ERA

Download the full-sized PDF of Development of An Augmented Free-Water Three-Phase Rachford-Rice Algorithm for CO2/Hydrocarbons/Water MixturesDownload the full-sized PDF

Analytics

Share

Permanent link (DOI): https://doi.org/10.7939/R3JW87213

Download

Export to: EndNote  |  Zotero  |  Mendeley

Communities

This file is in the following communities:

Graduate Studies and Research, Faculty of

Collections

This file is in the following collections:

Theses and Dissertations

Development of An Augmented Free-Water Three-Phase Rachford-Rice Algorithm for CO2/Hydrocarbons/Water Mixtures Open Access

Descriptions

Other title
Subject/Keyword
Negative flash
Augmented free-water method
Three-phase equilibrium
Type of item
Thesis
Degree grantor
University of Alberta
Author or creator
Pang,Wanying
Supervisor and department
Li, Huazhou (Petroleum Engineering)
Examining committee member and department
Jin, Zhehui (Petroleum Engineering)
Maeda, Nobuo (Petroleum Engineering)
Department
Department of Civil and Environmental Engineering
Specialization
Petroleum Engineering
Date accepted
2017-09-20T13:29:27Z
Graduation date
2017-11:Fall 2017
Degree
Master of Science
Degree level
Master's
Abstract
In this work, we develop a robust and efficient algorithm to perform three-phase flash calculations for CO2/water/hydrocarbons mixtures on the basis of the assumption that only CO2 and water are considered in the aqueous phase. We name this new algorithm as the so-called augmented free-water flash, considering that it is a modified version of the conventional free-water flash which assumes the presence of pure water in the aqueous phase. The new algorithm is comprised of two loops: in the outer loop, we first develop a pragmatic method for initializing the equilibrium ratios of CO2 and water in the aqueous phase with respect to the reference phase (i.e., the hydrocarbon-rich liquid phase); in the inner loop, we solve the Rachford-Rice (RR) equation that has been simplified based on the augmented free-water assumption. Moreover, this new augmented free-water three-phase flash algorithm is incorporated into a flash package which can handle single-phase, two-phase, and three-phase equilibria calculations. The flash package first tests the stability of the feed. If the feed is found to be stable, a single-phase equilibrium can be concluded. Otherwise, the augmented free-water three-phase flash algorithm is initiated. If the phase fractions obtained from this augmented free-water three-phase algorithm do not belong to [0, 1] or if an open feasible region occurs during the iterations, two-phase flash will be conducted. The flash package that couples the augmented free-water flash requires less computational time and a fewer number of iterations than the conventional full three-phase flash package. Furthermore, the augmented free-water flash method has been extended to the methane-containing hydrocarbons/water mixtures where the solubility of methane in the aqueous phase might not be negligible under certain conditions. Similarly, in the new algorithm, we only consider the presence of water and methane in the aqueous phase. The general framework of the flash algorithm is the same as the one that is previously developed for the CO2/hydrocarbons/water mixtures. But, we use the Wilson equation to initialize the K-values for the non-water components, but use the equation suggested by Lapene et al. (2010) to initialize the K-values for water. Two case studies have been used to test the performance of the new algorithm. The testing results show that the amount of methane dissolved in water is less than that of CO2 under the same conditions. But the solubility of methane in the aqueous phase can be also quite high at high-pressure/high-temperature conditions, justifying the use of our augmented algorithm (instead of the free-water algorithm) to perform flash computations for the methane-containing hydrocarbons/water mixtures. The example calculations for water/hydrocarbon mixtures using the augmented free-water algorithm prove its robustness and effectiveness over a wide range of pressure and temperature. The results obtained by the augmented free-water method are more accurate than the traditional free-water method since the solubility of methane is considered in the augmented one. The computational time and number of iterations are significantly decreased with the use of the new flash package featuring the augmented algorithm. This is because of the following reasons: 1) A fewer number of parameters are involved in the calculations due to the use of the augmented free-water concept; 2) the number of iterations are reduced due to a more accurate initialization of equilibrium ratios compared with the conventional method; and 3) A fewer number of stability tests are required in the new flash package compared with the conventional method.
Language
English
DOI
doi:10.7939/R3JW87213
Rights
This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for the purpose of private, scholarly or scientific research. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
Citation for previous publication
W. Pang, H.A. Li, An augmented free-water three-phase Rachford-Rice algorithm for CO2/hydrocarbons/water mixtures, Fluid Phase Equilibr. 450 (2017) 86-98.

File Details

Date Uploaded
Date Modified
2017-09-20T19:29:28.122+00:00
Audit Status
Audits have not yet been run on this file.
Characterization
File format: pdf (PDF/A)
Mime type: application/pdf
File size: 3903256
Last modified: 2017:11:08 17:27:29-07:00
Filename: Pang_Wanying_201709_MSc.pdf
Original checksum: 4175eca3c1f780b0bda6569b6aab59bd
Activity of users you follow
User Activity Date