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Abstract
Aims/hypothesis: In uncoupling protein-2 (UCP2) knockout (KO) mice, protection of beta cells
from fatty acid exposure is dependent upon transcriptional events mediated by peroxisome
proliferator-activated receptor-α (PPARα).

Methods: PPARα expression was reduced in isolated islets from UCP2KO and wild-type (WT)
mice with siRNA for PPARα (siPPARα) overnight. Some islets were also cultured with oleic or
palmitic acid, then glucose stimulated insulin secretion (GSIS) was measured. Expression of genes
was examined by quantitative RT-PCR or immunoblotting. PPARα activation was assessed by
oligonucleotide consensus sequence binding.

Results: siPPARα treatment reduced PPARα protein expression in KO and WT islets by >85%.
In siPPARα-treated UCP2KO islets, PA but not OA treatment significantly decreased the insulin
response to 16.5 mM glucose. In WT islets, siPPARα treatment did not modify GSIS in PA and OA
exposed groups. In WT islets, PA treatment significantly increased UCP2 mRNA and protein
expression. Both PA and OA treatment significantly increased PPARα expression in UCP2KO and
WT islets but OA treatment augmented PPARα protein expression only in UCP2KO islets (p <
0.05). PA treatment induced carnitine palmitoyltransferase I, acyl CoA oxidase and malonyl CoA
decarboxylase mRNA in UCP2KO islets.

Conclusion: These data show that the negative effect of saturated fatty acid on GSIS is mediated
by PPARα/UCP2. Knockout of UCP2 protects beta-cells from PA exposure. However, in the
absence of both UCP2 and PPARα even a short exposure (24 h) to PA significantly impairs GSIS.

Background
In pancreatic beta cells, free fatty acids (FFA) modulate the
process of glucose-stimulated insulin secretion (GSIS) [1].
Short term exposure of islets to elevated concentrations of
FFA enhances GSIS whereas long term exposure results in
impaired GSIS. Suppressed GSIS after FFA treatment may
be caused by up-regulation in beta cells of uncoupling
protein-2 (UCP2), the expression [2] and activity [3] of

which is increased by FFA. UCPs (numbered 1–3 in order
of their discovery) decrease metabolic efficiency by disso-
ciating ATP synthesis from substrate oxidation in the
mitochondrion [4]. The mechanism is controversial but
may involve promotion of proton or fatty acid transloca-
tion [5]. In beta cells, the physiological role of UCP2 is
not established. However, mild uncoupling stimulated as
a consequence of variation in respiratory rate may be a
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fine modulator of insulin secretion [5,6]. Alternatively,
UCP2 may protect islets from oxidative stress, as has been
shown in brain [7]. Paradoxically, our previous study
showed that feeding a high fat diet to mice lacking UCP2
enhanced beta cell responsiveness to glucose, preserved
islet sensitivity to glucose and increased beta cell mass [8].
This occurred in spite of increased mitochondrial superox-
ide production in the beta cells of these mice [9]. Interest-
ingly, CPTI was strongly induced in UCP2 KO mouse
islets [8] and palmitic acid (PA) oxidation was enhanced
leading to reduced islet triglyceride content [9]. This sug-
gests that enzymes regulating FFA catabolism may be gen-
erally up-regulated in the absence of UCP2.

FFA may affect beta cell function subsequent to changes in
the expression of enzymes related to insulin secretion via
their actions on certain transcription factors. Long chain
unsaturated FFA are natural, preferentially-binding lig-
ands of peroxisome proliferator-activated receptors
(PPARs) but saturated fatty acids like PA can also act as lig-
ands [10]. The existence of both PPARα and PPARγ has
been detected in pancreatic beta cells of both humans and
rodents [11-13]. PPARα induces expression of UCP2 and
enzymes regulating fatty acid oxidation in pancreatic beta
cells [14] via PPAR response elements in target gene pro-
moter regions [15,16]. The induction of UCP2 presuma-
bly negatively influences insulin secretion [14]. However,
other studies suggest that PPARα enhances GSIS [17]. We
considered that the fat oxidation phenotype displayed by
UCP2 KO mice on high fat diet might be related to altered
PPARα transcriptional activity. In skeletal muscle cells,
intracellular generation of reactive oxygen species (ROS)
leads to a down-regulation of PPARα activity [18]. ROS
are elevated in UCP2 KO mice islets [9], leading to the
hypothesis that UCP2 activity can modulate PPARα in
islets.

To investigate this hypothesis, the UCP2 KO mouse pro-
vides a unique model. For studies of loss of function via
knockdown of target gene expression, RNA interference
(RNAi) has been shown to be a powerful gene suppres-
sion tool. In mammalian cells, small interfering RNA
(siRNA) of 19- to 29-nt, inhibit target gene expression in
a sequence-specific manner [19]. In the present study, we
used a PPARα siRNA vector to suppress PPARα gene in
pancreatic beta cells isolated from either UCP2KO or wild
type (WT) mice in the absence or presence of saturated or
monounsaturated FFA. We have also investigated the
effects of these FFA on GSIS and expression of important
lipogenic and lipolytic enzymes in pancreatic beta cells.

Materials and methods
Reagents
Collagenase (type XI), palmitic acid (PA), oleic acid (OA),
BSA (fatty acid free), N-[1-(2,3-dioleoyloxy) propyl]-

N,N,N-trimethylammonium methylsulfate (DOTAP) and
all cell culture supplies (except as noted) were purchased
from Sigma-Aldrich (Oakville, ON, Canada). TranSilent
PPARα siRNA, control vectors and transBinding PPARα
assay kits were purchased from Panomics (Redwood City,
CA, USA). For western blotting, primary antibodies for
PPARα (rabbit polyclonal IgG) and UCP2 were from ABR
(Cedarlane, Burlington, ON, Canada) and Santa Cruz
Biotechnology (Santa Cruz, CA, USA), respectively. β-
actin primary antibody and all secondary antibodies were
from Sigma-Aldrich. TRIzol, trypsin and Opti-MEM were
obtained from Invitrogen (Burlington, ON, Canada).

Animals
Female UCP2 WT or KO mice were bred from lines gener-
ated as described previously and used at 4 months of age
[8]. Protocols were approved by the Animal Care Com-
mittee of the University of Prince Edward Island following
the guidelines of the Canadian Council on Animal Care.

Pancreatic islet isolation and culture
Pancreatic islets were isolated as described previously
[20]. Briefly, the pancreatic duct was perfused with 3 ml of
collagenase (3 mg/ml) in Hanks Balanced Salt Solution.
The pancreas was then chopped into 2-mm pieces and
digested by shaking (150 rpm) for a total of 40 min at
37°C. Islets were enriched by filtration [21] and then
hand picked from the acinar tissue debris. Islets were cul-
tured in Dulbecco's modified Eagle medium (DMEM)
supplemented with 1% antibiotic/antimycotic, 10 mM
HEPES and 8.3 mM glucose. In different wells, defatted
BSA (1%), oleic acid (OA, 0.4 mM + 1% BSA) or palmitic
acid (PA, 0.4 mM + 1% BSA) was added to the isolated
islets for 24 h. In some experiments, PPARα knockdown
with siRNA was achieved as described below.

Islet transfection of plasmid and siRNA vectors
To optimize the tranfection protocol, islets were trans-
fected with a plasmid containing the full length enhanced
green fluorescence protein (EGFP) cDNA (1 μg/μl) using
DOTAP (1:4 – 1:6 V/V of cDNA to DOTAP) following the
protocol of Lakey et al [22]. Transfected islets were then
incubated for 5–6 h in Opti-MEM before adding DMEM
with 20% calf serum. After 24 h, the medium was replaced
by fresh DMEM. After 48 h, the islets were dissociated
using 0.016 % trypsin, adhered to poly-L-lysine coated
glass slides, fixed in 2% glutaraldehyde solution and
assayed for EGFP expression using a fluorescent micro-
scope. The number of fluorescing cells was counted to
estimate transfection efficiency under different experi-
mental conditions. The optimal protocol (with a
cDNA:DOTAP ratio of 1:6) was then used to transfect
islets with PPARα siRNA or control vector (1.5 μg per
transfection).
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Islet GSIS determination
Groups of 3 islets were pre-incubated in 1 ml DMEM with
2.8 mM glucose for 60 min at 37°C, 5% CO2. Islets were
then incubated for 90 min at the indicated glucose con-
centration (2.8, 5.5, 11, 16.5 or 22 mM glucose) to assess
insulin secretion. At the end of a GSIS experiment, the
supernatant was decanted to a fresh tube and insulin was
solubilized from the pelleted islets by adding 3% acetic
acid. All samples were frozen at -20°C until insulin was
quantified by radioimmunoassay.

Western blotting
For PPARα (140 μg of total islet protein) and UCP2 (100
μg of total islet protein) protein expression, pancreatic
islets were lysed with Nonidet P-40 (0.5%) added to the
protein extraction buffer containing protease inhibitor.
Total protein was separated by 12% SDS-PAGE with a 5%
stacking gel. Then, the gel was electrotransferred onto
nitrocellulose membranes (Trans-Blot, Bio-Rad, Toronto,
Canada) and blocked with 5% skim milk for 1 h. The
membrane was incubated in primary antibody (anti-
PPARα, 1:500 or anti-UCP2, 1:2500), diluted in 0.1%
Tween Tris-buffered saline (TTBS) overnight at 4°C. Sub-
sequently, the membrane was incubated in secondary
antibody (PPARα: anti-rabbit IgG HRP conjugate, 1:1000;
UCP2: rabbit anti-goat HRP conjugate, 1:10 000) diluted
in 0.1 % TTBS, for 2 h at room temperature. Specific sig-
nals were detected using enhanced ECL Plus reagent (GE
Healthcare, Mississauga, ON, Canada). Protein loading
was normalized using a house keeping gene antibody
(mouse anti β-actin, 1:10 000 and anti-mouse IgG HRP,
1:5000).

RNA isolation and cDNA synthesis
Total RNA was extracted from 40 isolated islets from WT
or UCP2KO mice by TRIzol isolation technique. Accord-
ing to the manufacturer's instructions, cDNA was synthe-
sized from 1 μg total RNA using a Cloned AMV First-
Strand cDNA Synthesis kit (Invitrogen).

Real time PCR
Real time PCR reactions were carried out using 1 μg of
cDNA. PCR products were quantified fluorometrically
using SYBR Green (Bio-Rad, Toronto, ON, Canada) in a
Rotor Gene RG-3000 (Corbett Life Sciences, Montreal,
PQ, Canada). Glyceraldehyde-3-phosphate dehyrogenase
(GAPDH) expression in each sample was used as a con-
trol. Table 1 shows the sequences of the primers (forward
and reverse) used for amplification. PCR amplification
was performed for 40 cycles with 10 s at 95°C, 15 s at
60°C and 20 s at 72°C. Data were expressed as fold
increase in the specific gene expression as compared with
GAPDH expression.

Nuclear protein extraction and PPARα activity assay
Isolated islets from UCP2KO and WT mice were cultured
as described above. Nuclear extracts were prepared accord-
ing to the kit instructions and kept at -80°C until analysis.
Activated PPARα from nuclear extract was measured by its
DNA binding to immobilized oligonucleotide containing
a PPAR consensus binding site using the TransBinding
PPARα assay kit. Binding was assessed by measured
absorbance at 450 nm.

Fatty acid oxidation
Oxidation of PA was measured in islets from UCP2KO
and WT mice as described [9].

Statistical analysis
All data are expressed as means ± SE. Statistical signifi-
cance was assessed by using either two-way ANOVA fol-
lowed by Tukey-Kramer test or unpaired Student t test. A
P value of less than 0.05 was considered statistically signif-
icant.

Results
Transfecting plasmid DNA with DOTAP in mouse islets
To optimize islet tranfection, the EGFP cDNA:DOTAP
ratio was varied from 1:4 to 1:6 and EGFP expression
examined by fluorescence microscopy. At a DNA/DOTAP
ratio of 1:6 (V/V), DOTAP effectively allowed transfection
of pancreatic islet cells with an EGFP-encoding plasmid
(Figure 1A). When measured by assessing fluorescence of
individual beta cells from trypsin-dispersed islets, the
transfection efficiency was 85 ± 2 % (n = 8). EGFP trans-
fection did not change insulin secretion in response to dif-
ferent glucose concentrations compared to untransfected
islets (Figure 1B). PPARα protein expression was not
modified by DOTAP treatment of the islets (data not
shown).

PPARα knock-down potentiates GSIS
In a first series of experiments, we compared the effects of
siPPARα with those of control vector (siC) on the func-
tion of UCP2 KO and WT isolated pancreatic islets.
Knockdown of PPARα was >85% in both groups (Table 2,
see also below). With increasing glucose concentrations
GSIS was increased in siC treated UCP2KO and WT islets
(Figure 2A &2B). In UCP2KO siPPARα-treated islets, the
stimulatory effect of glucose on insulin secretion was sig-
nificantly potentiated by ~75%, particularly at glucose
concentrations ≥11 mM (Figure 2A, effect of glucose; P <
0.001; effect of siPPARα; P < 0.001). siPPARα treatment
had a less marked effect (~50%) on insulin secretion from
WT isolated islets at 16.5 mM glucose (Figure 2B, effect of
glucose; P < 0.01, effect of siPPARα; P < 0.01).
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Effects of PA and OA on GSIS after siPPARα knockdown
To examine the effects of FFA on GSIS in the absence or
presence of PPARα knockdown, WT or UCP2KO islets
were incubated 24 h following siRNA transfection with PA
(0.4 mM + 1% BSA) or OA (0.4 mM + 1% BSA). Results
for UCP2KO islets are shown in Figure 3A. In UCP2 KO
siC-treated islets, PA and OA did not modify basal insulin
secretion in response to 2.8 mM glucose but increasing
the glucose concentration to 16.5 mM significantly aug-
mented insulin secretion by 4-6-fold in BSA, PA and OA
treated groups. Treatment of UCP2KO islets with siPPARα
significantly increased basal insulin secretion by 2-fold in
the BSA treatment group. In siPPARα treated UCP2KO
islets, 16.5 mM glucose significantly stimulated insulin
secretion by 2-fold in both FFA treatments. However, after
PPARα knockdown the response to 16.5 mM glucose of
UCP2KO islets was significantly reduced ~50% in the PA-
incubated group compared with siC whereas the response
to OA was not altered by PPARα knockdown (Figure 3A).

In siC-WT islets (Figure 3B), FFA did not modify basal or
glucose-stimulated insulin release. Likewise, neither PA
nor OA affected basal insulin secretion in siPPARα-WT
islets. However, in siPPARα-compared to siC-treated WT
islets, insulin secretion in response to 2.8 mM glucose was
significantly decreased by PA. After PPARα knockdown,

and compared to 16.5 mM glucose in siC groups, insulin
release was significantly increased by 25% in the BSA-
treated group. PPARα expression levels had no effect on
GSIS in PA- or OA-cultured WT islets.

Induction of UCP2 by PA
No UCP2 mRNA or protein was detected in UCP2 KO
mouse islets either in BSA- or PA-treated groups (data not
shown). Culture of WT islets in 0.4 mM PA for 24 h caused
a significant increase in UCP2 mRNA (Figure 4A). A simi-
lar but non-significant trend was seen for OA. Culture of
WT islets with siC did not modify UCP2 mRNA expres-
sion (not shown). Culture of WT islets pretreated with siP-
PARα either in BSA or OA caused a non-significant
increase in UCP2 mRNA expression (Figure 4A). How-
ever, there was a significant increase in UCP2 mRNA in
siPPARα-treated WT islets cultured with 0.4 mM PA for 24
h (Figure 4A). UCP2 protein expression was also signifi-
cantly increased in PA- but not OA-treated WT islets (Fig-
ure 4B and 4C).

Effect of UCP2 on PPARα mRNA and protein expression in 
mouse pancreatic islets
To assess the effect of UCP2KO on PPARα mRNA expres-
sion, we performed real-time PCR. PPARα gene expres-
sion was not significantly different between UCP2KO and

Table 1: Sets of primers for real-time PCR analysis

Primer Name Sequence

PPARα forward:
5'GGGCTCTCCCACATCCTT3'
reverse:
5'CCCATTTCGGTAGCAGGTAGTC3'

UCP2 [8] forward:
5'CAGCCAGCGCCCAGTACC3'
reverse:
5'CAATGCGGACGGAGGCAAAGC3'

GAPDH [8] forward:
5'GTGGCAGTGATGGCATGGAC3'
reverse:
5'CAGCACCAGTGGATGCAGGG3'

ACO [53] forward:
5'ATATTTACGTCACGTTTACCCCGG3'
reverse:
5'GGCAGGTCATTCAAGTACGACAC3'

CPT1 [50] forward:
5'TTCACTGTGACCCCAGACGG3'
reverse:
5'AATGGACCAGCCCCATGGAGA3'

MCD [54] forward:
5'TGTTCTGATGGGCCAGGCTTACTT3'
reverse:
5'TAGAGCTTTCTGAAGGCACAGGCT3'

ACC [55] forward:
5'TGGATCCGCTTACAGAGAGACTTTT3'
reverse:
5'GCCGGAGCATCTCATTCG3'
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Optimization of islet transfection protocolFigure 1
Optimization of islet transfection protocol. (A) Intact islets transfected with DOTAP at a DNA/liposome ratio of 1:6 (V/V). 
Transfected cells within the islets appear green. (B) Glucose stimulated insulin release in control (open squares, n = 6) and 
DOTAP-treated islets (closed squares, n = 4). Insulin secretion (as % of total islet content) was measured in response to differ-
ent concentrations of glucose. DOTAP did not modify insulin secretion.
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WT islets (Figure 5A). Incubation of WT and UCP2KO
islets with PA and OA caused a significant induction
(~100-fold) in PPARα mRNA (Figure 5A).

Similar PPARα protein expression was detected in control
islets isolated from both UCP2KO and WT mice (Figure
5B). Treatment of UCP2KO islets with OA caused a 3-fold
increase in PPARα expression (Figure 5B) but the effect of
PA (~2-fold) was not statistically significant (Figure 5B).
In WT islets, treatment with PA and OA did not change
PPARα protein expression (Figure 5B). However, transfec-
tion of isolated islets from UCP2KO mice and WT mice
with siPPARα caused a marked reduction in the amount
of PPARα protein expression (87% and 90% in UCP2 KO
and WT islets, respectively) compared to siC (Table 2).

PPARα activity in WT and UCP2KO islets
PPARα activity was determined by a binding assay using
nuclear protein from WT and UCP2KO islets and an oli-
gonucleotide corresponding to the PPARα consensus
sequence. Treatment of UCP2KO and WT pancreatic islets
with OA activated PPARα to a similar extent (~20-fold,
Figure 6). Treatment of UCP2 KO and WT islets with PA
activated PPARα by ~10-fold but only in UCP2 KO islets
was it statistically significant (Figure 6).

Expression of genes transcriptionally regulated by PPARα
The expression levels of two classical PPARα target genes,
carnitine palmitoyl transferase I (CPTI) and acyl CoA oxi-
dase (ACO) were quantified by real time PCR (Figure
7A,B). CPTI and ACO are rate-limiting enzymes for mito-
chondrial and peroxisomal fatty acid oxidation, respec-
tively. Baseline expression (in BSA-cultured islets) was
similar in both genotypes for all enzymes. The expression
of CPTI was significantly induced (~10-fold) in UCP2KO
and WT islets by PA treatment (Figure 7A). The induction
of CPTI by OA did not achieve statistical significance.
Only in UCP2KO islets exposed to PA was the expression
of ACO was significantly induced by ~10-fold. In addi-
tion, the mRNA of enzymes controlling malonyl CoA con-
centrations, ACC and MCD was quantified (Figure 7C,D).
The expression of MCD was significantly increased in PA-
treated islets of KO mice by ~10-fold but no other signifi-
cant changes were seen.

Fatty acid oxidation in islets
To assess whether changes in gene expression affected
fatty acid oxidation, production of 14CO2 from 14C-PA was
measured. In BSA-cultured islets, fatty acid oxidation was
~2-fold higher in islets from UCP2KO compared with WT
mice. In WT islets, 24 h exposure to PA had no significant
effect on fatty acid oxidation whereas PA increased (P <
0.05) fatty acid oxidation in islets fromUCP2 KO mice
(Figure 8).

Discussion
The present study examined the interaction between
PPARα and UCP2 in pancreatic beta cells in situations of
low and elevated FFA to test the hypothesis that in
UCP2KO mice, protection of beta cells from fatty acid
exposure is dependent upon transcriptional events medi-
ated by PPARα. We compared the endogenous expression
and activity of PPARα as well as the effects of knocking
down PPARα on function of pancreatic islets isolated
from UCP2KO and WT mice, in the presence of PA
(C16:0) and OA (C18:1). We chose PA and OA because
they are the most prevalent saturated and monounsatu-
rated FFA in the circulation. The detrimental effects of sat-
urated FFA on insulin secretion are well known but the
underlying mechanisms are still being elucidated. A high
fat diet or FFA exposure may cause beta cell lipotoxicity
via induction of UCP2 [3,8,9,23]. Notably, null expres-
sion of UCP2 protects beta cells from lipotoxicity [8,9],
possibly by increasing capacity for fatty acid oxidation [9].
This observation raises the possibility that the transcrip-
tion factor PPARα, which regulates expression of genes
involved in fatty acid oxidation, may modulate the effects
of FFA in UCP2KO mouse islets.

Although the physiological role of PPARα in pancreatic
islets has been intensively investigated, the results are con-
flicting. Under normal physiological conditions, beta cell
expression of PPARα exceeds that of PPARγ in rodents
[24]. However, different stimuli (such as fatty acids and
glucose) may change the levels of PPAR subtypes in the
pancreatic islets. The main physiological function of
PPARα is the regulation of lipid uptake and oxidation,
contrasting with that of PPARγ, which promotes uptake
but also storage as triacylglycerides [17]. A beneficial

Table 2: Effect of transilent siRNA PPARα transfection (1.5 μg, overnight) on PPARα expression (relative to β-actin) in islets isolated 
from UCP2 KO mice and WT mice (compared to the transilent siRNA control vector). Data are expressed as means ± sem (n = 4–7).

Groups Control vector Transilent PPARα vector

UCP2 KO 0.349 ± 0.136 0.029 ± 0.02
WT 0.242 ± 0.116 0.024 ± 0.007
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Glucose stimulated insulin release in UCP2 KO (A) and WT (B) isletsFigure 2
Glucose stimulated insulin release in UCP2 KO (A) and WT (B) islets. In UCP2 KO and WT islets, insulin secretion was 
measured in response to different concentrations of glucose in islets transfected with siPPARα (open squares, n = 5–6) or siC 
(closed squares, n = 8–9). *p < 0.05, **p < 0.01, ***p < 0.001 comparing response to glucose in siPPARα vs siC islets.
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Effect of siPPARα and FFA on glucose-stimulated insulin secretionFigure 3
Effect of siPPARα and FFA on glucose-stimulated insulin secretion. Glucose-stimulated insulin release by UCP2 KO (A) and 
WT islets (B) after treatment with either control medium (defatted BSA, 1%), palmitic acid (PA, 0.4 mM + BSA) or oleic acid 
(OA, 0.4 mM + BSA) for 24 h in the presence of transilent siRNA control vector (open bars, n = 6) or transilent siPPARα in 
UCP2 KO islets (closed bars, n = 6). Two-way ANOVA performed on insulin release in response to 2.8 or 16.5 mM glucose 
showed a significant difference among treatment groups (P < 0.0001). Results of Tukey-Kramer multiple comparison test at 
each treatment showed a significant difference between siC and si PPARα (*P < 0.05 for effect of 16.5 mM glucose compared 
with matched 2.8 mM glucose groups; # P < 0.01 for effect of si PPARα).
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The expression of UCP2 mRNA (A) and UCP2 protein expression (B and C) in WT isletsFigure 4
The expression of UCP2 mRNA (A) and UCP2 protein expression (B and C) in WT islets. UCP2 expression was determined 
by quantitative RT-PCR in WT islets after 24 h incubation with either BSA (open bars), OA (horizontal bars) or PA (closed 
bars) and also in those pre-treated with siPPARα then cultured with BSA (vertical bars), OA (left-hatched bars) and PA (right-
hatched bars). The same treatment and incubation time was applied to detect the UCP2 protein expression by Western blot-
ting. Treatment of WT islets with PA for 24 h significantly increased UCP2 mRNA and protein expression (*P < 0.05 vs BSA or 
siBSA). Data are presented as means ± SE, N = 5 or greater for each group.
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The effects of BSA, PA or OA on PPARα mRNA (A) and protein expression (B)Figure 5
The effects of BSA, PA or OA on PPARα mRNA (A) and protein expression (B). Groups of islets isolated from KO and/or 
WT mice were exposed to control media (BSA, open bars), PA (closed bars) or OA (dashed bars) for 24 h. Treatment of WT 
and KO islets with PA and OA significantly increased PPARα mRNA expression compared to BSA (*P < 0.05). PPARα protein 
expression was significantly increased only in KO islets treated with OA (*P < 0.05). Two-way ANOVA performed on PPARα 
protein expression in KO and WT islets showed a significant difference between two genotypes (P < 0.05). Data are presented 
as means ± SE, N = 4–6 for each group.
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effect of PPARα on the function of pancreatic islets is not
supported by the study of Tordjman et al [14], who
showed that PPARα ectopically expressed in insulinoma
cells could induce lipid accumulation along with a signif-
icant reduction in GSIS, possibly through induction of
UCP2. Conversely, others [17,25] have shown that PPARα
has a protective role in islets under conditions of fatty acid
treatment or in ob/ob mice [26] and can promote insulin
secretion.

To distinguish the acute effects of PPARα on the function
of pancreatic islets, we chose the short-term gene suppres-
sion by siRNA. In our study, siPPARα potentiated GSIS
both in UCP2KO and WT islets cultured under control
conditions. This finding supports the data of others show-

ing that PPARα inhibits GSIS [27] but suggests that UCP2
[14] is not the only mechanism through which PPARα
exerts its negative effects. This is supported by our data
showing that siPPARα did not reduce UCP2 mRNA
expression in WT islets. The control conditions in these
experiments resulted in exposing the beta cells to very low
concentrations of FFA because the DMEM was serum-free
and contained 1% defatted BSA. Lowering FFA reduces
GSIS [28], possibly by reducing intracellular lipid-derived
signaling molecules that stimulate insulin secretion [29].
Reducing PPARα expression would therefore be predicted
to enhance GSIS by decreasing fatty acid oxidation and
allow accumulation of the stimulatory mediators. How-
ever, the effect of siPPARα on basal insulin secretion and
GSIS was more pronounced in UCP2KO compared to WT

Activation of PPARα by PA and OA in pancreatic isletsFigure 6
Activation of PPARα by PA and OA in pancreatic islets. KO and WT islets were cultured for 24 with BSA, PA or OA, then 
nuclear extract was prepared and PPARα activity was measured. Treatment of KO and WT islets with OA significantly 
increased the PPARα activity (*P < 0.05 vs BSA). The activity of PPARα significantly increased only in KO islets treated with PA 
(*P < 0.05) compared to BSA. Data are presented as means ± SE, N = 4 or greater for each group.
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mRNA expression of lipolytic (CPT1, ACO and MCD) and lipogenic (ACC) enzymes were measured by quantitative RT-PCR in KO and WT islets after 24 h incubation with either BSA (open bars), PA (closed bars) or OA (dashed bars)Figure 7
mRNA expression of lipolytic (CPT1, ACO and MCD) and lipogenic (ACC) enzymes were measured by quantitative RT-PCR 
in KO and WT islets after 24 h incubation with either BSA (open bars), PA (closed bars) or OA (dashed bars). Baseline expres-
sion (BSA-cultured islets) was similar in both genotypes for all enzymes. The expression of CPTI was significantly induced (*P < 
0.05 vs BSA) in UCP2 KO and WT islets by PA treatment (7A). The expression of ACO and MCD was significantly increased 
only in KO islets treated with PA (7B & 7D). In KO and WT islets, the expression of ACC was not affected by PA or OA 
(7C). Data are presented as means ± SE, N = 6–8 for each group.
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islets. This may be due to increased beta cell ATP at both
basal and stimulated glucose concentrations in the
UCP2KO mice [30] or it may reflect other unknown ben-
eficial effects of decreasing UCP2 expression. Another
recent study showed that beta cell specific overexpression
of UCP2 did not decrease GSIS [31]. The reasons for this
discrepancy (the effects of UCP2 KO vs UCP2 overexpres-
sion on GSIS) are not clear given that several other inde-
pendent groups have shown regulatory effects of UCP2 on
insulin secretion using both over- and null-expression
models [32-35].

The expression level of PPARα modified the effect of PA
on GSIS in UCP2KO but not WT islets. Whereas in siC
islets, PA enhanced insulin secretion from UCP2KO beta
cells as noted previously [8,9], the knockdown of PPARα
eliminated this effect. This suggests that the potentiating
effect of PA on GSIS in UCP2KO mice is mediated by
PPARα. Under the same conditions OA did not change
insulin secretion in response to 16.5 mM glucose. Others
have also noted differences in effects on insulin secretion
of saturated versus monounsaturated fatty acids [36]. The
lack of effect of PA treatment in WT islets, independent of
PPARα status, is further evidence of an interaction
between UCP2 and PPARα. Failure to inhibit insulin
secretion in WT beta cells occurred in spite of UCP2
mRNA and protein induction by PA in these islets. Also,
because siPPARα did not affect UCP2 expression in WT
islets basally or with fatty acid exposure, other mecha-
nisms for fatty acid-mediated transcriptional regulation of
UCP2 must exist. One possibility is PPARγ[37], which has
been implicated previously in induction of UCP2 after
fatty acid exposure [3]. Interestingly, hyperlipidemic PPA-
RαKO ob/ob mice had impaired GSIS and low expression
of enzymes involved in fatty acid oxidation [26].
Although moderate levels of esterified intracellular lipids
may benefit GSIS, impairment of fatty acid oxidation can
lead to increased ceramide formation [36] and/or activa-
tion of PPARγ (to compensate for the lack of PPARα,
[38]). Whatever the case, the expression level of PPARα
appears to determine whether PA potentiates or impairs
GSIS in UCP2 KO islets. It is also important to mention
that UCP2 may increase fatty acid cycling; therefore, an
increase in UCP2 does not necessarily translate into an
increase in fatty acid oxidation if it exports FA from the
mitochondrial matrix before they can be oxidized, as has
been proposed for UCP3 [39,40].

The altered effects of PPARα in UCP2 KO mice might be
caused by either a change in expression levels or a change
in activity of the transcription factor. However, absence of
UCP2 did not modify baseline PPARα protein expression
or basal nuclear translocation compared to WT islets. PA
and OA increased both PPARα expression and transactiva-
tion in UCP2 KO islets but had a significant effect only on

transactivation in WT islets, such that total activation was
similar between the genotypes. Monounsaturated fatty
acids are known to be more effective ligands of PPARα
than saturated fatty acids [41] and this was true in this
study also. The similar activation levels of PPARα by PA in
UCP2KO and WT islets, yet a clear PPARα-dependence of
PA to exert beneficial effects on GSIS in UCP2 seems par-
adoxical. One explanation is that the sensitivity to PPARα
of target genes is enhanced in the absence of UCP2 by an
as yet undefined effect on co-activators or -repressors of
PPARα. Moreover, interaction of PPARα co-activators is
ligand-dependent [42], which might explain differential
effects of PA and OA on gene transcription, as we describe
below.

Enhanced fatty acid oxidation has been speculated to
limit formation of toxic lipid byproducts during chronic
exposure to saturated fatty acids in UCP2KO mouse islets
[9]. In this study, PA oxidation was enhanced in control
islets from UCP2KO mice and increased further after cul-
ture of islets in PA for 24 h. Carnitine palmitoyltransferase
I (CPTI) catalyzes the transfer of fatty acids from CoA to
carnitine, allowing the initial transport of fatty acids into
mitochondria for β-oxidation. Its activity and expression
are highly regulated and rate limiting. CPTI gene expres-
sion is regulated by PPARα [43]. Although gene expres-
sion levels do not necessarily equate to functional activity
it is of interest to point out that UCP2KO and WT islets
treated with PA had similarly elevated CPTI mRNA expres-
sion. Unless there are differences in translation between
the two genotypes, then CPTI expression cannot account
for increased fatty acid oxidation in these experiments.
This is in contrast to the result of [9], but FFA exposure
was different in that study (4.5 months) compared to the
present study (24 h).

Malonyl-CoA is a metabolic signaling molecule that regu-
lates lipid partitioning through its inhibitory action on
CPTI. Malonyl-CoA levels change in different physiologi-
cal and pathological conditions [44]. For example, in
ischemia- reperfusion, which is associated with a signifi-
cant increase in fatty acid oxidation, malonyl-CoA levels
decrease rapidly [45]. Inhibition of CPTI by malonyl-CoA
leads to a decrease in the uptake of fatty acids into the
mitochondria, which results in decreasing mitochondrial
fatty acid oxidation [46]. Malonyl-CoA concentrations
can be regulated through synthesis, degradation or both.
Acetyl CoA carboxylase (ACC) is the rate-limiting enzyme
in the synthesis and regulation of malonyl-CoA. In our
study the ACC expression was not different among
UCP2KO or WT islets. In contrast, we found that malonyl-
CoA decarboxylase (MCD) expression in UCP2 KO islets
was induced by 24 h PA treatment, which would be pre-
dicted to reduce malonyl-CoA levels and enhance fatty
acid oxidation, as has been found in muscle [47]. Also,
Page 13 of 16
(page number not for citation purposes)



Nutrition & Metabolism 2007, 4:6 http://www.nutritionandmetabolism.com/content/4/1/6
conditions that increase hepatic fatty acid oxidation (such
as streptozotocin-induced diabetes or a 48 h fast) increase
MCD activity [48]. In disease states such as hyperlipi-
demia and diabetes, the important role of MCD in the reg-
ulation of fatty acid metabolism, through altering the
cytoplasmic levels of malonyl-CoA, is known [49].

Finally, fatty acid oxidation outside of the mitochondrion
may also be increased to account for the changes seen in
UCP2KO mouse islets. Acyl CoA oxidase (ACO) catalyzes
the first step in peroxisomal fatty acid oxidation [50].
Although the basal expression of ACO was similar in
UCP2KO vs WT islets, only in the absence of UCP2 did PA
induce this enzyme, suggesting that peroxisomal fatty acid
oxidation may also contribute to enhanced fatty acid oxi-
dation in UCP2KO islets.

Conclusion
In the absence of UCP2, the effects of PPARα activation on
transcription of fatty acid oxidation-promoting enzymes
(ACO, CPT-I and MCD) precipitate an intracellular envi-
ronment favouring fatty acid oxidation to reduce lipotox-
icity and enhance GSIS in the presence of saturated fatty
acid. In the short term, this effect appears to be mediated
mainly by differential induction of ACO and MCD,
whereas in the longer term CPTI may also be increased in
UCP2KO relative to WT islets [8]. Conversely, knockdown
of PPARα in UCP2KO islets leaves them vulnerable to det-
rimental effects of saturated fatty acids. This could occur if
MCD and ACO were not up-regulated, reducing fatty acid
oxidative capacity. Notably, MCD expression is elevated
in heart of PPARα KO mice, concomitant with impaired
fatty acid oxidation [51]. This hypothesis could be exam-

Fatty acid oxidation in islets from WT and UCP2 KO miceFigure 8
Fatty acid oxidation in islets from WT and UCP2 KO mice. Islets cultured 24 h in control (1% BSA, open bars) or PA (0.4 mM 
+ BSA, closed bars) were incubated with 14C-PA and 2.8 mM glucose for 2 h and the evolved 14CO2 was used to estimate fatty 
acid oxidation (n = 8 for all). * P < 0.05 comparing UCP2 KO to WT islets.
Page 14 of 16
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ined in islets in future. In fact very recently, the effective-
ness of MCD inhibitors on ischemic heart disease have
been reported [52]. Moreover, because PPARα expression
and activation were similar in UCP2KO and WT islets, and
because OA induced PPARα but did not promote GSIS,
we suggest that other molecules, yet to be identified, are
also involved in regulating the differential response of
UCP2KO islets to PA.
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