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Abstract 

This research targets to develop condition based maintenance models for better maintenance 

decisions. We address a condition and age based replacement decision problem using the complete 

history of measured condition observations to minimize long-run average cost or maximize long-

run average availability, or both. To estimate the residual lifetime distribution conditional on the 

history of observed condition information and current age, a delay time model (DTM) based 

stochastic filtering process (SFP) is used. A long-run average cost model and a long-run average 

availability model are analyzed in order to develop the theorems necessary for determining the 

optimum replacement time. A multi-objective decision frontier is proposed that will help 

maintenance managers deal with trade-offs between the two objectives to minimize the cost and 

to maximize availability simultaneously. We also proposed models to integrate imperfect 

maintenance while making replacement decisions. Finally, in order to show the effectiveness of 

our proposed models, numerical examples are presented. 
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1. Introduction 

Maintenance decision should be made properly to gain competitive advantage in a business 

operation. In this research, we target to develop a set of mathematical models that help 

maintenance managers to make appropriate decisions. In this introductory chapter, we will define 

our research problem, scope of study, objectives and methodology, and finally ends with a brief 

description of this thesis organization. 

1.1 Problem Statement 

In recent decades, with increased level of automation and high capital investment in manufacturing 

equipment, selecting the best maintenance policy and effective control of maintenance cost are key 

to success [1]. In order to minimize maintenance cost and avoid consequences incurred by a sudden 

failure, we can carry out proactive maintenance action, which is called preventive maintenance 

(PM). Usual preventive maintenance is carried out periodically on the basis of maintenance 

people’ s experience or in a fixed time interval.  

Among all the PM policies, we can also make maintenance decision based on the condition 

information of the equipment called Condition based maintenance (CBM) to avoid unnecessary 

maintenance i.e. to execute maintenance activities only when they are needed. CBM recommends 

implementing maintenance actions based on the current health condition of the equipment which 

can be assessed with the data obtained from condition monitoring, instead of doing traditional 

time-based preventive maintenance or failure maintenance. It has the capability to alert the 

maintenance personnel to repair or replace any component ahead of failure which reduces plant 
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shutdown cost and production interruption. CBM decisions include preventive replacement 

decisions and/or imperfect preventive maintenance decisions.  

CBM provides rapid and significant cost benefits to industries, because it reduces plant shut down 

cost and production interruption. Therefore, it becomes more popular approach to make 

maintenance decisions [2]. However, condition monitoring may be a cost intensive procedure in 

CBM. To leverage the investments in conditioning monitoring, it is very important to select an 

appropriate method to estimate the lifetime distribution to predict future health condition of the 

equipment accurately. In CBM decision making, two-phase failure model can play a vital role, 

where failure process is divided into two phases [3, 4]. In the first phase of this model, the variation 

of the condition information is not significant and it is a normal variation. However, in the second 

phase, deterioration of the equipment starts and condition information increases monotonically. 

As we see a delay in the failure process is an opportunity to take preventive action, two-phase 

failure model also called a delay time model (DTM). 

To develop a reliable CBM decision framework, we plan to incorporate the history of condition 

information and the current age of the equipment.  A two-phase failure model called DTM is used 

in a stochastic filtering process (SFP) based prognosis technique to predict the residual life time 

distribution. DTM is used in the SFP to incorporate the relationship between the residual life at 

the current monitoring point and the residual life at the previous monitoring point. Figure 1 

describes the condition based age replacement policy, where ti is ith monitoring time and yi be the 

condition information collected at ti. Suppose yc is the threshold for condition information after 

which the equipment begins deteriorating rapidly and condition information yi just exceeds this 

threshold level. Therefore, at the ith monitoring time it requires to make proper maintenance 

decision, since unexpected failure cost is higher than the preventive maintenance cost. In this 
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research, at the ith monitoring time, we can predict the residual life distribution of the equipment 

from the history of condition information and current age of the equipment with the SFP to develop 

and analyze CBM models for better maintenance decisions.  

 

 

 

 

 

    

 

 

Figure 1.1: Condition based Age Replacement Policy. 

In this work, we consider two types of condition based maintenance decisions: preventive 

replacement and imperfect preventive maintenance. In the preventive replacement, the equipment 

is replaced with a new one at a scheduled time if the item is not failed before this scheduled time, 

and the system will be “as good as new”. Imperfect preventive maintenance brings the health status 

of the system somewhere between “as good as new” and “as bad as old”. 

 

 

Time 

Condition 

  Information 

t i …… .. t i - 1 t 1  t 2  

y 1 
  

y 2 
  

y i - 1  

y i  

y c  

T 

Planned  

Replacement 

T - t i 

3 
 



1.2 Scope and Objective 

In the CBM literature, we see that it has received limited attention to develop and analyze DTM 

based predictive models for maintenance decision making, where the complete history of condition 

information and current age are used to calculate residual life.  

Therefore, our key objectives of this research is to achieve the following two objectives:  

• Develop DTM based CBM models for replacement decision.  

• Investigate the feasibility of imperfect preventive maintenance while making a replacement 

decision.  

1.3 Methodology 

In this research, we will develop DTM based CBM models for replacement decision making by 

considering multiple objectives such as cost and availability. We will carry out analytical analysis 

to study the properties of the proposed CBM models to help making replacement decision. From 

our analysis, we will propose theorems, which will help to determine replacement decisions. To 

consider multiple objectives simultaneously, a strategy will be developed with a decision frontier 

that deals with trade-offs between the cost and availability.  

Moreover, there is an opportunity to gain competitive advantages by considering the imperfect 

preventive maintenance and preventive replacement decision simultaneously. Therefore, we will 

also investigate the feasibility of integrating imperfect preventive maintenance with preventive 

replacement decision. It is expected that after performing imperfect preventive maintenance, the 

health condition will be better and this health improvement can be realized with the predicted 

hazard rate function. This new hazard rate function will be used to make the maintenance decision. 

Finally, we will develop models to study the feasibility of the imperfect preventive maintenance 
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while making a replacement decision to achieve certain objectives such as net benefit and 

availability. 

1.4 Thesis Organization 

We have started this thesis with a background discussion on different types of maintenance policies 

followed by a problem statement, objectives and methodology used in this research. In Chapter 2, 

we will discuss background literature. We will discuss two maintenance models and carried out 

analytical analysis for replacement decision in Chapter 3. In order to show the effectiveness of our 

proposed model, we will also present a case study with numerical result analysis in this chapter.  

In Chapter 4, we will discuss models to integrate imperfect maintenance while making replacement 

decisions. Finally, in Chapter 5, we will discuss conclusion and avenues for future research. 
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2. Literature Review 

In order to find the current state-of-art research in condition based maintenance modeling, we have 

carried out literature review in three different aspects, namely preventive replacement, imperfect 

preventive maintenance and integrated CBM decisions. 

2.1 Preventive Replacement 

Selecting an optimal replacement time is a crucial task for a maintenance manager. To determine 

the optimum preventive replacement time, an age-based replacement policy can be used [5]. The 

age-based replacement policy is a widely used strategy in maintenance decision making [6-8]. An 

age-based replacement policy is used to derive expressions for the long run average cost for 

optimal replacement decision making [9].  

Furthermore, researchers have been working to improve their determination of optimum 

replacement time through the incorporation of condition information [10-12]. We can use a single 

or multiple objective function in making preventive replacement decision. The optimal 

replacement time T* is often determined either by minimizing the long run average cost C(T) or by 

maximizing the long run average availability A(T). Proportional hazard model (PHM) has been 

used to update the hazard function based on the current monitored condition information and the 

age of the equipment [11]. Makis and Jardine reported a method to determine the optimum risk 

level of an equipment for minimizing the total cost per unit time for replacement decision making 

based on the PHM [13]. PHM is used to determine the remaining lifetime distribution [14]. This 

remaining lifetime distribution is then used to find the optimum replacement time to maximize the 

long run average availability. PHM is also used in [15] with an age replacement model, in which 
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the hazard was expressed as a function of condition information and age. According to [16], the 

PHM uses only the current observation, not all the previous history of the observed health 

information. A stochastic filtering process (SFP) was proposed in [17] to predict the residual 

lifetime distribution considering the complete history of observed condition information.  

A different prognostic model is proposed in [18] to predict the failure probability from the 

condition information and the expected reliability after maintenance. It used a genetic algorithm 

to minimize the risk, where the risk was represented by the trade-off between failure and preventive 

maintenance. Another two studies also considered genetic algorithm for maintenance decision 

making with multiple criteria [19-20]. A multi-objective optimization method is discussed in [21] 

to select an optimal preventive maintenance schedule without considering the health condition of 

the equipment, whereas [22] suggested considering both cost and reliability simultaneously while 

making maintenance decision.  

2.2 Imperfect Preventive Maintenance 

Imperfect preventive maintenance is a maintenance action that can bring the system somewhere, 

between “as good as new” to “as bad as old” conditions [23]. A detailed review on imperfect 

maintenance is available in [24]. Two preventive maintenance (PM) policies were studied in [25] 

for repairable systems where in Policy I, PM is carried out either at failure or at a predetermined 

time interval whichever of them comes first and in Policy II, PM is always carried out at a 

predetermined time and minimal repair is carried out in case of failure, whereas Policy II is used 

in [26] to present two imperfect PM models. Jayabalan and Chaudhuri developed an algorithm to 

find out the number of imperfect maintenance interventions required before each replacement in 

order to minimize the total cost over a finite time horizon [27]. A new age replacement approach 
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based on imperfect repair with random probability is discussed in [28], where the equipment is 

replaced at the age T and if it fails before the age T, it is either perfectly or minimally repaired. 

Furthermore, another technique is proposed in [29] for maintenance and replacement decisions, 

where maintenance cost and acquisition cost functions are increasing with increasing mean 

downtime, whereas a similar method is proposed in [30] that dealt with cost optimal maintenance 

and replacement schedule for a new system subject to deterioration considering time value of 

money in all future costs.  A PM model is proposed in [31] for multi-component case with 

imperfect maintenance which is an extension of the work discussed in [30]. For multi-component 

system, a confidence limit for optimal replacement time is calculated in [32], where block 

maintenance is considered. 

To demonstrate the effect of PM, a number of techniques were proposed and developed. A concept 

of virtual age reduction by the PM activity is proposed in [33].  Furthermore, age reduction models 

are discussed in [34-35], where there is an effective age reduction after imperfect preventive 

maintenance. The effective age right after the PM is greater than zero and the hazard rate remains 

as a function of the effective age. Another model for scheduling imperfect preventive maintenance 

is proposed in [36], where each application of PM reduces the equipment’ s effective age. Ben-

Daya and Alghamdi proposed an imperfect preventive maintenance model, where they assumed 

that the reduction in the age of the equipment is proportional to the cost of PM [37].  

In order to reflect the effect of PM activities, it has been assumed that PM action reduces the 

equipment’ s effective age. An age based model is proposed in [38] for imperfect PM to determine 

the optimal number of PMs and the optimal PM’ s schedule that minimize total long run expected 

cost, whereas a maintenance policy proposed in [2], which represents the impact of imperfect 
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maintenance action as the deterioration of the system. Further study has been carried out [39] to 

investigate effect of imperfect maintenance. They characterized it by random intervention gains 

and assumed that each maintenance action affects the speed of the system deterioration process. 

Moreover, additional cost of imperfect preventive maintenance will lower the quality control cost 

and production cost that ultimately lower the overall long run average cost [40].  

Among the many treatments to model imperfect maintenance, improvement factor method is 

widely used as the maintenance decision can be determined by the system hazard rate or other 

reliability measure. A model for sequential imperfect maintenance policy for CBM is developed 

in [41]. They used hybrid hazard rate function where the concept of age reduction factor and hazard 

rate increase factor are integrated simultaneously, where a reliability-centered predictive 

maintenance policy is proposed for a continuously monitored system such that when the system 

reliability reaches to the threshold level, an imperfect preventive maintenance will be performed. 

A multi-objective optimization model is proposed in [42] to determine optimal preventive 

maintenance and replacement schedules for a repairable system with increasing failure rate. 

Routine service is considered as a maintenance action in [43], where it can prolong normal stage 

of a system. A degradation based maintenance (DBM) model is discussed in [44] to minimize the 

total cost of an imperfect maintenance. In order to formulate the DBM model, they discussed a 

relationship between degradation reduction and cost of imperfect maintenance. 

A little effort has been made in the above literatures (discussed in this sub-section) to integrate 

imperfect preventive maintenance while making replacement decision that uses DTM based two-

phase failure model to assess the true effect of imperfect maintenance in CBM. Along with the 

preventive replacement decision, we may also consider imperfect preventive maintenance to 

improve the health condition of an equipment so that we can postpone/delay the replacement and 
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realize more residual life [45]. This improvement may help us to gain other competitive advantages 

such reliability, availability, production planning and spare parts inventory etc. However, it is 

important to develop maintenance models that can evaluate the suitability of such integration in 

CBM environment by considering all possible benefits and costs.  

2.3 Integrated CBM Decision 

Maintenance decision has direct effects on production scheduling, quality control and warranty. 

Previously they have been treated separately. As a result, the effects of PM was ignored and 

outcome of this decision was not fruitful. If we perform PM, it will incur cost and time. On the 

other hand, it may reduce the probability of unplanned failure, defective production rate and 

operating cost etc. Recently researchers are focusing on integrated maintenance models that could 

handle the above factors simultaneously. To optimize economic production quantity and 

preventive maintenance level simultaneously a model is proposed in [46], where the effect of 

preventive maintenance is shown as the reduction of the cost from the nonconforming items and 

the restoration cost due to shift to the out-of-control state. Later warranty policy is also integrated 

with the previous decisions in [47]. Combining production scheduling and preventive maintenance 

planning is considered in [48] to minimize job tardiness, where as in [49] another model is 

developed that integrates perfect preventive maintenance planning and production scheduling for 

a single machine. Furthermore, genetic algorithm is used in [50] to solve the integrated model 

discussed in [49].  

Moreover, a model is presented in [51] that integrates the economic production quantity and level 

of preventive maintenance (PM) simultaneously. It is found from their investigation that the level 

of PM has impact on the economic production quantity and total cost. Another model is discussed 
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in [52] to calculate optimum economic production quantity (EPQ) for an imperfect process with 

increasing hazard rate. Imperfect maintenance planning is also integrated in their model. 

Preventive maintenance increases the percentage of conforming product by an amount 

proportional to the preventive maintenance level.  

The extra cost of imperfect preventive maintenance will lower the quality control cost and 

production cost that ultimately lower the overall long run average cost [53]. An integrated cost 

model is proposed in [54] for optimizing the process control and maintenance simultaneously, 

whereas an age replacement policy is considered in [55] for the optimization of process control. In 

[56], an integrated model for the joint optimization of production quantity, design of quality 

control parameters and maintenance level is presented. Another maintenance policy is discussed 

in [57], where an equipment can be replaced to avoid unnecessary production interruption. The 

integrated models discussed in this sub-section does not focus on CBM that uses the DTM and the 

complete history of condition information. It is also important to consider preventive replacement 

and imperfect preventive maintenance simultaneously while considering production decisions 

discussed above. 

The research work discussed above neither focused on replacement decision making that uses the 

DTM with the complete history of condition information nor analyzed in detail the long-run 

average cost model and the long-run average availability model. Formulations of multi-objective 

condition and age based replacement model, and trade-offs strategies (to help making maintenance 

decision effectively) between objectives were also not addressed in such paradigm either. In order 

to overcome these draw backs, in chapter 3, we will develop such models and carry out theoretic 

analysis to propose theorems that can help maintenance manager to make better decisions. We will 

also offer trade-off strategies to handle conflicting objectives.  We also notice very little effort to 
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develop maintenance model that can investigate the feasibility of integrating imperfect 

maintenance while making replacement decision in DTM framework. Therefore, in chapter 4, we 

will propose a new set of maintenance models that can investigate the possibility of such 

integration. 
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3. Replacement Decision Analysis1 

This chapter will introduce DTM based CBM models for replacement decision making. Further 

analysis will be done on the proposed models to develop replacement strategies. 

3.1 Preventive Replacement 

Preventive replacement is carried out to avoid higher failure replacement cost, resulting from 

production loss due to unplanned down time and other logistic delays. Selecting an optimal 

replacement time is a crucial task for a maintenance manager. An age-based replacement policy 

is widely used [5-7] to determine optimum preventive replacement time. Further, researchers have 

been working to improve their determination of optimum replacement time through the 

incorporation of condition information [58-61].  

For preventive replacement decisions, single or multiple objective functions may be used. The 

optimal replacement time, T*, is often determined either by minimizing the long-run average cost, 

C(T), or by maximizing the long-run average availability, A(T). The Proportional Hazard Model 

1 This chapter is partially adopted from Lipi, T. F., Zuo, M. J., Lim, J.-H., Wang, W. (2012) “A 

Condition Based Replacement Model Using Delay Time Modeling”, Proceedings of the Institution 

of Mechanical Engineers, Part O: Journal of Risk and Reliability, Vol. 226, No.  2, pp. 221-233. 
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(PHM) has been used to update the hazard function based on information regarding monitored 

condition information and equipment age [11]. Makis and Jardine [13] used PHM to determine the 

risk level for equipment that minimizes the total cost per unit of time in replacement decision 

making. Li et al.[14] used the PHM to determine the remaining lifetime distribution. This 

remaining lifetime distribution was then used to find the replacement time that maximizes the long-

run average availability. Scarf [15] used the PHM with an age replacement model, in which the 

hazard rate was expressed as a function of condition information and age. Wang and Zhang [16] 

stated that the PHM used only the current observation, not the complete history of observed 

condition information.  

There are other prognostic models available in the literature. For example, Camci [18] proposed a 

prognostic model for using information to predict the probability of failure and reliability to be 

expected after maintenance. Genetic algorithm is used to minimize risk, where risk is represented 

by the trade-off between failure and preventive maintenance. A Stochastic Filtering Process (SFP) 

was used by Wang [17] to predict residual lifetime distribution considering the complete history 

of equipment condition. A graphical method was proposed for finding replacement time, T*, that 

minimizes the long-run average cost, C(T). Wang [63] combined the delay time concept, the 

Hidden Markov Model (HMM), and filtering theory to form a prognosis model for maintenance 

decision making. Lipi et al. [58] developed a preliminary model for age-based replacement 

decision making that considers the complete history condition information to maximize long-run 

average availability. They reported a preliminary relationship between the target level of 

availability and maintenance efficiency. This relationship assists maintenance managers in 

selecting maintenance crews capable of achieving given target level of long-run average 
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availability. Savsar [59] studied the effects of various maintenance policies on the production rate 

for flexible manufacturing cells (FMC). To analyze the effects of corrective, preventive and 

opportunistic maintenance policies on the productivity of FMCs, several analytical models were 

proposed. It was shown that, the best was the opportunity-triggered maintenance policy (OTP). 

However, this research did not consider cost in developing maintenance models.  

To make efficient replacement decisions, sometimes it is important to consider more than one 

criterion. Castro et al. [19] and Fonseca et al. [20] considered multiple criteria for maintenance 

decision making, and used genetic algorithms to optimize the decision process. Sachdeva et al. 

[21] proposed a multi-objective optimization method which selects an optimal preventive 

maintenance schedule without considering the condition of the equipment. Castanier et al.[63] 

developed a parametric model for inspecting and maintaining a system that is subject to stochastic 

gradual deterioration. This model has been used to schedule non-periodic inspections and choose 

among possible maintenance actions. Finally, a decision framework was proposed to choose the 

best sequence of maintenance action and to schedule future inspections. Grall et al. [64] proposed 

a model for condition-based inspection/replacement, where the state of the system could be 

observed through inspection. To assess the performance of different maintenance policies, they 

developed a cost model. Baxter et al. [65] discussed using the stochastic point process for analysis 

of reparable units. Their model assumes that, after the repair, the virtual age of the unit is a random 

variable. Dijoux and Gaudoin [66] proposed a new model called alert-delay (AD) to find the 

dependence between condition-based preventive maintenance time and corrective maintenance 

time in terms of a warning of the system and a supplementary time. Statistical analysis of this 
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model along with the simulation results with real data set were presented to show the effectiveness 

of this model. 

From the above review of the literature we see that little effort has been made on the analysis of 

maintenance decision making that uses the complete history of condition information to predict 

the residual life distribution. To facilitate maintenance decision making, we analyze in detail the 

long-run average cost model and the long-run average availability model. To minimize the long-

run average cost and maximize the long-run average availability, we propose a multi-objective 

decision frontier that will assist the maintenance managers to deal with trade-offs between 

objectives. We propose another modified model for replacement decisions, which allows decision 

makers to obtain at least a minimum level of long run average availability.  

Finally, this chapter is organized as follows. Section 3.2 describes a condition and age based 

replacement policy using the SFP-based model. Section 3.3 formulates a condition and age based 

replacement model. This model is investigated using a theoretic approach to find the optimal 

replacement time, T*. Section 3.4 discusses an availability-based age replacement model, which is 

also investigated using a theoretic approach to find the optimal replacement time, T*. Section 3.5 

formulates a multi-objective condition and age based replacement model for minimizing long-run 

average cost, C(T) and maximizing long-run average availability, A(T).  

3.2 Replacement Decision Models 

Age replacement models can be integrated with residual lifetime distributions conditional on past 

monitoring history for minimizing long-run average cost or maximizing the long-run average 

availability. A residual lifetime distribution can be obtained by the SFP technique proposed by 
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Notations:  

:it  time at monitoring point i 

:ix  residual lifetime at monitoring time point it  

:iy  condition information obtained at time it   

:},.....,{ 11 yyyY iii −=  history of condition information up to monitoring point i 

:T   scheduled replacement time, to be optimized 

:*T  optimum replacement time 

:pT  average length of time needed to complete a preventive replacement  

:fT  average length of time needed to complete a failure replacement 

:pC  cost of each preventive replacement  

:fC   cost of each failure replacement 

 ( ) :i i if y x  conditional probability density function of iy  given ix
 

:)( iii Yxf probability density function of ix  conditional upon iY  

( ) :F x Yi i i  cumulative distribution function of  ix  conditional upon iY  
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 ( ) :R x Yi i i  reliability function of the residual lifetime, conditional upon iY  

( ) :h x Yi i i  hazard function of the residual lifetime, conditional upon iY  

'( | )h T t Yi i i− : derivative of ( | )h T t Yi i i−  

iµ : mean residual lifetime at monitoring point i  

( ):C T long-run average cost 

( ):A T long-run average availability  

The probability density function of ix  conditional upon iY can be obtained by the following 

expression in accordance with its conditional probability relationship and DTM: 

1 1 1

1 1 1

0

( ) ( )
( ) .

( ) ( )

i i i i i i i

i i i

i i i i i i i i

f y x f x t t Y
f x Y

f y x f x t t Y dx

− − −
∞

− − −

+ −
=

+ −∫

                                        (1) 

To obtain the final expression for conditional residual life, a Weibull distribution with scale 

parameter, 
α , and shape parameter, β , is used to represent the lifetime distribution at time zero. 

The distribution of the data on condition is also assumed to follow the Weibull distribution with 

scale parameter, ρ , and shape parameter, η . It is noted that other distributions can also be used 

and the best can be selected by a goodness of fit measure. There is assumed to be a negative 

correlation between the residual lifetime, ix , and the condition information, iy ; that is, the higher 
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the condition information, the shorter the residual lifetime. This relationship is incorporated by the 

expression as follows: 
1

iCx
A B

−=
+

ρ .  

Using the above distributions and the relationship in Equation (1), we can obtain Equation (2), 

which describes the conditional residual lifetime distribution: 

       

( ) 1

( ) 1

( ( ) )
( ( ))1( )

1 ( )
( ) .

( ( ) )
( ( ))1( )

1 ( )
0

C x t ti i k
k

i i

i i k

C z t ti k
k

i

i k

y A Be
eix t

x t ei i k C x t t
A Bef x Yi i i
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∏
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                (2) 

The model parameters , , , , ,A B C α β η  are needed to be estimated from the complete condition 

information data, Yi ={y1, y2, …, yi}. Equation (2) expresses the mathematical model of 

conditional lifetime distribution derived from the complete history of condition information and 

current age of the equipment. Therefore, we use this conditional lifetime distribution in this paper 

to carry out our analysis for condition-based replacement decision. 

We can use the above expression for residual life distribution to obtain the following condition-

based hazard rate function: 
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    where  
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3.3 Condition and Age Based Replacement Model for Minimizing Cost 

In the traditional age-based replacement models, the optimum replacement time, T*, is selected to 

minimize the expected total cost per unit of time. Two types of cost models, namely an infinite-

horizon cost model and a one-replacement-cycle cost model, are available in the literature [68-70]. 

An infinite-horizon cost model is applicable where the maintenance manager wants to carry out 

the same replacement strategy over a very long period of time. In this paper we focus on the 

infinite-horizon cost model. A preliminary model for this purpose has been presented in Lipi et 

al.[71]. 

In the infinite-horizon cost model, the renewal-reward theorem is invoked to minimize the long-

run average cost per unit of time [72]. According to the renewal-reward theorem, the long-run 

average cost per unit of time is equal to the expected cost during a life cycle divided by the expected 

length of the life cycle:       

Expected cost incurred during a cycle
( ) .

Expected length of a cycle
C T         (4) 

According to Coolen-Schrijner and Coolen [68], the long-run average cost per unit of time 

measured at time zero can be expressed using Equation (5): 

0

( ) ( )
( ) .

( ) ( )

p f

T

C R T C F T
C T

zf z dz TR T





                                 (5)                        
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In this research, our objective is to introduce the complete history of condition information in 

equation (4) that allows condition-based decisions to be made. Our plan is to analyze in detail the 

resulting models and propose theorems to assist maintenance managers in making replacement 

decisions.  

The long-run average cost per unit of time for the condition and age based replacement strategy 

can be expressed using Equation (6), in which the current monitoring time is it and the history of 

condition information is iY : 

 

0 0

( ) ( )
( ) .

( | ) ( )(1 ( ) )
i i

p i i i f i i i

T t T t

i i i i i i

C R T t Y C F T t Y
C T

t zf z Y dz T t f z Y dz

 

  


    
                                        (6) 

In this model residual life time distribution is used to estimate the expected total cost and expected 

life of the equipment. The residual life time distribution depends on the current age of the 

equipment and the complete history of the condition information. At each monitoring time, new 

condition information is added with the previous history of condition information. As a result at 

each monitoring time, there is a new residual life time distribution that is used in Equation (6) to 

calculate the long run average cost. Therefore, Equation (6) is updated and approximated along 

with the new probability distribution at each monitoring point.  

After some mathematical manipulation using the denominator of Equation (6) we obtain 

Equation (7): 
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0

( ) ( )
( ) .

( )
i

p i i i f i i i

T t

i i i

C R T t Y C F T t Y
C T

t R z Y dz



  


 
                                                                    (7) 

Now we investigate Equation (7) using a theoretic approach to determine the optimum replacement 

time, T*. To obtain the optimum replacement time, T*, ( ( ))
d

C T
dT

= 0 is a necessary and sufficient 

condition. 

Differentiating Equation (7) with respect to T and equating the derivative to zero yields Equation 

(8): 

      

( )[ ( | ) [ ( | ) ( | )] ( | ) ]

0

iT t

C C t h T t Y h T t Y h z Y R z Y dz Cf p i i i i i i i i i i i p

−
− − + − − −∫ = 0.                 (8) 

The optimum replacement time, T*, is a solution for Equation (8). Now we have to investigate 

whether or not Equation (8) has a unique solution. We can do this in two steps. In step one, we 

check the possible values for the left hand side (LHS) of Equation (8) for the two extreme values 

of  T . In step two, we check whether or not the LHS of Equation (8) increases monotonically. If 

we find that for the lower and upper extreme ends of T, the LHS of Equation (8) has negative and 

positive values respectively, and the equation is a monotonically increasing function then the 

equation has a unique solution and C (T) is a convex function.  

3.3.1 The First Step 

In this step we check the possible values for the LHS of Equation (8) at its extreme ends. At first 

we check the lower extreme end (T-ti= 0) and then we check the upper extreme end (T-ti= ∞ ). 

23 

 



At the lower extreme end, [ ( | ) ( | )] ( | )

0

iT t

h T t Y h z Y R z Y dzi i i i i i i

−
− −∫ = 0 and Equation (8) becomes 

Equation (9): 

 ( )[ ( | )] 0.f p i i i i pC C t h T t Y C− − − =                                                                          (9) 

From Equation (9), we can see that when T-ti = 0, we have the following three possible cases: 

Case 1: If at T=ti , ( )[ ( | )]C C t h T t Y Cf p i i i i p− − < , then the LHS of Equation (9) becomes 

negative (see Figure 3.2). That means that at monitoring point ti , the slope of C(T) is negative. In 

this case, we know that the minimum cost, C(T) , will be attained at T* , which is greater than the 

current point of monitoring time,  ti . 

it
T

 ( ( )) < 0 ;  at   i

d
C T T t

dT


 ( )  C T

0

 

Figure 3.2: The cost function with a negative slope at T= ti 

Case 2: If at T=ti , ( )[ ( | )] ,C C t h T t Y Cf p i i i i p− − = then the LHS of Equation (9) becomes zero 

(see Figure 3.3). This means that at monitoring point ti , the slope of C(T) is zero. In this case the 

current point of monitoring time, ti , is the optimum replacement time for obtaining the minimum 

long-run average cost. 
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it
T

 ( ( )) = 0 ;  at   i

d
C T T t

dT


 ( )  C T

0

 

Figure 3.3: The cost function with a slope of zero at T = ti 

Case 3: If at T=ti , ( )[ ( | )] ,C C t h T t Y Cf p i i i i p− − > then the LHS of Equation (9) becomes 

positive. This means that at the current point ti , the slope of C(T) is positive; i.e.,  C(T) is increasing 

(see Figure 3.4). In this case we should conduct preventive replacement as soon as possible. 

                

it
T

 ( ( )) >0 ;  at   i

d
C T T t

dT


 ( )  C T

0

 

Figure 3.4: The cost function with a positive slope at T = ti 
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Now, we check the slope of C (T) at the upper extreme end, i.e., T-ti=∞ : 

         

[ ( | ) ( | )] ( | )

0

iT t

h T t Y h z Y R z Y dzi i i i i i i

−
− −∫  

( ( | ))( ( | ) ) ( ( | ) ))
i i

i i i

T t T t

Lim h T t Y Lim R z Y dz Lim f z Y dzT t i i i T t i i T t i i

o o

− −
= − −− →∞ − →∞ − →∞∫ ∫                             

( ( | )) 1).
i

Lim h T t YT t i i i iµ= − −− →∞  

When ( | )h T t Yi i i−  increases strictly in T-ti ,  ( ( ( | )) 1
i

Lim h T t YT t i i i iµ− − →∞− →∞ . The LHS 

of Equation (8) becomes positive at the upper extreme end; i.e., the slope of C(T) at the upper 

extreme end is positive. 

3.3.2 The Second Step 

In this step we check whether or not the slope of C(T) is a monotonically increasing function. We 

denote the slope of C(T) as Q(T). To show that Q(T) is a monotonically increasing function, we 

differentiate Q(T) with respect to T : 

' '

0

( ( )) ( )[ ( | ) ( | ) ( ) ].
iT t

f p i i i i i i i i i

d
Q T C C t h T t Y h T t Y R z Y dz

dT



         (10) 

Since Cf > CP  and ( | )h T t Yi i i−  increases strictly in T-ti , we have ( ( )) 0.
d

Q T
dT

   
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We see that for Case-1, the C(T) function decreases until it reaches to a  minimum point, which is 

the optimal replacement time. Immediately after this optimal replacement time, the C(T) function 

increases monotonically. For Case-2, at the current time of monitoring, the C(T) function is at its 

minimum value; immediately after this time point, it will increase monotonically. For Case-3, if 

we delay replacement, the C(T) function will increase monotonically. From our investigation we 

see that C(T) is a convex function, hence it has a unique minimum point, which can be obtained 

by setting its first derivative equal to zero. The above analysis gives us the theorem given below 

on the uniqueness of the optimal solution for an infinite-horizon cost model.  

Theorem 1 : If Cf > CP , ( )[ ( | )]C C t h T t Y Cf p i i i i p− − <  at the current time of monitoring point, 

and ( | )h T t Yi i i−   increases strictly in T-ti , there exists a unique and finite T*>ti that minimizes 

the long-run average cost per unit of time. T* is the solution for equation (8). 

3.4 Condition and Age Based Replacement Model for Maximizing Availability 

We can also use the condition and age based replacement model to maximize the long-run average 

availability of the equipment being monitored.  A preliminary model for this purpose has been 

reported in Lipi et al.[58]. This model is useful when availability is a more important measure of 

the performance of the equipment than is cost. In the following, we further analyze this availability 

maximization model. Long-run average availability can be expressed as Equation (11): 

   

     

Expected total uptime
( ) .

Expected total uptime Expected total downtime
A T 

                                      

(11)                                    

Thus, long-run average availability, A (T), can be calculated using Equation (12): 
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 

 

                                         (12) 

To calculate expected total uptime and expected total downtime, we need to use the residual 

lifetime distribution. The expected total uptime and the expected total downtime can be calculated 

using the following equations: 

        Expected total uptime = 

0 0

( ) ( )(1 ( ) ).
i iT t T t

i i i i i it zf z Y dz T t f z Y dz

 

                               (13) 

        Expected total downtime =  

0 0

(1 ( ) ) ( ) .
i iT t T t

p i i f i iT f z Y dz T f z Y dz

 

                                  (14) 

The second and third terms in the RHS of equation (13) are expected additional time the equipment 

would survive and expectation of equipment survival up to the planned replacement time T, 

respectively.   The first and second terms in the RHS of equation (14) are expected time required 

for planned replacement and expected time required for failure replacement, respectively.   

Incorporating the expressions of the expected total uptime and the expected total downtime into 

the Equation (11), we obtain the following long-run average availability: 

0 0

0 0

( ) ( )(1 ( ) )

( )  .

( ) ( ) ( )(1 ( ) )

i i

i i

T t T t

i i i i i i

T t T t

i f i i i p i i

t zf z Y dz T t f z Y dz

A T

t z T f z Y dz T t T f z Y dz

 

 

   



     

 

 
                        (15) 

After some mathematical manipulation of Equation (15), we obtain the following expression of 

the availability: 
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T t
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T t T t
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t R z Y dz
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− −

+
=

+ + + −

∫

∫ ∫
                (16)  

Now we investigate Equation (16) using a theoretic approach to determine the optimum preventive 

replacement time, T*. To obtain the replacement time that maximizes the total long-run average 

availability, A(T), the necessary and sufficient condition is ( ( ))
d

A T
dT

=0. Differentiating Equation 

(16) with respect to T and equating it to zero yields Equation (17): 

0

( ) ( ) ( ) ( ) 0 .
iT t

p f p i i f p i i iT T T f z Y dz T T h T t Y

−

+ − − − − =∫                                           (17) 

The optimal T* can be found by solving Equation (17). We can investigate whether Equation (17) 

has a unique solution and whether A(T) is a concave function in two steps similar to our analysis 

in Section 3.3.  

3.4.1 The First Step 

At the lower extreme end of T; i.e., T-ti= 0, 
0

( ) ( ) 0
iT t

f p i iT T f z Y dz

−

− =∫  and Equation (17) becomes 

Equation (18). From Equation (18), we have the following three possible cases: 

( ) ( ) 0.p f p i i iT T T h T t Y− − − =                                                                (18) 
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Case 1: If at T=ti , ( ) ( )f p i i i pT T h T t Y T− − < , then the LHS of equation (18) becomes positive; 

i.e., at the monitoring point, ti , the slope of A(T) is positive (see Figure 3.5). In this case, the 

optimum replacement time must be later than the current monitoring time.  

it
T

 ( ( )) > 0 ;  at   i

d
A T T t

dT


 ( )  A T

0

 

Figure 3.5: The availability function with a positive slope at time T = ti 

Case 2: If at T=ti , ( ) ( )f p i i i pT T h T t Y T− − = , then the LHS of Equation (18) becomes zero (see 

Figure 3.6); i.e., at the time of monitoring, ti , the slope of A(T) is zero. In this case, the current 

time of monitoring is the optimum replacement time for obtaining maximum long-run average 

availability. 

it
T

 ( ( )) = 0 ;  at   i

d
A T T t

dT


 ( )  A T

0

 

Figure 3.6: The availability function with a slope of zero at T = ti  
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Case 3: If at T=ti , ( ) ( )f p i i i pT T h T t Y T− − > , then the LHS of Equation (18) is negative; i.e., at 

monitoring time, ti , the slope of A(T) is negative (see Figure 3.7). In this case, the equipment 

should be replaced immediately. 

it
T

 ( ( )) < 0 ;  at   i

d
A T T t

dT


 ( )  A T

0

 

Figure 3.7: The availability function with a negative slope at T = ti 

Now, we check the slope of A (T) at the upper extreme end; i.e., T-ti= ∞  or T→ ∞ . At T-ti=∞ , 

the LHS of Equation (17) becomes ( ) ( ) ( ).
ip f p i f p T t i i iT T T T T Lim h T t Yµ − →∞+ − − − − When

( | )i i ih T t Y−  increases strictly in T-ti , ( ( ( | ))
iT t i i iLim h T t Y− →∞ − →∞ ; thus, the value of the LHS 

of Equation (17) becomes negative at the upper extreme end. 

3.4.2 The Second Step 

We now denote the LHS of Equation (17) as Z(T). To prove that Z(T) decreases monotonically, 

we take the derivative of  Z(T) with respect to T: 

'( ( )) ( ) ( ) ( ) ( ).f p i i i f p i i i

d
Z T T T f T t Y T T h T t Y

dT
= − − − − −  
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As Tf > Tp and ( | )i i ih T t Y−  increases strictly in T-ti , we have ( ( )) 0.
d

Z T
dT

<   

We see that for Case-1, from the current monitoring time, the A(T) function will increase until it 

reaches a maximum point, which denotes the optimal replacement time. Immediately after this 

optimal replacement time, the A(T) function will decrease monotonically. For Case-2, at the 

current time of monitoring, the A(T) function has reached its maximum value; immediately after 

this point, it will decrease monotonically. For Case-3, if we delay the replacement, the A(T) 

function will decrease monotonically. From our investigation we see that A(T) is a concave 

function, hence it has a unique maximum point, which can be detected from the first derivative of 

the A(T) function. The above analysis gives us the following theorem on the uniqueness of the 

optimal solution for an infinite-horizon availability model. 

Theorem 2: If Tf > Tp  , ( ) ( )p f p i i iT T T h T t Y> − −  at the current time of monitoring, ti , and 

( | )i i ih T t Y−  increases strictly in T-ti , there exists a unique and finite T*>ti that maximizes long-

run average availability. The optimum T* is the solution for Equation (17). 

3.5 Multi-Objective Condition and Age Based Replacement Model 

In a real-world maintenance decision, we need to optimize both long-run average cost and long-

run average availability, simultaneously. We may not consider weighted average single objective 

optimization problem to consider both cost and availability as their units are different. Therefore, 

the following multi-objective optimization problem is formulated: 
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To find the solutions to this multi-objective optimization problem, we can construct a decision 

frontier to assist the maintenance manager in dealing with trade-offs between cost and availability, 

while making replacement decisions. 

On the other hand, sometimes maintenance managers need to minimize long-run average cost 

while satisfying at least a minimum level of long-run average availability (  ), which is referred to 

as the availability threshold. As a result, we have following modified optimization model: 

Minimize: 

Subject to: 

Production managers set a target production quantity required to produce within a specified time 

period on the basis of customer requirements. This production target is the main criterion that can 

be used to choose the threshold for A(T). To meet the requirements for a larger production quantity, 

the maintenance manager is asked to set a higher threshold value for A(T). This restriction allows 

the maintenance personnel to make maintenance decisions in such a way that the long run average 

availability of the equipment will be at least the threshold value and the target production level 

could be achieved within the given time frame. 

( )C T

( )

.i

A T

T t




0

0

0 0

( ) ( )
Minimize: ( )

( )

( )

Maximize : ( )

( ) ( ) ( )

Subject to : .

i

i

i i

p i i i f i i i

T t

i i i

T t

i i i

T t T t

i i i p f p i i

i

C R T t Y C F T t Y
C T

t R z Y dz
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t R z Y dz T T T f z Y dz

T t





 

  
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From the uniqueness of the cost and availability functions observed in Theorems 1 and 2, we see 

that long-run average cost is a convex function, and long-run average availability is a concave 

function. To satisfy the constraints in the modified model we may have a range of decision 

variable, min max[ , ]T T T∈ , for which we can optimize the objective function. In this case, we can 

use the following equation to calculate the optimal replacement time (Topt) that minimizes long-

run average cost: 

[ , ]
min max

arg min ( ).opt
T T T

T C T
∈

=              (19) 

3.6 Result Analysis 

In order to show the effective of the models proposed in this chapter, we will show some numerical 

result in this sub-section. These numerical results will show us how our proposed models will be 

useful to make maintenance decision. We will use the bearing data available in [10]. At first, we 

need to analyze the properties of hazard rate function.  

3.6.1 Properties of Hazard Rate 

In condition-based maintenance, the behavior of the hazard rate is a key factor in replacement 

decision making. It is therefore necessary to investigate the properties of the hazard rate, which is 

obtained from the complete history of condition information and current age. It is difficult to 

analyze the properties of the above hazard rate function since it has many components and involves 

an integration operator. For this reason, we analyzed the hazard rate function using the bearing 

data in [10] (shown in Figure 3.8) to empirically determine that what parameter combinations, that 

is, what η  and β combinations, cause the hazard rate to increase or strictly increase. This data set 
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has run to failure data for six bearings, and SFP was found to be successful to predict remaining 

useful life using this data set. Our following empirical study also shows suitability of this data set 

to show the effectiveness of our proposed methods. The values of the estimated parameters of the 

hazard rate function are listed as follows: α=0.011, β=1.8729, η=4.5593, A=7.0688, B=27.089 and 

C=0.0528.  Figure 1 shows the total energy of the vibration data in terms of the root mean square 

(RMS) values, with respect to the number of operating hours for the six bearings. These rms values 

increase for all bearings as they age, once faults have developed. It is important also to note that, 

as Figure 1 shows, that in the early stage of the bearings’  life, the rms values for the vibration data 

remain flat but after a certain number of hours of operation, they increase rapidly. These early 

increases mark the starting point of the defective stage. They also divide the life of a bearing into 

two stages.  

 

To shed some light on what values for η  and β affect the hazard rate, we have divided this analysis 

into four cases based on different combinations of these parameters. The four cases are: η>1 and 

β >1, η<1 and β >1, η>1 and β<1, η<1 and β <1. It is found that in all cases f(xi) decreases while 

g(xi) increases and it approaches a constant value when xi is very large (shown in Figure 3.9 to 

Figure 3.12). The denominator decreases with x i and the decreasing rate of the denominator in 

( )i i ih x Y dominates the decreasing rate of the f(xi), which is a part of the numerator. Thus the 

resultant value for ( )i i ih x Y  always increases. From these four cases, it is clear that condition- 

based hazard rate derived from SFP has an increasing property. It is strictly increasing with 

increasing slope when η is greater than 1, and increasing slowly when η is less than 1 (shown in 

35 

 







 

Figure 3.13: Investigation of hazard rate property  

3.6.2 Minimizing Long-run Average Cost  

With the estimated model parameters and given the condition history outlined in [10], long-run 

average cost can be calculated using Equation (7), assuming that the cost for preventive 

replacements )( pC  is $1000 and the cost for failure replacements )( fC  is $2000. For the current 

time of monitoring, the 256th hour, the long-run average cost is plotted as a function of preventive 

replacement time in Figure 3.14 for bearing 4, from which we can see that the optimum 

replacement time is the 279th hour if we are to achieve a minimum long-run average cost of 3.63. 
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Figure 3.14: Optimum preventive replacement time for minimizing cost 

3.6.3 Maximizing Long-run Average Availability  

Long-run average availability is calculated using Equation (16), assuming that the average time 

needed to complete a preventive replacement )( pT  is 5 hours and the average time needed to a 

complete a failure replacement )( fT  is 50 hours. For the current time of monitoring, the 256th hour, 

the long-run average availability is plotted as a function of the preventive replacement time in 

Figure 3.15 for the same bearing 4; from this we can see that the optimum replacement time is the 

272nd hour if we are to achieve the maximum availability of 0.981737. 
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Figure 3.15: Optimum replacement time for maximizing availability 

3.6.4 Minimizing  C(T) and Maximizing A(T)  

To determine the optimal preventive replacement time taking into consideration two objectives: 

minimization of the long-run average cost, C(T), and maximization of the long-run average 

availability, A(T), we can analyze the two single objective optimization outcomes, where the 

preventive replacement time at the 272nd hour is optimal when we aim to maximize A(T), and the 

preventive replacement time at the 279th hour is optimal when we aim to minimize C(T). As a 

result, an alternative preventive replacement time earlier than the 272nd hour and later than the 

279th hour may not be optimal when both objectives are considered (see Figure 3.16). Taking this 

into consideration, we develop the following decision frontier (illustrated in Figure 3.17) to help 

the decision maker deal with trade-offs between these two conflicting objectives. In Figure 3.17, 

the vertical axis corresponds to C(T) and the horizontal axis corresponds to A(T). The numbers 
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plotted represent the preventive replacement times corresponding to the measures of cost and 

availability. The concept of decision frontier is used when there are multiple objectives in an 

optimization problem. Usually the multiple objectives compete with one another. Improving the 

value of one objective function results in the compromise of the other objective functions. In our 

problem, the two competing objective functions are to maximize the availability function A(T) and 

to minimize the cost function C(T). The decision frontier given in Figure 3.17 provides the 

maintenance manager with the optimal options for replacement, depending on his/her desired 

trade-off between the optimal values of the two objectives. On this frontier, each point reflects the 

value of the replacement time and its associated long run average cost and long run average 

availability. The decision maker can easily choose from this frontier the replacement time which 

best satisfies his/her preference regarding the conflicting objectives. 

 
                  

Figure 3.16: Preventive replacement time to minimize C(T) and maximize A(T) 
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Figure 3.17: Decision frontier for optimizing two objectives 

For the modified model, suppose we are restricted to maintaining at least a minimum availability 

of 0.9815 (shown in Figure 3.16). In other words, the threshold value (ξ) for A(T) is 0.9815; that 

is, we want to determine a replacement time which will give us a long-run average availability of 

at least 0.9815. This threshold value is used in Figure 3.16 for graphically determining the 

replacement time. It gives us a range of replacement times, [264,276]T ∈ , over which the 

objective function will be optimized. Using Equation (19), we see that our optimal replacement 

time is the 276th hour. 

The above analysis clearly shows how our proposed DTM based CBM models will help 

maintenance managers to make replacement decision either for maximizing long run average 

availability or minimizing long run average cost or both. It also shows us how to handle two 

conflicting objectives while making maintenance decision. A decision frontier is discussed that 
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deals with trade-offs between the long-run average cost and the long-run average availability. It 

provides all options relevant to finding the best trade-off between these two conflicting objectives. 

Another method is also proposed and explained for replacement decision making when the 

maintenance manager is required to maintain a minimum level of long-run average availability.  

3.7 Conclusion 

The models developed in this chapter will help maintenance managers select the optimum 

preventive replacement time for either maximizing long-run average availability or minimizing 

long-run average cost or trade-off between these two objectives taking into account the complete 

condition history of the equipment. A comprehensive analytical investigation has been performed 

and two theorems have been proposed on the nature of the long-run average cost model and the 

long-run average availability model. However, these models do not consider integration of 

imperfect maintenance while making replacement decision and did not consider production 

benefits (revenue), operating costs and maintenance costs simultaneously. In the following 

chapter, we will develop models to investigate the feasibility of considering imperfect maintenance 

while making replacement decision by considering above criterion.  
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4. Integrating Imperfect Maintenance with Replacement Decision 

In chapter 3, we have proposed models for replacement decision only. However, imperfect 

maintenance could be an option to be integrated while making replacement decision.  In this 

chapter, our objective is to develop DTM based CBM models considering such integrations.  

Suppose, we are at the current monitoring time ( it ) and we do not have available resources 

(technical or human) to carry out our replacement action or if we carry out such action at T, it 

would interrupt our ongoing production or there is a chance that we could realize more residual 

life by doing imperfect repair at the current time. For the imperfect preventive maintenance, 

improvement of the health status of the equipment will depend on the history of condition and the 

current age of the equipment. By performing imperfect preventive maintenance at the ith 

monitoring time ( it ), we try to push forward the failure or replacement time (Figure 4.1). As a 

result, the expected residual life 
'

ix  at ti with the imperfect maintenance will be higher than the 

expected residual life ix  without imperfect maintenance. It will allow us to have a greater 

optimum replacement time i.e., we can realize more life from the old equipment. The incremental 

gain of residual life of the equipment obtained from the imperfect preventive maintenance will 

affect the long run average availability, expected maintenance cost, expected operating cost and 

expected total production benefit. 
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Figure 4.1: Increased residual life with imperfect preventive maintenance  

A little effort has been made on considering the imperfect preventive maintenance and preventive 

replacement decision simultaneously, where the history of condition information is used in the 

two-phase failure model. However, there is opportunity to gain more advantages by performing 

the imperfect maintenance, when the equipment starts to deteriorates rapidly. Therefore, it is 

worthwhile to investigate the feasibility of integrating imperfect preventive maintenance with 

preventive replacement decision. This research tries to integrate imperfect preventive maintenance 

with replacement decision in CBM where history of condition information is used through SFP. 

The purpose of performing imperfect preventive maintenance is to improve the health status, so 

that we can delay the replacement and realize more residual life. This improvement of health status 

may allow us to achieve higher long run average availability by delaying the replacement time, 

maximize production benefit and reduces the operating cost. However, this imperfect preventive 

maintenance incurs extra cost and time. Therefore, it is important to investigate the feasibility of 

imperfect preventive maintenance while making a replacement decision to achieve certain 

objectives.  

Here, we propose decision models to integrate condition based imperfect preventive maintenance 

with replacement decision. These decision models will help us to determine whether we will 
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perform imperfect preventive maintenance or not at current monitoring time and where we should 

replace to achieve certain objectives. We will use the following notations throughout this paper.  

Notations:  

:it  time at monitoring point i 

:ix  residual lifetime at monitoring time point it  

:iy  condition information obtained at time it   

:},.....,{ 11 yyyY iii −=  history of condition information up to monitoring point i 

:T   scheduled replacement time, to be optimized 

:*T  optimum replacement time 

:pT  average length of time needed to complete a preventive replacement  

:mT  average length of time needed to complete a imperfect preventive maintenance  

:fT  average length of time needed to complete a failure replacement 

:pC  cost of each preventive replacement  

:mC  cost of each imperfect preventive maintenance 
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:fC   cost of each failure replacement 

:pB  production benefit per unit time  

:)( iii Yxf probability density function of ix  conditional upon iY  

:'

i i if ( x Y )  probability density function of ix  conditional upon iY after imperfect 

preventive maintenance  

( ) :F x Yi i i  cumulative distribution function of  ix  conditional upon iY  

'

i iF ( x Y ) :cumulative distribution function of  ix  conditional upon iY  after imperfect 

preventive maintenance  

( ) :R x Yi i i  reliability function of the residual lifetime, conditional upon iY  

'

i iR ( x Y ) :  reliability function of the residual lifetime, conditional upon iY  after imperfect 

preventive maintenance  

( ) :h x Yi i i  hazard function of the residual lifetime, conditional upon iY  

' ( ) :h x Yi i i  hazard function of the residual lifetime, conditional upon iY  after imperfect 

preventive maintenance  

iµ : mean residual lifetime at monitoring point i  

47 

 



:C(T)  long-run average cost 

:A(T)  long-run average availability  

' :C (T)  long-run average cost after imperfect preventive maintenance 

' :A (T)  long-run average availability after imperfect preventive maintenance 

( )NBE T : expected net benefit 

' ( )NBE T : expected net benefit after imperfect preventive maintenance 

4.1 Model Description 

Our goal is to find whether to perform imperfect preventive maintenance at the ith monitoring time 

( it ) and to find optimum preventive replacement time (T*), if we have the history of condition 

information iY  up to the ith monitoring time ( it ), where 1 2 3 1{ , , ,... , }i i iY y y y y y . 

We can calculate condition based hazard rate from the history of condition information and current 

age of the equipment with the SFP [73]. To find out whether imperfect preventive maintenance is 

needed to perform at the ith monitoring time ( it ) and select optimal preventive replacement time 

(T*), the objective functions we are going to use are maximizing long run average availability A(T) 

and expected net benefit ( )NBE T . ( )NBE T  model is used to consider both the cost and benefit in 

a single model. We can develop CBM models for these objectives considering with and without 

imperfect maintenance and compare the optimum solutions to find whether it is feasible to perform 
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imperfect preventive maintenance at the ith monitoring time ( it ), while making replacement 

decision. To investigate the effects of imperfect maintenance, we propose a new model discussed 

in the following section. 

4.2 Modeling of Improvement of Health Status 

To predict the health status of the equipment after performing imperfect preventive maintenance, 

we propose a model to predict the updated hazard rate function. The updated hazard rate function 

is then used to make the maintenance decision. We expect that after performing imperfect 

preventive maintenance, the health condition will be better and this improvement can be expressed 

with the predicted hazard rate function. We propose to combine the concept available in [2,36,74] 

to model a new hazard rate function, where the effective age after PM will be less than its current 

original age i.e., there is an effective age reduction after imperfect preventive maintenance and the 

deterioration of the system will be improved. As a result, we could use an updated condition 

information associated with the effective age. The effective age right after imperfect preventive 

maintenance is greater than zero and the hazard rate remains as a function of the effective age and 

history of condition information (including the updated condition information obtained from the 

proposed model). 

The condition based hazard rate function obtained by the SFP can be expressed with the following 

equation. 
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( ( ))1( ) ( ) i ix t

i i if x x t e
α ββ − +−= +  and 

( ) 1( ( ) )

( )1
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k

i i k
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e
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η− + − −− +

− + −=
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Using the above concept, we propose to develop the following predicted hazard rate function 

where the effective age of the equipment (
'

i
t ) and its associated condition information (

'

i
y )  can be 

deduced by the following two equations, where   and   are age reduction factor and degradation 

improvement factor, respectively.   

 

 

'

'

1

1

i

i

i

i

t t

y y





 

 
 

We can easily obtain 
'( )i ih x Y from ( )i ih x Y by replacing it  and iy with 

'

i
t  and

'

i
y , respectively. It 

is obvious by the definition of age reduction factor that 0 1  , and it represents impact of 

imperfect maintenance. As the system states after the imperfect maintenance is uncertain, we could 

assume   is a random variable [2]. This age reduction factor depends on maintenance cost and 

real age of the system, and its randomness can be modelled with Beta distribution as it is found to 

be effective to express maintenance improvement factor. Degradation improvement factor ( ) is 

0 1  and can be estimated from the history of condition information.  
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4.3 CBM Models  

Due to the imperfect preventive maintenance, the improved health status of the equipment is 

achieved by the expense of extra cost and time associated with the maintenance action. On the 

other hand, it may provide us some benefits such as increase availability, production benefit and 

decrease operating cost. Therefore, in this research we use following CBM models for maximizing 

long run average availability A(T) or maximizing expected net benefit ( )NBE T  to investigate 

whether it is worthwhile to perform imperfect preventive maintenance at ith monitoring point, 

while making replacement decision.  

4.3.1 Maximizing the Long Run Average Availability 

The purpose of performing imperfect preventive maintenance is to improve the health status, so 

that we can maximize long run average availability by delaying the replacement time. However, 

this imperfect preventive maintenance requires time to carry out the maintenance action. Therefore 

it is required to investigate the feasibility of imperfect preventive maintenance while making a 

replacement decision to maximize long run average availability.  

To develop the decision model for long run average availability with imperfect preventive 

maintenance, we consider imperfect preventive maintenance time (Tm). In this availability model 

we use updated hazard rate function found from proposed age reduction model. 

Expected total uptime 
Long Run Average Availability ( )

Expected total uptime Expected total downtime
A T 


                   

To calculate the expected total uptime and the expected total down time, we need to use the updated 
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residual lifetime distribution. The expected total uptime and the expected total downtime can be 

calculated with following equations: 

Expected total uptime = 
0

1
i i

m

T t T t

' '

i i i m i i i

T

t zf ( z Y )dz (T T t )( f ( z Y )dz )

− −

+ + − − −∫ ∫                                  

Expected total down time =
0

1
i i

m

T t T t

' '

m p i i f i i

T

T T ( f ( z Y )dz ) T f ( z Y )dz )

− −

+ − +∫ ∫                                          

Substituting the expressions of the expected total uptime and the expected total downtime, we 

obtain the following long run average availability model 
' ( )A T with imperfect preventive 

maintenance: 

' '

0'

' '

0

( ) ( )(1 ( ) )

( )  

( ) ( ) ( )(1 ( ) )

i i

m

i i

m

T t T t

i i i m i i i

T

T t T t

i m f i i m i p i i

T

t zf z Y dz T T t f z Y dz

A T

t T z T f z Y dz T T t T f z Y dz

 

 

    



       

 

 
 

From this model, it is obvious that whether it is advisable to perform imperfect preventive 

maintenance at ith monitoring time depends on the imperfect preventive maintenance time (Tm) 

and the improvement of health status. Long run average availability model ( )A T  without imperfect 

preventive maintenance can be calculated by following equation: 

 

 

0 0

0 0

( ) ( )(1 ( ) )

( )  

( ) ( ) ( )(1 ( ) )

i i

i i

T t T t

i i i i i i

T t T t

i f i i i p i i

t zf z Y dz T t f z Y dz

A T

t z T f z Y dz T t T f z Y dz

− −

− −

+ + − −
=

+ + + − + −

∫ ∫

∫ ∫

52 

 



We can calculate the optimum replacement time by maximizing long run average availability for 

each scenario: with and without imperfect maintenance by the above two equations.

 

Suppose the 

optimum replacement time without imperfect preventive maintenance To and optimum 

replacement time after the imperfect preventive maintenance To
’ . Thus the optimum replacement 

time T* is one of them for which we can maximize long run average availability. Following 

equation is used to calculate the optimal replacement time by considering both cases 

simultaneously:

 

 
 

'

* ' '

,

arg max ( ), ( )
o o

o o
T T T

T A T A T



 

From this above model, it is obvious that whether it is feasible to perform imperfect preventive 

maintenance or not, depends on the value of imperfect preventive maintenance time (Tm) and the 

improvement of health status. Without considering this model, it is difficult to make such 

decisions. One of the main drawbacks of this model is that, it does not consider the associated cost 

and the benefits of the maintenance action. Therefore, it is required to develop the following model, 

which considers the maintenance cost along with other costs and benefit. 

4.3.2 Maximizing Expected Net Benefit 

Expected net benefit ( )NBE T is the expected profit, which can be calculated by deducting 

expected cost from the expected production benefit. The purpose of performing imperfect 

preventive maintenance is to improve the health status, so that we can delay the replacement and 

realize more residual life. This improvement of health status will allow us to achieve other 

advantages: minimize cost and maximize production benefit etc. However, this imperfect 
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preventive maintenance incurs extra cost and time. Therefore, it is important to investigate the 

feasibility of imperfect preventive maintenance while making a replacement decision to maximize 

expected net benefit.  In this model, we have the following three components needed to be 

considered: expected maintenance cost, expected production benefit and expected operating cost.  

4.3.2.1 Expected Maintenance Cost 

The expected maintenance cost is the total estimated maintenance cost, which is composed of the 

imperfect preventive maintenance cost (Cm), failure replacement cost (Cf) and preventive 

replacement cost (Cp). The last two cost components are uncertain, and depend on the residual life 

distribution and future maintenance decision. Therefore, the expected maintenance cost with the 

imperfect preventive maintenance  '  MCE T can be expressed with the following equation if we 

consider a planned preventive maintenance at time T : 

                            ' ' '  ( ) ( )MC m p i i f i iE T C C R T t Y C F T t Y      

4.3.2.2 Expected Production Benefit 

The expected production benefit is the total estimated benefit we would incur from an equipment 

during its entire life cycle. The expected production benefit with imperfect preventive maintenance 

has three components: the total benefit up to  ith monitoring time, the additional total benefit after  

ith monitoring time if the equipment survive up to the planned preventive replacement time (T) and 

the additional total benefit after  ith monitoring time if the equipment fails before the planned 

preventive replacement time (T). The later two benefit components are uncertain, and depend on 

the residual life distribution and future maintenance decisions. The expected production benefit 
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with imperfect preventive maintenance  '

PBE T from the equipment can be expressed with the 

following equation if we consider a planned preventive maintenance at T : 

                    ' ' '

0 0

  ( | ) ( )(1 ( ) )
i iT t T t

PB p i p i p i iE T B t B zf z Y dz B T t f z Y dz

 

     
 

4.3.2.3 Expected Operating Cost 

Expected operating cost is the total estimated operating cost such as fuel cost, power consumption 

cost etc. to run the machine.  By doing imperfect preventive maintenance, health status of the 

equipment will be improved. This improvement not only reduces the occurrence of failure but also 

makes the equipment more efficient to operate [36]. Therefore, it is required to develop a model 

that could reflect the saving of operating cost with the maintenance cost. To develop such model 

we consider the following assumptions: 

(i) Before the equipment reaches to the ith monitoring time, the operating cost per unit time 

is constant.  

(ii) After ith monitoring time, the operating cost will be higher. The incremental amount of 

total operating cost is proportional to the cumulative failure rate as the equipment starts 

deteriorating rapidly at this stage. As the equipment gets older, the cumulative failure 

rate will be higher, and equipment requires higher operating cost. 

Suppose Coc is the operating cost per unit time up to ith monitoring time and Co is the incremental 

operating cost coefficient, determined by previous data or maintenance personnel experiences. 

According to the above assumptions, the expected operating cost with imperfect preventive 
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maintenance  '

OCE T  at time T can be derived using the following Figure 4.2, where the expected 

operating cost is the total estimated cost we would incur to operate an equipment during its entire 

life cycle. 

 

 

Figure 4.2: Description of operating cost calculation  

According to this figure,  

                                      area of abcd= i oct C  

                                      area of bgfc= i ocT t C  

                                      area of  cef= '
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  

In this situation the expected operating cost with imperfect preventive maintenance  '

OCE T  also 

has three components: the total operating cost up to  ith monitoring time, the total operating cost 
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after ith monitoring time if the equipment survive up to the planned preventive replacement time 

(T) and the total operating cost after  ith monitoring time if the equipment fails before the planned 

preventive replacement time (T) and the last two components are uncertain as they depend on the 

residual life distribution and future maintenance decision. 

The total operating cost up to ith monitoring time is equal to the area of abcd= i oct C . 

Suppose the probability that the equipment will survive up to time T is 
' ( )i iR T t Y , then the total 

operating cost after the ith monitoring time is equal to the summation of the area under the curve 

bgfc and cef times the probability that the equipment will survive up to time T , which can be 

expressed as follows:  

                                    ' '

0

( ) ( )
iT t

i oc o i i iT t C C h z Y dz R T t Y

        
  

The total operating cost after ith monitoring time if the equipment fails (suppose at z), before the 

planned preventive replacement time (T),  can be expressed as follows : 

                                   
' '

0 0

( ) ( | )
iT tz

oc o i izC C h z Y dz f z Y dz

      
   

Finally, the expected operating cost  '

OCE T  can be obtained by adding all these three cost 

components as follows:  
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   ' ' ' ' '

0 0 0

( ) ( ) ( ) ( | )
i iT t T tz

OC i oc i oc o i i i oc o i iE T t C T t C C h z Y dz R T t Y zC C h z Y dz f z Y dz

                     
  

' '

0

We know that, ( ) ln ( )
iT t

i i ih z Y dz R T t Y



 
 

After plugging the above relationship  '

OCE T  becomes:  

      ' ' ' ' '

0

ln ( ) ( ) ln ( ) ( | )
iT t

OC i oc i oc o i i i i oc i iE T t C T t C C R T t Y R T t Y zC R z Y f z Y dz



        
 

We expect that by doing imperfect preventive maintenance we can have lower hazard rate. As a 

result, our operating cost will be less compare to the operating cost without imperfect preventive 

maintenance for a particular replacement time, because the incremental amount of operating cost 

calculated by the area under the curve ecf will be less. Our above decision model will determine 

whether it is feasible to perform imperfect preventive maintenance as the imperfect preventive 

maintenance at current monitoring time incurs extra maintenance cost. The expected net benefit 

with imperfect preventive maintenance  '

NBE T of the equipment can be expressed with the 

following equation: 

       ' ' ' '

NB PB MC OCE T E T E T E T    

Similarly, we can also calculate the expected net benefit without imperfect preventive maintenance 

( )NBE T using the original residual life. We can calculate the optimum replacement time by 

maximizing expected net benefit for each scenario: with and without imperfect maintenance by 

the above two equations.

 

Suppose the optimum replacement time without imperfect preventive 
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maintenance To and optimum replacement time with the imperfect preventive maintenance
'

oT . 

Thus the optimum replacement time T* is one of them for which we can maximize expected net 

benefit. Following equation is used to calculate the optimal replacement time by considering both 

cases simultaneously: 

 
 

'

* ' '

,

arg max ( ), ( )
o o

NB o NB o
T T T

T E T E T



 

4.4 Conclusion 

We have proposed two DTM based CBM models, one is to maximize availability and the other is 

to maximize net benefit for maintenance decision making. Both models have capability to 

determine whether it is viable to carry out any imperfect maintenance at the current time and to 

determine optimum replacement time. The net benefit model considers both revenue and cost to 

investigate the feasibility of integrating imperfect maintenance and provide us decision by 

optimizing the net benefit or profit. To make these models more robust, we could also consider 

other factors such as inventory, quality and production, but this is beyond the scope of this 

research. In the next chapter, we will summarize our findings and discuss avenues for the future 

research.  
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5. Summary & Future Research 

This thesis reported a number of maintenance models by taking into account the current age and 

the complete condition history of the equipment to make better maintenance decisions. These 

models will help maintenance managers to select the optimum preventive replacement time by 

optimizing required objectives.  

In chapter 3, we have proposed DTM based CBM models for replacement decision making for 

maximizing the long-run average availability and minimizing the long-run average cost. Apart 

from the development of maintenance models, a detailed analytical investigation has been 

performed which studies the nature of the long-run average cost model and the long-run average 

availability model for replacement decisions. From the observations made during the course of 

this investigation, two theorems have been proposed for analyzing the properties of the models 

and calculating the optimum replacement time.  

To illustrate the effectiveness of our proposed models, numerical examples have been presented 

for each scenario in order to show the effectiveness of the proposed methods. Results obtained 

from the multi-objective optimization problem will assist the maintenance manager to apply 

his/her preferences. In practical applications, maintenance managers often need to make 

compromises between cost and availability. If they want to minimize cost, they may choose to live 

with a lower availability. If they want to maximize the availability, they will have to spend more 

money. The decision frontier provides all options relevant to finding the best trade-off between 

these two conflicting objectives. This frontier can be generated ahead of time for the use of the 

maintenance manager. Another method is also proposed and explained for replacement decision 

60 
 



making when the maintenance manager is required to maintain a minimum level of long-run 

average availability. 

However, CBM models discussed in Chapter 3 do not consider imperfect maintenance while 

making replacement decision. Therefore, in chapter 4, we proposed to integrate imperfect 

preventive maintenance with replacement decision in CBM, where history of condition 

information and current age is used through SFP. We proposed to combine the concept given in 

[2, 36, 74] to model a new hazard rate function, where the effective age after PM will be less than 

its current original age i.e., there is an effective age reduction after imperfect preventive 

maintenance and the deterioration of the system will be improved.  This improvement of health 

condition realized from imperfect preventive maintenance may allow us to achieve higher long 

run average availability by delaying the replacement time. It may also increases revenue and 

reduces operating cost. However, imperfect preventive maintenance incurs extra cost and time. 

Therefore, we proposed a number of optimization models to investigate the feasibility of imperfect 

preventive maintenance while making a replacement decision.  

Our proposed models and theorems are limited to apply for CBM decision making, where we could 

have available history of condition information and the predicted hazard rate is a monotonically 

increasing function. In the future, these models can be further studied by integrating other relevant 

objectives and factors such as production, quality, scheduling etc. to see what effects they would 

have on replacement decisions. 
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