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Abstract 

The Discrete Element Method (DEM) has been developed and used in modelling dry granular 

materials with or without cohesive bonding between particles. The incorporation of fluid flow in 

the DEM analysis is difficult since the DEM is a discrete approach to mechanistic analysis while 

fluid is a continuum. This research is focused on the development of numerical techniques and 

procedures that provide the coupling of the DEM with the continuum fluid. This thesis provides 

two coupling methods for (1) the coupling of solid permeability and fluid flow (SPF), and (2) the 

coupling between solid deformation and pore pressure (SDP) for undrained and semi drained 

conditions. 

The SPF coupling accounts for the interaction of fluid flow in a porous medium with solid 

deformation and solid dislodgement by the flow forces imposed by the pressure gradient and drag 

forces on solid particles. Deformation of the porous medium alters the pore sizes, hence, changes 

the permeability of the material. Further, the production of the solid grains alters the porosity and 

the solid boundaries from which the fluid is produced.  

The SDP coupling refers to the generation of pore water pressure as a result of solid deformation 

in the porous medium. The variation of pore sizes results in a temporary increase in pore fluid 

pressure, which gives rise to the pressure gradient causing pore water diffusion. The dissipation of 

pore pressure can be analyzed using the SPF approach but the generation of excess pore pressure 

requires the coupled analysis of the fluid and solid deformation. Any decrease in void space results 

in excess pore pressure that reduces the effective stresses, hence, changes the amount of 

deformation. Therefore, the SDP is considered to be a two-way coupling technique. 

The motivation of this work arises from the desire to analyze sand production in oil wells during 

the oil recovery from sandstone formations. Sanding is the production of formation sand driven by 
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the de-cementation of the formation sand around the borehole and the flow of reservoir fluids 

during the oil recovery process. Problems associated with sand production include the erosion of 

pipelines and surface facilities, wellbore intervention costs and complexities, and environmental 

impacts. Large amounts of sand production in a short period may clog up the well, damage the 

well equipment, and destabilize the well due to the loss of materials. On the other hand, a 

controllable amount of sand production may increase the wellbore productivity and reduce the 

wellbore completion cost. Therefore, understanding the sand production mechanisms and the 

ability to predict and manage the rate of sand production at the field scale are beneficial. 

This thesis presents a model for the investigation of sandstone degradation and sand production 

mechanisms by using the SPF coupling method. The model was used to investigate the effects of 

in-situ stresses and flow rate on sand production. A linked DEM-fluid flow model for sanding 

analysis is developed. The model calculates seepage forces and applies them to solid particles in 

the DEM model. The model accounts for permeability and porosity changes due to sandstone 

deformation and sand production. The DEM model is verified against poro-elastoplastic analytical 

solutions. Subsequently, the model is used for sanding simulation from a block-shaped sample 

under different far-field stress and pressure conditions. The boundary stresses and fluid pressures 

are varied to study their influence on sandstone degradation and sand production. 

Another important factor in sand production is the generation of excess pore pressure in the 

reservoir during the drilling as well as during the production due to the deformation of the porous 

medium. Excess pore pressure can lead to the loss of shear strength and particles contacts resulting 

in plastic deformations.  

The methodology this thesis presents for the incorporation of excess pore pressure in the DEM 

simulation (SDP) with a new liquid particle element is novel. The liquid particle element has a 
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specific stiffness that enables the calculation of excess pore pressure build up or the dissipation 

due to pore space deformation. Analytical solutions of conventional soil mechanics problems, such 

as isotropic compression and consolidated triaxial undrained test, have been used to verify the 

proposed algorithm quantitatively under undrained condition. The oedometer test and 

consolidation theory are then used to quantitatively validate and verify the dissipation model. 

The SPF and SDP models are then applied to simulate consolidated-undrained triaxial tests at 

different levels of porosity and pore pressure. The numerical results show good agreement between 

the proposed scheme and the laboratory results. The proposed scheme provides an effective 

method to calculate pore pressure in a porous medium by using the discrete element approach. 
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Chapter 1. Introduction 

1.1. Introduction and Background 

The interaction between the fluid and solid phase occurs in a wide range of engineering problems 

relevant to granular media (Zhao and Shan, 2013), which include petroleum, geotechnical, 

mechanical, and chemical engineering (Tipthavonnukul, 2002).  

Conventional approaches based on continuum theories of porous media have considered the 

interaction between pore fluids and solid particles in a phenomenological manner. However, such 

approach cannot provide a quantitative understanding of microscale phenomena related to the 

behavior of particles (Zhu et al., 2008). Without this information, it is difficult to establish a general 

method for reliable design and control of particulate processes of different types. The Discrete 

Element Method (DEM), which was introduced by Cundall (1971), became a successful model in 

analyzing the microscopic interaction of particles. DEM is a Lagrangian approach, and solid 

particle behavior is computed based on the Newton’s Second Law of Motion. The contact force 

acting on a solid particle is calculated using a spring-dashpot system (Sakai, 2016).  

In order to obtain a better understanding of the disaggregation of particles from the soil and rock 

mass and its transport under the effect of fluid flow, modelling fluid phase and fluid and solid 

particle interaction is necessary. A conventional fluid flow DEM coupling method solves Darcy’s 

law or the Navier-Stokes equation for fluid flow using Computational Fluid Dynamics (CFD) 

(O'Sullivan, 2011). One difficulty with above approaches is that the solutions of the mass balance 

and the three momentum equations for fluid flow are computationally demanding. Besides, there 

is a few research works focused on the excess pore water pressure buildup using DEM coupled 

with the fluid flow since it is difficult to determine pore space connectivity and pore space 
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deformation in a discontinuum.  The pore pressure changes due to solid deformation is a fluid-

solid deformation problem which is more complex than the solid-fluid flow problem. 

The incorporation of fluid in DEM analysis is difficult since DEM is a discrete approach to 

mechanistic analysis and fluid is a continuum. This research is focused on the development of a 

numerical technique that provides the coupling of DEM with continuum fluid and the application 

in sand production.  

1.2. Problem Statement 

The motivation of this work arises from the desire to analyze sand production in oil wells during 

the oil recovery from sandstone formations. Sand production is the erosion of formation sand due 

to the flow of reservoir fluid during oil recovery from oil sandstone reservoirs (Fjær, 2008). After 

drilling a wellbore, sandstone is often left unsupported next to the borehole opening. These are the 

locations where sand grains can be dislodged and entered into the oil recovery system. The 

weakened sandstone may then be eroded away by the flowing fluid. This leads to negative effects 

on well productivity and damage to the equipment installed in the oil wells with significant cost 

implications (Cheung, 2010). On the other hand, a controllable amount of sand production may 

increase the wellbore productivity due to increasing the permeability of the rock and reduce the 

oil production cost (Nouri et al., 2006). Therefore, understanding the sand production mechanisms 

and the ability to calculate and manage the rate of sand production at the field scale are beneficial. 

While both experimental and analytical models of the sand production problem play an important 

role in finding a solution for the sand production problem, numerical modeling is essential for 

realistic predictions and understanding of the sanding mechanism (Rahmati, 2013). This can be 

done by incorporating the physics of fluid and solid interactions at the micro scale to obtain a better 
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understanding of the disaggregation of particles from the rock mass and its transport under the 

effect of fluid flow.  

Another important factor in sand production is the generation of excess pore pressure in the 

reservoir during drilling as well as during oil production due to the deformation of the porous 

medium. Excess pore pressure can lead to the loss of shear strength and particles contacts resulting 

in plastic deformations.  

The thesis is focused on the development of the methodology of DEM coupled with fluid flow and 

the application of fluid flow-solid coupling analysis on sand production problem. Two coupling 

methods have been developed in this thesis: solid permeability fluid coupling (SPF) and solid 

deformation pore pressure coupling (SDP). 

SPF coupling refers to the interaction of fluid flow in a porous media on solid particle movement 

and deformation. The flow of fluid in a porous medium imposes pressure gradient and drag forces 

on solid particles. Particle movement and deformation of the porous medium changes the pore 

sizes which changes the permeability of the material. This has an effect of fluid flow. Therefore, 

it is a two-way coupling of solid-fluid interaction. 

SDP coupling refers to the generation of pore water pressure as a result of solid deformation of a 

porous medium. The decrease, or increase, in pore sizes, results in a temporary increase in pore 

water pressure which gives rise to pressure gradient causing pore water diffusion. The dissipation 

of pore pressure can be analyzed using the SPF approach, but the generation or pore water pressure 

requires coupling analysis of the solid and fluid deformation. Decrease in void space results in an 

increase in pore water pressure that reduces effective stresses between solid grains, which in turn 

changes the amount of deformation. Therefore, SDP is a two-way coupling process. 
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1.3. Objective and Scope of work 

The objectives of the research can be summarized as follows: 

(1) Develop DEM-fluid flow model using SPF coupling method, by considering rock permeability 

and porosity change due to breakout and sand production. 

(2) Apply SPF coupling method in sand production; obtain the erosion shape and calculate the rate 

of sand production, estimate the produced sand amount in relation to a fluid flow condition, 

reservoir pressure depletion, and different far field stress.  

(3) Introduce a DEM SDP coupling method that is able to calculate pore pressure increase under 

the undrained condition and pore pressure dissipation due to rock deformation. 

(4) Develop the DEM SDP coupling model with pore pressure calculation to estimate deformation 

of rock sample under pore fluid pressure dissipation condition. 

(5) Application of SDP and SPF in consolidated-undrained triaxial tests at different levels of 

porosity and pore pressure. 

1.4. Outline of Thesis 

This thesis is subdivided into six chapters. A short description of the contents of each chapter is 

given as below. 

Chapter 1 introduces the background of DEM coupled with fluid flow, sand production, research 

objectives and outlines of the thesis. 

Chapter 2 gives a literature review of DEM fluid – solid coupling techniques, and discussion on 

the advantage and disadvantage of each model. 
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Chapter 3 provides the detailed development of solid permeability flow coupling, which includes 

developing the change in permeability as a result of solid deformation related to the change in 

porosity and development of fractures. Then, the numerical implementation of SPF with 

verification examples are conducted. 

Chapter 4 describes the solid deformation coupling method, which includes the analytical 

development of water element and calculation of pore pressure from DEM phase in pore pressure 

build-up phase, and the water particle stiffness calculation in dissipation process. The numerical 

method is then verified with basic soil mechanics examples. 

Chapter 5 describes of SDP and SPF integration process and the application in laboratory 

consolidated triaxial undrained test. 

Chapter 6 presents the conclusion from the conducted research and recommendations for future 

research on the method of solid-fluid coupling.  
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Chapter 2. Literature review 

This chapter provides a review of the current literature on fluid flow and DEM coupling to identify 

the gap in the existing knowledge in this respect. The review is then used in defining the objectives 

and designing the methodologies in this research.  

2.1. Categories of solid-fluid coupling analysis 

Several research works have been reflected in the literature in the coupling of the Discrete Element 

Method with other aspects of mechanics, such as solid, fluid, thermal and structural mechanics.  

Several coupling approaches in previous research efforts are reviewed here.  

Tsuji et al. (1993) developed a solid-fluid coupling scheme to simulate fluidized beds. The drag 

force caused by the fluid is solved by the continuity equation for the fluid. The drag force is then 

calculated in each cell and applied to each discrete particle. The position and velocity of the 

particles are then calculated by DEM calculation for next step of the iteration. 

Chan (1993) described the method of coupling fluid flow computation in discrete element model 

and applied in wet granular deformation simulation. The drag and buoyancy force were considered 

in the simulation of fluid – particle interactions. The permeability was updated and applied during 

the calculation process to present the particle effect on the fluid flow calculation. The same DEM 

fluid flow coupling method is also conducted by Sun and Vinogradov (1998) to study the flow jam 

of solid particles transported by fluid in planar channels. 

Thallak et al. (1990) simulated the hydraulic fracture problem in a granular assemblage. A 

geometrically-coupled channel network was created by assigning nodes to pores and flow channels 

to the pore throats. The steady-state flow rate in channels was assumed to be linearly related to the 

pressure gradient based on the Hagen-Poiseuille equation. The buildup of pressure in pores is 
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calculated and applied to each particle. The proposed method was used in the simulation of 

hydraulic fracture in granular assembly with reasonable success. 

It should be noted that the coupling mechanism is the major differences among various 

methodologies. Cundall (1999) classified the coupling mechanics based on fluid-particle 

interactions. In this thesis, a new category of coupling mechanics – solid deformation and fluid 

coupling is proposed by extending Cundall’s classification. The categories, shown in Figure 2.1, 

are based on solid density and interacting effects between solid and fluid and described below:  

 Hydrostatic pressure and fluid buoyance 

When a particle is simply submerged in a non-flowing fluid under gravity, the only force that the 

fluid effects on the particle is due to the hydrostatic pressure difference between the top and bottom 

of the particle, which is also known as buoyant force. The buoyancy on a particle is simply equal 

to the weight of the fluid displaced by that particle. 

 Low concentration of particle in a flowing fluid 

If the particles move independently of each other, and they only occupy a small fraction of the 

fluid volume, viscous forces, which are a function of the relative speed of fluid and particle, are 

applied on each particle due to the flowing fluid. There are few particle-to-particle contacts; hence, 

the interaction among them is usually ignored. With a low concentration of solids, the effect of the 

solid on the flowing fluid is neglected. 

 High solid concentration in flowing fluid 

At high solid concentration, not only the flowing fluid will exert a drag force on the particles, the 

particles have an effect on the flow impedance.  The effect of the fluid flow on the solid can be 

calculated using the Navier-Stokes equations for the solid-fluid mixture. If solid movement is 
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relatively small and the fluid flow is laminar, Darcy’s Law is valid. In this case, there is a small 

fluid pressure gradient between the upstream and downstream of a particle and continuum flow 

calculation based on porosities and permeability can be used. Drag forces on the particles can be 

calculated from pressure gradient. Particle-to-particle interactions are calculated using the discrete 

element approach. In the implementation of particle-fluid interaction, permeability can be 

calculated from the discrete element code, and it will be used in fluid flow calculation using the 

continuum approach. This coupled approach is able to capture sand production mechanisms such 

as surface erosion and internal fines migration.   

 Solid deformations and fluid coupling 

When soil or rock is fully saturated with a fluid, if we assume the compressibility of water is much 

higher than the soil skeleton, not the soil solids, isotropic compression or sudden increase of axial 

pressure will cause void space to decrease resulting in an increase in the excess pore pressure.  An 

example is the consolidation problem in soils with pore water diffusion.  Another example is the 

liquefaction problem in sands during earthquakes which result in large displacements in soil. In 

this case, the increase in excess pore pressure will cause displacement and deformation of the soil 

resulting in changes in void space that are occupied by the fluid. This leads to solid-fluid 

deformation and causes fluid flow. 
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Figure 2.1: Categories of solid-fluid coupling analysis 

2.2. Fluid-Solid Interactions  

The coupling mechanisms explained here is in terms of fluid-particle interactions, which can be 

separated into the effect of fluid on the granular particle and the effect of the particle on the fluid. 

While a particle is submerged in a flowing fluid, drag, lift, and buoyant force are the basic effects 

that fluid has on the granular particles. At the same time, the presence of the particles will affect 

the fluid flow. The particle reduces the flow domain and imposes impedance to the flowing fluid 

(Tipthavonnukul, 2002). 

2.2.1 Effects of fluid on the granular particles 

2.2.1.1 Buoyancy 

When a particle is submerged in a fluid, it experiences fluid pressure all around. The horizontal 

components of the fluid pressure cancel each other on both sides. However, there are two vertical 

components of the fluid pressure acting on the submerged particle: one is a downward component 
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of the total pressure on the upper surface of the object; the other is the upward component acting 

on the lower surface of the object. The bottom pressure is larger than the top one because of 

hydraulic gradient. The difference of the pressures results in an upward force acting on the object. 

Such force is independent of the depth of submergence and is defined as buoyant force 𝐵𝑖  with 

respect to a submerged particle 𝑛 (Tipthavonnukul, 2002): 

  𝐵𝑛 = (𝜌𝑓 − 𝜌𝑛)𝑔𝑉𝑛 [2.1] 

where 𝜌𝑓 and 𝜌𝑛 are the density of fluid and solid particle 𝑛 respectively, 𝑔 is the gravitational 

constant, and 𝑉𝑛 is the volume occupied by solid 𝑛 submerged totally in a fluid. 

2.2.1.2 Drag Force and Seepage Force 

When there is relative movement between fluid and particle, the drag force caused by the fluid on 

the particle will be acting on the surface of the particle in the direction of the relative movement. 

Suppose the submerged particle is moving in the same direction as the fluid. When the speed of 

the fluid is higher than particle, the drag force will push particle forward; when the speed of fluid 

is equal to that of the particle, the particle is not moving relative to the fluid; when the speed of 

fluid is smaller than the particle, the drag force will drag the particle backward. The total drag 

force is divided into two components: the skin-friction induced drag and pressure induced drag. 

The skin friction induced drag results from the shear stress of fluid layers adjacent to the particle 

surface perpendicular to the movement direction. The pressure induced drag is due to the pressure 

difference between the lower pressure at the rear of the particle and higher pressure at the front 

due to the disturbance of the flow stream along the movement direction. Drag force 𝐷𝑖 of a specific 

granular particle 𝑛 is evaluated by the following equation (Evett and Liu, 1987): 
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  𝐷𝑛 = 𝐶𝐷𝜌𝑓
𝑣𝑛 − 𝑢

2
𝐴 

[2.2] 

where 𝐶𝐷 is the drag coefficient, 𝑣𝑛 is the velocity of the granular particle 𝑛, and 𝑢 is the velocity 

of fluid, and 𝐴 is the projected area of the granular particle on a plane perpendicular to the flow 

direction.  The drag coefficient is dependent on the particle’s shape and Reynold’s number. 

For a fluid flow through a saturated assembly consisting of bounded particles, the velocity of each 

particle is considered to be zero. The seepage force 𝐹𝑠𝑒𝑒𝑝 is dominated only by the pressure 

difference between front and rear of particle and is calculated by: 

 𝐹𝑠𝑒𝑒𝑝 = (𝑃𝑓 − 𝑃𝑏)𝐴𝛼 [2.3] 

where 𝑃𝑓 and 𝑃𝑏 is the fluid pressure at front and rear of particle along fluid flow direction, 𝐴 is 

the cross-sectional area of particle projected to the plane which is perpendicular to velocity of fluid 

flow, and 𝛼 is a correction parameter related to size and shape of particles between 2 dimensional 

and 3 dimensional problems. 

2.2.1.3 Pore Pressure Induced Force 

When a saturated assembly consisting of loosely connected particles experience isotropic 

compression, the increase of pore pressure will have an effect on particles. It is difficult to 

determine the direction of the forces and the magnitude of the force on each particle because the 

particles are completely surrounded by the fluid. At the laboratory scale, it can be simply referred 

to as a consolidated-undrained or partially drained test.  

Goodarzi et al. (2014) proposed a numerical scheme for fluid-particle coupled discrete element 

method based on poroelasticity by consideration of pore pressure generation. In the proposition of 



12 

 

Darcian regime, the fluid is assumed as a continuum phase on a Eulerian mesh. The pore pressure 

change ∆𝑃 is calculated from volumetric strain 𝜀𝑣: 

 

∆𝑃 = 𝜀𝑣
𝐾𝑒𝑓𝑓

𝑛
 

𝐾𝑒𝑓𝑓 =
𝐾𝑓

𝑛
 

[2.4] 

Where 𝐾𝑒𝑓𝑓 is the effective bulk modulus of the mixture, 𝐾𝑓 is the bulk modulus of fluid, 𝑛 is the 

porosity. The continuity equation of the fluid mesh for a compressible fluid is then solved using 

the finite difference method. By knowing the pore pressure on the node, the hydrodynamic force 

is the applied on each of the particle in fluid cell by using Equation 2.2.  

Instead of using fluid grid, Liu et al. (2015) use measurement sphere, contains several particles, to 

calculate pore pressure buildup, the pore pressure induced force 𝐹𝐴𝑚 is calculated as: 

 

𝐹𝐴𝑚 = ∆𝑃(𝜋𝑟𝑖
2)𝑛𝐴𝑚 

∆𝑃 = 𝜀𝑣𝐸𝑤 

[2.5] 

where ∆𝑃 is the increment of pore pressure, 𝜀𝑣 is the volumetric strain in measurement sphere 𝐴, 

𝐸𝑤 is the bulk modulus of fluid, 𝑟𝑚 is the radius of particle 𝑚, and 𝑛𝐴𝑚 is a normal unit vector 

from center of measurement sphere 𝐴 to center of particle 𝑚. 
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2.2.2 Effects of Granular Particle on the Fluid 

The locations of particles can be calculated in discrete element modeling. The presence of the 

particles in the flow domain is considered as occupying the flow space that would have been 

otherwise available for fluid flow.  

In the case of large pressure gradient and large deformation of the solid phase, the reduction in the 

flow channel leads to changes in flow velocity and fluid pressure. At the location of the granular 

particles, the fluid flow velocity will be less than that if the particles were not present. A reduction 

factor was applied to the calculation of Navier-Stokes equations in fluid flow recalculation 

(Tipthavonnukul, 2002). For the case of a fluid flow through a porous medium saturated with fluid, 

the reduction in flow channel leads to changes in the porosity and permeability of the particle 

assembly leading to a further change in fluid pressure.  

For a saturated assembly of particles experiencing isotropic compression case, a decrease of pore 

space causes an increase in pore pressure, generating a reaction fluid force on the solid particles. 

The change in positions of the solid will change the pore space volume thus changing the pore 

pressure again. 

2.3 Experimental observations of borehole breakouts and solid-fluid interaction  

Rock failure is often observed to form localized failure zones of certain shapes around boreholes 

and perforation cavities. In general, fractures and breakouts form at the damaged perimeter of 

boreholes, and they are classically aligned with the direction of the local minimum principal stress. 

Borehole breakout has been used to predict the direction and magnitude of in situ stresses. There 

are three common types of breakouts that have been observed in hollow cylinder experiments in 

sandstone: (a) uniform failure; (b) dog-ear (V-shaped) breakouts; and (c) slit-like breakouts. 



14 

 

Similarly, four distinct failure patterns have been observed in perforation tests, which are (a) 

symmetric breakouts; (b) triple breakouts; (c) slit-like breakouts; and (d) high porosity wormholes. 

The wellbore failure zone may be in the form of shear or tensile fractures (splitting and spalling). 

The failure mode and the extent of plastic damage around the cavity before localized failure depend 

on stress state, pore fluid properties and rock properties such as stiffness, yield strength, and 

porosity, among others. The propagation of this plastic zone governs the failure shape and growth. 

The initiation, growth, and stabilization of these morphologies and the parameters that affect the 

growth are of crucial importance in the analysis of wellbore stability and sand production. 

Fluid flow has also been observed to influence the size and mode of failure in wellbore breakout 

and sand production. Fluid flow can remove disaggregated materials and, therefore, lead to the 

growth of the disaggregated zone.  

2.3.1 Breakout studies 

Over the years, a large number of physical model studies have been conducted to study breakouts. 

These are normally large block tests (LBT) or hollow cylinder (HC) tests with a central hole that 

simulates the wellbore. Other tests have simulated a single perforation in a full-scale physical 

model test. LBT and HC tests have been conducted on vertical holes (Behrmann et al. 1997). With 

some of these, the borehole was cased and perforated by a true downhole perforating gun 

(Behrmann et al. 1997), while with others, it was an open hole with or without a screen liner 

(Tronvoll et al. 1997). The single-perforation tests were conducted on unconsolidated sand 

samples (Bianco and Halleck 2001) and poorly consolidated sandstones (Tronvoll and Fjær 1994; 

Tronvoll et al. 1997).  
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The very first attempt to study breakout formations in scaled borehole tests using physical model 

testing was by Haimson and Song (1993), and several attempts have followed since (Lee and 

Haimson 1993, 1995; Haimson and Lee 2004; Haimson, 2007). In these works, they used cubic 

granite or sandstone specimens under different far-field stress conditions and established a linear 

correlation between the length and angular opening of the breakout with the far-field stresses. 

Their experiments showed different breakout shapes in different types of rocks. However, they 

observed consistent failure patterns at different loading stages for the same rock type. In their 

experiments, they loaded the sample to a specific loading level and then drilled the borehole into 

the sample under far-field stress states. They elevated the far-field state of stress for other tests on 

the same rock type to study the effect of far-field stress on breakout geometry. They observed that 

the length and span of the breakout were related to the far-field state of stress. Figure 2.2 illustrates 

the outcome of similar work by Lee (2005). The figure shows the breakout geometry observed in 

different sandstones from laboratory test. The only factor that was affecting the growth of the 

breakout was the increment in the far-field state of stress.  

 

 

 

 

 



16 

 

 

 

Figure 2.2: Breakout around different outcrop sandstone (After Lee 2005) 

2.3.2 Rock disaggregation mechanisms 

In the geomechanical context, rock failure mechanisms are listed as tensile failure, shear failure 

and compactive failure, also known as pore collapse. Tensile failure around a borehole occurs 

when one of the effective stresses is equal to the tensile strength of the formation rock. This 

mechanism is sometimes related to seepage forces which are proportional to pressure gradients 

(Bratli and Risnes 1981).  

Shear failure may occur when some planes in the vicinity of the wellbore are subjected to higher 

shear stress than they can sustain (Figure 2.3). This mechanism is dominant in cemented sands and 

may lead to buckling when combined with tensile cracks (Coates and Denoo 1981; Edwards et al. 

1983).  
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Figure 2.3: Shear bands around a hole 

With the depletion of the reservoir pressure, effective stresses acting on the formation rock 

increase. At a certain stress level, pore collapse may occur in narrow zones called compaction 

bands and form a borehole breakout. As a result, it is necessary to consider the compressive mode 

of failure by using a cap in the constitutive law. Detournay (2008) showed that using a constitutive 

model enhanced with a yield cap enables the qualitative reproduction of breakouts that result from 

pore collapse. This is called a fracture-like or slit-type breakout, which has been observed in 

laboratory tests and has been related to compactive failure. The failure mechanism can be a 

combination of shear, tensile and compactive modes resulting in different failure morphologies 

around the borehole or perforation (Crook et al. 2003). 

2.3.4 Failure morphology in hollow sample experiments 

The specific shape of borehole breakouts beyond failure initiation in the laboratory is influenced 

by four factors as suggested by Lee (2005): (1) the pore fluid pressure; (2) the magnitudes of the 

principal stresses; (3) the size of the sample; and (4) the rock mechanical properties. Several 

explanations have been provided for the various breakout geometries and the mechanism of their 
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initiation and growth (Lee 2005; Haimson and Cheng 2005; Haimson 2006 and 2007). The failure 

mechanism suggested for uniform breakouts and V-shaped breakouts in unconsolidated sandstone 

in weakly consolidated sandstone suggested by various researchers using a series of HC tests are 

presented in detail herein. 

2.3.4.1 Failure mechanism for V-shaped breakouts 

Haimson and Klaestsch (2002) concluded that borehole instabilities were related to the localized 

shear failure, dictated either by the far-field stress conditions or by the stresses acting especially 

on pre-existing planes of low or no cohesion. This failure mechanism causes the so-called V-

shaped breakouts that are oriented along the least horizontal far-field stress direction. Breakout 

dimensions (angular span and length) are linearly proportional to far-field stress magnitudes.  

Based on optic microscopy, Haimson and Chang (2005) suggested that the failure mechanism 

leading to V-shaped breakouts in sandstones is the formation of extensile microcracks behind the 

borehole wall. The microcracks form around the σh springline and are oriented sub-parallel to the 

direction of  σH . Away from the σh  springline, microcracks turn toward the borehole wall. 

Microcracks coalesce to create macro fractures, which in turn form rock flakes. Breakouts form in 

sequence by a detachment of rock flakes. As the breakout grows deeper, it narrows due to the 

removal of progressively shorter flakes, eventually creating a stable V-shaped configuration. The 

failure mechanism leading to V-shaped breakouts in different sandstones is similar, but there might 

be distinct differences in the grain-scale damage patterns. The microcracking mechanism could be 

predominantly inter-granular or intra-granular depending on the type of contact between the grains 

and the strength of the cementing material.  

Cuss et al. (2003) suggested that, during the early stages of loading, porosity is reduced within 50-

200 mm of the cavity wall in response to stress concentration. Short, discontinuous inter-granular 
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and trans-granular extensional fractures are formed parallel to the cavity wall between grain 

contacts. Fracture initiation occurs first by hydrostatic grain crushing of weaker grains (e.g. altered 

feldspar), or of those with pre-existing damage (Stage A, Figure 2.4a), and is developed mainly in 

areas where other weak mineral such as red oxide staining exists. Inter-granular fractures may also 

develop because, in some sandstone, cement strength is less than grain strength. Despite the 

loading path, two diametrically opposed symmetric regions could be formed (Stage B, Figure 

2.4b). These are oriented breakouts, which at non-isotropic stress conditions develop in the 

direction of minimum horizontal stress. Stage C, as shown in Figure 2.4c, was observed to develop 

as fracturing intensified in the breakout region and comminuted grains began to spall. Removal of 

rock flake locally altered the stress field, resulting in the formation of new fractures. This resulted 

in the migration of the breakout feature into the wall rock in a similar way to that hypothesized by 

Mastin (1984). By Stage D (Figure 2.4d), the cavity was observed to elongate in diametrically 

opposite directions, creating a narrow but deep breakout feature. Within the intact region, the 

cavity wall was preserved. Newly formed tensile fractures may form parallel to the breakout sides, 

causing the spalling of substantial rock flake. Such detachment created a cleaner elliptical shape 

as shown in Stage E (Figure 2.4e). Distortion of the cavity to an elliptical shape should result in 

stress intensification at the breakout tip that may lead to the progressive growth of the breakout. 

The side of the damaged zone shortly terminated with no transition zone.  
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Figure 2.4: Schematic showing the process of a V-shaped breakout formation in the experimental 

work of Cuss et al. (2003). 

2.3.4.2 Failure mechanism for uniform breakouts 

Cuss et al. (2003) through their HC experiment in high-porosity sandstone observed wide 

breakouts that in some cases were accompanied by fractures parallel to the breakout wall. Post-

mortem analysis showed different stages in failure growth. In the early stage of loading (Stage A, 

Figure 2.5a), they observed some porosity reduction due to the high porosity of these sandstones 

leading to parallel intra- and trans-granular tensile fracturing at grain point contacts. Damage was 

heterogeneously distributed around the borehole with fractures forming at several points around 

the entire periphery. 

Stage B (Figure 2.5b) of the failure development was observed at the onset of breakout formation 

when spalling began in a preferential direction. Long thin shells spalled through shear movements 

where conjugate trans-granular fractures connected to the borehole parallel fractures. The low 

angle between conjugate fractures and bore wall resulted in a broad and shallow clean elliptical 

breakout form. By Stage C (Figure 2.5c), the initial bore had elongated, and breakout-parallel 

fractures had begun forming, which was described as splitting parallel to a free surface.  
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Figure 2.5: Progression of breakout development by combined extension and shear-mode 

cracking (After Cuss et al. 2003a) 

2.3.5 Disaggregation level 

Rock disaggregation due to stress concentration around the well occurs in the borehole breakout 

zone. In this process, the constituent particles may lose their bonding to the rest of the rock.  

The granulometry of the produced sand depends mainly on the failure mechanism. As an example, 

Tronvoll and Fjær (1994) reported slabs of intact rock are created where distinct shear and/or 

tensile failure planes intersect. In the case of spalling failure, they reported production of thin 

flakes and grains. The grain size has also been attributed to the failure zone geometry. The solids 

produced during their experiments were weighed and characterized with respect to shape and size 

of the rock pieces as fine particles, grains, fragments, assembly of grains, flakes, and slabs. They 

observed that the onset of limited sand production is generally associated with initial failure of the 

cavity wall, and the stress at initial failure of the cavity wall appears not to be significantly affected 

by the fluid flow. In some cases, fine particles, single grains and smaller rock fragments associated 
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with tensile failure were observed before the initial cavity failure point. After the initial failure of 

the cavity, larger slabs/flakes of rock material, possibly created by shear failure, were observed. 

For the weaker rocks, a considerable amount of failed material remained in the cavity as flakes 

and slabs or relatively intact rock adhering the intact rock structure. 

Uniform failure around a hole is attributed to the ductile failure of relatively weak sandstone 

material with low tensile strength. It has been reported to produce sand in the form of single grains, 

small grain assemblies and small flakes (Papamichos and Malmanger 2001). In the case of higher 

strength and more brittle rocks, the formation of dog-ear breakouts is reported as the predominant 

form of failure geometry. This breakout is formed by a combination of axial splitting (tensile 

failure) in the form of sub-parallel slabs and shear failure at the boundary of the slabs forming the 

dog-ear shape (Crook et al. 2003). The result is rock degradation in the form of slabs rather than 

grains.  

In the case of tensile spalling, based on laboratory studies, Shen et al. (2002) observed that a series 

of sub-parallel cracks are formed, and the coalescence of these tensile cracks results in thin rock 

flakes, which may fall off the borehole wall. The spalling of the first flake opens the way for the 

next flake to follow suit, and the buckling and the spalling process continues sequentially. As the 

breakout deepens, the spalled flakes become shorter and shorter, causing the breakout span to 

narrow continuously (Shen et al., 2002). In the case of shear bands, Shen et al. (2002) observed in 

laboratory tests that the rock fragments between conjugate shear bands spall off on opposite sides 

of the borehole, creating visible breakouts.  

Another factor is the grain-size distribution of the original rock (Tronvoll et al., 1997). Tronvoll 

and Fjaer (1994) conducted sand production tests on fine- and coarse-grained ultra-weak 

sandstones (UCS of 1-2 MPa). They concluded that the produced sand from the fine-grained 
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sample contained larger material elements, while only single grains were produced from the 

coarser sand. For instance, Tronvoll and Fjær (1994) reported that sanding tests with brine 

produced smaller grains of sand. The sand produced from the oil flowing test on the same material 

resulted in assemblies of loosely connected grains or slabs of intact rock. 

2.3.6 The effect of fluid flow 

For a particle to be mobilized by fluid flow, it must be completely detached from the rest of the 

material. Otherwise, the weak drag forces of seepage in typical operational conditions will be 

insufficient to remove the attached particles from the bulk body of the rock. In addition, the finer 

the disaggregated particles, the easier it is for the hydrodynamical forces to mobilize them.  

Tronvol and Fjaer (1994) examined the effect of fluid flow on the evolution of the failure zone 

around a perforation cavity in the Red Wildmoor sandstone. The test samples were cylindrically 

shaped with a coaxial cylindrical cavity. The samples were loaded isotropically at the outer surface 

with fluid inflow only through the non-perforated end surface.  

From the failure shape observation shown in Figure 2.6, the outer boundary of the failure zone 

seems to tend a spherical shape combined with axial elongation (Figure 2.6a) or plastified region 

at the wall (Figure 2.6b). 

 



24 

 

  

(a)                                                                        (b) 

Figure 2.6: The failure shape observed in Red Wildmoor Sandstone in tests with fluid flow (a) 

distinct failure planes approaching a spherical shape of the failed region; (b) a continuous zone 

of plastified rock (from Tronvol and Fjaer, 1994). 

Cross-sectional and length-sectional scans in two perpendicular directions of a specimen after a 

fluid flow test are shown in Figure 2.7. The cavity is enlarged laterally towards a spherical 

geometry. The flow channel also tends to orient itself perpendicular to the lamination. Sand 

produced during this stage of the experiments consisted mainly of single grains and smaller rock 

fragments. 
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Figure 2.7: X-ray CT scans of cross-section and length-sections of Red Wildmoor Sandstone 

applied in a cavity failure experiment with fluid flow (from Tronvol and Fjaer, 1994). 

Figure 2.8 shows corresponding X-ray CT length-sections and cross-sections of one specimen after 

a test with fluid flow. It was observed that a failure zone propagating in the axial direction, oriented 

perpendicular to the rock lamination. The sand produced was typically slabs of rock or assemblies 

of loosely connected grains with oil as the flowing fluid. In tests with the flow of brine, smaller 

grains of sand were produced together with a few slabs. 
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Figure 2.8: X-ray CT scans of cross-sections and length-sections of a specimen (core material 

No.1) in cavity failure experiment with fluid flow (from Tronvol and Fjaer, 1994). 

The relatively extended damaged zone indicated that a different failure model and sand production 

mechanism may be present in the case of water flow. In some tests, Tronvol and Fjaer (1994) also 

observed that a continuous failure zone of changing porosity was extended a few millimeters into 

the surrounding rock from the cavity surface. Also, a failure zone propagating from the cavity 

bottom in the axial direction of the rock specimen was also observed. The fluid flow thus appears 

to influence, to a large degree, the direction of failure propagation. 

Hayatdavoudi (1999) found that sand liquefaction due to water hammer pressure pulses is a likely 

mechanism for massive sand production in water injection wells. Liquefaction is defined as the 

spontaneous loss of shearing resistance due to a collapse of soil or rock structure in a fully saturated 

granular material. Water hammer is, in a general term, the generation, propagation, and damping 

of pressure waves in pipes due to the sudden arrest or sudden change in velocity of a flowing fluid. 

It occurs due to sudden velocity changes such as quick shutting of the well. In numerical modelling, 
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a sudden change in pressure in each fluid grid will lead to pore water pressure increase, thus leading 

to liquefaction and sand production. 

2.4 Review of DEM fluid –solid coupling techniques 

Several researchers have been working on the development of solid-fluid coupling techniques in 

DEM in the past two decades. An overview of these approaches is presented here.  

2.4.1 DEM coupled with computational fluid dynamics (CFD) 

Tsuji et al. (1993) developed a solid-fluid coupling scheme for fluidized beds.  They discretized 

the fluid phase with fluid cells which are larger than the particle size but relatively small compared 

to the size of the whole domain. The mean values of fluid pressure and velocity are calculated 

within each fluid cell. Fluid force is calculated in each cell and applied to each discrete particle.  

Kafui et al. (2002) developed a fluidized bed model for chemical engineering applications. The 

model was DEM-based with gas flow coupling. The gas flow was treated as a continuum by 

solving the Navier-Stokes equations. The model was used in simulating fluidisation of a pseudo-

2D particle bed. The results were consistent with observations and empirical correlations.  

Latham et al. (2008) used discrete element and combined finite-discrete element methods (FEM-

DEM) to model the granular solid skeleton of randomly packed units coupled to a CFD code which 

resolves the wave dynamics through an interface tracking technique. The coupling work used a 

dual mesh approach. One mesh is used across the whole solution domain in which the fluids 

equations are solved and the second mesh contains a finite element representation of the solid 

structures.  

Chan and Tipthavonnukul (2008) developed a coupled method for hydro-transport of solid 

particles in pipelines or open channels. They used the finite volume scheme with a pressure 
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correction algorithm for the flow simulation. The flow field is divided into a finite number of sub-

regions. The continuity equation and the Navier-Stokes equations are both applied. One difficulty 

with above approaches is that the solutions of the mass balance and three momentum equations 

for fluid flow are computationally demanding.  

Viré et al. (2012) performed modeling of fluid-solid interactions using an adaptive mesh fluid 

model coupled with a combined finite-discrete element model. They solved the Navier-Stoke 

equations with an unstructured numerical mesh, similar to the method used by Pain et al. (2001a 

2005b). The method was verified using a model that allows the flow of fluid past a falling sphere 

at small and moderate Reynolds numbers.  

Climent et al. (2014) developed a 3D DEM-fluid flow model by coupling DEM and Computational 

Fluid Dynamics (CFD). The simulation is focused on the effect of different far field boundary 

stress and outer boundary pore pressure conditions. The results are consistent with the analytical 

solution by Risnes et al. (1982). However, their simulations are limited to certain boundary stress 

and pore pressure conditions. Furthermore, they did not consider permeability change due to sand 

production near the wellbore. 

Most of the solid-fluid coupling techniques developed recently follow the fluid flow and fluid-

solid interaction calculation method proposed by Cheung (2010), who developed a 3D DEM 

coupled with fluid flow in sand production simulation. The fluid phase is the same as Tsuji, and 

the governing equations of such type of fluid calculation system are the continuity and Navier-

Stoke equations: 

 𝜕𝑛

𝜕𝑡
= −(∇𝑛𝑢) 

[2.6] 
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 𝜕(𝑛𝑢)

𝜕𝑡
+ (∇𝑛𝑢𝑢) = −

𝑛

𝜌𝑓
∇p −

𝑛

𝜌𝑓
∇τ + ng +

𝑓𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛
𝜌𝑓

 
[2.7] 

where 𝑛 is the porosity, 𝑢 is the average velocity of the fluid, 𝜌𝑓 is the density of the fluid, t is 

time, τ is the fluid viscous stress tensor, g is the gravitational acceleration, and 𝑓𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is the 

fluid-particle interaction term in units of force per unit volume, which is given by: 

 𝑓𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝛽(𝑣 − 𝑢) [2.8] 

where 𝑣 is the average velocity of the particle, and 𝛽 is a parameter that depends on rock’s porosity: 

 
𝛽 =

1 − 𝑛

𝑑𝑝2𝑛2
(150(1 − 𝑛)𝜇𝑓 + 1.75𝜌𝑓𝑑𝑝|𝑣 − 𝑢|), 𝑤ℎ𝑒𝑛 𝑛 < 0.8 

[2.9] 

 
𝛽 =

3

4
𝐶𝐷
|𝑣 − 𝑢|𝜌𝑓(1 − 𝑛)

𝑑𝑝
𝑛−1.7, 𝑤ℎ𝑒𝑛 𝑛 > 0.8 

[2.10] 

where 𝜇𝑓 is the viscosity of the fluid, 𝑑𝑝 is the average diameter of sand particles, and 𝐶𝐷 is the 

drag coefficient in relation to Reynolds number 𝑅𝑒: 

 

𝐶𝐷 = {

24

𝑅𝑒
(1 + −0.15𝑅𝑒

0.687), 𝑅𝑒 ≤ 1000 

0.44, 𝑅𝑒 ≥ 1000

 

[2.11] 

 
𝑅𝑒 =

𝑛|𝑣 − 𝑢|𝜌𝑓𝑑𝑝

𝜇𝑓
 

[2.12] 

The fluid-solid interaction force is then calculated and applied to the solid particle in DEM model. 

The applied force on each solid particle 𝑖 with diameter 𝑑 in direction 𝑗 are calculated as: 
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𝑓𝑖,𝑗 = −

1

6
𝜋𝑑3

𝛽𝑗(𝑣𝑗 − 𝑢𝑗)

1 − 𝑛
 

[2.13] 

The total fluid forces on a particle consist of drag force, buoyancy force and forces caused by the 

pressure gradient. The fluid flow calculates the fluid velocity from which a force is added to the 

particle equilibrium equation. On the other hand, DEM calculates particle velocities and porosity. 

The large majority of past studies (e.g. Cook et al., 2004; Li et al., 2006; Quadros et al., 2010; 

Boutt et al., 2011) involve 2D discrete models. Two-dimensional models offer a good qualitative 

insight. However, they are not suitable for applications in general 3D reality. Further, solid 

particles in 2D models use are bar-shaped, and the loading conditions in the direction normal to 

the model plane are not realistic. Grof et al. (2009) developed a 3D DEM-fluid flow model. Their 

study was focused on a small-scale phenomenon involving only a few particles. Cheung (2010) 

developed a 3D DEM coupled with the 1D fluid flow for the simulation of sand production. 

However, they neglected the gradual change in the wellbore geometry and the concomitant 

variation of the fluid flow directions near the evolving cavity face. The circumferential and vertical 

flows were not taken into consideration as they might be significant. Besides, the effects of the 

anisotropic boundary stress on sand production are also considered to be important, which required 

further research. 

2.4.2 DEM coupled with lattice Boltzmann method (LBM) 

The Lattice Boltzmann Method (LBM), originally developed from McNamara and Zanetti (1988), 

has been used for a wide range of applications including particulate suspensions (Ladd and 

Verbery, 2011), hydraulic fracturing (Boutt et al., 2007), and turbulent flows (Hou et al., 1996.) 
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Cook (2001) developed a coupled numerical method for the direct simulation of particle-fluid 

systems. The fluid flow was solved using the LBM method, which can accurately reproduce 

Navier-Stokes equations. Cook et al. (2003) validated the developed method through the 

comparison of simulation results with the analytical solutions for cylindrical Couette flow. The 

results show accurate computation of fluid flow and particle forces. They also performed the 

erosion simulation of sanding near the wellbore. Results indicated physically realistic behavior.  

Feng et al. (2007) coupled the LBM with the DEM solutions and incorporated of large eddy for 

the simulation of particle transport in turbulent fluid flows with high Reynolds number. They 

applied the model in a 2D particle transport problem comprising 70 large particles in fluid flow 

with high Reynolds number with reasonable results. Feng et al. (2010) extended their model to 3D 

and simulated a simplified laboratory model of vacuum dredging system for mineral recovery. The 

numerical results showed a good correspondence to laboratory observations. 

Han (2012) used the LBM-DEM coupling to simulate the sand arch test. The collapse and re-

forming of sand arches in the perforation cavity under increasing fluid pressure gradient was 

observed in numerical simulation, as observed in the physical experiments.  

Lomine et al. (2013) used the LBM-DEM coupling method to illustrate on a laboratory hole 

erosion test in 2D. Both detachment and transport of particle were modeled. The erosion law 

deduced from the simulations agreed with the law verified and used experimentally. 

The LBM is based on microscopic kinetic models (Cui, 2012). In LBM, the fluid domain is divided 

into a regular lattice. The fluid is represented as packets of mass that move on a regular lattice, so 

that configuration of fluid particles varies in every calculation cycle, leading to a changing flow 

field. Collision and redistribution of fluid packets occur at the lattice nodes according to 

relationships that conserve mass and momentum. Han et al. (2007) pointed out that LBM avoids 
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solving the Navier-Stokes equations but involves only simple local operations, which is less 

computational demanding compared with the CFD. 

In LBM, the fluid domain is divided into a square lattice with unity spacing, and the velocity field 

is discretized into nine prescribed vectors, as shown in Figure 2.9. Fluid particles are allowed either 

to remain at their current locations or to move to the adjacent nodes with velocities 𝑒𝑖. 

 

Figure 2.9: Nine prescribed velocities in a D2Q9 model (Feng et al., 2007) 

Cui (2012) derived the governing equations for the density distribution function 𝑓𝑖 along with the 

prescribed velocities 𝑒𝑖 based on the basic formulation of Cook (2001):  

 
𝑓𝑖(𝑥 + 𝑒𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖(𝑥, 𝑡) −

1

𝜏
(𝑓𝑖(𝑥, 𝑡) − 𝑓𝑖

𝑒𝑞(𝑥, 𝑡)) [2.14] 

where 𝑓𝑖 represents the probable quantity of micro-particles at a lattice node moving along the 

𝑖𝑡ℎdirection with velocity 𝑒𝑖 at a particular time, 𝜏 is a dimensionless relaxation time, and 𝑓𝑖
𝑒𝑞

 are 

a set of distribution functions at which the systems are defined as the equilibrium: 

 
𝑓𝑖
𝑒𝑞 = 𝑡𝑖𝜌𝑓 [1 + 3(𝑒𝑖 ∙ 𝑢) +

9

2
(𝑒𝑖 ∙ 𝑢)

2 −
3

2
𝑢 ∙ 𝑢] [2.15] 

where 𝜌𝑓 is the fluid density, and 𝑢 is the flow velocity. 
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An Eulerian flow field is defined by the configurations of micro-particles. Within each LBM time 

step, two phases of computations take place. Firstly, the micro-particles encounter one another at 

node 𝑥, and change their original direction and velocities by collision, known as “collision phase”. 

The post–collision distribution is then calculated from the right hand side of Equation 2.14. The 

updated distribution at node 𝑥 is transferred to the adjacent nodes, giving an updated description 

of the flow field, known as “streaming phase” (Cui, 2012). The macroscopic fluid variables can 

also be solved from the summation of adjacent node information: 

 

𝜌 =∑𝑓𝑖

𝑖=8

𝑖=0

 

∆P =  
𝐶2

3
∆𝜌 

𝑢 =  
∑ 𝑓𝑖𝑒𝑖
8
𝑖=0

𝜌
 

[2.16] 

where 𝐶 is lattice speed, ∆𝑃 and ∆𝜌 are the changes in pressure and density values, respectively. 

The interactions between fluid and solid particles in the context of LBM require mapping of solid 

particles onto the LBM Eulerian lattice, as shown in Figure 2.10.  
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Figure 2.10: Stepwise lattice representation of a circular solid particle (from Han, 2012). 

Nobel and Torczynski (1998) introduced the Immersed Moving Boundary (IMB) scheme in which 

a node cell is introduced for each lattice node, with its size identical to a lattice square, and located 

at the center of the cell. The standard LBM equation is then modified as: 

 
𝑓𝑖(𝑥 + 𝑒𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖(𝑥, 𝑡) −

1

𝜏
(1 − 𝐵) (𝑓𝑖(𝑥, 𝑡) − 𝑓𝑖

𝑒𝑞(𝑥, 𝑡)) + 𝐵Ω𝑖
𝑆 

Ω𝑖
𝑆 = 𝑓−𝑖(𝑥, 𝑡) − 𝑓𝑖(𝑥, 𝑡) + 𝑓𝑖

𝑒𝑞(𝜌, 𝑢𝑠) − 𝑓−𝑖
𝑒𝑞(𝜌, 𝑢) 

[2.17] 

where 𝑢𝑠 is the velocity of the solid particle at time 𝑡, and −𝑖 is used to denote the distribution 

component having the opposite direction to 𝑖, 𝐵 is a weighting function that depends on the cell 

solid fraction or solid ration, 𝜀, defined here as the fraction of the lattice cell area covered by a 

solid, and the dimensionless relaxation time 𝜏 as: 

 
𝐵(𝜀, 𝜏) =  

𝜀(𝜏 − 0.5)

(1 − 𝜀) + (𝜏 − 0.5)
 

[2.18] 
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Here 𝜀 is the volumetric fraction overlapped by the solid at a site. If 𝜀 equals to 1, the site is fully 

covered by solid; if 𝜀 equals to 0, the site is completely filled with fluid (In this case, B equals to 

0, the collision rule reduces to the original collision operation). 

So the force and torque imposed by fluid on the solid are: 

 
𝐹𝑓 = 𝐶Δℎ (∑𝐵𝑛∑Ω𝑖

𝑠𝑒𝑖
𝑖𝑛

) [2.19] 

 
𝑇ℎ = 𝐶Δℎ∑(𝑥𝑛 − 𝑥𝑠)

𝑛

× (𝐵𝑛∑Ω𝑖
𝑠

𝑖

𝑒𝑖) [2.20] 

where the summations are performed over all the boundary nodes, Δℎ is the unity lattice space, 𝑥𝑛 

is the location of lattice node, 𝑥𝑠 denotes the centroid of the solid particle at time t. Fluid-particle 

coupling is realized at each time step by first computing the fluid solution, and then updating the 

particle positions. 

However, although the core LB operation is effective, the total computational cost could be 

substantial since a sufficiently fine lattice is necessary and small time steps are required. Compared 

with the CFD, the effect of fluid flow to solid particles is still accomplished by introducing an 

additional force on the particle.  

2.4.3 DEM coupled with solid deformation pore pressure (SDP) 

One particular issue in the fluid flow-DEM calculation is the permeability and porosity change in 

each fluid cell between the cycles of calculation. Besides all existing DEM models do not take into 

consideration the development of excess pore water pressure, which is the focus of this study. 
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Hakuno and Tarumi (1988) developed a method to model liquefaction based on detecting all the 

pores among particles and connecting them by pipes. Pore water pressure was calculated by 

assuming water had constant volume elasticity and water pressure was proportional to the pore 

volume. Fluid flow between each pore space and its adjacent pores was calculated based on 

Darcy’s law. This method resulted in a complicated calculation procedure and required subsequent 

manipulation.  

Nakase et al. (1999) improved Hakuno and Tarum’s method by implementing square-cell element 

each containing 15 particles. The pore pressure generation in each cell corresponded to particle 

movement in the neighboring cells and was proportional to the decrease of pore volume. The fluid 

force applied on the particle depended on the pore pressure gradient between neighboring cells.  

Mori et al. (2001) studied the liquefaction analysis of River Dike using a two-dimensional discrete 

element model. In their study, excess pore water pressure was calculated in estimating the large 

permanent displacement due to liquefaction at the microscope level. The accumulative excess pore 

water pressure was induced by a combination of shear force and effective normal force. The excess 

pore water pressure caused by the shear force was related to the dissipative energy and stored 

elastic energy in the model.  

Bonilla (2004) performed a DEM undrained simulation with fluid coupling by using two-

dimensional assemblies of elliptical particles. The pore volume was identified by constructing a 

polygon around the specified pore surrounded by particles, as shown in Figure 2.11.  
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Figure 2.11: Calculation of polygons enclosing the assembly’s void (Bonilla, 2004) 

The volumetric pore changes experienced due to particle rearrangement under external forces is 

then calculated from volume change of the polygon. The pore pressure change ∆𝑢𝑛 in any pore 

space 𝑛 surrounded by particles is then calculated from pore volume change ∆𝑉𝑛:  

 
∆𝑢𝑛 = 𝐵𝑓

∆𝑉𝑛
𝑉𝑛

 
[2.21] 

where 𝑉𝑛 is the original volume of pore 𝑛 and 𝐵𝑓 is the bulk modulus of the fluid. 

The fluid flow path was constructed by the flow network by joining the centers of adjacent 

polygons (Figure 2.12).  
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Figure 2.12: Flow network construction for a set of polygons (Bonilla, 2004) 

The pore pressure forces on the particles are applied by the integration of pore pressure difference 

on adjacent centers of the polygons. Consider a section of an ellipse bounded by the contact vectors 

𝑙𝑎
𝑐  and 𝑙𝑏

𝑐  (start from the center of the ellipse and end at the contact point) depicted in Figure 2.13 

below, the horizontal and vertical components of the pore pressure induced force 𝐹1
𝑛  and 𝐹2

𝑛 

resulting from pore pressure 𝑢𝑛 in pore 𝑛 are given by: 

 

𝐹1
𝑛 = −𝑢𝑛(𝑎2 − 𝑏2) △ 

𝐹2
𝑛 = 𝑢𝑛(𝑎1 − 𝑏1) △ 

[2.22] 

where △ is the thickness of the particle. 𝑎1, 𝑎2 and 𝑏1, 𝑏2 are the horizontal (subscript as 1) and 

vertical (subscript as 2) component of the contact vector 𝑙𝑎
𝑐  and 𝑙𝑏

𝑐 .  

In calculating the pore pressure of a pore n, a closed polygon is established by connecting the 

centers of the elliptical elements surrounding the pores (shown in Figure 2.12). Considering 

travelling from one center of an element to the center of the adjacent element in a clockwise 

manner, the vectors a and b in equation 2.22 are assigned by the surface of the element bounded 
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within the polygon connecting the centers as shown in Figure 2.13(a).  If the calculation is 

performed in a counter-clockwise manner, the assignment of the vectors a and b is given by Figure 

2.13(b). 

For both cases, the contact vectors are computed and the vector first encountered along the path is 

identified as 𝑙𝑏
𝑐 , the second contact vector is 𝑙𝑎

𝑐 . 

 

Figure 2.13: The pore pressure force computation from contact vectors (Bonilla, 2004) 

Bonilla observed the temporary liquefaction in DEM simulations. From Bonilla’s 

recommendations, the computational efficiency of this method needs to be improved. 

It is not easy to calculate excess pore water pressure using DEM since it is difficult to determine 

pore space connectivity and pore space deformation in a discontinuum. In this research, a new idea 

is proposed to incorporate excess pore water pressure calculation in DEM simulation by 

introducing a new water particle element which has a specific stiffness that enables the calculation 

of excess pore pressure due to pore space deformation.  The new approach can be used to simulate 

wet granular deformation using DEM. 

 



40 

 

Chapter 3. Liquid-solid interaction for flow-driven perturbation of 

boundary conditions1 

3.1. Introduction and background 

As described in Chapter 2, problems such as sand production involve the interaction between solid 

particles and flowing fluid, which must be accounted for by coupling the mechanical and fluid 

flow calculations. To simulate the interaction at the soil particle scale, the solid DEM model must 

be coupled with a fluid model (Zhu et al., 2007).  Application of solid and fluid coupled flow is an 

important issue in engineering problems. Some examples are: hydro-transport in pipelines or open 

channels (Chan and Tipthavonnukul, 2008), landslides induced debris flow (Zhao, 2014), and sand 

production in sandstone reservoir (Climent et al., 2014). This chapter focuses on the sand 

production problem and the effect of fluid flow on the sanding process. 

Sanding is the production of formation sand driven by de-cementation of the formation sand 

around the borehole and the flow of reservoir fluid during the oil recovery process. Problems 

associated with sand production include erosion of pipelines and surface facilities, wellbore 

intervention costs, and environmental impacts. Large amounts of sand production in a short period 

of time may clog up wells, damage well equipment, and destabilize wellbores due to loss of 

materials (Climent et al., 2014). On the other hand, controllable sand production may increase 

wellbore productivity and reduce wellbore completion costs (Saucier, 1974). Therefore, 

                                                 
1 A version of this chapter will be published in: Cui, Yifei, Nouri, Alireza, Chan, Dave and Rahmati, Ehsan, 2016. “A 

new approach to DEM simulation of sand production”, Journal of Petroleum Science and Engineering, Volume 147, 

November 2016, Pages 56–67. 
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understanding sand production mechanisms and the ability to predict and manage the rate of sand 

production are important. 

While both experimental and analytical models of sand production are necessary to understand the 

phenomenon, numerical models are essential for realistic predictions (Rahmati et al., 2013a). Sand 

production in oil wells is often analyzed using continuum models. Papamichos and Vardoulakis 

(2005), Nouri et al. (2006), obtained some good results by using continuum based analysis on sand 

production problems. Azadbakht et al. (2012) linked finite difference code with a finite element 

method for volumetric prediction of sand production in injector wells. The model was validated 

using physical model tests carried out under various stresses and fluid flow conditions. However, 

the process of sandstone de-cementation involving the development of cracks and micro-cracks in 

the inter-granular bonding material and grain detachments due to seepage forces are intrinsically 

problems of a discontinuum and are not compatible with the assumptions of continuum mechanics. 

An alternative approach that overcomes some of these limitations is adopting the DEM for this 

problem. In order to apply the DEM in the sanding problem, it is necessary to calculate fluid flow 

and pore water pressure in the discontinuum. Coupling the DEM model with continuum fluid 

computation allows the simulation of solid-fluid interactions. 

The application of DEM coupled with solid-fluid interactions on sand production has been 

attempted in a few research studies in the past. 2D discrete models were used in the majority of 

previous studies (e.g. Preece et al., 1999; Cook et al., 2004; Li et al., 2006; Quadros et al., 2010; 

Boutt et al., 2011). Two-dimensional models offer a good qualitative insight. However, they are 

not suitable for application in general 3D reality. Further, solid particles in 2D models are bar-

shaped, and the loading conditions in the direction normal to the model plane are not realistic.  It 

cannot model plane stress or plane strain conditions. 
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Grof et al. (2009) developed a 3D DEM-fluid flow model. Their study was focused on a small-

scale phenomenon involving only a few particles. Cheung (2010) developed a 3D DEM coupled 

with 1D fluid flow for the simulation of sand production. However, they neglected the gradual 

change in the wellbore geometry and the concomitant variation of fluid flow directions near the 

continuously changing cavity face. Han (2013) performed numerical simulation on sand 

production by using the lattice Boltzmann method (LBM) implemented PFC coupled with fluid 

flow. The coupling system was able to reproduce the collapse and reconstruction of a sand arch. 

Climent et al. (2014) developed a 3D DEM-fluid flow model by coupling DEM and Computational 

Fluid Dynamics (CFD). The simulation is focused on the effect of different far field boundary 

stress and outer boundary pore pressure conditions. The results were consistent with analytical 

solution by Risnes et al. (1982). However, their simulations were limited to a certain boundary 

stress and pore pressure conditions. Furthermore, they did not consider permeability change due 

to sand production near the wellbore. 

Van Den Hoek et al. (2000) developed an analytical solution to calculate the failure of the initial 

cavity in a hollow cylinder sample and compared with experimental results. They studied the 

influence of the far field stress and pressure drawdown on the failure of the initial cavity. By 

calculating the maximum allowable fluid flow rate, they concluded that the primary role of fluid 

flow in sand production is the transport of loose sand resulting from compression failure rather 

than the failure of the intact sandstone itself.  The tensile failure can only take place around small 

cavities in weak sandstones or in the case of very highly localized pore pressure gradient.  

In this Chapter, a new SPF approach to simulate sand production by using 3D DEM-fluid flow 

model is proposed. A new method to update the variations of permeability and porosity for each 

grid block in response to both solid deformation and sand production is conducted. The verification 
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of the model against analytical solutions is carried out. The verified model is then applied to the 

simulation of sanding for a synthetic laboratory-scale problem. The effects of boundary stresses 

and fluid flow on sandstone degradation and sand production is then investigated. 

3.2. Proposed methodology 

3.2.1 Discrete Element Method 

The Discrete Element Method (DEM) was originally proposed by Cundall and Strack (1979) 

which consists of discrete interacting particles. The advantages of DEM are that it provides 

micromechanical quantities and parameters that cannot be easily obtained from laboratory tests, 

and it can capture particle-scale interactions underlying the observed macro-scale behaviour of soil 

and rock. In sand production analysis, different shapes of breakout near a wellbore can be captured 

using DEM. 

DEM analysis involves modeling a granular material using particles that usually have simple 

geometries such as spheres in 3D or disks in 2D. These ideal particles are usually assumed to be 

rigid but small overlaps are allowed at the contact points, referred as soft contacts. Soft-contact 

refers to rigid particles are allowed to overlap one another at the contact points. The magnitude of 

the overlap is related to the contact force via the force-displacement law, and all overlaps are small 

in relation to particle sizes.  The particles are rigid meaning the size of the particles is unchanged.  

Deformation only occurs at the particle contact points therefore the contacts are referred to as soft 

contact. At any inter-particle contact, a contact stiffness model is used to relate the contact force 

to the overlapping of elements. The finite displacements and rotations of discrete bodies including 

complete detachment are allowed among particles.  
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In this study, the parallel-bond model in the Particle Flow Code (PFC) is used. The parallel bond 

model which is implemented in PFC3D (Itasca, 2008) is considered to be an appropriate bonding 

model for DEM models of cemented sands (Potyondy and Cundall, 2004). It includes a set of 

springs with constant normal and shear stiffnesses, acting in parallel with the linear contact springs. 

The parallel-bonds are supposed to represent a finite amount of cementing material deposited 

between particles which are able to transfer both forces and moments. The parameters required to 

define a parallel-bond are the normal and shear stiffness, the normal and shear strength, and the 

degree of bonding. When the forces acting on the parallel bond reach either its normal or shear 

strength limits, the parallel bond is erased and being treated as bound failure. The linear contact 

model is used after the failure of the parallel bonds. The load-displacement relationship between 

two contacting bodies is represented by linear springs inserted at particle contact. The three input 

parameters are the particle normal and shear stiffness, and the inter-particle friction coefficient. 

The calculations performed in the DEM alternate between the application of Newton’s second law 

to the particles and a force-displacement law at the contacts. Newton’s second law is used to 

determine the translational and rotational motions of each particle arising from the contact forces, 

applied forces and body forces acting on it, while the force-displacement law is used to update the 

contact forces arising from the relative motion at each contact. The calculation cycle is illustrated 

in Figure 3.1. 
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Figure 3.1: DEM calculation flow chart (Itasca, 2008) 

The force-displacement law relates the relative displacement between two entities at a contact to 

the contact force acting on the entities. For both ball-ball and ball-wall contacts, this contact force 

arises from contact occurring at a point. For ball-ball contact, an additional force and moment 

arising from the deformation of the cementations material represented by a parallel bond can also 

act on each particle. The contact force vector 𝐹𝑖 is calculated by: 

 𝐹𝑖 = 𝐹𝑖
𝑛 + 𝐹𝑖

𝑠 [3.1.] 

where 𝐹𝑖
𝑛 and 𝐹𝑖

𝑠 denoted the normal and shear force vectors respectively. The normal and shear 

forces are calculated by: 

 𝐹𝑖
𝑛 = 𝐾𝑛𝑈𝑛 [3.2.] 

 𝐹𝑖
𝑠 = 𝐾𝑠𝑈𝑠 [3.3.] 

where 𝑈𝑛 and 𝑈𝑠 are the contact displacements in normal and shear direction. 

The motion of a single rigid particle is determined from the resultant force and moment vectors 

acting on it, and can be described in terms of the translational motion of a point in the particle and 
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the rotational motion of the particle. The equations of motion can be expressed relates the resultant 

force to the translational motion and the resultant moment to the rotational motion: 

 𝐹𝑖 = 𝑚𝑥̈𝑖  (Translational motion) [3.4.] 

 𝑀𝑖 = 𝐻̈𝑖 (Rotational motion) [3.5.] 

where 𝐹𝑖  is the resultant force, 𝑚 is the total mass of the particle, 𝑥̈𝑖  is the acceleration of the 

specified particle, 𝑀𝑖 is resultant moment acting on the particle, and 𝐻̇𝑖 is the angular momentum 

of the particle. 

By integration, the incremental velocity and displacement of each particle are calculated for the 

current time increment. The locations of all the particles are updated for the next calculation cycle.  

In order to account for the interaction with fluid, the equations of motion are modified with an 

additional forcing term, F𝑖𝑓𝑙𝑢𝑖𝑑 which is fluid force applied on the particle: 

 𝐹𝑖 + 𝐹𝑖 𝑓𝑙𝑢𝑖𝑑 = 𝑚𝑥̈𝑖 [3.6.] 

 

3.2.2 DEM and fluid flow coupling scheme 

The commercial software Particle Flow Code (PFC3D) is used as a tool for the implementation of 

the numerical scheme in DEM phase. New code is developed for new DEM elements. The 

commercial software MATLAB is used as a tool for the implementation of the numerical scheme 

in the fluid phase. 

It is essential to perform fluid flow calculations along with solid deformation analysis in the 

sanding model. The seepage force due to fluid flow affects grain detachment and mobility and 
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could mobilize disaggregated particles. On the other hand, grain motions can affect fluid flow 

since it changes the porosity and permeability of the material. Therefore, fluid flow and grain 

motions are a coupled phenomenon and should be analyzed in a coupled manner.  

The formulation used in fluid flow calculation is presented here in the cylindrical coordinate 

system since wellbore in some cases can be simplified into a 2D axisymmetrical problem. The 

continuity equation for fluid flow in a differential element is expressed as the difference between 

the entering and exiting mass being equal to accumulated mass: 

 
−
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟𝜌) −

1

𝑟

𝜕

𝜕𝜃
(𝑣𝜃𝜌) −

𝜕

𝜕𝑧
(𝑣𝑧𝜌) =

𝑑

𝑑𝑡
(𝜙𝜌) 

[3.7.] 

where 𝑣𝑟, 𝑣𝜃, 𝑣𝑧 are the fluid velocities in the radial, tangential and vertical directions, 𝜙 is the 

porosity of rock, 𝜌 is the density of fluid, and 𝑡 is time. 

From Darcy’s equation (Dake, 1998), the velocity of fluid in the radial, tangential and vertical 

directions can be expressed as: 

 
𝑣𝑟 = −

𝑘

𝜇

𝜕𝑃

𝜕𝑟
; 𝑣𝜃 = −

1

𝑟

𝑘

𝜇

𝜕𝑃

𝜕𝜃
; 𝑣𝑧 = −

𝑘

𝜇

𝜕𝑃

𝜕𝑧
 

[3.8.] 

where 𝑘 is the rock permeability, 𝜇 is the fluid viscosity, 𝜕𝑃/𝜕𝑟, 𝜕𝑃/𝜕𝜃, 𝜕𝑃/𝜕𝑧 are the fluid 

pressure gradients in the radial, tangential, and vertical directions.  

The compressibility of the fluid is expressed as: 

 
𝐶𝑓 =

1

𝜌

𝜕𝜌

𝜕𝑝
 

[3.9.] 

Combine Equations 3.7. to 3.9.: 
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 1

𝑟

𝜕

𝜕𝑟
(𝑟
𝑘

𝜇

𝜕𝑃

𝜕𝑟
𝜌) +

1

𝑟

𝜕

𝜕𝜃
(
1

𝑟

𝑘

𝜇

𝜕𝑃

𝜕𝜃
𝜌) +

𝜕

𝜕𝑧
(
𝑘

𝜇

𝜕𝑃

𝜕𝑧
𝜌) = 𝜌

𝜕𝜙

𝜕𝑡
+ 𝜙

𝜕𝜌

𝜕𝑡

= 𝜌
𝜕𝜙

𝜕𝑡
+ 𝜙𝐶𝑓𝜌

𝜕𝑃

𝜕𝑡
 

[3.10.] 

In Equation 3.10., the term ∂𝜙/ ∂𝑡 is obtained from DEM calculations. Fluid compressibility is 

assumed to be constant. The solution of the fluid flow equation by using finite difference 

approximation is shown in Appendix A: The Finite Difference Approximation to Fluid flow 

Equations. 

The fluid force calculation method adopted here is based on the assumption of a continuum where 

the size of the grid block for flow calculation is relatively large compared to the average particle 

diameter in the grid block. A shape function is used to interpolate pore pressures at any point inside 

the grid block from the calculated nodal pressures in the cylindrical coordinate system as shown 

in Figure 3.2. Pore pressure inside a grid block can be calculated from: 

 𝑃(𝑟,  𝜃) = 𝑁𝑖(𝑟,  𝜃)𝑑𝑒 [3.11.] 

 𝑁𝑖  = [𝑁1 𝑁2 𝑁3 ⋯ 𝑁8]; 𝑑𝑒 = {

𝑃1
𝑃2……
𝑃8

} [3.12.] 

where 𝑑𝑒 is the nodal pressure array for the grid block, and 𝑁𝑖  is the shape function given by 

Equation 3.13.  
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𝑁1 = (1 −
𝑟 − 𝑟1
𝑟2 − 𝑟1

) (1 −
𝜃 − 𝜃1
𝜃2 − 𝜃1

) (1 −
𝑧 − 𝑧1
𝑧2 − 𝑧1

) 

𝑁2 = (
𝑟 − 𝑟1
𝑟2 − 𝑟1

) (1 −
𝜃 − 𝜃1
𝜃2 − 𝜃1

) (1 −
𝑧 − 𝑧1
𝑧2 − 𝑧1

) 

𝑁3 = (
𝑟 − 𝑟1
𝑟2 − 𝑟1

) (
𝜃 − 𝜃1
𝜃2 − 𝜃1

) (1 −
𝑧 − 𝑧1
𝑧2 − 𝑧1

) 

𝑁4 = (1 −
𝑟 − 𝑟1
𝑟2 − 𝑟1

) (
𝜃 − 𝜃1
𝜃2 − 𝜃1

) (1 −
𝑧 − 𝑧1
𝑧2 − 𝑧1

) 

𝑁5 = (1 −
𝑟 − 𝑟1
𝑟2 − 𝑟1

) (1 −
𝜃 − 𝜃1
𝜃2 − 𝜃1

) (
𝑧 − 𝑧1
𝑧2 − 𝑧1

) 

𝑁6 = (
𝑟 − 𝑟1
𝑟2 − 𝑟1

) (1 −
𝜃 − 𝜃1
𝜃2 − 𝜃1

) (
𝑧 − 𝑧1
𝑧2 − 𝑧1

) 

𝑁7 = (
𝑟 − 𝑟1
𝑟2 − 𝑟1

) (
𝜃 − 𝜃1
𝜃2 − 𝜃1

) (
𝑧 − 𝑧1
𝑧2 − 𝑧1

) 

𝑁8 = (1 −
𝑟 − 𝑟1
𝑟2 − 𝑟1

) (
𝜃 − 𝜃1
𝜃2 − 𝜃1

) (1 −
𝑧 − 𝑧1
𝑧2 − 𝑧1

) 

[3.13.] 

 

Figure 3.2: A grid block for flow calculations and nodal pressures in cylindrical coordinate 

system 

Fluid forces on the particles in the grid block are calculated by integrating the pressure over the 

particle surface (Figure 3.3). Consider the upper half hemisphere with known nodal pressures 
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(𝑃1, 𝑃2, 𝑃3, 𝑃4)  as shown in Figure 3.3a. The pressure at any point on the surface of the sphere with 

coordinate (𝑥, 𝑦, 𝑧) can be linearly related to the four known pressures: 

 

𝑃 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 =
𝑃3 − 𝑃4
2𝑟

𝑥 +
𝑃1 −

𝑃3 + 𝑃4
2

𝑟
𝑦 +

𝑃2 −
𝑃3 + 𝑃4
2

𝑟
𝑧 +

𝑃3 + 𝑃4
2

 

𝑥 = 𝑟𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃, 𝑦 = 𝑟𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃, 𝑎𝑛𝑑 𝑧 = 𝑟𝑐𝑜𝑠𝜙 

[3.14.] 

Equation 3.14. can be written in the spherical coordinate system as: 

 P =
1

2
[(𝑃3 − 𝑃4)𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃 + (2𝑃1 − 𝑃3 − 𝑃4)𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃 + (2𝑃2 − 𝑃3 − 𝑃4)𝑟𝑐𝑜𝑠𝜙 + (𝑃3

+ 𝑃4)] 

[3.15.] 

The total fluid force 𝐹𝑦 on the half hemisphere in the y direction is: 

 

𝐹𝑦 = ∫𝑃𝑑𝐴𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃 = ∫ ∫ 𝑃𝑟2(sin𝜙)2𝑠𝑖𝑛𝜃𝑑𝜙𝑑𝜃

𝜋
2

0

𝜋

0

= 𝑟2 [
𝜋

3
𝑃1 +

2

3
𝑃2 + (

𝜋

12
−
1

3
) (𝑃3 + 𝑃4)] 

[3.16.] 

Consider both the upper and lower hemispheres shown in Figure 3.3b; the total fluid force on a 

ball in the y direction is given by: 

 𝐹𝑦 = 𝑟
2 {[

𝜋

3
𝑃1 +

2

3
𝑃2 + (

𝜋

12
−
1

3
) (𝑃3 + 𝑃4)] + [

𝜋

3
𝑃1 +

2

3
𝑃6 + (

𝜋

12
−
1

3
) (𝑃3 + 𝑃4)]

− [
𝜋

3
𝑃5 +

2

3
𝑃2 + (

𝜋

12
−
1

3
) (𝑃3 + 𝑃4)] − [

𝜋

3
𝑃5 +

2

3
𝑃6 + (

𝜋

12
−
1

3
) (𝑃3 + 𝑃4)]} 

[3.17.] 

After rearranging Equation 3.17., we obtain: 

 
𝐹𝑦 =

2

3
𝜋𝑟2(𝑃1 − 𝑃5) [3.18.] 
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The seepage force in the x and z directions are calculated following the same procedure used in 

obtaining Equation 3.18.. 

 

(a) Upper half hemisphere                                       (b)  Whole sphere 

Figure 3.3: Fluid pressure calculation on a single particle in spherical coordinate system 

3.2.3 Scheme for Updating Permeability 

A methodology was developed to assess the variations of permeability and porosity due to 

deformation and sand production. The stress, strain, porosity and number of particles in each grid 

block are determined by inserting a “measurement sphere” at the center of the grid block. The 

measurement sphere is a built-in tool in PFC3D to help the user to calculate quantities such as 

porosity, stress and strain rate in a specific measurement volume (Itasca, 2008).  

To update permeability, the number of particles with centroids that lie in the specific measurement 

sphere is determined at the beginning and end of each time step to track particle movements. If the 

number of particles at the beginning is found to be equal to or smaller than the number of particles 

at the end of the time step, no sanding is assumed to have taken place from that volume. In this 

case, the permeability is updated based on volumetric strain using the modified version of the 

Kozeny-Carman’s equation (Tortike, 1991): 
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𝑘1 = 𝑘0

(1 +
𝜀𝑣
𝜙0
)
3

1 + 𝜀𝑣
 

[3.19.] 

where 𝑘0 is the initial permeability in the grid block, 𝜙0 is the initial porosity, v is the volumetric 

strain calculated from the volumetric strain rate in the measurement sphere: 

 
𝜀𝑣 =∑𝜀𝑣̇∆𝑡 [3.20.] 

where 𝜀𝑣̇ is the instantaneous strain rate determined from the velocities of all particles within the 

measurement sphere at the end of each DEM time step, and 𝛥𝑡 is the DEM time step (Itasca, 2008): 

 
∆𝑡 = √

𝑚

𝐾
 [3.21.] 

where 𝑚 is the mass of the particle and 𝐾 is the stiffness of the particle. The calculated DEM time 

step in our analysis ranged from 1 × 10−7 to 1 × 10−6 seconds. 

If the number of particles in the beginning is calculated to be larger than the number of particles 

at the end of the time step, denoted here as N, the element permeability is updated based on the 

updated porosity of the element. If the porosity measured in this block is smaller than a certain 

threshold, denoted here as 𝜙, the permeability is updated by interpolating between the original 

permeability and an upper-bound permeability. The upper-bound permeability was chosen to be 

100 Darcies after a sensitivity work which will be presented in Section 3.4.2. Sensitivity Analysis 

for Model Optimization. 

 
𝑘𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑘0 + (100 − 𝑘0)

𝜙1 − 𝜙𝑓𝑢𝑙𝑙

𝑇 − 𝜙𝑓𝑢𝑙𝑙
 [3.22.] 
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𝑛𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑛0 + (0.95 − 𝑛0)

𝜙1 − 𝜙𝑓𝑢𝑙𝑙

𝑇 − 𝜙𝑓𝑢𝑙𝑙
 

[3.23.] 

where 𝜙𝑓𝑢𝑙𝑙  is the porosity measured from the measurement sphere before the onset of sanding 

from the block, 𝜙1 is the porosity measured from measurement sphere at the end of the iteration, 

𝑘0 is the permeability at the beginning of the iterations. In this work, the porosity of the fully 

sanded block 𝑇 was assumed to be 0.85. 

If the porosity exceeds 0.85, the grid block is assumed to have completed sand production. In this 

case, the permeability is assigned a high value (in this study, 100 Darcy). The procedure used for 

updating the porosity and permeability is presented in Figure 3.4. 
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Figure 3.4: The scheme for updating permeability and porosity 
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3.3. Model Verification 

The coupled DEM-flow model described here was verified against the results of analytical 

solutions proposed by Risnes et al. (1982). Details of the verification process are discussed below. 

3.3.1. Analytical Solution 

Risnes et al. (1982) derived analytical expressions for stress distribution around a borehole 

assuming axial symmetry and plane strain conditions using the Mohr-Coulomb failure criterion. 

Figure 3.5 shows the model geometry used by Risnes et al. (1982). 

 

Figure 3.5: Model geometry considered by Risnes et al. (1982) 

The expressions for the stresses in both the plastic and elastic zones are given in Equation 3.24. 

through 3.28.. Within the plastic zone, the radial and tangential total stress, 𝜎𝑟 and 𝜎𝜃, at a radial 

distance of 𝑟 can be determined from Risnes et al. [6]: 
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𝜎𝑟 = 𝑃𝑖 +

𝜇𝑞

2𝜋ℎ𝑘𝑐
ln
𝑟

𝑅𝑖
+
1

𝛾
(2𝑐𝑡𝑎𝑛𝛼 −

𝜇𝑞

2𝜋ℎ𝑘𝑐
) [(

𝑟

𝑅𝑖
)
𝛾

− 1] [3.24.] 

 
𝜎𝜃 = 𝑃𝑖 +

𝜇𝑞

2𝜋ℎ𝑘𝑐
(1 + ln

𝑟

𝑅𝑖
) +

1

𝛾
(2𝑐𝑡𝑎𝑛𝛼 −

𝜇𝑞

2𝜋ℎ𝑘𝑐
) [(𝛾 + 1) (

𝑟

𝑅𝑖
)
𝛾

− 1] 
[3.25.] 

where 𝑃𝑖  and 𝑃0  are the fluid pressures at the inner and outer cylindrical boundaries, 𝑐  is the 

cohesion of the material, α is the failure angle which is equal to 𝜋/4 + 𝜙/2, 𝜙 is the internal 

friction angle, γ = 𝑡𝑎𝑛2𝛼 − 1, 𝜇 is the fluid viscosity, 𝑘𝑐 is the permeability of the material in the 

plastic zone, and 𝑞 is the fluid flow rate calculated from: 

 
𝑞 =

2𝜋𝑘ℎ(𝑃0 − 𝑃𝑖)

𝜇 ln (
𝑅0
𝑅𝑖
)

 
[3.26.] 

where ℎ is the height of the model. 

Radial and tangential total stresses in the elastic zone are calculated from Risnes et al. (1982): 

 𝜎𝑟 = 𝜎𝑟0 + (𝜎𝑟0 − 𝜎𝑟𝑐)
𝑅𝑐
2

𝑅0
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2 [1 − (
𝑅0
𝑟
)
2
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𝛽 {

𝑅𝑐
2

𝑅0
2 − 𝑅𝑐

2 [1 − (
𝑅0
𝑟
)
2

] +
ln
𝑅0
𝑟

ln
𝑅0
𝑅𝑐

} [3.27.] 

 𝜎𝜃 = 𝜎𝑟0 + (𝜎𝑟0 − 𝜎𝑟𝑐)
𝑅𝑐
2

𝑅0
2 − 𝑅𝑐

2 [1 + (
𝑅0
𝑟
)
2

] − (𝑃0 − 𝑃𝑐)
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2
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𝑟
)
2

] +
ln
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𝑟
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ln
𝑅0
𝑅𝑐

} [3.28.] 

where 𝜎𝑟𝑜 is the radial stress at the outer boundary, 𝜎𝑟𝑐 and 𝑃𝑐 are the radial total stress and the 

fluid pressure at the plastic-elastic boundary ( 𝑟 = 𝑅𝑐), 𝜐 is the material Poisson’s ratio and 𝛽 is 

the coefficient of rock compressibility which is equal to 1 − 𝐶𝑟/𝐶𝑏 , 𝐶𝑟  is the rock matrix 

compressibility, and 𝐶𝑏 is the rock bulk compressibility.   
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3.3.2. Input Parameters 

We used Castlegate sandstone properties in the analytical and numerical models for a Thick-

Walled Cylindrical (TWC) sample with the inner and outer radius of 8 mm and 80 mm, 

respectively, with a sample height of 15 mm. Castlegate sandstone is a weak, high-porosity 

sandstone with low clay content, which has been used in triaxial testing (e.g., Bradford and cook, 

1994). Rahmati (2013) calibrated the micro properties of Castlegate sandstone and performed 

DEM simulation of Thick Walled Cylinder samples to study borehole breakout mechanisms 

(Rahmati et al., 2013b). The unconfined compressive strength is around 20 MPa; the porosity is 

0.25 and the permeability is 500 to 1000 mD (Rahmati, 2013). Cheung (2010) reported that the 

cement content for the Castlegate sandstones is equal to 6.4% by mass. Rahmati (2013) calibrated 

the macro properties of Castigate sandstone from laboratory triaxial tests. Cohesion, friction angle, 

and elastic properties were determined from triaxial tests on Castlegate sandstone. Young’s 

modulus was based on a value calculated at 50% of the peak stress as recommended by Schanz et 

al. (1999). Poisson’s ratio was averaged at different effective confining stresses. The macro 

parameters for the numerical model are summarized in Table 3.1. 
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Table 3.1: Analytical input data for flow analysis and Castlegate sandstone properties 

Sample Dimension and Fluid Properties 
Rock Properties (Rahmati, 2013) 

Outer boundary pressure Po (MPa) Variable Possion's ratio ν 0.2 

Inner boundary pressure Pi (MPa) 0 β = 1 – Cr  / Cb 1 

Sample thickness h (cm) 1.5 Cohesion C (MPa) 4.3 

Sample inner radius Ri (cm) 0.8 Friction angle 𝝓 (deg) 46.5 

Sample outer radius Ro (cm) 8 𝜶 =
𝝅

𝟒
+
𝝓

𝟐
  (deg) 61.5 

Water viscosity μ (cp) 1 Elastic zone permeability Ke (Darcy) 0.6 

Fluid flow rate q (cm3/s) By case Plastic zone permeability Kc (Darcy) 0.6 

The DEM model was generated using two horizontal and one cylindrical rigid wall with a radius 

of 80 mm and height of 15 mm (Figure 3.6). Table 3.2 presents the micro-parameters of DEM 

particles calibrated using triaxial test results (Rahmati et al., 2013c). A constant radial stress of 60 

MPa was applied at the outer boundary by moving the outer cylindrical wall using a servo control 

algorithm while the top and the base platens were fixed in all directions. An inner hole of 8 mm 

radius was then drilled by removing particles. An initial calculation was carried out to eliminate 

unbalanced forces at the contact. The calculation continued until the ratio of average unbalanced 

force to the average contact forces converged to a value of less than 1%. 

 

Figure 3.6: DEM model for the TWC test 
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Table 3.2: Micro properties of Castlegate sandstone for DEM simulations (Rahmati, 2013) 

Particle properties Parallel bond properties 

Particle Yong’s modulus Ep (GPa) 7 Parallel bond Yong’s modulus 

Epb (GPa) 

20 

Particle normal to shear stiffness ratio 

(KS/KN) p 

0.2 Parallel bond normal to shear 

stiffness ratio  (KS/KN) pb 

0.2 

Partial friction coefficient µ 1.5 Parallel bond normal strength SN 

pb (MPa) 

400 

Particle radius  Rp (mm) 0.4 to 1.3 Parallel bond shear strength SS pb  

(MPa) 

900 

Particle density ρ (kg/m3) 2,650 Degree of bonding λ 0.3 

The fluid model was introduced by dividing the domain into 324 flow elements with 9 sections in 

the radial direction, 18 sections in the circumferential direction, and 2 in the vertical direction. 

Figure 3.7 shows the sample geometry and the flow mesh. 
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(a) Top plan view (x-z plan) 

 

(a) Side plan view (x-y plan) 

Figure 3.7: DEM model of the TWC test overlain by grid blocks for flow analysis in cylindrical 

coordinate system 

Water was injected from the outer cylindrical boundary into the specimen using the flow boundary 

conditions shown in Figure 3.7. Since sanding is not considered in the analytical model, the fluid 

pressure at the outer boundary was kept below a critical level to avoid any sand mobilization 

toward the center hole. Nodal pressures in the flow model were transferred to the DEM model 
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where the pressures were converted to seepage forces and applied on each particle. The DEM 

calculations were then performed until the solutions converged within a small tolerance.  

3.3.3. Verification Results of the Analysis 

The radial and tangential stresses in the specimens were determined by calculating the average 

stress in the measurement spheres. Comparisons of the numerical and analytical results for 

tangential and radial stress along the radial direction are shown in Figure 3.8 and Figure 3.9.  

The width of the plastic zone can be considered to extend from the face of the borehole to the 

location of maximum tangential stress. Figure 3.8 shows the radial and tangential stress profiles at 

a confining stress of 60 MPa without fluid flow. It is observed that a plastic zone has already been 

developed around the hole even when there is no fluid flow. However, with fluid flow, the plastic 

zone further expands in both the numerical and analytical models (Figure 3.9). The tangential and 

radial stresses of both analytical and numerical solutions approach the boundary stress of 60 MPa 

at the outer boundary. The difference between the peak values for the analytical and numerical 

tangential stresses can partly be attributed to the averaging procedure in calculating stresses in the 

numerical model which has a smoothing effect on the stress calculations (Climent et al., 2014). 
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Figure 3.8: Comparison between numerical and analytical results for tangential and radial stress 

in the radial direction for the case without fluid flow 

 

Figure 3.9: Comparison between numerical and analytical results for total tangential and radial 

stress in the radial direction for the case with fluid flow and 10 MPa for outer boundary fluid 
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3.4. Sand production simulation 

In this section, we describe the simulation of a synthetic sanding test using the DEM model. We 

first specify the model geometry and boundary conditions. Next, we describe the results of a series 

of sensitivity analysis to optimize the number of DEM steps that need to be performed within each 

numerical iteration. 

3.4.1. Model Geometry and Boundary Conditions 

The DEM model was generated in a rectangular box with length, width and depth equal to 120 

mm, 120mm, and 15 mm, respectively. The domain is bounded by six frictionless rigid walls 

(Figure 3.10). The model creation procedure followed the same way as in the verification model. 

Parallel bonds were randomly imposed on 30% of the contacts after the material generation stage. 

The bond radius multiplier was varied randomly between 0 and 1 (Rahmati, 2013), based on the 

observations from Scanning Electron Microscope (SEM) images of Castlegate sandstone (Cheung, 

2010). Based on the SEM image of Castlegate sandstone in Figure 3.11, it is evident that not every 

grain-grain contact in the Castelgate sandstone is cemented. Contact A is a cemented, Contact B 

is not cemented, and contact C has broken cementation. Meanwhile, the degree of cementation 

varies at the contacts. Table 3.2 presents the DEM micro-properties for this model.  

DEM simulations started with the sample compaction by applying three perpendicular and unequal 

stresses using a servo control algorithm (Itasca, 2008). The vertical borehole with 8 mm radius 

was drilled by gradually decreasing the grain stiffness inside the borehole to zero followed by 

removing the grains inside the borehole. Initial analysis was carried out until the average 

unbalanced forces divided by the average contact forces was smaller than 1%. 
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Figure 3.10: DEM sanding block model 

 

Figure 3.11: The SEM image for the Castlegate sandstone (Alvarado, 2007) 

The fluid flow model was linked to the DEM model. The flow model has 324 grid blocks with 

nine sections in the radial direction, 18 sections in circumferential directions, and two in the 

vertical direction, as shown in Figure 3.12. 
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Figure 3.12: Block sample overlain by grid blocks in cylindrical coordinate system 

In linking fluid flow-DEM calculations, convergence was considered to be achieved when the 

number of particles in the measurement spheres, as well as permeability and porosity in each grid 

block, had converged within a tolerance of 5%.  

3.4.2. Sensitivity Analysis for Model Optimization 

In order to determine the effects of various parameters in the model, a sensitivity study was 

performed to optimize the size of the measurement sphere, the permeability of the sanding zone 

used in Equation 3.22, and also the number of DEM steps required in each numerical iteration. A 

uniform far field effective stress of 60 MPa was applied which was enough to induce breakage of 
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bonds near the hole before the application of fluid flow. An outer boundary fluid pressure of 0.5 

MPa was applied resulting in the flow rate of 11.53 cm3/sec in wellbore surface. 

The sanding response was studied for different DEM steps in each DEM-fluid flow iteration. 

Figure 3.13 shows the effects on sanding due to the number of DEM steps. The solutions seemingly 

are converging at about 10,000 DEM steps. However, the total produced sand mass for different 

number of DEM steps was the same. Therefore, we chose 10,000 DEM steps for each iteration in 

all subsequent analyses. 

 

Figure 3.13: Produced sand mass for different number of DEM steps in each DEM-fluid flow 

iteration 

A sensitivity analysis was performed to study the effect of the assigned permeability for the sanded 

zone in Equation 3.22. A fluid pressure of 0.1 MPa was applied at the outer boundary with an in 

situ effective stress of 60 MPa. The permeability assigned to the fully produced cell was fixed 

during each test. Figure 3.14 shows that the sanding response is not sensitive to the permeability 

of the produced zone for 𝑘 values greater than 50 Darcy. Therefore, we assigned a permeability of 

100 Darcy in all subsequent analyses. 
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Figure 3.14: Cumulative sanding for different values of permeability for the produced zone 

Another study was performed to study the effect of the size of the measurement sphere on the 

results. Significant errors in the calculated stress, strain, and porosity result when the measurement 

sphere includes only four or less particles (Itasca, 2008). On the other hand, inaccurate 

permeability calculations result when large measurement sphere sizes that cover more than one 

flow grid block are selected. We chose the size of the grid block in such a way to include a 

minimum six particles. The final size of the measurement sphere was chosen to be 1.6 times the 

length of the grid block, so that it would circumscribe the flow grid blocks and include a 

representative number of particles in the sphere. 

3.4.3. Effect of Maximum and Minimum Horizontal Effective Stress and Pore Pressure on 

Rock Degradation and Sanding 

In this section we study the effect of boundary effective stress and pressure on sandstone 

degradation and sanding. Two cases were considered: (1) the horizontal effective stresses were 

equal to 60 MPa, (2) maximum and minimum horizontal stresses were equal to 60 and 30 MPa, 

5

6

7

8

0 50 100 150 200

T
o

ta
l 

p
ro

d
u

ce
d

 s
a

n
d

 m
a

ss
 (

g
)

K (Darcy)



68 

 

respectively. In both cases, the fluid pressure at the outer boundary was kept constant at 10 MPa. 

The DEM – fluid flow analysis was cycled until 0.03 sec.  

A map of broken bonds of a horizontal section are shown in Figure 3.15, for different boundary 

stress and pressure cases after 0.12 sec. Micro-failure at the contacts is represented by red and blue 

for bonds failed in tension and shear, respectively. Figure 3.15a shows uniform breakout for the 

case with uniform boundary stress without fluid flow. Figure 3.15b shows V-shaped breakout for 

the same case but with uneven boundary stresses. Some sand particles are observed to be produced 

from the breakout zone by seepage forces after the application of fluid flow.  

The analysis of breakout zone for the dry case (Figure 3.15a) showed that even the in situ stress is 

symmetric, the breakout zone is not a perfect circle around the borehole. This is consistent with 

what we expected and also past research by using DEM in dry case (Rahmati, 2013). If we 

performed the analysis in a homogeneous continuum medium with symmetric loading, we would 

expect a symmetric failure zone around the hole. However, our DEM medium is not perfectly 

homogeneous with the inter-granular bonds scattered in the medium in a random fashion only in 

30 percent of the grain contacts. Hence, the failure onset (debonding of grains) occurs at slightly 

weaker zones (due perhaps to slightly fewer bonds), which makes the zone even weaker, hence, 

further propagation of debonding in the zone and asymmetric shape of the debobded cloud. 
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(a)                                                               (b) 

 

(c)                                                               (d) 

Figure 3.15: Cross section of borehole breakout and sanding zone for different far-field stress. (a) 

isotropic far field stress case, before the application of fluid flow, (b) after the application of 

fluid flow with pore pressure = 10 MPa, at time = 0.03 sec, (c) anisotropic far field stress case, 

before the application of fluid flow, (d) after the application of fluid flow with pore pressure = 10 

MPa, at time = 0.03 sec. 

Figure 3.16 compares the maximum thickness of the plastic zone for the dry case based on the 

DEM solutions (Figure 3.15 a and c) and the analytical solutions in dash line. The analytical 
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formulation of isotropic case is presented by Risnes et al (1982), and the analytical formulation of 

anisotropic case is presented by Fjar (2008). The macro properties of Castlegate sandstone used in 

analytical solution is listed in Table 3.1. For 60 MPa isotropic effective stress case, analytical 

solutions result in 2.6 mm for the maximum thickness of the plastic zone while DEM measurement 

from Figure 3.15a indicate 3 mm for the maximum plastic thickness in average. For the case with 

’h= 30 MPa, DEM and analytical solution result in 8 mm and 7 mm for the thickness of the plastic 

zone, respectively. Results indicate a reasonable agreement between the DEM and analytical 

solutions before introducing the fluid flow. Based on Figure 3.15, the plastic zone further expands 

once the pressure drawdown is applied. 

 

 (a)                                                                                    (b) 

Figure 3.16: The analytical solution of plastic zone for the dry case of (a) isotropic boundary 

effective stress (b) anisotropic boundary effective stress. 

Figure 3.17 shows the effect of the minor principle stress on the produced sand. As expected, larger 

amount of sand is produced for the case with anisotropic boundary effective stress than the 
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isotropic counterpart. However, sanding is observed to be only slightly different for the vastly 

different minimum far field effective stresses.  

 

Figure 3.17: Cumulative sanding for different far-field stress conditions 

Next, both boundary effective stresses were kept constant at 50 MPa in a series of analysis with 

varying outer boundary fluid pressure from 0.1 MPa to 15 MPa. Figure 3.18 shows the high-rate 

sanding at the beginning of the simulation leading to stabilized sanding at different times. The total 

amount of sand produced and steady-state time increase significantly for outer boundary pressures 

larger than 10 MPa. We notice a significant jump in the amount of produced sand when the 

boundary pressure increases from 10 to 15 MPa. The reason is mainly due to the contribution of 

the seepage forces in additional sandstone degradation through more and faster removal of 

degraded materials. 
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Figure 3.18: Sand production for different boundary pressures 

3.4.4. Simulation of Step-Rate Sanding Test on Block Sample 

We simulated a synthetic sanding test on a hollow cylinder sample using the model presented in 

Figure 3.10 and Figure 3.12 and material micro properties presented in Table 3.2. In the 

simulations, the outer boundary effective stress was incrementally increased with the step-rate 

increase of the fluid pressure within each boundary stress increment (Figure 3.19). The analysis 

for each step continued until the steady-state condition was reached (sanding rate is equal to zero 

at this stage). Figure 3.19 indicates the onset of sanding at the outer boundary effective stress of 

30 MPa. Cumulative sand production shows a gradual increase for each increase in the boundary 

effective stress or pressure. However, sanding stabilizes within each increment. Massive sanding 

occurs when the boundary effective stress and pressure reach 58 and 20 MPa, respectively. 
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Figure 3.19: Sanding response under incrementally increasing boundary stress and pressure for 

final boundary stress of 58 MPa 

To further examine the role of fluid flow, we repeated the same analysis but changed the final 

modelling step (Figure 3.20). The last loading step in Figure 3.20 shows the boundary effective 

stress equal to 65 MPa with lower boundary pressure of 1 MPa. Despite significantly higher 

boundary effective stress, we can see much less sanding compared to the last step in Figure 3.19. 

The large boundary pressures in Figure 3.19 result in larger seepage forces leading to further 

removal of detached sand particles, redistribution of contact forces, and propagation of the 

degraded zone.  
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Figure 3.20: Sanding response under incrementally increasing boundary stress and pressure for 

final boundary stress of 65 MPa 

Figure 3.21a shows little degradation at a boundary effective stress of 50 MPa and boundary 

pressure of 20 MPa. Figure 3.21b shows a larger size of the degraded zone at the boundary stress 

of 58 MPa and boundary pressure of 20 MPa. The degraded zone is significantly smaller at the 

higher boundary stress of 65 MPa and low boundary pressure of 1 MPa (Figure 3.21c). However, 

the degraded zone is significantly enlarged when the outer boundary pore pressure reaches 20 

MPa. The reason for the above observation is that the additional degradation is due to seepage 

forces being strong enough to remove more particles leading to stress redistribution thus more 

degradation is observed. When the outer boundary pore pressure is small, say 1 MPa, the fluid 

force near the wellbore face is not large enough to break the bond between the particles. The case 

with 65 MPa’s confining stress shows a higher tangential stress resulting in higher frictional 
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resistance, thus, less sand production at the same levels of boundary pressure. This may explain 

lower sand production for the case with 65 MPa confining stress in the period between 0.52 to 0.6 

s. The asymmetric plastic zone shown in Figure 20b is due to the expansion of the breakout due to 

the fluid seepage. The asymmetric breakout and expansion of plastic zone is also observed in past 

research works (Li et al., 2006; Climent et al., 2013) for cases with fluid flow. 

 

Figure 3.21: Cross section of failure shape around wellbore. (a) Far field effective stress = 50 

MPa, outer boundary pressure = 20 MPa. (b) Far field effective stress = 58 MPa, outer boundary 

pressure = 20 MPa. (c) Far field effective stress = 65 MPa, Outer boundary pressure = 1 MPa 

3.4.5. Simulation of Step-Rate Sanding Test on Hollow Cylinder Sample 

A synthetic sanding test on hollow cylinder sample by using the model specifications presented in 

Figure 3.6 and Figure 3.7 and the material micro parameters presented in Table 3.2 was simulated. 

In the simulation, the effect of far field boundary stress to the sand production was analyzed in the 

simulation. Two type of tests were conducted, one with low confining far field stress of 40 MPa, 

and another with the high confining stress of 60 MPa. During the simulation, the far field stress 

was kept as constant, and the pore pressures at the outer boundary was increased in a step-wise 

manner as shown in Figure 3.22.  
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For the low confining stress case, the loading was started by applying uniform boundary effective 

stresses of 40 MPa and boundary pressure of 1 MPa. The DEM-fluid flow simulation was then 

cycled until the steady-state condition was reached. The outer boundary pore pressure was then 

increased to the next level of 10 MPa while the far field stress was still maintained at the same 

level of 40 MPa. Figure 3.22a indicated the onset of sanding at the boundary pore pressure of 1 

MPa followed by a steady sand production (zero sanding rates) until the next increment of 

boundary pore pressure. Cumulative sand production is observed when the boundary pore pressure 

reached to 40 MPa.  

The numerical procedure of high confining stress case (60 MPa) is the same as low confining stress 

case (40 MPa). It is observed that the cumulative sand production happened when the boundary 

pore pressure reached 55 MPa.  By comparing Figure 3.22 and Figure 3.23, it is found that high 

confining pressure case produced more sand than low confining pressure one with the same outer 

boundary pore pressure level. 
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(a) 

 

(b) 

Figure 3.22: Sand production response under incrementally increasing outer boundary pressure 

conditions: (a) Confining effective stress of 40 MPa (b) Confining effective stress of 60 MPa 
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Figure 3.23: The cross sectional view of failure shape of wellbore when reaching cumulative 

sand production (a) Far field effective stress = 40 MPa, outer boundary pressure = 40 MPa. (b) 

Far field effective stress = 60 MPa, outer boundary pressure = 50 MPa. 

The radial and tangential stress profiles developed in the specimens have been calculated by using 

the same procedures in the verification process. A relative higher tangential stress is found in 60 

MPa’s confining stress case, which indicates that the friction force in high confining pressure case 

is more than in low confining pressure case. The friction force will prevent sand production when 

applying same levels of outer boundary stress. It may explain there is not too many sand production 

in 60 MPa’s confining stress case between time 0.11 to 0.17 s, even the outer boundary pore 

pressure is increasing gradually. 

3.5. Conclusion 

A sand production model has been presented by coupling DEM model with a fluid flow model. 

The model has been checked with analytical solutions and applied to examine sanding process in 

synthetic sanding tests. The model accounts for permeability and porosity changes due to solid 

deformation and sand production. Some simulation results are summarized below:  
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1. A circular breakout was found for the case of isotropic boundary stress with σH = σh = 60MPa. 

The breakout morphology changes to V-shaped breakout with unequal boundary stresses when 

σH=60 MPa and σh = 30MPa .  

2. Larger sanding occurs with with unequal boundary stresses when σH=60 MPa and σh = 30 

MPa, compared to the case with isotropic boundary stress with σH = σh = 60MPa.  

3. Sand production occurs from degraded zones where most bond failures has occurred. Sand 

production from V-shaped breakout changes the wellbore shape from circle to ellipse. 

4. The boundary stress plays a major role in sand production through sandstone degradation. 

However, less sanding occurs at higher boundary effective stress but considerably lower 

boundary pressure due to the ineffective removal of the degraded materials for weaker seepage 

forces. For high boundary pressure, seepage force plays a major role in the sand production as 

it removes degraded materials, results in stress redistribution which can then contribute to 

further degradation and sanding. More sand production occurs at lower far-field stress (in this 

case, 58 MPa) but higher boundary pressure (in this case, 20 MPa). 
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Chapter 4. Solid Deformation Pressure Coupling2 

4.1. Introduction and Background 

Another important factor affecting stability of wellbore is the generation and dissipation of excess 

pore pressure in the reservoir during drilling as well as during oil production due to the deformation 

of the formation. The accumulation of excess pore water pressure is caused by the change of pore 

volume and insufficient dissipation of pore water pressure. The changes of the pore volume are 

caused by soil/rock deformation due to changes in the mechanical boundary conditions. Examples 

of changes in mechanical boundary conditions include borehole drilling, and shear deformation 

and localization of the rock. The increase of excess pore pressure will cause displacement and 

deformation of the solid particles and void space, and the movement of the solid particles will 

change the void space that is occupied by the fluid. At the laboratory scale, the conditions relate 

to undrained or partially drained cases in triaxial tests. In field cases, undrained deformation occurs 

in liquefaction of soil during an earthquake. During undrained deformation, pore space 

connectivity and pore space deformation in a porous medium results in uncertainty of the fluid 

force applied on individual particle. Therefore, the SPF coupling method developed in the last 

chapter is not able to simulate pore pressure induced force. A new method is needed to provide 

more accurate simulation of the effect of pore pressure on particles. 

Cook (2001) developed a coupled numerical method for the direct simulation of particle-fluid 

systems. The fluid flow was solved using lattice-Boltzmann (LB) method, which can accurately 

                                                 
2 A version of this chapter has been submitted: Yifei Cui, Dave Chan, Alireza Nouri, 2016. “Coupling of Solid 

Deformation and Pore Pressure for Undrained Deformation - a Discrete Element Method Approach”, submitted to 

International Journal for Numerical and Analytical Methods in Geomechanics. and, 

Yifei Cui, Dave Chan, Alireza Nouri, 2016. “Discontinuum modelling of solid deformation pore water diffusion 

coupling”, submitted to International Journal of Geomechanics. 
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reproduce Navier-Stokes equations. In LB model, fluid is represented as packets of mass that move 

on a regular lattice, defined with the appropriate boundary conditions. Collision and redistribution 

of fluid packets occur at the lattice nodes according to relationships that conserve mass and 

momentum. The coupling of LB and DEM is accomplished through a moving solid boundary 

condition. An immersed moving boundary scheme proposed by Noble and Torczynski (1998) was 

adopted. The fluid-induced force was calculated by summing up the momentum tum transfer that 

occurs over all nodes covered by the solid element. Cook et al. (2004) validated the developed 

method through a comparison of simulation results with the analytical solution of cylindrical 

Couette flow. The results show the accurate computation of fluid flow and particle forcing. They 

also performed the erosion simulation of sanding near well bore; the results produced physically 

realistic behavior. Han (2012) used (lattice-Boltzmann Discrete Element Method) LBM-DEM 

coupling to simulate the sand arch test. The collapse and re-forming of sand arches in the 

perforation cavity under increasing fluid pressure gradient was observed in numerical simulation, 

as observed in the physical experiments.  

However, none of the above DEM fluid flow couplings takes into account excess pore pressure 

generation and dissipation. 

Hakuno and Tarumi (1988) developed a method to model liquefaction based on detecting all the 

pores among particles and connecting them by pipes. The pore water pressure was calculated by 

assuming constant volume elasticity for the water and the water pressure was proportional to the 

pore volume. Fluid flow between each pore space and its adjacent pores was calculated based on 

Darcy’s law. This method resulted in a complicated calculation procedure and required subsequent 

manipulation. Nakase et al. (1999) improved Hakuno and Tarum’s method by implementing 

square elements each containing 15 particles. The pore pressure generation in each cell 
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corresponded to particle movement in the neighboring cells and was proportional to the decrease 

of pore volume. The fluid force applied to the particle was depended on the pore pressure gradient 

between neighbor cells. Mori et al. (2001) studied the liquefaction analysis of River Dike using a 

two-dimensional discrete element model. In their study, the excess pore water pressure was 

considered to lead to large permanent displacement due to liquefaction at the microscope level. 

The accumulative excess pore water pressure caused by the combination of shear force and the 

effective normal force was equal to the initial effective normal force. The excess pore water 

pressure caused by the shear force was related to the dissipative energy and stored elastic energy 

of the model. Boutt et al. (2007) developed a fluid-solid coupling scheme by using LBM-DEM 

coupling approach by considering pore pressure change during simulation. The fluid node in LB 

model was constructed to present pore space. The pore pressure was calculated from fluid bulk 

modulus. The coupling was achieved through momentum transfer from the fluid to the solid by a 

no-slip condition at the solid/fluid interface. The model captured the 1-D consolidation behavior 

for both initial pressurization and fluid flow out of the domain. Boutt et al. (2010) then continue 

the study and apply the same model in 2-D sand production problem. The simulation results are 

qualitatively consistent with laboratory and field observation.  

It is not easy to calculate excess pore water pressure using DEM since it is difficult to determine 

pore space connectivity and pore space deformation in a discontinuum. In this chapter, a new idea 

is proposed to incorporate excess pore water pressure calculation in DEM simulation by 

introducing a new water particle element which has a specific stiffness that enables the calculation 

of excess pore pressure due to pore space deformation. The pore water pressure is first calculated 

under the undrained condition, and subsequent dissipation of pore pressure is governed by pore 
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fluid diffusion using Darcy’s Law. The new approach can be used to simulate wet granular 

deformation using DEM. 

4.2. Proposed Methodology 

4.2.1. Pore Pressure Generation Process 

4.2.1.1 Formulation of loose packing sample 

In formulating a new water particle element to calculate pore water pressure, cases with simple 

boundary conditions are first considered. Isotropic compression is a fundamental case of triaxial 

testing in which the soil sample is compressed by the same stress in all directions. A new model is 

firstly developed here based on three-dimensional isotropic compression. The derivation of all 

equations in this paper is based on the undrained condition of the soil sample. Consider an element 

of soil of volume 𝑉 and porosity 𝑛, which is subjected to equal increases in total stress ∆𝜎3 in all 

directions, resulting an immediate increase in pore pressure ∆𝑈, the reduction in volume of pore 

space ∆𝑉𝑣 is calculated as (Craig, 2004): 

 ∆𝑉𝑣 = 𝐶𝑓𝑛𝑉∆𝑈 [4.1] 

where 𝐶𝑓 is the compressibility of pore fluid. Rearrange Equation 4.1 and the excess pore water 

pressure ∆𝑈 is calculated as: 

 
∆𝑈 =

∆𝑉𝑣
𝐶𝑓𝑛𝑉

 [4.2] 

A simplified model is first developed with a cube sample. In this case, an assembly of regular 

distribution and single element size particles are confined by six frictionless confining walls, as 

shown in Figure 4.1 a and b. The initial state of the sample including the initial total volume 𝑉0, 
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initial solid volume 𝑉𝑠0, initial void volume 𝑉𝑣𝑜 and initial void ratio 𝑒0, and initial porosity of the 

sample are calculated as: 

 𝑉0 = 𝐿0
3  

 𝑉𝑠0 = 𝑁 (
4

3
𝜋𝑟3)  

𝑉𝑣0 = 𝑉0 − 𝑉𝑠0 

𝑒0 =
𝑉𝑣0
𝑉𝑠0

 

𝑛0 =
𝑒0

1 + 𝑒0
 

[4.3] 

where 𝐿0 is the cubic sample’s original length, 𝑟 is the particle radius, 𝑁 is the total number of the 

particles and is calculated as: 

 
𝑁 = (

𝐿0
2𝑟
)
3

 [4.4] 
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(a)                                                      (b)                                                     (c) 

Figure 4.1: DEM particle deformation under isotropic stress compression. (a) 3D view, (b) Plan 

view before deformation, (c) Plan view after deformation. 

When the sample is subjected to isotropic compression with stress equal to 𝜎𝑛, only the normal 

force on the particle contact will be considered. The solid particles are considered to be 

incompressible. However, the intersections of the particles at the contact are allowed in order to 

model the reduction in the volume of the void as shown in Figure 4.1c. The total force applied on 

one side of the wall is calculated from: 

 𝐹𝑡𝑜𝑡𝑎𝑙 = 𝜎𝑛𝐿0
2

 [4.5] 

The individual force on one particle is calculated from: 

 
𝐹 =

𝐹𝑡𝑜𝑡𝑎𝑙
𝑁1

 [4.6] 

where N1 is the number of balls at contact with one side of the wall: 

 
𝑁1 = 𝑁

2
3 [4.7] 
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The intersection depth between two particles ∆Sbb and a particle and a wall ∆Sb−w are then 

calculated from: 

 
∆𝑆𝑏−𝑏 =

𝐹

𝐾𝑏−𝑏
 

 ∆𝑆𝑏−𝑤 =
𝐹

𝐾𝑏−𝑤
  

[4.8] 

where 𝐾𝑏−𝑏 and 𝐾𝑏−𝑤 are the combined stiffness between particle-particle contact and particle-

wall contact and are calculated from: 

 

{
 

 𝐾𝑏−𝑏 =
𝐾𝑠𝑜𝑙𝑖𝑑𝐾𝑠𝑜𝑙𝑖𝑑

(𝐾𝑠𝑜𝑙𝑖𝑑 + 𝐾𝑠𝑜𝑙𝑖𝑑)
=
1

2
𝐾𝑠𝑜𝑙𝑖𝑑

𝐾𝑏−𝑤 =
𝐾𝑠𝑜𝑙𝑖𝑑𝐾𝑤𝑎𝑙𝑙

(𝐾𝑠𝑜𝑙𝑖𝑑 + 𝐾𝑤𝑎𝑙𝑙)
=

𝛼

1 + 𝛼
𝐾𝑠𝑜𝑙𝑖𝑑

  [4.9] 

where 𝐾𝑠𝑜𝑙𝑖𝑑 is the normal stiffness of the single particle, and α is the ratio between the normal 

stiffness of current particle and wall such that 𝛼 =
𝐾𝑤𝑎𝑙𝑙

𝐾𝑠𝑜𝑙𝑖𝑑
. 

The total displacement in one direction 𝛥𝑠 and the sample’s final volume 𝑉1 is calculated from: 

 
∆𝑠 = (𝑁

1
3 − 1) ∆𝑆𝑏−𝑏 + 2∆𝑆𝑏−𝑤  

𝑉1 = (1 − ∆𝑠)
3  

[4.10] 

The volume of intersection is calculated as shown in Figure 4.2 a and b: 

 
𝑉𝑏−𝑏 =

𝜋

12𝑑
(𝑅 + 𝑟 − 𝑑)2[𝑑2 + 2𝑑(𝑅 + 𝑟) − 3(𝑅 − 𝑟)2] [4.11] 
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𝑉𝑏−𝑤 =
𝜋ℎ2

3
(3𝑟 − ℎ) 

where Vb−b is the volume of particle-particle intersection, and Vb−w is the volume of particle-wall 

intersections. 

 

         

            (a)                                                                      (b) 

Figure 4.2: Calculation of particles intersection volume. (a) particle-particle intersection, (b) 

particle-wall intersection. 

The final solid volume is calculated from: 

 

𝑉𝑠1 = 𝑉𝑠0 − (3𝑁1 (𝑁1

1
2 − 1))𝑉𝑏−𝑏 − (6𝑁1)𝑉𝑏−𝑤 [4.12] 

The pore space volume change ∆Vv can also be calculated. When the material is fully saturated, 

the volume reduction in the pore space will cause excess pore water pressure ∆𝑈 to build up, which 

can be calculated from Equation 4.2: 

 
∆𝑈 =

𝑉𝑣0 − 𝑉𝑣1
𝐶𝑓𝑛0𝑉0

  [4.13] 
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𝑉𝑣1 = 𝑉1 − 𝑉𝑠1 

where 𝑉𝑣1 is void volume after deformation, and 𝑛0 is the initial porosity. 

In order to calculate the pore water pressure generated due to deformation of the discrete element, 

a water element is introduced that overlaps the solid element. Since the forces at the contact 

between solid elements represent effective stress in dry granular material, the introduction of water 

in the pores reduces the contact forces under the Principle of Effective Stress. In order to reduce 

the effective stress due to the generation pore water pressure in discrete modelling, the contact 

forces at the contact of the solid element should be reduced. Therefore the idea of the water element 

is to provide changes, increase or decrease, of the solid contact force due to the generation or 

dissipation of pore water pressure in the pores. In this case, the contact forces between two 

elements consist of a solid component and a fluid, water, component. 

Compared with a solid element, the water element is assumed to have the size and location. The 

water element also has the same deformation at each contact points as the solid element, as shown 

in Figure 4.3. However, water element will have a different stiffness compared to solid element. 

In DEM analysis of undrained condition, the total stress is divided into two parts: effective stress 

and pore water pressure. The effective stress is carried by the solid element, and the pore water 

pressure is carried by the water element. The existence of water element will decrease the particle 

intersections during undrained condition compared with solid particle only case (drained 

condition). In other words, the pore pressure generated from the deformation of solid particles is 

now considered as an outer boundary pressure on the sample that only consist water particle. The 

water element stiffness kwater (micro) is then related to change in the pore space and the 

compressibility of water (macro) as: 
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𝑘𝑤𝑎𝑡𝑒𝑟 =

2∆𝑈𝐿0
2

𝑁1∆𝑆𝑏−𝑏
 [4.14] 

 

Figure 4.3: DEM water element arrangement before and after deformation 

4.2.1.1 Formulation of irregular packing sample 

When considering the random arrangement of particles in a numerical case as shown in Figure 4.4, 

the formulation in Equation 4.14 needs to be modified. In the discrete PFC3D model, contact force 

and particle displacement are computed in the x, y, and z (defined by index 𝑖 and with range set 

𝑖 ∈ {1,2,3}) direction, the average stress 𝜎𝑖𝑗 in a volume 𝑉 of material is defined by (Itasca, 2008): 

 
𝜎𝑖𝑗 =

1

𝑉
∫𝜎𝑖𝑗𝑑𝑉 =

1

𝑉
∑𝜎𝑖𝑗

(𝑝)𝑉(𝑝)

𝑁𝑝

 [4.15] 
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(a)                                                 (b) 

Figure 4.4: Random packing of particles in a cube sample. (a) 3D view, (b) Plan view. 

where 𝑉 is the total volume of material, 𝜎𝑖𝑗
(𝑝) is the average stresses in particle (p), 𝑉(𝑝) is the 

volume of the particle (p), and 𝑁𝑝 is the number of particles in the control volume. In the same 

way, the average stress in each particle could be written using Equation 4.15 as: 

 
𝜎𝑖𝑗

(𝜙) =
1

𝑉(𝜙)
∫𝜎𝑖𝑗

(𝜙)
𝑑𝑉(𝜙) ,                    𝜙 =  {𝑝} [4.16] 

The identity 𝑆𝑖𝑗 = 𝛿𝑖𝑘𝑆𝑘𝑗 = 𝑥𝑖,𝑘𝑆𝑘𝑗 = (𝑥𝑖𝑆𝑘𝑗),𝑘 − 𝑥𝑖𝑆𝑘𝑗,𝑘  holds for any tensor. Applying this 

identity to the stress tensor in each particle, one obtains: 

 
𝜎̅𝑖𝑗

(𝜙) =
1

𝑉(𝜙)
∫[(𝑥𝑖𝜎𝑘𝑗

(𝜙)
)
,𝑘
− 𝑥𝑖𝜎𝑘𝑗,𝑘

(𝜙)
] 𝑑𝑉(𝜙) =

1

𝑉(𝜙)
{(𝐼𝑖𝑗)1 − (𝐼𝑖𝑗)2}  

[4.17] 

where the integrals are denoted by (𝐼𝑖𝑗)1 and (𝐼𝑖𝑗)2. The first integral in Equation 4.17 can be 

rewritten as a surface integral by applying the Gauss divergence theorem such that 

 (𝐼𝑖𝑗)1 = ∫(𝑥𝑖𝜎𝑘𝑗
(𝜙)
)
,𝑘
𝑑𝑉(𝜙) = ∫(𝑥𝑖𝜎𝑘𝑗

(𝜙)
) 𝑛𝑘𝑑𝑆

(𝜙) = ∫𝑥𝑖 𝑡𝑗
(𝜙)
𝑑𝑆(𝜙)  [4.18] 
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where 𝑆(𝜙)is the boundary surface of the particle, 𝑛𝑘 is the unit outward normal to the boundary 

surface, and 𝑡𝑗
(𝜙)

 is the traction vector, the term (𝑥𝑖𝜎𝑘𝑗
(𝜙)
)  is assumed to be continuously 

differentiable. If the moment carried by each parallel bond is neglected, and only point forces are 

applied at the particle contact, the above integral can be replaced by a sum over the number of 

contacts on the surface of particle 𝑁𝑐
(𝜙)

as: 

 

(𝐼𝑖𝑗)1
= ∑ 𝑥𝑖

(𝑐)
𝐹𝑗
(𝑐,𝜙)

𝑁𝑐
(𝜙)

  

𝑥𝑖
(𝑐)
= 𝑥𝑖

(𝜙)
+ (𝑥𝑖

(𝑐)
− 𝑥𝑖

(𝜙)
)   

[4.19] 

where 𝑥𝑖
(𝑐)

 is the location of the contact point and 𝑥𝑖
(𝜙)

 is the location of the particle centroid, and 

𝐹𝑗
(𝑐,𝜙)

 is the force acting on particle (𝜙)  at contact  (𝑐) . By substituting Equation 4.19 into 

Equation 4.18, one obtains 

 
(𝐼𝑖𝑗)1 = ∑ 𝑥𝑖

(𝜙)
𝐹𝑗
(𝑐,𝜙)

𝑁𝑐
(𝜙)

+ ∑(𝑥𝑖
(𝑐)
− 𝑥𝑖

(𝜙)
)𝐹𝑗

(𝑐,𝜙)

𝑁𝑐
(𝜙)

 
[4.20] 

The second integral can be modified using the equations of motion for particle (𝜙), neglecting 

body forces, under the action of externally applied forces 

 𝜎𝑘𝑗,𝑘 = 𝜌𝑎𝑗 = 𝜌 (
𝐹𝑗

𝑚
) =

𝐹𝑗

𝑉
 [4.21] 

where 𝜌 is the density, 𝑎𝑗 is the acceleration at the centroid, and 𝐹𝑗 is the resultant force acting at 

the centroid. The second integral can be written following this relation 



92 

 

 (𝐼𝑖𝑗)2 = ∫𝑥𝑖𝜎𝑘𝑗,𝑘
(𝜙)
𝑑𝑉(𝜙) =

𝐹𝑗
(𝜙)

𝑉(𝜙)
∫𝑥𝑖𝑑𝑉

(𝜙) = 𝐹𝑗
(𝜙)𝑥𝑖

(𝜙) [4.22] 

Substituting Equation 4.22 and 4.20 into Equation 4.18 gives 

 
𝜎𝑖𝑗

(𝜙) =
1

𝑉(𝜙)
∑(𝑥𝑖

(𝑐)
− 𝑥𝑖

(𝜙)
)𝐹𝑗

(𝑐,𝜙)

𝑁𝑐
(𝜙)

  [4.23] 

Note that for the above equations, the particle may not be in static equilibrium, but the body forces 

should be small compared to the contact forces and no externally applied force acting on the 

particle. When we substitute Equation 4.23 into Equation 4.15, we get 

 
𝜎𝑖𝑗 =

1

𝑉
∑𝜎𝑖𝑗

(𝑝)𝑉(𝑝)

𝑁𝑝

=
1

𝑉
∑∑(𝑥𝑖

(𝑐) − 𝑥𝑖
(𝑝)) 𝐹𝑗

(𝑐,𝑝)

𝑁𝑐
(𝑝)𝑁𝑝

 [4.24] 

where 𝑛 is the porosity of the measurement region, 𝑥𝑖
(𝑝)

 and 𝑥𝑖
(𝑐)

are the coordinates of the centroid 

and contact points of a particle, respectively, 𝐹𝑗
(𝑐,𝑝)

 is the force acting on a particle (𝑝) at contact 

(𝑐). 𝐹𝑗
(𝑐,𝑝)

 includes both the contact and parallel-bond normal and shear forces, but neglects the 

moment due to the parallel-bond. A contact force has both normal and shear components and the 

normal component can be calculated from: 

 𝐹𝑗
(𝑐,𝑝)𝑛

= 𝐾𝑛𝐷𝑗
𝑛 

𝐷𝑗
𝑛 = 𝐷𝑡𝑜𝑡𝑎𝑙

𝑛
𝑥𝑗
𝑝 − 𝑥𝑗

𝑐

√∑ (𝑥𝑗
𝑐 − 𝑥𝑗

𝑝)
2

𝑗=3
𝑗=1

 

[4.25] 
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𝐷𝑡𝑜𝑡𝑎𝑙
𝑛 = 2

[
 
 
 

𝑅𝐴 −√∑(𝑥𝑗
𝑐 − 𝑥𝑗

𝑝)
2

𝑗=3

𝑗=1
]
 
 
 

 

where 𝐾𝑛 is the combined stiffness between the two entities (solid and water) at the contact, 𝐷𝑗
𝑛 

is the particle intersection in the x, y, and z component and can be calculated by first finding the 

total intersection 𝐷𝑡𝑜𝑡𝑎𝑙
𝑛  in the direction normal to the contact plane as shown in Figure 4.5. 

   

                                        (a)                                                                 (b) 

Figure 4.5: Notations used to describe (a) Particle-particle contact (b) Particle-wall contact 

In relating the pore water pressure in a water element to the contact forces acting on the water 

element, the pore water pressure can be related to the average means stress due to the water particle 

contact forces. Mathematically it can be written as: 

 

∆𝑈 = 𝜎𝑖𝑖(𝑤)̅̅ ̅̅ ̅̅ ̅ =
1

3
(
1

𝑉𝑡𝑜𝑡𝑎𝑙
) [∑∑∑(𝑥𝑖

𝑐 − 𝑥𝑖
𝑝)𝐹𝑖(𝑤)

(𝑐,𝑝)

𝑁𝑐
(𝑝)𝑁𝑝

𝑖=3

𝑖=1

] [4.26] 
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𝐹𝑖(𝑤)
(𝑐,𝑝)

= 𝐾𝑤(𝑐)𝐷𝑖
𝑛

 

where 𝜎𝑖𝑖(𝑤)̅̅ ̅̅ ̅̅ ̅ is the stress caused by fluid element averaged from 3 principle direction in sample,  

𝐹𝑖(𝑤)
(𝑐,𝑝)

 is the contact force provided by fluid element, 𝐾𝑤(𝑐) is the combined normal stiffness of 

fluid particles in the linear contact model and is calculated from: 

 

{
 

 𝐾𝑤(𝑐) =
𝐾𝑤𝐾𝑤

(𝐾𝑤 +𝐾𝑤)
=
1

2
𝐾𝑤; for particle − particle contact

𝐾𝑤(𝑐) =
𝐾𝑤𝐾𝑤𝑎𝑙𝑙

(𝐾𝑤 + 𝐾𝑤𝑎𝑙𝑙)
=

𝛼

1 + 𝛼
𝐾𝑠𝑜𝑙𝑖𝑑; for particle − wall contact

  [4.27] 

where 𝐾𝑤 is the normal stiffness of the single water particle, and 𝛼 is the ratio between the normal 

stiffness of current water particle and wall expressed as 𝛼 =
𝐾𝑤𝑎𝑙𝑙

𝐾𝑤
: 

When substituting Equation 4.27 into Equation 4.26, it results in: 

 

∆𝑈 =
1

3𝑉𝑡𝑜𝑡𝑎𝑙
[∑∑∑(𝑥𝑖

𝑐 − 𝑥𝑖
𝑝)𝐾𝑤(𝑐)(𝜂𝐷𝑖

𝑛)

𝑁𝑐
(𝑝)𝑁𝑝

𝑖=3

𝑖=1

] [4.28] 

 

𝜂 = {

1

2
; 𝑓𝑜𝑟 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 − 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝛼

1 + 𝛼
; 𝑓𝑜𝑟 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 − 𝑤𝑎𝑙𝑙 𝑐𝑜𝑛𝑎𝑡𝑐𝑡

 [4.29] 

Since water particle has zero shear stiffness, the only unknown is normal stiffness of water particle. 

The pore pressure in an undrained sample is averaged along 3 principle directions, the water 

particle stiffness is then calculated by using the average method: 
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𝐾𝑤 =

3𝑉𝑡𝑜𝑡𝑎𝑙∆𝑈

∑ ∑ ∑ (𝑥𝑖
𝑐 − 𝑥𝑖

𝑝)(𝜂𝐷𝑖
𝑛)

𝑁𝑐
(𝑝)𝑁𝑝

𝑖=3
𝑖=1

 [4.30] 

Potyondy and Cundall (2004) states that for sample with a constant solid Young’s modulus 𝐸𝑠, the 

normal stiffness of sample is calculated as: 

 𝐾𝑠𝑚 = 4𝑅𝑚𝐸𝑠  [4.31] 

where 𝑅𝑚 is the radius of each particle, for sample with particle size distribution, the calculated 

normal stiffness is different for each of the particle. Rearrange of Equation 4.31, the Young’s 

modulus of sample can be calculated as: 

 
𝐸𝑠 =

𝐾𝑠(𝑎𝑣𝑔)

4𝑅𝑎𝑣𝑔
 [4.32] 

where 𝐾𝑠(𝑎𝑣𝑔) is the average particle solid stiffness, and 𝑅𝑎𝑣𝑔 is the average particle radius. The 

calculated water particle stiffness can be treated as the average stiffness, by using Equation 4.32, 

an virtual Young’s modulus for water particle 𝐸𝑤 is introduced here: 

 
𝐸𝑤 =

𝐾𝑤(𝑎𝑣𝑔)

4𝑅𝑎𝑣𝑔
 [4.33] 

The water particle stiffness for each particle is then calculated as: 

 𝐾𝑤𝑚 = 4𝑅𝑚𝐸𝑤  [4.34] 

4.2.2. Pore Pressure Dissipation Process 

The consolidation process of soil or porous medium, which is the gradual reduction in the volume 

of a fully saturated soil of low permeability due to the draining of some of the pore water, will 
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continue until the excess pore water pressure has been completely dissipated. During this water 

diffusion process, the excess pore pressure will drop from a maximum value to zero while the 

effective stress carried by soil skeleton will increase to a value which is equal to the total stress 

when the pore water pressure is zero. 

In DEM analysis, the total stress is divided into two parts: effective stress and pore pressure. The 

effective stress is carried by solid particle, and pore pressure is carried by water particle. During 

water diffusion process, the total stress on the outer boundary wall is maintained the same, and the 

solid stiffness remains unchanged. However, the volume of the total sample decreases due to the 

drainage of some of the pore water, the DEM simulations here reduce the water particle stiffness 

in a certain amount to maintain an expected volume reduction. The total water diffusion process 

in DEM simulation can be shown in Figure 4.6： 
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(a) 

 

(b) 

Figure 4.6：DEM simulation of effective stress and pore pressure (a) before water diffusion 

process (b) during water diffusion process 

4.2.2.1 Loose packing 

In order to calculate the water particle stiffness for various degree of consolidation or various 

stages of pore water diffusion, several particle packing configurations will be considered.  The 

calculation of the water particle stiffness is important since it controls the component of the contact 

force that will be supported by the water element and the remaining part supported by the solid 

element.  By changing the stiffness of the water element, different degree of consolidation can be 

simulated by changing the forces support by the water element. 

First, the loosest particle packing configuration with uniform particle size is considered for 1D 

consolidation analysis as shown in Figure 4.7.  The force between particles is only transmitted in 
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the vertical direction along the z axis. Therefore, during drained dissipation process, there is no 

force acting on side walls in the x and y directions. 

 

                                          (a)                                                                    (b) 

Figure 4.7: DEM formulation of loose packing. (a) 3D view, (b) the x-z plane view 

During consolidation, pore water pressure can be converted to particle contact force between two 

particles calculated from the water particle stiffness: 

 𝑝1 = 𝛼𝑝0 [4.35] 

 𝐹𝑤1 = 𝛼𝐹𝑤0 [4.36] 

where 𝑝1 and 𝑝0 are pore pressure in the sample before and after dissipation occurs,  𝐹𝑤0 and 𝐹𝑤1 

are the force at the contact between two particles calculated from the water particle stiffness before 

and after pore pressure reduction, and 𝛼 is the reduction factor range from 0 to 1. For particle-

particle contact: 
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𝐹𝑤0 = ∆0

𝐾𝑤0
2

2𝐾𝑤0
 [4.37] 

 
𝐹𝑤1 = ∆1

𝐾𝑤1
2

2𝐾𝑤1
 

[4.38] 

 
∆0=

𝐹

(
(𝐾𝑠 + 𝐾𝑤0)(𝐾𝑠 + 𝐾𝑤0)
(𝐾𝑠 + 𝐾𝑤0) + (𝐾𝑠 + 𝐾𝑤0)

)
 

[4.39] 

 
∆1=

𝐹

(
(𝐾𝑠 + 𝐾𝑤1)(𝐾𝑠 + 𝐾𝑤1)
(𝐾𝑠 + 𝐾𝑤1) + (𝐾𝑠 + 𝐾𝑤1)

)
 

[4.40] 

where 𝐾𝑤0 and 𝐾𝑤1 are the water particle stiffness before and after the pore pressure reduction, 𝐾𝑠 

is the solid particle stiffness and it is a constant during the pore pressure dissipation process, ∆0 

and ∆1 are the particle – particle intersection before and after the pore pressure reduction, and F is 

the total force maintained on the particle contact when combining Eq. 4.37 to 4.40 with Eq. 4.36.  

The water particle stiffness after pore pressure reduction is calculated as: 

 
𝐾𝑤1 =

𝛼𝐾𝑤0∆0𝐾𝑠
2 − 𝛼𝐾𝑤0∆0

 [4.41] 

4.2.2.1 Dense and Irregular packing 

For the random particle packing as shown in Figure 4.8, the force between the particles is not only 

transmitted in the vertical direction along z axis for 1D consolidation; it is also transmitted in 

horizontal directions along x and y axis because of irregular contacts between particles. Although 

no deformation is allowed to occur in the x and y directions due to the boundary walls, stresses are 

still generated on the boundary walls, which mean that the linear relationship between single force 
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induced by water particle on a contact and the pore pressure of the whole sample no longer exist. 

In this case, the water particle stiffness can be determined using an iterative scheme. 

 

                                          (a)                                                                    (b) 

Figure 4.8: DEM formulation of irregular packing. (a) 3D view, (b) the x-z plane view 

During the water pressure dissipation process, a pore pressure dissipation factor 𝛽  is used to 

calculate the degree of changes of pore pressure as: 

 𝑢1 = 𝛽𝑢0 [4.42] 

where 𝑢1 is the pore pressure at the current stage of pore pressure dissipation, and 𝑢0 is the initial 

pore pressure of the whole sample. It is assumed that the change in pore pressure is uniform 

through the sample and the contact forces of the water particle will change by the same percentage 

as the pore pressure.  In other words, the same  value can be used in calculating the current contact 

force in the water particle: 

 𝐹𝑤1 = 𝛽𝐹𝑤0 [4.43] 
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𝐹𝑤0 = ∆0𝐾𝑤0 

𝐹𝑤1 = ∆1𝐾𝑤1 

where 𝐹𝑤0 and 𝐹𝑤1 are the force on a contact between two particles calculated from the water 

particle stiffness before and after the pore pressure reduction, and 𝐾𝑤0  and 𝐾𝑤1  are the water 

particle stiffness before and after the pore pressure reduction, ∆0  and ∆1  are the contact 

intersection between two particles before and after the pore pressure reduction.  

Since total force 𝐹𝑡 applied on the contact is the same before and after the pore pressure dissipation, 

then: 

 𝐹𝑡 = 𝐹𝑠 + 𝐹𝑤 = 𝐾𝑠∆0 + 𝐾𝑤0∆0= 𝐾𝑠∆1 + 𝐾𝑤1∆1 [4.44] 

where 𝐹𝑠 and 𝐹𝑤 are the contact force induced by solid and water stiffness respectively, 𝐾𝑠 is the 

solid particle stiffness and is kept as a constant during pore pressure dissipation process. Assuming 

that the pore pressure reduction is linearly related to the changes in effective stress, it follows that: 

 
𝐾𝑠∆1= 𝐾𝑠∆0(

(1 − 𝛽)∆0𝐾𝑤0 + 𝐾𝑠∆0
𝐾𝑠∆0

) [4.45] 

Substituting Eq. 4.45 in Eq. 4.43, a new water stiffness can be calculated from: 

 
𝐾𝑤1 =

𝛽𝐾𝑤0

(1 − 𝛽)
𝐾𝑤0
𝐾𝑠

+ 1
 

[4.46] 

In DEM calculation, because each particle will have its own pore pressure reduction factor 𝛽𝑚, the 

pore pressure 𝑢𝑚 calculation is based on individual particle 𝑚, and modified from Eq. 4.28: 
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𝑢𝑚 =
1 − 𝑛𝑎𝑣𝑔

𝑉𝑚
(𝑝)

[∑(𝑥𝑖
𝑐 − 𝑥𝑖

𝑝)𝐾𝑤(𝑐)𝛾𝐷𝑖
𝑛

𝑁𝑐
(𝑝)

] [4.47] 

where 𝑉𝑚
(𝑝)

 is the volume of individual particle 𝑚, 𝐾𝑤(𝑐)  is the combined water stiffness at a 

contact between two particles, and 𝑛𝑎𝑣𝑔 is the average porosity of the whole sample. Due to the 

nonlinear relationship between the single force induced by the water particle on a contact and the 

pore pressure of the whole sample, the pore pressure dissipation factor 𝛽  cannot be directly 

calculated from Eq. 4.46. The final pore pressure dissipation factor 𝛽  is calculated from the 

bisection method (Chapra, 2012):  

 𝑄𝑛 = 𝑢𝑛(𝐷𝐸𝑀) − 𝑢𝑓 , 𝑢𝑓 = 𝛼𝑢0 

𝑖𝑓 𝑄𝑛 > 0, 𝛽𝑟𝑖𝑔ℎ𝑡 = 𝛽𝑛 and 𝛽𝑛+1 =
𝛽𝑙𝑒𝑓𝑡 + 𝛽𝑟𝑖𝑔ℎ𝑡

2
 

𝑖𝑓 𝑄𝑛 < 0, 𝛽𝑙𝑒𝑓𝑡 = 𝛽𝑛 and 𝛽𝑛+1 =
𝛽𝑙𝑒𝑓𝑡 + 𝛽𝑟𝑖𝑔ℎ𝑡

2
 

[4.48] 

where 𝛼 is the target pore pressure reduction factor, 𝑢𝑛(𝐷𝐸𝑀) is the pore pressure calculated at the 

end of current DEM iteration. Subscript 𝑛 denotes the number of iteration steps, 𝛽𝑙𝑒𝑓𝑡 and 𝛽𝑟𝑖𝑔ℎ𝑡 

are minimum and maximum boundary values of 𝛽. The first trial values of 𝛽𝑙𝑒𝑓𝑡 and 𝛽𝑟𝑖𝑔ℎ𝑡 are 0 

and 1, respectively. The first trial value of 𝛽  is equal to 𝛼 . 𝛽𝑛+1  is then calculated based on 

boundary values and will be used in the next iteration. The iterative process continue until the 

changes in pore pressure are within a specified tolerance: 
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 𝑢𝑛(𝑎𝑣𝑒𝑟𝑎𝑔𝑒)
𝑢0(𝑎𝑣𝑒𝑟𝑎𝑔𝑒)

− 𝛼

𝛼
≤ 0.005 

[4.49] 

where 𝑢𝑛(𝑎𝑣𝑒𝑟𝑎𝑔𝑒) is the DEM calculated pore pressure, averaged from total number of particles. 

The graphic depiction of the bisection method to find the final pore pressure dissipation factor 𝛽 

is illustrated in Figure 4.9: a. The algorithm for the DEM calculation is presented in Figure 4.9: b: 

 

(a) 
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(b) 

Figure 4.9: (a) A graphical depiction of the bisection method based on DEM calculation. (b)The 

scheme of iteration method to find the corresponding pore pressure dissipation factor. 

 

4.3. Numerical verifications and results 

4.3.1. Undrained deformation - Loose packing 

The loose packing sample simulated here is used to verify the derivation from Equation 4.3 to 

Equation 4.14.  The DEM model in loose packing state is generated in a cube box with the length, 
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width and depth of 20 mm, bounded by six frictionless rigid walls as shown in Figure 4.10. Table 

4.1 presents the DEM micro-properties for this model.  

  

Figure 4.10: DEM generation of loose packing particles (a) 3-D view; (b) plane view. 

Table 4.1: The detail of isotropic compression example in loose packing state. 

Parameters Values Units 

Sample Height (H)  20 mm 

Sample Length (L)  20 mm 

Sample Width  (W) 20 mm 

Wall Normal Stiffness (Knwall) 7 × 107 N/m 

Wall stiffness ratio (Knwall/Kswall) 1  

Particle Normal Stiffness  (Knball) 1.4 × 107 N/m 

Particle stiffness ratio (Knball/Ksball) 1  

Particle Radius (r) 0.5 mm 

Particle Density (ρ) 2650 kg/m3 

Number of Particles  8000  

Particle Friction Coefficient (μ) 0.5  

Initial Porosity 0.46387  

Gravity (g) 9.8 m/s2 

Compressibility of Water (Cw)  4.6 × 10−10 m2/N 

 

In analytical solution, the first step is to obtain the compressibility of soil skeleton 𝐶𝑠, which is 

calculated based on DEM solid particle only case. An isotropic stress of 1 MPa is applied on the 
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cube sample by using servo control algorithm until steady state reached. The initial total volume 

of sample 𝑉0 and change of total volume ∆𝑉 is calculated from Equation 4.3 and Equation 4.10, 

the 𝐶𝑠 is then calculated from: 

 
𝐶𝑠 =

∆𝑉
𝑉0
⁄

∆𝜎
 

 

[4.50] 

 ∆𝜎 =
1

3
(∆𝜎1 + ∆𝜎2 + ∆𝜎3) [4.51] 

where ∆𝜎 is the average total stress increment, and ∆𝜎1, ∆𝜎2, ∆𝜎3 are the total stress increase on 

the sample in three principle stress directions. 

The analytical solution of the pore pressure buildup is based on fundamental soil mechanics, the 

pore pressure build-up under isotropic compression can be calculated using pore pressure B 

parameter as: 

 ∆𝑈 = ∆𝜎𝐵 

𝐵 =
1

1 + 𝑛0
𝐶𝑤
𝐶𝑠

 

[4.52] 

where 𝐶𝑤 is the compressibility of water from Table 4.1, 𝑛0 is the initial porosity of the whole 

sample, calculated from Equation 4.3. When a continuous outer boundary total stress increment 

from 0 MPa to 5 MPa on the sample is applied, a continuous pore pressure generation can then be 

calculated from Equation 4.52. 
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In the case of an undrained test, when the fluid and soil grains are fully incompressible, and the 

sample is fully saturated, no volume change will occur after isotropic compression and the entire 

load will be carried by the pore fluid. However, if both fluid and soil grains are assumed 

compressible, fluid and soil will theoretical resist part of the total load. In the presented DEM 

analysis, the total stress is divided into two parts: effective stress and pore pressure. The effective 

stress is carried by the solid particle, and pore pressure is carried by the water particle as shown in 

Figure 4.11. 

 

Figure 4.11: DEM simulation of effective stress and pore pressure 

In DEM simulation, a continuous outer boundary total stress increment from 0 MPa to 5 MPa on 

the sample is applied in steps. The isotropic stress of 1 MPa is first applied on the sample with the 

solid particle only since the water particle stiffness is calculated from the pore pressure buildup 

due to porosity change from Equation 4.14. The calculated water particle stiffness is then applied 

back to the original sample with 0 MPa’s outer boundary total stress. Then both solid and water 

particles are activated, and both particles experienced an outer boundary total stress increment of 

1 MPa. The water particle stiffness in the next load increment, from 1 MPa to 2 MPa, will be 

adjusted based on the pore pressure increase difference of the current load increment: 

 𝐾𝑤
𝑛+1 = 𝐾𝑤

𝑛 + ∆𝐾𝑤 [4.53] 
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where 𝐾𝑤
𝑛+1 is the water particle stiffness at next loading increment, 𝐾𝑤

𝑛  is the water particle 

stiffness at the current loading increment, and ∆𝐾𝑤 is the adjusted water particle stiffness and is 

calculated from Equation 4.14: 

 
∆𝐾𝑤 =

2∆𝑈′𝐿0
2

𝑁1∆𝑆𝑏−𝑏
 [4.54] 

where ∆𝑈′ is the difference in pore pressure build up between the two loading increment and is 

calculated by: 

 ∆𝑈′ = ∆𝑈𝑛+1 − ∆𝑈𝑛 [4.55] 

The result of isotropic compression test is shown in Figure 4.12 and Figure 4.13, which show good 

agreements between analytical and numerical results.  

 

Figure 4.12: Comparison between analytical and numerical pore pressure buildup against the 

total stress increase on boundary walls in isotropic compression case with loose particle packing. 
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Figure 4.13: Comparison between analytical and numerical pore pressure build up against the 

volumetric strain of cube sample in isotropic compression case with loose particle packing. 

 

4.3.2. Undrained deformation - Irregular packing 

The irregular packing sample presented here is used to verify the derivation from Equation 4.15 to 

Equation 4.30.  Here two cases are considered, the first case is isotropic compression and the 

second case is triaxial compression. 

4.3.2.1. Isotropic compression 

The DEM model for isotropic compression case is generated in a cube box with the length, width 

and depth of 20 mm, bounded by six frictionless rigid walls as shown in Figure 4.14. Table 4.2 

presents the DEM micro-properties for this model. The sample is first compacted by applying three 

perpendicular and unequal stresses 0.1 MPa using a servo control algorithm. The model is run until 

the average unbalanced forces divided by average contact forces became equal to or smaller than 

0.01.  
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To measure the porosity of the sample, a group of measurement spheres is first inserted into the 

sample, as shown in Figure 4.14. The measurement sphere is a built-in tool in PFC3D to help the 

user to calculate quantities such as porosity, stress and strain rate in a specific measurement volume 

(Itasca, 2008).  Significant errors in the calculated porosity will result when the measurement 

sphere includes only four or fewer particles (Itasca, 2008). On the other hand, inaccurate 

permeability calculations result when some part of the measurement sphere covers outside the 

sample (Cui et al., 2016). As shown in Figure 4.15, the criterion for distance 𝑑 from measurement 

boundary to boundary wall, in radial direction is: 

 
𝑑 <

𝛥𝑠

2
 [4.56] 

where 𝛥𝑠 is the total displacement in one principle direction within maximum applied boundary 

stress during simulation, calculated from the movement of boundary walls. 

Therefore, the number of particles with centroids that lie in the specific measurement sphere is 

determined first at the beginning of the calculation to assure at least 10 particles (chosen in this 

study) is included in the measurement sphere. In this case, the radius of measurement sphere is 

assigned as 2 mm. 
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(a)                                                             (b) 

Figure 4.14: Discrete element model of the isotropic compression example (a) 3D view; (b) 

plane view with the location of measurement spheres. 

 

Figure 4.15: Location of measurement sphere related to boundary wall 
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Table 4.2: The detail of isotropic compression example in irregular packing state 

Parameters Values Units 

Sample Height (H)  20 mm 

Sample Length (L)  20 mm 

Sample Width  (W) 20 mm 

Wall Normal Stiffness (Knwall) 7 × 107 N/m 

Wall stiffness ratio (Knwall/Kswall) 1  

Particle Normal Stiffness  (Knball) 1.4 × 107 N/m 

Particle stiffness ratio (Knball/Ksball) 1  

Particle Radius (r) 0.5 mm 

Particle Density (ρ) 2650 kg/m3 

Number of Particles  9931  

Particle Friction Coefficient (μ) 0.5  

Initial Porosity 0.362  

Gravity (g) 9.8 m/s2 

Compressibility of Water (Cw)  4.6 × 10−10 m2/N 

 

A continuous outer boundary total stress increment from 0.1 MPa to 5 MPa on the sample is 

applied in steps. The isotropic stress of 1 MPa is first applied on the sample with the solid particle 

only in order to calculate the water particle stiffness from Equation 4.30. The calculated water 

particle stiffness is then applied back to the original sample with 0.1 MPa’s outer boundary total 

stress. Then both solid and water particles are activated, and both particles experienced an outer 

boundary total stress increment of 0.9 MPa. The water particle stiffness in the next load increment, 

from 1 MPa to 2 MPa, will be adjusted based on the pore pressure increase difference of the current 

load increment from Equation 4.53. The adjusted water particle stiffness ∆𝐾𝑤 is calculated from 

Equation 4.30: 

 
𝐾𝑤 =

3𝑉𝑡𝑜𝑡𝑎𝑙∆𝑈′

∑ ∑ ∑ (𝑥𝑖
𝑐 − 𝑥𝑖

𝑝)(𝜂𝐷𝑖
𝑛)

𝑁𝑐
(𝑝)𝑁𝑝

𝑖=3
𝑖=1

 [4.57] 
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The analytical pore pressure buildup against the total stress increase on boundary walls is 

calculated by using the same procedures in the loose packing case.  

In numerical solution, the pore pressure build-up is calculated by the applied water particle 

stiffness in DEM phase, from Equation 4.26. Another way to calculate pore pressure builds up in 

numerical solution is to use porosity change calculated from measurement sphere, from Equation 

4.13: 

 
∆𝑈 =

∆𝑉𝑣
𝐶𝑤𝑛0𝑉0

 [4.58] 

where 𝐶𝑤 is the compressibility of water, 𝑛0 is the initial porosity before the total stress increase, 

𝑉0 is the initial controlled total volume, and  ∆𝑉𝑣 is the void volume change during compression: 

 ∆𝑉𝑣 = 𝑉𝑣0 − 𝑉𝑣1 = 𝑉0𝑛0 − 𝑉1𝑛1 [4.59] 

where 𝑉1 is the total control volume after deformation, 𝑛1  is the porosity after the total stress 

increase. 

The result of isotropic compression test is shown in Figure 4.16 and Figure 4.17, which show good 

agreements between analytical and numerical results. The good agreement between DEM results 

and analytical solution reveals the capability of this approach in simulating fluid-solid interactions 

under undrained condition. 
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Figure 4.16: Comparison between analytical and numerical pore pressure build up against the 

total stress increase on boundary walls in isotropic compression case 

 

 

Figure 4.17: Comparison between analytical and numerical pore pressure build up against the 

volumetric strain of cube sample in isotropic compression case 
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4.3.2.2. Triaxial Undrained Test 

The unconsolidated undrained triaxial test is a classical problem in soil mechanics, which can be 

described as a cylindrical specimen subjected to a specified all-round pressure and then the 

principal stress difference is applied immediately with no drainage allowed. 

A DEM model is generated using two horizontal and one cylindrical rigid wall with a radius of 25 

mm and height of 100 mm, shown in Figure 4.18. To obtain the optimum calculation speed, the 

simulation here increase the particle size to 1mm but keep the same Young’s modulus (7 ×

109 Pa in current simulation) compared with the isotropic compression test. The micro-parameters 

of the DEM model is presented in Table 4.3. A radial stress of 0.01 MPa is applied at the outer 

boundary by moving the outer cylindrical wall together with the top and the base platens using a 

servo control algorithm after the sample generation. The calculations are continued until the ratio 

of average unbalanced force to the average contact forces converge to 0.01. 

                            

(a)                                                             (b)            

Figure 4.18: Discrete element model of the triaxial compression sample (a) 3D view; (b) the x-z 

plane view. 
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Figure 4.19: Location of measurement spheres in cylindrical sample in the x-y plane view 

Table 4.3: The detail of triaxial compression example. 

Parameters Values Units 

Sample Height (H)  100 mm 

Sample Radius (R)  25 mm 

Wall Normal Stiffness (Knwall) 1.4 × 108 N/m 

Wall stiffness ratio (Knwall/Kswall) 1  

Particle Normal Stiffness  (Knball) 2.8 × 107 N/m 

Particle stiffness ratio (Knball/Ksball) 1  

Particle Radius (r) 1 mm 

Particle Density (ρ) 2650 kg/m3 

Number of Particles  31858  

Particle Friction Coefficient (μ) 0.5  

Initial Porosity 0.359  

Gravity (g) 9.8 m/s2 

Compressibility of Water (Cw)  4.6 × 10−10 m2/N 

The measurement spheres are introduced with 4 sections in the radial direction, 16 sections in the 

circumferential direction, and 20 in the vertical direction, as shown in Figure 4.19. The porosity 

change of the sample is calculated by the average readings from all measurement spheres. 
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During the triaxial test, a continuous outer boundary axial stress increment in the z direction from 

0.1 MPa to 4 MPa is applied to the top and bottom wall of the sample by using a servo control 

algorithm, while the cylinder wall boundary is fixed. The axial boundary stress of 1 MPa is first 

applied to the sample containing solid particles only. The water particle stiffness is then calculated 

from the pore pressure generation as a result of porosity change, from Equation 4.30. The 

calculated water particle stiffness is then applied back to the original sample with 0.1 MPa’s axial 

boundary stress. Then the sample with both solid and water particles is subjected to an axial 

boundary stress increment of 0.9 MPa. The axial stress increment from 1 MPa to 4 MPa and pore 

pressure calculation method followed the same procedure as described in the isotropic 

compression case.  

The analytical solution of the pore pressure buildup is calculated from Equation 4.50 to Equation 

4.52.  

The result of the triaxial compression test is shown in Figure 4.20:  and Figure 4.21, which show 

good agreements between analytical and numerical results. It should be noted that during axial 

boundary stress increment, the boundary stress in the radial direction is not equal to stress in the 

axial direction due to the restraint of boundary wall, which indicates it is not an isotropic 

compression case. This indicates that even sample is not in an isotropic compression state, the 

approach used in this study still reveals the capability of simulating fluid-solid interactions under 

undrained condition. 
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Figure 4.20: Comparison between analytical and numerical pore pressure build up against the 

total stress increase on boundary walls in triaxial compression case 

 

Figure 4.21: Comparison between analytical and numerical pore pressure build up against the 

volumetric strain of the sample in triaxial compression case 
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4.3.3. 1D Consolidation of Soil – Oedometer test 

4.3.3.1 Loose particle packing configuration 

The DEM model used in the simulation of 1D consolidation test has the minimum diameter, height 

and diameter-to-height ratio of 50 mm, 12 mm and 2.5, respectively (ASTM standard, 2011). In 

order to generate a DEM model that fit this sample size, the DEM model has the length, width and 

depth of 75 mm, 75 mm, and 15 mm, bounded by six frictionless rigid walls. An initial seating 

load of 10 kPa is applied on all the boundary producing an isotropic stress condition as shown in 

Figure 4.22. Although the model is 3D, forces are applied and displacements are changing only in 

the vertical z direction resulting in a 1D simulation. No deformation is allowed to occur in the x 

and y directions, but forces can develop in these 2 directions due to the restraint imposed by the 

boundary walls. 

 

(a) 

 

(b) 
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Figure 4.22: DEM generation of loose packing particles, the outer boundary stress is only applied 

in the z direction (a) 3D view (b) Side view. 

Measurement spheres are used to calculate the porosity of the sample. The measurement spheres 

are evenly distributed in the sample and contain at least 5 particles inside. The porosity of the 

whole sample is averaged by all measurement spheres, as shown in Figure 4.23. 

 

(a) 

 

(b) 

Figure 4.23: The measurement sphere distribution in the sample. (a) x-z plane view, (b) x-y plane 

view. 

In conventional odeometer consolidation test, the specimen ring shall be stiff enough to prevent 

significant lateral deformation of the specimen throughout the test. Therefore, the stiffness of 

boundary wall is set to be equal to 5 times the particle normal stiffness. The coefficient of volume 
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compressibility of the soil skeleton can be calculated from DEM 1D compression on solid particles 

for the dry case as (Craig, 2004).  

 
𝑚𝑣 =

1

1 + 𝑒0
(
𝑒0 − 𝑒1
𝜎1
′ − 𝜎0

′) [4.60] 

where 𝑒0 and 𝑒1 are the void ratios before and after stress application, and (𝜎1
′ − 𝜎0

′) is the stress 

increment in z direction and is chosen as 0.1 MPa in this case. The variation of the coefficient of 

volume compressibility based on the increasing solid particle stiffness is shown in Figure 4.24. It 

is observed that the coefficient of volume compressibility increases with the increase of solid 

particle stiffness. The final coefficient of volume compressibility is adjusted as 0.0447 with 

particle micro properties shown in Table 4.4.  

 

Figure 4.24: The variation of coefficient of volume compressibility base on different solid 

particle stiffness 
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Table 4.4: DEM micro properties used in oedometer test of loose packing case 

Parameters Values Units 

Sample Height (H)  15 mm 

Sample Length (L)  75 mm 

Sample Width  (W) 75 mm 

Wall Normal Stiffness (Knwall) 7 × 105 N/m 

Wall stiffness ratio (Knwall/Kswall) 1  

Particle Normal Stiffness  (Knball) 1.4 × 105 N/m 

Particle stiffness ratio (Knball/Ksball) 1  

Particle Radius (r) 1.5 mm 

Particle Density (ρ) 2650 kg/m3 

Number of Particles  3125  

Particle Friction Coefficient (μ) 0.5  

Initial Porosity 0.468  

Gravity (g) 9.8 m/s2 

Compressibility of Water (Cw)  4.6 × 10−10 m2/N 

The process of 1D consolidation has an initial stage and a final stage being a fully undrained 

compression stage and final fully drained stage. The undrained compression stage first started with 

an application of a vertical stress in the z direction of 0.1 MPa on the sample with the solid particle 

only. The water particle stiffness is calculated from the pore pressure buildup because of the 

porosity change.  

 
𝐾𝑤 =

3𝑉𝑡𝑜𝑡𝑎𝑙∆𝑈

∑ ∑ ∑ (𝑥𝑖
𝑐 − 𝑥𝑖

𝑝)(𝜂𝐷𝑖
𝑛)

𝑁𝑐
(𝑝)𝑁𝑝

𝑖=3
𝑖=1

 [4.61] 

 

𝜂 =

{
 

 
1

2
;             for particle − particle contact

𝐾𝑤𝑎𝑙𝑙
𝐾𝑤 + 𝐾𝑤𝑎𝑙𝑙

; for particle − wall contact
  [4.62] 

where 𝐾𝑤 and 𝐾𝑤𝑎𝑙𝑙 are the normal stiffness of a single water particle and the wall respectively, 

∆𝑈 is the pore pressure build up due to porosity change, and subscript 𝑖 has a range of 𝑖 ∈ {1,2,3} 

for the components in the x, y, and z directions.  
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The calculated water particle stiffness is introduced in the DEM calculation, and the boundary 

stress of 0.01 MPa is reapplied again. Once the water elements are introduced with a finite 

stiffness, the sample which combines both solid and water particles will support the stress 

increment applied on the boundary.  

Analytical solution for the consolidation test can be calculated by considering a half drained layer 

shown in Figure 4.25.  

 

Figure 4.25: The side view of soil drainage layers for analytical solution 

The excess pore pressure at any distance 𝑧 from drained layer is calculated as (Craig, 2004): 

 

𝑢𝑒 = ∑
2𝑢𝑖
𝑀
(sin

𝑀𝑧

𝑑
) 𝑒(−𝑀

2𝑇𝑣)

𝑚=∞

𝑚=0

  

𝑀 =
𝜋

2
(2𝑚 + 1) 

[4.63] 

where 𝑢𝑖 is the initial excess pore pressure, 𝑑 is the drainage path, 𝑚 can be any integer, 𝑇𝑣 is time 

factor and is calculated as: 

 
𝑇𝑣 =

𝐶𝑣𝑡

𝑑2
 [4.64] 
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 𝐶𝑣 =
𝑘

𝑚𝑣𝛾𝑤
 

where 𝐶𝑣 is defined as the coefficient of consolidation, 𝑘 is the permeability in clay, 𝑚𝑣 is the 

coefficient of volume compressibility of soil skeleton, 𝛾𝑤 is the unit weight of water. The basic 

parameters used in the analytical 1D consolidation solution is shown in Table 4.5: 

Table 4.5: Basic soil and fluid characteristics in analytical 1D consolidation test 

Parameters Values Units 

Permeability (k) 1 × 10−10 m/s 

Coefficient of volume compressibility (mv)  0.044742398 m2/MN 

Unit weight of water (ϒw) 9.81 kN/m3 

Coefficient of consolidation (cv) 2.2783 × 10−7 m2/s 

Drainage path (d) 0.015 m 

Distance to open drainage (z) Case depend m 

B value 0.99623  

Initial excess pore pressure (ui) 0.09962 MPa 

In the analytical solution, the final 1D consolidation settlement of the whole soil layer is calculated 

based on the change in effective stress as (Craig, 2006):  

 ∆𝐻𝑓 = 𝑚𝑣∆𝜎
′𝐻 [4.65] 

where ∆𝜎′ is the effective stress change on the soil skeleton which is equal to 0.1 MPa in this case, 

and 𝐻 is the length of the drainage layer which is equal to oedometer sample’s depth in z direction 

before the beginning of dissipation process. 

The consolidation settlement of the whole soil layer at any time Tv during the consolidation process 

is calculated by using the average degree of consolidation 𝑈̅: 

 ∆H = ∆𝐻𝑓(1 − 𝑈̅) [4.66] 
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𝑈̅ = 1 − ∑
2

𝑀2
exp (−𝑀2𝑇𝑣)

𝑚=∞

𝑚=0

 [4.67] 

The DEM calculation is divided into 5 layers for pore pressure calculation, as shown in Figure 

4.26 below: 

 

Figure 4.26: The side view of soil drainage layers for DEM calculation of loose packing case 

During the drained consolidation test, the water particle stiffness is reduced from the maximum 

value to zero corresponding to the pore pressure decrement at each step, according to Eq. 4.41. 

The difference in pore pressure at a specific time along each layer in the analytical solution (Eq. 

4.63) will result in different stiffness reduction in the water particles along each layer. The excess 

pore pressure of each layer from the DEM solution is calculated from Eq. 4.26. The consolidation 

settlement of the whole soil layer at any time during the consolidation process is calculated by the 

difference in displacement between the upper and lower wall in the z direction. 

Figure 4.27 compares the particle intersection before (time = 0 s) and after the end of (time = 200 

s) pore pressure dissipation. It is observed that the intersection of particle contact in z direction 

between layer 2 and layer 3 increase because of water particle stiffness reduction, which lead to 

the total volume decrease of the sample, which is consistent with the laboratory observation as 

expected in traditional soil mechanics. 
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(c) 

 

(b) 

Figure 4.27: Intersection of particle contact (a) before pore pressure dissipation, time = 0 s; (b) at 

the end of pore pressure dissipation, time = 2000 s. 

The comparison of excess pore pressure drop in each layer between the DEM and the analytical 

solution is shown in (e) 

Figure 4.28 (a) to (e). The comparison of consolidation settlement of the whole soil sample against 

the time increment between analytical and DEM solution is shown in Figure 4.29. It is observed 

that the proposed method is able to calculate pore water pressure dissipation using the water 

particles with good accuracy.   
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(b) 
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(e) 

Figure 4.28: Comparison of excess pore pressure drop of each layer against time increment 

between analytical solution and DEM solution of loose packing case 

 

Figure 4.29: Comparison of consolidation settlement of whole soil sample against time 

increment between analytical solution and DEM solution of loose packing case 
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bounded by six frictionless rigid walls as shown in Figure 4.30. The application of load is 1D and 

the boundary walls in the x and y directions are fixed by setting the wall velocities to zero. The 

wall in z direction can move freely based on the servo control method. 

 

(a)  

 

(b)  

Figure 4.30: DEM generation of dense packing particles, the outer boundary stress is only 

applied in the z direction (a) 3D view (b) Side view. 

To calculate the porosity of the sample, a more precise method is used instead of inserting the 

measurement sphere used in the loose packing case. From Figure 4.30: , the total volume of sample 

𝑉𝑇 is calculated as: 

 𝑉𝑇 = ∆𝑥 ∙ ∆𝑦 ∙ ∆𝑧 [4.68] 
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where ∆𝑥,∆𝑦, and ∆𝑧 are the perpendicular distances between two walls in x y and z direction. 

The solid volume 𝑉𝑠 is calculated as: 

 𝑉𝑠 = 𝑉𝑏
𝑇 − 𝑉𝑏−𝑏

𝑇 − 𝑉𝑏−𝑤
𝑇

 [4.69] 

where 𝑉𝑏
𝑇 is the volume of total particles, 𝑉𝑏−𝑏

𝑇  is the total particle-particle intersection volume, 

and 𝑉𝑏−𝑤
𝑇  is the total particle-wall intersection volume. The total solid volume of all the particles 

is calculated from: 

 

𝑉𝑏
𝑇 = ∑

4

3
𝜋𝑟𝑚

3

𝑚=𝑁𝑝

𝑚=0

 [4.70] 

where 𝑁𝑝  is the total number of particles in the sample, 𝑟𝑚  is the current particle radius. The 

volume of particle-particle intersection and particle-wall intersection is calculated separately and 

following the index notation as shown in Figure 4.31, where index 𝑖 has a range of 𝑖 ∈ {1,2,3}) for 

x, y, and z directions. For particle-particle contact, each volume contains only half of total 

intersection volume because two particles share one contact: 

 

𝑉𝑏−𝑏
𝑇 =∑∑

1

2
(
𝜋

12𝑑
(𝑅𝐴 + 𝑅𝐵 − 𝑑)2[𝑑2 + 2𝑑(𝑅𝐴 + 𝑅𝐵)

𝑁𝑐𝑁𝑝

− 3(𝑅𝐴 − 𝑅𝐵)2]) 

[4.71] 

 𝑑 = √∑(𝑥𝑖
𝐴 − 𝑥𝑖

𝐵)2
𝑖=3

𝑖=1

 [4.72] 
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 𝑉𝑏−𝑤
𝑇 =∑∑

𝜋(𝐷𝑡𝑜𝑡𝑎𝑙
𝑛 )2

3
(3𝑅𝑏 − 𝐷𝑡𝑜𝑡𝑎𝑙

𝑛 )

𝑁𝑐𝑁𝑝

 [4.73] 

 𝐷𝑡𝑜𝑡𝑎𝑙
𝑛 = 𝑅𝑏 −√∑(𝑥𝑖

𝑐 − 𝑥𝑖
𝑏)2

𝑖=3

𝑖=1

 [4.74] 

The sample’s true porosity 𝑛 is then calculated from: 

 
𝑛 =

𝑉𝑣
𝑉𝑇
=
𝑉𝑇 − 𝑉𝑠
𝑉𝑇

 [4.75] 

   

(a) (b) 

Figure 4.31: Notations used to describe (a) Particle-particle contact (b) Particle-wall contact 

The coefficient of volume compressibility is adjusted following the same procedure described for 

the loose packing case. The particle micro properties are given in Table 4.6, and the basic 

parameters used in analytical 1D consolidation test is shown in Table 4.7: 
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Table 4.6: DEM micro properties used in oedometer test of irregular packing case 

Parameters Values Units 

Sample Height (H)  15 mm 

Sample Length (L)  75 mm 

Sample Width  (W) 75 mm 

Wall Normal Stiffness (Knwall) 1.5 × 106 N/m 

Wall stiffness ratio (Knwall/Kswall) 1  

Particle Normal Stiffness  (Knball) 3 × 105 N/m 

Particle stiffness ratio (Knball/Ksball) 1  

Particle Radius (r) 1.5 mm 

Particle Density (ρ) 2650 kg/m3 

Number of Particles  3879  

Particle Friction Coefficient (μ) 0.5  

Initial Porosity 0.389  

Gravity (g) 9.8 m/s2 

Compressibility of Water (Cw)  4.6 × 10−10 m2/N 
 

Table 4.7: Basic soil and fluid characteristics in analytical 1D consolidation 

Parameters Values Units 

Permeability (k) 1 × 10−10 m/s 

Coefficient of volume compressibility (mv)  0.036636473 m2/MN 

Unit weight of water (ϒw) 9.81 kN/m3 

Coefficient of consolidation (cv) 2.7824 × 10−7 m2/s 

Drainage path (d) 0.015 m 

Distance to open drainage (z) Case depend m 

B value 0.9952  

Initial excess pore pressure (ui) 0.0995 MPa 

 

The DEM calculation procedure follows the same process and same boundary stress (0.1 MPa in 

the z direction) as the loose packing case. During the dissipation process, the DEM calculation is 

divided into 3 layers for pore pressure calculation, see Figure 4.32. The pore pressure of each layer 

is first calculated based on the time from Eq. 4.63. The water particle stiffness is then calculated 

from Eq. 4.46 and applied on each particle until convergence has reached using the iteration 
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algorithm as shown in Figure 4.9: . The iteration for 𝛽 using the bisection method continues until 

convergence is satisfied as defined in Eq. 4.49. 

The excess pore pressure of each layer from the DEM solution is calculated from Eq. 4.26. The 

consolidation settlement of the whole soil layer at any time during the consolidation process is 

calculated by calculating the difference in displacement between the upper and lower wall in the z 

direction. 

 

Figure 4.32: The side view of soil drainage layers for DEM calculation of irregular packing case 

Figure 4.33 compares the excess pore pressure in each layer between the analytical and DEM 

solutions. The comparison of consolidation settlement of whole soil sample with time is shown in 

Figure 4.34. It is observed that the analytical and numerical solutions agree well for both pore 

pressure and displacement changes with time. The accuracy of these simulations reveals the 

capability of this algorithm to capture solid-fluid interactions. 
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(c) 

Figure 4.33: Comparison of excess pore pressure/initial pore pressure of each layer against time 

increment between analytical solution and DEM solution of irregular packing case 

 

Figure 4.34: Comparison of consolidation settlement of whole soil sample against time 

increment between analytical solution and DEM solution of irregular packing case 
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4.4. Conclusion 

In this Chapter, a new method has been presented to model solid-fluid interaction in DEM analysis. 

The pore pressure build-up due to solid deformation is captured using a DEM water element, which 

occupies the same position and has the same deformation as the solid element. The water element 

stiffness (micro) is calculated based on changes in pore space and the compressibility of water 

(macro). Two examples have been presented to demonstrate the approach and check the accuracy 

of the algorithm. The comparison between the numerical and analytical results shows that this 

continuum-discrete model can accurately capture the deformation of water saturated densely 

packed particles. During the dissipation process, pore pressure changes is simulated by reducing 

the water particle stiffness calculated from pore volume reduction. The bisection method is used 

to calculate the correct water particle stiffness for a specified pore pressure in each particle. 

Analytical solutions based on traditional soil mechanic theory for the oedometer test is used to 

validate the proposed algorithm. Comparison between numerical and analytical results show that 

the DEM model not only can replicate saturated loosely packed particles deformation but also can 

capture densely packed particle deformation accurately.  
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Chapter 5. Simulations of Consolidated Undrained Triaxial Test 

5.1. Introduction and Background 

The undrained condition of saturated sand has been studied widespread since the original work 

from Bishop and Eldin (1950, 1953). Laboratory consolidated undrained tests have been 

performed by past researchers to study the volume change (Newland and Alley, 1959), void ratio 

change (Been and Jefferies, 1985), and stress path (Vaid et al., 1990; Vaid et al., 1996). Although 

lots of data have been collected, the undrained behavior of granular material with pore fluid has 

not been modelled using a discrete approach.  

The traditional numerical analysis using continuum model may not sufficiently explain the 

undrained behavior of sand because the assumption of continuum model is constitutive for the 

sample’s macroscopic behavior and such assumption is unable to provide information at the grain 

scale (Gong et al., 2012). Such disadvantage can be overcome by introducing the discrete element 

method (DEM). The DEM simulation of the undrained behavior of loose soil was carried out by 

Thornton and Barnes (1986), Kishino (1990), Ng and Dobry (1994), Sitharam et al. (2002), Zhang 

(2003), and Gong (2008) by imposing the constant volume condition in undrained deformation. 

However, most published DEM research in geomechanics consider dry granular materials at the 

microscale, which means even simulation of the undrained test is performed in a vacuum without 

fluid. In principle, the model of fluid phase and how the fluid and particle interact with each other 

is necessary.  

The accumulation of excess pore water pressure is caused by soil deformation due to the changes 

in the mechanical boundary conditions. Excess pore water pressure can lead to the loss of shear 
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strength and particles contacts resulting in plastic deformations. Therefore, the existence of excess 

pore pressure during undrained condition cannot be ignored in DEM simulation. 

Hakuno and Tarumi (1988) developed a method to model liquefaction based on detecting all the 

pores among particles and connecting them by pipes. The pore water pressure was calculated by 

assuming water had constant volume elasticity and the water pressure was proportional to the pore 

volume. Fluid flow between each pore space and its adjacent pores was calculated based on 

Darcy’s law. This method resulted in a complicated calculation procedure and required subsequent 

manipulation. Nakase et al. (1999) improved Hakuno and Tarumi’s method by implementing 

square-cell element each containing 15 particles. The pore pressure generation in each cell 

corresponded to particle movement in the neighboring cells and was proportional to the decrease 

of pore volume. The fluid force applied on the particle was depended on the pore pressure gradient 

between neighbor cells. Mori et al. (2001) studied the liquefaction analysis of River Dike using a 

two-dimensional discrete element model. In their study, the excess pore water pressure was 

considered to estimate large permanent displacement due to liquefaction at the microscope level. 

The accumulative excess pore water pressure caused by the combination of shear force and the 

effective normal force was equal to the initial effective normal force. The excess pore water 

pressure caused by the shear force was related to the dissipative energy and stored elastic energy 

of the model. Bonilla (2004) performed a DEM undrained simulation with fluid coupling by using 

two-dimensional assemblies of elliptical particles. The pore volume was identified by constructing 

a polygon around the specified pore surrounded by particles. The volumetric pore changed 

experienced due to particle rearrangement under external forces is then calculated from volume 

change of the polygon. The pore pressure change was then calculated from pore volume change. 

The fluid flow path was constructed by flow network which joining the center of polygons. The 
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pore pressure force on particles is applied by integration method of pore pressure difference on the 

adjacent center of polygons. Bonilla observed the temporary liquefaction in DEM simulations. 

From Bonilla’s recommendations, the computational efficiency of such method is still need to be 

improved. 

In this Chapter, a new idea is proposed to incorporate excess pore water pressure calculation in 

DEM simulation by introducing a new water particle element which has a specific stiffness that 

enables the calculation of excess pore pressure due to pore space deformation. The numerical 

simulation of three-dimensional (3D) DEM of undrained compression test on the sand sample with 

different porosity at the end of consolidation is then carried out. In the following section, brief 

details of the simulation are given, and DEM results are presented in the following section, and 

the main conclusions are summarized in the final section. 

5.2. Formulation of Model 

In DEM analysis of sample under undrained compression case, a DEM water element is introduced 

here which occupies the same position and has the same deformation as the solid element; the total 

stress is divided into two parts: effective stress and pore pressure. The details of the formulation 

of the model are shown in Chapter Solid Deformation Pressure Coupling. 

5.3. Model Application 

5.3.1. Calibration of the micromechanical parameters 

In the DEM models, the micro-properties cannot be determined by direct measurements of the 

macro responses on the laboratory specimens. The set of DEM input parameters required to capture 

the macro-scale response of the sample was selected using the existing knowledge in the literature 
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and methodological trial and error to match the DEM response with the laboratory measurements. 

The calibration was validated against a series of triaxial tests performed on Syncrude sand.  

In the current simulation, a uniform particle size distribution with maximum to minimum particle 

radius ratio of 15 is chosen, which approximately captures the particle size distribution of Syncrude 

sand, shown in Figure 5.1. 

 

Figure 5.1: Comparison between the actual Syncrude sand and DEM specimen particle size 

distribution. 

In the laboratory test, the specimen for the triaxial test is cylindrical with dimensions of 60 mm 

diameter and 120 mm height. However, too many particles will be generated in such size of the 

sample and make the computation speed too slow. The final DEM sample size is set as 1/20 of the 

original one in order to increase the calculation speed. The DEM particles were generated 

randomly in a cylinder of 1.5 mm radius and 6 mm height bounded by rigid walls. To ensure initial 

tight packing, the radial expansion method is used in particle generation. A population of particles 
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with artificially small radii is created within the specified volume. The particles are then expanded 

with zero friction until the desired porosity is obtained (Itasca, 2008). The particle assembles 

during initial generation stage is shown in Figure 5.2.  

   

Figure 5.2: Triaxial test specimen at initial particle generation stage 

The next step is to perform consolidation by compacting the particle using the servo control 

method in order to reach the designed compression stress in radial and vertical direction and 

specified porosity at the end of consolidation. For the densest sample, a gravity of 9.8 m/s2 is first 

applied to all particles in the minus z-direction; then a shaking process is carried out by moving 

the cylindrical wall in the horizontal x-direction back and forth until the large voids are filled with 

small particles. The shaking process is done by setting a shake velocity to the cylindrical wall in 

the x direction. Meanwhile, both top and bottom wall are maintained steady during the shaking 

process.  

To obtain the loosest sample, particle rotations were restricted in x, y and z directions before the 

consolidation compression stage. This is because the assembly behaves stiffer and more resistant 

to compression without particle rotation (Gong, 2008). The shaking process is not applied before 

the consolidation compression stage. In this way, a very loose sample can be prepared. For other 
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medium loose samples, the shaking velocity is adjusted to obtain a sample with the required 

porosity. Figure 5.3 shows that the DEM calculated porosity using measurement spheres at the end 

of the consolidation stage behaves with shaking velocity during shaking stage where porosity at 

particle generation stage is controlled as 0.67 by radial expansion method. It is observed that the 

porosity at the end of consolidation will drop and become steady with the increase of the shaking 

velocity. The maximum shaking velocity is then chosen as 30 m/s based on the results of Figure 

5.3. However, the porosity ranges from 0.395 to 0.418 in this case. In order to prepare different 

samples with porosity in a larger range and compare to laboratory results, the initial porosity during 

particle generation was varied, by coupling different shaking velocity, to give a range of values 

from 0.34 to 0.425. The EDM calculated porosity at the end of the consolidation stage is shown in 

Figure 5.4. 

 

Figure 5.3: DEM measured porosity at the end of consolidation stage behaves with shaking 

velocity during shaking stage, initial porosity at particle generation is 0.67. 
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Figure 5.4: DEM measure porosity at the end of consolidation stage behaves with DEM porosity 

at the initial particle generation stage under different shaking conditions. 

From the laboratory test results (Vaid et al. 1996), there are two sets of triaxial drained test with 

different porosity at the end of consolidation, which is shown in Table 5.1. The calibration method 

is mainly based on findings from Potyond and Cundall (2004): (1) The macro Young’s modulus 

of the specimen is mainly governed by the particle Young’s modulus. (2) The Poisson's ratio the 

sample is influenced by the packing geometry and ratio of shear to normal contact stiffness. (3) 

The particle friction coefficient mainly governs the peak and post-peak behavior. 

Table 5.1: Laboratory triaxial drained test data (from Vaid et al. 1996) 

Specimen Number FS1 C9B 1 FS5 C13 1 

Initial void ratio ei 0.759 0.817 

B value % 100 100 

Void ratio after thawing under σ'=20kPa e20 0.702 0.752 

Vertical consolidation stress σvc (kPa) 540 540 

Radial consolidation stress σhc (kPa) 270 270 

Void ratio at the end of consolidation ec  0.684 0.730 

Contraction/Dilation (C/D) D D 

 

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75

D
EM

 m
ea

su
re

d
 p

o
ro

si
ty

 a
t 

th
e 

en
d

 o
f 

co
n

so
lid

at
io

n
 

DEM Prosity at the initial particle generation stage

No Shaking

Maximum Shaking Velocity



144 

 

The DEM triaxial test was performed in two stages: anisotropic consolidation and deviatoric 

loading. The anisotropic confining pressure was applied at all boundaries using a servo control 

algorithm in order to match laboratory consolidation conditions. Then the top platen was moved 

downward at a velocity of 0.01 m/s to keep the quasi-static condition while the base platen 

remained stationary. The radius of the cylindrical wall in the DEM model could be increased or 

decreased using a servo control system to maintain a constant lateral confining pressure. During 

the loading process, stresses were calculated by using the contact force between particle and wall 

and area of wall face. Strains were calculated by using the top wall position. The DEM simulation 

was stopped when the axial strain reached the designed value. 

The calibration of the DEM model parameters was based on trial and error and comparison of 

laboratory and simulated triaxial drained tests. The final set of DEM micro-parameters found to 

capture the overall behavior of Syncrude sand is summarized in Table 5.2. Figure 5.5 and Figure 

5.6 compares the macro responses of the 3D DEM model under same confining stress but different 

porosity at the end of consolidation, with the corresponding laboratory results. The 3D DEM model 

for Syncrude sand reasonably captures the initial elastic response, the peak stress and part of the 

post-peak behavior observed in physical laboratory test results. 
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Table 5.2: Syncrude sand micro properties, calibrated from laboratory triaxial drained test 

Parameters Values Units 

Wall Normal Stiffness (Knwall) 0.1 × 𝐾𝑛𝑏𝑎𝑙𝑙(𝑎𝑣𝑔) N/m 

Wall stiffness ratio (Knwall/Kswall) 1  

Particle Young’s modulus  (Ec) 5.5 × 107 Pa 

Particle stiffness ratio (Knball/Ksball) 1  

Particle Friction Coefficient (μ) 0.3  

Particle Maximum Radius (rmax) 0.15 mm 

Particle Minimum Radius (rmin) 0.01 mm 

Particle Density (ρ) 2650 kg/m3 

Porosity at end of consolidation (n) Case Depend  

Gravity (g) 9.8 m/s2 

 

 
Figure 5.5: Comparison of deviatoric stress versus axial strain between triaxial drained data and 

numerical simulation, the DEM simulation is based on different porosity measured at the end of 

consolidation stage.  
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Figure 5.6: Comparison of volumetric strain versus axial strain between triaxial drained data and 

numerical simulation, the DEM simulation is based on different porosity measured at the end of 

consolidation stage.  

 

5.3.2. Simulation of Undrained Test 

5.3.2.1. Model Geometry and simulation procedure 

Vaid et al. (1996) performed several sets of consolidated undrained triaxial test on Syncrude sand 

based on different porosity and confining pressure at the end of consolidation. The laboratory 

deviatoric stress – axial strain response behaved as strain hardening. The excess pore pressure at 

the beginning of the test increases with the increase of axial strain. However, after the phase 

transformation (PT) point, defined by Ishihara et al. (1975), the excess pore pressure decreases and 

becomes negative, changing from contractive to dilative behavior. All the laboratory results show 

a dense sand behavior. 
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One set of the laboratory triaxial undrained test is chosen based on similarity of test condition and 

the void ratio at the end of consolidation to give a numerical explanation. The laboratory detail is 

concluded in Table 5.3.  

Table 5.3: Laboratory triaxial undrained test data (from Vaid et al. 1996) 

Specimen Number S6-2 

Initial void ratio ei 0.703 

Void ratio after thawing under σ'=20kPa e20 0.714 

Vertical consolidation stress σvc (kPa) 400 

Radial consolidation stress σhc (kPa) 400 

Void ratio at the end of consolidation ec  0.697 

Contraction/Dilation (C/D) D 

 

The DEM particle generation and preparation until the end of the consolidation stage are the same 

as described in the calibration section. The DEM material micro properties are the same as in 

drained test, from Table 5.2. The DEM porosity of the sample at the end of consolidation is 

calibrated from triaxial drained laboratory results using linear interpolation method between 

laboratory and DEM porosity at the end of consolidation, shown in Figure 5.7 below: 
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Figure 5.7: Linear correlation between laboratory void ratio and DEM porosity at the end of 

consolidation stage 

Based on the laboratory undrained void ratio of 0.697 in Table 5.3, the DEM porosity at the end 

of consolidation stage is then calculated as 0.352. 

Two measurement spheres are then inserted into the center of upper and lower part of the sample 

before the start of the undrained test, shown in Figure 5.8. The porosity change of the sample is 

calculated by the average readings from two measurement spheres. Adaptive measurement sphere 

is used during the whole calculation process, which means that the center and radius of 

measurement sphere is varied based on the sample’s height and radius during each of iteration. 
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Figure 5.8: Discrete element model of the triaxial undrained compression example and 

measurement sphere locations. 

The DEM pore pressure coupling triaxial undrained test use the axial strain controlled method 

instead of deviatoric stress controlled method. A continuous total axial strain increment from 0% 

to 12% on the sample is applied by applying a velocity of a velocity of 0.01 m/s on top confining 

wall in steps (by following laboratory observation). An axial strain of 0.05% is first applied on the 

sample with the solid particle only since the water particle stiffness is calculated from the pore 

pressure buildup due to porosity change. The calculated water particle stiffness is then applied 

back to the original sample with 0% axial strain. Then both solid and water particles are activated, 

and both particles experienced an axial strain increment of 0.05%. The water particle stiffness in 

the next axial strain increment, from 0.05% to 0.1%, will be adjusted based on the pore pressure 

increase difference of the current load increment. 

The DEM calculation algorithm is shown in Figure 5.9. The calculation stage follows the 

numerical order starts from stage 1, when calculation goes to stage 9, it starts the iteration back 

from stage 5 until the axial strain reaches the designed value. 
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Figure 5.9: The calculation algorithm of DEM coupled with pore pressure generation in 

consolidated triaxial undrained test 

During the iteration process, for each individual particle 𝑚, average pore pressure 𝑢(𝑚)̅̅ ̅̅ ̅̅  carried by 

water stiffness, is calculated as: 

 𝑢(𝑚)̅̅ ̅̅ ̅̅ =
1

3
(∑ 𝑢(𝑚)𝑖𝑖

𝑖=3

𝑖=1
) [5.1] 

 𝑢(𝑚)𝑖𝑖 =
1 − 𝑛𝑎𝑣𝑔

𝑉𝑚
(𝑝)

[∑(𝑥𝑖
(𝑐)
− 𝑥𝑖

(𝑝)
)𝐾𝑤(𝑐)𝜂𝐷𝑖

𝑛

𝑁𝑐

] [5.2] 
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where 𝑉𝑚
(𝑝)

 is the volume of individual particle, 𝐾𝑤(𝑐) is the water stiffness at a contact between 

two particles, 𝑁𝑐 is the number of contact around particle 𝑚, 𝑥𝑖
(𝑝)

 is the location of the centroid of 

particle 𝑚, 𝑥𝑖
(𝑐)

 is the location of the contact around that particle, index 𝑖 and with range set 𝑖 ∈

{1,2,3} defines the calculation in x, y, and z direction, and 𝑛𝑎𝑣𝑔 is the average porosity of the 

whole sample. The Equation 5.1 ensure pore pressure of a particular particle 𝑚 is the same in all 

x, y and z direction. 

The effective stress, carried by solid particles, cannot be calculated directly from solid stiffness 

and contact intersections because the contact intersection is different in x, y, and z-direction. 

However, the calculation of pore pressure assumes the contact intersection is the same in x, y, and 

z-direction by using average method. In order to maintain system equilibrium, the effective stress 

in three principle direction is calculated individually from pore pressure and total stress carried 

combined stiffness 𝐾𝑇: 

 

𝜎′(𝑚)𝑖𝑖 =
1 − 𝑛𝑎𝑣𝑔

𝑉𝑚
(𝑝)

[∑(𝑥𝑖
𝑐 − 𝑥𝑖

𝑝)𝐾𝑐𝜂𝐷𝑖
𝑛

𝑁𝑐

] − 𝑢(𝑚)̅̅ ̅̅ ̅̅  [5.3] 

 𝐾𝑇 = 𝐾𝑠(𝑐) + 𝐾𝑤(𝑐)  [5.4] 

where 𝐾𝑠(𝑐) is the combined solid stiffness at a contact. 

The average pore pressure and effective stress on three principle direction x, y, and z of the whole 

sample is then averaged by total number of particles: 

 
𝑢̅ =

∑ 𝑢(𝑚)̅̅ ̅̅ ̅̅𝑁𝑝

𝑁𝑝
 [5.5] 
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𝜎′𝑖𝑖̅̅ ̅̅ =

∑ 𝜎′(𝑚)𝑖𝑖𝑁𝑝

𝑁𝑝
 [5.6] 

The deviatoric stress recorded is then calculated from effective stress in z and r direction: 

 𝜎′𝑑𝑒𝑣 = 𝜎′𝑧̅̅ ̅̅ − 𝜎′𝑟̅̅ ̅̅  [5.8] 

 
𝜎′𝑟 =

𝜎′𝑥̅̅ ̅̅ + 𝜎′𝑦̅̅ ̅̅

2
 

[5.9] 

where 𝜎′𝑥̅̅ ̅̅ , 𝜎′𝑦̅̅ ̅̅ , and 𝜎′𝑧̅̅ ̅̅ , are effective stress of the whole sample in x, y, and z direction, calculated 

from Equation 5.6. 

5.3.2.2. Results and Discussion 

The effective of compressibility of water (in a unit of m2/N) is first studied by a serious of 

sensitivity analysis. The results of sensitivity study are shown in Figure 5.10. It is observed that 

the sample’s peak strength and modulus before peak stage are not influenced by the 

compressibility of water (Figure 5.10 a). However, from Figure 5.10 b, the peak generated pore 

pressure increase with the decrease of the compressibility of water. The pore pressure after peak 

stage will drop more flatten with the higher compressibility of water. The compressibility of water 

is then chosen as 3.0e-07 m2/N in order to match the laboratory maximum pore pressure. 
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(a) 

 

(b) 

Figure 5.10: Sensitivity study of compressibility of water in (a) Deviatoric stress – axial strain 

response; and (b) Pore pressure – axial strain response. 

The number of DEM steps during each iteration are varied to investigate the effect on the pore 

pressure generation behavior.  Figure 5.11(a) shows the deviatoric stress to axial strain response 
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the sample is not influenced by the number of DEM steps. However, the sample with 1000 DEM 

steps behaves a little bit strain softening after the peak stage. From Figure 5.11(b), pore pressure 

after peak will drop more rapidly with smaller DEM steps case (1000 DEM steps). The tangential 

line to the post peak pore pressure curve is observed less change with the increase of the number 

of DEM steps. 

On the other hand, larger DEM steps result in a larger void ratio change, which will lead unsteady 

calculation of water particle stiffness. Therefore, 2000 DEM steps are chosen for each iteration in 

all subsequent analyses. 
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(b) 

Figure 5.11: Effect of DEM steps used in each iteration on (a) Deviatoric stress – axial strain 

response; and (b) Pore pressure – axial strain response. 

The comparison between DEM and laboratory results is shown in Figure 5.12. It is observed that 

DEM calculation is able to capture the peak strength and pore pressure trend. The DEM measured 

porosity of the whole sample shows a first decrease then increase after the PT point, which 

indicates the sample is changing from contractive to dilative behavior. The total volumetric strain 

of sample is observed a 0.1% change, which is consistent with laboratory results and numerical 

results from past research using constant volume method (Gong, 2008).  
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(e) 

Figure 5.12: Comparison of DEM and laboratory results (a) Deviatoric stress – axial strain 

response; (b) Pore pressure – axial strain response; (c) Total averaged stress – axial strain 

response; (d) Numerical results of volumetric strain of the whole sample respected to axial strain; 

(e) Numerical results of porosity of the whole sample respected to axial strain. 

When pore pressure goes to a negative value, it is observed that the laboratory deviatoric stress – 

axial strain response is a strain hardening, followed by a little bit strain softening. The 

corresponding pore pressure reaches the steady state and not change with the increase of axial 

strain. This might be due to the irregularity of particle shape. However, sphere particle is used in 

DEM simulation, which can not 100% capture the laboratory response. 

The main disagreement between laboratory and DEM results are pore pressure to axial strain 

response. The DEM calculated pore pressure continue to decrease without reaching any steady 
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sample of irregular packing particles. In this case, the water particle stiffness needs to be 

determined using an iterative scheme before used in pore pressure calculation. 

The DEM volumetric strain, although calculated small, still exist when compared with constant 

volume method. Since there are no constraints on volume change in the water element formulation, 

further research is needed to refine water element to reach a zero volumetric strain. 

5.4. Conclusion 

In this Chapter, the new method has been presented to model solid-fluid interaction in DEM 

analysis. The pore pressure build-up due to solid deformation is captured using a DEM water 

element, which occupies the same position and has the same deformation as the solid element. The 

water element stiffness (micro) is calculated based on changes in pore space and the 

compressibility of water (macro). The method is then applied to the 3D DEM numerical simulation 

of consolidated triaxial undrained compression test on Syncrude sand sample. The micro-

properties of sand particles is first calibrated against laboratory consolidated triaxial drained 

compression test.  

Comparison between numerical and laboratory undrained results show that the DEM model is able 

to capture stress path, pore pressure change, and volume change in a laboratory test. 
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Chapter 6. Conclusions and Recommendations 

This thesis has presented the development of a new numerical technique that couples DEM with 

continuum fluid using two coupling methods: solid permeability fluid coupling (SPF) and solid 

deformation pore pressure coupling (SDP). The two coupling methods are applied in sand 

production and consolidated triaxial undrained problems. This chapter summarizes the key point 

that can be concluded from this research. 

6.1. Summary of the main conclusions for the whole thesis 

A sand production model has been presented by SPF coupling method to couple DEM and fluid 

flow model. The model has been verified with analytical solutions and applied to examine sanding 

process in synthetic sanding tests. The model accounts for permeability and porosity changes due 

to solid deformation and sand production.  

From the numerical results of sanding test on block sample under different far field stress, a 

circular breakout was found for the case of isotropic boundary stress with σH = σh = 60 MPa. The 

breakout morphology changes to V-shaped breakout with unequal boundary stresses when σH=60 

MPa and σh = 30 MPa. Larger sanding occurs with unequal boundary stresses when σH = 60 MPa 

and σh = 30 MPa, compared to the case with isotropic boundary stress with σH = σh = 60 MPa. 

Sand production occurs from degraded zones where most bond failures have occurred. Sand 

production from V-shaped breakout changes the wellbore shape from circle to ellipse. 

From the results of step-rate sanding test on block sample, the boundary stress plays a major role 

in sand production through sandstone degradation. However, less sanding occurs at higher 

boundary effective stress but considerably lower boundary pressure due to the ineffective removal 

of the degraded materials for weaker seepage forces. For high boundary pressure, seepage force 
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plays a major role in the sand production as it removes degraded materials, results in stress 

redistribution which can then contribute to further degradation and sanding. More sand production 

occurs at lower far-field stress (in this case, 58 MPa) but higher boundary pressure (in this case, 

20 MPa). 

A new method has been presented to model solid-fluid interaction in DEM analysis by using SDP 

coupling. The pore pressure build-up due to solid deformation is captured using a DEM water 

element, which occupies the same position and has the same deformation as the solid element. The 

water element stiffness (micro) is calculated based on changes in pore space and the 

compressibility of water (macro). Two examples have been presented to demonstrate the approach 

and check the accuracy of the algorithm. The comparison between the numerical and analytical 

results shows that this continuum-discrete model can accurately capture the deformation of water 

saturated densely packed particles. During the dissipation process, pore pressure changes are 

simulated by reducing the water particle stiffness calculated from pore volume reduction. The 

bisection method is used to calculate the correct water particle stiffness for a specified pore 

pressure in each particle. Analytical solutions based on traditional soil mechanic theory for the 

oedometer test is used to validate the proposed algorithm. Comparison between numerical and 

analytical results show that the DEM model not only can replicate saturated loosely packed 

particles deformation but also can capture densely packed particle deformation accurately.  

6.2. Applicability of model and future work 

The following comments provide some recommendations for future research and the applicability 

of the developments presented in in this dissertation. 

 The use of discontinuum mechanics in the simulation of sanding poses a serious deficiency as 

the application of particle method to large scale problems is currently difficult. For instance, 
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a 2D 1 m2 geometry with 0.1 mm diameter disk-shaped even-sized particles will generate 100 

million particles. The restrictions of DEM in the simulation of large-scale problems can be 

reduced by blending the continuum and DEM models. In the hybrid approach, the DEM zone 

will be limited to the small zone around the well where rock degradation occurs. Farther away, 

deformation is expected to be elastic or in the hardening mode for which a continuum model 

is adequate.  

 The main factors which control the strength of sandstone are particle friction, particle 

interlocking between grains and the cement content. However, if bonding/cementation 

between grains is removed, particle friction and interlocking between grains are the main 

factors keeping the material intact. The effect of grain size on the formation of shear bands 

and sand production requires further studies. In this case, samples with different grain size 

distributions are studied by conducting hollow cylinder test. The samples with different grain 

size distributions need to calibrate to the same uniaxial compressive strength to avoid a 

possible effect of rock strength on sand production. The amount of produced sand can be 

calculated for the same confining stress but different particle sizes (fine and course grain). 

 The mesh in SPF coupling of sanding model is fixed during the whole calculation process, 

which is able to capture uniform and V-shape breakout and sand production. However, 

fracture-like breakout and subsequent sand production could not be captured by current mesh. 

The mesh size along fracture-like breakout should be the same as the width of fracture. The 

adaptive mesh is needed in future DEM sand production simulation using SPF coupling 

method.   

 The high pore fluid pressure exists in finer-grained slurries behind a debris flow snout, owing 

to their low permeability and great compressibility, and produce low pore-pressure diffusivity. 
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The integration of SDP and SDP coupling method could be further expanded to study the 

mechanical behavior of debris flow. 
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Appendix A: The Finite Difference Approximation to Fluid flow 

Equations 

The finite-difference method is implemented by superimposing a finite-difference grid over the 

reservoir to be modelled. The chosen grid system is then used to approximate the spatial derivatives 

in the continuous equations. These approximations are obtained by truncating the Taylor series 

expansion of the unknown variables (pressure for single-phase-flow problems) in the equations. A 

similar procedure is used in the time domain. 

From Equation 3.10., the equation contain a second derivative of pressure with respect to space 

and a first derivative of pressure with respect of time. The second derivative in the flow equations 

generally approximated by the central-difference approximation because of the higher-order nature 

of the approximation. The first derivative is generally approximated by the forward-difference 

approximation. These choices are dictated by the stability of the final system of equations.  

Combine Equation 3.7. and Equation 3.8., by considering only in radial direction, the partial-

differential equation for single-phase flow through rack in r direction is expressed as follows: 

 
−
𝜕

𝜕𝑟
(−

𝑘

𝜇

𝜕𝑃

𝜕𝑟
𝜌) =

𝜕

𝜕𝑡
(𝜙𝜌) = 𝜌

𝜕𝜙

𝜕𝑡
+ 𝜙

𝜕𝜌

𝜕𝑡
 [A.1] 

where 𝑘 is the rock permeability, 𝜇 is the fluid viscosity, 𝜙 is the porosity of rock, 𝜌 is the density 

of fluid, and 𝑡 is time. Assume 𝜌 and 𝜇 are constants, with the combination of compressibility of 

fluid from Equation 3.9., Equation A.1 reduce to 

 1

𝜇

𝜕

𝜕𝑟
(𝑘
𝜕𝑃

𝜕𝑟
) =

𝜕𝜙

𝜕𝑡
+ 𝜙𝐶𝑓

𝜕𝑃

𝜕𝑡
 [A.2] 
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𝜕𝑘

𝜕𝑟

𝜕𝑃

𝜕𝑟
+ 𝑘

𝜕2𝑃

𝜕𝑟2
= 𝜇

𝜕𝜙

𝜕𝑡
+ 𝜇𝜙𝐶𝑓

𝜕𝑝

𝜕𝑡
 

where 
𝜕𝜙

𝜕𝑡
 is updated by DEM calculation. The finite difference approximation of the spatial and 

time derivative from Equation A.2 are shown as follows: 

 𝜕𝑘

𝜕𝑟
=
𝑘𝑖+1 − 𝑘𝑖

∆𝑟
 

𝜕𝑃

𝜕𝑟
=
𝑃𝑖+1
𝑛+1 − 𝑃𝑖

𝑛+1

∆𝑟
 

𝜕2𝑃

𝜕𝑟2
=
𝑃𝑖+1
𝑛+1 − 2𝑃𝑖

𝑛+1 − 𝑃𝑖−1
𝑛+1

∆𝑟2
 

𝜕𝑃

𝜕𝑡
=
𝑃𝑖
𝑛+1 − 𝑃𝑖

𝑛

∆𝑡
 

[A.3] 

where 𝑖 represent position of grid point, 𝑡 present time step of calculation, and ∆𝑟 is the distance 

between two grid point, and ∆𝑡 present each time increment. 

In finite difference equations, the term 𝑃𝑛 presents the pressure values of the grid point at the 

known time level. The stepwise procedure for advancing the simulation in times begins by 

assigning known pressure values to the 𝑛  time level in the finite difference equations. The 

equations can then be solved for the unknown pressure, 𝑃𝑛+1. Once determined, the values of 

𝑃𝑛+1 are used as the known pressure for the next time step. The specified pressure boundary 

condition 𝑃 = 𝑃𝑖 and 𝑃 = 𝑃𝑜, from Error! Reference source not found. are used for inner and 

outer boundaries along radial direction of reservoir. Substituting Equations A.3 into Equations A.2 

results in 
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(
𝑘𝑖+1
∆𝑟2

)𝑃𝑖+1
𝑛+1 − (

𝑘𝑖+1 + 𝑘𝑖
∆𝑟2

+
𝜇𝜙𝐶𝑓

∆𝑡
)𝑃𝑖

𝑛+1 + (
𝑘𝑖
∆𝑟2

)𝑃𝑖−1
𝑛+1 = 𝜇

𝜕𝜙

𝜕𝑡
−
𝜇𝜙𝐶𝑓

∆𝑡
𝑃𝑖
𝑛 

𝐴𝑃𝑖+1
𝑛+1 + 𝐵𝑃𝑖

𝑛+1 + 𝐶𝑃𝑖−1
𝑛+1 = 𝐷𝑃𝑖

𝑛 

[A.4] 

From above equation we find that three unknowns in the time step of 𝑛 + 1, which will be solved 

by one unknown on the time step of 𝑛. Consequently, we must solve Equation A.4 written for all 

grid blocks and unknowns simultaneously. By applying above equation to all grid point along 

radial direction, the pressure in next time increment will be solved by the solution of linear matrix 

equations. The same method can be applied in tangential and vertical direction of the model, the 

no flow boundary condition is applied in top and bottom platens with 
𝜕𝑃

𝜕𝑧
= 0. 

 

 

 

 

 

 


