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Abstract

Highly parallel VLSI implementations of low-density parity-check (LDPC) block code

decoders have a large number of interconnections, which can result in designs with low

logic density. Bit-serial architectures have been developed that reduce the number of wires

needed. However, they do not fully realize the potential for deeply pipelined serial data

processing.

Digit-online arithmetic allows operations to be performed in a serial, digit-by-digit man-

ner, making it ideal for use in implementing a digit-serial LDPC decoder. Digit-online cir-

cuits for the primitive operations required for an offset min-sum LDPC decoder are simple,

and allow deep pipelining at the digit level. A new hardware architecture for LDPC de-

coding is demonstrated, using redundant notation to allow for most-significant-digit-first

processing of log-likelihood-ration (LLR) messages at all nodes.

We examine the effect of changing the precision of LLRs on the throughput, area and

energy efficiency of bit-parallel and digit-online decoders for the irregular WiMAX rate

3/4A length-1056 code. Both single-frame and frame-interlaced decoding are considered.

To examine post-layout and code size effects, 9-bit bit-parallel and digit-online decoders for

the irregular WiMAX rate 3/4A and rate 5/6 codes are compared for code lengths varying

from 576 to 2304.

Post-layout decoder results are presented for the (2048,1723) 10GBASE-T LDPC code

in a general-purpose 65-nm CMOS technology. The decoder requires a core area of 10.89

mm2 and operates at a clock frequency of 980 MHz. Decoding can be done with a message

precision of 4 or 10 bits. With 4-bit precision, the decoder achieves a coded throughput of

82.8 Gbit/s, 73% higher than the state-of-the-art published decoder. We extend the message

precision of previously published 10GBASE-T decoders from 4-5 bits to 10 bits. In this

10-bit mode we achieve a throughput of 41.8 Gbit/s, only 12% less than the state-of-the-art

4-bit decoder.
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Chapter 1

Introduction

1.1 Motivation

Communications systems must transmit information across noisy channels. As a result,

there is a finite probability that the received data is not identical to the sent data. Since

many applications require the transmission of exact information, error correcting codes are

used to ensure reliable communications without retransmission.

Low-density parity-check (LDPC) codes are a popular class of error correcting codes

because they approach the channel capacity of additive-white-Gaussian-noise (AWGN)

channels while remaining relatively simple to decode. The ease in which they lend them-

selves to highly parallel implementations has resulted in many high-throughput ASIC de-

signs in the literature.

However, practical considerations limit the amount of parallelism that can actually be

achieved. The area efficiency of silicon designs has traditionally decreased with parallelism.

This effect is worse at higher computational precisions where more interconnect wires are

needed.

Using serial communication on chip has shown promise as a method to reduce the

number of wires. It is an area of active research to develop such systems. Current bit-serial

decoders do not achieve fully serial processing as they must buffer full-precision messages

in parallel and reverse the order in which digits arrive (most-significant-bit-first or least-

significant-bit-first) at different nodes.

1



Section 1.2: Thesis Outline and Contributions

1.2 Thesis Outline and Contributions

This thesis presents a new LDPC decoding architecture which performs all calcuations in a

fully digit-serial manner. Using digit-online arithmetic, we can develop a system which pro-

cesses all data in a most-significant-digit-first fashion. Digit-online operations are simple

to implement and can be deeply pipelined. By exploiting the principles of online arith-

metic, we achieve a decoder which does not require parallel storage of any messages during

decoding.

An introduction to LDPC block codes is provided in Chapter 2. Iterative decoding with

belief-propagation algorithms is explained, and existing decoder architectures are exam-

ined. In particular, we explain the shortcomings of these architectures. Hardware imple-

mentations from the literature are compared. Chapter 3 provides an introduction to online

arithmetic, and outlines the operations that are used to implement the serial data process-

ing used in the proposed decoder. We examine the issue of processing order and compare

several redundant notations.

In Chapter 4 we use the principles of online arithmetic to develop a novel approach to

belief propagation that allows serial processing of data using simple calculations. Chapter 5

provides further details of VLSI implementations of the new design using deeply pipelined

logic.

Chapter 6 presents a synthesis study of how the performance of LDPC decoders vary

with operand precision. We look at the throughput, area, and energy efficiency of both bit-

serial and digit-online decoders for single-frame and frame-interlaced decoding. We show

that throughput and area are much less dependent on precision in digit-online decoders than

in bit-parallel decoders.

The effect of code length on post-layout performance is examined in Chapter 7. We

also present post-layout results for a 10GBASE-T LDPC decoder ASIC with a throughputs

of 82.8 Gbit/s at 4-bit message precision and 41.8 Gbit/s at 10-bit message precision. These

results are compared to other published ASICS for the 10GBASE-T LDPC decoder code.

We show that fully parallel digit-online decoders are practical for code lengths of at least

2048.

Chapter 8 concludes the thesis with a summary of new contributions and suggestions

for future improvements to the architecture.
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Chapter 2

Low-Density Parity-Check Codes

2.1 Introduction

Forward error correction involves sending redundant data in the transmission so that the

receiver can detect and repair a limited number of errors. The ability to recognize and

repair errors at the receiver is especially important because it avoids retransmission, which

is often expensive or impractical.

C = B log2

(

1+
S

N

)

(2.1)

Shannon’s Capacity theorem for additive white Gaussian noise (AWGN) channels (2.1)

gives the maximum theoretical capacity C of a noisy channel of bandwidth B, given the

signal power S and noise power N [1]. The ratio S/N is frequently referred to as the signal-

to-noise ratio (SNR), and it is used to make relative comparisons of channel qualities. It fol-

lows directly that, for a given noise, increasing the maximum capacity of a channel requires

either more bandwidth or more transmission power. Practical communication systems must

operate within bandwidth and power limitations. These limitations may either be imposed

by practical considerations (such as the operating frequency of electronics and battery life),

or by regulatory bodies (such as the CRTC and the FCC). Issues such as interference may

also require transmission power to be limited. Within these limitations, it is desirable to

transmit information at the maximum possible information rate while maintaining a low

error rate. The quality of the coding used determines how closely the Shannon limit is

approached.

Better codes generally yield a higher effective channel capacity, subject to the law of di-

minishing returns due to (2.1). However, better codes are usually more complex to process.

For a code to be practical, it must be possible to process it at a high rate (throughput), with

3
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low processing delay (latency), and with reasonable processing power. This is especially

vital in low-power applications where using more power for coding leaves less power for

transmission (reducing the maximum attainable capacity). Thus, increasing the capacity of

a communications system not only requires finding more powerful codes, but also finding

ways to efficiently implement them.

Low-density parity-check (LDPC) codes are popular because they approach the Shan-

non channel capacity while remaining relatively simple to decode. This chapter provides a

brief introduction to LDPC codes, and gives an overview of current decoder implementa-

tions. It also describes limitations of present systems that motivate continued work in the

field.

2.2 LDPC Codes

LDPC codes are a class of forward error correcting codes proposed by Gallager [2]. They

are popular due to their high performance and the simple, parallel structure of their de-

coders.

In this thesis we consider only block codes, which act on a series of discrete pieces of

information, all of equal length. Codes with longer block lengths require more computa-

tional power to decode, but generally result in better error performance. Discussion here

is limited to the case where the data symbols are single bits, but codes that act on larger

symbols also exist.

LDPC codewords consist of K information bits, and N −K check bits (where N is the

code length). The check bits represent constraints on the message bits. If these constraints

are not met, the codeword must contain one or more errors. By using the relationships

between the message bits and check bits, it is possible to reconstruct the intended message

if the number of errors is small enough.

Fig. 2.1 shows an example of the H matrix representation of a code. A code of length

N with M check bits has a code matrix HN,M such that Hx
T = 0 over GF(2) for any valid

codeword x
T . The problem of decoding can be stated as follows: given a received block

of data, we wish to find the codeword that was most likely to have been transmitted. If

maximum-likelihood decoding is used to attempt to simultaneously satisfy all constraints,

the algorithm required to find the optimal solution is NP-hard [3].

Codes can also be represented as a Tanner graph, as in Fig. 2.2 [4]. A Tanner graph

is a bipartite graph made up of two types of nodes: variable nodes and check nodes. Each
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H =
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Figure 2.1: Example H matrix representation of a (3,6) LDPC code with N = 16 and

M = 8.

==

+

== == == == == == ==

+ + + + + + +

Variable-to-check message

Check-to-variable message

N=16

M=8

Variable Nodes

Check Nodes

Figure 2.2: Graphical representation of the (3,6) LDPC code from Fig. 2.1, using N = 16

variable nodes (“=”) and M = 8 parity-check nodes (“+”).

type of node has a simple constraint, which allows us to split the complicated matrix-vector

multiplication constraint into a set of much simpler constraints. Later we show how this

allows us to use simpler decoding algorithms to find the approximate solution. Decoders

using these approximate solutions can approach the error rate of the optimal decoder.

Each edge in the graph represents information about the codeword. For a variable node,

the constraint is that all edges connected to a given node must be equal. They are repre-

sented by nodes with the equals sign. For a check node, the constraint is that the modulo 2

sum (or XOR) of all the edges must be zero. Put another way, the value of any edge must

be equal to the XOR of every other edge connected to the same check node. Check nodes

are represented in the graph by addition signs.

The Tanner graph and the H matrix are closely related. Given a set of N variable nodes

and M check nodes, variable node i is connected to check node j if the entry H j,i contains

a one.
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2.2.1 Classes of LDPC Codes

Variable nodes and check nodes are characterized in terms of their degree, or the number

of connections each node has. For a regular (dv,dc) code, each variable node has degree

dv and each check node has degree dc. The H matrix of a regular LDPC code contains dv

ones in each column and dc ones in each row. Groups, or ensembles, of codes are formed

from all codes having the same variable and check node degrees. The code in Figs. 2.1 and

2.2 is one possible (3,6) code with N = 16.

Irregular codes have nodes of varying degrees [5–7]. Such a structure allows them to

come arbitrarily close to channel capacity, with published codes coming as close as 0.0045

dB to the Shannon limit [7]. They can be characterized by their degree distribution, or the

fraction of nodes that has a given degree [8]. Ensembles of irregular codes contain all codes

having the same degree distribution.

Particular instances of codes are further characterized in terms of the number of variable

nodes N, also known as code length or block size, and the number of check nodes M. Longer

codes generally provide more powerful error correction, thereby more closely approaching

the Shannon limit. However, longer codes require more powerful processing to encode and

decode. As a result, there are practical limits on the code size that can be used.

If there are no linearly dependent check equations (i.e., H is of full rank), there are

M constrained bits and K = N −M bits which can transmit useful information. Any set of

independent bits may be used to send information. If there are linearly dependent check

equations, then K > N −M. The rate of a code is the fraction of the data stream which is

intended to convey information, or K/M. With no linearly dependent check equations, the

code rate is (N−M)/N. It follows that for regular codes with no redundant check equations,

rate can also be expressed in terms of node degrees as 1−dv/dc. A common notations for

instances of codes is (N,K). The code in Fig. 2.2 would therefore be referred to as a (16,8)

code.

2.3 Iterative LDPC Decoding Algorithms

Given the difficulty in implementing a maximum-likelihood algorithm, current decoders

make use of iterative message-passing algorithms to approximately decode LDPC code-

words. Each undirected edge in the Tanner graph can be thought of as the combination of
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two directed edges: one sending messages from the variable node to the check node, and

one sending messages from the check node back to the variable node.

The variable nodes are initialized directly with incoming information from the channel.

Through a series of iterations, the variable and check nodes exchange messages until a set

number of iterations has been completed. Decoders may also stop once all parity constraints

are met (known as early termination). Early termination results in lower energy per decoded

bit and higher throughput since the decoder only runs as many iterations as are needed.

Gallager originally proposed two message-passing algorithms: one that used hard de-

cisions, and one that used soft decisions [2]. Soft decisions are nearly exclusively used

today due to their better error performance, but they are more easily understood if the hard

decision case is first understood.

2.3.1 Hard Decoding

Using hard decisions, the receiver uses a simple threshold to decide whether each incoming

bit is more likely to be a one or a zero. The result of each decision is put in the appropriate

variable node. Each decoding iteration consists of two parts: one where the variable nodes

are evaluating, and one where the check nodes are evaluating. Each node passes a message

corresponding to the value it believes an edge should have. During the variable node update

phase of each iteration, each variable node receives messages from the check nodes and

calculates messages to send back. For each variable node edge, the outgoing message is

what the majority of other edges believes the bit value to be. This is an attempt to satisfy

the equality condition at each variable node by trying to make all edges equal. During the

check node update, each outgoing edge is given the value of the XOR of all other incoming

edges. This attempts to satisfy the parity check conditions.

2.3.2 Sum-Product Decoding

Though hard decisions are conceptually and computationally simple, they ignore the fact

that the receiver often has exploitable information about how likely it is that each bit is

correct. For example, consider a binary phase-shift keying (BPSK) modulator that encodes

a zero as +1 and a one as −1. A hard decision would decide that any positive number

received was intended to be a zero, and any negative number should be a one. However, a

received value of 0.9 is much more likely to have been a zero than a value of 0.1. Soft de-

coding exploits this extra information for better coding gain. Rather than passing messages
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that contain only whether the bit is believed to be a one or a zero, the messages represent

the probability that each bit is a one or a zero. The vector (p0, p1) represents the probability

p0 that the bit is a zero, and the probability p1 that the bit is a one.

It is simple to extend the node constraints to deal with probabilities. For a degree-three

variable node with edges A, B and C, the probability that an edge is one is equal to the

probability that other two edges are both one. The probability that an edge is zero is equal

to the probability that the other two edges are both zero. Hence, each edge should output

the product of the incoming probabilities on the other edges. The product is normalized to

retain p0 + p1 = 1. The variable node probability equations are given in (2.2) and (2.3).

p0A =
p0B p0C

p0B p0C + p1B p1C

(2.2)

p1A =
p1B p1C

p0B p0C + p1B p1C

(2.3)

For a degree-three check node, the 2-input XOR function can be used to derive the

probability function. Edge A is a one if edge B is zero and edge C is one, or if edge B is

one and edge C is zero. Edge A is zero if edge B and C are both zero, or if edge B and C

are both one. This yields equations (2.4) and (2.5) for the check nodes.

p0A = p0B p0C + p1B p1C (2.4)

p1A = p0B p1C + p1B p0C (2.5)

The function for nodes of larger degrees can be derived by splitting them into several

cascaded degree-three nodes. Since p0 + p1 = 1, there is only one degree of freedom and

we can represent messages by a single value. Typically the Log-Likelihood Ratio (LLR) is

used (equation (2.6)). It is simply a measure of relative probability on a logarithmic scale.

λ(p0, p1) = ln(p0/p1) (2.6)

From equations (2.2-2.6), the Sum-Product node update equations (2.7-2.9) can be de-

rived [9–11]. The degree-dv variable node update equation is shown in equation (2.7). λi

represents the ith output of the variable node based on the inputs from the check nodes L j

(for j 6= i). Lchannel is the channel information. To begin decoding, all outputs of a variable

node are initially set to the channel LLR value. When decoding is finished, the channel

information at each variable node is added to all incoming LLRs to generate a final LLR,

8



Section 2.3: Iterative LDPC Decoding Algorithms

λ f inal , which is used to determine the decoded bit value. This is shown in equation (2.8).

For BPSK modulation, the decoded bit is a 1 if λ f inal < 0, and a 0 if λ f inal >= 0.

λi = Lchannel +
dv

∑
j=1
j 6=i

L j (2.7)

λ f inal = Lchannel +
dv

∑
j=1

L j (2.8)

Equation (2.9) shows the Sum-Product check node update equation. Lk represents the

kth output of the check node, λl represents the lth input, and dc represents the node degree.

Lk = 2tanh−1







dc

∏
l=1
l 6=k

tanh

(

λl

2

)






(2.9)

It is apparent that although the variable node message values can be easily calculated,

the transcendental functions in the check node equation make it computationally expensive

to evaluate the check node messages.

Sum-product decoding is optimal as long as each node is processing information from

uncorrelated sources [4]. This is true in cycle-free graphs [3], or where the number of

decoding iterations before convergence is less than half of the minimum cycle length of the

graph [12]. In practice, sum-product decoding is near-optimal on cyclic graphs so long as

the girth is kept large. The use of finite precision calculations introduces quantization noise

which can degrade performance [13]. Some implementations use non-uniform quantization

methods to limit the maximum quantization noise [13, 14].

2.3.3 Min-Sum Decoding

Since the sum-product method is computationally expensive, a simple approximation called

the min-sum algorithm is often used. For a three-input checknode, equation (2.9) can be

re-written as (2.10), where sign(x) is as defined in (2.11) [15].

L2 = sign(λ0)sign(λ1)
(

min(|λ0| , |λ1|)+ ln(1+ e−(|λ0|+|λ1|)− ln(1+ e−||λ0|+|λ1||)
)

(2.10)

sign(x) =

{

+1 if x ≥ 0

−1 if x < 0
(2.11)
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By neglecting the log terms, it is easy to generalize the equation into an approximation

for many inputs (2.12). The minimum magnitude |λmin,k| is taken over all incoming edges

with l 6= k. If messages are represented in sign-magnitude notation, the output sign bit is the

XOR of the input signs for l 6= k. The minimum value of the magnitude bits can be taken to

give |λmin,k|.

Lk = |λmin,k|
dc

∏
l=1
l 6=k

sign(λl) (2.12)

Although the min-sum approximation makes parity check nodes simpler to implement,

it increases the error rate relative to sum-product decoding. Depending on the code rate, it

results in a coding loss of 0.27-1.03 dB, with the higher losses occurring at lower rates [16].

Correction factors can be used to keep the simplicity of min-sum decoding while regaining

most of the coding loss [8, 17]. The min-sum algorithm produces check node LLRs that

have the same sign but a larger magnitude than sum-product [17]. Therefore, min-sum

correction is done by reducing the check node magnitudes either by division or subtraction.

The normalized min-sum algorithm divides each check node LLR by a normalization

factor α > 1 as shown in equation (2.13).

Lk =
|λmin,k|

α

dc

∏
l=1
l 6=k

sign(λl) (2.13)

Offset min-sum decoding subtracts a constant correction factor β from the minimum

magnitude in the check node [17]. If the minimum magnitude is less than the offset, zero is

output to prevent flipping the sign. Equation (2.14) summarizes the operation of the offset

min-sum check node.

Lk = max(|λmin,k|−β,0)
dc

∏
l=1
l 6=k

sign (λl) (2.14)

The one-step and two-step degree-matched check node equations are presented in [8].

The one-step degree-matched approximation, shown in equation (2.15), involves subtract-

ing a constant value if the minimum magnitude of the check node inputs is greater than

a certain threshold. The two-step degree-matched method is considerably more complex,

requiring, among other things, the computation of more minimum values.
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Lk =































(

|λmin,k|−
ln(dc −1)

4

) dc

∏
l=1
l 6=k

sign (λl) , if |λmin,k| ≥
3ln(dc −1)

8

|λmin,k|
dc

∏
l=1
l 6=k

sign(λl) , otherwise

(2.15)

The error results in [17] show that normalized min-sum and offset min-sum have similar

error performance and, with the optimal correction factors, can perform within 0.1 dB of

sum-product decoding. In [18] it is shown that offset min-sum outperforms sum-product

decoding for the regular (2048,1723) 10GBASE-T LDPC code. A discussion in [8] shows

that for regular codes there is little error performance difference between any of the four

corrections mentioned. For irregular codes, there is advantage to the one-step and two-step

degree-matched corrections since they apply different correction factors at check nodes of

different degrees.

A further approximation to the min-sum algorithm involves replacing the extrinsic min-

imum function with a global minimum [19]. This simplification decreases the complexity

of the check nodes by only requiring one minimum value to be found at each check node.

An additional correction term may be applied to limit the performance loss [19].

2.4 LDPC Decoder Implementations

Fully parallel decoders are implemented by directly instantiating the Tanner graph in hard-

ware. That is, each node in the graph corresponds directly to a physical component in

hardware. Each edge in the graph corresponds to interconnect wiring between components.

Such an approach is advantageous because it allows for largely parallel computation. Mas-

sively parallel computation is necessary to achieve the high throughput demanded by high

performance applications [20]. Table 2.1 shows some current and proposed standards incor-

porating LDPC codes. Standards for 40 and 100 Gbit/s Ethernet have been approved using

the same LDPC matrix as the 10GBASE-T code, continuing to raise the throughput targets

for LDPC decoders. Likewise, the WirelessMAN standard has increased the throughput

demands to over 1 Gbit/s from WiMAX’s 100 Mbit/s.

Because of the large number of graph edges for larger codes, and the random nature

of LDPC matrices, wiring overhead can consume a significant area of a realized system

[12,18,21,22]. This is compounded in digital systems where each message is represented by

11



Section 2.4: LDPC Decoder Implementations

Standard Code Length Code Rate Throughput Requirement

10GBASE-T 2048 bits 84% 6.67 Gbit/s

40 Gb/s Ethernet 2048 bits 84% 27 Gbit/s

100 Gb/s Ethernet 2048 bits 84% 67 Gbit/s

WiMAX 576-2304 bits 1/2, 2/3, 3/4, 5/6 100 Mbit/s

WirelessMAN 576-2304 bits 1/2, 2/3, 3/4, 5/6 1+ Gbit/s

Table 2.1: Current and proposed standards incorporating LDPC codes

several bits, so each graph connection may be realized with multiple wires to pass all bits of

the message in parallel (known as bit-parallel message-passing). It is reported in both [18]

and [22] that as the parallelism of a bit-parallel message-passing decoder increases, the

wiring overhead increases. Thus the goal of a high decoding throughput is at odds with

the goal of a high logic density. In [12] it was reported that the size of a fully parallel

decoder was determined by wiring congestion and not logic area. Besides the obvious cost

of the inefficient use of silicon area, wiring delays become a limiting factor in operating

speeds [20].

These limitations have lead to the design of structured codes that are suitable for par-

tially parallel decoding [14,18,22–24]. The variable nodes and check nodes are grouped in

a way that a subset of them can be updated per cycle rather than all of them. This requires

the H matrix to be made up of square sub-matrices that have only a single one in any given

row or column [25]. In other words, each sub-matrix is a permutation of an identity matrix.

In many cases this permutation is as simple as right-shifting all rows mod the width of the

sub-matrix [26]. Partially parallel decoders are smaller than fully parallel decoders, but

have correspondingly lower throughputs [25]. Since they have fewer computation elements

than nodes in the code, the control logic is more complex than fully parallel decoders. For

a given throughput, higher parallelism results in a better power efficiency because the more

parallel design can operate at a lower supply voltage [27].

Other approaches to limit the number of wires, such as message broadcasting [21] and

non-uniform quantization schemes [13,14], are applicable to both partially and fully parallel

decoders. Using serial communication to pass messages in a bit-serial manner has also

shown promise as a method to reduce the number of interconnect wires in LDPC decoders

[19, 27, 28]. We discuss this in detail in Section 2.4.1.

There has also been work in creating new decoding algorithms that have reduced routing

congestion at the cost of coding gain. Stochastic decoding algorithms require fewer wires

than bit-parallel min-sum or sum-product decoding but do not get as large of a coding gain
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[29,30]. A 4-bit offset min-sum decoder outperforms a stochastic decoder by approximately

0.4 dB for the (2048,1723) 10GBASE-T LDPC code [30]. Split-Row Threshold decoding

is another alternate algorithm that improves routing at the cost of 0.2-0.3 dB of coding

gain [25].

2.4.1 Bit-Serial Implementations

Recently, there has been an interest in digital systems that transfer each message serially

across single wires [19, 27, 28]. While this approach has reduced wiring complexity, it

creates new challenges to processing messages with low latency.

If the messages are binary encoded and sent most-significant-bit (MSB) first, the check

node can evaluate the minimum function bit-by-bit as the messages are being received.

However, serial addition is most efficiently done LSB-first. Each sum bit can be output as

the messages come in, and any carry bits can be delayed and added in to the next set of

input bits.

Taken alone, both operations are easy to implement with simple hardware while pro-

viding excellent performance. In a full system, continuous processing of messages is only

possible if the variable and check nodes process the bits in the same order. As a result, it

becomes necessary to add additional complexity to the system to resolve this conflict. Cur-

rently, this involves deserializing messages and performing parallel operations or reversing

the order of bits. As a result, some hardware is only in use for only a small portion of the

time.

Adding two q-bit two’s complement numbers MSB-first or finding their minimum least-

significant-bit (LSB) first requires at least q cycles [31]. Thus performing MSB-first addi-

tion or LSB-first minimum on two’s complement operands requires no fewer cycles than

buffering the operands.

In [19] and [28], bits arriving at the variable nodes were buffered and then added in

parallel. While this allowed for a higher throughput with their design, parallel adders are

more complex than serial adders. If the bit order were consistent, the serial adders could be

pipelined to decrease the critical path. This would allow for increased operating frequencies

while keeping the hardware efficiency.

While such bit-serial systems reduce wiring complexity, they suffer from relatively poor

throughput because for q-bit messages, each set of nodes takes q cycles to produce a result,

during which time the other set of nodes remains idle. Each decoding iteration then takes at
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Darabiha Onizawa Brack Z. Zhang Ueng

et al. [27] et al. [32] et al. [33] et al. [18] et al. [22]

Technology (nm) 90 90 65 65 90

Code (2048,1723) (1024,512) (9600,7200) (2048,1723) Multiple

Degrees (6,32) (3,6) (6,32)

Parallelism Full Full Partial Partial Partial

LLR Precision (bits) 4 41 6 4 5

Max. Iterations 8 10 8 8

Die Area (mm2) ∼23.1 6.67

Core Area (mm2) 9.82 5.01 0.52 5.35 4.41

Clock Frequency (MHz) 250 400 500 700 100 303

Info. Throughput (Mb/s) 13461 1600 1088 40130 6670 4080

Operating Voltage (V) 1.2 0.7

Power (mW) 2800 144 855

E/b (pJ/bit) 59 22 176

TAR (Mb/s·mm2) 1374 319 2158 7501 1049 925

Scaled E/b (pJ/bit) 59 48

Scaled TAR (Mb/s·mm2) 3646 848 2158 7501 3528

1 Non-uniform quantization
2 Synthesis result

Table 2.2: Comparison of sub-100nm LDPC decoder ASICs. Scaled E/b and TAR values

are given for estimated performance in a 65-nm process.

least 2q cycles to complete. It is, however, possible to process two codewords concurrently.

While the variable nodes are processing the first codeword, the check nodes are processing

the second. This doubles the throughput [19, 27, 28].

It is important to note that bit-serial systems allow the system precision to be increased

without increasing interconnect requirements. However, increasing the number of bits in a

message increases the number of cycles required to transmit a message, decreasing through-

put and increasing latency.

2.5 LDPC Decoder ASIC Comparison

There are many possible metrics that can be used to compare LDPC decoder ASICs. Since

the code size and degree of parallelism greatly affect throughput, it is often normalized with

respect to area. This is sometimes called the throughput/area ratio (TAR). Some authors

choose to normalize throughput with respect to the number of decoding iterations as well

as area. Many decoders use early-termination, so unless the average number of iterations

is known, this metric cannot be applied. The energy per decoded bit (E/b) is another

important metric as it compares how efficiently decoders use power. Although both power

and E/b are SNR-dependent, few authors report the SNR at which power was measured.

Since early-termination makes throughput SNR-dependent, failing to report the SNR at
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Darabiha Lin Shih Shih Gunnam

et al. [27] et al. [34] et al. [35] et al. [36] et al. [37]

Technology (nm) 130 130 130 130 130

Code (660,480) (1200,720) (1944,972) Multiple (2082,1041)

Degrees (4,15) (3,6)

Parallelism Full Partial Partial Partial Full

LLR Precision (bits) 4 6 5

Max. Iterations 15 8 8 8 15

Die Area (mm2) 9 13.5 7.39 8.29 5.29

Core Area (mm2) 7.3 10.24 3.88 4.45

Clock Frequency (MHz) 300 59 111 83.3 100

Info. Throughput (Mb/s) 2440 480 3552 125 111 2300

Operating Voltage (V) 1.2 0.6 1.2 1.2 1.2

Power (mW) 1408 72 268 76 54

E/b (pJ/bit) 577 150 75 608 486

TAR (Mb/s·mm2) 334 66 347 17 24.9 434.81

Scaled E/b (pJ/bit) 36 5 38 30

Scaled TAR (Mb/s·mm2) 2674 2775 258 200 34781

1 Per total area

Table 2.3: Comparison of 130-nm LDPC decoder ASICs. Scaled E/b and TAR values are

given for estimated performance in a 65-nm process.

which testing was done can make it difficult to perform a fairly compare throughput and

TAR values.

Comparison of decoder implementation is further complicated when attempting to com-

pare across fabrication generations. Here we first compare decoders of the same CMOS

feature size, and then we use first-order scaling approximations to compare decoders across

generations. Where core areas are available, TAR is reported per core area rather than die

area.

To make a comparison of the best LDPC decoders across fabrication generations, we

use simplified scaling models. Choosing 65 nm as an arbitrary technology to scale to, we

define a scaling factor s = λ/65 for each other technology, where λ is the minimum feature

size. Using the scaling rules in [39], we define scaling factors for clock frequency (and

hence throughput), s f = s, and area, sa = 1/s2. By assuming that power dissipation is

dominated by the switching capacitance in wires, power scales with sp = 1/s3. Because

the scaling rules contain assumptions about how the supply voltage scales, we do not scale

separately with respect to supply voltage. Results that were obtained at a lowered supply

voltage are also not scaled. From these scaling factors we can see that TAR scales as s3 and

E/b scales as 1/s4.
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Section 2.5: LDPC Decoder ASIC Comparison

Blanksby Lin Sha Brandon C. Zhang

et al. [12] et al. [34] et al. [38] et al. [28] et al. [14]

Technology (nm) 160 180 180 180 180

Code (1024,512) (1200,720) (8192,7168) (256,128) (8192,7168)

Degrees (4,32) (3,6) (4,32)

Parallelism Full Partial Partial Full Partial

LLR Precision (bits) 4 6 6 4 41

Max. Iterations 64 8 15 32 16

Die Area (mm2) 52.5 25 16.8 10.7 13.1

Core Area (mm2) ∼38.4 21.23 11.3 6.96

Clock Frequency (MHz) 64 317 250 290

Info. Throughput (Mb/s) 500 1998 4463 250 3150

Operating Voltage (V) 1.5 1.8 1.8 1.8

Power (mW) 690 644 1260

E/b (pJ/bit) 1380 322 7560

TAR (Mb/s·mm2) 13 94 395 36 2412

Scaled E/b (pJ/bit) 38 5 129

Scaled TAR (Mb/s·mm2) 194 1999 8386 765 34782

1 Non-uniform quantization
2 Per total area

Table 2.4: Comparison of 160-180-nm LDPC decoder ASICs. Scaled E/b and TAR values

are given for estimated performance in a 65-nm process.

Tables 2.2-2.4 compare the unscaled performance of some recent decoders. The esti-

mated performance in a 65-nm process is also given. The decoders in [28] and [27] are

bit-serial implementations and all others are bit-parallel.

Table 2.5 shows the scaled performance metrics of the LDPC decoders with the best

TAR and E/b performance from their original process. Since [34] fabricated the same de-

coder design in both 130 nm and 180 nm, we can look at which metrics scale most accu-

rately. Area, power, and E/b scale quite well. Scaling seems to underestimate the throughput

and therefore TAR of decoders.

Table 2.6 shows the scaled results for the bit-serial decoders. Even after scaling, the

bit-serial implementation of the (2048,1723) in [27] cannot match the throughput of the

bit-parallel decoder in [18]. The E/b of the (660,480) code in [27] is promising since it is

lower than that of [18], and similar to many of the other scaled E/b ratios (not shown).

Overall, the decoders in [34] are by far the most energy efficient, while the decoders

in [18] and [38] have the best TARs.

Fig. 2.3 shows a scatter plot of throughput/area vs. E/b performance for the LDPC

decoders we have looked at.
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Z. Zhang Lin Lin Gunnam Sha

et al. [18] et al. [34] et al. [34] et al. [37] et al. [38]

Original Tech. (nm) 65 130 180 130 180

Code (2048,1723) (1200,720) (1200,720) (2082,1041) (8192,7168)

Degrees (6,32) (3,6) (4,32)

Parallelism Partial Partial Partial Full Partial

LLR Precision (bits) 4 6 6 6

Max. Iterations 8 8 8 15 15

Die Area (mm2) 6.67 3.38 3.26 1.32 2.19

Core Area (mm2) 5.35 2.56 2.77 1.47

Clock Frequency (MHz) 700 200 878

Info. Throughput (Mb/s) 40130 7104 5533 4600 12358

Power (mW) 2800 33.5 30.33

Scaled E/b (pJ/bit) 58.7 4.72 5.48

Scaled TAR (Mb/s·mm2) 7501 2775 1999 34781 8386

1 Per total area

Table 2.5: Comparison of bit-parallel LDPC decoder ASICs scaled to 65 nm

2.6 Summary

This chapter has introduced LDPC codes as a class of error control code that can closely

approach the Shannon channel capacity. Various message-passing algorithms have been

noted.

The drawbacks of parallel message-passing have been noted, and bit-serial decoders

have been shown as one approach to reduce wiring density. They have the important prop-

erty of having an interconnect complexity that is independent of the precision of the num-

bers used in calculations. However, existing bit-serial decoders have several important

limitations and have not yet met the performance bit-parallel implementations.

We continue to a discussion of digit-online computation.
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Section 2.6: Summary

Darabiha Darabiha Brandon

et al. [27] et al. [27] et al. [28]

Original Tech. (nm) 90 130 180

Code (2048,1723) (660,480) (256,128)

Degrees (6,32) (4,32) (3,6)

Parallelism Full Full Full

LLR Precision (bits) 4 4 4

Max. Iterations 8 15 32

Die Area (mm2) 2.25 1.41

Core Area (mm2) 5.111 1.83 0.91

Clock Frequency (MHz) 346 600 692

Info. Throughput (Mb/s) 18638 4880 692

Power (mW) 176 59

Scaled E/b (pJ/bit) 36 128

Scaled TAR (Mb/s·mm2) 3646 2673 765

1 Synthesis result

Table 2.6: Comparison of bit-serial LDPC decoder ASICs scaled to 65 nm
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Figure 2.3: Throughput/area vs. E/b of published LDPC block code decoders with notable

results highlighted. E/b and TAR values are given for estimated performance in a 65-nm

process.
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Chapter 3

MSD-First Digit-Online Arithmetic

3.1 Introduction

To build a fast LDPC decoder that uses serial message passing and serial data processing

(which we refer to as a digit-online LDPC decoder), each output digit of any variable or

check node should be calculated as independently as possible of the other output digits.

Additionally, it is desirable that the output digits can be generated after receiving as few in-

put digits as possible to minimize latency. These characteristics allow for a deeply pipelined

system with minimum storage requirements and latency. Previous bit-serial LDPC decoders

have not fully realized these pipeline goals and must buffer full-precision operands in par-

allel in order to reverse the bit order or perform bit-parallel arithmetic [19, 27, 28].

Our discussion of digit-online arithmetic is motivated by the operations required to

implement a min-sum LDPC block code decoder. Variable nodes require the addition of

inputs to implement equation (2.7). To implement equation (2.12), the check nodes must

determine the sign and magnitude of inputs, select the minimum of two values (compare-

select1), and multiply magnitudes by signs. It is important that our architecture supports

correction factors to make up the error performance difference between min-sum and sum-

product decoding. Therefore, division or conditional subtraction will also be required [8].

We show in Section 3.3 that LSB-first digit-serial processing is well-suited to addition,

but not comparison. MSB-first bit-serial comparison can be done efficiently, but addition

cannot because the carry values are not calculated until after they are needed. As we see in

Sections 3.2 and 3.3, if we expand our representation from bits to generalized digits we are

1In this thesis we define compare-select as an operation that takes two input operands, compares them, and

selects the minimum or maximum of the two.
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Section 3.1: Introduction

Representation MSD-first LSD-first

Non-redundant (bits) > +
Redundant (digits) +,> +

Table 3.1: Operations which are possible using MSD-first or LSD-first processing and

redundant or non-redundant notation [40]. Addition and subtraction are represented by +,

while compare-select is represented by >.

able to do most-significant-digit (MSD) first addition while also being able to do MSD-first

comparison. Table 3.1 summarizes these results.

An online algorithm is one that can process inputs piece-by-piece without having the

full set of inputs available. In contrast, an offline algorithm has all inputs available to work

with at once. Digit-online arithmetic allows operations to be performed in a serial, digit-

by-digit manner [41] making it ideal for use in implementing a digit-serial LDPC decoder.

By definition, a digit-online operation has a processing latency in digits that is small and

fixed [31, 41].

Formally speaking, an operation is digit-online if after knowing the i most significant

digits we can produce the i− δ most significant digits of the result. The initial delay δ

represents the number of digits of processing latency, where δ is less than the p digits of

precision of the system [31, 41]. We will refer to δ or initial delay rather than latency to

avoid confusion with the other meanings of latency.

In fully pipelined digit-online computations, each operation takes in a new set of input

digits per clock cycle and outputs a new set of output digits per clock cycle. Thus the

latency (in time) of an operation is very closely related to the initial delay (in digits). For

a single digit-online operation the total number of clock cycles required to produce a full

result is p+ δ. This is because p cycles are required to introduce all the input digits, and

because there is no output for the first p− δ cycles, so an additional δ cycles are required

to finish computing output digits. Subsequent operations can be overlapped to reduce the

total system delay. The total number of clock cycles required for two sequential digit-online

operations having initial delays δA and δB is only p+δA+δB. This concept is illustrated in

Fig. 3.1. Operations that are performed with the minimum possible initial delay may have

combinational paths from input to output. If pipelining is added to split these paths, each

register adds δr = 1 to the total initial delay.

Online arithmetic usually implies that the digits are processed from most-significant-

digit (MSD) to least-significant-digit (LSD). We will justify this choice by showing that
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Section 3.2: Redundant Notations

Ti−→me(cycles)

Input digits ↓ 0 1 2 3 4 5 6 7 · · · p+1 p+2 p+3

x0 A0 A1 B0 B1 z0

x1 A0 A1 B0 B1 z1

x2 A0 A1 B0 B1 z2

x3 A0 A1 B0 B1 z3

...
...

...
...

...
. . .

xp−3 · · · zp−3

xp−2 · · · B1 zp−2

xp−1 B0 B1 zp−1

Figure 3.1: Pipeline diagram of two successive digit-online operations A and B with initial

delays δA = 2 and δB = 2. The pipeline stages are labeled A0,A1,B0 and B1. Input X has

p digits. Output digits zi are shown in the cycle they are produced. No output digits are

produced for cycles 0 to δ−1 = 3; the p output digits z0 to zp−1 are produced in cycles

δA+δB = 4 to δA+δB+p−1 = p+3.

processing the digits from MSD to LSD is required to do compare-select in a digit-online

manner. We assume that all numeric values are integers in this discussion, with the un-

derstanding that using fixed-point numbers does not require changes to any circuits for the

operations we require.

As we have alluded to, some operations cannot be performed in an MSD-to-LSD man-

ner if the operands are represented in a non-redundant number system such as two’s com-

plement binary. Section 3.2 introduces redundant number systems. Section 3.3 discusses

which operations can be performed in a digit-online method. Circuits from the literature

to perform these operations are examined, and two new circuits (figs. 3.7 and 3.9) are pre-

sented. Since any digit-online system will likely need to interface with systems that use

conventional binary notation, we cover conversion between redundant and non-redundant

forms in Section 3.4. We conclude in Section 3.5.

3.2 Redundant Notations

Positional number systems represent numbers as a string of digits. Each digit has a value

and is weighted by its position. The sum of the weighted digits from the entire string is the

value the number represents. For example, a p-digit unsigned base 10 number is usually

represented with the digits di ∈ {0,1,2,3,4,5,6,7,8,9} and each digit is weighted by a

factor 10i, where i is the position of the digit within the number starting with 0 at the least
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Section 3.2: Redundant Notations

ap−1 ap−2 ... ai ai−1 ... a1 a0

+ bp−1 bp−2 ... bi bi−1 ... b1 b0

sp−1 sp−2 ... si si−1 ... s1 s0

Figure 3.2: Addition of p-digit numbers A and B with result S. It is assumed that there is

no carry-out from the addition so that S is also p digits.

sp−1

dp−1 fp−1ep−1

FA
co

sp−2cp−1

dp−2 fp−2ep−2

FA
co

...

sici+1

di fiei

FA
co

...

s1c2

e1

co

s0c1

e0

co
FA FA

d1 f1 d0 f0

Figure 3.3: Carry-save addition of three p-bit binary numbers D, E and F with resultant

sum vector S and carry vector C. (D+E +F) = (S+C).

significant digit, and ending with p−1 at the most significant digit. Since no value can be

represented by more than one string of digits, this is a non-redundant notation.

Using non-redundant number systems, MSD first online addition is impossible [40,42].

Consider adding two p-digit numbers A and B (zero-padded if necessary) to get a sum S, as

shown in Fig. 3.2 (for now we assume that there is no carry out from the addition so that the

result is also p digits). Upper-case A represents the full precision vector, while lower-case

ai represents the ith digit of the number A. At any digit position i, the value and the sum

digit si and the carry digit to position i+1 depends not only on the digits ai and bi, but also

on the carry in from the addition of ai−1+bi−1. That carry in depends on the carry out from

the addition of ai−2 +ai−2, and so on. The result is that the sum digit si cannot necessarily

be determined until all digits ai through a0 and bi through b0 are known. This means that

if we start by adding the MSDs ap−1 and bp−1, we need to wait p cycles before we can

produce the MSD of the output, which violates our assumption that our initial delay δ is

much less than the precision p. However, using redundant number systems we can perform

arithmetic where there is limited carry propagation.

Carry-save notation is a well-known redundant number system that allows the addition

of binary numbers without carry propagation. Consider adding three p-bit binary integers

D, E , and F in non-redundant unsigned-binary notation. We assume that overflow does not

occur and that we can do not need to propagate the carry out from dp−1 + ep−1 + fp−1. For

each i, the bits di, ei and fi are input to a full adder to generate a sum bit and a carry bit

as shown in Fig. 3.3. The sum bits are concatenated to form a p bit vector S, and (after

22



Section 3.2: Redundant Notations

ignoring the (p−1)th carry bit) the carry bits are concatenated to form a (p−1)-bit vector

C′. C′ is shifted left by one position to give C such that every ci has the same weight as the

corresponding si (c0 is set to zero).

We now have two conventional binary numbers S and C such that S+C is the result

of our addition. If we wish to get a conventional binary result, we need only use a carry

propagate adder to add S and C. Because we have not yet propagated the carries, the addition

of any bit can be done independently of all other bits. Addition could be done in an MSD-

first, LSD-first, or fully parallel manner. For parallel addition, the propagation delay is

equal to the propagation delay of one full adder, regardless of the number of bits the input

values have. Because of this, carry-save adders are popular to accumulate intermediate

results in high-speed circuits, and only one expensive carry-propagate addition is needed to

output the final result.

Since each bit xi and yi is in the set {0,1}, the sum at any position belongs to the set

D = {0,1,2}. By selecting D as our set of digits, we can write any carry-save number as

a string of single digits. The weight of any digit j is 2 j. Since the digit 2 represents a

bit position with a carry-out, we now no longer have unique representations of numbers.

For example, 10 = 02, since 1 · 21 = 2 · 20. Long carry chains are also possible, such as

100000 = 011112. Because of this, we cannot convert from carry-save to binary notation in

a digit-online fashion. Additionally, if we allow for two’s complement numbers, the sign of

a number in carry-save notation is not guaranteed to be known until all the digits are known.

Signed-digit representations were introduced in [42] as redundant number systems that

also allow MSD-to-LSD addition of numbers. Suppose that instead of choosing a set of

digits which were all positive, we allowed for negative digits. Consider the set of signed-

binary digits {1̄,0,1}, where 1̄ represents the value −1. In the new system, the numbers

11̄ = 01, since the digit 1̄ borrows from the position before it. The sign of the number is the

sign of the most significant non-zero digit, since even if all other digits have the opposite

sign their magnitude is not large enough to flip the sign [40,42]. As a result, there is still no

upper bound on δ for sign detection since the sign remains unknown as long as the digits

examined are zero. The absolute value of a number may still be calculated in a digit-online

manner. If the first non-zero digit is negative, simply negate all digits. The ease of negating

signed-binary numbers makes them preferable to two’s complement carry-save notation,

which would have a larger initial delay of δ = 2 for absolute value and negation operations.
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Section 3.3: Digit-Online Operations

Operation LSD-First MSD-First

Add/Subtract Yes Yes

Compare-select No Yes

Equality/Zero Detection No No

Multiplication No Yes

Division No Yes

Negation Yes Yes

Absolute Value No Yes

Sign Detection No No

Table 3.2: Operations which can be performed on signed-digit operands in a digit-serial

fashion with fixed initial delay less than the number of digits in the operands [40].

This additional delay comes from the addition that is required to negate two’s-complement

numbers.

We show in Section 3.3.1 that the addition of two signed-binary numbers cannot be

performed with an initial delay of less than δ = 2. However, if we use the set of signed

base-2b numbers (b > 1) we can reduce δ to 1. Using a larger radix allows more informa-

tion to be processed at once, but requires more complex logic and more communications

wires. Signed-base-4 is common in the literature to allow for δ = 1 addition with minimally

complex hardware [40].

Signed-binary numbers require two bits-per-digit for storage. Signed-base-4 numbers

require three bits-per-digit, giving them a lower relative storage overhead. However, the

purpose of using serial processing in an LDPC decoder is to reduce the number of parallel

wires between nodes. Signed-binary not only requires fewer wires, but less complicated

logic for the arithmetic nodes. The focus of this chapter is on signed-binary systems, though

signed-base-4 circuits will be discussed briefly for comparison.

In order to develop logic-level circuits, we must specify a method of encoding signed-

binary digits into binary bits. The encoding specified in [43] is used. For a signed-binary

digit d, each digit is encoded as two bits: d+ and d−. The coding is summarized by equation

(3.1).

d = d+−d− (3.1)

3.3 Digit-Online Operations

Assuming we are using a set of signed base-2b digits, we can now examine which oper-

ations are possible to do in an online fashion. Table 3.2 shows an overview of common
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Section 3.3: Digit-Online Operations

operations. Addition can be done LSD-first using circuits analogous to the well-known

bit-serial adder, or MSD first using the circuits explained in Section 3.3.1. Finding the

minimum or maximum of two numbers cannot be done LSD-first without an initial delay

equal to the precision [40], but we show MSD first comparison in Section 3.3.2. Note that

zero detection or equality testing cannot be done in either direction without an initial delay

equal to the precision since these operations require that all bits be tested before generating

a result [40]. Multiplication and division are covered in Section 3.3.3. Multiplication must

be done MSD first if the output is to have the same precision as the input operands [40],

and division must be done MSD-first [43]. Negation and multiplication by {+1,−1} can

be done simply in either direction. While the absolute value of a number can be computed

in an online fashion, there is no guarantee at which point the sign of the number will be

known. Determining the sign and magnitude of inputs is discussed in Section 3.3.4.

We show in Section 4.3 that a digit-online min-sum check node can still be designed

even though sign detection is not strictly speaking a digit-online operation. All other op-

erations to implement a min-sum LDPC decoder can be done in a digit-online manner if

MSD-first processing is used. Since division and multiplication are also possible, normal-

ized min-sum processing can be done by implementing equation (2.13) directly, or by pre-

computing 1/α and using it as a multiplicative correction factor. Offset min-sum (equation

(2.14)) can be done by subtracting the offset β and then using a compare-select module to

replace it with zero if the result is negative. One-step and two-step degree-matched cor-

rection, however, are not possible to do in a digit-online manner because doing subtraction

conditional on a threshold cannot be digit-online [40].

We now look at the individual operations we need to implement. In describing digit-

online operations, we use the convention that the output zi is the output digit generated at the

ith clock cycle, and x j are the input digits where j≥i. Thus if a circuit takes (for example)

an input xi+2, the initial delay δ must be at least two. Any other intermediate values given

the subscript i have the same digit weight as the output.

3.3.1 Addition

We want our MSD-first adder to produce only one output digit at a time, with no carry-out.

To accomplish this, addition is split into two stages (Fig. 3.4) [40, 42]. First, two digits are

added to generate an intermediate sum and a carry digit. This carry digit may be positive

or negative. The final stage adds the carry digit to the previous sum digit to generate one
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Intermediate
Addition

Final
Addition

Delay
Register

xi+1

yi+1

ci

si+1 si

zi

Figure 3.4: Two-stage addition process of signed-base-4 digit-online addition Z = X +Y .

The outputs of the intermediate addition stage are given in Table 3.3. The final addition is

a simple addition of two numbers whose sum never requires a carry.

xi+1 + yi+1 ci+1 si+1

−6 1̄ 2̄

−5 1̄ 1̄

−4 1̄ 0

−3 1̄ 1

−2 0 2̄

−1 0 1̄

0 0 0

1 0 1

2 0 2

3 1 1̄

4 1 0

5 1 1

6 1 2

Table 3.3: Outputs of the intermediate addition stage in a digit-online signed-base-4 adder

from Fig. 3.4.

output digit. By exploiting the redundant notation, we restrict the intermediate carry and

sum values to ranges which guarantee that they can never cause a carry when added in the

final stage.

In this way, signed-base-4 addition can be done with δ= 1. The range of both intermedi-

ate values are restricted so that adding any two values in the second stage will be carry-free.

If the intermediate carry is limited to the range [-1,1] and the intermediate sum is limited

to the range [-2,2], it is still possible to represent all possible sums of two digits. One can

easily see that there will be no second-stage carry-out since the result of any second-stage

addition will be a number on [-3,3], exactly the range which can be represented in a single

digit. One possible mapping (from [40]) of the intermediate sum and carry values is shown

in Table 3.3.

The addition of two signed-binary numbers cannot be done with δ < 2 because inter-

mediate sum and carry digits can’t be generated in a way that guarantees that the second
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FA

z−i z+i

w+
i+2 w−

i+2 x+
i+2 x−

i+2

FA

co

co

z′i+1

z+i+1

x−

i+1

y′i+2

y+i+1 y−i+1

y−i+2

Figure 3.5: Circuit used for digit-online addition of two signed-binary numbers with a

signed-binary result [43]. y′i+2 = 2·y+i+1 − y−i+2 and z′i+i = z+i+1 −2·z−i are intermediate

results. The factors of two account for the fact that the half-digits being added do not have

the same weight.

addition is carry-free [40, 42]. There are many implementations of signed-binary adders

with initial delays of two digits or greater [42, 44, 45].

Fig. 3.5 shows the implementation we use for a δ = 2 signed-binary adder using the

desired digit encoding. Logic that breaks the carry chains between successive numbers is

omitted for clarity. This logic is not complex, it simply prevents a carry out from the MSD

and ensures that the carries into the LSDs are zero. A full explanation is given in Appendix

A.

This addition circuit is more easily understood by considering each stage separately.

Table 3.4 shows the truth table for each stage of the addition. Each stage reduces three half-

digits down to one full digit. The additional flip-flop on the x−i+2 input ensures that MSD

of the input at the second stage arrives in the correct clock cycle. To look at the circuit in

a stateless sense, on can compute the intermediate results y′i+2 = 2·y+i+1 − y−i+2 and z′i+i =

z+i+1 −2·z−i . The factors of two account for the fact that the half-digits being added do not

have the same weight.

By using each of the stages separately, we can introduce conventional unsigned operands

into signed-binary operations. To add an unsigned-binary number in conventional notation

to a signed-binary number, we use the circuit in Fig. 3.6(a). To subtract a conventional
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Section 3.3: Digit-Online Operations

(a)

w+
i+2 w−

i+2 x+i+2 wi+2 x+i+2 y+i+1 y−i+2 y′i+2

0 0 0 0 0 0 0 0

0 0 1 0 1 1 1 1

0 1 0 −1 0 0 1 −1

0 1 1 −1 1 0 0 0

1 0 0 1 0 1 1 1

1 0 1 1 1 1 0 2

1 1 0 0 0 0 0 0

1 1 1 0 1 1 1 0

(b)

y+i+1 y−i+1 x−i+1 yi+1 xi+1 z−i z+i+1 z′i+1

0 0 0 0 0 0 0 0

0 0 1 0 −1 1 1 −1

0 1 0 −1 0 1 1 −1

0 1 1 −1 −1 1 0 −2

1 0 0 1 0 0 1 1

1 0 1 1 −1 0 0 0

1 1 0 0 0 0 0 0

1 1 1 0 −1 1 1 −1

Table 3.4: Truth tables for the (a) first and (b) second addition stage in the two-stage digit-

online signed-binary adder shown in Fig. 3.5. y′i+2 = 2·y+i+1 − y−i+2 and z′i+i = z+i+1 −2·z−i
are intermediate results. The factors of two account for the fact that the half-digits being

added do not have the same weight.

z−iz+i

x+
i+1 y+i+1x−

i+1

FA

z−i z+i

y−i+1

FA

(a) (b)

x+
i+1 x−

i+1

co co

Figure 3.6: Circuits used for (a) adding or (b) subtracting a conventional unsigned-binary

operand Y to/from a signed-binary number X.

unsigned number from a signed-binary number, we use the circuit in Fig. 3.6(b) [43]. Fig.

3.6(b) is used to implement the subtraction part of offset min-sum correction at the cost of

a full-adder, a flip-flop and a few inverters. When the subtraction is done in this way, the

offset does not need to be converted to or stored in signed-binary notation.

28



Section 3.3: Digit-Online Operations

z−iz+i

wsubi+2 wi+2

x+
i+2

FA

x−

i+2 y+i+2 y−i+2

FA

FA

0 1

10

wsubi

wsubi+1

co

co

co

Figure 3.7: Circuit used for digit-online addition of two signed-binary numbers X and Y

and a conventional binary value W with a signed-binary result Z. Input wsub determines

whether W is subtracted or added and must remain constant for the entire operation.

The building blocks of Fig. 3.6 can be arranged to yield the circuit of Fig. 3.7 [46].

This circuit is used to add five signed-binary half digits where the sign of all is fixed at

design time, or where the sign of w is known at its first digit. Input wsub is true when w is

to be subtracted rather than added, but must remain constant over the entire operation. This

higher fan-in δ = 2 circuit can be used to build variable nodes with a lower initial delay.

Since the signs of sign-magnitude numbers are immediately known, if the channel values

are sent to the variable nodes in sign-magnitude notation, w can take the magnitude of the

channel value and wsub can be set to a latched copy of the sign bit.

It is clear that addition requires much less logic if the operands are in signed-binary

rather than signed-base-4. To add two signed-binary numbers requires only two full adders,
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Y=X

yi = xi − 4
(zi = yi)

yi = xi + 5
(zi = xi + 4)

yi = xi + 4
(zi = xi)

yi = xi − 5
(zi = yi + 4)yi>xi − 3

(zi = xi)
yi<xi + 3
(zi = yi)

any
(zi = xi)

any
(zi = yi)

yi<xi − 1
(zi = yi)

yi>xi + 1
(zi = xi)

yi = xi − 3
(zi = xi)

yi = xi + 3
(zi = yi)

start

xi = yi
(zi = xi)

Y<X Y<<XY>XY>>X

yi = xi − 1
(zi = xi)

yi = xi + 1
(zi = yi)

yi = xi − 6
(zi = xi − 2)

yi = xi + 6
(zi = yi − 2)

Figure 3.8: Z = min(X ,Y ) Mealy machine with δ = 0 for a signed-base-4 compare-select

element [40]. Inputs xi and yi are the input digits that arrive during cycle i, and output zi

is the output digit generated during cycle i. State Y>X means Y is larger than X up to the

digits received. State Y>>X means Y is certainly larger than X regardless of remaining

digits.

but to add two signed-base-4 numbers requires two carry-propagate additions on three-bit

inputs, for a total of six full adders. The first addition stage also requires look-up tables

with 4-bit inputs.

3.3.2 Compare-Select

A basic compare-select module takes two inputs, and outputs either the minimum value,

the maximum value, or both. In the case of LDPC decoding, we are largely concerned with

the minimum of inputs. We wish to compare two digit-online values on the fly, and begin

outputting the minimum before all the digits are known. Due to the nature of redundant

notation, a number which initially appears larger (for example, has a larger MSD) is not

necessarily the larger number. If a negative digit is encountered, the ordering of the numbers

could swap. For example, in signed-binary, 11̄0 < 011 even though when examined in an

MSD-first fashion the first number initially appears larger.

A finite-state machine is presented in [40] which determines the minimum of two

signed-base-4 numbers. In the context of a check node, we are interested in only the min-

imums of magnitudes (i.e., positive values). The state machine in [40] works also with
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Y=X

yi = xi − 1
(zi = yi)

yi = xi + 2
(zi = yi)

yi = xi + 1
(zi = xi)

yi = xi − 2
(zi = xi)

yi>xi − 1
(zi = xi)

yi<xi + 1
(zi = yi)

any
(zi = xi)

any
(zi = yi)

yi<xi − 1
(zi = yi)

yi>xi + 1
(zi = xi)

yi = xi − 1
(zi = xi)

yi = xi + 1
(zi = yi)

start

xi = yi
(zi = xi)

Y<X Y<<XY>XY>>X

Figure 3.9: Z = min(X ,Y ) Mealy machine with δ = 0 used for a signed-binary compare-

select element. Inputs xi and yi are the input digits that arrive during cycle i, and output zi

is the output digit generated during cycle i. State Y>X means Y is larger than X up to the

digits received. State Y>>X means Y is certainly larger than X regardless of remaining

digits.

signed values. Since each output digit generated has the same weight as the incoming dig-

its, δ = 0.

The state diagram of this machine appears in Fig. 3.8. The difference between the

two numbers is tracked for as long as the difference is small enough that either of the two

numbers could still be the minimum. While this is still the case, the output of the state

machine is such that the digits produced so far could be the first digits of an equivalent

representation for either of the inputs. If the difference between the two numbers becomes

too great, the state machine knows which is the smaller number and puts itself in a state

where it outputs only the digits of that number.

The signed-base-4 compare-select module is easily adapted to signed-binary [46]. The

resulting state machine is shown in Fig. 3.9. Although there are the same number of

possible states, there are fewer possible transitions because of the more limited range of

digit values. Additionally, the output digits are only ever selected from one of the input

digits. The signed-base-4 state machine requires further arithmetic operations for some

transitions (for example, from Y>X to Y<X).

The maximum calculation of offset min-sum decoding can be implemented using a

much simpler state machine. Since one input is fixed at zero, the state machine can output

zeros until the first non-zero digit is found. If the first non-zero digit is positive, the input is

passed through unchanged. Otherwise the state machine continues to output only zeros.

31
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3.3.3 Multiplication/Division

At a minimum, our system needs to be able to multiply by a scalar s in {+1,−1} in order

to multiply signs and magnitudes together at the output of check nodes. This can be done

by negating all digits if s =−1 and by passing all digits unmodified if s =+1.

Division or more general multiplication is needed if normalized min-sum check equa-

tions are to be used. Division can be done in a digit-online manner with δ = 4. By pre-

computing 1/α, we can use digit-online multiplication which has δ = 3 for signed-binary

and δ = 2 for signed-base-4. However, both division and multiplication require relatively

complex hardware [43]. As we show in Section 4.3, for a digit-online decoder LLR cor-

rection must be performed on every LLR individually. This requires that the correction

used must be very simple to keep the hardware costs reasonable. We have already shown

that offset min-sum has δ = 1 and requires only a full adder, a flip-flop, and a simple state

machine. Since normalized min-sum has much higher hardware cost, a larger initial delay,

and a negligible error performance increase (see Section 2.3.3), offset min-sum is a much

more appropriate correction method to use for digit-online decoding. Thus we can avoid

implementing a general digit-online multiplier or divider.

3.3.4 Sign/Magnitude

A signed-digit number can be split into its sign and magnitude using the state machine

shown in Fig. 3.10. At the beginning of each input, the machine begins in an unknown-sign

state and remains there as long as incoming digits have zero magnitude. If the first non-

zero digit is positive, the number must be positive and all digits from thereon can be passed

through unchanged. If the first non-zero digit is negative, the number is negative and all

digits must be negated to obtain the magnitude.

3.4 Conversion to and from Redundant Notations

LLR inputs are provided to the decoder in conventional binary format. Therefore, circuitry

must be available to convert conventional binary numbers into the appropriate redundant

format. If only the final hard-decision bits of the decoded block are required, the LLRs

would not need to be converted from redundant form into two’s complement format, only

the sign would need to be determined.
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0xi < 0

start

xi = 0
(sign = 0,
mag = 0)

+− xi > 0
(sign = 1,
mag = −xi)

any
(sign = 1,
mag = −xi)

any
(sign = 0,
mag = xi)

(sign = 0,
mag = xi)

Figure 3.10: Mealy machine used to determine the sign and magnitude (in signed-digit

notation) of signed-digit numbers. The + state means that the input is definitely positive,

− means the input is definitely negative, and 0 represents an as-yet-unknown sign. The

magnitude is determined with δ = 0. Sign-detection is not a digit-online operation, but

δ = 0 in the sense that the sign bit is determined in the same cycle as the first non-zero

digit.

To convert conventional binary to signed-binary, numbers can be broken down into their

sign and magnitude. If a value is positive, each digit in its signed-binary representation

is equal to the corresponding digit in its magnitude (though it is now stored using more

bits-per-digit). For negative values, every digit in its magnitude is negated to produce the

signed-binary form.

To perform a digit-online conversion of a p-bit two’s complement number A into a p-

digit signed-binary number B, the MSD of B is set to 1̄ if the MSB of A is one or zero

otherwise. The rest of the digits of B are set to positive copies of the corresponding bits of

A. This method is summarized by equation (3.2).

bi =

{

−ai, if i = p−1

ai, otherwise
(3.2)

For digit-online conversion of sign-magnitude numbers, when the sign bit is received it

is stored and the MSD of the output is set to zero. For positive numbers the remaining digits

are set to positive copies of their corresponding input bits. For negative numbers, each input

bit is negated to arrive at the output digit. For an LDPC decoder, the channel values do not

necessarily have to be converted to signed-binary. They can be stored in sign-magnitude

form and introduced to the system in the variable node additions using one of the circuits

in figs. 3.6 or 3.7.
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Operation δ

Add/Subtract

signed-binary ± signed-binary 2

signed-binary ± conventional unsigned 1

Compare-select 0

Multiplication 3

Division 4

Negation 0

Absolute Value 0

Table 3.5: Summary of initial delays for MSD-first digit-online operations on signed-binary

operands

Signed-binary numbers may be converted to two’s complement values using either sub-

traction [42,45] or a state machine [47]. These methods are not digit-online since the carries

must be fully propagated to arrive at the final result.

To use subtraction, the signed-binary number is broken into two binary numbers, cor-

responding to the positive and negative digits. The numbers are then subtracted in a two’s

complement subtraction circuit to produce a two’s complement output. For example, to con-

vert the number 0011̄101̄0 to two’s complement, the subtraction of 00101000− 00010010

is performed. The first number corresponds to all the positive digits of our signed-binary

number, the second to the negative digits.

The state machine presented in [47] takes signed-binary numbers in a serial fashion

and produces a bit-parallel two’s complement output. Two estimates of the two’s comple-

ment value are kept: a high estimate and a low estimate. Both estimates are updated with

each new incoming digit until the final result is known. For signed-base-4 numbers, [40]

presents an adaptation of the method in [47] to allow conversion of numbers back to two’s

complement form. A method for input conversion is also presented.

Conversion from any of the redundant forms to two’s complement is potentially ex-

pensive, especially at higher precisions. If possible, this conversion should be avoided by

outputting only the final decoded bits off-chip. If the value of the output LLRs are needed

for testing purposes, the LLRs should be output in redundant form.

3.5 Summary

Digit-online arithmetic in an MSD-first fashion is suitable for a digit-serial min-sum LDPC

decoder. Signed-digit notations have been discussed. Due to the extra bit-per-digit of

signed-base-4 (which would require an extra parallel wire between each arithmetic oper-
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ation), and the additional complexity of the arithmetic operations, signed-binary notation

is a more appropriate choice for a digit-online LDPC decoder. Table 3.5 summarizes the

initial delays of the operations that have been discussed.

Given the constraints of a digit-online system, offset min-sum is the most appropriate

correction method to use in the check nodes and should have a small overall hardware

cost to implement. Using signed-binary, all of the required operations for offset min-sum

processing can be performed in a digit-online manner with none of them needing δ > 2.

This is a promising result for developing a system with a low overall latency. Converting

incoming conventional binary LLRs to redundant form is a relatively inexpensive operation.

In fact, this operation can be avoided by using circuits that allow them to be directly added

to signed-binary numbers. While converting back to conventional binary form is potentially

expensive, such a conversion is not needed to determine the decoded codeword. Even for

testing and debugging purposes, this conversion can be avoided.

In the next chapter we will demonstrate the construction of a digit-online LDPC decoder

using the operations demonstrated in this section.
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Chapter 4

Digit-Online LDPC Decoding

4.1 System-Level Design

In this chapter we assemble an architectural design for a digit-online LDPC decoder. Fig.

4.1 shows the overall architecture of our system. Messages flow from variable nodes

through check nodes and back to variable nodes. The number of pipeline stages in one

decoder iteration is equal to the length of the variable node pipeline (δv) plus the length of

the check node pipeline (δc). Since one digit is stored in each pipeline stage, the maximum

number of digits in a message l=δv+δc. However, some of these digits are used as guard

digits to prevent overflow in the variable nodes (the exact number required is explained in

Section 4.2). This allows LLRs of maximum magnitude to be added in the variable nodes

without ill effect. The LLRs leaving variable nodes are allowed to exceed the maximum

magnitude, but LLRs are saturated before reaching the variable nodes again.

Saturation may take place either immediately after the output of the variable nodes, or at

any point within the check nodes. Saturation in the check node gives a clear area advantage

because it requires only two magnitudes to be saturated (minimum and second minimum),

rather than saturating every LLR individually.

It is desirable that the channel input LLRs be stored in conventional binary notation

rather than signed-binary notation. This not only halves the channel storage requirements

but also requires fewer total input bits into the addition trees. We showed in Section 3.3.1

that sign-magnitude numbers could easily be added to signed-binary numbers. Therefore,

sign-magnitude channel LLRs are loaded in parallel and then sent serially to the variable

nodes where they are added directly to LLRs from the check nodes. If channel LLRs are

in two’s complement, they can be converted upon input and stored in non-redundant sign-

magnitude binary form on-chip.
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Figure 4.1: System diagram of a digit-online LDPC decoder showing the path from one

channel LLR to one output bit. Each pipeline stage stores one digit of a message.

Each node must receive a control input that distinguishes the MSD of the LLR from

other digits. We call the vector version of this signal R, and specify that for a corresponding

value X , ri = 1 if and only if xi is the MSD. This allows carry chains to be broken in

adders and state machines in the compare-select modules to be reset. This input is globally

synchronized in the sense that each node of a given type receives its MSD at the same time.

There is flexibility in the way the R signal is distributed. It can be passed serially from

node to node, or distributed as a global signal. Each node can be responsible for generating

delaying versions of its R signal, or a many-phased R signal can be distributed globally.

If we expand R to be the length of the full decoding pipeline (and allow the corre-

sponding data vectors to hold multiple values), we can decode multiple frames at a time

by allowing more than one 1 in the R vector. The precision of the LLRs may be varied by

changing the distance between 1s. Each frame need not be decoded with the same precision,

so long as the precisions of all frames add up to the total pipeline length. While the input

buffer and output detector must be aware of these parameters, the basic variable and check

node circuits in no way depend on the precision or number of frames. The computation

nodes work on a continuous stream of data, needing to know only where each value starts

and ends. Existing bit-serial designs have an LLR length and number of frames is fixed

at design time. It would not be as easy to implement variable word length in bit-serial de-

signs because deserialization operations limit the maximum word length to half the pipeline

length. The redundant notation used in digit-online decoding allows the entire pipeline to

be used for one or more words.

In a decoder for an irregular code, differing node degrees may lead to different initial

delays for the same type of node. Since each variable node must have the same processing

delay and each check node must have the same processing delay, additional pipelining may

be needed in some nodes.
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Figure 4.2: Example degree-4 signed-binary digit-online variable node. The input c rep-

resents channel information.
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Figure 4.3: Example of minimizing register use in addition trees. The structure in (b) is

preferable to (a) because it requires one less register.

4.2 Variable Node Design

Design of the digit-online variable node is relatively straightforward. The signed-binary

adders presented earlier are used to implement equation (2.7). Each output is formed by the

sum of the channel value and of all other inputs.

Care must be taken to synchronize all values moving through the node to make sure all

the inputs to any adder arrive with a constant initial delay so that they have the same weight

when added. Registers must be added to inputs that enter an unbalanced addition tree at later

stages resulting in a higher hardware cost for these paths. Inputs should be taken from the

output of the immediately previous stage when possible and, when synchronization flip-

flops are unavoidable, as few paths as possible should contain synchronization flip-flops.

For example, the structure in Fig. 4.3(b) is preferable to Fig. 4.3(a). If the channel LLR

memory can be read with an offset, synchronizing flip-flops are not required for the channel

input. Fig. 4.2 shows an example degree-4 variable node.
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dv δv,min Guard digits 3:2 Adders 4:2 Adders 5:2 Adders Sync. FF

2 1 1 2 0

3 2 2 3 0

4 4 2 2 4 16

5 4 3 6 5 0

6 4 3 14 0

Table 4.1: Minimum initial delays (δv), number of guard digits required, and number of

adders for variable node addition trees. Detailed equations are given in Appendix B.

There are many ways of implementing the addition trees, and several possible opti-

mization criteria. We choose to optimize for minimum δv and a minimum number of guard

digits. This allows for the shortest critical path for a fixed pipeline length and for the least

overhead due to calculating guard digits that would only be saturated out. The area of vari-

able nodes is minimized by reusing addition sub-terms between the calculation of the dv

outputs (this is shown in fig 4.2).

The number of guard digits needed depends on the maximum variable node degree and

the structure of the variable nodes. The optimal number of guard digits is ⌈log2(dv,max)⌉
to allow for the dv values in each variable node to be added together. However, depending

on the way the LLRs are added together, more guard digits could be required. For a given

variable node design, the worst-case is given by the minimum δv, which corresponds to

the most number of digits a carry can propagate forward. The actual carry propagation is

dependent on input data and addition tree structure, and must be verified experimentally.

At the beginning of a new frame, the new incoming channel values can be passed di-

rectly through the variable node into the check node. Since all LLRs would be initialized to

zero, doing additions is not necessary. This allows the addition tree to be used for the final

sum (before hard decision) of the previous frame, resulting in more efficient hardware use.

Calculating the final sum can be done with one extra addition by delaying L0 and adding to

λ0, as shown in equation 4.1.

λ f inal = (L0 +λ0) (4.1)

The final LLRs are computed from the sum of dv + 1 values. Since the exact value of

the final LLRs is unimportant (only the sign is needed for hard decisions), this addition is

treated differently to avoid requiring extra guard digits that would only be necessary for the

final addition (this is covered in detail in Section 5.4).
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Adder Type Full-Adders Flip-Flops Delay

3:2 1 1 TFA

4:2 2 3 2TFA

5:2 3 2 3TFA

Table 4.2: Area and critical path delay for different types of signed-binary-output adders.

Adders are classified by the number of input bits taken to produce a single-digit signed-

binary (2-bit) output. The propagation delay of a full-adder is TFA.

Bit-parallel Digit-online

dv Full Adders Delay Full Adders Flip-flops Delay

2 3p 2p·TFA 2 3 TFA

3 5p 3p·TFA 9 8 3TFA

4 7p 3p·TFA 16 32 4TFA

5 8p 4p·TFA 27 30 5TFA

6 11p 4p·TFA 42 30 6TFA

Table 4.3: Required resources for VLSI implementation of variable node addition trees

for bit-parallel and digit-online processing on p-bit operands. The propagation delay of a

full-adder is TFA. Bit-parallel addition trees use the forward-backward architecture and are

implemented with ripple-carry adders.

Since we wish to use the addition tree for the final LLR of the previous frame, separate

hardware must be provided to convert channel LLRs to signed-binary to generate variable

node outputs for the first decoding iteration.

4.2.1 Initial Delay and Resource Requirements

Table 4.1 shows the minimum initial delays, number of guard digits required, and number

of adders for the addition trees we have designed. A full description of the trees is given in

Appendix B. Addition trees with the minimum possible δv have purely combinational paths

from input to output. Further pipelining is needed to keep the clock period short.

Based on the values in table 4.1, we can compare the areas required to implement vari-

able node addition trees using bit-parallel or digit-online processing. The digit-online re-

quirements are computed from examining the addition circuits (see figs. 3.5-3.7) and not-

ing that the channel sign delay registers can be shared between adders in the same register.

Channel sign delay requires one additional flip-flop for dv = 2, and two additional flip-

flops for 3 ≤ dv ≤ 6. Table 4.2 shows the areas and critical path delays for each type of

digit-online addition circuit, neglecting channel sign delay flip-flops. Adders are named ac-

cording to the number of input bits taken to produce one signed-binary (2-bit) output digit.

For example, the 4 : 2 adder takes 4 bits of input and produces 2 bits of output.
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Table 4.3 shows the areas and delays of addition trees for bit-parallel and digit-online

processing. The bit-parallel resource requirements assume a forward-backward architecture

where all dv values are added together (requiring dv−1 adders) and then each input is sub-

tracted out from that sum (requiring another dv adders). This architecture requires 2dv−1

total adders. The depth of the forward-backward addition tree is ⌈log2(dv)⌉ to initially add

the dv values together, and then one extra stage to subtract the original input for a total depth

of ⌈log2(dv)⌉+1 full adders.

It is clear that digit-online processing has a smaller combinational area and delay for

even modest precisions. How the final areas compare will depend on the significance of the

sequential area. Which architecture has a higher throughput will depend on how the shorter

critical path of digit-online processing balances against the extra cycles it needs.

4.3 Check Node Design

The design of the offset min-sum check node is somewhat more involved. Fig. 4.4 shows

the check node architecture based on equation (2.14). Input LLRs are split into signs and

magnitudes using the state machine in Fig. 3.10, and offset correction is applied to each

magnitude. To satisfy the extrinsic principle of min-sum decoding, we use a selection

network1 to calculate two minima: the first minimum, and the second minimum. In the

case where the magnitude of two inputs are equal to the first minimum, the first minimum

and second minimum are equal. The minimum and second minimum undergo saturation,

and one of these corrected magnitudes is chosen for each output LLR depending on whether

the corresponding LLR input was the first minimum. The second minimum is used as the

magnitude for the output corresponding to the minimum input, while all other outputs are

given the first minimum magnitude.

Offset correction is implemented by subtracting the offset from the magnitude uncon-

ditionally, then using a state machine to replace negative values with zero. The correction

factor is stored in the decoding controller as a non-redundant binary number and broad-

cast to all check nodes (see Sections 5.1 and 5.5 for a more detailed explanation). Since a

number in conventional binary notation is being subtracted from a signed-binary value, the

adder is implemented as in Fig. 3.6(b) for a δ = 1 subtraction.

1In this thesis we assume that selection networks produce ordered outputs, which is necessary for our LDPC

decoder.
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Figure 4.4: Architecture of a signed-binary digit-online offset min-sum parity check node.

The offset correction factor is represented by β as in equation (2.14). The sign/magnitude

finite state machine is shown in Fig. 3.10. Each λiIsMin signal is false unless λi is the input

with the smallest magnitude. If two or more inputs are tied for the smallest magnitude, one

is chosen arbitrarily. The selection network is detailed in Fig. 4.5.

4.3.1 Selection Network

A selection network to find the two smallest values must be designed. Optimal (in number

of comparisons or depth) sorting networks are well-known for up to 16 inputs, and heuristics

are available to generate good sorting networks for larger numbers of inputs [48]. A (2,N)

(two-output, N-input) selection network can be generated from an N-input sorting network

by eliminating all comparators that do not lead to either of the two smallest outputs. We take

advantage of the fact that there is no inherent initial delay in the compare-select operation

to give us the most flexibility in pipelining the system. Compare-select modules with δ = 0

are used, with the understanding that the check node can be pipelined to decrease the clock

period. This flexibility allows us to best balance the pipeline stages.
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x y

XIsMinmin max

mag0 l0 mag1 l0

IsMin01 l1mag0 l1 mag1 l1
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IsMin01 l2
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x y
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mag2 l2
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min

2nd min

corrected magnitudes

λ0IsMin = IsMin01 l2 · IsMin01 l1

λ1IsMin = IsMin01 l2 · IsMin01 l1

λ2IsMin = IsMin01 l2 · IsMin23 l1

λ3IsMin = IsMin01 l2 · IsMin23 l1

Figure 4.5: Example of a selection network (built using compare-select modules) for dc =
4, with explanation of how λiIsMin signals are generated. The XIsMin signal is true if

X<=Y. Unused compare-select outputs are omitted.

In order to track which input’s magnitude was the first minimum, the compare-select

modules are modified to mark which input had the lesser value, giving an output XIsMin

which is true if X<=Y . Setting XIsMin true when X =Y is arbitrary; the choice of input

when X=Y does not matter. The input magnitude which was the smallest can be determined

by looking at the results of all the comparisons. Each magnitude |λi| is marked with a

signal λiIsMin which is true if and only if that magnitude is the smallest. If two or more

magnitudes are equal for smallest, any one can be chosen arbitrarily. Our selection network

structure results in the input with the smaller index being chosen. Fig. 4.5 shows how

λiIsMin signals are generated for a dc = 4 parity check node.

Recall from Section 3.3.2 that when comparing two signed-binary numbers, because

redundant notation is used, a difference in the first digit does not imply that we know which

input is smaller. Therefore, the input which first appears smallest may not be the minimum

input and XIsMin may change during a compare-select operation. However, to ensure

correct results in the check nodes, each λiIsMin signal must change only at certain times.
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Specifically, the λiIsMin signals may only change when the minimum and second min-

imum are equal up to the digits that have been received so far. This ensures that when the

multiplexor switches from selecting one magnitude to another it does not produce invalid

results. In the compare-select state machine, there are no transitions directly between states

where X<Y and states where Y<X . Therefore the only times the XIsMin output can change

is when moving between the X =Y state and the states where Y<X (since XIsMin is true

when X =Y ). As long as the XIsMin signals from all comparators remain synchronized to

their corresponding minimum outputs, λiIsMin transitions occur only at legal times.

This relationship between the λiIsMin signals and the minimum magnitudes is the rea-

son that offset correction must be applied to each input magnitude. Although it would

require less hardware to apply offset correction at the output of the selection network (since

only two magnitudes would need to be corrected), such a configuration would result in

changes to the minimum magnitudes that break the relationship to the λiIsMin signals and

result in invalid outputs from the multiplexor. Such a design has been simulated and has

been observed to generate incorrect results. It would also be possible to do offset correction

between the multiplexor and the sign multiplication. However, as we will explain, we wish

to perform offset correction before saturation.

The signs from the sign-magnitude splitters at the check node input are XORed together

to form the output signs. Each output magnitude is multiplied by the corresponding output

sign to form the final output LLR. The signs must be fully determined before the first non-

zero digit is output to ensure a proper multiplication. Luckily, this is guaranteed to be the

case, as illustrated in the next paragraph.

Consider determining L2 in a degree-3 check node. The sign of L2 need not be known

at all because the output sign depends only on the sign of L0 and L1. The compare-select

finite state machine outputs digits of the input that appears smallest. If the number with the

most leading zeros is the minimum, then the sign of the maximum is known first, and both

signs are known by the time non-zero digits are to be output. If the number with the fewest

leading zeros is the minimum value, the state machine will still output zeros until the first

non-zero digit of the maximum, at which point both signs are known.

Generalizing to larger degrees, by the time the first non-zero digit of the minimum

magnitude is reaching the output multiplexer, the signs of all numbers are known. Any

output LLR that does not correspond to the minimum input will output the minimum value

and all signs are known by the first non-zero digit. For the output LLR that corresponds to
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the minimum input, the sign of the minimum does not need to be known. All other signs

are known by the time the first non-zero digit of the second minimum is received.

The XOR tree for signs is implemented by XORing all inputs together, and then XOR-

ing each input sign in again to obtain the correct sign for the output. Compared to entirely

independent XOR trees for each output sign, this structure reduces the number of gates and

power consumption while adding only one gate delay. Since the selection network will need

to be pipelined, the XOR tree may be pipelined as well to limit the effect of having a large

fan-in tree. The modulo 2 sum of all input signs represents whether the check equation

has been satisfied or not (sum is zero when the equation is satisfied). To allow for early

termination (covered in Section 4.4), each check node outputs whether it has been satisfied

or not.

4.3.2 Saturation

The ideal place to perform saturation in the check node is at the outputs of the selection

network. This method requires that only 2 values be saturated rather than dc. Another

advantage of saturating in the check node is that only one comparison is necessary since all

values are positive. Separately comparing for overflow and underflow is not necessary.

Numbers in signed-digit notation are difficult to saturate directly because in-range num-

bers can initially appear to be out-of-range [43]. Since we are not concerned with knowing

whether our LLR is in range or out of range (only in clipping it), we can use a compare-

select module. The LLR magnitude provides one input, and a state machine generating the

maximum allowable magnitude provides the other. This ensures that all LLRs leaving the

check node have magnitudes that are within the design range for the variable node inputs.

The logic implementation of the saturation compare-select module can be simplified since

one input is known to be positive and can be expressed in conventional binary notation. This

method of saturation results in the minimum number of transitions within saturated values.

If saturation is performed after offset correction, then the number of output transitions is

minimized when check node values saturate.

4.3.3 Initial Delay and Resource Requirements

Since the subtraction of the offset constant is the only operation with δ > 0, δc,min = 1 for

all check node degrees. The area of the check node is largely dependent on the number of

comparisons in the selection network. For a (2,N) selection network (with ordered outputs),
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N Depth Comparisons N Depth Comparisons

2 1 1 17 7 31

3 3 3 18 7 33

4 3 5 19 7 35

5 4 7 20 7 37

6 4 9 21 7 39

7 5 11 22 7 41

8 5 13 23 7 43

9 6 15 24 7 45

10 6 17 25 8 47

11 6 19 26 8 49

12 6 21 27 8 51

13 6 23 28 8 53

14 6 25 29 8 55

15 6 27 30 8 57

16 6 29 31 8 59

32 8 61

Table 4.4: Depth and number of comparisons for (2,N) selection networks

Architecture Delay Logic Cost

Bit-parallel ripple-carry O(log pN) O(pN)
Bit-parallel tree adder O(log(log(p)N)) O(p log(p)N)

Digit-Online O(logN) O(N)

Table 4.5: Delay and Area for VLSI implementations of (2,N) selection networks on p-bit

operands.

the optimal number of comparisons is given by 2N − 3 [48]. For a δc = 1 check node, the

critical path is determined by the depth of the selection network. Table 4.4 shows the depth

and number of comparisons required for (2,N) selection networks. The depth is bounded

above by 2⌈log2(N)⌉ since the smallest value can be selected in ⌈log2(N)⌉ stages and the

second smallest value can be selected in a further ⌈log2(N − 1)⌉ stages. By performing

some of these comparisons in parallel we can achieve a smaller depth.

Table 4.5 compares the VLSI implementation costs for implementing (2,N) selection

networks using bit-parallel or digit-online processing. The complexity of digit-online com-

parison circuits is independent of precision, so the delay is simply O(log N) and the logic

cost is O(N). For bit-parallel operations we first assume that the subtraction for the com-

parison is implemented as a ripple-carry adder, which is a reasonable assumption for small

p. The delay and logic cost of a p-bit ripple-carry adder are both O(p). Therefore, a

bit-parallel selection network using ripple-carry adders has delay O(log pN) and logic cost

O(pN). If adders with O(log p) delay and O(p log p) area are used, the bit-parallel selection

network will have delay O(log(log(p)N)) and logic cost O(p log(p)N).
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4.4 Hard Decisions and Early Termination

The hard decision upon output is trivial. As the final sum is calculated, a simple state

machine stores the sign of the first non-zero digit. This process can take place in the variable

node to minimize wiring and activity between variable nodes and control logic. When all

the signs are known, they form the bits of the decoded output and are sent off-chip.

Early termination is also easy to implement. Since each check node has an output

indicating whether it has been satisfied or not, we can determine whether all check equations

have been satisfied by ANDing the results from all the check nodes. If all check equations

have been satisfied, the final output LLRs and the hard-decision outputs are calculated. If

there are unsatisfied check equations, decoding continues as usual with the next iteration.

Due to the initial delays of the final addition and the hard decisions (explained in Section

5.3), there is a cost of two extra iterations to terminate decoding early. The maximum

number of iterations is never exceeded, however.

4.5 Summary

Compared to existing bit-serial implementations, the digit-online architecture has several

advantages. First, the digit-online architecture does not need to store messages in parallel

at any point. Bit-serial systems require parallel storage of messages in order to reverse the

order of bits at each node, and in order to convert between two’s complement and sign-

magnitude forms [27]. Second, determining the magnitude of a signed-binary number is

much simpler than determining the magnitude of a two’s complement number. Current bit-

serial systems rely on frame interleaving to keep all functional units busy [19,27,28]. Since

digits always flow in the same direction in a digit-online system, all functional units are

continuously in use even for systems designed to decode only a single frame.

With proper care, decoder design is possible for both regular and irregular codes. Chan-

nel information need not be converted to or stored in redundant format. If channel informa-

tion is stored in sign-magnitude binary form it can be directly added to signed-binary data.

The offset constant β can also be stored and distributed in conventional binary format. It is

straightforward to implement early termination in order to increase throughput and decrease

power consumption.

Having demonstrated a digit-online LDPC architecture, we move forward to show how

to fully implement the logic.
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Chapter 5

VLSI Implementation

5.1 Introduction

After looking at how digit-online LDPC decoding can be done in a general sense, we move

forward to the VLSI design of a full decoding system. A top-level logic diagram of the

system is shown in Fig. 5.1 and the top-level control signals are explained in table 5.1.

Besides the variable nodes and check nodes, a decoding controller is needed. The controller

synchronizes all nodes, loads and stores channel LLRs, outputs channel LLRs to variable

nodes, tracks the number of iterations, and (after the final iteration) outputs the decoded

codeword. To implement early termination, the controller also looks at whether or not the

check nodes are all satisfied and terminates decoding early if they are.

Fig. 5.2 shows a timing diagram of the interface signals. The decoder is initialized by

way of the reset signal. The frameInterlaceMode signal must be asserted first, as it is latched

in on reset. This sets the decoder in either a single-frame or frame-interlaced mode. The

decoder sets the ready signal high when it is able to begin decoding a new frame. The full-

precision sign-magnitude LLRs (chanLLRsIn) and offset (offsetIn) must then be applied in

parallel. The start signal is then held high until the decoder sets ready low to signal that

decoding has started. Once the frame has been decoded, the decoder outputs the decoded

bits (decodedOut) and asserts the valid signal to signal decoding has completed.

To allow for frame-interlaced decoding, and continuous decoding in single-frame mode,

the decoder must be able to buffer two input frames. For reasons we explore in Section 5.4,

we chose to distribute one of the frame buffers as local memory in the variable nodes. The

other frame buffer is located in the controller and is used for parallel-to-serial conversion of

channel LLRs.
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Figure 5.1: Top-level block diagram of a digit-online LDPC decoder for a code of length

N with M parity checks. Channel LLRs are quantized to p bits. For simplicity, only one

of the N variable nodes and one of the M check nodes are shown. Variable-to-check node

connections λi and check-to-variable node connections Li are 2-bits wide to allow signed-

binary digits to be passed between nodes. Controller signals are detailed in table 5.1.

Interface with Signal Description

Off-chip clk System clock

reset Global reset

chanLLRsIn[N][p] Bit-parallel channel LLRs (sign-magnitude)

offsetIn[p] Bit-parallel decoding offset constant (β)

start Instruct the decoder to load a frame and begin decoding it

frameInterlaceMode Specifies single-frame (low) or frame-interlaced (high) decod-

ing. Latched on reset.

ready Set high when the decoder is ready to load a new frame

decodedOut[N] Decoded codeword output

valid Set high when decodedOut is updated

Variable Nodes Rvn Variable node synchronization signal (breaks carry-chains, etc.)

newFrame Instructs the variable nodes to store new channel values and per-

form hard decisions for the previous frame

serialChanLLR[N] Serial sign-magnitude LLRs

VNbitsOut[N] Hard-decision bits from variable nodes

Check Nodes Rcn Check node synchronization signal (resets sign-magnitude state

machines, etc.)

offset Bit-serial offset constant (β)

CNsatisfied[M] CNsatisfied[i] set high when check node i’s check equation is

satisfied

Table 5.1: Top-level controller signals
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reset

chanLLRsIn[N ][p]

valid

start

frameInterlaceMode frameInterlaceMode

ready

offsetIn[p]

decodedOut[N ] frame 1

frame 1

offset

(don’t care)

(undefined)

Decoder State DecodingIdle

frame 2

frame 2

Idle

Figure 5.2: Top-level timing diagram of a length=N digit-online LDPC decoder with p-bit

channel quantization showing main control signals (time not to scale). The frameInterlace-

Mode must be stable at reset at which point it is stored. When ready is high, chanLLRsIn

and offset are set and start is asserted to begin decoding. The signals chanLLRsIn and

offset must remain stable until ready goes low signalling that they have been read in. When

decoding of a frame is complete, the decoded bits are set on decodedOut and valid is set

high.

File Contains Specific To

dc,dv Code Pipeline

Pipeline Specification Channel quantization p, initial de-

lays δv,δv, f inal ,δc,δsat , maximum

iterations

no no yes

Interleaver Specification Code length N and number of parity

checks M, node degrees dc,dv for

all nodes, H matrix connections,

data types

yes yes no

Check Node Check node logic implementation yes no yes

Variable Node Variable node logic implementation yes no yes

Controller File Decoding control logic no no no

Decoder Top-level Top-level connections yes no no

Table 5.2: HDL Files used in digit-online LDPC decoder design

The remainder of this chapter provides logic implementation details for the major sys-

tem components. System-wide considerations are covered in 5.2. The functions of the

decoding controller are explained in Section 5.3. The full variable node design is demon-

strated in Section 5.4, and the remaining design of the check nodes are presented in Section

5.5.
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5.2 High-Level Design

The VHDL for the decoder is designed with readability and re-usability in mind. In order

to require as few new files as possible to be created for a given decoder design, each file in

the design makes as few assumptions as possible about the structure of the decoder. The

design attempts to abstract out as many parameters as possible into configuration files.

Table 5.2 gives a summary of the design files that are needed for a full decoder design.

The interleaver specification stores the graph connections as integer arrays. In the case of

an irregular code, the interleaver specification also contains arrays specifying the degree of

each node in the decoder. Variable nodes and check nodes are designed for given degrees

and initial delays. The variable nodes and check nodes are instantiated in the top-level

file by generate statements that index the connection array. This avoids explicitly defining

connections for each node in the decoder file, while still allowing the matrix to be arbi-

trary. In irregular codes, these generate statements also reference the node degree arrays to

instantiate each node with the correct degree. Both the decoder VHDL file and the inter-

leaver package file can be generated automatically after reading an ALIST file specifying

the parity matrix. In the case of structured codes (such as the WiMAX family of codes),

connections can also be generated from a submatrix specification and expansion factor.

The decoder top-level file is specific to an ensemble of codes, but different sized codes

can be quickly synthesized by loading different interleaver specifications. Since the initial

delays are stored in a separate file, it is easy to quickly synthesize designs for the same code

while varying the number of pipeline stages.

5.3 Decoding Controller Implementation

Throughout this chapter we use the convention that all variable nodes have the same initial

delay δv and all the check nodes have initial delay δc. As stated previously, in the case

of irregular codes all nodes of a type must be pipelined to the same depth. This results

in a total pipeline length l = δv + δc. The exact amount of pipelining is ignored at this

point. Extra registers can always be added in nodes to achieve the desired loop latency (and

therefore precision), and register retiming can be enabled in synthesis to balance the stages

automatically. Since pipelining is relatively inexpensive in the control logic compared to

the computation nodes, the control logic is pipelined deeply enough so that the critical paths

are in the computation nodes.
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Figure 5.3: System timing diagram for a single-frame digit-online LDPC decoder showing

the location of each digit for one iteration. The pipeline length l = δv + δc, where δv and

δc are the pipeline lengths of the variable nodes and check nodes, respectively. The value

D with digits di (0 ≤ i < l) represents a general message in the decoding pipeline. The

newFrame signal remains high for the entire first iteration to signal the variable nodes

to store the new channel values and produce the decoded bits for the previous frame (if

applicable). The CNsatisfied signal is updated once per iteration, δsat cycles after the

checknodes receive the last input digit of the LLR. Since the delay from the start of decoding

to CNsatisfied updating is δv + l + δsat , the decoder must perform two decoding iterations

before it knows whether the input codeword was valid. This is the source of the two iteration

penalty for early termination.

Figure 5.3 shows the timing diagram for the control signals for single-frame decoding.

There is a counter to track the number of iterations that have been run. The controller keeps

the variable nodes and check nodes are synchronized by way of their R signals. When R

is high, the current digit is the MSD of a new value. This information is used to break

carry chains and reset state machines. The R signals received at the variable nodes and

check nodes are denoted Rvn and Rcn respectively. A digit counter keeps track of which

digit position is currently being output to the variable nodes and outputs Rvn = 1 when the

variable nodes are receiving the MSDs of their messages. Rcn is set high after waiting a

number of cycles equal to the initial delay δv of the variable node. Delayed versions of Rvn
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and Rcn needed for synchronizing internal signals in the nodes are generated locally at each

node. Other than the R signals, reset signals to the variable and check nodes are not needed.

Any unknown values that are present at power up are ignored by the decoder.

The controller loads the channel LLRs in bit-parallel fashion in non-redundant sign-

magnitude binary format. They are then sent in serial to the variable node channel inputs

via serialChanLLR. The newFrame signal is kept high for the entire first iteration to allow

the variable nodes to load the new channel values. While newFrame is low, variable nodes

must use their local storage for their channel values (this is explained in detail in Section

5.4). During the time newFrame is high, the variable nodes are also computing their final

sums and performing their hard decisions for the previous frame. There is a δv, f inal stage

delay to perform the final addition, and then the hard decisions can take up to a further l

cycles depending on how many leading zeros there are in each node’s final sum. Since the

sign of the final sum is known for certain as soon as a non-zero digit is received, there is at

most one transition during the evaluation of each variable nodes’ bitOut signal.

Each check node generates a satisfied signal to denote whether or not its check equation

is satisfied. This signal changes only once per iteration, l +δsat cycles after Rcn. This is to

allow for the l bits of the LLRs to be known so that the signs of all inputs are known for

certain, and to allow for the δsat cycle delay in the XOR tree needed to perform the parity

check. Since the total delay relative to the beginning of the iteration is δv + l + δsat and

is greater than δv + δc, it takes two extra iterations to determine whether all checks were

satisfied. If (δv + l+δsat)< 2 · (δv +δc), the extra cycles can be used to pipeline the AND

tree used by the controller to determine if all checks are satisfied simultaneously.

When decoding is finished (after all check equations are satisfied, or after a specified

number of iterations), the controller takes in the hard decision bits from the variable nodes

and outputs them as the decoded codeword. The controller accounts for the delay the vari-

able nodes require to make their final hard decisions, and waits until the variable node hard

decision modules have received the LSDs of their final sums, at which point all decoded

bits are guaranteed to be known.

After examining the timing of the decoder in detail, we can derive equation (5.1) for the

throughput of the decoder for single-frame decoding, where niter is the number of decoding

iterations. If early termination is enabled, the average number of iterations per frame should

be used to calculate throughput, taking into account the two iteration penalty to terminate

early. Equation (5.2) gives the maximum latency of the decoder.
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Figure 5.4: System timing diagram for a frame-interlaced digit-online LDPC decoder

showing the location of each digit for one iteration. The pipeline length l = δv +δc, where

δv and δc are the pipeline lengths of the variable nodes and check nodes, respectively. The

value D with digits di (0 ≤ i < l) represents a general message in the decoding pipeline.

The first half of the digits of D belong to frame 0, and the other half belong to frame 1.

The newFrame signal remains high for the entire first iteration of each frame to signal the

variable nodes to store the new channel values and produce the decoded bits for the pre-

vious frame (if applicable). Note that in general it is not necessary that δv = δc, nor is it

necessary that both frames be on the same decoding iteration.

T hroughput1 f =
N · fclk

(cycles/iteration) ·niter

=
N · fclk

(δv +δc) ·niter

(5.1)

Latencymax =
(niter,max +1) · (δv +δc)+δv, f inal

fclk

(5.2)

Fig. 5.4 shows a simplified timing diagram of frame-interlaced decoding to highlight

its important differences to single-frame decoding (Fig. 5.3). The controller must use a

frame counter to keep track of which frames messages are currently being processed. The

controller must also now keep two iteration counters, one for each frame being simultane-

ously decoded. The control signals Rvn and Rcn must now be set high twice during each

iteration to mark the MSD of each of the two sets of message MSDs to the check and vari-

able nodes. Since the variable node and check nodes require no knowledge of the precision
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Figure 5.5: Block diagram of a digit-online variable node. The sign-magnitude to signed-

binary conversion is explained in Fig. 5.6. The final addition stage is shown in Fig. 5.8

of their inputs (only when new values begin), they require no changes to accommodate

frame-interlaced decoding.

Since the decoder can now store two messages in l stages, the throughput of the system

doubles, as shown in equation (5.3). The maximum latency remains the same as single-

frame decoding (equation (5.2)).

T hroughput2 f =
2 ·N · fclk

(δv +δc) ·niter

(5.3)

5.4 Variable Node Implementation

Fig. 5.5 shows a block diagram of the variable node architecture used. To minimize routing

between control logic and variable nodes while allowing efficient use of the addition tree,
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Figure 5.6: Circuit for converting a sign-magnitude input X to a signed-binary output Y

with δ = 0. When ri is high signalling that xi is the MSD, the sign of X is stored in the

flip-flop to be used throughout the conversion. The magnitude of yi is xi except for the MSD

which has magnitude zero.

there is local channel memory in each variable node rather than having two input buffers in

the control logic. This storage is implemented as a (δv +δc)-stage delay line.

While newFrame is low, decoding is continuing from one iteration to the next of the

same frame, and the outputs λi are set to the outputs of the addition tree λ′
i. During this

time no channel values arrive from the decoding controller and the local channel memory

is used instead.

The newFrame signal remains high during the entire first decoding iteration to allow

the variable node to transition between successive frames. While newFrame is high, a new

channel value is loaded into the local channel memory as the old channel value is shifted

out to complete the final addition before hard decision. Simultaneously, the new channel

value is converted to signed-binary form and output as the initial LLR values for the new

frame. Performing an explicit conversion allows the addition tree to be used to compute the

final sum before hard decision of the previous frame. To save power, the final sum and hard

decision are computed only during the final iteration (whether because of early termination

or hitting the iteration limit).

The conversion from sign-magnitude to signed-binary is shown in Fig. 5.6. When the

MSB of the sign-magnitude value is received, it is stored to use as the sign throughout the

conversion. The MSD of the signed-binary value is set to zero. For the remaining digits,

the input bit is used as the magnitude, and the stored sign is used.

56



Section 5.4: Variable Node Implementation

z−i z+i

w+
i+2 w−

i+2 x+
i+2 x−

i+2

z+i+1

x−

i+1y+i+1 y−i+1

y−i+2

co

co

FA1

FA2

ri+2

ri+1

Figure 5.7: Circuit for digit-online addition of two signed-binary numbers W and X with a

signed-binary result Z.

The addition tree is simply made up of the adders presented in Section 3.3.1. The exact

structure of the addition trees are given in Appendix B. We will now discuss the logic to

break carry chains between successive addition operations.

Fig. 5.7 is used to add two signed-binary values, and has the most straightforward logic

for breaking carry chains. When ri+2 is high (i.e., the MSDs of W and X are present in the

first stage), we wish to avoid a carry-in to FA2. This is easily accomplished by ANDing yi+1

with ri+2. When ri+1 is high, the carry-out from FA2 must be blocked. Since this carry-out

must be inverted to give the correct z−i , ri+1 can be NORed with the carry out to yield z−i .

The additional control logic for the rest of the addition circuits in Section 3.3.1 is covered

in Appendix A.

5.4.1 Hard Decisions

The final LLR value is calculated using λ f inal = (L0 + λ′
0). This means that L0 must be

delayed by δv stages before the addition to match the delay of the addition tree which

calculates λ′
0. The result of the addition is fed into a sign detector to form the hard decision

output of the variable node. The sign of the summation represents the value of the decoded

bit. For example, in a BPSK system a positive value would correspond to a 0 and a negative

value to a 1.

57



Section 5.4: Variable Node Implementation

z−i z+i

w+
i+2 w−

i+2 x+
i+2 x−

i+2

z+i+1

x−

i+1y+i+1 y−i+1

y−i+2

co

co

FA1

FA2

ri+2

ri+1

ovfl

Saturation

Figure 5.8: Final addition stage before hard decision. This circuit always produces a sum

with the correct sign, but the sum does not always have the correct magnitude without the

additional guard digits (and latency) that would prevent overflow.

The hard decision is performed using a simplified version of the sign-detecting state

machine shown in Fig. 3.10. The initial delay to the bit output δv, f inal is not the same as

δv, but this is accounted for by the control logic. Since this extra initial delay is outside of

the processing loop, it does not limit the throughput of the decoder. The extra delay is also

small compared to the total number of decoding cycles, so it does not increase decoding

latency much.

If the incoming LLR values are large, there may not be enough guard digits to protect

against overflow in the final addition. Since only the sign of the sum is required for the hard
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decision, the final addition can be done in a way that generates an incorrect magnitude on

overflow so long as the sign is preserved. This is done using the circuit in Fig. 5.8.

The additional overflow correction performed is just an expansion of the carry-chain-

breaking logic. Negative overflow occurs in the second stage of addition when there is a

carry-out from FA2. When a carry-out from FA2 is detected, the overflow signal (ovfl) is

asserted to perform a correction. In this case, the MSD (the next digit output) should be 1̄

to give the entire value a negative sign. This means that z+i+1 should be zero and the next

z−i should be one. When ovfl is high, z+i+1 is immediately zeroed. To ensure that the next zi
i

is one, y−i+2 and x−i+2 are set to ones to ensure that no carry-out from the second full-adder

occurs in the next cycle.

Positive overflow occurs in the first stage of the addition when there is a carry-out from

FA1. To prevent this, one input is saturated to a maximum positive value to ensure that the

sum is not large enough to cause a positive overflow. The saturation value is chosen that

it is still large enough to result in a positive sum even if the other input is as negative as is

possible.

5.5 Check Node Implementation

HDL for the check nodes is entirely computer generated from a text file containing a se-

lection network. The input file is simply a list of all compare-select operations required

to select the two smallest outputs. The compare-select operations are grouped in the input

files according to which can be performed in parallel, so the depth of the selection net-

work is known. The HDL generator is parameterizable in terms of the number of pipeline

stages and whether offset correction is inserted. The generator traces each input through

the selection network and generates the appropriate logic to determine which input had the

minimum magnitude from the results of the comparisons.

The selection networks were created by taking sorting networks from [49] and remov-

ing unnecessary comparisons1 . The remaining comparisons were then arranged into the

minimum possible depth. For convenience, the sorting networks were exported in the text

format used by [49] and all necessary utilities were programmed using this format.

1For N ≤ 16 the best known sorting networks were used. For larger networks, Hibbard’s algorithm was

used. This algorithm was chosen because it tended to determine the first and second-smallest value the fewest

number of stages into sorting, therefore resulting in the minimum depth (2,N) selection network.
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A utility was written to test that selection networks are valid. An N-input sorting net-

work can be tested by making sure that it properly sorts all 2N combinations of zeros and

ones at the inputs [48]. Since we are interested in (2,N) selection networks where only the

two smallest values are important, we need only test all combinations where all inputs are

one except for zero, one, or two inputs that are zero. This ensures that our sorting network

always finds the two smallest values, and always correctly orders them. This results in only

(N(N −1))/2+N +1 = (N2 +N)/2+1 test vectors and makes it viable to test the (2,32)

selection network required for the degree-32 check nodes of the 10GBASE-T LDPC code.

The selection network tester also ensures that the number of comparisons is optimal for the

size of the network to ensure minimum area in our check nodes.

5.6 Summary

Building on the general digit-online LDPC decoding architecture presented in the last chap-

ter, we have demonstrated the principles for developing a VLSI implementation of such a

decoder. The controller to generate the control signals for the decoder and provide an inter-

face was presented, and the remaining details for the variable and check nodes were filled

in. The connections between components were explained, and equations for evaluating the

throughput and latency of the decoders were presented.

The next chapter will examine the effects of varying message precision on decoder

performance.
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Chapter 6

Precision Scaling Analysis

6.1 Introduction

We showed in chapter 4 that the area and delay of circuits are less dependent on precision for

a digit-online architecture than for a bit-parallel architecture. For LDPC decoders, the most

important performance characteristics are throughput, the throughput/area ratio (TAR), and

energy efficiency. The remainder of this chapter looks at the effect of message precision on

all of these metrics for synthesized digit-online and bit-parallel decoders.

To increase the word length in a bit-parallel system, the nodes become necessarily

larger. Adders and comparators must be widened to accommodate the extra digits, and

more wires are required in the interleaver. To increase the message precision in a digit-

online decoder, only the number of pipeline stages needs to increase to store the extra digits

of precision. Addition and comparison can be done with the same circuits regardless of

precision, and the number of wires in the interleaver is fixed with the code chosen.

The size and delay of a variable node is determined by the addition circuits. If we

assume a bit-parallel implementation using ripple-carry adders, the area and delay increase

linearly with the number of bits. For a tree-adder implementation, the area and delay scale

as O(q log q) and O(logq), respectively, with the number of bits (q) per message.

The delay and size of a comparison circuit determine the performance of the check

nodes. Since bit-parallel comparison is implemented by subtraction, the scaling for bit-

parallel check nodes will be the same as bit-parallel variable nodes.

In a digit-online system, the number of clock cycles needed to process each message

is proportional to precision. A more precise digit-online decoder is inherently more deeply

pipelined, so the clock cycle length could potentially be decreased by rebalancing pipeline

stages. However, we first make the conservative assumption that the length of the clock
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Figure 6.1: Relative effect of increasing message precision q on throughput/area for var-

ious LDPC block decoder implementations. For the digit-online system it is assumed that

the clock period is constant as precision increases.

cycle remains constant. In this case, throughput is inversely proportional to precision. For

a p-digit message, the precision q in bits is equal to p− pg +1, where pg is the number of

guard digits required for the system. Since the area remains constant, the throughput/area

should scale as O(q−1). A more aggressive assumption is to assume that the length of the

clock cycle scales as O(1/q). This results in a throughput that is O(1).

From the scaling orders determined above, the digit-online system has a throughput/area

that scales as O(q−1) for a constant clock period, or a throughput/area that scales as O(1)

if the clock period is O(1/q). A bit-parallel system with ripple-carry adders has a through-

put/area of order O(q−2). Using tree adders, bit-parallel systems have a throughput/area

that scales as O(1/q(log q)2).

Fig. 6.1 shows the throughput/area as a function of message precision relative to a

4-bit implementation with the same arithmetic scheme. The bit-parallel implementations

scale similarly. However, even with conservative clock period assumptions, the digit-online

implementation scales better than any of them. For example, an increase from 4 bits to 8

bits decreases throughput/area to half of the original value in digit-online systems, and to

one quarter or less in digit-parallel. To go from 4 bits to 16 bits reduces throughput/area to

one quarter of the original value in digit-online, and to one sixteenth in digit-parallel.
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6.2 Decoding Parameters

To demonstrate the effects of message precision on decoder performance, many decoders

for the irregular WiMAX rate-3/4 base matrix A (which we refer to as rate-3/4A for short)

length 1056 code were synthesized in a TSMC 65 nm general purpose process1. Both digit-

online and bit-parallel decoders were synthesized to allow for a direct comparison of their

performance. All results are reported for nominal process corners and the conservative

wiring model. Automatic register re-timing was enabled to balance the pipeline stages

without designer intervention. Each decoder was synthesized over a large range of clock

frequencies. The design with the highest throughput/area for each precision was chosen to

present in the thesis. More information about our methodology is presented in Appendix C.

Table 6.1 shows the decoder parameters common to all decoders synthesized.

Published WiMAX decoders generally use a channel quantization between 5 and 8 bits,

and use up to 9 bits to represent internal messages [26, 50–54]. There is little improvement

to error performance beyond 8 bits [54]. Decoders with 12 or more pipeline stages are

included to obtain frame-interlaced results at higher precision. It is unlikely that 11 or more

bits of precision would be used in practice.

Likewise, since error performance drops off sharply below 5 bits of precision, frame-

interlaced decoders for less than 5 bits are included for comparison only and will not provide

acceptable error performance.

Throughout this chapter we look at the scaling of decoder parameters relative to a 6-bit

decoder of the same architecture with the same number of simultaneous frames. Since

inverse relationships are expected between precision and throughput, we show plots of

1/throughput and area/throughput to make the scaling more apparent.

WiMAX 3/4A codes have dv,max = 4, so the maximum useful precision in the digit-

online architecture is p1 f = l−2 for single frame decoding, and p2 f = l/2−2 for frame-

interlaced decoding. A p-digit signed-binary number can store a p-bit signed number with-

out requiring an additional sign bit, so it is related to the channel quantization q by the

equation q= p+1. Thus our pipeline can decode one frame at (q1 f = l−1)-bit precision or

two frames at a (q2 f = l/2−1)-bit precision.

The chosen code requires variable nodes of degrees 2, 3 and 4 and check nodes of

degree 14 and 15. The selection networks of the degree-14 and degree-15 check nodes are

1Standard cells used were version 140b of the tcbn65gplus cells. Logic synthesis was performed in Synop-

sys Design Compiler D-2010.03-SP5.
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LDPC Code WiMAX 802.16e

Codeword size 1056

Code Rate 3/4, base matrix A

Parallelism Full

Variable Node Degrees 2, 3, 4

Check Node Degrees 14, 15

Decoding Algorithm Offset Min-Sum

Max. Iterations 10

Early Termination Yes1

1 Decoders support early termination but results

given are worst-case without early termination.

Table 6.1: Parameters of synthesized WiMAX rate-3/4 base matrix A decoders.

Single Frame Frame-Interlaced

Pipeline δv δc Clk. Freq. Area Precision Tput TAR Precision Tput TAR

Length (MHz) (mm2) (digits) (bits) (Gbit/s) (Gbit/s·mm2) (digits) (bits) (Gbit/s) (Gbit/s·mm2)

6 4 2 575 2.68 4 5 10.1 3.78 1 2 20.2 7.56

7 4 3 990 2.61 5 6 14.9 5.72

8 5 3 1205 2.52 6 7 15.9 6.31 2 3 31.8 12.62

9 5 4 1449 2.60 7 8 17.0 6.54

10 6 4 1538 2.70 8 9 16.2 6.01 3 4 32.5 12.02

12 7 5 1923 2.97 10 11 16.9 5.70 4 5 33.8 11.40

14 7 7 1961 3.10 12 13 14.8 4.77 5 6 29.6 9.53

16 7 9 2273 3.12 14 15 15.0 4.82 6 7 30.0 9.63

18 7 11 2381 3.35 16 17 14.0 4.18 7 8 27.9 8.35

20 7 13 2500 3.58 18 19 13.2 3.69 8 9 26.4 7.37

Table 6.2: Synthesis results of digit-online decoders for the WiMAX rate-3/4A length 1056

code at various message precisions. δv is the length of the variable node pipeline and

δc is the length of the check node pipeline. Decoders with an even number of pipeline

stages can be operated in a single-frame high precision mode or a frame-interlaced low

precision mode. The precision in digits is the number of signed-binary digits used to store

each message. Two additional digits are required for each frame to prevent overflow. Since

signed-binary does not require an additional sign bit, the number of bits that can be stored

is one more than the number of digits. TAR is the throughput/area ratio. Throughput and

TAR are worst-case assuming 10 iterations are run.

both 6 levels deep. The degree-14 check node requires 25 comparisons while the degree-15

check node requires 27 comparisons. These are the optimal numbers of comparisons for

(2,14) and (2,15) selection networks [48].

Pipeline details for the digit-online decoders are shown in table 6.2. Because of result

forwarding between pipeline stages, there are many paths around the processing loop with

fewer than the maximum number of registers. At the minimum pipeline depth of 4 for a

degree-4 variable node there are combinational paths between input and output LLRs. To

ensure synchronization of values, the degree-2 and degree-3 variable nodes are pipelined

to the same length as the degree-4 variable nodes and each will always have at least one
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Single Frame Frame-Interlaced

Precision Clk. Freq. Area Tput TAR Clk. Freq. Area Tput TAR

(bits) (MHz) (mm2) (Gbit/s) (Gbit/s·mm2) (MHz) (mm2) (Gbit/s) (Gbit/s·mm2)

5 250 1.57 24.0 15.3 526 2.02 50.5 25.0

6 222 1.84 21.3 11.6 446 2.30 42.9 17.6

7 222 2.31 21.3 9.3 286 2.34 27.4 11.7

8 222 2.84 21.3 7.5 386 3.09 37.1 12.0

9 200 3.00 19.2 6.4 245 3.14 23.5 7.5

11 167 3.55 16.0 4.5 222 4.06 21.3 5.3

13 167 4.36 16.0 3.7 254 5.01 24.4 4.9

15 143 4.51 13.7 3.0 200 5.41 19.2 3.6

17 167 5.97 16.0 2.7 233 6.42 22.4 3.5

19 167 6.87 16.0 2.7 143 6.09 13.7 2.3

Table 6.3: Synthesis results of bit-parallel decoders for the WiMAX rate-3/4A length 1056

code at various message precisions. TAR is the throughput/area ratio. Throughput and TAR

are worst-case assuming 10 iterations are run.

register between input and output. The check node requires forwarding one stage ahead

due to the offset subtraction.

Given these minimum forwarding values, the minimum number of registers in the pro-

cessing loop can be found by subtracting 5 from the pipeline length. Thus a minimum

pipeline length of 6 was chosen to ensure that each path contained at least one register.

Additionally, 5 bits of precision are required for the optimal offset constant β to be greater

than zero at efficient channel scaling.

Increasing the pipeline length of digit-online decoders past 20 increased the synthesis

times greatly and made it infeasible to generate enough synthesis results to draw meaningful

conclusions from. Even at the pipeline lengths synthesized we are approaching the limits

of clock frequency for an edge-triggered design. At higher number of pipeline stages the

register clock→q and setup times become an increasingly large proportion of the clock

cycle. About 100 ps of the critical path is consumed by flip-flop setup and clock→q times,

which accounts for more than 20% of the delay at high frequencies.

For the bit-parallel decoders, a fully-parallel design was used. Different decoders were

needed for single-frame and frame-interlaced decoding. For the single-frame decoders,

the variable and check nodes evaluate during the same clock cycle, giving one clock cycle

per iteration. During a given clock cycle for the frame-interlaced decoders, one frame’s

variable nodes were evaluating while the other’s check nodes were evaluating. This results

in two clock cycles per iteration. The bit-parallel architecture requires one extra iteration to

calculate the hard decisions. Table 6.3 shows the synthesis results for bit-parallel decoders.
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Figure 6.2: Effect of changing message precision on decoder area for single-frame and

frame-interlaced decoding.

6.3 Area

Fig. 6.2 shows the effect of changing message precision on decoder area. For digit-online

decoding, there is a weakly linear relationship between message precision and decoder area

for single-frame decoding. This trend is magnified for frame-interlaced decoding. The

6-stage and 7-stage digit-online decoders actually requires more area than the 8-stage digit-

online decoder due to the low number of registers in the worst-case loops. For both digit-

online and bit-parallel architectures, frame-interlaced decoders are larger than single-frame

decoders for a given precision which is part of the cost for their increased throughput. At

low precisions the bit-parallel decoders are smaller, but as precision increases they become

larger than digit-online decoders.

The breakdown of the area for single-frame digit-online decoding is shown in Fig. 6.3.

The size of the control logic is dominated by the size of the input buffer. While the area of

the control logic increases with precision, the greatest area increase is accounted for by the

greater number of pipeline stages in the computation nodes. For larger numbers of pipeline

stages the size of the input buffers could be decreased by allowing only frame-interlaced

decoding. However, the area savings would not be significant. As expected, the sequential

area of the processing nodes is strictly increasing as the degree of pipelining increases. The

combinational area has a downward trend as more of the drive is provided by flip-flops and

the cycle times decrease.
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Figure 6.3: Breakdown of single-frame digit-online decoder area into computation node

area control logic area.
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Figure 6.4: Breakdown of single-frame bit-parallel decoder area into computation node

area control logic area.

Fig. 6.4 shows the area breakdown for single-frame bit-parallel decoders. The sequen-

tial area is much smaller than for digit-online decoding, which is expected due to the smaller

degree of pipelining.

The relative decoder area for digit-online decoders is shown in Fig. 6.5. We have seen

that the constant area assumption holds approximately for the combinational area, but that

the sequential area increases significantly with precision. Thus the slopes of the relative
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Figure 6.5: Effect of changing message precision on relative decoder area for single-frame

and frame-interlaced digit-online decoding.
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Figure 6.6: Effect of changing message precision on relative decoder area for single-frame

and frame-interlaced bit-parallel decoding.

areas are greater than zero, but the area is still much less than if area were proportional to

precision.

The relative area of bit-parallel decoders is shown in Fig. 6.6. Both single-frame and

frame-interlaced decoders have areas that are proportional to precision.
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Figure 6.7: Effect of changing message precision on decoder throughput for single-frame

and frame-interlaced decoding. Throughput is worst-case with no early termination.

6.4 Throughput

The throughput for each of the synthesized decoders is shown in Fig. 6.7.

For digit-online decoders, as the message precision increases, the number of clock cy-

cles per iteration also increases. However, the depth of the pipeline increases as well, allow-

ing the clock cycles to shorten. Thus, for single-frame digit-online decoding with message

precisions from 6 to 15 bits the throughput is relatively constant. The effect on throughput

is magnified for frame-interlaced decoding, but throughput is relatively flat for 3 to 7 bits

of precision. Using frame-interlaced decoding results in much higher decoding throughput

for a given precision.

It is much more clear that throughput decreases with precision for bit-parallel decoders.

While bit-parallel decoders have higher throughput at low precisions, the throughput of

digit-online becomes comparable at higher precisions.

The relative 1/throughput for digit-online decoders is shown in Fig. 6.8. For a digit-

online decoder this is equivalent to the clock period times the number of stages. The conser-

vative expectation was for a 1/q relationship, but the synthesis results are better than that.

Single-frame decoding has a very small slope, and even though frame-interleaved decoding

has a steeper slope it is still better than proportional.

Fig. 6.9 shows the relative 1/throughput for bit-parallel decoders. For bit-parallel de-

coders, this is simply proportional to the clock period and has no direct dependence on pre-
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Figure 6.8: Effect of changing message precision on relative decoder 1/throughput for

single-frame and frame-interlaced digit-online decoding. Throughput is worst-case with no

early termination.
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Figure 6.9: Effect of changing message precision on relative decoder 1/throughput for

single-frame and frame-interlaced bit-parallel decoding. Throughput is worst-case with no

early termination.

cision. The frame-interlaced decoder has approximately linear scaling, which (along with

its linear area relationship) suggests that the synthesis tool has used ripple-carry adders. The

single-frame decoder has a linear area relationship, but its 1/throughput is sub-linear. One

possible adder structure is the carry-select adder which has O(q) area and O(
√

q) delay.

This assumption seems to fit the delay scaling of the single-frame decoder.
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Figure 6.10: Effect of changing message precision on digit-online decoder through-

put/area. Worst-case throughput with early termination disabled is used.

6.5 Throughput/Area

Since area can often be reduced at the cost of throughput by decreasing parallelism, the area-

normalized throughput or throughput/area ratio (TAR) is an important metric of decoder

performance. Fig. 6.10 shows the throughput/area ratio for each of the decoders. Despite

the fact that frame-interlaced decoders are larger for a given precision, they still have a

superior throughput/area ratio.

In contrast to digit-online decoders, bit parallel decoders show a clear inverse relation-

ship between precision and throughput/area. Digit-online decoders have lower through-

put/area than bit-parallel decoders at low precision, but they become competitive at higher

precision.

By examining the scaling of area/throughput, we can get a clearer idea of the relation-

ship between precision and throughput/area. Fig. 6.11 shows the relative area/delay for

digit-online decoders. For 5-9 bits, the frame-interlaced decoder comes close to the conser-

vative estimate of proportional scaling. The single-frame scales much closer to the constant

area/throughput expected with 1/q clock cycle scaling.

Fig. 6.12 shows relative area/throughput for bit-parallel decoders. Single-frame bit-

parallel decoders were estimated to have O(q) area and O(1/q) throughput. This suggests

an O(q2) relationship between precision and area/throughput. While this seems to hold

for precisions up to 11 bits, decoders at higher precisions perform slightly better. Frame-
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Figure 6.11: Effect of changing message precision on relative area/throughput for digit-

online decoders. Worst-case throughput with early termination disabled is used.
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Figure 6.12: Effect of changing message precision on relative area/throughput for bit-

parallel decoders. Worst-case throughput with early termination disabled is used.

interlaced decoders were estimated to have O(q) area and O(1/
√

q) throughput, resulting

in O(q ·√q) area/throughput. The synthesized results are quite close to this estimate.

6.6 Energy/Bit

The energy per decoded bit results in this section are based on Synopsys power estimates. It

is assumed that the true energy/bit may vary by a constant factor from the estimates but the
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Figure 6.13: Effect of changing message precision on energy per decoded bit. Each plot is

scaled relative to a single-frame 6-bit implementation in the same architecture.

relative energy values are informative. In particular, the absolute values of energy/bit are

not directly comparable between digit-online and bit-parallel decoders, so we look only at

relative values. Each energy/bit value is reported relative to the energy/bit of a single-frame

6-bit decoder of the appropriate architecture (either digit-online or bit-parallel).

Fig. 6.13 shows the energy efficiency of the decoders in both single-frame and frame-

interlaced decoding modes. While frame-interlaced decoding results in better throughput

and throughput/area performance at a given precision, a higher energy/bit is required to

decode two frames at once. The energy/bit has a larger dependence on precision for the

digit-online decoders.

Fig. 6.14 shows the energy additional cost of frame-interlaced decoding. For digit-

online decoding, the energy/bit increases by 40-60% in the range of precisions where both

1-frame and 2-frame results are available. Bit-parallel generally has a lower energy increase

for frame-interlaced decoding, with most points falling between 30% and 50%.

The static power of all digit-online decoders is very small. Static power accounts for

about 1.5% of total power for the 6-stage decoder and less than 1% for all others. The

bit-serial decoders in [28] and [27] both reported much less than 1% static power for their

designs which were fabricated in 180 nm and 130 nm processes, respectively. The static

power consumption of bit-parallel decoders is 5-8% of total power. The static power is

more significant in bit-parallel due to the smaller fraction of sequential cells.
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Figure 6.14: Increase in energy/bit for frame-interlaced decoding.
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Figure 6.15: Marginal energy/bit cost to increase precision by one bit in digit-online

decoders. In regions where precision increases two bits at a time it is assumed that the

increase from each bit is equal.

The next two plots show the increase to energy/bit to increase the precision by one bit at

each precision. For regions where the decoders vary by two bits of precision it is assumed

that the increase from each bit is equal.

Fig. 6.15 shows the marginal energy/bit cost for digit-online decoders. The marginal

cost generally trends upward, suggesting that each additional bit becomes more expen-

sive from an energy/bit standpoint. At a given precision, frame-interleaved decoding has a

higher marginal energy/bit cost than single-frame in addition to the higher absolute ener-
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Figure 6.16: Marginal energy/bit cost to increase precision by one bit in bit-parallel de-

coders. In regions where precision increases two bits at a time it is assumed that the in-

crease from each bit is equal.

gy/bit. This can be seen in Fig. 6.13. The slope of the plot increases with precision, and

the energy/bit of the frame-interlaced decoders increases more rapidly with precision than

single-frame.

The marginal energy/bit cost for bit-parallel decoders is shown in Fig. 6.16. The

marginal cost does not seem to grow with precision, and is similar for single-frame and

frame-interlaced decoding. Referring to Fig. 6.13, both single-frame and frame-interlaced

decoding have similar slopes which do not change much with precision.

6.7 Summary

We have examined the effects of varying message precision in LDPC decoders for the irreg-

ular WiMAX rate-3/4A length-1056 code. Both digit-online and bit-parallel architectures

were examined.

We have shown that for digit-online decoders there is often no throughput cost to in-

creasing the message precision, and decoder area grows slowly with precision (e.g., tripling

the precision, from 5 to 15 bits, results in a 1.16x increase in area). However, the cost in

decoding energy efficiency is significant and must be considered when designing a digit-

online decoder.
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We have demonstrated that in both architectures, frame-interlaced decoding is supe-

rior to single-frame decoding when it comes to throughput and throughput/area. However,

frame-interlaced decoding comes at a higher energy/bit cost, so designers must consider

whether the increased power consumption is acceptable.

Digit-online decoders have areas and throughputs that are less sensitive to precision

than bit-parallel decoders. Bit-parallel decoders have an energy efficiency that grows more

slowly with precision, and a lower energy cost to frame-interlaced decoding.

The next chapter goes beyond logic synthesis and compares the post-layout perfor-

mance of digit-online and bit-parallel decoders.
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Chapter 7

Post-Layout Analysis

7.1 Introduction

While the previous chapter focused on synthesis results, the effect of wiring congestion

on the performance of LDPC decoders cannot be ignored. For this reason, the post-layout

performance of digit-online decoders must be explored. Again, a direct comparison to bit-

parallel decoders will be provided. Since wiring congestion affects different sized designs

differently, we will look at post-layout results (in a TSMC general-purpose 65-nm process)

across a range of code sizes1. Our synthesis and place and route methodologies are pre-

sented in Appendix C.

We begin by again using the WiMAX family of codes since they provide a large range

of code sizes. Given that placement and routing have much higher computing requirements

than synthesis, the design space must be constrained in order to make analysis feasible. We

use 9-bit quantization, which is reasonable for the requirements of WiMAX but towards the

high end [26, 50–54]. Using a high quantization will result in an error performance that is

at least as good as other decoder implementations.

We will look at the difference between bit-parallel and digit-serial implementations

over various code sizes. WiMAX allows code lengths from 576 to 2304. In addition to the

length-1056 code used in our detailed precision analysis, decoders of length 576, 1728, and

2304 will be synthesized to span the entire range of WiMAX code sizes.

1Version 140b of the tcbn65gplus standard cell library was used for all results in this chapter. Logic synthesis

was performed in Synopsys Design Compiler D-2010.03-SP5.
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Section 7.2: WiMAX Rate-3/4A Code Size Study

Both [18] and [22] report that achievable placement density2 decreases as parallelism

increases in bit-parallel implementations. Based on those results, we expect density in

the bit-parallel implementation to decrease with code size. If digit-online has less routing

congestion, its achievable placement density should be less dependent on code size. Ad-

ditionally, total wire length can be used as a measure of routing congestion [25]. We also

expect digit-online decoders to have a lower total wire length than bit-parallel because of

the much smaller number of interleaver wires required and because of their narrower data

paths.

Section 7.2 compares decoder architectures for the WiMAX rate 3/4A code, which is the

code used in the previous chapter for our precision analysis. Frame-interlaced architectures

are used in order to target maximum throughput, with the expectation that energy efficiency

can be improved by voltage scaling. We find that under these conditions the throughputs of

digit-online decoders are limited by the extremely high clock frequencies that are required.

These high clock frequencies result in a large throughput drop from synthesis to post-layout.

To see how the architectures compare for a higher code rate, we look at decoders for

the WiMAX rate-5/6 code in section 7.3. This section uses single-frame decoding to de-

crease the required clock frequencies to a more acceptable level. Under these conditions,

digit-online compares more favourably to bit-parallel, which suffers because of the higher

congestion associated with higher check node degrees. We show that local check node

wiring is the largest contributor to wiring congestion in high-rate codes.

Finally, we present a digit-online decoder ASIC for the 10GBASE-T code in section 7.4

in order to compare our architecture to the literature. We show that our architecture results

in a fully parallel decoder with superior throughput and throughput/area to other published

designs.

7.2 WiMAX Rate-3/4A Code Size Study

7.2.1 Area and Throughput

Fig. 7.1 shows the post-layout area vs. code size for 9-bit frame-interlaced LDPC decoders.

There is very little difference in area between the digit-online and bit-parallel decoders

for any code size. However, even though the architectures have similar areas, the digit-

2The initial density of a design refers to the ratio of total standard cell area to core area before placement.

The final density refers to the ratio of total standard cell area to core area after placement, optimizations, and

clock tree insertion. Unless otherwise specified, placement density refers to the initial density.
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Figure 7.1: Post-layout area for 9-bit frame-interlaced WiMAX rate-3/4A decoders for

various code lengths.
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Figure 7.2: Post-layout wiring length for 9-bit frame-interlaced WiMAX rate-3/4A de-

coders for various code lengths.

online architecture requires less than half as much total wiring as a bit-parallel architecture

(Fig. 7.2). This is not surprising, since the digit-online architecture requires only 2/9ths as

many wires for the interleaver, and also has narrower data paths. There was evidence of ill

effects from wiring congestion in the bit-parallel designs for longer codes. The bit-parallel

decoders for the length 1728 and 2304 codes could not be routed when placed with an initial

density of 90%, even though the digit-online decoders were still routable at such a dense

placement. The length 2304 bit-parallel decoder went from an initial density of 85% to a
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Figure 7.3: Post-layout throughput for 9-bit frame-interlaced WiMAX rate-3/4A decoders

for various code lengths.
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Figure 7.4: Post-layout throughput/area for 9-bit frame-interlaced WiMAX rate-3/4A de-

coders for various code lengths.

final density of 97.2%. This large increase in density suggests that wire congestion was

resulting in large wire delays which needed extra buffering to meet timing. In comparison,

the length-2304 digit-online decoder grew from a 90% initial density to a final density of

96.6%. When increasing the code length from 576 to 2304, the clock frequency dropped by

44% for bit-parallel decoders and by only 30% for digit-online decoders.

Fig. 7.3 shows the throughput of the decoders. There is a clear advantage for bit-

parallel. The digit-online decoders suffer because they require very high clock frequencies
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which are difficult to maintain through placement and routing. The digit-online decoders

would require a clock frequency 10x as high as the bit-parallel decoders to have equal

throughput. Using frame-interlaced decoding compounds this problem because it doubles

the number of pipeline stages resulting in even higher clock frequencies.

The throughput/area of the decoders is shown in Fig. 7.4. Since the bit-parallel decoders

had a higher throughput than and a similar area to the digit-online decoders, they have a

superior throughput/area. The TAR of digit-online decoders decreases less when increasing

code length from 576 to 2304 (27%) than bit-parallel (39%), but the bit-parallel system still

has a much higher TAR at the largest code size.

7.3 WiMAX Rate-5/6 Code Size Study

High check node degrees exacerbate hardware and wiring complexities in bit-parallel de-

coders, especially in highly parallel designs [22]. Since bit-parallel decoding seemed to be

more appropriate for the WiMAX rate-3/4A codes, we now look at the WiMAX rate-5/6

codes which have higher check node degrees. WiMAX rate-5/6 codes use dc = 20 compared

to dc = {14,15} for rate 3/4A. We also use single-frame decoding. By using a higher check

node degree and performing single-frame decoding, the clock frequency of the digit-online

decoders can be greatly reduced. This should result in better post-layout performance.

7.3.1 Area and Throughput

For single-frame rate-5/6 decoders, the digit-online architecture results in areas 10-29%

smaller than equivalent bit-parallel designs, as shown in Fig. 7.5. The difference in wire

length has grown, with bit-parallel designs requiring more than 2.6x as much wiring as

equivalent digit-online designs (Fig. 7.6).

The throughput and throughput/area of the single-frame rate-5/6 decoders is shown in

Fig. 7.7 and Fig. 7.8, respectively. The bit-parallel decoders still achieve a better through-

put, but the throughput/area gap has shrunk significantly. While the frame-interlaced rate-

3/4A digit-online decoders achieved about half of the throughput/area as bit-parallel, for

single-frame rate-5/6 decoding they now have a throughput/area of no more than 15% less.

For the length-576 and length-2304 codes the throughput/area performance is almost iden-

tical between the two architectures.

At length-2304, the rate-5/6 bit-parallel design suffered even more from congestion than

did the rate-3/4A design. Again the decoder was unroutable at 90% placement density, but
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Figure 7.5: Post-layout area for 9-bit frame-interlaced WiMAX rate-5/6 decoders for vari-

ous code lengths.
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Figure 7.6: Post-layout wiring length for 9-bit frame-interlaced WiMAX rate-5/6 decoders

for various code lengths.

even at 85% the timing goal had to be greatly reduced to allow the design to meet timing.

Digit-online decoders were able to achieve a consistent throughput/area from length 1056-

2304.

7.3.2 Wiring and Congestion

To demonstrate the difference in wiring congestion, we look at the percentage of available

routing that was used. This utilization is broken down by metal layer, but metal 1 is omitted
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Figure 7.7: Post-layout throughput for 9-bit frame-interlaced WiMAX rate-5/6 decoders

for various code lengths.
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Figure 7.8: Post-layout throughput/area for 9-bit frame-interlaced WiMAX rate-5/6 de-

coders for various code lengths.

because it is largely consumed inside standard cells and very little is used for routing (less

than 0.3% of what would be available if none was used inside standard cells). Metal 2 is

also present in standard cells, but we report only the portion of metal 2 used for routing

between cells.

Fig. 7.9 shows the routing utilization for bit-parallel decoders, and Fig. 7.10 shows

the routing utilization for digit-online decoders. In both cases the utilization increases with

the code length. However, the digit-online systems show a much lower overall utilization,

83



Section 7.3: WiMAX Rate-5/6 Code Size Study

0%

10%

20%

30%

40%

50%

60%

70%

80%

M2 M3 M4 M5 M6 M7 M8 M9

R
o
u
ti
n
g
 U

ti
liz

a
ti
o
n

Metal Layer

N=576
N=1056
N=1728
N=2304

Figure 7.9: Routing utilization by metal layer for bit-parallel single-frame WiMAX rate-5/6

decoders of various code lengths
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Figure 7.10: Routing utilization by metal layer for digit-online single-frame WiMAX rate-

5/6 decoders of various code lengths

particularly on the higher metal layers. This suggests that the digit-online systems are much

less congested than the bit-parallel systems.

To examine the cause of congestion, we look at a breakdown of total net length by func-

tion for the length-2304 decoders. This total net length is normalized to core area to give

a measure of congestion. The wire lengths/core area are shown in Figs. 7.11 and 7.12 for

bit-parallel and digit-online decoders, respectively. Here we see that for both architectures,

the largest fraction of wiring is consumed locally in the check nodes. As expected, each
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Figure 7.11: Wire length/core area by function for bit-parallel length-2304 single-frame

WiMAX rate-5/6 decoders
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Figure 7.12: Wire length/core area by function for digit-online length-2304 single-frame

WiMAX rate-5/6 decoders

of the functions consumes less wiring in the digit-online systems than the corresponding

bit-parallel systems.

The LDPC code for the 10GBASE-T standard uses an even higher check node degree

of 32. Since the relative performance of digit-online decoder seems to improve at higher dc,

we expect that a digit-online ASIC will compare well to other published implementations.
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7.4 10GBASE-T ASIC

Using the digit-online architecture, a decoder for the (2048,1723) 10GBASE-T LDPC code

was implemented. The decoder requires a core area of 10.89 mm2 in a TSMC general-

purpose 65-nm process. The post-layout clock frequency is 980 MHz under nominal con-

ditions and using the conservative wiring model. The design was placed at an initial core

density of 80%. We were able to place and route our design at 90% initial density, but the

achievable clock frequency dropped from 980 MHz to 890 MHz.

The degree-32 check node was based on a selection network with 61 comparisons in

8 levels. It was pipelined to give δc = 6. Using the high fan-in addition circuit of Fig.

3.7, a two-stage variable node was designed and pipelined to give δv = 6. The 12 stages

of the total system pipeline allows for 12-digit signed-binary messages to be stored and

processed. Three of the digits are required to prevent overflow, leaving 9 that can store

useful data. As previously explained, LLRs are saturated to 9 digits once per iteration.

Since signed-binary notation does not require a separate sign digit, this is equivalent to

using 10-bit two’s complement messages.

Since 10-bits of precision is much higher than what is found in other published 10GBASE-

T decoders [18, 22, 27], the 12 stages of the pipeline can also be used to store two 4-bit (3

signed-binary digit) frames and decode them in a frame-interleaved fashion. This requires

changes to only the control logic, so it is possible for the same decoder to decode either one

10-bit frame or two 4-bit frames at once.

The error performance of the system has been verified with bit-accurate C-simulations.

Fig. 7.13 shows the error performance of the decoding system at 4-bit and 10-bit precisions.

The higher precision provides only a slight 0.1 dB coding gain improvement but is included

because of the low area cost (about 1%) of supporting this mode as well.

At low SNR, given 8 iterations per codeword and 12 clock cycles per iteration, a 980

MHz operating frequency corresponds to a 20.9-Gbit/s coded throughput at 10-bits. At

5.5 dB we are able to realize a 2.0x speedup from early termination, bringing the coded

throughput to 41.9 Gbit/s. Using the decoder to decode two interleaved 4-bit frames doubles

the worst-case throughput to 41.8 Gbit/s and brings the throughput at 5.5 dB to 82.8 Gbit/s.

The power consumption of the decoder is 8.9 W. This corresponds to an energy/bit of

128 pJ/bit for 4-bit messages and 254 pJ/bit for 8-bit messages. Sequential elements con-

sume 45.9% of the power while combinational elements consume 45.4%. The remaining
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Figure 7.13: Frame-error rate (dashed lines) and bit-error rate (solid lines) performance

of the (2048,1723) 10GBASE-T LDPC code from bit-accurate C-simulation using BPSK

modulation.

8.7% is consumed by the clock network. Leakage power is only 56 mW, which is 0.6% of

the total power. This fraction is consistent with power measurements reported for bit-serial

systems [27, 28].

A comparison of results is shown in Table 7.1. Throughput is normalized to area to give

the throughput/area ratio (TAR). To achieve a more fair comparison, we scale the 90-nm

results of [22] and [27] to 65 nm using the approximate scaling factors of [39].

At a 4-bit precision, the digit-online architecture is an improvement over bit-serial (

[27]) in terms of absolute throughput while achieving a similar area-normalized throughput.

It should be noted that the check nodes in [27] calculate only a single minimum and not the

extrinsic minimums. This decreases their areas, but results in an SNR shift of about 0.5 dB

compared to extrinsic minimum algorithms. Additionally, their results are pre-layout. A

placed design would have a larger core area and possibly a lower clock frequency.

The bit-parallel decoder in [18] achieved a coded throughput of 47.7 Gbit/s through the

use of early termination. They reported that routing congestion at high levels of parallelism

limited their placement densities and timing. As a result they chose to implement a partially

parallel design to limit congestion. They were able to achieve 80% placement density at

their desired timing. The decoder in [22] required a lower 70% initial placement to meet

their goals even though it is a much smaller design. Our design was fully parallel and yet
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Darabiha Z. Zhang Ueng This work

et al. [27] et al. [18] et al. [22] [46]

Technology (nm)a 90 65 90 65

Architecture Bit-serial Bit-parallel Bit-parallel Digit-online

Max. Iterations 8 8 8 8

Early Termination yesb yes no yes

Core Area (mm2) 5.11c 4.52 2.30 10.89

Initial Density 80.0% 70% 80.0%

Final Density 84.5% 76% 87.3%

Clock Freq. (MHz) 346 700 420 980

LLR Precision (bits) 4 4 5 4 10

SNR (dB)d 4.8 4.3 4.2 4.3 4.2

Block interleaving yes no no yes no

E/b (pJ/bit) 59 48 128 254

E/b @ SNR (dB) 5.5 5.5

Throughput (Gb/s)e 22.1 13.3 6.7 41.8 20.9

TAR (Gb/s/mm2)e 4.33 2.48 2.92 3.84 1.92
a Results for 90 nm decoders are scaled to 65 nm.
b Early termination to lower power only, does not increase throughput.
c Synthesis result.
d To achieve a bit-error rate of 10−6.
e For 8 iterations.

Table 7.1: Comparison of sub-100-nm LDPC decoder ASICs for the 10GBASE-T

(2048,1723) LDPC code
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Figure 7.14: Worst-case (8 iteration) throughput/area vs. E/b @ 5.5dB of published

10GBASE-T decoders. E/b and TAR values are given for estimated performance in a 65-nm

process.

we observed no routing congestion or timing difficulties at 80% placement density. This
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presents a strong argument that digit-online computations can mitigate routing issues in

highly parallel decoder designs.

At 4-bit precision we achieve a higher throughput and throughput/area than [18] and

[22]. Our bit-error rate performance is identical to [18]. The decoder in [22] performs

slightly better due to the higher message precision of 5-bits. At a 10-bit precision we still

achieve a higher throughput than [18] and [22], but at a lower throughput/area.

The energy/bit of the digit-online decoder is larger than the bit-parallel decoders. At

4 bits the digit-online decoder has an energy/bit of 2.2-2.7x higher than the bit-parallel

decoders. However, not much work has been done to optimize the power of digit-online

decoders yet. Additionally, [18] was implemented in a low-power process whereas our

decoder was implemented in a general-purpose process. Voltage scaling could also improve

the E/b of the digit-online design. The 10-bit E/b of the digit-online decoder is about double

the E/b at 4-bit. Given the much lower throughput and the much higher E/b, it is probably

not practical to use 10 bits of precision to achieve a 0.1 dB higher coding gain.

Fig. 7.14 shows a scatter plot of the throughput/area and E/b values of the ASICs we

have discussed.

7.5 Summary

High-precision digit-online decoders tend to have a smaller area than equivalent bit-parallel

decoders. However, digit-online decoders do not always have superior throughput or through-

put/area. Because digit-online decoders require much higher clock frequencies than bit-

parallel decoders, their post-layout performance suffers compared to synthesis results if

the pipeline length becomes too long (as observed for frame-interlaced decoding at high

precision). Digit-online decoders also compare more favourably to bit-parallel decoders

where the check node degree is high. This decreases the clock frequency digit-online de-

coders need to match the throughput of bit-parallel decoders (since the achievable clock

frequency of decoders decreases with increasing check node degree). Additionally, high

check node degrees increase wiring congestion in bit-parallel decoders more than in digit-

online decoders due to the wider data-paths in bit-parallel decoders. Congestion did not

limit throughput/area for bit-parallel decoders of lengths 576 and 1056, but became an is-

sue at lengths 1728 and 2304.

The digit-online decoder for the 10GBASE-T LDPC code compares favourably to other

published ASICs. This is likely due to having a higher check node degree than the WiMAX
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codes. It achieves a higher throughput and throughput/area than other published ASICs

for the same code. It also demonstrates that digit-online decoders are able to achieve good

throughputs at very high precision. However, the energy efficiency is not as good as other

published results. This gap could be narrowed by using a low-power rather than general-

purpose process, or voltage scaling. Future work should also generate a fully parallel bit-

parallel decoder for the 10GBASE-T code for a direct comparison to digit-online.
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Chapter 8

Conclusion

8.1 Summary of Contributions

Fully parallel LDPC block code decoders are potentially limited by wiring congestion. Us-

ing serial communications on-chip is one approach to mitigating this problem, but existing

bit-serial message-passing LDPC block code decoders have several shortcomings. By using

signed-binary redundant notation, we have expanded bit-serial message-passing to digit-

serial message-passing. This allows us to use digit-online techniques to develop deeply

pipelined LDPC decoders. Redundant notation removes the need of previous bit-serial de-

coders to reverse the bit order at each node or de-serialize and perform parallel operations.

Unlike existing bit-serial decoders, frame-interleaving is not necessary for efficient use of

hardware.

Digit-online decoders do not require any special considerations for code design, do not

require specialized decoding algorithms, and are suitable for fully parallel decoding. They

achieve throughput comparable to state-of-the-art implementations and make efficient use

of silicon area. Placement density of at least 80% is achievable without routing congestion,

even for a fully parallel design.

Digit-online LDPC decoders have a lower relative cost to increasing word length than

bit-parallel systems. They show promise to be used in implementations where high com-

puting precision is needed. Digit-online decoders can dynamically switch between a higher-

precision lower-throughput mode and a frame-interleaved lower-precision higher-throughput

mode.

In this thesis we have presented a complete digit-online LDPC decoding architecture

along with several ASIC implementations. We have demonstrated how the area, through-

put, and energy efficiency of digit-online LDPC decoders vary with precision. The effect

91



Section 8.2: Future Directions

of increasing code length on post-layout performance was also presented. We have pro-

vided a comparison to bit-parallel systems and shown the conditions under which each

of the architectures should be preferred. A digit-online LDPC decoder was presented for

the length-2048 rate-0.84 10GBASE-T LDPC code which compares favourably to other

published ASICs. At 4-bit precision our 82.8-Gbit/s throughput is 73% higher than the

published state-of-the-art. The 10-bit decoding mode extends the precision of previously

published decoders from 4-5 bits. Our throughput of 41.8 Gbit/s with 10-bit resolution is

only 12% less than the state-of-the-art 4-bit decoder.

8.2 Future Directions

The digit-online decoding architecture was developed with no assumption about the struc-

ture of LDPC codes and is applicable to completely random H matrices. In reality, many

LDPC codes are highly structured and have semi-regular connections (including the WiMAX

family of LDPC codes and 10GBASE-T LDPC code). In the future, this structure should be

considered when designing digit-online decoders. Structured codes provide a natural group-

ing of nodes into localized groups which can be exploited to reuse logic. Node groups could

share logic for operations such as generating delayed versions of R signals and generating

saturation values.

The digit-online designs considered so far have been fully register-based, but energy

efficiency could be improved by replacing shift registers with RAMs. The input buffer for

channel values in the controller would be simple to replace with RAM. In structured codes,

variable node groups could each have a block RAM for channel values and share logic to

generate the appropriate addresses. Since channel LLRs are required in a bit-serial manner,

each word in memory would hold one bit from each of several channel LLRs with the

number of words corresponding to the decoding pipeline length. Fig. 8.1 shows the local

variable node memory in both the architecture covered in this thesis (Fig. 8.1(a)) and the

proposed RAM-based system (Fig. 8.1(b)).

The results in [18] show that post-processing of LLRs is a good way of removing the

error floor for decoders which is necessary for codes which operate at extremely low bit

error rates, such as the 10GBASE-T code. Post-processing is performed on codewords that

do not converge within the iteration limit. At high SNRs this is usually due to absorbing

sets, or patterns of bits that cannot be successfully decoded with message-passing decod-

ing [18]. This is because the variable nodes in the set tend to reinforce incorrect values
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Figure 8.1: (a) Existing architecture and (b) proposed RAM-based architecture for local

variable node memory assuming nV NG variable nodes are grouped together. The full digit-

online variable node appears in Fig. 5.5.

through cycles in the graph (messages from unsatisfied check nodes from outside the set

are overpowered by messages from satisfied check nodes inside the set that reinforce the

error). In an attempt to correct this, the LLRs are decreased in magnitude at the satisfied

check nodes (or increased in magnitude at unsatisfied checks). Then, extra decoding it-

erations are performed to see if decoding converges after that point. Since the proportion

of codewords that fail to converge at high SNR is very small, there is almost no effect on

average throughput, but [18] shows that there is a significant effect on error rate.

Post-processing could be implemented in our digit-online architecture by changing the

offset sent to the check nodes. Check nodes would be modified to have another control

input that bypasses the offset subtraction. If decoding fails to converge before the iteration

limit is reached, the decoding controller would send out an alternate offset that would be

applied only at satisfied check nodes. Decoding could then continue as usual for another

set number of iterations.

This thesis has only considered fully-parallel implementations, but most published ASIC

implementations are partially parallel. Further work is needed to adapt the digit-online ar-

chitecture to partially node-parallel decoding. Developing a partially parallel digit-online

architecture would also work towards multi-mode digit-online decoders. When consider-

ing partially parallel and multi-mode decoders, a digit-online architecture should have an

advantage over bit-parallel decoders because it has a fixed wiring cost with respect to pre-

cision. This would result in smaller permutation circuits in a digit-online decoder.
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Since digit-online decoders have lower local and global routing demands than bit-

parallel decoders, they may be well suited to FPGAs, which have limited interconnect re-

sources. Many FPGAs also have different sized RAMs distributed across the chip, which

would be well-suited for replacing some of the registers. Future work should determine

whether digit-online decoding is appropriate for FPGAs. Possible drawbacks are the higher

clock frequencies needed and the required density of sequential cells.

Finally, our work with frame-interlacing has assumed two frames of equal precision. Al-

ternate frame-interlaced architectures are possible, including using low-precision operands

for the first half of decoding, and then allowing the operands to grow into a precision for the

last half of the decoding iterations. This would increase the controller complexity (currently

4% of the area for the 10GBASE-T design), but would not require changes to the rest of the

decoder. This variable-precision architecture may allow for good error performance with

lower total pipeline length than if both frames were high-precision [55]. While the current

architecture can ignore uninitialized data in the pipeline, this new architecture would need

to be more careful about resetting values as the operands grew. This sort of decoding may

also be incompatible with early termination.

8.3 Publications Arising from Thesis

An 11-page paper containing an explanation of the digit-online LDPC decoding architec-

ture and post-layout results from the 10GBASE-T LDPC ASIC entitled ”Deeply Pipelined

Digit-Serial LDPC Decoding” [46] has been accepted for publication in Transactions on

Circuits and Systems I – Regular Papers. Its DOI is 10.1109/TCSI.2012.2206461.

A 6-page paper entitled ”Effects of Varying Message Precision in Digit-Online LDPC

Decoders” [56] detailing the precision scaling of digit-online LDPC decoders was accepted

to the 2012 IEEE Workshop on Signal Processing Systems.
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Appendix A

Addition Circuits

This appendix provides the full logic for the different addition circuits used in the digit-

online LDPC decoders. The logic for performing the actual addition operations is explored

in Section 3.3.1. The explanations in this appendix focus on the additional logic required

to break the carry chains between successive operations. In any given stage of an adder, the

aim is to set the carry-out to the next stage to zero when the MSD is present in said stage.

The input R to each of the adders is an input vector marking which digits are the MSDs of

a value. For any input x and time i, xi is the MSD of X if and only if ri = 1.

z−i z+i

w+
i+2 w−

i+2 x+
i+2 x−

i+2

z+i+1

x−

i+1y+i+1 y−i+1

y−i+2

co

co

FA1

FA2

ri+2

ri+1

Figure A.1: Circuit for digit-online addition of two signed-binary numbers W and X with

a signed-binary result Z.
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z−iz+i
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Figure A.2: Circuit for digit-online addition of a signed-binary number X and a conven-

tional binary value W with a signed-binary result Z. Input wsub determines whether W is

subtracted or added and must remain constant for the entire operation.

Fig. A.1 is used to add two signed-binary values, and has the most straightforward logic

for breaking carry chains. When ri+2 is high (i.e., the MSDs of W and X are present in the

first stage), we wish to avoid a carry-in to FA2. This is easily accomplished by ANDing yi+1

with ri+2. When ri+1 is high, the carry-out from FA2 must be blocked. Since this carry-out

must be inverted to give the correct z−i , ri+1 can be NORed with the carry out to yield z−i .

Fig. A.2 is used to add or subtract a conventional unsigned value from a signed-binary

value, with a signed-binary result. To understand the logic to prevent carry-outs from the

adder, we must look at the two seperate cases for wsub. During addition (wsubi = 0), the

carry-out of the full adder is used for z+i . In this case the logic for the carry-out from FA1

in Fig. 5.7 can be used. When wsubi = 1, the carry-out of the full adder is inverted to give

z−i . Thus the logic for the carry-out from FA2 in Fig. 5.7 can be used.

If wsub in Fig. A.4 is fixed to 1, the circuit can be simplified to yield Fig. A.3 which is

used in the check nodes to subtract the offset (which is broadcast in unsigned-binary). The

addition logic is the same as the circuit in Fig. 3.6(b).
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z−i z+i

y−i+1

FA

x+
i+1 x−

i+1

co

ri+1

Figure A.3: Circuit for subtracting the offset X in conventional unsigned-binary format

from a signed-binary number Y .

Fig. A.4 shows the circuit for additing or subtracting a conventional binary number from

the sum of two signed-binary numbers. The second stage of addition (FA3) is identical to

Fig. A.2, and thus carry-out from that stage is handled in an identical manner. For the first

stage of addition (FA1 and FA2), the situation is slightly more complex.

If wsubi+2 = 1, FA1 has two negative inputs and one positive input. From Fig. 3.6 we

see that this means the carry out is the negative half-digit and the sum output is the positive

half-digit. This gives FA2 two positive half-digits, which means that the carry-out is the

positive half-digit.

When wsubi+2 = 0, the situation is reversed. FA1 has two positive inputs which makes

the carry output the positive half-digit and the sum the negative half-digit. This gives FA2

two negative half-digit inputs and makes its carry-out the negative half-digit.

In either case, one of the two half-digits between stages is positive and the other is

negative. Since the positive half-digits have an active-high convention and the negative

half-digits have an active-low convention, one of the two carry outs from FA1 and FA2

must be 1 and the other must be zero. The AND and OR gates on the inputs of FA3 ensure

that this is the case.
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ri+2
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Figure A.4: Circuit for digit-online addition of two signed-binary numbers X and Y and a

conventional binary value W with a signed-binary result Z. Input wsub determines whether

W is subtracted or added and must remain constant for the entire operation.
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Appendix B

Variable Node Equations

This appendix details the addition trees used in the variable node designs used to produce

Table 4.1 and in all ASIC designs. Each set of parentheses represents a single addition

operation with the type of addition (3:2, 4:2 or 5:2) implicit from the operands. Node

inputs λi and outputs Li are two-bit-per-digit signed-binary values while the channel input

c is a one-bit-per-digit value. The individual bits of a signed-binary digit d are denoted as

d+ and d−. The logic implementation of the addition circuits are given in Appendix A.

Variable node equations for dv = 2:

λ0 = (L1 + c)

λ1 = (L0 + c)
(B.1)

Variable node equations for dv = 3:

λ0 = (L1 +L2 + c)

λ1 = (L0 +L2 + c)

λ2 = (L0 +L1 + c)

(B.2)

Variable node equations for dv = 4:

λ0 = (L1 +(L2 +L3)+ c)

λ1 = (L0 +(L2 +L3)+ c)

λ2 = ((L0 +L1)+L3 + c)

λ3 = ((L0 +L1)+L2 + c)

(B.3)
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Variable node equations for dv = 5:

λ0 = ((L1 +L2)+ (L3 +L4)+ c)

λ1 = ((L0 +L2)+ (L3 +L4)+ c)

λ2 = ((L0 +L1)+ (L3 +L4)+ c)

λ3 = ((L0 +L1)+ (L2 +L3)+ c)

λ4 = ((L0 +L1)+ (L2 +L4)+ c)

(B.4)

Variable node equations for dv = 6:

λ0 = ((L1 +L2 +L+
5 )+ (L3 +L4 +L−

5 )+ c)

λ1 = ((L0 +L2 +L+
5 )+ (L3 +L4 +L−

5 )+ c)

λ2 = ((L0 +L1 +L+
5 )+ (L3 +L4 +L−

5 )+ c)

λ3 = ((L0 +L1 +L+
2 )+ (L−

2 +L4 +L5)+ c)

λ3 = ((L0 +L1 +L+
2 )+ (L−

2 +L3 +L5)+ c)

λ3 = ((L0 +L1 +L+
2 )+ (L−

2 +L3 +L4)+ c)

(B.5)
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Appendix C

Synthesis and Place-and-Route

Methodologies

This appendix explains our synthesis and place-and-route methodology for experiments

that compared digit-online and bit-parallel architectures. To ensure a fair comparison, the

synthesis and place-and-route scripts were kept as similar as possible across all decoder

designs.

Synthesis was done with identical synthesis parameters, optimization levels, and com-

pilation options. Automatic register retiming was used for all designs. Synthesis scripts

differed only in the range of clock frequencies targeted, as the achievable clock frequencies

vary greatly with architecture and precision. For each decoder, the design with the highest

throughput/area was selected for inclusion in the thesis. All logic synthesis was performed

in Synopsys Design Compiler D-2010.03-SP5.

For post-layout results, a layout for each decoder was generated at initial densities of

80%, 85%, and 90%. The placement and routing scripts were identical for each decoder,

with only the netlist and timing goals being decoder-specific. In most cases the achievable

timing decreased at higher placement densities. Therefore, the design of the three with the

highest throughput/area was chosen to present in this thesis. Timing-driven placement with

pre-place and post-place optimizations was used. Clock tree specifications were generated

automatically from the design with identical parameters. Two stages of optimization were

performed after clock tree synthesis. Timing-driven routing and two stages of post-route

optimization were used. These levels of optimization were chosen because in both cases

the second stage still improved timing significantly, while the third stage made very little

difference. All optimization settings (and any other unspecified settings) were the same

for all designs. All placement, routing, and power estimation was performed with Cadence

106



Encounter EDI 9.1. Mentor ModelSim 6.6c was used to generate net activity information

for power estimation.
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Appendix D

Place-and-Route with Cadence

Encounter

This appendix provides a general tutorial of achieving good placement and routing results

in Cadence Encounter. This tutorial is aimed at designers that already have a basic knowl-

edge of placement and routing of a design, and focuses on the key steps and parameters

to optimize designs. Since command syntax changes frequently with new Encounter ver-

sions, information will be presented in as general a way as possible. The specific commands

presented in the appendix are for EDI 9.1 and are typeset in bold text.

The design flow presented assumes a fully digital design in a small-nm design process

with at least 4 metal layers suitable for routing. Many of the parameters depend on the

type of design being fabricated. An effort will be made to explain the tradeoffs involved in

each decision. Place-and-Route is a much more iterative process than synthesis. It is often

necessary to evaluate results, tune parameters, and then re-run placement and routing from

the beginning.

The rest of this appendix explains the following general steps to do a full place-and-

route:

1. Design Setup

2. Placement and Post-Place Optimization

3. Clock Tree Synthesis (CTS) and Post-CTS Optimization

4. Routing and Post-Routing Optimization

5. Verification

6. Post-Layout Power Measurements
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Figure D.1: Back-to-back placement of standard cell rows.

D.1 Design Setup

Floor Planning

Modern cell libraries for small-nm processes are designed for back-to-back placement, as

shown in Fig. D.1. This removes the requirement to leave space between rows of standard

cells. The placement tool will automatically flip or rotate instances as necessary to match

the power rails correctly. Ensure that Encounter is set to back-to-back rows with zero

spacing in order to maximize logic density. Metal strips will be routed over the cell power

pins in order to ensure that all cells receive power even when there are gaps between them.

The ratio of standard cell area to core area (density) is a parameter that must be chosen

carefully. While higher densities make more efficient use of silicon area, they also increase

routing congestion. This can lead to unroutable designs, or designs with unnecessarily poor

clock frequencies due to wires that require a non-direct path. A good rule-of-thumb is to

start with 80% density and make adjustments based on the final design’s routability and

wiring congestion. Density tends to increase through the process of place-and-route due to

the addition of the clock tree and up-sizing of gates during optimization steps. Therefore,

the density of the final design is usually higher than the initial density chosen for floor

planning. If the final density is lower than the initial density, this implies that the clock

period can be decreased.

Designs with initial densities above 85% may be difficult to close timing on even if

routing completes. They may require more adjustment of optimization parameters and

more design iterations than usual.
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Power Planning and Special Route

In most designs, the power planning stage consists of defining global nets, adding power

stripes and rings, and then running special route (SROUTE). The size of power rings and

stripes vary greatly with fabrication technology and design size and are beyond the scope of

this tutorial. Before adding power rings or stripes, the global power and ground nets must

be set up as usual.

Adjacent metal layers are routed in opposite directions with odd metal layers routed

east-west, and even layers routed north-south. This allows metal 1 stripes to be placed along

the power rails of standard cells, and metal 2 wires to route to standard cell pins. Metal 1

is generally unsuitable for routing as it is densely used in standard cells. Occasionally

Encounter will use Metal 1 for short jogs to a cell pin.

Routing congestion is higher in lower metal layers because they provide the shortest

path between standard cell pins and Encounter will prefer to use them. For this reason it is

important to leave as much open space in low metal layers as possible.

Power rings should be routed in metal 2 on the left and right and metal 1 on top and

bottom. This allows for the shortest connection between standard cell power pins and power

rings without interfering with routing.

Placing power stripes in Metal 2 will block placement of standard cells beneath them

and provide routing difficulties. However, every layer of vias between the power rings and

stripes will increase the resistance and decrease the effectiveness of the stripes. For these

reasons, there should be power stripes in Metal 4. If required, additional power stripes can

be added to higher metal layers and connected to lower layers in a mesh.

Once power rings and stripes are in place, SROUTE is invoked to connect power nets

and insert power buses for standard cells. The default parameters are usually fine, but be

sure to specify which nets you wish SROUTE to connect.

Optimization Settings

Optimization settings in Encounter are set using the setOptMode command. The best

optimization settings will be different at various stages and should be set before each stage

of optimization. Remember to set optimization settings before commands that include an

optimization step, such as doing placement with pre-place or in-place optimizations.
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The rest of this section provides a basic introduction to the most important parameters

to the setOptMode command. This list is not exhaustive, and designers should refer to its

manual page by typing ”man setOptMode” from the Encounter command-line.

setOptMode -reset returns all optimization settings to their default.

setOptMode -effort [low|medium|high]

Sets how hard Encounter tries to optimize your design. High effort is recommended except

during prototyping runs.

setOptMode -setupTargetSlack <value>

setOptMode -setupHoldSlack <value>

Unless there is a great deal of slack in the synthesized design, the clock period will need to

be increased before physical placement in order to close timing. Additionally, the achiev-

able clock period will change at the different stages of placement and routing. For most

designs, a single timing constraint (sdc) file can be used throughout the entire place-and-

route and the settings for extra setup time slack can be adjusted as necessary throughout

the process. Likewise, use hold slack to suppress hold-time violations that disappear after

routing. Encounter sets default extra setup slack values for certain early design stages, but

they are generally not sufficient for high-performance designs and should be overridden.

Once placement and routing is run once, the designer should have a good sense of how

much setup slack is needed at early stages so that post-route timing is still met.

setOptMode -maxDensity <value>

Encounter has a maximum density setting that it will not exceed at any point during opti-

mization. The closer the design density comes to the maximum density, the less effective

optimization will be. If Encounter cannot remain below the maximum density, it may stop

the current optimization and/or leave instances in invalid locations (such as overlapping

other instances). For designs with an initial density of above 80%, the maximum density

should be increased from its default of 0.95 to 0.99.

setOptMode -criticalRange <value>

Critical Range is a parameter on [0,1] that determines which paths should be optimized. A

critical range of 0 will optimize only the critical path, and a critical of 1.0 will make all

paths eligible for optimization. If timing is not met during optimization, better results can

111



be achieved by increasing the critical range from its default of 0.4 to within the range of

0.5-0.7. Generally, using a smaller value in early optimization steps and a larger one in

later steps will result in the best compromise between running time and clock frequency.

Smaller values provide a smaller worst negative slack, while larger values provide a smaller

total negative slack. Therefore, increasing the critical range too much (beyond 0.7) is not

advisable as it will greatly increase run time and can cause poor results if optimizing already

short paths makes it difficult to optimize longer paths.

setOptMode -reclaimArea [true| f alse]

This setting determines whether Encounter attempts to down-size gates during optimization

to decrease the density of the design. At lower placement densities, disabling area reclama-

tion during placement will make post-placement optimization run faster. However, at higher

densities this will cause the density limit to be reached during post-placement optimization.

setOptMode -usefulSkew [true| f alse]

If this setting is true, Encounter attempts to exploit clock skew to improve performance. In

my experience this setting is of dubious use. It is meaningless before clock tree insertion,

and clock skew changes so much during routing that it isn’t helpful for post-CTS optimiza-

tion. It may provide a slight boost to post-route optimization. Enabling usefulSkew greatly

increases CPU time for optimization.

D.2 Placement

Placement options are set with setPlaceMode and placement is performed with placeDesign.

Timing changes considerably once the clock tree is introduced, so it is not beneficial

to run more than one post-placement optimization step. Remember that density will in-

crease during clock tree synthesis, so the density after post-placement optimization must be

sufficiently less than the maximum density. The exact margin depends on the size of the

clock tree, which generally increases with the number of sequential elements and the target

operating frequency.

setPlaceMode -timingDriven [true| f alse]

placeDesign (-prePlaceOpt) (-inPlaceOpt)

A timing-driven placement with pre-place and in-place optimizations is required to achieve

good results with high-performance designs. This can take considerably longer than without
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these optimizations enabled, but the resulting timing will be much better and subsequent

optimization stages will take less time.

setPlaceMode -congEffort [low|medium|high]

setPlaceMode -doCongOpt [true| f alse]

For designs with routing congestion, enabling congestion-aware placement may be nec-

essary. This is achieved by setting doCongOpt true and setting the desired congEffort.

Medium congestion effort is recommended as a starting point.

setPlaceMode -modulePadding <module> < f actor>

It is also possible to allow extra space in certain modules or around certain cells if the

congestion is localized. To do this, specify which <module> you would like Encounter to

view as < f actor> times larger for the purpose of placement. The <module> specification

supports wildcards.

setPlaceMode -maxRouteLayer <value>

When routing a design with no IO pads, setting the maxRouteLayer to below the top layer

will prevent Encounter from using the top metal layers for pins. This is desirable since top

metal layers are usually thicker with larger design rules and therefore unsuitable for use as

a routing layer.

D.3 Clock Tree Synthesis

A clock tree is required for good performance in all digital designs. However, very little

designer effort is required to achieve this since Encounter does virtually everything auto-

matically.

Multiple stages of post-CTS optimization can have mixed results. Post-CTS timing

does not always correlate with post-route timing. The degree of post-CTS optimization that

is appropriate must be evaluated on a per-design basis.

addCTSCellList {list of inverter/buffer cells}
Specify which inverters and buffers Encounter can choose from for the clock tree. Be sure

to include clock buffers and clock inverters in the cell list (you may wish to use only these

cells). They are cells that are optimized for clock delay, but do not always appear with the

standard logic cells. They may even be in a separate library/LEF file.
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clockDesign -genSpecOnly <ClockTreeSpecFile>

Generates a clock tree specification based on your designs timing constraints. In most cases

Encounter generates a clock tree specification that does not need to be altered. However,

you can edit the clock tree specification file if you wish to set different goals for parameters

such as maximum skew or transition time.

clockDesign -specFile <ClockTreeSpecFile> -outDir <ClockReportDirectory>

Loads the clock tree specification file and synthesizes the clock tree. A clock report will be

generated in <ClockReportDirectory> reporting the specifications of the clock tree (which

may or may not have met the goals set in the clock tree specification).

D.4 Routing

Routing in Encounter is run in three distinct phases. Encounter reports the number of design

rule errors (shorts, open nets, or physical design rule violations) at each iteration of each

phase.

In the first phase, nets are routed without much regard for shorts or spacing rules. It

is not uncommon to see tens to hundreds of thousands of design rule errors, especially in

the early iterations. The second phase focuses more on fixing these errors, and by the final

iteration most wires should be fixed in place. The final phase is a clean-up phase which is

only intended to fix the last few (generally fewer than 1000) design rule errors. The final

stage may not even run if there are too many design rule errors.

If there are design rule errors remaining after routing stage, it is generally not helpful to

increase the number of routing iterations. It is much more effective to decrease the initial

density and re-place if Encounter is unable to successfully route your design.

Whether or not timing-driven routing is worthwhile depends greatly on the design. It

can greatly increase the run time of routing and in some cases makes very little difference

to timing. It should be enabled only if the timing gets much worse between the start and end

of routing. Timing-driven routing provides more benefit in denser or more highly congested

designs.

Optimization has the least room to work post-route. This means that the negative slack

must be very small before optimization begins (less than 100-150 ps is a good rule-of-thumb

for 65 nm). Subsequent postRoute optimization steps can occasionally make timing worse,

so save the design after each optimization.
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setNanoRouteMode -routeTopRoutingLayer <value>

Sets the top metal layer used for routing. You may wish to exclude top metal layers intended

for power routing.

setNanoRouteMode -routeWithTimingDriven [true| f alse]

Sets whether timing-driven routing is enabled.

setNanoRouteMode -routeTdrEffort <value>

An integer value from 0-10 specifying the amount of effort used to meet timing. This does

not usually need to be set as the default is generally good.

routeDesign -globalDetail

Perform a global detail (full) route of the design with the previously specified parameters.

D.5 Verification

After routing, the routing must be double-checked using verifyConnectivity and design

rules must be checked with verifyGeometry. Generally these commands do not need any

arguments.

Running verification steps in Encounter is not a substitute for proper DRC and LVS.

Due to limitations of the file formats used by Encounter and its verification tools, Encounter

does not check all physical design rules and may not properly check that all nets are con-

nected. If the design is to be fabricated, DRC and LVS must be run in another tool (usually

Calibre or Diva, depending on the technology) before tape-out. However, these checks will

save time by allowing the designer to catch many errors early.

If Encounter is consistently generating designs that pass verifyGeometry but have de-

sign rule errors that show in other tools, the only recourse is often to add or modify design

rules in the technology LEF file. There is full documentation of the LEF file format in the

Cadence documentation (cdsdoc or cdshelp).

D.6 Post-Layout Power Measurements

In order to get accurate power measurements, the designer must provide an accurate RC

file (which should be loaded in your design configuration file) and an activity file. The

activity file is generally a Value Change Dump (VCD) file which can be generated from an
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HDL simulator such as ModelSim. Since the clock frequency of the activity file cannot be

overridden, the simulation must be performed at the post-layout clock frequency for valid

results.

read activity file -format VCD -vcd scope <DUThierarchy> <VCD f ile>

Loads an activity file for accurate power estimation. The hierarchy to the device-under-test

(your current design) must be set with <DUThierarchy>. This usually looks something

like testbench instance name/DUT instance name.

report power -outfile <reportFile>

report power -net -outfile <reportFile>

report power -leakage -outfile <reportFile>

Report total power, switching power, and leakage power, respecively.
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