expand Expo(G • C1) gives the

expansion:

Expo(G) =
5

∑

i=1

Pr(Ci) · Expo(G • Ci)

where
C1 = ((v1, s1), (v2, s2))
C2 = ((v1, s1), (v2, s2 + 1))
C3 = ((v1, s1), (v2, s2 + 2))
C4 = ((v1, s1 + 1))
C5 = ((v1, s1 + 2)).

Similarly, applying the theorem r times using all nodes of the configuration C

gives the expansion:

Expo(G) =
2r+1
∑

i=1

Pr(Ci) · Expo(G • Ci)

where
C1 = ((v1, s1), · · · , (vr−1, sr−1), (vr, sr))
C2 = ((v1, s1), · · · , (vr−1, sr−1), (vr, sr + 1))
C3 = ((v1, s1), · · · , (vr−1, sr−1), (vr, sr + 2))
· · · = · · ·
C2r−2 = ((v1, s1), (v2, s2 + 1))
C2r−1 = ((v1, s1), (v2, s2 + 2))
C2r = ((v1, s1 + 1))
C2r+1 = ((v1, s1 + 2))

are pairwise s-disjoint configurations.

In LB computations, the algorithm chooses a pathset C generate configurations

denoted C1 to C2r+1 above. The algorithm then adds Pr(C1) to the computed LB.

Note that, C1(= C) is a pathset. Subsequently, it chooses one of the configurations

C2 through C2r+1 to extend to a pathset, and use the new nodes of the computed
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pathset to generate other configurations. The computations terminate when no con-

figuration admits a desired extension. In such case, the algorithm has exhausted

a maximal set of s-disjoint pathsets, and the computed LB is the exact exposure

value. A similar argument applies to UB computations by replacing pathsets with

cutsets.

3.5 Main Algorithm

The overall algorithm is composed of 4 functions: function Main, function Factor,

function extend_to_pathset, and extend_to_cutset explained in the next sections.

We now explain the first two functions.

Algorithm 1: Function Main(G, kreq):

Input: An instance of the EXPO problem

Output: The function generates pairwise s-disjoint configurations (either

pathsets or cutsets) and returns the sum of their probabilities

Notation: R is a table that stores the generated configurations.

1 Initialization: set

R[0] = (C = ∅, Cnew = ∅, state = ACTIV E, p = 0.0)

(so, initially, R has has only one record)

2 for (iter = 1, 2, . . . ,maxIter) do

3 Let i be the index of a configuration with largest probability in the heap

R.heap; delete record i from R.heap
4 Call function factor: result = Factor(R, i, kreq)
5 if(result < 0) R[i].state = BAD

end

6 return
∑

i = 0, 1, . . .
where R[i].state 6= BAD

R[i].p

Function Main. This function takes as input an instance of the EXPO problem, and

computes either a lower bound (LB), or an upper bound (UB) on the solution. If LB

is specified, the function returns the sum of the probabilities of a set of s-disjoint

pathsets. The pathsets are obtained using function extend_to_pathset (called from

function Factor). If UB is specified, we use function extend_to_cutset and utilize
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Algorithm 2: Function Factor(R, i, kreq)

Input: Table R storing network configurations, and an index i of a configuration

R[i].C to use in factoring

Output: In record R[i], if C can be extended to a pathset (or, cutset in UB

computations) C ∪ Cnew then apply factoring on the sequence of nodes

in Cnew to generate new s-disjoint configurations. For each generated

configuration C ′, compute (if possible) an extension of C ′ to a pathset

(or, cutset in UB computations). Store the record

(C ′, C ′
new, ACTIV E,Pr(C ′ ∪ C ′

new)) in table R.

1 result = extend_to_pathset(R[i].C,R[i].Cnew, kreq)
2 if(result < 0) return result
3 foreach (node-state pair (v, s) in configuration R[i].Cnew) do

4 for (k = 1, 2) do

5 Initialize (C ′ = ∅, C ′
new = ∅)

6 Set C ′ = (C, (v, s+ k))
7 result = extend_to_pathset(C ′, C ′

new, kreq)
8 if(result < 0) continue

9 Set p =
∏

(v,s)∈(C′
⋃

C′

new) p(v, s)

10 Insert record (C ′, C ′
new, ACTIV E, p) in table R

end

11 Move tuple (v, s) from R[i].Cnew to R[i].C

end

12 Set R[i].state = PROCESSED
13 return +1

cutsets instead of pathsets. Table R is used to store the generated configurations.

Each entry R[i] stores a record of 4 fields:

– R[i].C: a generated network configuration

– R[i].Cnew: if possible, an extension of C to a pathset (in LB computations),

or cutset (in UB computations)

– R[i].state: a state of the record R[i], state ∈ {ACTIV E, PROCESSED

,BAD}. A record is ACTIV E if it stores the empty initial configuration, or

a non-empty configuration for which an augmentation to a pathset (or, cutset)

has been computed and stored in Cnew. A PROCESSED record is an ac-

tive record that has been used to generate other configurations using function

Factor. A BAD record stores a configuration that can not be extended to a

pathset (in LB computations), or cutset (in UB computations).
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– R[i].p: for an ACTIV E or PROCESSED record, p = Pr(C ∪ Cnew) (the

probability of obtaining the stored pathset, or cutset). For a BAD record,

p = 0.

The function also maintains a maximum heap storing indices in R. The top of the

heap is an ACTIV E record with highest probability p.

Step 1 initializes table R with an empty configuration (C = ∅, Cnew = ∅, state =

ACTIV E, p = 0.0). Subsequently, Step 2 performs a prescribed number of iter-

ations. In each iteration, Step 3 removes the top record from the heap, and Step 4

calls function Factor to process the removed record. Step 5 marks the record BAD

if it can not be extended to a pathset (in LB computations), or cutset (in UB compu-

tations). Finally, Step 6 returns the sum of probabilities of all good configurations

in R.

Function Factor. (Note: This function calls extend_to_pathset in Steps 1 and 7;

these steps are changed to call function extend_to_cutset when UB computations

are done.)

The function takes as input a record R[i] = (C,Cnew, ACTIV E, p) and com-

putes in Step 1 an extension Cnew so that C∪Cnew is a pathset (in LB computations),

or cutset (in UB computations). If C ∪ Cnew satisfies this requirement, the loop in

Step 3 performs factoring on each node-state pair in Cnew to generate new s-disjoint

configurations.

In more detail, in Step 3, if R[i] has Cnew = ((v1, s1), · · · , (vr, sr)) then the

loop in Step 3 generates 2r pairwise s-disjoint configurations. Processing the pair

(vi, si) ∈ Cnew is done during the ith iteration of Step 3 as follows. The itera-

tion considers the prefix of C ∪ Cnew composed of (C, (v1, s1), · · · , (vi−1, si−1)).

Factoring on our target pair (vi, si) creates two configurations:

(C, (v1, s1), · · · , (vi−1, si−1), (vi, si + k)), for k = 1, 2. (3.1)

These two configurations are generated in the loop of Step 4.

Step 7 aims at extending each generated configuration C ′ to a pathset (or, cut-

set). If successful, Step 9 computes p = Pr(C ′ ∪ C ′
new), and Step 10 inserts a new
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ACTIVE record in table R. Step 11 prepares for a new iteration by moving the

processed pair (vi, si) from Cnew to C.

Finally, after generating the 2r configurations, Step 12 marks record R[i] as

PROCESSED, and Step 13 returns with a success value (+1).

The algorithm can be shown to be correct by showing that function Main gen-

erates pairwise s-disjoint configurations in table R.

3.5.1 Correctness

We now show that

Theorem 3.3 Function Main generates pairwise s-disjoint configurations in table

R.

Proof. We induct on the number of iterations done by the function. The basis

when R has one entry is straightforward. For any given iteration m ≥ 1, assume

the theorem holds at the start of the iteration. We show that it holds true after the

iteration. Let R[i] be the record selected for expansion in the iteration, and let R[j]

be any other record in table R. By the induction hypothesis, R[i].C and R[j].C

differ in the state of at least one node that occurs in both configurations.

Function Factor generates new configurations by factoring on nodes in R[i].Cnew.

Each of the new configurations has the prefix R[i].C. Thus, each newly generated

configuration is s-disjoint from any configuration stored in R. In addition, any

two configurations generated by Factor differ in the state of at least one node in

R[i].Cnew. So, any pair of the newly generated configurations is s-disjoint. Thus,

all configurations stored in the table R after iteration m are pairwise s-disjoint, as

required. �

3.6 Pathset Augmentation

In this section we illustrate by an example the main ideas behind the design of

function extend_to_pathset. The function takes as input a configuration C on a

subset V (C) ⊆ V of nodes, and aims at computing an extension configuration
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Cnew of C such that (a) nodes of C and Cnew are disjoint, (b) C ∪Cnew is a pathset

of G, and (c) Pr(C ∪ Cnew) is as high as possible.

The function strives to achieve condition (c) by two means: first, it computes a

minimal extension Cnew that satisfies conditions (a) and (b), and second, it tries to

optimize the selection of nodes added to Cnew. Roughly speaking, the main steps

are as follows.

1. Given an input configuration C, we mark all nodes in V \V (C) as free nodes

(these nodes are not assigned any specific state thus far).

2. The algorithm then executes iteratively. In each iteration it tries to identify

the following:

(a) A sensing capable node that does not reach the sink in the currently

computed configuration C
⋃

Cnew, denoted best. Note that node best

can be a rs node in configuration C that does not reach the sink in

C
⋃

Cnew.

(b) A path, denoted Pbest_to_sinktree, that connects node best to some node

that can reach the sink in the currently computed configuration C
⋃

Cnew

(c) Node best can be assigned the state rs, and each free node on the

path Pbest_to_sinktree can be assigned either state rs or rns such that

Pr(Pbest_to_sinktree) is maximum over all possible choices of node best.

3. Thus, adding all nodes in the configuration specified by Pbest_to_sinktree in-

creases the number of nodes of type rs connected to the sink. The function

terminates successfully if the number of nodes in state rs in C
⋃

Cnew ≥ kreq.

Else, the function returns with failure (−1).

Example. Fig. 3.2 illustrates an instance of the EXPO problem on |V | = 8 nodes

where kreq = 3. The figure shows layers 1, 2, and 3 of a breadth first search (BFS)

tree rooted at the sink. The figure also illustrates an input configuration

C = ((x1, rns), (x2, rns), (x3, rns), (y1, rs), (z2, rs)).
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BFS layers

L1

L2

L3

x1

x2

x3

y1

y2

y3

z2

Node states:

rns node free node with prs=0 and prns > 0

rs node free node with prs> 0

sink

z1

Figure 3.2: An example of pathset augmentation for the EXPO problem

The remaining 3 nodes y2, y3, and z1 are free nodes.

Note that C is not a pathset since only node y1 is in state rs and can reach the

sink while the other rs node in C (node z2) can not reach the sink in the configura-

tion. Now, suppose that

• Node y2 has prelay(y2) = 0.2 and psense(y2) = 0.1 (i.e., prs(y2) = .02

and prns(y2) = .18). Thus, to extend C by adding (y2, rs), the best path

is Py2_to_sinktree = (y2) with probability .02.

• Node y3 has prelay(y3) = 0.9 and psense(y3) = 0.1 (i.e., prs(y3) = .09

and prns(y3) = .81). Thus, to extend C by adding (y3, rs), the best path

is Py3_to_sinktree = (y3) with probability .09.

• Node z1 has prelay(z1) = 0.7 and psense(z1) = 0.8 (i.e., prs(z1) = .56

and prns(z1) = .14). Thus, to extend C by adding (z1, rs) the best path is

Pz1_to_sinktree = (z1, y3) with probability = 0.56× 0.81 ≈ 0.45.

The algorithm selects node best = z1, sets the path Pbest_to_sinktree = (z1, y3), and

adds to Cnew the pairs ((z1, rs), (y3, rns)). Note also that in the new configuration

C ∪ Cnew, node z2 is in state rs and reaches the sink. We conclude that since

kreq = 3, C ∪ Cnew is a pathset. �

We note that in step 2.c if each free node on the identified path Pbest_to_sinktree

with psense > 0 is assigned the rs state, the function will always succeed in finding

an extension Cnew if a solution exists.
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3.7 Cutset Augmentation

In this section we illustrate by an example the main ideas behind the design of

function extend_to_cutset. Analogous to function extend_to_pathset, function

extend_to_cutset takes as input a configuration C on a subset V (C) ⊆ V of nodes,

and aims at computing an extension configuration Cnew of C such that (a) nodes of

C and Cnew are disjoint, (b) C
⋃

Cnew is a cutset of G (recall that a cutset is a

configuration that can not be extended to a pathset), and (c) Pr(C
⋃

Cnew) is as

high as possible.

Function extend_to_cutset strives to achieve condition (c) by computing a min-

imal extension Cnew that satisfies conditions (a) and (b). The function relies on the

following methods.

1) A method to test whether any given input configuration Cin is a cutset

2) A method to select a free node not in Cin to flip its state to failed (if possible

else convert the state to rns) and add it to Cnew

Methods 1 and 2 are applied iteratively until C ∪Cnew forms a cutset (if such cutset

exists).

3) A method that aims at minimizing the size of the computed Cnew

Method 1 works by assuming that each non-sink node x in V \Cin is in state rs

(if prs(x) > 0), or state rns (if prns(x) > 0, but prs(x) = 0), and testing whether the

network is operational. The method concludes that Cin is a cutset iff this assumed

network state is failed.

Work of Method 2 is guided by inputting a total order (v1, v2, · · · , vn) of V .

The method scans this sequence, selects the first free node, converts its state to

failed (if possible else convert the state to rns), and appends the node to Cnew. We

experimented with a total order derived from a BFS layering of G rooted at the sink

node (as shown in the next example).

Method 3 is motivated by the observation that Cnew constructed by repeated

applications of Methods 1 and 2 may not be minimal. The method works by testing
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whether the state of each node in the constructed sequence Cnew can be reverted

from failed or rns to free without losing the cutset property. If so, the state of any

such node is reverted, and the node is removed from Cnew The order of testing the

nodes is the same order of adding nodes to Cnew.

6
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10

11

12

13

14

15

16

17

18 19

1

2

3

4

5

Node states:
sink

rns node free node with p
rs

=0 and p
rns

 > 0

rs node free node with p
rs

> 0

intruder path

Figure 3.3: An example of cutset augmentation for the EXPO problem

Example. Fig. 3.3 illustrates an instance of the EXPO problem where kreq = 3. The

figure also illustrates an input configuration on 3 nodes: C = ((1, rns), (3, rns),

(6, rs)) to be extended to a cutset. We assume that the nodes are ordered as

(1, 2, · · · , 19) according to a BFS layering rooted at the sink. Applying Methods

1 and 2 iteratively using the above total order results in computing Cnew with the

node sequence (2, 4, 5, 7, 8, 9, 10, 11). Applying Method 3 to the above sequence

results in only failing the nodes of the sequence (7, 8, 9, 10, 11). Thus, the function

returns Cnew = ((7, fail), (8, fail), (9, fail), (10, fail), (11, fail)). �

3.8 Numerical Results

In this section, we present simulation results to illustrate the potential benefits of

using our devised algorithm. We present results on W×L grid networks that are

representative of what we obtained with other topologies. A W×L grid network

has W rows at coordinates y = 0, 1, · · · ,W − 1, and L columns at coordinates

x = 0, 1, · · · , L − 1. In some experiments the sink is located at the origin, and

the intruder path P runs vertically midway between the last two columns. For such

path P , a node x that lies immediately on either side of P has non-zero psense(x)

(else, psense(x) = 0).
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We recall that our algorithm computes the exposure function for any given dis-

tribution of the psense probabilities. Our choice of a line segment path P simplifies

the setting of the psense probabilities.

3.8.1 Exact Exposure Computations

Using the nodes of a pathset to derive the factoring process allows the program to

compute Expo(G, kreq) exactly without exhausting all possible 3n configurations of

the network. The savings make the exact computations practical for small networks

(e.g., W×L grids where W,L ≤ 6), as illustrated in Table 3.1. All computations are

done on a personal computer and finish in 15 seconds, or less.

Table 3.1: Exact exposure computations

Grid dimensions

W×L
krequired Maximum num-

ber of configura-

tions

configurations examined

by algorithm

2× 3 1 35 12

3× 3 2 38 148

3× 4 2 311 378

4× 4 2 315 2120

3.8.2 Gaps Between Lower and Upper Bounds
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Figure 3.4: Exposure versus size (varying prelay)
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Here, we present results on the gap between the obtained lower and upper

bounds. We use square W×W diagonal grids where W ∈ [2, 6], the sink is located

at the origin, and the intruder path runs vertically between the last two columns.

In Fig. 3.4, we report both lower bounds (LBs) and upper bounds (UBs) when the

algorithm is repeated for 1000 iterations, psense = 0.75 for nodes exposed to the in-

truder path (else, psense = 0), and prelay ∈ {0.75, 0.90}. In Fig. 3.5, we report lower

and upper bounds when the algorithm is repeated for 1000 iterations, prelay = 0.75

for all nodes, and for nodes exposed to the intruder path psense ∈ {0.75, 0.90} (else,

psense = 0).

We remark that for each choice of (prelay, psense), the gap increases with the size

of the network. This is expected since larger networks have more nodes, and the

path P is farther away from the sink node. So, larger networks have more relevant

configurations that are not taken into consideration when using 1000 iterations.

Also, for the (prelay, psense) settings shown in the figures, the obtained LBs on

the exposure function achieved by the entire network is comparable to the prelay and

psense of individual components. For example, in Fig. 3.4, the computed LB on a

6×6 grid when (prelay = 0.75, psense = 0.75 for exposed nodes) is about 0.75. This

shows the possibility of building a large network whose performance is at least as

good as the performance of its individual components.
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3.8.3 Optimizing Sink Location

Given a WSN and a set {P1, P2, · · · , Pk} of possible intruder paths, a designer

may wish to position the sink node so as to optimize an objective function on the

set {Expo(G,Pi) : i = 1, 2, · · · , k} (say, e.g., maximize the minimum exposure of

all paths). Our algorithm enables the derivation of lower bounds on each of the

required k exposure functions, and hence can be used to derive lower bounds on the

devised objective function. Hence, our algorithm provides a way to search for the

best position of the sink node.

To gain more insight into a concrete situation, we use a 6 × 6 doubly diagonal

grid to measure the exposure of an intruder’s path passing vertically between the

last two columns when kreq = 3. Here, we experiment with locating the sink node

at different nodes on the diagonal (nodes with coordinates (i, i) for i = 0, 1, · · · 5).

Fig. 3.6 illustrates the obtained results. We note that the exposure function in-

creases monotonically in the interval [0, 3]. However, past point (3, 3), the function

starts to decrease even though the shortest distance between the sink and the closest

point on P occurs when the sink is at locations (4, 4) and (5, 5). This behaviour can

be explained by a careful analysis of the number of nodes that can sense the intruder

path and lie at a certain distance from the sink node. To simplify the comparison,

we write such numbers as a vector (n1, n2, n3, · · · ) to indicate that there are ni such

nodes at distance i from the sink. When the sink is located at (3, 3) there are 12

nodes that can sense the intruder path. The 12 nodes are distributed as (3, 7, 2). On
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the other hand, when the sink is located at (5, 5) there are 11 nodes that can sense

the intruder (we assume the sink does not participate in sensing). The 11 nodes are

distributed as (3, 2, 2, 2, 2). These vectors show the clear advantage of putting the

sink at location (3, 3).

3.8.4 Intentional Jamming
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Figure 3.7: Exposure versus jamming radius

Intruders may use devices that can partially jam the communication and/or the

sensing abilities of nodes surrounding the device. A network designer may be in-

terested in estimating the detrimental effect of the intruder positioning such devices

at certain places along his path across the network (e.g., throwing the device upon

entrance in the sensor field, or mid-way on the path, and so on).

To analyze such effects, we present results when a jamming device is positioned

at coordinates (5, 5) in 6 × 6 grid with sink at origin, and kreq = 3. The radius of

effect, Rjam of the device is varied in the range Rjam ∈ [0, 6]. When Rjam = 0,

the device affects only the node at its current position (i.e., node (5, 5)). When

Rjam = 1 the device affects 3 nodes at coordinates (4, 5), (5, 4), and (5, 5), and so

on.

In Fig. 3.7, two curves illustrate the degradation in Expo(G,P ) when psense of

the affected nodes is reduced from 0.8 to either 0.4 or 0.2. The two other curves

show the degradation in Expo(G,P ) when the prelay of the affected nodes is re-

duced from 0.8 to either 0.4 or 0.2. In general, the results show that jamming
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communication has more impact than jamming sensing. Additionally, the results

show network robustness when Rjam ≤ 2. This result is worth noting since many

nodes are affected when Rjam = 2.

3.9 Concluding Remarks

In this chapter, we consider WSNs where nodes can succeed or fail in sensing and

reporting intrusion events with known probabilities. We introduce the EXPO prob-

lem that calls for evaluating the likelihood that a prescribed number kreq of nodes

succeed in sensing and reporting intrusion to a sink node. Our devised algorithm

for solving the problem is based on extending a factoring theorem to networks with

3-state nodes, complemented with methods for computing most probable pathsets

and cutsets. The algorithm computes lower and upper bounds on a solution in any

given number of iterations.

The obtained simulation results show that our algorithm provides practical means

of computing exact solutions on small networks. For large networks, the obtained

results show that the algorithm provides useful means of analyzing the effect of

making topology changes to the network such as changing sink location, and as-

sessing the deterioration in performance when jamming devices are used.
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Chapter 4

Breach Path Reliability for WSNs

In the previous chapter, we consider an intrusion detection reliability

problem when the intruder path P is specified in the given problem

instance, and kreq ≥ 1. In this chapter, we consider another intrusion

detection reliability problem where the intruder can follow any path

from a specified set of paths, and kreq = 1. We refer to this latter

problem as the breach path detection reliability (BPDREL) problem.

The BPDREL problem formulation assumes that the area under surveil-

lance is 2-dimensional and bounded by a polygon with known sides.

The BPDREL problem calls for computing the network’s success prob-

ability in detecting an intruder that crosses the perimeter through any

specified subset of the available entry-exit polygon sides. We adopt

the unified framework for computing lower and upper bounds to the

BPDREL problem. This is done by designing suitable algorithms for

the formalized E2P and E2C problems. The algorithm can handle

WSNs with arbitrary sets of links where sink nodes are placed in arbi-

trary positions. Convergence to an exact solution is guaranteed as the

number of performed iterations is increased.

Some of the results in this chapter appear in [19].
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4.1 Problem Formulation

In this section, we introduce some basic definitions needed to formulate the BPDREL

problem and state some of its properties.

4.1.1 Network and Intrusion Models

The WSN is modelled by an undirected graph G = (V ∪ {s}, E) where s is a sink

node. Communication links in E are bidirectional. A link (x, y) ∈ E is considered

in the network only if it satisfies the following condition: node x and/or node y can

sense any object crossing the line segment (x, y). Failing to satisfy this condition

makes a link unable to guarantee detection of objects crossing the corresponding

line segment, and hence the link is not used in solving the problem.

WSNs dealt with in the BPDREL problem can be embedded in the plane so that

the network’s perimeter is defined by a polygon with well defined sides. We denote

the nodes on the perimeter by X . Each intruder path (also called a breach path)

passing across the network is associated with a pair (din, dout) of entry-exit sides

of the perimeter. Any such path is bidirectional with interchangeable entry and exit

sides. Without loss of generality, it is assumed that any such path touches only

the entry and exit sides of the perimeter, and no other side. The BPDREL problem

deals with any given set of entry-exit pairs of sides D = {(dini , douti ) : i = 1, 2, 3, . . .},

dini 6= douti , that we want to guard against using them by an intruder. The term D-

attack refers to an intrusion event that uses any pair of sides in D.

4.1.2 Node Failure

Nodes in the problem are prone to failure due to operation in harsh environments.

For a node v, p(v) denotes the node’s operating probability during some interval

of time. We use q(v) = 1 − p(v) to denote the node’s failure probability. The

sink s is assumed to be perfectly reliable with p(s) = 1. We assume nodes fail

independent of each other. A random failure event leaves a network in some state

S where some nodes are operating and the remaining nodes are failed. We use S

to refer to both a network state and the set of operating nodes in that state. Thus,
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a network on n nodes has 2n states. In addition, a state S occurs with probability

Pr(S) =
∏

v∈S p(v)
∏

v/∈S q(v).

In the BPDREL problem, a network state S is operating if and only if it guar-

antees the detection of any D-attack. Equivalently, S is operating if and only if any

possible intruder path crossing the polygonal perimeter using any pair of entry-exit

sides in D is intersected by a fully operating path from some node to the sink. The

problem defines the network’s reliability as

Rel(G) =
∑

Pr(S : S is an operating state with respect to D) (4.1)

Definition (the BPDREL problem). Let G = (V ∪ {s}, E) be a WSN where

each node v, v 6= s, has an operating probability p(v). Each point on a line

segment (x, y) ∈ E can be detected by either x and/or y. In addition, let D =

{(dini , douti ) : i = 1, 2, 3, . . .}, dini 6= douti , be a set of entry-exit pairs of sides on the

perimeter of G. Find the probability Rel(G, p,D) that G is in a state that ensures

that any D-attack is detected. �

The BPDREL problem has been investigated in [45, 46]. In [46], the authors

develop an exact algorithm on the class of grid networks, and the sink node is

located on the network corner. In [45], the authors generalize their results in [46]

by introducing an algorithm for WSNs that can be embeded in a grid-like network

with a corner sink node. In contrast, our work in this chapter concerns deriving

lower and upper bounds for arbitrary WSNs with unconstrained sink locations.

4.1.3 Complexity Analysis

Theorem 4.1 The BPDREL problem is #P-hard.

Proof. We recall from theorem 3.1, that in [1] the authors have shown that comput-

ing the wireless 2REL problem is #P-Complete even when the problem is restricted

to a probabilistic partial grid networks G = (V,E) with equal node operating prob-

abilities and equal communication ranges. An instance (G, s, t) of the 2REL prob-

lem can select s and t as any two non-adjacent nodes in G. The reduction in [1]

allows us to assume that s and t are two non-adjacent perimeter nodes on the partial

grid network G.
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To show that BPDREL is #P-hard, we reduce in polynomial time a given in-

stance (G, s, t) of the 2REL problem on wireless partial grid networks to an in-

stance (G, p,D) of the BPDREL problem such that Rel(G, s, t) = Rel(G, p,D),

as follows:

1. The probabilistic graph G (with its associated node operating probabilities)

of 2REL instance is the same for the constructed BPDREL instance.

2. Node t is taken as the sink node of the BPDREL instance.

3. In BPDREL, D = {din, dout} where din and dout are the two sides of the

perimeter of the partial grid network G incident to node s.

One can then verify that Rel(G, s, t) = Rel(G, p,D), as claimed. �

4.2 Protection Intervals, Pathsets, and Cutsets

In this section we extend the concept of protection intervals introduced in [46] to

deal with our current problem where the sink can be placed in any arbitrary location

in the network. We also introduce the concepts of a network configuration, pathset,

and cutset needed to present our bounding methods. Throughout the presentation,

we characterize some of these concepts in terms of protection intervals.

4.2.1 Protection Intervals

Let (G, p,D) be an instance of the BPDREL problem. Denote by X ⊆ V the

nodes on the WSN’s perimeter, and let (din, dout) ∈ D. We need the following

definition.

Definition ((din, dout)-protection interval(s)). The protection interval(s) of (din, dout)

is defined as follows. Traverse the perimeter in a clockwise direction, and write X

as a sequence:

(first(din), second(din), xi, xi+1, . . . ,
f irst(dout), second(dout), xj, xj+1, . . .)
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where first(d) and second(d) denote the two end points of a side d. Set the inter-

vals X1 and X2 to the sequences:

X1 = (second(din), xi, xi+1, . . . , f irst(d
out)), and

X2 = (second(dout), xj, xj+1, . . . , f irst(d
in)).

We say that X1 (or X2) is a protection interval of (din, dout) if it does not contain

the sink s. �

Figure 4.1: An instance of the BPDREL problem

Example. In Fig. 4.1, consider the entry-exit sides (din = (9, 13), dout = (15, 16)).

The sink is at (x, y)-coordinates of (3, 2), and the corresponding (din, dout)-protection

intervals are X1 = (13, 14, 15), and X2 = (16, 12, . . . , 5, 9). Moving the sink to

coordinates (1, 1) results in having only one protection interval X1 (since X2 con-

tains the sink and hence, by definition, X2 is not a protection interval). �

Given a network state S, we say that a protection interval Xi is covered in S if

there exists a path of operating nodes from some node on Xi to the sink. Our inter-

est in covering (din, dout)-protection interval(s) stems from the following remark: a

state S of the network guarantees that any (din, dout)-intruder path is detected if and

only if S covers the associated protection interval(s). This remark follows since the

operating path(s) that covers the intervals intersects all possible (din, dout)-intruder

paths.
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As mentioned in [45], this observation can be extended to the general case where

D = {(dini , douti ) : i = 1, 2, 3, . . .}, and X is the corresponding set of protection

intervals, as summarized below.

Lemma 4.1 Given an instance (G, p,D) of the BPDREL problem. A network state

S of G is operating (i.e., S guarantees the detection of any D-attack) if and only if

each protection interval Xi ∈ X is covered. �

In [46], the following remark has also been mentioned: if X has two intervals

Xi and Xj where Xi ⊃ Xj then Xi can be deleted from X without violating the

above lemma. Thus, it suffices to consider a reduced set of intervals obtained by

iteratively deleting an interval Xi form X if it contains another interval Xj . We

henceforth use the (G, p,X) to refer to a given instance of the BPDREL problem

where X is a reduced set of protection intervals.

4.2.2 Pathsets and Cutsets

In this part, we define the concepts of pathsets and cutsets for the BPDREL prob-

lem.

Pathsets. Given an instance (G, p,X) of the BPDREL problem, we define a path-

set to be any operating configuration C. By Lemma 4.1, C is pathset if and only if

all protection intervals X are covered in C.

Example. In Fig. 4.1, configuration C = ((12, op), (15, op)) is operating with re-

spect to the entry-exit pair of sides (din, dout) regardless of the state of the remaining

nodes. Note that node 12 is connected to the sink node 7. Hence, C is a pathset. �

We also find it useful to define the following notion of parameterized pathsets.

For any subset of protection intervals X′ ⊆ X, define an X
′-pathset to be a configu-

ration C that covers each interval in X
′. Thus, pathsets are equivalent to X-pathsets.

Cutsets. Given an instance (G, p,X) of the BPDREL problem, a cutset is a con-

figuration C that can not be extended to a pathset. The definition of a cutset is

parameterized as follows. For any subset of protection intervals X
′ ⊆ X, define

an X
′-cutset to be a configuration C in which the failed nodes forbid the remaining
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nodes to cover all intervals in X
′. When X

′ has one interval Xi, we abbreviate

{Xi}-cutset to Xi-cutset. For example in Fig. 4.1, C = ((10, fail), (11, fail)

, (12, fail)) is a cutset that isolates nodes in protection interval X1 from reaching

the sink node 7.

Bounds from Pathsets and Cutsets. Our method of obtaining a lower bound on

Rel(G) for the BPDREL problem is to compute a set of pairwise s-disjoint pathsets

{P1, P2, · · · , Pr}, and observe that Rel(G) ≥
∑r

i=1 Pr(Pi) where the summation

on the RHS constitutes the intended lower bound.

Similarly, to obtain an upper bound, we compute a set of pairwise s-disjoint cut-

sets {U1, U2, · · · , Ur}, and observe that Rel(G) ≤ 1−
∑r

i=1 Pr(Ui) where the RHS

is the desired upper bound. The main algorithm (Section 4.5) presents a method for

generating pairwise s-disjoint pathsets and cutsets. The method relies on generating

configurations and extending a selected subset of these configurations to pathsets

(or cutsets). The extension process is critical to the quality of the obtained bounds.

4.3 Extension to a Pathset

In this section, we define the optimal extension to a pathset (E2P) problem as fol-

lows. Given an instance (G, p,X) of the BPDREL problem, and a configuration C

that is not a cutset, extend C to a pathset C
⋃

Cnew so that Pr(C
⋃

Cnew) is as high

as possible. Nodes in C and Cnew form disjoint sets.

Our contribution in this section is to show that for networks with arbitrary edge

sets, the E2P problem is NP-complete even if all operating probabilities are equal.

This hardness result motivates the search for useful effective heuristic solutions. We

next present one such solution that exploits some properties of the problem.

4.3.1 Complexity of the E2P Problem

We now show that

Theorem 4.2 The decision version of the E2P problem on graphs with arbitrary

edge sets is NP-complete even if all nodes have equal probabilities.
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Our proof utilizes the Exact Cover by 3-Sets (X3C) problem which is a well

known NP-complete problem (see, e.g., problem [SP2] in [28]). An instance of the

X3C problem is a pair (X, Y ) where X is a set of 3q elements, q > 0, and Y is a set

of 3-element subsets of X . The problem is to decide whether Y contains a subset

Y ′, |Y ′| = q, that covers all elements in X .

Proof. We transform in polynomial time any given instance (X, Y ) of the X3C

problem to an instance (G, p,X, C) of the E2P problem such that the X3C problem

has a solution if and only if the E2P problem has a solution of some specified

probability. In particular, we construct the E2P instance as follows.

• The graph G has a set V (G) = {{s}
⋃

Y
⋃

X} of nodes where s is a new

node (the sink node of G), and nodes in X and Y are in one-to-one corre-

spondence with the members of sets X and Y . In G, node s is made adjacent

to each node in Y , and node xi ∈ X is adjacent to a node yj ∈ Y iff element

xi appears in set yj .

• G is embedded in the plane to form a network with nodes (s, x1, x2, · · · , x3q)

forming a polygonal perimeter with 3q + 1 sides. Note that the sides of the

polygon does not necessarily correspond to communication or sensing links

in G. Rather, the sides are used only to define the entry-exit sides the intruder

may use.

• We assign a non-zero operating probability p to each node in X
⋃

Y .

• We define 3q + 1 entry-exit pairs of sides in the constructed BPDREL prob-

lem so that each node xi forms a protection interval. Thus, X = X is a set of

3q pairwise disjoint protection intervals.

• We set the input configuration C = ∅ in the E2P problem.

Thus, by definition, a pathset of the constructed E2P instance is a set of nodes

that connects each node xi ∈ X to the sink s. Since |X| = 3q, and each node in

Y is connected to exactly 3 nodes in X , a highest probability pathset configuration

Cnew has Pr(Cnew) = p4q.
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Figure 4.2: Reduction to the E2P problem

It is then easy to see that the X3C has a solution if and only if the E2P has a

solution of probability at least p4q. Lastly, membership in NP can be verified since

in polynomial time one can:

a) non-deterministically guess a set of nodes Cnew, and

b) deterministically verify that C
⋃

Cnew is a pathset, and Pr(Cnew) ≥ Pthreshold

where Pthreshold is given in the decision version of the E2P problem.

�

We remark that the graph G constructed in the proof contains a set of edges

that may not arise in a typical wireless network. Our proof, however, shows that

the running time of any exact algorithm for solving the E2P problem is likely to

be exponential unless it utilizes properties intrinsic to graphs arising from wireless

networks.

4.3.2 An E2P Heuristic Algorithm

The complexity of the E2P problem motivates the search for an efficient heuristic

algorithm that exploits some properties of the problem. Function E2P highlights

the structure of our proposed algorithm. To explain the algorithm, we introduce the

following definitions. The definitions refer to the input configuration C, and any
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Algorithm 3: Function E2P(G, p,X, C, Cnew)

Input: An instance (G, p,X,C) of the E2P problem

Output: If the E2P has a solution return +1, and a solution in C ∪ Cnew. Else

(if C is a cutset), return −1.

1 if(C is a cutset) return −1
2 Set Cnew = φ
3 Set Xunc = X minus intervals covered by operating nodes that can reach the

sink in (C ∪ Cnew).
4 while (Xunc 6= ∅) do

5 Set G′ = logp_distance(G,C ∪ Cnew)
6 Compute shortest paths in G′ from sink s to each node in V (Xunc).

Denote the shortest distance to vi by cost(vi).
7 Choose among the nodes in V (Xunc) a node vbest with smallest

cost-effectiveness value α(vbest).
8 Set Pbest to the shortest path from vbest to s in G′

9 Add nodes in Pbest that are not in C
⋃

Cnew to Cnew as operating nodes

10 Update Xunc as in Step 3

end

11 return +1

valid extension configuration Cnew.

Definitions.

• connected_to(s, C
⋃

Cnew): a set of nodes composed of the sink s and all

other operating nodes in C
⋃

Cnew that can reach s by a path of operating

nodes in C
⋃

Cnew

• Xunc: a subset of the X intervals that are not covered by any node in connected_to

(s, C
⋃

Cnew)

• covered_by(v,Xunc): the subset of intervals of Xunc covered by a perimeter

node v connected to the sink by a path of operating nodes.

• logp_distance(G,C
⋃

Cnew): a weighted graph obtained from G as follows:

if a node v is assigned the failed state in configuration C
⋃

Cnew then delete

v from G. Else, if v is assigned an operating state in C
⋃

Cnew then set the

weight w(v) = 0, else set w(v) = − log p(v). Thus, all weights of G are

positive real numbers. �
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Step 1 returns with failure (−1) if C is a cutset. Step 2 initializes Cnew = ∅. Step

3 identifies the subset Xunc ⊆ X of intervals that remain to be covered. The loop

in Step 4 iterates until Cnew is augmented with enough operating nodes to cover all

intervals in Xunc. The body of the loop makes use of the following observations.

First, we observe that for any non-failed node v in G, the most reliable paths be-

tween v and some node in connected_to(s, C
⋃

Cnew) corresponds to the shortest

(s, v)-paths in G′ (where node weights in G′ are viewed as distances). This follows

since if Ps,v is any (s, v)-path then − log Pr(Ps,v) =
∑

v∈V (Ps,v)
w(v). In Step 6, we

use a single-source shortest paths algorithm (see, e.g., [16]) to compute the shortest

paths between s and every node in the set V (Xunc). Denote by cost(v) the shortest

distance between node v and the sink s in G′.

The goal of Step 7 is to select among the nodes that cover intervals in Xunc, a

node vbest for which the nodes on the most reliable (s, vbest)-path is worthy of being

included in Cnew. Such node exists if Xunc 6= ∅, and C is not a cutset.

Our second observation is that a node v with a highly reliable path to s that

covers multiple Xunc intervals should be given higher priority of being selected as

vbest over similar nodes that cover fewer intervals. To this end, we associate with

each node v, a cost-effectiveness value α(v) = cost(v)
|covered_by(v,Xunc)|

. The algorithm

favours nodes with small α(.) values.

Our choice of this particular cost-effectiveness function stems from the similar-

ity of our protection interval covering problem and the weighted set cover problem

(see, e.g., [51]). For this latter problem, using α leads to an approximation algo-

rithm with a logarithmic approximation ratio.

In Step 9, the algorithm adds the nodes of Pbest (except s and other nodes cur-

rently in C
⋃

Cnew) to Cnew as operating nodes.

Example. Fig. 4.3 illustrates an instance (G, p,X, C) of the E2P problem where

solid lines show network links used by some routing algorithm, node operating

probabilities appear on the top left of each node, X = {X1 = (12, 13, 14, 15), X2 =

(13, 14, 15, 11, 7)}, and the input configuration C = {(5, fail), (10, op)}. All non-

sink nodes not in C are free nodes that can be assigned states in Cnew.
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Figure 4.3: Example of extension to a pathset for the BPDREL problem

The algorithm computes for each node v a most reliable (s, v)-path Ps,v, as well

as the cost(v) and α(v) values. For example:

• For node 13, Ps,13 = (13, 8, 4, s), and cost(13) = − log Pr(Ps,13) = w(13)+

w(8)+w(4). Here, |covered_by(13,Xunc)| = |{X1, X2})| = 2, and α(13) =

cost(13)/2.

• For node 14, Ps,14 = (14, 9, 4, s), cost(14) = − log Pr(Ps,14) = w(14) +

w(9) + w(4), and α(14) = cost(14)/2.

Since α(13) < α(14), node 13 is preferred over node 14. In fact, node 13 has the

least α value among all nodes in V (Xunc), and hence it is chosen as vbest. The

function then augments Cnew with {(13, op), (8, op), (4, op)}. �

4.3.3 Discussion

We remark that function E2P does not give a false negative. That is, it does not

return −1 when the input configuration C is extensible to a pathset. This follows

since each iteration of the function simply changes some free nodes to operating

nodes in Step 9.
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4.4 Extension to a Cutset

In this section, we define the optimal extension to a cutset (E2C) problem as follows.

Given an instance of the BPDREL problem, and a configuration C that is not a

pathset, extend C to a cutset C ∪ Cnew so that the occurrence probability Pr(C ∪

Cnew) is as high as possible (i.e., Cnew has nodes with high failure probabilities). In

the definition, C and Cnew contain two disjoint sets of nodes. Our main contribution

in this section is to show that the optimal E2C problem can be solved exactly by

repeatedly solving instances of the well known maximum flow problem.

The particular version of the maximum flow problem useful to us has instances

of the form (G, s, t, cap) where G is an undirected graph with two distinguished ter-

minal nodes, denoted s and t, and each node x ∈ V (G) has a real capacity, denoted

cap(x). The problem calls for finding the maximum (s, t)-flow amount subject to

standard constraints on node capacities and flow conservation. A solver for the

maximum flow problem also returns an (s, t)-cut (i.e., a subset of nodes whose re-

moval disconnects s from t) with minimum possible total capacity. Algorithms for

solving the above problem where capacities are associated with nodes can be ob-

tained by transforming the problem into one where capacities are associated with

directed links. Existing algorithms for solving the tarnsformed problem can then be

used (see, e.g., [16]).

To present the result, we need the following definition that refers to any input

configuration C, a possible extension configuration Cnew, and any protection inter-

val Xi.

Definition. The logq_capcity(G,C,Xi) is a graph G′ obtained from G by first

deleting all nodes that are assigned a failed state in C. Second, we add a new node,

denoted t, and make it adjacent to every node in interval Xi. The two terminals

of G′ are the sink node s and t (the new node). Third, for each node v in G′,

s 6= v 6= t, that is not assigned an operating state in C and has q(v) > 0 set

cap(v) = − log q(v). We then let maxcap = 1 +
∑

(v:q(v)>0) cap(v). Finally, for

each node v, s 6= v 6= t, with either q(v) = 0, or v is assigned an operating state in
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C, set cap(v) = maxcap. �

Note. To construct the graph G′ and solve the maximum flow problem mentioned

above in polynomial time (while avoiding the complexity of computing logarithms),

we assume the following:

1. all node operating (and failure) probabilities are rational numbers.

2. Addition, subtraction, and comparison operations on flow values required by

the maximum flow algorithm are done by performing suitable operations on

arguments of logarithms (e.g., adding two flows of magnitude − log a and

− log b is done by computing the product ab, and dealing with the result as

− log ab).

4.4.1 Dealing with a Single Protection Interval

We start by presenting the following results.

Lemma 4.2 Let (G, p,X = {Xi}, C) be an instance of the E2C problem where C

is a configuration of G that is not an Xi-pathset. Computing an optimal extension

for C to an Xi-cutset can be done by solving a single instance of the maximum flow

problem.

Proof. Let (G, p,X = {Xi}, C) be as in the lemma, we construct a flow graph

G′ = logq_capcity(G,C,Xi). If the input configuration C is not an Xi-pathset

then a maximum flow solver returns a minimum capacity (s, t)-cut, denoted Vcut,

that does not include any node v with cap(v) = maxcap (i.e., no node v is assigned

an operating state in C). Denote by Ccut the configuration obtained by assigning

the failed sate to each node in Vcut. We remark that

− log Pr(Ccut) = − log
∏

v∈Vcut
q(v)

= −
∑

v∈Vcut
log q(v) = cap(Vcut).

Since the solver identifies an (s, t)-cut Vcut with the smallest possible total capacity

cap(Vcut), it then follows that Ccut is an extension configuration with the highest

possible occurrence probability Pr(Ccut), and thus C
⋃

Ccut is an optimal solution

to the problem. �
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4.4.2 Dealing with Multiple Protection Intervals

Theorem 4.3 Let (G, p,X, C) be an instance of the E2C where the configuration

C is not a pathset. Computing an optimal E2C solution can be done by solving at

most |X| instances of the maximum flow problem.

Proof. By definition, for a reduced set of protection intervals, a configuration

C
⋃

Cnew is a cutset iff the failed nodes forbid the covering of some protection

interval in X. By Lemma 4.2, for each interval Xi ∈ X, an optimal Xi-cutset can

be computed by solving a maximum flow problem instance. Setting Cnew to an ex-

tension with a highest occurrence probability then gives an optimal solution to the

E2C problem. �

Algorithm 4: Function E2C(G, p,X, C, Cnew)

Input: An instance (G, p,X,C) of the E2C problem

Output: If the E2C problem has a solution return +1, and a solution in

C ∪ Cnew. Else (if C is a pathset), return −1.

1 if(C is a pathset) return −1
2 Set Cnew = φ
3 foreach (interval Xi ∈ X) do

4 Set the flow network (G′, s, t, cap) = logq_capcity(G,C,Xi)
5 Find a minimum (s, t)-cut Vcut

6 if (no (s, t)-flow exists) then
reset Cnew = ∅; return +1

7 else if (Vcut has at least one node v with cap(v) = maxcap) then
continue

8 else
update Cnew with the best found Vcut

end

end

9 return +1

Function E2C presents the overall structure of the algorithm that implements

the above observations. Step 1 returns with failure (−1) if C is a pathset. Step 2

initializes Cnew = ∅. The main loop in Step 3 iterates over each interval Xi ∈ X.

Steps 4 and 5 compute a minimum cut in the constructed flow graph for interval Xi.

If C is already an Xi-cutset then Step 6 returns with success (+1). Else, if the found
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cut contains one of the nodes assigned the operating state then Step 7 continues the

loop to process the next interval in X. On the other hand, if a minimum Xi-cutset

composed of free nodes is found then Step 8 updates Cnew with the best cutset found

thus far. Finally, Step 9 returns with success (+1) and the solution in Cnew.

Example. Fig. 4.3 illustates an instance (G, p,X, C) of the E2C problem with pa-

rameters as explained in the previous example. For intervals X1 and X2, the func-

tion computes the cutset configurations Ccut,1 = Ccut,2 = {(2, fail), (6, fail), (8,

fail), (9, fail)} (of probability 0.0864). The function then sets Cnew = Ccut,1. �

4.5 The Main Algorithm

In this section we outline the general structure of our algorithm that computes lower

bounds (LBs) and upper bounds (UBs) on Rel(G, p,X). To simplify the presenta-

tion, we focus on the work done by the algorithm to compute LBs from pathsets

using function E2P. Computing UBs is done by replacing pathsets with cutsets,

and calling function E2C instead of function E2C.

Similar to function Main in Section 3.5, the algorithm is organized around a

main loop that iterates a user specified number of times. Throughout execution, the

algorithm maintains a table that stores a set of s-disjoint configurations. In partic-

ular, each valid entry of the table contains a configuration C, an extension Cnew

obtained by calling function E2P, and the corresponding occurrence probability

Pr(C
⋃

Cnew). If no such extension is possible, we mark the entry as invalid.

Initially, the table contains only one entry corresponding to the empty config-

uration C = ∅, and one of its possible high probability extensions. Each iteration

starts by selecting a valid entry (C,Cnew) with the highest occurrence probability

and generates a set of configurations derived from the base configuration C. Again,

similar to function Main (Section 3.5), the derivation process is based on repeated

application of a factoring theorem.

The process basically assigns states to nodes in prefixes of Cnew, and augments

the base configuration C with the generated node-state pairs. The process used is
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similar in principle to the process used, e.g., in [2]. For each generated configuration

C ′, the algorithm computes (if possible) a corresponding extension C ′
new and the

probability Pr(C ′
⋃

C ′
new), and stores the entry in the table. So, at the end of the

iteration, the table contains both the selected pathset (C,Cnew), and the derived

configurations.

The main loop terminates when either all user specified iterations are exhausted,

or all valid entries are processed. In the latter case, the algorithm terminates when

no more work remains to be done; here, the algorithm guarantees that the com-

puted LB (or UB) is the exact solution. An important aspect of the implementation

correctness is that, upon termination, all entries in the table correspond to pairwise

s-disjoint configurations.

In summary, (a) the algorithm exhaustively generates a maximal set of pairwise

s-disjoint configurations, (b) it avoids generating all network states by invalidating

configurations that can not be extended to pathsets, and (c) it makes efficient use

of the user specified number of iterations by targeting the generation of the best

pathset stored in its information base in each iteration.

4.6 Numerical Results

In this section, we explore some of the important aspects and potential uses of our

bounding algorithms using simulation. We run a number of experiments both on

well structured graphs as well as random graphs. In particular, to allow comparison

with the exact results obtained in [46], we experiment with grid networks. Below,

we present selected results of both types.

To start, we adopt the following notation: a W×L grid has W rows at (x, y)-

coordinates y = 0, 1, 2, . . . ,W−1, and L columns at coordinates x = 0, 1, 2, . . . , L−

1. In [46], the sink node is positioned at the bottom left corner of the grid at co-

ordinates (0, 0). We also experiment with sink nodes placed in the interior of the

network.

Some routing algorithms restrict the routes to the sink to shortest paths (i.e.,

paths with fewest number of hops), while others utilize all of the available links.
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We report results when using both types of routes: BFS-links (Breadth First Search

links) routing utilizes shortest paths, while all-links routing utilizes all available

links.

4.6.1 Exact Computations

Our main algorithm avoids the generation of all network states by discarding config-

urations that can not be extended to pathsets (or cutsets) at all stages. The reduction

in the generated configurations allows exact computations on networks of different

sizes. All results reported in table 4.1 runs in less than 4 minutes on a personal

laptop computer using a Matlab implementation. As can be seen, the number of

generated configurations to get exact results is significantly less than the number of

network states in each case.

Table 4.1: Exact computations for the BPDREL problem

W×L Network states Generated configuration

3× 3 28 11

4× 4 215 65

5× 5 224 721

6× 6 235 16389

4.6.2 Gaps between Bounds and Exact Solutions

Here, we comment on the gaps between the obtained bounds and the exact results

in [46]. We use a W×W grid network, W ∈ [2, 10], with down-left diagonal links

(= {((x, y), (x− 1, y − 1) : x, y > 0}) where the sink node is located at the bot-

tom left corner. All nodes have equal operation probability p = 0.5. The BPDREL

problem has one pair of entry-exit sides that split the perimeter into two intervals:

interval Xtop contains nodes in the top row, and X top contains the remaining perime-

ter nodes. We performed 1000 iterations. The results show that the gap between

the bounds and the exact solution increases with increasing network size. This is

expected as larger networks have more configurations to consider that can not be

exhausted in the few iterations performed. We also note that the computed LB tends

to be a more accurate estimate of the exact result than the computed UB. This can
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be explained by the relative small size (and hence higher occurrence probability) of

pathsets compared to cutsets.
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Figure 4.4: Effect of network size on the obtained bounds for the BPDREL prob-

lem

4.6.3 Sink Placement Optimization

Given a set X of protection intervals, the question of where to place the sink node so

as to maximize Rel(G, p,X) is an interesting WSN design problem. Our bounding

algorithms provide a tool for tackling the problem. Our results address this design

problem when the network G is a square W×W grid for W = 6, and also when G is

a random network. Note that the algorithm presented in [46], although exact for grid

networks, it does not deal with sink nodes placed in the interior of the network. The

network has a perimeter of 20 nodes. For a sink placed in the interior of the grid, the

set X has two protection intervals with nodes at the following (x, y)-coordinates:

Xtop = ((0, 5), (1, 5), . . . , (5, 5)), so |Xtop| = 6 nodes, and X top has the remaining

14 perimeter nodes. We vary the sink location on the main grid diagonal (i.e., nodes

at coordinates (0, 0), (1, 1), . . ., (5, 5)).

Varying the routing method. Fig. 4.5 shows the obtained results when varying

the sink location and the routing method. Both of the BFS-links and all-links rout-

ing curves show similar behaviour indicating a preference to place the sink node

at coordinates (4, 4). To analyze the situation, we counted for each possible sink
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location, the number of pathsets of each possible size (not counting the sink in a

pathset). The findings indicate that node (4, 4) tends to have more pathsets of small

sizes than other diagonal nodes, although, e.g., node (0, 0) has a pathset of the

smallest possible size of one node. Such small sized pathsets have relatively high

occurrence probability when all nodes have equal operating probability.
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Figure 4.5: Effect of varying sink location on Rel(G) of the BPDREL problem for

different routing methods (p = 0.7)

Random networks. Fig. 4.6 shows an instance of the sink placement problem on a

random network deployed in a field of 7× 7 units. Node operation probabilities are

also assigned randomly. Each node is assumed to have a transmission range of 2

units. The BPDREL problem under consideration has one entry-exit pair of sides,

as shown. The two sides split the perimeter into two intervals, denoted X1 and X2,

where |X1| = 6 nodes, and |X2| = 24 nodes.

Six locations (shown as rectangles) are considered for sink placement. Based

on the obtained results, location 5 is superior to others. To gain insight into the

situation, we counted the number of pathsets of each possible size for each sink

location. The findings can be summarized as follows. Placing the sink in the interior

of the network (e.g., locations 1 through 4) requires pathsets to cover both X1 and

X2. Using a transmission range of 2 units, each such pathset requires at least 3

nodes (not counting the sink). On the other hand, placing the sink on the perimeter

(e.g., locations 5 and 6) requires the pathsets to cover only one interval (either X1

for location 6, or X2 for location 5). Such pathset requires 2 (or more) nodes. But
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interval X2 is much longer than X1. Consequently, it offers the construction of

more pathsets. Thus, there is a potential benefit of locating the sink at location 5.

Figure 4.6: An instance of a random network (BFS-links routing) for the BPDREL
problem

4.7 Concluding Remarks

In this chapter, we develop efficient bounding algorithms for a WSN area surveil-

lance problem where nodes can fail in sensing and/or communication with given

probabilities. The algorithm works on any WSN network where the sink is located

anywhere in the network. Using our devised algorithms, we have investigated an

optimal sink location problem to maximize the network’s overall reliability. This

illustrates a potential use of our methods in tackling a complex WSN design prob-

lem.
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Chapter 5

Breach Path Reliability for

Directional WSNs

Wireless Sensor Networks (WSNs) equipped with directional commu-

nication and sensing devices provide a high level of tunability needed

in optimizing their performance in critical applications. In this chapter,

we formalize the directional breach path detection reliability problem

(DIR-BPDREL) that quantifies the ability of such networks to jointly

detect and report unauthorized traversal through a network when com-

munication and sensing devices fail independently of each other. Our

main contributions in this chapter are as follows:

1. We extend the unified framework for computing lower and upper

bounds used in the previous two chapters to the current problem.

This is done by examining the specific details of the extension to

pathset and cutset problems in the context of the DIR-BPDREL

problem.

2. Our simulation results show the effectiveness of our devised tools

in tackling an example network design problem.

Some of the results in this chapter appear in [22].
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5.1 System Model

In this section, we introduce the needed concepts and notation to explain our bound-

ing approach and algorithms. Omnidirectional versions of these concepts appear

in [46] and chapter 4.

5.1.1 Network and Directionality Model

Throughout the chapter, a WSN is modelled by an undirected communication graph

Gcom = (V
⋃

{s}, Ecom), and a sensing graph Gsense = (V
⋃

{s}, Esense) on a set

V of directional sensor nodes, and a distinguished sink node s. The adoption of two

graphs in the model generalizes the single graph model used previously in chapter

4.

In Gcom, a link (x, y) exists if both nodes can reach each other. In Gsense, a link

(x, y) exists if every point on the line segment (x, y) can be sensed by node x and/or

node y. This latter property is needed to guarantee detection of any crossing of the

line segment (x, y).

The exact links in Gcom and Gsense are determined by directionality parameters,

denoted DIRcom(x) and DIRsense(x), respectively, associated with each node x.

In each case, directionality is specified by a triple, denoted (r, θmid ± α), where

• r is a transmission/reception radius (either communication or sensing),

• θmid − α specifies a counterclockwise (CCW) angle between two rays ema-

nating from x; a horizontal ray that extends to the right, and a ray that defines

the start of the boundary of the transmission/reception region, and

• θmid + α specifies the CCW angle between the horizontal ray, and a second

ray that defines the end of the boundary of the transmission/reception region.

Example. Fig. 5.1a illustrates Gcom of a subnetwork composed of 3x3 grid nodes

with one unit of horizontal (or vertical) spacing. When DIRcom = (1.7, 135◦ ±

135◦), the transmission/reception region for each node is bounded by two rays em-

anating from the node with CCW angles (θa = 0◦, θb = 270◦), as shown by the

dashed arrows. A link (x, y) exists in Gcom if dist(x, y) ≤ 1.7 unit.
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5.1.3 Reliability Model

For any non-sink node x, we adopt a model with independent operation prob-

abilities for the communication and the sensing devices, denoted pcom(x), and

psense(x), respectively. The sink is assumed to be perfectly reliable. Thus, each

non-sink node x can be in one of 3 possible states with the following probabilities:

pcs(x) = pcom(x)× psense(x): the probability that x can perform both communica-

tion and sensing, pcns(x) = pcom(x) × (1 − psense(x)): the probability that x can

communicate but not sense, and pfail(()x) = 1 − pcs(x) − pcns(x): the probabil-

ity that x can not communicate with any other node. We assume that the network

utilizes adaptive routing that can utilize any existing operational path.

A random failure event leaves a network on n nodes in one of O(3n−1) possible

states (recall that the sink is reliable). Each state T = (Tcs, Tcns) is defined by a

subset Tcs of nodes that can communicate and sense, and another disjoint subset

Tcns of nodes that can communicate but not sense. Each of the remaining nodes

Tfail = T \ {Tcs

⋃

Tcns) is failed. The probability of being in state T , denoted

Pr(T ), is the product of the pcs, pcns, and pfail probabilities of nodes in Tcs, Tcns,

and Tfail, respectively.

A state T is operating if it guarantees the joint detection and reporting to the

sink of any D-attack. The reliability of the network is the sum
∑

Pr(T ) over all

operating network states T in (Gcom, Gsense). We now define our problem:

Definition (the DIR-BPDREL problem): Let (Gcom, Gsense) be a WSN model

where each node x has operating probabilities pcom(x) and psense(x), and direc-

tional parameters DIRcom(x) and DIRsense(x). In addition, let D = {(dini , douti ) :

i = 1, 2, · · · }, dini 6= douti , be a set of entry-exit nodes on the perimeter poly-

gon of an embedding of Gsense. Find the probability Rel(Gcom, Gsense, p,D) (or,

Rel(Gcom, Gsense) for short) that the network is in a state that ensures joint detection

and reporting of any D-attack. �

We recall from Theorem 4.1 that the omnidirectional BPDREL is #P-hard

even when restricted to a wireless grid network. Consequently, the more general

DIR-BPDREL problem is #P-hard.
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Figure 5.2: An instance of the DIR-BPDREL problem

5.2 Protection Intervals, Pathsets, and Cutsets

This section extends the concepts of protection intervals, network configurations,

pathsets and cutsets discussed, e.g., in Chapter 4 to our current problem. The con-

cepts are needed to present our bounding approach.

5.2.1 Protection Intervals

Let (Gcom, Gsense, p,D) be an instance of the DIR-BPDREL problem, X ⊆ V

be the set of perimeter nodes in Gsense, and (din, dout) ∈ D be an entry-exit pair of

sides. Similar to the development in Chapter 4, the protection intervals of (din, dout)

are obtained by traversing the perimeter nodes X in a clockwise direction, and

writing X as two node-disjoint sequences:

X1 = (second(din), xi, xi+1, . . . , f irst(d
out)), and

X2 = (second(dout), xj, xj+1, . . . , f irst(d
in)).

where first(d) and second(d) denote the two end points of a side d.

Example. In Fig. 5.2a, we have (din1 = (3, 4), dout1 = (19, 18)), and (din2 =

(14, 17), dout2 = (5, 1)). The corresponding protection intervals (X1, X1) and (X2, X2)

are as shown in the figure. �
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We denote by X the set of pairs of protection intervals associated with the set D

of entry-exit pairs of sides. We also note that given a protection interval X , one can

immediately deduce the associated entry-exit pair of sides (din, dout) on the polygon

surrounding Gsense, and the other associated protection interval X .

The importance of protection intervals arises since a path in Gsense where each

node is in the state cs, and the path connects some node on X to some node on

X is both sufficient and necessary to intersect every possible breach path between

the corresponding entry-exit sides. Thus, any operating network state T of a given

WSN contains at least one such sensing barrier path for each pair of protection

intervals in X.

Since X suffices to identify D in any problem instance, we henceforth use

the notation (Gcom, Gsense, p,X) to refer to a given instance of the DIR-BPDREL

problem.

5.2.2 Network Configurations

A network configuration C is a partial network state; that is C assigns to some

nodes (but not necessarily all) one of the possible states in the set {cs, cns, fail}.

The remaining nodes are free in C. We use C(x) to denote the state sx of node x in

C.

We also use the concept of statistical disjointedness: two configurations C1 and

C2 are s-disjoint if at least one node that occurs in both configurations is assigned

different states in the configurations. Thus, Pr(C1 ∪ C2) = Pr(C1) + Pr(C2).

5.2.3 Pathset Structures

Given an instance (Gsense, Gcom, , p,X) of the DIR-BPDREL problem, a pathset

of the instance is any operating configuration C. A fundamental problem in our

approach is to find pathsets that have high occurrence probability Pr(C) (subject to

some additional constraints).

In this section, we identify a key structural property of pathsets that enable us

to efficiently find desired pathsets. The property can be stated as follows.
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Lemma 5.1 A configuration C is a pathset of (Gsense, Gcom, p,X) if and only if for

each pair of intervals (Xi, Xi) ∈ X we have

a) Gsense has a path, denoted Psense(Xi, Xi), connecting some node x ∈ Xi to

some node x ∈ Xi, where each node in the path is assigned the state cs in

configuration C, and

b) each node in Psense(Xi, Xi) can reach the sink in Gcom by a path composed

of nodes assigned either state cs or cns in configuration C. �

The rationale behind the above lemma is that condition (a) guarantees that each

path Psense(Xi, Xi) can detect any (dini , douti )-attack. Moreover, condition (b) guar-

antees that the detected event can be reported to the sink. Thus, C is a pathset, as

required.

Example. In Gsense of Fig. 5.2a, the following paths satisfy condition (a) above:

• Psense(X1, X1): the edge ((3, cs), (4, cs))

• Psense(X2, X2): the edge ((14, cs), (17, cs))

Hence, each path forms a sensing barrier path. In Gcom of Fig. 5.2b, the follow-

ing additional node-state pairs guarantee that each node in each of the above two

sensing barrier paths can reach the sink at node 6: {(7, cns), (10, cns)}. Thus, con-

figuration C = {(3, cs), (4, cs), (7, cns), (14, cs), (17, cs), (10, cns)} is a pathset.

�

5.2.4 Cutset Structures

Given an instance (Gsense, Gcom, , p,X) of the DIR-BPDREL problem, a cutset

of the instance is a configuration C that can not be extended to a pathset even

if all free nodes are assigned the cs state. For a given pair (X,X) ∈ X, we also

define an (X,X)-cutset to be a configuration that can not be extended so as to guard

against any (X,X)-attack. Thus, a necessary and sufficient condition for C to be a

cutset is that it includes an (X,X)-cutset for at least one pair of protection intervals

(X,X) ∈ X.
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Similar to the previous section, a fundamental problem in our approach for com-

puting UBs is to find cutsets that have high occurrence probability. The following

observation specifies a structural property that is used to find good quality cutsets.

Lemma 5.2 A configuration C is an (X,X)-cutset of (Gcom, Gsense, p,X) if there

exist two subsets of nodes, denoted Ucns,fail and Ufail, such that each node x ∈

Ucns,fail is assigned a state C(x) ∈ {cns, fail}, and each node x ∈ Ufail is as-

signed a state C(x) = fail, and any possible path Psense(X,X) in Gsense that

connects some node in X to some node in X has either

a) at least one node in Ucns,fail, or

b) the failed nodes in Ufail disconnect at least one node on Psense(X,X) from

the sink node. �

The rational behind the lemma is that condition (a) implies that the path Psense(X,

X) is not an operational sensing barrier path since it has at least one non-sensing

node. Likewise, condition (b) implies that at least one node on such a path can not

report a detected intrusion event.

Example. In Gsense of Fig. 5.2a, the two sets (Ucns,fail = {3, 9, 12, 18},Ufail =

∅) form an (X1, X1)-cutset that forbids the construction of a sensing barrier path

Psense(X1, X1).

In Gcom of Fig. 5.2b, the two sets (Ucns,fail = ∅,Ufail = {7, 8, 9}) disconnects

the sink, and thus they form an (X1, X1)-cutset that disconnects the sink from some

node on any possible sensing barrier path Psense(X1, X1), as required by condition

(b). �

In the above example, each pair (Ucns,fail, Ufail) satisfies either condition (a) or

condition (b) for any possible path Psense(X1, X1). The lemma, however, takes care

of more complex scenarios where the pair (Ucns,fail, Ufail) satisfies condition (a)

for some paths Psense(X1, X1), and condition (b) for the remaining Psense(X1, X1)

paths.
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5.3 Overview of the Bounding Approach

Our approach obtains lower bounds (LBs) on Rel(Gcom, Gsense) by computing a

set of pairwise s-disjoint pathsets {P1, P2, · · · , Pr}, and observing that Rel(G) ≥
∑r

i=1 Pr(Pi) where the summation on the RHS constitutes the intended lower bound.

In a parallel vein, upper bounds (UBs) are obtained by computing a set of

pairwise s-disjoint cutsets {U1, U2, · · · , Ur}, and observing that Rel(G) ≤ 1 −
∑r

i=1 Pr(Ui) where the RHS is the desired upper bound.

As done in Chapters 3 and 4, we implement the above approach with an iterative

algorithm that performs a user specified number of iterations while maintaining a set

of s-disjoint configurations. In each iteration, the algorithm selects an unprocessed

configuration C and seeks to extend it either to a pathset (in LB computations),

or a cutset (in UB computations). The new extension, denoted Cnew, is desired

to have a high occurrence probability Pr(C). The extension process is critical to

the quality of the obtained bounds. Configurations that can not be extended are

ignored. An exact solution is obtained if the algorithm processes all of its generated

configurations. In the next sections, we discuss in more detail the extension to a

pathset problem and the extension to a cutset problem.

5.4 Optimal Extension to a Pathset

In this section, we examine the optimal extension to a pathset (E2P) problem that

calls for computing a configuration Cnew such that C
⋃

Cnew is a pathset, and

Pr(Cnew) is as high as possible. The E2P problem is discussed in chapter 4 for

the BPDREL problem where we deal with the special case Gsense = Gcom.

For the DIR-BPDREL problem, the E2P problem is NP-complete as the E2P

problem for the restricted version BPDREL problem is NP-complete. Hence, we

consider in this section developing an efficient heuristic algorithm. Our algorithm

computes a solution to any given instance of the E2P problem, if one exists. The

computed solution, however, may not be an optimal solution. Function E2P out-

lines the general steps of the algorithm. The function performs its work by calling

functions find_SB and connect_SB described below.
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Algorithm 5: Function E2P(Gsense, Gcom, p,X, C)

Input: An instance (Gsense, Gcom, p,X, C) of the E2P problem

Output: If the E2P has a solution, return a configuration Cnew containing

additional nodes used to form a pathset. Else, return an error value.

1 call function find_SB(Gsense, Gcom, p,X, C) to identify a set of sensing

barrier paths that satisfies condition (a) in Lemma 5.1. Cnew_sense is the

configuration of the new added nodes in the set of paths.

2 call function connect_SB(Gcom, p,X, C, Cnew_sense) to identify a set of

nodes that satisfies condition (b) in Lemma 5.1; that is, a set of nodes that

connect every node in the set of sensing barrier paths found in step 1 to the

sink. Cnew_com is the configuration of the new added nodes in this set.

3 return Cnew = Cnew_sense

⋃

Cnew_com

5.4.1 Use of Most Probable Paths

To obtain good solutions, function E2P makes frequent use of an algorithm to solve

the following problem. Given a weighted undirected graph where each node x

has an associated weight p̃(x), and two disjoint subsets of nodes X and Y of G,

find the most probable path that links some node in X to some node in Y . The

weight p̃(x) may either be zero, indicating that x is to be deleted from G before the

computations, or a positive probability value.

An efficient algorithm for solving the problem is readily available by using a

standard shortest path algorithm through the following transformation: (1) delete

nodes with p̃(x) = 0 from G, (2) associate with each node x a non-negative weight

w(x) = − log p̃(x) (so, a small p̃(x) probability maps to a large positive weight

w(x)), and (3) introduce two new nodes x and y; connect x (respectively y) to each

node in X (respectively, Y ). A shortest (x, y)-path in the constructed graph is a

most probable path connecting some node in X to some node in Y in the original

problem, as required.

The asymptotic running time of the algorithm is the same as the running time

of the used shortest path problem, denoted TSP . For the purpose of analyzing our

algorithm that solves the E2P problem, we use TSP as a component in our timing

analysis.
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5.4.2 Finding a Sensing Barrier

Function find_SB aims at computing a set of sensing barrier paths {Psense(Xi, Xi) :

i = 1, 2, · · · } in Gsense that satisfies condition (a) in Lemma 5.1, whenever possible.

Algorithm 6: Function find_SB(Gsense, Gcom, p,X, C)

Input: An instance (Gsense, Gcom, p,X, C) of the E2P problem

Output: If the E2P problem has a set of sensing barrier paths satisfying

condition (a) in Lemma 5.1 then return a configuration Cnew_sense

containing the additional nodes used to form the paths. Else, return an

error value.

1 set Cnew_sense = ∅
2 use (Gcom, p, C) to assign to each node x a weight p̃(x) (high values indicate

node importance)

3 foreach (pair (Xi, Xi) ∈ X) do

4 find a most probable (Xi, Xi)-path in (Gsense, p̃). If no such path exists

return an error value in Cnew_sense. Else, denote the path by

Psense(Xi, Xi).
5 foreach (free node x in Psense(Xi, Xi)) do

6 add (x, cs) to configuration Cnew_sense

7 set p̃(x) = 1

end

end

8 return Cnew_sense

The function returns an error value in Cnew_sense if no such set exists (no so-

lution is found). On the other hand, if a solution exists then nodes in the solution

that are not in C are returned in the new configuration Cnew_sense. The function

aims at maximizing the occurrence probability Pr(Cnew). To this end, the function

performs the following steps.

Step 1 initializes Cnew_sense = ∅. Step 2 initializes a probability array p̃(x ∈

Gcom) that guides the function so that (a) it never selects a node x that can not

reach the sink node in (Gcom, C), and (b) it favours the selection of nodes that can

jointly be assigned the cs state and reach the sink with high probability. The setting

of p̃(x) is such that higher numerical values indicate higher desirability of selecting

node x. More specifically, for each node x, Step 2 initializes p̃(x) as follows:

1. If C(x) (i.e., x’s state in C) is in {fail, cns}, or if x can not reach the sink
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in (Gcom, C) then set p̃(x) = 0. Nodes in this class can not appear in any

sensing barrier path (hence, the setting p̃(x) = 0).

2. Else, if C(x) = cs then set p̃(x) = 1. Nodes in this class are already part of

the input configuration; they can contribute to building the required sensing

barrier paths (at no extra cost).

3. Else, if C(x) = free then set p̃(x) = the probability of a most probable path

in (Gcom, C) connecting x to the sink. Nodes in this class are candidates for

use in building the required sensing barrier paths. The setting of p̃(x) gives

more suitable nodes higher values.

Steps 3 to 7 iterate over all pairs of protection intervals (Xi, Xi) ∈ X. Each

iteration finds a suitable most probable path in (Gsense, p̃). Step 7 sets p̃(x) = 1 if

x is a free node selected for inclusion in any path.
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Figure 5.3: An example Gsense for function find_SB

Example. Fig. 5.3 illustrates a Gsense of a WSN. The shape of each node spec-

ifies its state in the input configuration C = {(2, cs), (3, fail),(4, cns), (5, fail),
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(14, fail), (16, cns)}. Node 1 is the sink node. Each non-sink node x is labelled

with the weight p̃(x), as defined above. Function find_SB finds the following most

probable paths (and assigns to the new nodes the following states):

• Psense(X1, X1): ((2, cs), (6, cs), (9, cs))

• Psense(X2, X2): ((12, cs), (15, cs))

The function returns Cnew_sense ={(6, cs),(9, cs),(12, cs), (15, cs)} �

5.4.3 Connecting a Sensing Barrier

Function connect_SB (Algorithm 7) aims at adding new nodes to configuration

C
⋃

Cnew_sense to satisfy condition (b) in Lemma 5.1. That is, we want to ensure

that each node on each sensing barrier path can reach the sink. The function does

not fail since care has been given in selecting each node on any such path to ensure

that the node can reach the sink in (Gcom, C).

Algorithm 7: Function connect_SB(Gcom, p,X, C, Cnew_sense)

Input: Configuration C
⋃

Cnew_sense satisfies condition (a) in Lemma 5.1 for

each pair of intervals in X.

Output: If each node on each sensing barrier path can be connected to the sink

to satisfy condition (b) of Lemma 5.1 then return a configuration

Cnew_com containing the additional nodes used. Else, return an error

value.

1 set Cnew_com = ∅
2 use configuration C

⋃

Cnew_sense to assign to each node x a weight p̃(x)
(high values indicate node importance)

3 set VSBP = nodes of the computed sensing barrier paths

4 while (VSBP 6= ∅) do

5 Let P = a most probable path linking some node in VSBP , say xnew, to

the sink node.

6 foreach (free node x ∈ free(P )) do

7 let sx be the state of x (either cs or cns) with higher probability; add

(x, sx) to Cnew_com

8 set p̃(x) = 1

end

9 remove xnew from VSBP

end

10 return Cnew_com
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Step 1 initializes Cnew_com = ∅. Step 2 initializes the array p̃(x ∈ Gcom) that

guides the function to favour selection of nodes that are either already assigned a

state in {cs, cns}, or a free node that has a high max(pcs(x), pcns(x)) probability.

In more detail, Step 2 initializes p̃(x) as follows:

1. If C(x) (x’s state in C) is fail then set p̃(x) = 0.

2. Else, if x’s state in C
⋃

Cnew_sense is in {cs, cns} then set p̃(x) = 1.

3. Else, if x is a free node in C then set p̃(x) = max(pcs(x), pcns(x)).

Step 3 sets VSBP to nodes in the computed sensing barrier paths; each node in

the set needs to be connected to the sink in the final solution of the E2P problem.

Steps 4 to 9 iterate until all nodes in VSBP are connected to the sink. Step 5 finds a

most probable path P in (Gcom, p̃) that links some node, denoted xnew, to the sink.

Steps 6 to 8 assign a state to each free node x in P , and adds the node-state pair

(x, sx) to Cnew_com, where state sx ∈ {cs, cns} is the state of x with higher psx

probability. Step 8 updates p̃(x) to 1.
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Figure 5.4: An example Gcom for function connect_SB

Example. Fig. 5.4 illustrates Gcom for the network in Fig. 5.3. The shape of

each node in the diagram specifies its state in the input configuration C
⋃

Cnew_sense.

Each non-sink node x is labelled with the weight p̃(x) as described above where we
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assume that state cns has higher probability than state cs. Function connect_SB

returns Cnew_com = {(10, cns), (11, cns)}. �

5.4.4 Discussion

We remark that function E2P does not give false negatives. That is, it guarantees

that any extensible input configuration C will be extended to a pathset by computing

a suitable extension configuration Cnew. This observation follows since:

1. Function find_SB finds a set of sensing barrier paths {Psense(Xi, Xi) : i =

1, 2, · · · } in Gsense that satisfies condition (a) in Lemma 5.1 by

(a) Excluding nodes in the input configuration C that are either in states

{fail, cns}, and nodes that can not reach the sink in (Gcom, C)

(b) Using a shortest path algorithm to find each Psense(Xi, Xi) path

2. Function connect_SB that adds new nodes to configuration C
⋃

Cnew_sense to

satisfy condition (b) in Lemma 5.1 ensures that each node in each Psense(Xi, Xi)

path reaches the sink by a path of nodes in states {cs, cns}.

5.4.5 Running Time (of E2P)

Denote by n the number of nodes in the given WSN. The running time of function

find_SB is determined by the loop in Steps 3 to 7. The loop iterates |X| times.

Each iteration executes a most probable path algorithm (cf., Sec. 5.4.1). Since

|X| ∈ O(n2), function find_SB requires O(n2 · TSP (n)).

Similarly, the running time of function connect_SB is determined by the loop

in Steps 4 to 9. The loop iterates |VSBP | times. Each iteration executes a most

probable path algorithm. Since |VSBP | ∈ O(n), function connect_SB requires

O(n · TSP (n)).

We conclude that function E2P requires O(n2 · TSP (n)) time.
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5.5 Optimal Extension to a Cutset

In this section, we examine the optimal extension to a cutset (E2C) problem that

calls for computing a configuration Cnew such that C
⋃

Cnew is a cutset, and the

Pr(Cnew) is as high as possible. We recall that in Chapter 4, we have shown that

the E2C problem for the BPDREL problem (where Gcom = Gsense) can be solved

exactly in polynomial time. In this section, we show a heuristic algorithm (func-

tion E2C below) that aims at computing an optimized solution whenever a solution

exists. That is, the devised algorithm does not give false negatives.

5.5.1 Assumptions and Notations

We start by introducing a few assumptions and some needed definitions to present

the algorithm. First, to simplify the presentation, we assume that for each node x,

x 6= sink, pcom(x), psense(x) 6= 0 or 1. Indeed, a node x that has a boundary pcom

or psense can be dealt with as special case as follows:

1. If (pcom(x) = 0 and psense(x) = ∗) then x is always in a failed state.

2. If (pcom(x) = 1 and psense(x) = 0) then x is always in the cns state.

3. If (pcom(x) = 1 and psense(x) = 1) then x is always in the cs state.

4. If (pcom(x) = 1 and psense(x) ∈ (0, 1)) then x can be assigned only to a state

in {cs, cns}.

Our algorithm can distinguish each of the above cases and deal with it accordingly.

We next introduce the following definitions.

1. Vcs,sink: A (possibly empty) subset of nodes where each node x is assigned

the cs state, and x can reach the sink in Gcom by a path of communication

capable nodes (i.e., each internal node y on such a path is assigned a state

C(y) ∈ {cs, cns}). An efficient algorithm to identify the set Vcs,sink pro-

ceeds by modifying Gcom by keeping all cs and cns nodes, and all nodes with

pcom = 1, and deleting all free and failed nodes. We then check for cs nodes

connected to the sink in the modified graph.
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Rationale: Nodes in Vcs,sink are not useful in computing a cutset extension

Cnew. Other cs nodes in the input configuration C can be disconnected from

the sink by failing some free nodes; such cs nodes are considered by our

algorithm in computing a solution Cnew.

Example. In Gcom of Fig. 5.5, assume that C(2) = cs (note: the assumption

is contrary to the figure where node 2 appears as a free node). Under this

assumption, Vcs,sink = {2, 3, 4}. �

Figure 5.5: An example for function E2C

2. Psense(X,X): For a given pair of protection intervals (X,X) ∈ X, Psense(X,

X) denotes any possible path in Gsense that connects some node x ∈ X to

some node x ∈ X . We require that any node v on such a path to be in state

C(v) ∈ {cs, free}. That is, Psense(X,X) can be made a sensing barrier by

assigning its free nodes to the cs state.

3. Vsense_obstruct(X,X): For a given (X,X) ∈ X, Vsense_obstruct(X,X) is a sub-

set of nodes in V \ Vcs,sink that intersects any possible Psense(X,X) path in

at least one node such that we can obtain an (X,X)-cutset by disallowing
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each node in Vsense_obstruct(X,X) from sensing and/or communicating with

the sink.

Note that the definition restricts the search for Vsense_obstruct(X,X) to non-

sink nodes assigned to one of {cs, free} states in the configuration C. This

follows since the sink node can not be assigned a failed or a non sensing state.

And, a failed or cns node does not appear in any possible Psense(X,X) path.

Example. Fig. 5.5 illustrates Gsense of a WSN where the shape of each node

specifies its state in the input configuration C = {(3, cs), (4, cs), (14, cs), (15,

cs)}. For the pair (X1, X1), it is possible to have

Vsense_obstruct(X1, X1) = X1 = {(5, free), (9, free), (13, free), (14, cs)}

since any Psense(X1, X1) must include at least one node in X1. �

4. Vcom_obstruct(t): For a given node t in the cs state, Vcom_obstruct(t) is a set of

free nodes that can be turned into failed nodes so as to disallow any operating

(sink, t)-path in Gcom.

Example. Fig. 5.5 illustrates Gcom of the WSN in the previous example. For

node t = 14, it is possible to have Vcom_obstruct(t) = {2, 5, 6} since failing

each of the three nodes disconnects t from the sink. �

5.5.2 Function E2C

Function E2C presents the structure of the overall algorithm. Step 1 initializes the

extension Cnew to a failed value of (−1, ∅). Step 2 computes the set Vcs,sink from

the input (Gcom, C), as explained in the definition.

The algorithm then invokes the loop in Step 3 where it examines each pair

(X,X) ∈ X of protection intervals. The loop aims at computing an optimized

(X,X)-cutset, denoted Cnew(X,X), if one exists. Each iteration of the loop pro-

ceeds in two phases. Step 5 implements phase 1 where we aim at computing an

optimized set Vsense_obstruct(X,X), as explained in Section 5.5.3.

86



Algorithm 8: Function E2C(Gsense, Gcom, p,X, C)

Input: An instance (Gsense, Gcom, p,X, C) of the E2C problem

Output: If the E2C has a solution, return a configuration Cnew containing

additional nodes used to form a cutset. Else, return an error value

(−1, ∅).
1 Cnew = (−1, ∅)
2 Compute the set Vcs,sink

3 foreach (pair (X,X) ∈ X) do

4 set Cnew(X,X) = ∅
5 construct a flow network (G′

sense, s, t, cap), as explained in Sec. 5.5.3,

and find the maximum flow amount fmax

1. if (fmax == 0) { Cnew(X,X) = ∅; break }

2. else if (fmax ≥ maxcap) { Cnew(X,X) = (−1, ∅); continue }

3. else set Vsense_obstruct(X,X) = nodes in a minimum (s, t)-cut in

the flow network

6 foreach (cs node t ∈ Vsense_obstruct(X,X)) do

7 construct a flow network (G′
com, sink, t, cap), as explained in

Sec. 5.5.4, and find the maximum flow amount fmax

1. if (fmax == 0) continue

2. else if (fmax ≥ maxcap) { this case can not arise }

3. else set Vcom_obstruct(t) = nodes in a minimum (s, t)-cut in the

flow network;

set Cnew(X,X) +={(x, fail) : x ∈ Vcom_obstruct(t)}
end

8 foreach (free node x ∈ Vsense_obstruct(X,X)) do

1. set G′
com = Gcom with all failed nodes in C

⋃

Cnew(X,X)
deleted

2. if (x can not reach the sink in G′
com) continue

3. else set Cnew(X,X) += the best of (x, fail) and (x, cns)
end

end

9 set Cnew = the best computed Cnew(X,X); return (+1, Cnew)

Steps 6, 7, and 8 implement phase 2 that aim at making each node in Vsense_obstruct

(X,X) either failed, cns, or disconnected from the sink in Gcom, as explained

in Section 5.5.4. Finally, Step 9 sets Cnew to the best computed configuration

Cnew(X,X), and returns successfully.
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5.5.3 Computing Vsense_obstruct(X,X)

Step 5 of function E2C computes a valid set Vsense_obstruct(X,X) (if one exists).

Recall that, by definition, any valid solution should not include the sink node, a

failed or cns node, or any node in Vcs,sink.

Our approach transforms this problem to a maximum flow problem on an in-

stance denoted (G′
sense, s, t, cap). Here, G′

sense is an undirected graph with two

distinguished terminal nodes, denoted s and t, and each node x, x 6= s, t, has a

real capacity, denoted cap(x). A solver for the maximum (s, t)-flow problem also

returns an (s, t)-cut.

We assume that each node x has pcom(x), psense(x) 6= 0 or 1. In general, the

transformation assigns low capacities to nodes that we want to encourage their in-

clusion in the computed minimum (s, t)-flow-cut (e.g., free nodes with high failure

probability). The transformation works as follows.

1. The graph G′
sense is constructed from Gsense by first deleting all nodes as-

signed either the failed or cns state in the input configuration C. We next add

two new nodes s and t, and make s (respectively, t) adjacent to each node in

the interval X (respectively, X).

2. For each node x, x 6= s, t, in G′
sense we assign the following capacities based

on the state C(x) assigned to node x:

(a) If x ∈ Vcs,sink, set cap(x) = maxcap where maxcap is a value that

exceeds the sum of capacities of nodes not in this class

(b) Else if C(x) = free set cap(x) = − logmax(pfail(x), pcns(x))

(c) Else if C(x) = cs then it is desirable to set cap(x) based on the best

set of free nodes that can be assigned the failed state so as to discon-

nect x from the sink in Gcom when this action is needed in the loop of

Step 6. However, such information is not available in phase 1. So, we

choose to set cap(x) to some acceptable and simple to calculate value.

In particular, we calculate the average (over all free nodes in C) failure

probability, denoted p̃fail, and set cap(x) = p̃fail.
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A maximum (s, t)-flow solution, denoted fmax, corresponds to one of the fol-

lowing cases:

1. If fmax = 0, the failed and cns nodes in the input configuration C forbids

the existence of any Psense(X,X). Thus, C is already a cutset. Step 5.1 sets

Cnew(X,X) = ∅ and breaks from the main loop of Step 3. Step 9 then returns

successfully with Cnew = ∅.

2. If fmax ≥ maxcap, any possible Psense(X,X) is composed of nodes in

Vcs,sink. Thus, C is already an (X,X)-pathset. Step 5.2 sets Cnew(X,X)

to an error value, and continues the main loop in Step 3 by considering the

next pair (X,X) of protection intervals.

3. If 0 < fmax < maxcap, the corresponding (minimum capacity) (s, t)-cut is

a valid Vsense_obstruct(X,X). Each node in such a set has a state in {cs, free}

with no node in Vcs,sink (and no node is the sink node).

5.5.4 Computing Vcom_obstruct(t)

The loop in Step 6 iterates over all cs nodes in Vsense_obstruct(X,X). In each iter-

ation, Step 7 computes a valid set Vcom_obstruct(t) (if one exists) for a given target

cs node t. We denote the active configuration at any possible iteration of the loop

by Citer = C
⋃

Cnew(X,X) (where Cnew(X,X) can potentially grow in each iter-

ation).

We recall that, by definition, Vcom_obstruct(t) is a set of free nodes in the current

configuration that can be assigned the failed state so as to disconnect t from the sink

in Gcom.

We transform the problem to a network flow problem. We denote the con-

structed instance by (G′
com, s = sink, t, cap) where G′

com is an undirected graph,

and each node x, x 6= s, t, has a real capacity, denoted cap(x).

Similar to the previous section, we assume that each node x has pcom(x), psense(x)

6= 0 or 1. Also, the transformation assigns low capacities to nodes that we want to

encourage their inclusion in the computed minimum (s, t)-flow-cut (e.g., free nodes

with high failure probability). The transformation works as follows.
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1. G′
com is constructed from Gcom by removing failed nodes in the current con-

figuration Citer.

2. For each node x, x 6= s, t, in G′
com we assign the following capacities:

(a) If Citer(x) = free, set cap(x) = − log pfail(x)

(b) If Citer(x) ∈ {cs, cns}, set cap(x) = maxcap where maxcap is a value

that exceeds the sum of capacities of nodes not in this class

A maximum (s, t)-flow solution fmax corresponds to one of the following cases:

1. If fmax = 0, G′
com is disconnected, and no additional nodes need to be failed

to disconnect t from the sink. Step 7.1 continues to the next iteration without

augmenting Cnew(X,X) with additional nodes.

2. The case where fmax ≥ maxcap is not possible since by the selection of

Vsense_obstruct(X,X), each included cs node can be disconnected from the

sink in Gcom.

3. If 0 < fmax < maxcap then we set Vcom_obstruct(t) to all nodes in a minimum

capacity (s, t)-cut of the flow network. All such nodes are free in the current

configuration.

5.5.5 Correctness

In this section, we show that function E2C computes a valid extension Cnew when

one exists.

Lemma 5.3 Function E2C computes a valid extension Cnew if and only if the in-

stance (Gsense, Gcom, p,X, C) admits an extension C
⋃

Cnew to a cutset.

Proof.

(⇒) Assume that function E2C has successfully computed an extension Cnew for

some pair (X,X) ∈ X of protection intervals. We show that C
⋃

Cnew is an

(X,X)-cutset. Thus, C
⋃

Cnew is a cutset.
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To see that C
⋃

Cnew is an (X,X)-cutset, we note the following for the set

Vsense_obstruct(X,X)

1. By definition, any possible Psense(X,X) path in the input instance contains

at least one cs or free node in Vsense_obstruct(X,X).

2. Step 7 fails sufficient number of extra nodes to forbid any cs node in Vsense_obstruct

(X,X) from reaching the sink.

3. Step 8 assigns each free node in Vsense_obstruct(X,X) to either the cns, or the

fail, state.

Thus, Cnew is a valid extension as required.

(⇐) Assume that (Gsense, Gcom, p,X, C) admits an extension to a cutset C
⋃

Cnew,

we show that function E2C returns a solution. We distinguish the following cases.

1. Case Cnew = ∅ (i.e., C is already a cutset): Step 5 constructs a network flow

graph (G′
sense, s, t, cap), and we deal with the following cases:

(a) Case: s does not reach t in G′
sense by a path of nodes in {cs, free}:

Step 5.1 recognizes that S is already a cutset.

(b) Case: G′
sense has an (s, t)-path composed of cs nodes, where no such

node can reach the sink under the configuration C. The loop in Step

6 keeps Cnew(X,X) = ∅, and function E2C returns successfully with

Cnew = ∅, as required.

2. Case Cnew 6= ∅: Any possible Psense(X,X) that can be turned into a sensing

barrier (under configuration C) has at least one node x in C
⋃

Cnew where

either

(a) (x, cs) ∈ C and Cnew fails some nodes so as to disconnect x from the

sink in C
⋃

Cnew, or

(b) (x, fail) or (x, cns) ∈ Cnew.
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Denote by V ′
sense_obstruct all such x nodes. Note that removing V ′

sense_obstruct

from the flow graph G′
sense disconnects s from t. So, V ′

sense_obstruct is an (s, t)-

cut in G′
sense. Thus, Step 5 succeeds in computing such a network flow cut.

Steps 7 and 8 do not fail (all state assignments are feasible). We conclude

that function E2C returns a valid extension Cnew, as required. �

5.6 Numerical Results

In this section, we investigate the performance of our approach for computing LBs

and UBs for the DIR-BPDREL problem with 3-state nodes. We report on ex-

periments done on WSNs formed by W×L grid nodes with W rows at (x, y)-

coordinates y = 0, 1, · · · ,W−1, and L columns at coordinates x = 0, 1, · · · , L−1.

The sink node is located at the bottom left corner of the grid at coordinates (0, 0).

The communication (or sensing) direction of a node is specified by the parameters

(r, θmid ± α), as described in Section 5.1.1.

Note that the methodologies devised work for any pair of arbitrary Gcom and

Gsense graphs. In the graphs used in this section, nodes are arranged in a grid

layout, however, some experiments vary the directionality parameters, and conse-

quently the transmission and/or sensing radii are changed creating graphs that are

less regular and much denser than regular grids.

Each WSN has one pair of entry-exit sides with a corresponding protection

interval (X,X), where X is the set of top row perimeter grid nodes, and X is

the set of remaining perimeter nodes. By default, the algorithm executes 10,000

iterations to obtain a bound.

5.6.1 Exact reliability results

Here, we explore the range of grid sizes for which the algorithms compute Rel(Gcom,

Gsense) exactly in time less than 0.5 hour. In the experiments, DIRcom = (1.7, 135◦±

135◦), and DIRsense = (0.5, 225◦± 135◦) (cf., the examples in Section 5.1.1). The

LB (or UB) algorithm produces an exact result if it processes all of the generated

configurations.
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Table 5.1 presents the number of configurations generated by the LB and the UB

algorithms, respectively. As can be seen, compared to the total number of states, the

algorithms compute exact results using a significantly smaller number of configu-

rations. Such reductions are achieved by avoiding the generation of configurations

that can not be extended to either a pathset (for the LB algorithm), or a cutset (for

the UB algorithm).

Table 5.1: Exact computations of the DIR-BPDREL problem

W×L Network

states

Generated configu-

rations (LB)

Generated configu-

rations (UB)

2× 2 33 17 17

2× 3 35 43 21

3× 3 38 395 167

3× 4 311 2503 849

4× 4 315 58199 21531

4× 5 319 703411 384997

5.6.2 Gaps between LBs and UBs

Fig. 5.6 illustrates the gap between the obtained LBs and UBs for networks com-

posed of W×W grid nodes, where W (on the x-axis) varies in the range [2, 9].

We set pcom = psense = 0.8 for each node. Gcom and Gsense correspond to using

DIRcom = (1.7, 135◦ ± 135◦), and DIRsense = (0.5, 225◦ ± 135◦), respectively.

The upper and lower curves in Fig. 5.6 correspond to bounds obtained using 10,000

iterations. The middle LB curve is obtained using 500,000 iterations (with a corre-

sponding increase in the number of the stored configurations.)

The gap between the bounds given by the upper and lower curves increases

as the network size increases. This follows since increasing the number of nodes

causes a rapid increase in the number of pathsets and cutsets. So, 10,000 itera-

tions fail short in covering a reasonable number of configurations. In addition, the

size of each pathset or cutset increases, and hence the contribution of each such a

configuration to the final answer decreases as well.

Our past experience, however, indicates that the LB curve tends to be more

accurate than the UB curve. For example, by increasing the number of iterations
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Figure 5.6: Effect of varying network size on LBs and UBs for the DIR-BPDREL
problem

from 10,000 to 500,000, one obtains the middle curve in Fig. 5.6; this middle curve

has a shape similar to the lower curve (with improved LB values). For networks

with W ≥ 5, each point of the middle curve requires about 7 hours of running time.

5.6.3 Effect of node communication and sensing probabilities

In this part, we explore the effect of varying node’s pcom and psense on Rel(Gcom,

Gsense). We present numerical results of a WSN formed by 6x6 grid nodes, as a

representative of other obtained results.

Fig. 5.7 illustrates the results. The dashed curve corresponds to setting pcom =

0.6, and varying psense ∈ [0, 1] for all nodes. Similarly, the solid curve corresponds

to setting psense = 0.6, and varying pcom ∈ [0, 1] for all nodes.

The results show that the dashed curve has better performance than the solid

curve when the x-axis values vary in the range [0, 0.6]. In this region, both curves

result in nodes with the same pcs (= pcom ·psense) probabilities. However, they differ

widely in the produced pcns (= pcom · (1− psense)) probabilities.

Specifically, the dashed curve results in pcns varying in the range [0.6× (1.0−

0.6), 0.6× (1.0− 0.0)] whereas the solid curve results in pcns values varying in the

range [0.0× (1.0− 0.6), 0.6× (1.0− 0.6)]. Thus, the dashed curve results in better
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Figure 5.7: Effect of varying pcom and psense on Rel(Gcom, Gsense) of the

DIR-BPDREL problem

pcns values.

The pcns probabilities are used in selecting relay nodes needed to construct path-

sets. This explains the better performance of the dashed curve when the x-axis val-

ues vary in the range [0, 0.6]. Following a similar reasoning, one can explain the

behaviour of the curves when the x-axis values vary in the range [0.6, 1.0].

5.6.4 Effect of directional parameters

Directional communication and sensing devices can achieve spatial selectivity with-

out significant changes in the consumed power. In this part, we explore the effect

of changing DIRcom and DIRsense on Rel(Gcom, Gsense). We present numerical

results of a WSN formed by 6x6 grid nodes. We set pcom = psense = 0.8 for all

nodes. DIRcom and DIRsense are specified by (r = 360
2·α

, 180◦ ± α), where the

offset angle α ∈ {30◦, 60◦,90◦, 120◦, 150◦, 180◦}. Fig. 5.8a illustrates the obtained

results. The solid curve corresponds to setting α = 180◦ to obtain Gsense, and

varying α ∈ {30◦, 60◦, · · · , 180◦} to experiment with different Gcom graphs. In

the histogram of Fig. 5.8b, columns with dark colour give the number of links in

the constructed Gcom graphs (in the range 0 to 60 links). We note that the perfor-

mance given by the solid curve of Fig. 5.8a has a strong correlation to the number of
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links in Gcom; that is, communication graphs with fewer edges give lower reliability

values.

The dashed curve corresponds to setting α = 180◦ to obtain Gcom, and vary-

ing α ∈ {30◦, 60◦, · · · , 180◦} to experiment with different Gsense graphs. In the

histogram of Fig. 5.8b, columns with light colour give the number of links in the

constructed Gsense graphs (in the range 158 to 214 links). In general, the obtained

Gsense graphs have considerable number of links (≥ 158) that support the construc-

tion of many sensing barrier paths Psense(X,X). Here, the obtained LBs exceed

0.60. We note, however, when the offset angle α is small (e.g., α = 30◦) the

sensing links are confined to a narrow region around each node compared to net-

works where α is large (e.g., the omnidirectional case where α = 180◦). Thus, the

distribution of links in Gsense graphs obtained using large offset angles allows the

construction of more sensing barrier paths. This explains the observed trend where

large offset angles in Gsense result in better reliability values.

5.7 Concluding Remarks

In this chapter, we develop an approach for analyzing networks with directional sen-

sor nodes deployed for an application where a WSN guards against unauthorized
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area traversal. Our model separates the network’s sensing graph from its commu-

nication graph as a flexible way to model separate directional sensing and commu-

nication functions. In addition, the model separates events of communication fail-

ure from sensing failure within any single node. Under the above general model,

we devise algorithms to assess the dependability of the network in such a critical

application. The obtained results give lower and upper bounds on an underlying

reliability measure.
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Chapter 6

Breach Path to Target Area

Detection Reliability in WSNs

In previous chapters, we have considered unauthorized traversal across

a WSN area where the intruder path starts and ends outside the guarded

area. In contrast, in this chapter, we consider intruder paths from out-

side the WSN area to a distinguished internal area of interest. The cor-

responding reliability problem is called the breach path to target area

detection reliability (BPTA-REL) problem. We adopt the framework

used in the previous chapters as a main tool for computing lower and

upper bounds on the current problem. Our main contributions lie in

designing suitable algorithms for handling the extension to a pathset

(E2P), and the extension to a cutset (E2C) problems for the current

reliability problem. Some of the results in this chapter appear in [18]

6.1 Problem Formulation

6.1.1 Area Monitoring Model

We deal with a WSN modelled during a time period of interest as an undirected

graph G = (V ∪ {s}, E) where V denotes the set of sensor nodes with a distin-

guished command and control sink node s, and E denotes a set of bidirectional

links. Similar to the model used in Chapter 4, a link (x, y) is useful to us if it can

sense an object crossing the line segment (x, y) from any point on the segment.

Such link can guarantee detection of any crossing along the segment. So, we as-
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sume that all links in E satisfy this property.

We further assume that the WSN is deployed to protect a geographical area,

denoted Awsn. The area has a perimeter defined by a polygon that has a sensor

node at each corner. The sides of the polygon does not necessarily correspond to

communication or sensing links in G. Rather, the sides are used only to define the

entry sides the intruder may use.

Breach paths are defined using two parameters: a set D of perimeter polygon

sides, and an area Atarget of interest. D represents a set of potential entry sides that

an intruder can use. Atarget lies within Awsn and is defined by a polygon that has a

sensor node at each corner. A D-attack is a crossing of the network from any side in

D to Atarget along any possible path across Awsn. The WSN provides the required

protection if it can detect and report to the sink any D-attack. Sensor nodes that

may lie inside Atarget are not useful for successful network operation, and hence we

may assume that no such sensor node exists.

Figure 6.1: An instance of the BPTA-REL problem

Example. Fig. 6.1 illustrates a WSN where |V | = 11 nodes, D = {d1, d2}, and

Atarget is defined by the polygon (3, 7, 8, 4). �

6.1.2 Reliability Model

Similar to Chapter 4, we associate with each node x, an operation (failure) prob-

ability p(x) (respectively, q(x) = 1 − p(x)). Nodes are assumed to operate inde-

pendently of each other. The sink is typically well maintained and protected, so

p(s) = 1.
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A failure event of one, or more nodes, leaves the network with a subset S of

operating nodes where the remaining nodes V \ S are failed. We refer to such set

S as a network state. Thus a network on n nodes has 2n different states, where

each state S arises with probability Pr(S) =
∏

x∈S p(x)
∏

x/∈S q(x). In our present

context, a state S is operating if it can detect and report to the sink any D-attack.

Else, S is failed. In Fig. 6.1, D = {d1, d2} and the state S = {5, 9} (with other

non-sink nodes failed) is an operating state. The BPTA-REL problem can then be

defined as follows.

Definition (the BPTA-REL problem). Let G = (V ∪ {s}, E) be a WSN where

each node x, x 6= s, has an operating probability p(x), and each point on a line

segment (x, y) ∈ E can be detected by either x and/or y. In addition, let D be a

set of entry sides on the perimeter of G, and Atarget be an area of interest within the

network. Find the probability Rel(G, p,D,Atarget) that G is in a state that ensures

that any D-attack is detected. �

6.1.3 Complexity Analysis

Theorem 6.1 The BPTA-REL problem is #P-hard.

Proof. The proof is similar to the proof of Theorem 4.1. Here, we reduce in poly-

nomial time a given instance (G, s, t) of the 2REL problem on grid networks to

an instance (G′, p,D,Atarget) of the BPTA-REL problem such that Rel(G, s, t) =

Rel(G′, p,D,Atarget). Figure 6.2 illustrates the reduction where nodes s and t are

assumed to be two non-adjacent nodes on the perimeter of a partial grid network G.

In Fig. 6.2, we have the following:

1. The probabilistic graph G′ of the BPTA-REL problem is constructed from

the graph G by adding two new nodes a and b as shown in the figure where

p(a) = p(b) = 1. The figure shows Atarget and din.

2. Node t is taken as the sink node of the BPTA-REL instance.

3. Any node x 6= t, a, or b in G′ has the same operating probability p(x) as in

G.
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4. An operating state of the BPTA-REL problem on the graph G′ is a state

where an intruder crossing G′ from side din to Atarget can be detected and

reported. Note that, any such intruder path has to enter the network from din,

and enter Atarget by crossing the link (s, c). Intrusion paths of the problem

can not leave the network and then enter Atarget from any of the 3 sides (s, a),

(a, b), or (b, c).

Thus, there is a one-to-one correspondence between operating states of the BPTA-REL

problem in G′ and operating states of the 2REL problem in G, as required. �

Figure 6.2: The graph G′ used in Theorem 6.1

6.2 Overview of the Main Method

Our main method of deriving lower and upper bounds (LBs and UBs) on the ex-

act solution utilizes the concepts of network configurations, pathsets, and cutsets

introduced below.

Network configurations. A configuration C of a network assigns a state from

the set {op, fail} to each node in some subset of nodes. We use V (C) ⊆ V to

denote such subset. Non-sink nodes that are not assigned a state in C are free

nodes. In Fig. 6.1, C = {(5, op), (9, op)} is a possible network configuration that

has 9 free nodes. For convenience, we use Cop, Cfail, and Cfree to denote the
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operating, failed, and free nodes in C. The probability that such configuration arises

is Pr(C) =
∏

x∈Cop
p(x) ·

∏

x∈Cfail
q(x).

Pathsets. A BPTA-REL pathset is an operating configuration C. That is, C guar-

antees to detect and report to the sink any D-attack. In Fig. 6.1, C = {(5, op), (9, op)}

is a pathset.

Cutsets. A BPTA-REL cutset is a configuration C that can not be extended to a

pathset by operating all possible free nodes. In Fig. 6.1, C = {(5, fail), (6, fail),

(7, fail)} is a cutset.

Our method relies on computing and using pairwise s-disjoint configurations

as follows. Suppose that {P1, P2, · · · , Pr} is a set of pairwise s-disjoint pathsets

then Rel(G) ≥
∑r

i=1 Pr(Pi) (the RHS is the computed LB). Likewise, suppose

that {U1, U2, · · · , Ur} is a set of pairwise s-disjoint cutsets then Rel(G) ≤ 1 −
∑r

i=1 Pr(Ui) (the RHS is the computed UB).

Several algorithms can be used to systematically generate a maximal set of pair-

wise pathsets (or cutsets). If the RHS in the first (second) relation is a maximal set

of pathsets (respectively, cutsets) then the relation holds as an equality, and we ob-

tain an exact solution on the problem. Our work in chapter 3 presents one such

generation algorithm developed for networks where each sensor node can be in any

one of three possible states. In this chapter, our main method utilizes a similar

algorithm adapted to networks with 2-state (operating/fail) nodes. One important

ingredient in the effective use of any such algorithm, however, is the ability to ex-

tend (if possible) any given configuration C to a pathset (or a cutset) that has a high

occurrence probability. The next sections deal with this aspect for the BPTA-REL

problem.
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6.3 Planar Duality Approach

Our approach for extending a given configuration to a pathset (or cutset) relies on

using certain planar graph duality relations between two graphs, denoted H and

H∗, derived from the WSN G (see, e.g., [10] for background on planar graphs). In

this section, we introduce the needed concepts.

6.3.1 Graphs H and H∗

Figure 6.3: An instance of the BPTA-REL problem

The planar graph H = (VH , EH) is constructed as follows. Consider an embed-

ding of G in the plane where each node is placed according to its (x, y)-coordinates.

The perimeter of G in this embedding forms a polygon surrounding the area Awsn.

Delete from the graph all links and sensor nodes that may lie within Atarget. The

remaining links of G may intersect each other. Take each intersection point (be-

tween two, or more links) as a new node in H . Thus, each link e in H is either a

whole link in G, or part of a link in G. Conversely, each link e in G corresponds to

a path of one, or more, links in H . The area of interest Atarget appears as a face of

H , denoted ftarget. We also use fext to denote the exterior unbounded face of H .

To construct the planar graph H∗, we first take the planar dual of H . Next, for

every perimeter side d of H that is not an entry side in D, we delete the dual link

d∗ from H∗.

Example. In Fig. 6.3, the graph H derived from the network in Fig. 6.1 has square

nodes and solid links. The graph H∗ has octagonal nodes and dashed lines. �

103



6.3.2 Link Correspondence Relations

Our devised method uses the graph H∗ to compute important structures on the net-

work G. The following relations are thus important.

The G2H∗ Relation. If (x, y) is a link in G then (x, y) corresponds to an (x, y)-

path in H . Each link e in such path corresponds to a dual link e∗ is H∗. We denote

such set of links in H∗ by G2H∗(x, y). Thus, link (x, y) in G corresponds to one,

or more, links G2H∗(x, y) in H∗.

The H∗2G Relation. If e∗ is a link in H∗ then e∗ has a dual link e in H . Link

e corresponds to either a whole or part of a link (x, y) in G. We denote such link

(x, y) by H∗2G(e∗). Thus, link e∗ corresponds to link H∗2G(e∗) in G.

6.3.3 Pathset Characterization

Our algorithm for finding pathsets utilize the characterization in Theorem 6.2 below.

To start, we need the following terminology.

• A (D,Atarget)-barrier in G is a set of links that intersects any intruder path

from any possible entry side in D to Atarget.

• A (fext, ftarget)-cut in H∗ is a set of links that forms a cut separating node

fext from node ftarget.

Example. In Fig. 6.1, the set E ′
G = {(2, 6), (6, 10)} forms a (D,Atarget)-barrier in

G. The corresponding 2 links in H∗ form a (fext, ftarget)-cut in H∗. �

The duality relation between H and H∗ allows us to state the following property.

Theorem 6.2 A set of links forms a (D,Atarget)-barrier in G iff their corresponding

links in H∗ form a (fext, ftarget)-cut.
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6.3.4 Cutset Characterization

Likewise, our algorithm for finding cutsets utilizes the characterization in Theorem

6.3. We need the following terminology.

• A (D,Atarget)-breach passage in G is a set of links whose failure allows an

undetected intrusion path. (A link e in G fails if at least one of its two end

nodes fail, or become disconnected from the sink.)

• A (fext, ftarget)-path in H∗ is a set of links that form a path from node fext to

node ftarget.

Example. In Fig. 6.1, the set E ′
G on 9 links formed by the 3 vertical links (5, 9), (6, 10),

(7, 11), the 5 diagonal links (5, 10), (6, 9), (6, 11), (7, 10), (7, 12), and the horizon-

tal link (7, 8) forms a (D,Atarget)-breach passage in G. The corresponding links in

H∗ contain multiple (fext, ftarget)-paths. �

Likewise, the duality relation between H and H∗ allows us to state the following

property.

Theorem 6.3 A set of links form a (D,Atarget)-breach passage in G iff their corre-

sponding links in H∗ contain a (fext, ftarget)-path.

6.4 Extension to a Pathset

The optimal extension to a pathset (E2P) problem is defined as follows. Given an

instance of the BPTA-REL problem, and a configuration C, extend C if possible

to a pathset C
⋃

Cnew so that Pr(Cnew) is as high as possible. Our contribution in

this section is function E2P that computes an effective solution to the problem. The

function is guaranteed to find a feasible solution if one exists.

Our approach uses the following ideas:

• We first recall that if C ∪ Cnew is a pathset then, by definition, some links in

EG(C ∪ Cnew) form a (D,Atarget)-barrier in G.
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• Our strategy in constructing Cnew relies on computing an optimized barrier

in G obtained by solving a maximum flow problem on H∗.

• To this end, the function assigns to each link e∗ in H∗ that is derived from

a link (x, y) in G (i.e., H∗2G(e∗) = (x, y)), a capacity cap(x, y) ≥ 0. This

step is detailed in Sec. 6.4.2.

• Our goal is to set cap(x, y) to a small value whenever x and y have a high

probability of operating and reaching the sink in G. Assigning e∗ a small

capacity encourages its inclusion in a minimum capacity (fext, ftarget)-cut of

graph H∗. Including e∗ in the computed minimum cut causes the function to

select nodes x and y for inclusion in the constructed barrier, and consequently

in the computed Cnew, as desired.

6.4.1 Function E2P

We now give an overview of the overall structure of function E2P. More details

appear in Sec. 6.4.2.

Step 1 constructs graphs H and H∗. Step 2 assigns to each link e∗ in H∗ that is

derived from a link H∗2G(e∗) = (x, y) in G, a capacity cap(x, y) ≥ 0. Our method

of computing such capacity (cf. Sec. 6.4.2) relies on computing for each node x a

best path Ps,x (i.e., a path with highest possible probability) for reaching the sink in

G. We denote the probability that all free nodes on such path operate by pconn(x).

Step 3 solves an instance of the maximum flow problem on H∗ to identify a

minimum capacity (fext, ftarget)-cut, denoted E ′
H∗ .

Step 4 returns from the function in two special cases. If node fext is already

disconnected from node ftarget in H∗ then the computed minimum cut is empty (i.e.,

E ′
H∗ = ∅). In this case, C is already a pathset that does not require any extension.

On the other hand, if the computed cut contains a link e∗ that corresponds to a

failed link (x, y) in configuration C then C is already a cutset. This latter condition

exists when cap(E ′
H∗) ≥ MAXCAP, where MAXCAP is a large capacity defined

in Sec. 6.4.2.

Step 5 processes links of the minimum cut E ′
H∗, and identifies two subsets of
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Algorithm 9: Function E2P(G, p,D,Atarget, C, Cnew)

Input: Instance (G, p,D,Atarget, C) of the E2P problem

Output: Return +1 and a solution Cnew if possible. Else, C is a cutset, return

−1.

1 Construct graphs H and H∗.

2 Assign capacities:

For each link e∗ in H∗ corresponding to a link H∗2G(e∗) = (x, y) in G,

assign a capacity cap(x, y) ≥ 0, as explained in Sec. 6.4.2.

3 Compute minimum cut:

Find a minimum capacity (fext, ftarget)-cut in H∗. Denote the links of

such minimum cut by E ′
H∗ .

4 if (E ′
H∗ == ∅) then

set Cnew = ∅; return +1
else if (cap(E ′

H∗) ≥ MAXCAP) then
return −1

end

5 Build initial Vfree set:

Process each link e∗ in the computed minimum cut E ′
H∗ (cf. Sec. 6.4.2).

This step gives two sets: Vop ⊆ Cop, and Vfree ⊆ Cfree.

6 Augment Vfree:

Compute a set of additional free nodes V ′
free that suffices to connect each

node in Vop

⋃

Vfree to the sink using a path composed of nodes in

Cop

⋃

Vfree

⋃

V ′
free. Add V ′

free to Vfree.

7 Refine Vfree:

Remove from Vfree nodes that are not necessary to form a pathset.

8 Set Cnew = Vfree after assigning them the operating state; return +1

nodes: a set of operating nodes Vop ⊆ Cop, and a set of free nodes Vfree ⊆ Cfree, as

explained in Sec. 6.4.2.

Step 6 computes a set, denoted V ′
free, containing possibly additional free nodes.

With the help of nodes in this set, every node in Vop

⋃

Vfree can reach the sink

by a path composed of nodes in Cop

⋃

Vfree

⋃

V ′
free. Initially, V ′

free is empty. We

subsequently add free nodes to the current set V ′
free by iteratively processing each

node x ∈ Vop

⋃

Vfree. In more detail, if Ps,x denotes the best path connecting the

sink to x in G then we add to V ′
free all possible free nodes of Ps,x that are not in

Vfree

⋃

V ′
free. To encourage the inclusion of free nodes with high operating proba-

bilities in the computed set V ′
free, we process the nodes in Vop

⋃

Vfree in decreasing

order of their pconn probabilities. Subsequently, Step 6 adds V ′
free to Vfree.
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Following Step 6, it is possible that some nodes in Vfree are unnecessary for

forming a pathset. Step 7 removes such extra free nodes. This is done by iteratively

deleting a free node from Vfree, and testing whether the remaining nodes form a

pathset. Thus, a superfluous node is removed from Vfree before the next iteration.

Finally, Step 8 returns the computed solution.

6.4.2 Link Capacity Assignment

As mentioned above, we assign to each link e∗ in H∗ that corresponds to a link

H∗2G(e∗) = (x, y) in G, a capacity cap(x, y) ≥ 0. Our goal is to set cap(x, y) so as

to favour the inclusion of node x (and/or y) in the solution Cnew if (a) x contributes

to building a (D,Atarget)-barrier in G, and (b) x is a an operating or free node in

C that has a high probability of reaching the sink node. We have synthesized and

experimented with a number of capacity functions. We present below a function

that has given us the best results.

We start by revising node operation probabilities according to the given input

configuration C. Specifically, for each node x ∈ Cop (or, x ∈ Cfail), we set p(x) =

1 (respectively, p(x) = 0). Next, we note that if we select a node x (operating or

free) in constructing a barrier then there may be an additional cost of using this

node incurred by establishing an operating path from the sink to x. To analyze such

cost, we introduce the following notation.

• Pr(Ps,x): the probability that node x operates and reaches the sink by a

specified path Ps,x. Using the revised node operation probabilities, we have

Pr(Ps,x) =
∏

y∈V (Ps,x)
p(y).

• pconn(x): the highest probability that node x operates and reaches the sink.

More specifically, if Ps,x is the set of all possible (s, x)-paths whose internal

nodes are either operating or free then

pconn(x) = max
Ps,x∈Ps,x

Pr(Ps,x).

As can be seen, pconn(x) represents the best cost of operating node x, and link-

ing it to the sink. If Cnew is the computed solution then this cost appears as a
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multiplicative factor in Pr(Cnew). Thus, it is important to make node selection

decisions based on using optimized costs. We note that the problem of comput-

ing optimal pconn probabilities for free nodes is essentially a single-source shortest

paths problem on the graph G. Thus, all such optimum paths and probabilities

can be computed efficiently. Subsequently, our algorithm assigns to each link e∗ a

capacity:

cap(x, y) = − log(pconn(x) · pconn(y)).

We now exhaust all possible cases of links in H∗. In each case, we explain the

suitability of the above function, and the steps taken to construct sets Vop and Vfree

mentioned in Step 5.

Case 1: pconn(x) · pconn(y) 6= 0 or 1 (so, cap(x, y) 6= ∞, 0). In this case, each node

(x or y) is either operating or free in C. Step 5 adds each such node to Vop (Vfree)

if the node is in Cop (respectively, Cfree). We note that operating the link (x, y) in

G requires operating and linking each of x and y to the sink. This aspect is consid-

ered in Step 6. We also note that the capacity function associates relatively small

cap(x, y) when pconn(x) · pconn(y) assumes relatively large value. Thus, encourag-

ing the use of nodes with high joint operating and reaching the sink probabilities in

the computed (D,Atarget)-barrier.

Case 2: pconn(x) · pconn(y) = 0 (so, cap(x, y) = ∞). This case arises if x (and/or

y) is assigned a failed state in C, or the node is not failed but it can not reach the

sink through any set of operating/free nodes. Here, it is not possible to operate link

(x, y) in G. We set cap(x, y) to a large value, denoted MAXCAP, that is larger

than the sum of all link capacities in Case 1. Step 4 detects the use of any such link

in the computed minimum cut.

Case 3: pconn(x) · pconn(y) = 1 (so, cap(x, y) = 0). This case arises if both x and y

are assigned the operating state in C, and both nodes reach the sink by paths whose

internal nodes are all operating. Here, link (x, y) is ready to be used in a barrier,

and there is no need to include the corresponding link e∗ in the computed minimum
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cut. The capacity function captures this aspect by setting cap(x, y) = 0, so as to

avoid using it. All such links are deleted from H∗ prior to solving the maximum

flow problem.

Figure 6.4: Pathset extension example for the BPTA-REL problem

Example. Fig. 6.4 illustrates an instance of the E2P problem where D has one

entrance side, Atarget = f3, and C = {(9, op), (13, fail)}. All other non-sink

nodes are free in C. In the top right of each node x, we show (p(x), pconn(x)).

The dual graph H∗ has links represented by dashed lines, and nodes represented by

colored squares. We note the following.

• Steps 1 to 3 compute the shown pconn probabilities, and a minimum (fext, ftarget)-

cut E ′
H∗ = {(f4, f7), (f7, f8)}.

• Step 5 sets Vop = {9}, and Vfree = {10, 14}. This follows since link (f4, f7)

in H∗ corresponds to link (x = 9, y = 10) in G (Case 1 applies). Similarly,

link (f7, f8) in H∗ corresponds to link (x = 10, y = 14) in G (Case 1 applies

too).

• Step 6 sets V ′
free = {5}. This setting suffices to connect the sink to each node

in Vop

⋃

Vfree = {9, 10, 14} by a path composed of nodes in Cop

⋃

Vfree

⋃

V ′
free =

{9, 10, 14, 5}, as required. Subsequently, Step 6 extends Vfree to {10, 14, 5}.
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• Step 7 does not modify Vfree. Thus, Cnew = {(10, op), (14, op), (5, op)}

6.4.3 Correctness

Theorem 6.4 Function E2P computes a feasible extension Cnew if and only if such

extension exists.

Proof. We first show that if E2P returns +1 then C
⋃

Cnew is a BPTA-REL path-

set. Here, Step 3 computes a minimum (fext, ftarget)-cut in H∗ whose links are

denoted E ′
H∗ . The set E ′

H∗ corresponds to a set E ′
G of links in G through the H∗2G

relation. Theorems 6.2 ensure that E ′
G, with links joining the subset of nodes in Cop

that can reach the sink in G, form a (D,Atarget)-barrier in G. Thus, if all nodes in

E ′
G operate and reach the sink then any intrusion from the set D of entrance sides

to Atarget can be detected and reported to the sink. Step 4 handles the case where

no links need to be added to E ′
H∗ to form a cut (the case where E ′

H∗ = ∅), and

thus, configuration C is already a pathset. Otherwise, following Step 6, we know

that operating all nodes in Vop

⋃

Vfree guarantees that all nodes in E ′
G operate and

reach the sink. Thus, assigning the operating state to all nodes in Vfree results in a

configuration that extends C to a pathset. Step 7 refines Vfree without violating the

above property, as required.

Next, we show that if configuration C admits an extension Cnew so that C
⋃

Cnew

is a pathset then function E2P returns +1 and a possible solution. To this end,

denote by Vconn the subset of nodes in C
⋃

Cnew where each node operates and

reaches the sink by other nodes in Vconn. By definition, the subgraph induced by

Vconn in G contains a set of links, denoted E ′
G, that forms a (D,Atarget)-barrier.

Nodes in Cnew appear in the input of function E2P as free nodes. So, the func-

tion sees nodes incident to E ′
G as either free nodes, or operating nodes that may

not be able to reach the sink using nodes in Cop. Note that E ′
G has no link (x, y)

that satisfies Case 2 (i.e., cap(x, y) = MAXCAP). The set E ′
G corresponds to a

set of links in H∗, denoted E ′
H∗ , by the G2H∗ relation. Theorem 6.2 ensure that

E ′
H∗ is a (fext, ftarget)-cut in H∗. As noted above, no link in such cut is assigned

the MAXCAP capacity. Deleting links from H∗ (as done in Case 3) preserves the
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property that the resulting graph has a cut that does not use any link of capacity

MAXCAP. The minimum cut computation in Step 3 is guaranteed to find such cut.

Thus, E2P returns +1 and a feasible solution, as required. �

6.5 Extension to a Cutset

Similar to the E2P problem, we define the optimal extension to a cutset (E2C) prob-

lem as follows. Given an instance of the BPTA-REL problem, and a configuration

C, extend C if possible to a cutset C ∪ Cnew so that the occurrence probability

Pr(Cnew) is as high as possible. Thus, building Cnew favours the inclusion of nodes

with high failure probabilities.

Our contribution in this section is function E2C for solving the problem. The

algorithm is not optimal but guarantees to find a feasible solution if one exists. Our

design relies on the following insights:

• We first recall that if C ∪ Cnew is a cutset then, by definition, some links in

EG(C ∪ Cnew) form a (D,Atarget)-breach passage.

• Our strategy in choosing Cnew relies on computing such passage mainly by

solving a shortest path problem on H∗.

In more detail, the function assigns to each link e∗ in H∗ that is derived from

a link (x, y) in G (i.e., H∗2G(e∗) = (x, y)), a distance dist(x, y) ≥ 0. Sec. 6.5.2

presents a particular distance function used for this propose. Roughly speaking,

the utilized function gives a short distance whenever x (and/or y) is perceived to

be highly useful in constructing a (D,Atarget)-breach passage in G. Such short

distance assignment has the effect of giving link e∗ a good chance of being selected

in a shortest (fext, ftarget)-path in graph H∗. Choosing link e∗ in such path results in

function E2C selecting node x (and/or y) for inclusion in constructing the required

breach passage, as desired.

6.5.1 Function E2C

Step 1 constructs graphs H and H∗. Step 2 associates with each link e∗ in H∗

that is derived from a link H∗2G(e∗) = (x, y) in G, a distance dist(x, y) ≥ 0, as
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Algorithm 10: Function E2C(G, p,D,Atarget, C, Cnew)

Input: Instance (G, p,D,Atarget, C) of the E2C problem

Output: Return +1 and a solution Cnew if possible. Else, C is pathset, return

−1.

1 Construct graphs H and H∗.

2 Assign distances:

For each link e∗ in H∗ corresponding to a link H∗2G(e∗) = (x, y) in G,

assign a distance dist(x, y) ≥ 0, as explained in Sec. 6.5.2.

3 Compute shortest path:

Find a shortest (fext, ftarget)-path in H∗. Denote the links of such

shortest path by E ′
H∗ .

4 if (dist(E ′
H∗) == 0) then

set Cnew = ∅; return +1
else if (E ′

H∗ == ∅) then
return −1

end

5 Build initial Vfree set:

Process each link e∗ in the computed shortest path E ′
H∗ (cf. Sec. 6.5.2).

This step gives two sets: Vop ⊆ Cop, and Vfree ⊆ Cfree.

6 Augment Vfree:

Compute a set of additional free nodes V ′
free so that failing all nodes in

Vfree

⋃

V ′
free disconnect all nodes in Vop from the sink. Add V ′

free to

Vfree.

7 Refine Vfree:

Remove from Vfree nodes that are not necessary to form a cutset.

8 Set Cnew = Vfree after assigning them the failed state; return +1

explained in Sec. 6.5.2. Step 3 computes a shortest (fext, ftarget)-path in graph H∗.

We denote the links of such path by E ′
H∗ .

Step 4 handles two special outcomes. If the computed path has zero length (i.e.,

dist(E ′
H∗) = 0) then configuration C is already a cutset. On the other hand, if no

such path exists (i.e., E ′
H∗ = ∅) then C is already a pathset.

Step 5 inspects the computed path E ′
H∗ , and identifies two subsets of nodes: a

set of operating nodes Vop ⊆ Cop, and a set of free nodes Vfree ⊆ Cfree, as explained

in Sec. 6.5.2

Step 6 computes a set, denoted V ′
free, of additional free nodes such that if all

nodes in Cfail

⋃

Vfree

⋃

V ′
free fail then no node in Vop can possibly reach the sink.

Initially, V ′
free is empty. We subsequently add free nodes to V ′

free by iteratively

disconnecting each node x ∈ Vop. To encourage the inclusion of free nodes with
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high failure probabilities in V ′
free, we use the following observation: computing

the best subset of free nodes whose failure disconnects x from the sink in G can

be transformed to computing a minimum capacity cut of a network flow problem

on graph G. In the transformation, capacities are assigned to nodes of G. Any

possible additional free node computed in this step is added to V ′
free. Subsequent

iterations to disconnect the remaining nodes in Vop benefit from nodes currently in

Vfree

⋃

V ′
free. Step 6 then adds V ′

free to Vfree.

Following Step 6, it is possible that some nodes in Vfree are unnecessary for

forming a cutset. Step 7 removes such extra free nodes. This is done by iteratively

deleting a free node from Vfree, and testing whether the remaining nodes form a

cutset. Thus, a superfluous node is removed from the set of free nodes before the

next iteration. Finally, Step 8 returns the computed solution.

6.5.2 Link Distance Assignment

Throughout this section, we assume that e∗ is a link in H∗ that corresponds to a link

H∗2G(e∗) = (x, y) in G. Function E2C assigns to e∗ a distance dist(x, y) ≥ 0.

Our goal is to set such distance so as to favour the inclusion of node x (and/or y) in

the solution Cnew when

(a) x contributes to building a (D,Atarget)-breach passage in G, and

(b) x is a free node in C with relatively high failure probability, or x is an oper-

ating node in C that can be disconnected from the sink by failing some free

nodes of relatively high failure probability.

To serve this purpose, we start by revising node failure probabilities to reflect

the assignments made in the input configuration C. Namely, we set q(x) = 0 if

x ∈ Cop, and q(x) = 1 if x ∈ Cfail. Subsequently, we assign to e∗ the distance:

dist(x, y) = − log(max(q(x), q(y))).

The following cases exhaust all possibilities. In each case, we explain the suit-

ability of the above function, and outline the construction of the two sets Vop and

Vfree (cf. Step 5). Both sets are initially empty.
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Case 1: max(q(x), q(y)) 6= 0, 1 (so, dist(x, y) 6= ∞, 0). In this case at least one

of x and y is free, and neither node is failed. Failing link (x, y) in G requires

failing either x or y. Step 5 selects the node with higher failure probability to

include in Vfree. Here, we note that the distance function associates relatively small

values when max(q(x), q(y)) assumes relatively large values. Thus, encouraging

the use of nodes with higher failure probability in the identified (D,Atarget)-breach

passage.

Case 2: max(q(x), q(y)) = 0 (so, dist(x, y) = ∞). In this case, both x and y

operate in C. We distinguish the following cases.

a) Both x and y reach the sink by nodes in Cop. Here, it is not possible to fail link

(x, y) in G. All such links are deleted from H∗ prior to solving the shortest

path problem.

b) Exactly one of x or y, say y, reaches the sink by nodes in Cop. Failing link

(x, y) in G requires disconnecting the other node (node x) from the sink. Dis-

connecting x incurs a cost incurred by failing possibly additional free nodes

to perform the disconnection. We mark such cases by setting dist(x, y) to a

high value, denoted MAXDIST, that is larger than any distance in Case 1.

Step 5 adds x to Vop.

c) Neither x nor y reaches the sink by nodes in Cop. Failing link (x, y) in G

can be done by disconnecting either node from the sink. We choose either

one of the two nodes, say x. Step 5 adds x to Vop. As in the above case,

disconnecting x incurs additional cost, so we set dist(x, y) = MAXDIST.

Case 3: max(q(x), q(y)) = 1 (so, dist(x, y) = 0). In this case, at least one of x or

y is failed in C. Thus, link (x, y) is already failed in G. No extra cost is incurred by

choosing this link. The distance function captures this aspect by setting dist(x, y) =

0 so as to encourage the shortest path algorithm to choose e∗, as desired.
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Figure 6.5: Cutset extension example for the BPTA-REL problem

Example. Fig. 6.5 illustrates an instance of the E2C problem where D has one

entrance side, Atarget = f3, and C = {(9, fail), (13, op), (14, op), (15, fail)}. All

other non-sink nodes are free in C. Node operating probabilities appear on the top

right. We note the following.

• Steps 1 to 3 identify a shortest (fext, ftarget)-path in H∗: (fext, f7, f4, f5, f6, f3)

on a set E ′
H∗ of links.

• Step 5 sets Vop = {13}, and Vfree = {6, 8, 11}. Node 13 is added to Vop since

link e∗ = (fext, f7) is associated with link (x = 13, y = 14) in G. Case 2.c

applies to link (13, 14) resulting in including either node in Vop. Node 6 is

added to Vfree since link e∗ = (f4, f5) is associated with link (x = 6, y = 10)

in G. Case 1 applies to link (6, 10) where q(6) > q(10). Similar argument

holds for adding nodes 8 and 11 to Vfree.

• Step 6 sets V ′
free = ∅ since failure of nodes Cfail

⋃

Vfree = {9, 15, 6, 8, 11}

disconnect the node in Vop = {13} from the sink. Thus, Vfree = {6, 8, 11}.

• Step 7 does not modify Vfree. Thus, Cnew = {(6, fail), (8, fail), (11, fail)}.

�
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6.5.3 Correctness

Theorem 6.5 Function E2C computes a feasible extension Cnew if and only if such

extension exists.

Proof. We first show that if E2C returns +1 then C
⋃

Cnew is a BPTA-REL cutset.

In such cases, Step 3 computes a (fext, ftarget)-path in H∗ whose links are denoted

E ′
H∗ . The set E ′

H∗ corresponds to a set E ′
G of links in G through the H∗2G()

relation. Theorem 6.3 ensure that E ′
G is a (D,Atarget)-breach passage in G. Thus,

failing all links in E ′
G allows for undetected intrusion path in G. Step 4 handles the

case where each link in E ′
G has zero distance (so, dist(E ′

H∗) = 0). As mentioned in

Case 3, such link is failed in G, and C is already a cutset. Otherwise, following Step

6, we know that failing all nodes in Cfail

⋃

Vfree guarantees that all links in E ′
G fail.

Thus, assigning the failed state to all nodes in Vfree results in a configuration that

extends C to a cutset. Step 7 refines Vfree without violating the above property, as

required.

Next, we show that if configuration C admits an extension Cnew so that C
⋃

Cnew

is a cutset then function E2C returns +1 and a possible solution. Denote by Vbreach

the subset of nodes in C
⋃

Cnew where each node is either failed, or operating but

can not possibly reach the sink due to failed nodes in Cfail

⋃

Vbreach. Each link of G

that is incident to at least one node in Vbreach is failed in G since it allows for unde-

tected, or unreported crossing. Denote such failed links by E ′
G. Since C

⋃

Cnew is

a cutset, it then follows, by definition, that E ′
G forms a (D,Atarget)-breach passage.

Nodes in Cnew appear in the input of function E2C as free nodes. So, the function

sees nodes in Vbreach incident to E ′
G as either free nodes, or operating nodes the do

not reach the sink in the input configuration C. Note that E ′
G has no link (x, y) that

satisfies Case 2.a (i.e., both x and y operate and reach the sink by nodes in Cop).

The set E ′
G corresponds to a set of links in H∗, denoted E ′

H∗ , by the G2H∗ relation.

Theorem 6.3 ensure that E ′
H∗ contains an (fext, ftarget)-path in H∗. Deleting links

from H∗ not in E ′
H∗ (as done in Case 2.a) does not affect such path. The shortest

path computation in Step 3 is guaranteed to find such shortest path in H∗. Thus,
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E2C returns +1 and a feasible solution, as required. �

6.6 Numerical Results

In this section we present some of the obtained results. Our experiments use 3

types of grid networks: grids, d-grids (diagonal grids), and x-grids (doubly diagonal

grids). We use (x, y) coordinates to describe their structure. A W×L grid has W

rows at y = 0, 1, 2, . . . ,W − 1, and L columns at x = 0, 1, 2, . . . , L − 1. A d-grid

adds diagonal links of the form ((x, y), (x − 1, y − 1)) to grids. An x-grid adds

diagonal links of the form ((x− 1, y), (x, y − 1)) to d-grids. We assume the use of

a routing algorithm that can utilize any link.

6.6.1 Exact BPTA-REL solutions

Our algorithms utilize the devised E2P and E2C functions to discard configura-

tions that can not be extended to pathsets (or, cutsets). Thus, allowing for efficient

Rel(G) computations. Table 6.1 presents the number of configurations generated

by the LB to compute exact solutions. For example, a 4 × 5 grid, and a 5 × 5 grid

have been processed in less than 4 minutes on a personal laptop computer. The

computations generated less than 8500 configurations in each case.

Table 6.1: Exact computations for the BPTA-REL problem

W×L Network states Generated configuration

2× 2 23 3

2× 3 25 8

3× 3 28 14

3× 4 211 52

4× 4 215 187

4× 5 219 1078

5× 5 224 8411

6.6.2 Accuracy of LBs and UBs

To examine the gap between the obtained LBs and UBs, we use W ×W grid net-

works, W ∈ [2, 10], with the following parameters: p(x) = 0.7 for all non-sink
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nodes, the sink is at location (0, 0) (bottom left), one entrance side on the top left

side is used, and Atarget is a grid block located at the center of the grid (with top left

corner at (
⌈

W
2

⌉

− 1,
⌈

W
2

⌉

)). Fig. 6.6 shows the obtained results after performing

1000 iterations. As one may expect, the gap increases as the network size increases.

This is due to the increased number of configurations that are not accounted for in

1000 iterations. Our experience in analyzing such gap for other reliability problems

is that the obtained LBs provide more accurate estimates of the exact result than the

obtained UBs. This behaviour is attributed to the existence of pathsets of small size

(which results in higher occurrence probability) than cutsets.
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Figure 6.6: Effect of network size on the obtained bounds of the BPTA-REL prob-

lem

6.6.3 Optimal sink locations

An interesting WSN design problem is to locate the best sink location that maxi-

mizes Rel(G). Our results in this section is based on using LBs obtained by per-

forming 1000 iterations in each case. We experimented with both grid networks and

random networks. We use a 6 × 6 grid (d-grid, or x-grid) with one entrance side

(on the top left), where Atarget is a grid block that lies roughly in the middle of the

grid (with top left corner at coordinates (2, 2)). The sink location is varied on the

diagonal: (0, 0), (1, 1), · · · , (5, 5).

Varying node operating probabilities. Fig. 6.7 shows the results obtained using
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the 6 × 6 grid mentioned above. The best sink location is found to be at location

(3, 3). This is a reasonable outcome as the sink lies midway between Atarget and

the intruder entrance side. Therefore, many barriers can reach the sink using short

paths. In addition, the results also show the positive effect of using more reliable

nodes.
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Figure 6.7: Effect of varying sink location on Rel(G) of the BPTA-REL problem

for different node operating probabilities

Varying network topology. Fig. 6.8 shows the obtained results using grids, d-

grids, and x-grids that are similar to the 6× 6 grid network described above. Here,

p(x) = 0.7 for all non-sink nodes. The results show that the best sink location is still

(3, 3). The obtained reliability from using x-grids is better than grids and d-grids.

The main reason is that x-grids have significantly more small sized pathsets.

Results on a random network. Fig. 6.9 shows a random network consisting of 36

nodes where p(x) = 0.7 for all nodes. The intruder’s entrance side, and Atarget are

shown in the figure. The six candidate sink locations are shown as rectangles. The

obtained results in table 6.2 show that location 2 is the best sink location. At this

location, the sink becomes close to many small sized barriers (e.g., two barriers with

only one link each, and one barrier with only two links). In many such barriers, the

sink participates actively in sensing. This results in many pathsets having a small

total number of nodes each. Thus, many pathsets with high occurrence probabilities

exist. Consequently, the obtained LB assumes relatively larger values.
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for different network topologies

Figure 6.9: A random network instance of the BPTA-REL problem

Table 6.2: Reliability (LB) versus sink location

Sink Location Reliability

1 0.6794

2 0.91

3 0.7

4 0.475

5 0.3848

6 0.637
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6.6.4 Effect of D and Atarget locations

The main objective in this experiment is to study the relationship between the re-

liability and the locations of intruder entrance sides D and the area Atarget. The

network considered in Fig. 6.10 is 6× 6 grid network. The sink lies on the bottom

left of the network. The nodes have operating probabilities equal to 0.7. The in-

truder entrance side is varied over the 20 possible sides of the 6×6 grid. The area

to be protected is also varied to be one of the 25 possible square grid cells.

The obtained results of Fig. 6.11 show the following points:

• The least detectable intruder is the intruder entering from entrance 10 aiming

to reach area 25. This is predictable since this area lies in the border of the

network and only one barrier can detect this intruder also the path to the sink

is long.

• As the distance between the target area and the intruder entrance increases,

the number of possible barriers increases. Therefore, the reliability increases.

• The nearer the intruder entrance to the sink, the shorter the average path

lengths between barriers and the sink node, and the higher is the obtained

reliability.

• The most detectable intruder entrance and protected area are (1,5) because of

the previous 2 points.

6.7 Concluding Remarks

In this chapter, we develop an efficient method for computing lower and upper

bounds for the BPTA-REL problem that takes into account the need to provide

joint detection and reporting of intrusion events. Our method utilizes duality among

planar graphs to compute effective pathsets and cutsets of a given network. Numer-

ical results show the strengths of the devised method, and its use in tackling an

optimum sink placement problem.
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Figure 6.10: A BPTA-REL instance of 6×6 grid network where p(x) = 0.7 for all

non-sink nodes

Figure 6.11: Effect of varying intruder entrance side and Atarget on Rel(G) in 6×6
grid network where p(x) = 0.7 for all non-sink nodes
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Chapter 7

Concluding Remarks

In this thesis, we have investigated a class of WSN reliability problems where the

nodes collaborate to jointly detect and report to a sink node an unauthorized traver-

sal of a geographic area guarded by the network. This class of event detection

problems have received considerable attention in the WSN literature. What distin-

guishes the research work done in the thesis from many other results in the literature

is the focus on quantifying the ability of the network to successfully perform the de-

tection and reporting while taking into consideration the likelihood that any subset

of nodes can fail in carrying the required sensing and/or communication tasks.

To this end, the thesis has formalized a number of probabilistic measures suit-

able for adoption as network reliability measures. The list of formalized problems

is as follows.

1. The EXPO problem (Chapter 3) where an intruder path is given as part of the

input

2. The BPDREL problem (Chapter 4) where intrusion paths are not given in

the input, but the set of possible entry-exit network sides of such paths are

specified in the input

3. The DIR-BPDREL problem (Chapter 5) that extends the BPDREL problem

to networks with directional communication and sensing nodes

4. The BPTA-REL problem (Chapter 6) where an intruder enters the network

from some perimeter point and aims to reach an area of interest (AoI) inside
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the network

Our work on the above problems appear in [18,19,22,24]. In addition, we have

obtained results in [20, 21, 23] (not included in the thesis) on some special cases of

the above problems as follows.

5. In [20], we develop a dynamic programming algorithm that solves the BPTA-REL

problem (that deals with an AoI) exactly on grid networks where the sink is

located at one of the corners.

6. In [21], we develop a dynamic programming algorithm for the BPTA-REL

problem for WSNs deployed as concentric rings with the AoI and the sink

roughly at the center.

7. In [23], we investigate strategies for packing consecutive cutsets (cf., the sec-

tion on bounding techniques in Chapter 1) for the BPDREL problem.

7.1 Future Work

In this section, we propose for future work a number of possible problems and

directions related to the main thrust of the thesis.

Directions Related to WSNs. First, we note that the thesis has identified 4 exten-

sion to a pathset (E2P) problems, and 4 extension to a cutset (E2C) problems. We

have obtained results on the computational complexity of some of these problems

either by reductions from grid networks (a subclass of unit disk graphs (UDGs)),

or arbitrary (non wireless) graphs. UDGs are useful models for idealized wireless

networks with omni-directional antennas. Complexity results that utilize arbitrary

graphs need to be revisited to decide whether the problems remain hard on UDGs.

As well, the complexity of the remaining open problems needs to be settled.

Second, the thesis has devised algorithms for the formulated E2P and E2C op-

timization problems. Not all devised algorithms have shown to have guaranteed

performance measures. It is worthwhile investigating if approximation algorithms
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with bounded approximation ratios can be obtained. Likewise, it is worth develop-

ing effective algorithms for special classes of useful WSN topologies.

Third, we recall from Chapter 1 that work on connectivity-based wired networks

has derived useful lower and upper bounds from well structured sets of pathsets and

cutsets (e.g., structures with the consecutive set property). Such results encourage

developing parallel results for WSNs.

Fourth, the importance of directional WSNs motivates investigating many WSN

reliability problems on this class. In Chapter 5, we pursued this direction for the

BPDREL problem. Similar investigations can be done for the EXPO and the

BPTA-REL problems.

Fifth, we note that our work thus far has used a sensing intensity function where

sensing any point p by a sensor x relies only on the sensor x. Other intensity

functions have also been considered in the literature (e.g., maximum sensor field

intensity, N -closest sensor field intensity, and all-sensor field intensity). Thus, we

propose developing reliability algorithms for different intensity functions under ei-

ther omnidirectional or directional sensing.

Extensions to Systems Related to WSNs. Currently there is a growing interest in

cyber-physical systems (CPS) [32,33,44], and Internet of Things (IoT) architectures

[3, 34, 52].

Cyber-physical systems embed computing and communication capabilities in

many types of physical objects. In [44], the authors describe such systems as phys-

ical and engineered systems whose operations are monitored, coordinated, con-

trolled, and integrated by a computing and communication core. Examples of CPS

include medical devices, transportation vehicles, factory automation systems, build-

ing and environmental control and smart spaces. Compared to the class of WSNs

investigated in the thesis, CPS utilize more feedback and actuation mechanisms

whereas the WSNs considered in the thesis are modelled as open loop systems with

no actuation beyond sending an alarm signal. The existence of feedback and/or

actuation makes the development of tractable useful models to quantify the effect

of component failure more complex. However, the importance of such systems
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motivates work in this direction.

The IoT is defined in [52] as a global infrastructure of sensing, computing,

storage, and networking platforms. In this vision, IoT objects communicate and

interact to provide sensed information and control services for the IoT user applica-

tions through a global data management system (cloud). IoT application domains

share common grounds with CPS application domains. However, IoT applications

rely more on the ability and desirability to collect data from possibly heteroge-

neous systems spread over a possibly large geographical area. From a networking

perspective, an IoT infrastructure spans four layers:

• Layer 1 includes embedded systems and sensors that can be either stationary

or mobile.

• Layer 2 provides connectivity using various types of access networks, net-

working functions implemented at the edge using the network function vir-

tualization (NFV) paradigm, and application logic implemented at the edge

using the fog computing paradigm.

• Layer 3 provides core networking services.

• Layer 4 provides further application logic and business analytics using cloud

computing.

Both quality of information (QoI) and quality of service (QoS) metrics are used by

IoT applications to take decisions and provide feedback to end users, and layer 1

devices.

Currently, research work is being conducted on various design aspects of IoT

systems including identifying useful QoI and QoS metrics for selected IoT appli-

cations, identifying layer 1 resources that can be adaptively managed and reconfig-

ured to satisfy target performance levels, and designing methodologies to manage

and reconfigure the available resources under different operational constraints. In

addition to the above directions, we propose to formalize and seek solutions to

problems that quantify the performance of IoT systems under different scenarios of

component malfunction.
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