ERA

Download the full-sized PDF of Antivirals Acting on Viral Envelopes with a Biophysical Mechanism of ActionDownload the full-sized PDF

Analytics

Share

Permanent link (DOI): https://doi.org/10.7939/R3SJ1B527

Download

Export to: EndNote  |  Zotero  |  Mendeley

Communities

This file is in the following communities:

Graduate Studies and Research, Faculty of

Collections

This file is in the following collections:

Theses and Dissertations

Antivirals Acting on Viral Envelopes with a Biophysical Mechanism of Action Open Access

Descriptions

Other title
Subject/Keyword
biophysical mechanism
RAFIs
HSV
viral entry
structure activity relationship
fusion inhibitors
antiviral
Type of item
Thesis
Degree grantor
University of Alberta
Author or creator
Speerstra, Sietske
Supervisor and department
Schang, Luis M. (Biochemistry)
Examining committee member and department
Shmulevitz, Maya (Medical Microbiology and Immunology)
Touret, Nicolas (Biochemistry)
Weinfeld, Michael (Oncology)
Department
Department of Biochemistry
Specialization

Date accepted
2017-09-29T11:39:19Z
Graduation date
2017-11:Fall 2017
Degree
Master of Science
Degree level
Master's
Abstract
Most antivirals target viral proteins and are specific for only one virus, or even one viral genotype. Whereas viral proteins are encoded in the plastic viral genome, virion lipids are not and their rearrangements during fusion of the virion envelope to cellular membranes are conserved among otherwise unrelated enveloped viruses. Antivirals that inhibit these lipid rearrangements could thus pose a high barrier to resistance and have broad-spectrum activities. Fusion occurs through a hemifusion stalk in which only the outer leaflets are fused, bent with their polar heads forming a smaller radius than their hydrophobic tails (negative curvature). Outer leaflets enriched in phospholipids with head groups of larger cross sections than their lipid tails (“inverted cone”) disfavor this negative curvature, inhibiting fusion. The rigid amphipathic fusion inhibitors (RAFIs) are synthetic compounds of inverted cone molecular geometry. They inhibit the infectivity of otherwise unrelated enveloped viruses. The leading RAFI aUY11 has an ethynyl-perylene hydrophobic and an uracil-arabinose polar moiety. aUY11 intercalates in viral envelopes to directly inhibit virion-to-cell fusion. Previous studies showed that amphipathicity, rigidity, and inverted cone molecular geometry are required. My hypothesis is that the inverted cone molecular geometry of the RAFIs increases the energy barrier for the hemifusion stalk, inhibiting fusion. Then, chemically distinct compounds with similar amphipathicity, rigidity, and inverted cone shape would have similar antiviral potencies, regardless of specific chemical groups. Alternatively, the perylene group exposed to visible light may induce viral lipid peroxidation. Then, the perylene group and absorbance at visible spectrum would be required. I evaluated the activities of twenty-five chemically distinct RAFIs with similar amphipathicity, rigidity, and inverted cone shape. The perylene moiety and absorption at visible spectrum were not required, but a minimum length of the hydrophobic moiety of 10.3 Å was. The arabino moiety could be modified or replaced by other groups. Cytidine replacement for uracil was not tolerated, indicating the O8 carbonyl group is required. Bilayer intercalation was required but not sufficient. The vast majority of RAFIs had no overt cytotoxicity (CC50 > 20 μM; TI > 250−1200). Carbonyl or butylamide substitutions for arabino or cytidine replacement for uracil, increased cytotoxicity. Cytotoxicity was mainly determined by the polar moiety and there was no correlation between antiviral and cytostatic activities. The definition of the effects of shape and chemical groups on the activity of the RAFIs opens the possibility for rational design of lipid-acting antivirals active against a broad spectrum of enveloped viruses.
Language
English
DOI
doi:10.7939/R3SJ1B527
Rights
This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for the purpose of private, scholarly or scientific research. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
Citation for previous publication

File Details

Date Uploaded
Date Modified
2017-09-29T17:39:20.135+00:00
Audit Status
Audits have not yet been run on this file.
Characterization
File format: pdf (Portable Document Format)
Mime type: application/pdf
File size: 25021651
Last modified: 2017:11:08 17:57:44-07:00
Filename: Speerstra_Sietske_201709_MSc.pdf
Original checksum: 2d91126030f0dc9a50c1a9265cdf7fac
Well formed: true
Valid: true
File title: Abstract
File author: Sietske Speerstra
Page count: 131
Activity of users you follow
User Activity Date