
Action Selection for Hammer Shots in Curling: Optimization of
Non-convex Continuous Actions With Stochastic Action Outcomes

by

Zaheen Farraz Ahmad

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Zaheen Farraz Ahmad, 2017

Abstract

Optimal decision making in the face of uncertainty is an active area of research in artificial

intelligence. In this thesis, I present the sport of curling as a novel application domain for

research in optimal decision making. I focus on one aspect of the sport, the hammer shot, the

last shot taken before a score is given, and how selecting this shot can be modelled as a low-

dimensional optimization problem with a continuous action space and stochastic transitions.

I explore the unique research challenges that are brought forth when optimizing in a setting

where there is uncertainty in the action outcomes. I then survey several existing optimization

strategies and describe a new optimization algorithm called Delaunay Sampling, adapted

from a method based on Delaunay triangulation. I compare the performance of Delaunay

Sampling with the other algorithms using our curling physics simulator and show that

it outperforms these other algorithms. I also show that, with a few caveats, Delaunay

Sampling exceeds the performance of Olympic-level humans when selecting strategies for

hammer shots.

ii

To my family

because otherwise my mom would never let me hear the end of it.

iii

Acknowledgements

The utmost of gratitudes go to my supervisor Robert C. Holte for his mentorship and

guidance throughout the span of my degree. I will always be thankful to him for providing

me with the freedom to explore and to learn while also giving me direction when I needed

it.

I would also like to thank Michael Bowling for all the advice he gave me and for his work

as a collaborator and on my committee. I would also like express my gratitude to Mark

Lewis for being a member of my committee and for his insight.

Much of the work done in this thesis is part of a larger project and I would like to

thank the other members of the project, Timothy Yee and Viliam Lisy. I would also like to

particularly thank Marlos Machado. He has been an invaluable friend in the last few years,

both academically and personally. I have had many other friends that have been there for

me throughout my Master’s program, to whom I am grateful, but I would like to notably

thank Sheehan Khan and Richard Valenzano.

Finally, I would like to thank my parents. They have continually been supportive of me

and they never let me quit when I was down. I could never have done this without them.

iv

Table of Contents

1 Introduction 1
1.1 Problem Definition . 1
1.2 Thesis Contributions . 4
1.3 Outline . 4

2 Background 6
2.1 Optimization . 6

2.1.1 Convex Optimization . 7
2.1.2 Non-convex Optimization . 7

2.2 Curling . 8
2.2.1 Ends . 8
2.2.2 Scoring . 9
2.2.3 Shots . 10
2.2.4 The Hammer Shot . 11

2.3 Modelling the Hammer Shot . 11
2.4 Objective Function . 12

3 Algorithms 14
3.1 Hierarchical Optimistic Optimization . 14

3.1.1 The Continuous-Bandit Problem . 14
3.1.2 HOO . 15

3.2 Kernel Regression UCT . 17
3.2.1 Kernel Regression . 18
3.2.2 KR-UCT . 18

3.3 Gaussian Process Optimization . 19
3.3.1 Gaussian Processes . 20
3.3.2 Acquisition Functions . 21

3.4 Covariance Matrix Adaptation - Evolution Strategy 24
3.4.1 Sampling . 24
3.4.2 Shifting the Mean . 24
3.4.3 Updating the Covariance Matrix . 25

3.5 Particle Swarm Optimization . 27

4 Delaunay Sampling 30
4.1 Delaunay Triangulation . 30
4.2 Sampling with Delaunay Triangulation . 32

4.2.1 Original Algorithm . 32
4.2.2 Adaptation for Curling . 33

4.3 Selecting the Optimal Point . 35
4.4 Preliminary Analysis . 37

4.4.1 The Phases of DS . 37
4.4.2 Parameter Sensitivity . 38

4.5 Normalized Delaunay Sampling . 38

5 Experiments and Results 42
5.1 Experimental Design . 42
5.2 Analysis . 44

v

6 Comparing to Humans 49
6.1 Cases NDS Exhibits Improvement . 51

6.1.1 Case 1 . 51
6.1.2 Case 2 . 52
6.1.3 Case 3 . 53
6.1.4 Case 4 . 53
6.1.5 Case 5 . 54

6.2 Cases NDS Exhibited Deterioration . 55
6.2.1 Case 6 . 55
6.2.2 Case 7 . 56
6.2.3 Case 8 . 57
6.2.4 Case 9 . 58

6.3 Caveats . 59

7 Related Work 61
7.1 Optimization Problems . 61

7.1.1 Lipschitz Optimization . 61
7.1.2 Other Optimization Approaches . 62

7.2 Resource Allocation Problems . 63
7.2.1 Budgeted Learning . 63
7.2.2 Pure Exploration in Multi-Armed Bandits 63

7.3 Curling and Billiards . 64

8 Conclusion 65
8.1 Summary . 65
8.2 Limitations . 66
8.3 Final Word . 67

Bibliography 68

vi

List of Tables

4.1 Average ∆wp of the phases of DS separately and together. 38
4.2 The performance of DS with different values of δ. 38

5.1 Average ∆wp for algorithms initialized with uniform sample grid. 44
5.2 Average ∆wp for algorithms initialized with random samples. 44
5.3 NDS with smaller sampling budgets. 45
5.4 Average ∆wp of PSO after 20 iterations with different number of particles. . . 46
5.5 Average ∆wp achieved with different noise variance. 47

6.1 Average ∆wp for NDS and Humans . 49

vii

List of Figures

1.1 Noise-free heatmap of hammer shot outcomes. 2
1.2 Noisy heatmap of hammer shot outcomes. 3

2.1 Example of a convex 1-dimensional function 6
2.2 Example of a non-convex 1-dimensional function 7
2.3 Diagram of sheet (not to scale.) . 8
2.4 Diagram of the house with 4 rocks in play. 9
2.5 State of the ice where Yellow team scores 1. 10
2.6 Path of rock showing curl. 10

3.1 Iteration 1 of HOO . 16
3.2 Iteration 2 of HOO . 16
3.3 Iteration 3 of HOO . 17
3.4 Predictions of f(x) drawn from a GP prior (a) and posterior (b). 20
3.5 GPO Step 1. 22
3.6 GPO Step 2. 23
3.7 GPO Step 3. 23
3.8 CMA Step 1. 26
3.9 CMA Step 2. 26
3.10 CMA Step 3. 27
3.11 Step 1 of PSO with 2 particles where f(x(A)) > f(x(B)). 28
3.12 Step 2 of PSO with 2 particles where f(x(B)) > f(x(A)) 28
3.13 Step 3 of PSO with 2 particles where f(x(B)) > f(x(A)). 29

4.1 Point set triangulation. 31
4.2 Different triangulations using 5 points . 31
4.3 Heatmap illustrating the form of a non-convex 2-dimensional function 36
4.4 Initial step of DS. 36
4.5 Sampling phase of DS. 37
4.6 Selection of arms for UCB . 37
4.7 The effect of anisotropic scaling on Delaunay triangulation. 39
4.8 The effect of anisotropic scaling on the incenters of the triangles 40

5.1 Examples of 1-dimensional versions of our objective function. 47

6.1 NDS advantage over humans for each state. 50
6.2 NDS v Humans Case 1 . 51
6.3 NDS v Humans Case 2 . 52
6.4 NDS v Humans Case 3 . 53
6.5 NSD v Humans Case 4 . 54
6.6 NDS v Humans Case 5 . 55
6.7 NDS v Humans Case 6 . 56
6.8 NDS v Humans Case 7 . 57
6.9 NDS v Humans Case 8 . 57
6.10 NDS v Humans Case 9 . 58

viii

Chapter 1

Introduction

1.1 Problem Definition

Sequential decision making is an active area of research in artificial intelligence. Adversarial

games are a common test bed for designing agents to solve decision making problems. In

fact, success in developing artificial intelligence agents that can beat humans in checkers,

chess and, more recently, poker and go were great milestones for research in the field. Curling

is an Olympic ice sport that can be modelled as a two-player adversarial game. Unlike other

games such as chess and poker, curling possesses a continuous state and action space. In

addition, execution error in the actions provides the added difficulty of stochastic transitions.

Using curling as a domain for AI research gives rise to a new problem: sequential decision

making in the face of action uncertainty - a new twist to an old game, so to speak.

A game of curling is played between two teams. The game is played in a number of

rounds (usually 8 or 10) called “ends”. In each end, teams alternate sliding granite rocks

down a sheet of ice towards a target. When each team has thrown 8 rocks, the score for

that end is determined and added to the teams’ scores from the previous ends. The rocks

are then removed from the playing surface and the next end begins. The team with the

highest score after the final end is the winner.

As a consequence of scoring each end separately and clearing the sheet after each end

is finished, the strategy for any end can be thought of as independent from the strategy

of the other ends. While it is true that during each end the objective should be to choose

actions taking into consideration the long-term effects that increase the chances of winning

the game overall, this can be achieved while keeping the strategies for the ends separate if

the actions are evaluated in terms of the overall effect on the game. Therefore, choosing a

strategy for each end can be viewed as a separate sequential decision making problem.

In most approaches to finding a solution for a problem of this nature, the problem is

modelled as a game tree. The tree comprises all the possible sequences of decisions that can

be made. Each node of the tree is a decision point where the branches from a node are the

1

possible actions that can be taken at a decision point. Each path from the root of the tree

to the leaf is a possible sequence of decisions. The objective of AI agents for these decision

making problems is to search for the best or optimal sequence in the tree. In games where

the possible set of actions is discrete and small, it is possible, given current hardware and

technology, to evaluate every possible sequence when searching for the optimal sequence. In

games with a larger space of actions, it can become intractable to enumerate every possible

sequence of actions. Agents for these settings rely on algorithms that learn to prune out

suboptimal sequence to find the optimal sequence. However, typical algorithms applicable

for games with discrete move sets cannot be applied to curling effectively.

Due to the continuous nature of the actions in curling, each decision point in the game

tree for curling possesses an infinite set of possible actions. This is further compounded by

the stochastic uncertainty of the actions. This results in a progressively widening tree with

an infinite branching structure. Methods that rely on a small number of discrete actions

cannot be applied directly to the continuous setting.

Figure 1.1: Noise-free heatmap of hammer shot outcomes.

To simplify this difficult problem, in this thesis we only look at the final decision point

of the game tree for curling. This decision point reflects the last shot of an end called the

hammer shot. After an action is taken for a hammer shot, a score is observed. The problem

is thus reduced to a low-dimensional optimization problem. Although it is only the final

decision to be made in an end, the hammer shot is of the utmost importance because it

largely determines the outcome of the end. In fact, the strategy for either team in an end

is mainly influenced by the hammer shot — the team possessing the hammer takes actions

2

Figure 1.2: Noisy heatmap of hammer shot outcomes.

throughout the end to set up a good final shot situation while the other team takes actions

to prevent it. This focus on the hammer shot removes the need to explicitly reason about

the opponent, while still leaving the substantial challenge of efficiently identifying a near-

optimal action in a continuous state and action space with stochastic action outcomes and

a highly non-convex scoring function. This work is part of a larger research project that

uses search methods to select all the shots in an end [Yee et al., 2016] and, ultimately, to

plan an entire game.

To illustrate the difficult nature of even this restricted optimization problem, Figure 1.1

shows a heatmap for a typical hammer shot. The shading represents the score — a darker

shade is a higher score for the team throwing the hammer shot — as a function of the two

main continuous action parameters, angle (θ, the x-axis) and velocity (v, the y-axis). This

is a deterministic heatmap: it shows the exact score if shot (θ, v) is executed without error.

Finding an optimal shot means finding the darkest parts of this heatmap. As can be seen

they constitute a very small portion of the action space and are often surrounded by less

desirable outcomes (light regions). Since action execution is stochastic, the expected value

of shot (θ, v) is the average noise-free values of shots, (θ′, v′), weighted by p((θ′, v′)|(θ, v)),
the probability that (θ′, v′) is executed given that (θ, v) is the intended shot. This essentially

blurs the deterministic heatmap (illustrated in Figure 1.2), making the darkest regions even

smaller (only the central region of the rectangular region where θ ≈ −0.035 and v ≈ 2000

is optimal in expected value in the heatmap shown in Figure 1.2).

3

1.2 Thesis Contributions

This research makes two main contributions. The first is to adapt Surovik and Scheeres

[2015]’s non-convex optimization method to our problem. They use Delaunay triangulation

on a set of sampled points to discretize the continuous action space and focus subsequent

sampling in regions that appear promising. Our contribution is to add a final step, in which

a shot is selected by treating the most promising regions as “arms” in a multi-armed bandit

problem. We call our method Delaunay Sampling (DS).

The second contribution is to evaluate the effectiveness, for hammer shot selection, of DS

and a representative set of existing algorithms for non-convex function optimization. For this

we use a curling simulator and actual hammer shot situations from the 2010 Olympic Winter

Games. DS is shown to be computationally cheaper while achieving superior results to

these established algorithms. We also compare DS’s average expected value on the Olympic

hammer shot situations with the average outcome achieved by Olympic-level curling teams

themselves, showing a statistically significant improvement over these human experts, with

some caveats.

One particular insight gained from this research highlights the challenges that arise

when trying to optimize decision making in a setting where the uncertainty lies in the

execution of the action as opposed to uncertainty in the value observed by taking an action.

Some optimization approaches that account for uncertainty only focus on situations where

it is modelled as the latter. As a consequence, it is difficult to implement in our setting,

optimization approaches that explicitly require the knowledge of the noise in the observations

beforehand. The novel method that we describe in this research is one way to overcome this

challenge and does so by not explicitly modelling the noise but by implicitly learning the

variance in the action space of the function being optimized.

A final insight garnered from our experimental results is that humans sometimes have

difficulty in recognizing optimal actions in decision making situations such as curling. The

experiments show that humans, at times, incorrectly assess the expectations of stochastic

actions and that AI techniques can choose strategies that are better than what humans

would choose.

1.3 Outline

This thesis proceeds as follows. Chapter 2 provides the necessary background on function

optimization and describes the knowledge of curling needed to understand the work in this

thesis. It also briefly describes the curling simulator that we used to model and explore the

problem.

Chapter 3 provides a description of the other approaches we examined in our investiga-

4

tion of the optimization problem. Chapter 4 gives a thorough discussion of the Delaunay

Sampling algorithm that we adapted for the application of optimization of hammer shots in

curling.

Chapter 5 describes the experiments that have been performed to study the performance

of our adapted algorithm and to compare them with the performance of the existing algo-

rithms. Chapter 6 compares the performance of our algorithm to human standards and

explores several cases where we observed large differences between the performances of DS

and humans.

Chapter 7 briefly goes through various works that are similar to our problem and other

related works. Chapter 8 concludes this thesis, providing a summary of our findings and

what we have learned and lists out possible future directions for this research.

5

Chapter 2

Background

This chapter covers the background knowledge essential to understanding the later parts of

the thesis.

2.1 Optimization

In computing science and mathematics an optimization problem requires one to find the

minimum or maximum solution to a function [Boyd and Vandenberghe, 2004]. The require-

ment for the minimum or maximum depends on the application of the optimization problem

but for this thesis we will focus on finding the maximal solution.

−4 −2 2

−4

−2

2

4

6

x

f(x)

Figure 2.1: Example of a convex 1-dimensional function

Suppose there is a continuous function f : X → R defined over the domain X ⊆ Rd

where d is the dimensionality of the domain i.e., the number of variables of the function.

Optimization of f seeks to find a point x∗ ∈ X such that for any x ∈ X , we have f(x∗) ≥
f(x). For the objective function f(x) being optimized, x is called the optimization variable

and x∗ is known as the optimum solution. Figure 2.1 illustrates a simple 1-dimensional

function and the optimum point of this function, which is marked as a cross. In this figure,

the optimum point of this function is at x = −1 with a solution of f(x) = 5.

6

3 3.5 4 4.5 5 5.5 6

−0.4

−0.2

0.2

0.4

0.6

x

f(x)

Figure 2.2: Example of a non-convex 1-dimensional function

In artificial intelligence, optimization is used in various applications such as parameter

tuning for machine learning algorithms [Snoek et al., 2012] and control of robot movements

[Lizotte et al., 2007]. The importance lays in modelling a certain problem as an optimization

problem and choosing the right approach to solving it. The approach used in solving a

specific optimization problem is mainly determined by the properties of that optimization

problem.

2.1.1 Convex Optimization

A convex optimization problem is one that maximizes a function f where f : X → R is a

convex continuous function. That is, the function satisfies the constraint

∀x1,x2 ∈ X , 0 ≤ α ≤ 1 : f(αx1 + [1− α]x2) ≥ αf(x1) + [1− α]f(x2) (2.1)

The function plotted in Figure 2.1 is a convex function — a straight line between any two

points of the function lies entirely below the function. Convex optimization problems can

be quickly solved using linear programming (depending on the function), gradient descent

methods or quasi-Newton methods [Boyd and Vandenberghe, 2004]. However, not all prob-

lems can be easily transformed into a convex optimization problem and we must rely on

other methods to solve them.

2.1.2 Non-convex Optimization

When an unknown function is possibly not convex, finding the optimum point of such a

function is known as non-convex optimization. Although there are several methods for non-

convex optimization, unfortunately, there are no reliably effective algorithms to tractably

solve such problems [Boyd and Vandenberghe, 2004].

7

Local Optimization

In non-convex functions, there may exist several points that are local optima. A locally

optimum point maximizes the objective function with respect to the neighborhood of points

near it. That is, a point x is a local optimum of a function if

∃δ > 0 ∀x′ ∈ X , ||x− x′|| ≤ δ =⇒ f(x) ≥ f(x′). (2.2)

However, it is not guaranteed to be the maximum point over the entire domain of the func-

tion. Local optimization techniques seek to find a local optimum at the cost of finding the

optimum point x∗. These techniques are normally used if a local solution to an optimization

problem is “good enough” with respect to the requirements threshold. Figure 2.2 shows an

example of a non-convex function with three local optima and 1 global optimum point. The

point marked with a cross is the global optimum. The points marked with dots are local

optima.

Global Optimization

Global optimization, in contrast to local optimization, seeks the true global optimum value

of the function at the cost of greater computation times. Typically, global optimization

techniques are used in cases where the number of variables to be optimized are small as

solving problems with larger dimensions may be intractable. However, global optimization

techniques may be the best approach to non-convex optimization if the benefit of knowing

the true global optimum outweighs the cost of computation time.

2.2 Curling

Curling is an Olympic ice-sport that is popular in several countries, especially in Canada. A

game of curling is played between two teams of players and typically lasts 10 rounds called

ends. At the conclusion of an end, points are tallied. The team with the highest cumulative

points after all ends have been played is declared the winner.

2.2.1 Ends

Figure 2.3: Diagram of sheet (not to scale.)

8

House

y2

y1 y3
r1

Button

Figure 2.4: Diagram of the house with 4 rocks in play.

An end starts on an empty sheet of ice as shown in Figure 2.3. In each end, teams take

turns sliding granite stones called rocks from one end of the sheet toward the other aiming

at a bullseye-like target called the house. Each team gets eight shots during an end and

after a total of 16 shots have been thrown, the end is over. Points are scored and the sheet

is cleared to begin the new end.

Figure 2.4 shows an example of a close-up view of the house after a few shots have been

thrown. In the diagram, the set of concentric circles depict the house. The pin at the center

of the house is called the button. The circles labelled y1 through y3 are the rocks thrown by

the Yellow team and the circle labelled r1 is the rock thrown by the Red team.

2.2.2 Scoring

The score a team receives at the conclusion of an end is based on the configuration of the

rocks in the house after shots have been played. The team that receives points is the team

with a rock in the house that is closest to the button. The value of this score is equal to the

number of rocks the team has in the house closer to the button than the closest rock of the

opposing team. For example, let us imagine Figure 2.4 illustrates the state of the ice after

all shots have been played. Even though 16 rocks have been thrown, only 4 remain in play.

If the scores were tallied with this configuration then the yellow team would be awarded 3

points. The yellow team has a rock closest to the button (y3) and they have a total of 3

rocks (y1, y2, y3) in the house. The red team has no rock in the house and has no effect on

the yellow team’s score. However, suppose instead we have the configuration depicted in

Figure 2.5 where rock y2 is replaced with a rock r2 so that the red team now has a rock in

the house. In this case, the yellow team would receive only 1 point since they have only one

rock closer to the button than the red team. In fact, any rock the yellow team where its

9

y3

r2

y1

r1

Figure 2.5: State of the ice where Yellow team scores 1.

center is on or outside the dotted circle drawn would not contribute to their score.

2.2.3 Shots

A shot is played from the far end of the ice sheet (to the left of the Figure 2.3). The

shooting player pushes out with the rock in hand and releases the rock with an initial linear

and angular velocity at some angle relative to the center line. The angular velocity causes

the rock to travel in an arc (“curl”), deviating from the straight line path that the rock was

initially on. The direction of the curl (toward the bottom or top of the figure) is determined

by the sign of the angular velocity (clockwise or counterclockwise, respectively), but is little

affected by the magnitude of the angular velocity. Figure 2.6 shows an example of what the

path of a rock looks like. Let us suppose the shooting player desires to slide a rock to the

button. One possible way to achieve this shot is to release the rock with a counterclockwise

turn on the trajectory depicted as the straight line in Figure 2.6. This would result in the

rock actually travelling with the path depicted as the dashed line in the figure.

Figure 2.6: Path of rock showing curl.

Two of the team’s players accompany the rock as it travels down the ice, and one or

both may choose to sweep the rock at any time. Sweeping affects the deceleration of the

rock (it travels further if swept) and the amount it curls (it curls less if swept.)

10

The intended outcome of a shot, though, is not always realized. There are two main

reasons.

• Human error. The player throwing the stone might not perfectly deliver it at the

required angle or velocity. Additionally, the skip may incorrectly judge the rock’s path

or the sweepers its speed, resulting in sweeping being misapplied to achieve the desired

outcome.

• Variability in the ice and rocks. Although care is taken to make the ice conditions

identical along all paths, there are differences, and the ice conditions can change as a

game goes on. Similarly, every rock is slightly different in how it interacts with the

surface of the ice.

2.2.4 The Hammer Shot

The last shot of an end, called the hammer shot, is of the utmost importance as it heavily

influences the score for the end. In fact, it is so important that the team that begins the

game in possession of the hammer shot has a 55.7% probability of winning the game (how

this value is calculated is discussed in § 2.4.) This thesis focusses exclusively on the problem

of selecting the hammer shot.

2.3 Modelling the Hammer Shot

The state for a hammer shot is determined by the score differential, the number of ends

left to play, and the (x, y) positions of the rocks in play. Our action space is based on two

simplifying assumptions. First, we treat the angular velocity of the hammer shot as a binary

variable (clockwise or counterclockwise). Second, we do not have any parameters related to

sweeping in our action space. Instead we integrate the effects of sweeping into the execution

model of our curling simulator (see below). Our action space therefore has two continuous

dimensions and one binary dimension (“turn”).

The result of an intended shot is determined by two main components: a physics based

simulation and an execution model. Surprisingly, the physics of a curling stone is not fully

understood and is an active area of research [Nyberg et al., 2013; Nyberg et al., 2012;

Jensen and Shegelski, 2004; Denny, 1998; Lozowski et al., 2015]. So, a simulation based

on first principles is not possible. The curling simulator used in this thesis is implemented

using the Chipmunk 2D rigid body physics library with an artificial lateral force that visually

recreates empirically observed stone trajectories and modified collision resolution to visually

match empirically observed elasticity and energy conservation when rocks collide. A rock’s

trajectory is modelled by a deterministic simulation given an initial linear velocity, angle,

and turn.

11

The execution model in our curling simulator represents the variability in outcomes in

the execution of an intended shot. The execution model treats this variability as a stochastic

transformation. If (θ, v) is the intended shot, the outcome is the deterministic simulation of

a perturbed shot (θ′, v′) sampled from a predetermined conditional probability distribution

whose mode is the intended shot. The primary purpose of sweeping is to correct for human

error and variability in the ice conditions.1 This is implicitly incorporated into the execution

model as a reduction in the execution noise, i.e., an increase in the likelihood the rock’s

actual trajectory is close to the planned trajectory. At present, we do not model ice or rock

variability: we assume all shots are subject to the same execution error. The execution model

used in the experiments in this thesis come from perturbing the intended shot parameters

with independent samples from a heavy-tailed, zero-mean, Student-t distribution whose

parameters have been tuned to match Olympic-level human ability.

2.4 Objective Function

What objective function do we wish to optimize? The answer that usually springs to mind

is points, i.e. find a shot with the maximum expected point (EP) difference. To see why

this is not ideal, consider choosing the very last shot of a game in which the team with the

hammer is losing by two points. Suppose shot A is 100% guaranteed to score one point and

shot B has a 20% chance of scoring 3 points and an 80% chance of giving up one point.

Shot A has a much higher EP than B (1.0 compared to −0.2) but it has no hope of winning

the game, whereas B will win 20% of the time. B is obviously the better choice in this

situation. For this reason, we focus on optimizing win percentage (WP), not EP.

WP is a function of two game state variables: n, the number of ends left to play, and δ

the number of points by which the team with the hammer at the start of the end is leading

(δ is negative if the team with the hammer is losing). We call a pair (n, δ) the resulting game

state, or g. For example, if g = (1,−2), WP(g) is the probability of the team with hammer

winning if at the start of the final end they are down by two points. We have then estimated

the WP function from data using 28,000 curling games played between 2011 and 2013.2 For

the final end of a game, g = (1, δ), we estimated WP(g) using simple frequency statistics

for the final ends from the dataset. For the second to last end of a game we used the same

1Sweeping does have effects beyond reducing execution error. Sweeping the rock near the the end of its
trajectory can allow it to reach a location on the ice not possible without sweeping. Furthermore, a shot far
from an intended shot can be swept to achieve an entirely different purpose, such as rolling under a different
guard if the executed angle is off. The primary effect of sweeping, though, is to compensate for execution
error.

2Forfeits were treated as transitions to win/loss states. For rare states, the outcomes used in estimating
the transition probabilities came from states with a similar score differential (when near the end of the
game) or similar number of ends remaining (when far from the end of the game). The data used came from
http://curlingzone.com, and included both women’s and men’s tournaments, although almost no difference
was observed when restricting to data only from one gender or when including only championship level
events.

12

data to estimate the transition probabilities from g = (2, δ) to a game state g′ = (1, δ′) for

the final end. This tells how frequently it happened that the hammer team having a lead

of δ when there were two ends to play was followed by the hammer team in the final end

having a lead of δ′. With these transition probabilities and the already-computed values of

WP((1, δ′)) for all δ′, it is easy to compute WP((2, δ)) for all δ. The same process can then

be applied to compute WP((3, δ)), WP((4, δ)), etc. With WP(n, δ) defined for all values of

n and δ, the “score” we return when a hammer shot with x ends remaining results in a lead

of δ for the team with the hammer in the next end is WP(x − 1, δ). This is the objective

function our methods aim to maximize in expectation in selecting the hammer shot.

13

Chapter 3

Algorithms

The following description of the related algorithms will refer to terms and definitions previ-

ously described in the Background chapter.

3.1 Hierarchical Optimistic Optimization

3.1.1 The Continuous-Bandit Problem

In the general bandit problem, an agent is presented with a set of arms. Each time the agent

pulls an arm (the action), it receives a reward. The reward received from an arm is drawn

from a probability distribution that is associated with that arm. The objective of that agent

is to select arms to optimize its cumulative reward. Upper Confidence Bounds (UCB) [Auer

et al., 2002] is an arm selection policy that associates each arm with a UCB-value that

depends on the entire history of sequence of pulls using the following equation:

vi = r̄i + C

√
logN

ni
. (3.1)

r̄i is the average reward observed by the arm, i; N is the total number of iterations; and

ni is the number of times arm i was played. The second term is an estimate of the size of

the one-sided confidence interval for the average reward where the expected value can be

found with strong probability. At each iteration, the arm with the highest UCB-value is

chosen to be played. The second term ensures that arms that have not been played in some

time will be played. C is a scaling factor which influences the proportion of iterations spent

exploring these actions.

The continuous action optimization setting can be treated as a continuous bandit prob-

lem [Bubeck et al., 2009b; Kleinberg, 2004]. The problem is represented by a set of arms

denoted by X ⊆ Rd, where X is the bounded environment space and d is the number of

action parameters over which to optimize. At each round, the agent pulls one arm x ∈ X .
After each pull, the agent observes the reward obtained by taking the action at the arm.

14

3.1.2 HOO

The HOO algorithm approximates the reward function over the environment space X ⊆ Rd

by expanding a binary cover tree of the space on each iteration (see Figures 3.1 - 3.3.)

Each node (h, i), of the tree covers some subspace Ph,i of the environment and provides

an estimate of the maximum expected reward observed by sampling in Ph,i where h is the

depth of the node and 1 ≤ i ≤ 2h. The children (h+ 1, 2i− 1) and (h+ 1, 2i) of node (h, i)

each cover a subspace of the parent’s such that Ph,i = Ph+1,2i−1 ∪Ph+1,2i and X =
2h⋃
i

Ph,i.

Since the nodes at greater depths span smaller subspaces, they provide a better estimate of

the average rewards that are observed by sampling in their corresponding subspace.

Sampling using HOO is done by taking the action at the center of the subspace covered by

a leaf node on each iteration. The node to be “played” is selected using B-values associated

with each node; the B-value is an optimistic (best case) estimate of the maximum expected

value observed at the node. Starting at the root, we traverse the tree following nodes with

the highest B-values (ties are broken by uniform random selection.) When a leaf node is

reached, a sample is taken in the space of that node, and then the B-values of all the nodes

in the path are updated using the value of the reward received. Calculating B(h,i) of any

node after N iterations depends on its U -value, an initial estimate of the maximum expected

reward in the region covered by the node. The U - and B-values are calculated as follows:

U(h,i) =

⎧⎪⎨⎪⎩ µ̂(h,i) +

√
2 lnN

n(h,i)
+ ν1ρ

h, if n(h,i) > 0; (3.2a)

+∞, otherwise. (3.2b)

B(h,i) =

{
min {U(h,i),max {B(h+1,2i−1), B(h+1,2i)}}, if n(h,i) > 0; (3.3a)

+∞, otherwise. (3.3b)

In Equation (3.2a), µ̂(h,i) is the average of rewards received by (h, i) and all its descendants

after N rounds and n(h,i) is the number of times (h, i) or one of its descendants has been

played after N rounds. The second term takes into account the uncertainty on the average

of the rewards of the function for a node. ν1ρ
h is information on the shape or smoothness

of the function in the partition covered by the node. The B-value provides a tight, opti-

mistic, high-probability upper bound on the maximum expected reward of the space Ph,i

covered by a node (h, i). Furthermore, the children (h + 1, 2i − 1) and (h + 1, 2i) of the

node provide valid upper bound values for regions Ph+1,2i−1 and Ph+1,2i respectively. So

max {B(h+1,2i−1), B(h+1,2i)} is a valid upper bound for Ph,i. U(h,i) is also another upper

bound estimate for region Ph,i. In Equation (3.3a), we choose the minimum of these upper

bound estimates as the B-value to place a tighter upper bound on the interval in which we

have a high probability of finding the expected reward.

15

In the initial step of HOO, the values of B and U of the root node are calculated by

sampling at the center point of the the entire space.

Figure 3.1 - Figure 3.3 runs through a 1-dimensional example of how HOO works.

B0,1

.

|
X

B1,1

×

B1,2

.

|

Figure 3.1: Iteration 1 of HOO

After the first iteration (shown in Figure 3.1), the root of the cover tree created by HOO

provides an estimate of the maximum expected reward that can be observed in the space

X and has a B-value, B0,1. The dark cross on the bottom is the point in X where the

sample was taken on this iteration. The root has two child nodes both having B-values,

B1,1 = B1,2 =∞.

B0,1

.

|
X

B1,1 B1,2

×

B2,3

×

B2,4

|

.

Figure 3.2: Iteration 2 of HOO

During the second iteration (Figure 3.2), the right child of the root was randomly selected

to be played (each child had an equal probability of being chosen.) The crosses again show

the points that have thus far been sampled. Now B1,2 is a value other than ∞ calculated

using the reward observed by sampling the arm in the space at the second dark cross and

the value of B0,1 is updated.

In iteration 3 (Figure 3.3), the left child of the root was played since now B1,1 > B1,2.

In the next iteration, traversal will go down whichever node between (1, 1) and (1, 2) would

have a higher B-value and one of their children would be randomly selected to be played.

In our application, we are not concerned with finding the best sequence of actions to take

16

B0,1

.

|
X

B1,1

B2,1

×

B2,2

B1,2

×

B2,3

×

B2,4

|

.

Figure 3.3: Iteration 3 of HOO

to maximize our cumulative reward. We are instead looking for the single best action to

take given a set of possible actions. HOO, in our case, provides a high-probability estimate

for the expected rewards of promising actions. We use a selection policy after a set number

of iterations of HOO to choose the best among these actions. In our implementation, to

select the best action to take, we traverse the tree following nodes with the highest average

reward, û(h,i) (as opposed to the highest B-values). The center point of the leaf that is

reached at the end is the action to take.

3.2 Kernel Regression UCT

Monte Carlo tree search (MCTS) is a simulation-based search method to planning in se-

quential decision-making scenarios [Browne et al., 2012; Kocsis and Szepesvári, 2006]. Every

possible sequence of decisions in these scenarios can be represented as a path in a tree where

each node of the tree is a decision point of the sequence. The branches from a node rep-

resent the actions taken at each decision point of the scenario. MCTS methods try find

an approximately optimum sequence of actions without having to exhaustively search every

possible path by eliminating decision paths with “bad” actions from the search.

Kernel Regression UCT (KR-UCT) is a variant of MCTS designed to be used in sit-

uations where stochasticity exists in the outcomes of the continuous actions of a search

problem [Yee et al., 2016]. The concept behind the approach is the use of kernel regression

to provide a sense of information sharing between sampled points such that the value of a

single point is estimated using the value of all other points in the environment space. This

allows for information sharing between all sampled points.

17

3.2.1 Kernel Regression

Kernel regression is a technique for estimating the conditional expectation of a random

variable given a set of data [Nadaraya, 1964; Watson, 1964]. Given a set of data points,

one can estimate the expected value of any single point as the weighted average of the

values of all points where the weighting is calculated by some non-linear distance function

K called the kernel. Given a set of N points X = ⟨x1, . . . ,xN ⟩ and their observations

y = ⟨y1, . . . , yN ⟩, we can calculate the expected value of any point x in the set by:

E(y|x) =

n∑
i=0

K(x,xi)yi

n∑
i=0

K(x,xi)
. (3.4)

In the equation, the value of
n∑

i=0

K(x,xi) is known as the kernel density. This value, denoted

as W (x), is a measure of the amount of information available in the dataset about any

particular point. The kernel function used is typically a smooth symmetric function e.g.,

a Gaussian probability distribution function. In our application, the kernel function is the

probability distribution function of the execution error of the actions.

3.2.2 KR-UCT

In the work published by Yee et al. [2016], the authors used kernel regression to improve

on the standard UCT algorithm [Kocsis and Szepesvári, 2006]. UCT is a bandit-based

MCTS method where the actions at each node selected for the search are chosen using UCB

(§ 3.1.1). In KR-UCT, the authors modify the UCB formula used for selecting an action and

allow the candidate set of actions at each node of the tree to be extended by the addition

of new actions.

Each node of the search tree has some action space X and each available action x is

initialized to have an action value of infinity. As the algorithm progresses, the action values

are updated according to a formula which is a combination of Equations (3.1) and 3.4. The

value v of any action x in the action space of the node is given as

v = E(y|x) + C

√
log

∑
x′∈X W (x′)

W (x)
(3.5)

where

E(y|x) =
∑

x′∈X K(x,x′)ȳ′n(x′)∑
x′∈X K(x,x′)n(x′)

(3.6)

W (x) =
∑
x′∈X

K(x,x′)n(x′). (3.7)

18

The first term in Equation (3.5) is the average reward of the action of a node. The second

term is the confidence value of the action. C is the exploration constant similar to the

original formula. For each node, n(x′) is the number of times node x′ is selected and ȳ′ is

the average reward observed by x′.

At each iteration of the algorithm, the tree is traversed by visiting nodes along the path

with the highest v value. Each time a node is visited, its values of v and n(·) are updated.

If a node is reached whose children have not all been visited, the node is expanded by

adding one of the unvisited children as a new leaf to the tree. If a terminal state or final

decision point is reached, then a new outcome is always added to the node. The mechanism

by which selection and expansion of the tree occurs is detailed in the paper by Yee et al.

[2016]. However, these details are not pertinent to our specific problem. Instead, we only

focus on the final decision point of the tree.

In an optimization setting, KR-UCT is provided with an initial set X = ⟨x1, . . .xN ⟩ of N
samples as candidate actions in the action space X ⊆ Rd where x ∈ X . In our application,

we used a uniform grid of samples initially. At each iteration of the algorithm, the action

x ∈ X from the candidate set with the maximum action value v from Equation (3.4) is

selected to be played. If a new action is observed, it is added to the set of candidate actions.

Then the action values of all candidate actions are updated. The modified UCB formula

of KR-UCT ensures a balance between exploration and exploitation. High expected values

can contribute to higher action values, ensuring that promising actions get selected and any

new outcome improves the estimate of the expected value of the action. Lower information

densities can also contribute to higher action values, so that actions that have not been

explored as much, are played increasing the chances of finding better new actions. After

the final iteration of KR-UCT, the action with the greatest lower confidence bound (the

expected value minus the confidence value) is chosen as the optimal action to take.

3.3 Gaussian Process Optimization

Gaussian Process Optimization (GPO) [Lizotte et al., 2007; Snoek et al., 2012] falls under the

umbrella of Bayesian Optimization techniques, a family of black-box, global optimization

methods. The general idea of the Bayesian strategy is to treat the unknown objective

function as a random function and set a prior for it. Function evaluations are used as

data points to develop posteriors from the prior and find the next points to be sampled.

The posterior distribution on the unknown function f is also a Gaussian process. GPO

seeks to find the optimal point of an unknown function f through carefully choosing new

points xn+1 to sample a value based on the posterior belief from previous samples. The

optimal selection mechanism for a non-convex sampling horizon and prior is intractable.

However, good performance can often be had by instead choosing a point that maximizes

19

(a) Three sets of predictions for the values of
the objective function drawn from a GP prior.
The dashed line is the objective function being
approximated. The shaded region is the point-
wise confidence interval within which we can
expect to find the true value.

(b) Three sets of predictions of the objective
function drawn from a GP posterior. The con-
fidence intervals in this case are much smaller
than with the prior. As a result, the chances of
generating an accurate prediction for the true
function values is greater.

Figure 3.4: Predictions of f(x) drawn from a GP prior (a) and posterior (b).

some acquisition function as a proxy objective, e.g., choosing the point with the maximum

probability of improving on the largest previously attained value.

3.3.1 Gaussian Processes

A Gaussian process is a distribution of functions over some continuous domain X ⊆ Rd.

Any finite set of points in that space are random variables that exhibit a joint, multivariate

Gaussian distribution [Rasmussen, 2006]. It is fully defined by a mean function, m(x) and

a covariance function, k(x,x′). A Gaussian process of a function f(x) can be written as

follows:

f(x) ∼ N (m(x), k(x,x′)) (3.8)

Let us assume we are given z number of points X̂ = ⟨x̂1, . . . , x̂z⟩ over some space and

we wish to predict their values, ŷ = ⟨ŷ1, . . . , ŷz⟩, from a function, f(x), where ŷi = f(x̂i).

We can create a Gaussian process prior with a mean vector, m = 0, of length z (other mean

functions exist, but a zero mean vector is commonly used) and covariance matrix, K(X̂, X̂),

calculated by the covariance function:

ŷ ∼ N (0,K(X̂, X̂)) (3.9)

We can then generate values of ŷ for X̂ by drawing from this prior. Figure 3.4(a) illustrates

three sets of predictions for ŷ by generating values of ŷ along the entire function space

using the prior. The true function is depicted as the dashed line. The shaded region in the

20

diagram represents the pointwise, 95% confidence interval from which a value for a given x̂

is drawn.

Naturally, predictions drawn from the prior are not likely to be representative of the true

function values. Instead, we can compute a posterior distribution using values sampled from

the actual function to produce a more accurate model. Suppose we have a set of already

observed points X and their evaluations on the function, y. The joint probability prior

distribution of these observed points and the prediction points is given in Equation (3.10):

[
y
ŷ

]
∼ N

(
0,

[
[K(X,X) + σ2I] K(X, X̂)

K(X̂,X) K(X̂, X̂)

])
(3.10)

In realistic models, function values usually have noise associated with them (due to measur-

ing errors, etc.) Therefore, the function values observed are given as y = f(x)+ϵ, where ϵ is

Gaussian noise with variance σ2. This is reflected in the computed distributions by adding

the term, σ2I, to the covariance matrix of the observed points. Then, using Bayes’ Rule,

we can then compute the posterior distribution to get (3.11):

ŷ ∼ N (K(X̂,X)[K(X,X) + σ2I]−1y,

K(X̂, X̂−K(X̂,X)[K(X,X) + σ2I]−1K(X, X̂))
(3.11)

The posterior is also a Gaussian process defined by a predictive mean and predictive vari-

ance. Values drawn from this posterior provide a more accurate probabilistic model of the

objective function than can be had using just the Gaussian process prior. Figure 3.4(b)

shows three sets of probable function values over X made using the posterior over function

values computed using four training points. It can be seen that the confidence intervals in

this case are tighter than when predicting using just the prior.

3.3.2 Acquisition Functions

The Gaussian process posterior distribution computed in the previous section provides a

probabilistic model for the unknown objective function f(x). The accuracy of this model

in representing the true function relies on the information provided by the set {xi}Ni=1 of

evaluated points sampled so far and our choice of covariance kernel. For rapid optimization

of the objective function it is desirable to sample the next point, xN+1, in the space such

that we increase our chances of finding the maximum obtainable reward.

One approach to finding the next point to sample is by maximizing some acquisition

function. Acquisition functions model the information gained about the objective function

by sampling points in the space given all previously observed samples. By maximizing an

acquisition function we seek to increase the amount of information gained with each sample

to quickly and accurately estimate the objective function globally.

21

There exist many different acquisition functions that can be used for proxy optimization

of the objective function. Each of these acquisition functions provide a different measure of

information gained from sampling. For instance, one such acquisition function could be to

maximize the probability of improving over the current best value with each new sample.

Another acquisition function could instead be to maximize the expected improvement over

the current best. In our experiments, we chose to maximize a function called GP-UCB,

another commonly used acquisition function that measures the upper confidence bound on

the reward observed at a given point. The function (GP-UCB) is shown below:

aUCB(xN+1;X) = µ(xN+1;X) + κv(xN+1;X) (3.12)

where µ(xN+1;X) and v(xN+1;X) are the predictive mean and variance respectively of

a point xN+1 calculated from Equation (3.11) given the set X of N previously observed

samples. Maximizing this function selects either points with high uncertainty or points

with high expected rewards as subsequent samples. The value κ determines the proportion

of iterations spent sampling at points with high uncertainty.

X

Objective
Acquisition
Prediction

Figure 3.5: GPO Step 1.

Figure 3.5 through Figure 3.7 illustrate how Gaussian processes coupled with an ac-

quisition function can be used to find the maximum point of the 1-dimensional, bounded

function, f(x) = 1
2 sinx

2 + 1
2 sinx + 1

8x − 1
4 + ϵ where x ∈ [1.5, 4.0] and ϵ ∼ N (0, 0.1). We

initialize the algorithm (Figure 3.5) by fitting a Gaussian process over two observations (the

two dots) from the objective function (shown as the dashed line.) The number of initial

points chosen depends upon the user; in our example we use only two to initialize to sim-

plify the illustrations. The solid line shows the predictive mean about which the computed

posterior is centered; predictions of the function values at any point in the space have an

expected value that is given by the predictive mean. This predictive mean is then used

to calculate the values of the acquisition function (dotted line), which is the function we

22

optimize to find the next sample point. In the first iteration, the next sample point chosen

is to the left of the first two observation points, where the value of the acquisition function

is the highest.

X

Objective
Acquisition
Prediction

Figure 3.6: GPO Step 2.

Figure 3.6 depicts the second iteration of the Gaussian process optimization in our

example. After evaluating, the point chosen to be sampled in this iteration is on the leftmost

edge of the sampling space.

X

Objective
Acquisition
Prediction

Figure 3.7: GPO Step 3.

The third iteration of GPO is shown in Figure 3.7. As we have more points with which

we fit the Gaussian process, the prediction model more accurately represents the values

of the objective around the optimal point. In this example, the next point chosen to be

evaluated would have been the optimal point (or at least, very close to it.) Since the

GP-UCB acquisition function was used, it is likely that in further iterations a few points

further away will also be chosen to be evaluated as their confidence values increase over

every iteration (depending on the value of κ, GP-UCB assigns higher values to points in

the space where we have higher uncertainty, that is, in regions where we have not sampled

23

often.)

3.4 Covariance Matrix Adaptation - Evolution Strategy

Evolution strategies are iterative algorithms that attempt to optimize a function by intro-

ducing stochastic variations at each iteration [Bäck et al., 1991]. CMA-ES [Hansen and

Ostermeier, 1996; Hansen, 2016] proceeds by drawing a set of samples from a multivariate

Gaussian distribution over an action space X . The variables are initially assumed to be

linearly independent. A new multivariate Gaussian is then constructed. The mean is the

weighted mean of the sampled points, where higher weights are given to samples with larger

reward values. The covariance matrix is modified from the previous covariance so as to

encourage high variance in the direction that the mean is observed to be changing. This

procedure is then repeated using the new multivariate Gaussian to sample points. The steps

of the algorithm at each iteration are therefore

1. draw a set of samples using the multivariate Gaussian distribution,

2. shift the mean of the distribution,

3. update the covariance matrix of the distribution.

We will now look at each of these steps in more detail.

3.4.1 Sampling

At each iteration, the algorithm draws λ number of samples in the environment X , which is

a compact subset of Rd. The reward for a sample, xi is observed after being passed to the

objective function f : X → R, where i = 1, . . . , λ. Each sample is drawn from a multivariate

Gaussian distribution. The covariance matrix of the distribution is initially the d×d identity

matrix.

3.4.2 Shifting the Mean

After each iteration, the mean of the Gaussian distribution is changed to increase the prob-

ability of selecting promising points. To do so, CMA first selects the top µ points with the

best rewards among all samples. The mean is then augmented by adding to it the average

difference of the µ sampled points from the mean. If m(n) is the mean of the distribution

at iteration n then the new mean is calculated as follows:

m(n+1) = m(n) +

µ∑
i=1

wi(x
(n)
i:λ −m(n)), i = 1, . . . , λ (3.13)

where x
(n)
i:λ is the i-th best point of all λ samples at iteration, n and

∑µ
i=1 wi = 1. This

centers the new mean of the distribution within the best µ points so that the current best

24

samples are more likely to be reproduced. The weight wi in Equation (3.13) can be set so

that the variances of all µ samples equally contribute to the update of the mean or so that

the points with higher reward contribute more.

3.4.3 Updating the Covariance Matrix

After updating the mean of the distribution, the covariance matrix is updated to generate a

new distribution for sampling. When updating the covariance matrix for the new distribu-

tion, the current covariance is augmented by two different components. After n iterations,

the calculation of the next covariance can be done the following equation:

C(n+1) = (1− cµ − c1)C
(n) + cµCµ + c1C1 (3.14)

where C(n), the first term, is the current covariance.

The second term is the rank-µ update. It is the covariance of the best µ sample points.

Adding this term to the original covariance stretches the current distribution in the direction

where there is high variance between the best µ points and the previous mean.

The third term is the rank-1 update. This is the covariance calculated from the sequence

of steps taken by the mean, m, of the distribution over the previous n iterations. This

value scales the distribution in the direction of the cumulative path taken by the mean

of the distribution. For instance, if the mean initially shifts from a point m(0) to m(1),

then the distribution will be scaled in the direction of the vector, p(1) = m(1) −m(0). In

the next iteration, the distribution will be scaled in the direction of the vector, p(2) =

p(1) +m(2) −m(1).

The values of cµ and c1 are dependent on the number of parameters over which we are

optimizing and a detailed description of how these are calculated can be found in the paper

by Hansen et. al [2016].

Since with each iteration, the distribution is adapted such that the mean takes a step

in the direction of the highest variance, CMA-ES can be viewed as a form of local gradient

ascent. Over a sufficient number of iterations, the distribution will approach a local optimum

point of the objective function and the probability of sampling high-valued points increases.

Figure 3.8 through Figure 3.10 will illustrate the first three iterations of CMA-ES in a

2-dimensional space, X . In all diagrams, the × represents the location of the optimal point

of the objective function, f : X → R and the ellipses depict the 95% confidence interval of

the distribution determined by its covariance matrix.

In the first iteration of CMA, shown in Figure 3.8, we have a distribution with mean,

m(0) at (0, 0) and a 2 × 2 covariance matrix, C(0) = I. The 95% confidence interval of

this distribution is a circle because the parameters are initially assumed to be linearly

independent of each other. Figure 3.8(b) shows all λ sample points drawn from N (0).

25

(a) N (m(0),C(0)) (b) x
(0)
1,...,λ (c) x

(0)
1,...,µ:λ

Figure 3.8: CMA Step 1.

Figure 3.8(c) shows the µ sampled points that observed the highest reward. The new mean

in the next iteration will be at the center of these points and the covariance will be updated

such that the distribution is stretched in the direction of the variance of these points with

respect to m(0). The result is shown in Figure 3.9.

(a) N (m(1),C(1)) (b) x
(1)
1,...,λ (c) x

(1)
1,...,µ:λ

Figure 3.9: CMA Step 2.

Figure 3.9 illustrates the events of the second iteration of CMA. As seen in Figure 3.9(a),

the ellipse shows how the distribution has changed since the last iteration. The distribution

has stretched in the direction of the previous best points. Now most of the samples drawn

(Figure 3.9(b)) are located in the region of the best samples from the last iteration. From

here, the new set of the best µ points are selected.

Figure 3.10 illustrates the events of the third iteration of CMA. The distribution in this

iteration is similar to that of the previous iteration with two main differences: the confidence

interval is now smaller and the mean is centered closer to the optimal point. However, it

still exhibits high variance in the same direction as before. This means that the λ samples

in this iteration are selected from a smaller area and so the probability of selecting previous

26

(a) N (m(2),C(2)) (b) x
(1)
1,...,λ (c) x

(1)
1,...,µ:λ

Figure 3.10: CMA Step 3.

successful points has further increased. In the next iteration after this, the distribution

should become even smaller, further concentrating samples in a promising region of the

space.

3.5 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based, stochastic approach to optimiza-

tion [Shi and Eberhart, 1998; Kennedy, 2011]. The algorithm relies on a set of particles,

initially randomly placed in the environment space, that iteratively move towards local op-

tima. At each time step of PSO, a particle, P , is at a location, x(P), in the environment,

X ⊆ Rd, of the objective function f : X → R, where d is the number of action parameters

to optimize. A particle observes a reward, f(x(P)), and the migration of all the particles

depend on these rewards. In order to increase the likelihood of the particles successfully

converging to a local optimum, each particle keeps track of both its own personal best score

observed and the global best score observed by any particle along with its location in the

environment.

At each iteration, n, the velocity, vn+1 with which a particle takes a step (a step is

the addition of the velocity vector to a particle’s current location in Euclidean space) is

calculated as follows:

vn+1 = wnvn + c1 · r1 · [xp − xn] + c2 · r2 · [xg − xn], n = 0, 1, . . . , N (3.15)

where vn is the particle’s current velocity (v0 = 0), wn is an iteratively decreasing weight

on the previous velocity, and xn,xp,xg are the particle’s current location, the particle’s

personal best location and the global best location respectively. r1 and r2 are random

values uniformly sampled from the closed interval [0, 1]. c1 and c2 are antagonistically

27

functioning weights which promote exploration and faster convergence respectively.

A BX

f : X → R

Figure 3.11: Step 1 of PSO with 2 particles where f(x(A)) > f(x(B)).

Figures 3.11 - 3.13 illustrate the first 3 steps of PSO to find the optimum point of the

1-dimensional, bounded function, f(x) = 1
2 sinx

2 + 1
2 sinx + 1

8x − 1
4 where x ∈ [1.8, 4.2]

using only two particles, A and B. Initially, A and B were randomly placed in X (shown in

Figure 3.11). Here, f(x(A)) > f(x(B)). B in this case will step toward A, which will remain

stationary (as per Equation (3.15).)

A BX

f : X → R

Figure 3.12: Step 2 of PSO with 2 particles where f(x(B)) > f(x(A))

In the second step of the algorithm (Figure 3.12) f(x(B)) > f(x(A)). Now, particle A

will move toward B. The size of the step A takes is less than that of the B’s in the first

iteration since the particles are closer to each other in this iteration. Particle B will still

move in the same direction as before but with less velocity only due to a diminished residual

momentum from the last iteration (the first term of (3.15); the other two terms are now 0.)

Both particles are however moving toward the maximum point of this function.

In the third step of PSO (Figure 3.13), still f(x(B)) > f(x(A)). Both particles will move

closer still to the optimal point. As before, particle A steps toward B and particle B takes

28

A BX

f : X → R

Figure 3.13: Step 3 of PSO with 2 particles where f(x(B)) > f(x(A)).

a step with the residual momentum.

In the subsequent iterations, both particles will have reached the optimal point. However,

they will continue to oscillate about this point until their respective momentums reach 0.

This decay of the momentum will proceed at a rate that depends on the value of wn used in

Equation (3.15). The higher this weight value, the longer their respective momentums last.

Not shown in this example, are the effects of the personal best locations of the particles in

other directions. If at any time in this case the particles had a personal best location near

the other local optimal points, their steps toward the global best would have been decreased

and the rate at which the particles converge would have decreased.

29

Chapter 4

Delaunay Sampling

Delaunay Sampling (DS) is a heuristic approach to function optimization that we have

adapted from the method developed by Surovik and Scheeres [2015]. DS is an iterative

optimization method that employs Delaunay triangulation to discretize a continuous space

and focus sampling in promising regions. DS is divided into two phases: 1) Sampling

using Delaunay triangulation and 2) selection of the optimal point of the function given the

observed samples. The following describes the method of Delaunay triangulation and the

property that makes it useful for function optimization. A description of the algorithm itself

proceeds after. Algorithm 1 shows the full pseudocode for Delaunay Sampling.

4.1 Delaunay Triangulation

The following is a brief description of Delaunay triangulation with the information that

is relevant for understanding DS. For more thorough details of triangulation, Delaunay

triangulation and the claims made in the description, please consult the sources that are

summarized in this section [De Berg et al., 2000; Lee and Schachter, 1980; Shewchuk, 2002].

Triangulations are useful tools when working with point sets in a two-dimensional metric

space. Triangulations divide a space into triangles based on the organization of the points.

If a function f is defined on that space, triangulations can be used for interpolation of

the function values in the space using sampling points of the functions as points for the

triangulation. A triangulation of a finite point set P ⊂ R2 is collection T of triangles such

that

1.
⋃

T∈T
T is a convex hull, the smallest convex set containing all the points in P

2. P =
⋃

T∈T
V (T) where V (T) is the set of vertices/points of a triangle T

3. For every distinct pair T,U ∈ T the intersection T ∩ U is a common vertex, common

edge or the empty set.

30

Figure 4.1: Point set triangulation.

Figure 4.1 illustrates an example of a triangulation of a point set, showing a convex hull

subdivided with respect to all points in the point set.

A Delaunay triangulation is a triangulation of a finite point set P ⊂ R2 such that the

points of P do not lie in the interiors of the circumcircles of the triangles [De Berg et

al., 2000; Lee and Schachter, 1980]. A circumcircle of a polygon (triangle in our case) is

a circle that passes through every vertex of the polygon. Figure 4.2 shows two different

possible triangulations of a point set with 5 points and the circumcircles of all the triangles.

Figure 4.2(a) is a Delaunay triangulation since none of the points A through E are in

the interior of any circumcircle. The triangulation in Figure 4.2(b) is not a Delaunay

triangulation because point A lies in the circumcircle of △BCD and point D within that of

△ABC. There are several algorithms the can efficiently compute the Delaunay triangulation

[De Berg et al., 2000; Shewchuk, 2002; Lee and Schachter, 1980] of a point set.

A

D

C

B

E

(a) Delaunay triangulation

A

D

C

B

E

(b) Non-Delaunay triangulation

Figure 4.2: Different triangulations using 5 points

By keeping all circumcircles empty of any points from the point set, Delaunay trian-

gulation maximizes the minimum angle of all the triangles in the triangulation [De Berg

et al., 2000]. That is, Delaunay triangulation avoids the production of long, thin, sliver

triangles which are undesirable for interpolation. Given point sets where the creation of

sliver triangles are unavoidable, Delaunay triangulation will create fewer of these than other

31

triangulation methods.

As Delaunay triangulation tends to avoid producing sliver triangles, it is useful in appli-

cations such as topology mapping of a terrain. If a set of points are chosen in some terrain,

we can create a Delaunay triangulation of that space. The points can then be raised by the

height of the terrain at that point. Since there are no (or fewer) sliver triangles, there are

no long spans of the space that are not discretized and resultantly, the mapping produced

should be a more accurate mapping of the terrain. Similarly, Delaunay triangulation can

be used to approximate the shape of a function during function optimization where the

“height” of a point is the value of the function at that point. In higher dimensional spaces,

the simplices produced by Delaunay triangulation are the higher dimensional counterparts

of triangles (i.e., tetrahedrons when d = 3.)

4.2 Sampling with Delaunay Triangulation

In the first phase of Delaunay Sampling, the method described by Surovik and Scheeres

[2015] is adapted in order to sample efficiently. This phase utilizes Delaunay triangulation

to discretize the space given a set of samples such that we can identify promising regions

for subsequent sampling.

4.2.1 Original Algorithm

The development of the original algorithm was motivated by the exploration of small celestial

bodies using spacecrafts. The algorithm was designed to improve automated planning of

trajectories of the non-Keplerian motion of spacecrafts during observational missions.

Automated control of spacecraft trajectories can be performed by planners choosing

actions (choosing a trajectory) based on a mappingM of a 3-dimensional trajectory space

△F to a score space S where the planner takes the action that would achieve the best score.

This mapping is done by an objective function that takes a trajectory and returns a score

using the orbit dynamics of the spacecraft and the application-specific mission objectives.

The algorithm developed by Surovik and Scheeres [2015] aims to chart this mapping using

an efficient sampling-based approach.

The algorithm begins by taking a random set or uniform grid of sample trajectories

△f ∈ △F and calculating their corresponding scores s ∈ S. A Delaunay triangulation mesh

is then produced using this set of sample points inM where each simplex is bounded by 4

points. Each simplex i is then given a weight wi. Next a set of k simplices is selected at

random with replacement from the mesh. The probability with which a simplex is chosen

is proportional to its weight. Each time a simplex i is selected, a point is sampled uniform

randomly within it and added to the set of sampled points. The process of creating a

new triangulation with the augmented set of samples and selecting subsequent samples is

32

repeated for a number of iterations. The weights that are given to each simplex is calculated

as follows:

wi = volume(i) ·mean(lifespan(i)) ·max(s+ Q̂max)
28τ (4.1)

where the first term is the volume of the simplex i and it acts as a normalizing factor. The

second term is the mean lifespan of trajectories of simplex i and it directs the search towards

regions that haven’t been recently sampled. The final term is the gradient-augmented score

where the value Q̂max produces a gradient to represent how close a trajectory passed a high

scoring sample. τ is a refinement factor that increases from 0 to 1 that causes the search to

be progressively more biased towards regions with higher augmented scores.

4.2.2 Adaptation for Curling

Let us assume we are given a metric space X ⊆ R2 over which an unknown stochastic

function f is defined. Each point xj in the point set X is an action associated with a reward

yj = f(xj + ϵ(xj)). In our application, ϵ is a stochastic perturbation on the the action

sampled from a student’s t-distribution tuned to match Olympic-level human ability. Given

a set X of N sample points, each point can be indexed by a value j where j = 1, 2, . . . , N .

Our objective is to find the action in the space that yields the highest expected reward given

a budget of a finite number of samples.

Initially, a set of u points is chosen uniformly over the space (i.e., a set of 10× 10 points

in a 2-dimensional space.) Using this point set a Delaunay triangulation mesh is created

and a set T of triangles is produced (initially the triangles are all congruent since the points

are all spaced evenly.) Uniform points are chosen in the initialization to ensure that the

convex hull formed from the point set covers the space X and no region is disregarded during

optimization.

The iterative weighting, re-sampling and re-triangulation method is then performed just

as it was in the original algorithm for n iterations. However, the weighting function used

in DS differs. In DS the weight the triangles receive depends on the area aT of the triangle

and its score sT . Let V (T) be the set of indices of the vertices of triangle T and yj be the

observed reward by a vertex xj where j ∈ V (T). We define the weight for a triangle T as

wT = a1−ν
T · sδνT (4.2)

where the score for the triangle is

sT = e
max

j∈V (T)
{yj}

. (4.3)

The first term functions similarly to the first term of the original algorithm. The second

term in our adaptation behaves like the final term of the original algorithm. However, we

33

do not explicitly record temporal information about the samples. Since we have potential

negative rewards from our objective function, we take the reward to be a power of e. This

results in strictly positive scores making it easier to calculate selection probabilities. Instead

of a gradient term, in our implementation we use δ, a tunable parameter that controls the

rate of exploration of the space. This, like the gradient term in the original algorithm

increases the likelihood of choosing triangles with high scoring vertices during sampling. ν

is the temperature parameter. Initially, ν = 1/n where n is the total number of iterations of

DS to be performed and at each iteration ν is incremented by 1/n. Note that if aT is large

then wT can be large, encouraging the algorithm to refine large regions; if sT is large then wT

can be large, encouraging the algorithm to focus on regions with higher observed rewards.

As ν increases, more weight is put on refining the high-valued regions, since ultimately only

the high-value regions are used in the selection phase of the algorithm.

Algorithm 1 Pseudocode of Delaunay Sampling

1: function DelaunaySampling(f(), u, n, k, δ, z)
2: X← {x1, . . . ,xu} spread uniformly in X
3: y← {y1, . . . , yu | yi = f(xi)}
4: T ← DelaunayTriangulate(X)
5: τ ← 1

n
6: for 1, . . . , n− 1 do
7: for all T ∈ T do

8: sT ← e
max

j∈V (T)
{yj}

9: wT ← a1−ν
T · sδνT

10: end for
11: for all T ∈ T do
12: pT ← wT∑

T∈T
wT

13: end for
14: for i = 1, . . . , k do
15: randomly select T from T where P (T | T) = pT
16: x ∼ U(T)
17: X← X ∪ x
18: y← y ∪ f(x)
19: end for
20: T ← DelaunayTriangulate(X)
21: τ ← τ + 1

n
22: end for
23: for all T ∈ T do
24: ŵT ← 1

|V (T)|
∑

j∈V (T)

yj

25: end for
26: arms← incenter of top z best triangles
27: x∗ ← UCB(arms)
28: return x∗

29: end function

34

4.3 Selecting the Optimal Point

The previous phase will have spent a large portion of the sampling budget in promising

regions of X ensuring an accurate approximation of the function in those regions. What

remains is to select a point as an approximate solution for the optimization problem.

To do so, DS sets the weights of the triangles produced in the previous phase to be

the mean of the scores observed at the vertices of each triangle. Next, i triangles with the

highest weights are chosen. Then UCB is run with these triangles as arms of a bandit.

When UCB samples a triangle, the sample is taken at the triangle’s incenter, and its value

is a (stochastic) sample of the objective function at that point. The triangle that achieved

the highest average reward during UCB is selected and the incenter is the action returned

by DS.

Different weighting functions are used in the two phases because of the different purposes

they serve. The first phase is exploratory, trying to find promising regions that are relatively

small. For this purpose it makes sense to use an optimistic score for a region. The max value

observed at any vertex of a triangle provides an optimistic estimate of the expected value of

the objective function in the region of the triangle (similar to B-values in HOO (§ 3.1.2.))
The aim of the second phase is to identify the incenter of a region with the largest expected

value. For this purpose it is appropriate to use the mean value of the scores observed at the

vertices to weight the triangles as an estimate (less optimistic than the max value) of the

true expected value of the function in the region within a triangle.

In our description of Delaunay sampling we have only considered the case where the

domain of the objective function is 2-dimensional. However, the algorithm can easily be

generalized for any metric space X ⊆ Rd where d ≥ 2, although at higher dimensions

performance may deteriorate.

Figure 4.3 shows the heatmap of the function of a typical hammer state in curling. The

parameters of this function are x1 and x2 which are the x- and y-axes respectively of the

heatmap and the intensity of the color at any point (x1,x2) represents the expected value

of the function at that point. Figures 4.4 through 4.5(b) illustrate the first 3 steps of the

sampling phase of Delaunay sampling.

Delaunay sampling is initialized by taking 100 samples in a grid in the space over which

the function is defined. The resulting scoring of the triangles is illustrated in Figure 4.4

where a darker color marks a region with a higher score. This results in several large darker

regions that are scored higher than other regions in the space. The triangles in these regions

will receive high weights and there is a higher probability of sampling in these regions in

the next iteration.

The dots in Figure 4.5(a) are the new samples taken in the next iteration and the darker

regions in Figure 4.4 did indeed receive a bulk of the new samples and the new triangulation

35

Figure 4.3: Heatmap illustrating the form of a non-convex 2-dimensional function

Figure 4.4: Initial step of DS.

has discretized these regions further. The new triangulation now has smaller regions with

high scores as the samples have refined the discretization within the promising regions. The

refinement of these regions continues in step 3 of DS (shown in Figure 4.5(b)) and the

function approximation becomes more informative than previously about the changes in the

function values in these regions.

Figure 4.6 illustrates the selection phase of DS after having observed 900 samples over 9

iterations in the first phase. Figures 4.6(a) and 4.6(b) show two sets arms chosen during two

independent runs of DS. Since there may be several triangles with the same weight or the

weights may not be exactly the same over independent runs of DS, there is some semblance

of randomness when selecting triangles for UCB.

36

(a) Step 2 of DS (b) Step 3 of DS

Figure 4.5: Sampling phase of DS.

(a) 1st run of DS (b) 2nd run of DS

Figure 4.6: Selection of arms for UCB

4.4 Preliminary Analysis

4.4.1 The Phases of DS

It is pertinent to understand the importance of each of the phases of Delaunay Sampling.

The first phase focuses on efficiently sampling in the space to find promising action. The

second phase uses UCB, which is used to select the next best point among the candidate

points to evaluate at each iteration of the phase [Auer et al., 2002].

To empirically evaluate the performance of these two phases separately we ran each phase

independently on a set of 515 hammer states from data from the 2010Winter Olympics men’s

and women’s curling competition. For each of the test states, we gave the phases a sampling

37

Budget 500 1000 1500 2000 2500 3000
DS no UCB -2.67 2.49 4.54 5.47 6.05 6.38

UCB -4.35 2.69 4.80 6.21 6.24 7.46
DS 3.52 7.33 8.63 9.17 9.43 9.59

Table 4.1: Average ∆wp of the phases of DS separately and together.

δ 0.001 0.01 0.1 1 10 100
∆wp 4.57 4.48 4.51 4.75 7.13 7.49

Table 4.2: The performance of DS with different values of δ.

budget of between 500 and 3000 samples. After a phase selected a shot 10 outcomes were

sampled with the simulator, with the outcome’s sample mean used as the resulting estimate

of WP. This procedure was repeated 250 times for each test state. Table 4.1 shows the

performances of both phases run independently in terms of ∆wp, the difference between the

WP of a team before and after taking an action. The table also shows the performance of

DS (both phases together) when similarly run on these states. We can see that together

both phases work better than they do independently. The full details of the experimental

design, the experiments and results can be found in Chapter 5.

4.4.2 Parameter Sensitivity

Table 4.2 shows the performance of DS at different values for the exploration parameter

δ when run with 1500 samples. A set of 397 hammer shot states from the logs were used

to find examine the performance of DS with different values for the parameter δ. These

states were separate from the 515 states mentioned above. As can be seen, a value of

δ ≥ 10 achieves optimal performance. Below that, DS does not concentrate sampling on the

promising regions in the function space (in the domain of curling) to successfully find the

optimal action.

4.5 Normalized Delaunay Sampling

In the normalized version of Delaunay sampling (NDS), the parameters of the objective

function are scaled such that they are in the interval [0, 1]. Therefore, every sample point in

the original space X ⊆ R2 undergoes a transformation to be a point in the new, normalized

space X ′ ⊆ [0, 1]× [0, 1]. That is, a point xi ∈ X is transformed by the following operation

to give the corresponding point x′
i in the new space:

x′
i = α ◦ xi + β (4.4)

where α =
[
α1
α2

]
, the multiplicative scaling of the coordinates of x, and β =

[β1

β2

]
, the

translation of x. The operation α ◦ x, is the Hadamard product or the elementwise product

38

(a) (b)

Figure 4.7: The effect of anisotropic scaling on Delaunay triangulation.

of the two vectors.

To understand how normalization affects the performance of DS, it is important to

identify which steps of the algorithm normalization alters and which steps it does not.

Delaunay sampling can be broken down into several key steps:

1. Sampling

2. Triangulation

3. Weighting

4. Resampling

5. Selection for UCB

6. Incenter sampling

Normalization involves anisotropic scaling of the original point space. This causes the tri-

angles to be stretched in the dimension of one parameter (angle of the shot) and shrunk along

the other dimension (velocity of the shot). As a result, the angles created between edges

produced during Delaunay triangulation are changed. Ultimately, normalization changes

the triangulation mesh that is produced when the point set in X is transformed to the space

in X ′. Figure 4.7 illustrates how scaling can affect the mesh produced. Figure 4.7(a) shows

the Delaunay triangulation of a point set. Figure 4.7(b) depicts the Delaunay triangulation

of the point set from Figure 4.7(a) where all points are scaled by .5 on the x-axis and by

100 on the y-axis.

Anisotropic scaling of the triangles also changes the corresponding incenters of the tri-

angle. That is, the incenter of a triangle T in X does not correspond to the incenter of T in

X ′. For instance, Figure 4.8(a) illustrates a △ABC with incenter D. Figure 4.8(b) shows

39

△A′B′C ′ where the points A,B,C have undergone an anisotropic scaling to give points

A′, B′, C ′. However this triangle has incenter E which is not equivalent to the transforma-

tion of point D.

A

B

C

D

(a) A′

B′

C ′E

D′

(b)

Figure 4.8: The effect of anisotropic scaling on the incenters of the triangles

However, normalization affects neither the selection of triangles for resampling or for

UCB nor the uniform sampling of a point within a triangle.

The Effect of Normalization on Selection of Triangles for Resampling

Equation 4.2 shows how the weights for each triangle is calculated. The weight of a triangle

T depends on its score and its area. The score of a triangle is invariant to normalization.

The area of a triangle with coordinates (x1, y2), (x2, y2), (x3, y3) is calculated by

aT =
x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)

2
. (4.5)

Normalization would result in the area with the transformed coordinates calculated by

a′T =
x′
1(y

′
2 − y′3) + x′

2(y
′
3 − y′1) + x′

3(y
′
1 − y′2)

2

=
(α1x1 + β1)α2(y2 − y3) + (α1x2 + β1)α2(y3 − y1) + (α1x3 + β1)α2(y1 − y2)

2

=
α1α2x1(y2 − y3) + β1α2(y2 − y3)

2
+

α1α2x2(y3 − y1) + β1α2(y3 − y1)

2

+
α1α2x3(y1 − y2) + β1α2(y1 − y2)

2

=
α1α2x1(y2 − y3) + α1α2x2(y3 − y1) + α1α2x3(y1 − y2)

2

∴ a′T = aTα1α2.

(4.6)

The weight of a triangle in the normalized space can then be written in terms of the weight

40

in the original space as

w′
T = wTα1α2. (4.7)

As a consequence, if the Delaunay triangulation of a set of points X in X is the same as the

triangulation of the corresponding points X′ in X ′, then during resampling each triangle T

in X will have the same probability of being selected as each corresponding triangle T ′ in X′.

That is, normalization does not affect the selection of triangles if the triangulations in both

spaces are equivalent. It follows that normalization does not affect the selection of triangles

for the UCB phase either as all the mean weights of the triangles would be multiplied by

the same constant.

The Effect of Normalization on Sampling Within a Triangle

A point x can be sampled uniformly within a triangle in space X with vertices x1,x2,x3

using

x = (1−√r1)x1 +
√
r1(1− r2)x2 + r2

√
r1x3 (4.8)

where r1 and r2 are random numbers between [0, 1]. In the normalized space the new point

can be written in terms of the new point in the original space by

x′ = (1−√r1)x′
1 +
√
r1(1− r2)x

′
2 + r2

√
r1x

′
3

= (1−√r1)(α ◦ x1 + β) +
√
r1(1− r2)(α ◦ x2 + β) + r2

√
r1(α ◦ x3 + β)

= (1−√r1)(α ◦ x1) +
√
r1(1− r2)(α ◦ x2) + r2

√
r1(α ◦ x3) + β

∴ x′ = α ◦ x+ β

(4.9)

The point sampled in X ′ is equivalent to the corresponding point that would be sampled in

X . Therefore, normalization does not affect how a point is sampled within a triangle (given

that the triangulations are the same in the original space and the normalized space.)

41

Chapter 5

Experiments and Results

5.1 Experimental Design

The data used for our experiments was drawn from the hammer shot states captured by

hand from the 2010 Winter Olympics men’s and women’s curling competition.1 A set of 397

hammer shot states from these logs were used in the parameter sweeps mentioned below.

The parameter sweep for Delaunay Sampling (DS) chose a value of 17 for σ. A separate

set of 515 hammer shot states (the “test states”) from these logs were used to evaluate the

systems (including the humans).

For each of the test states, we gave DS a budget of between 500 and 3000 samples. This

budget includes 100 samples for initializing the triangulation over each turn, 100 samples

per iteration of the first phase, and 100 samples for the final UCB phase. After DS selected

a shot, 10 outcomes were sampled from the simulator, with the outcome’s sample mean used

as the resulting estimate of WP. This procedure was repeated 250 times for each test state.

The values we report in Table 5.1 are the average over the 2500 evaluations for each test

state. DS was also tested with the values for angle and velocity normalized to values in the

interval [0, 1]. These results are shown in the table under the label NDS. The normalization

of the action parameters was also done for the other optimization algorithms (HOO, PSO,

CMA and GPO).

When implementing HOO, for every state, the action space of the objective function for

each turn was covered by a separate tree. At each iteration, the tree to be expanded was

selected using UCB. We ran HOO for 250 trials over the test states using the same sampling

budgets as DS. The parameters for HOO described by Bubeck et al. [2009b] were set by a

parameter sweep to ρ = 1√
2
, ν = 2

√
2 and UCB constant C = 0.01.

PSO was tested slightly differently. Since the particles move in a continuous space,

having a discrete parameter (“turn”) required us to run PSO on each turn separately. For

each test state, PSO was run using one turn value and then the other with each run being

1The logs do not contain the actual shot played by the humans they only contained the states before and
after the hammer shots were taken.

42

provided half the sampling budget. The best shots found with each turn were compared and

the one with the higher average WP was evaluated one final time to compute its expected

WP . This was performed 250 times for each test state. The values for the parameters for

PSO were selected using a parameter sweep and were set to c1 = 1.5, c2 = 1.5, w = 0.7 and

50 particles.

We used the BIPOP-CMA-ES [Auger and Hansen, 2009] version of CMA-ES for our

tests. The experimental setup was the same as for PSO. The parameters for the number of

offspring and parents were, respectively, λ = 4 + 3 log 2 and µ = λ/2 with 4 restarts. We

set the initial standard deviation to σ0 = 0.25 and normalized the action parameters θ and

v to range between 0 and 1. The parameters for µ, λ, step-size control and the covariance

matrix adaptation were set in accordance to the values recommended by Hansen [2016].

GPO was tested in a manner similar to PSO. However, since GPO is considerably slower

we implemented it with only a budget size of 250, 500 and 1000 samples per turn with 50

restarts for GP regression and ran one trial of the algorithm at each budget size. In addition,

at each budget size, we ran GPO only once and evaluated the shot chosen 2500 times.

Although there are many choices for covariance functions, we chose the squared-exponential

function as the GP kernel. We also selected GP-UCB as the acquisition function and set

the noise variance σ = 0.01 using a parameter sweep.

KR-UCT was initialized with a uniform grid of 100 samples over each turn as the candi-

date set. At each iteration, the action with highest action value over both turns is selected.

KR-UCT was run with budget size of 3000 samples. Due to the slow speed of KR-UCT,

it was only run for one trial for each hammer shot and the shots selected after 500, 1000,

1500, 2000, 2500 and 3000 iterations were returned. Each of these shots were then executed

2500 times and the expected value was calculated. The value of C = 0.1 was chosen by Yee

et al. [2016] for our application.

UCB was also tested to observe its performance. In this case, the actions for UCB

were created in three different manners. In the first case (UCB+Uni), for each state the

algorithm was run on each turn separately with each turn given half the sampling budget.

5% of the budget was then spent on creating a uniform grid of samples in the action space

and the rest of the budget was used to run UCB. This was repeated 250 times. This is the

preliminary testing described in §4.4.1. For UCB+Rand (second case), the same setup was

used as UCB+Uni except this time the actions were created by uniform randomly sampling

the space instead of using a grid. For the final case (UCB-Gen), the actions for UCB were

created using domain knowledge. One of the key features our simulator includes is a set of

shot generators which use expert human knowledge to analyze a given state and create a

set of actions that an expert player would be most likely to recognize. The shots created

using this expert knowledge were used to initialize UCB-Gen. UCB-Gen was run for each

43

Budget 500 1000 1500 2000 2500 3000
DS 3.52 7.33 8.63 9.17 9.43 9.59
NDS 8.22 9.58 9.84 9.92 9.98 9.96
HOO -1.39 3.76 5.56 7.63 7.98 8.84
PSO 5.40 5.48 5.46 5.45 5.48 5.47
CMA 5.20 5.46 5.41 5.21 5.42 5.36
GPO 4.38 4.49 - 4.48 - -

KR-UCT 8.05 8.79 8.94 9.11 8.85 8.92
UCB -4.35 2.69 4.80 6.21 6.24 7.46

UCB+Gen 9.39 9.50 9.56 9.57 9.58 9.59
DS+Gen 6.57 8.53 9.36 9.61 9.75 9.81

Table 5.1: Average ∆wp for algorithms initialized with uniform sample grid.

Budget 500 1000 1500 2000 2500 3000
DS 4.95 8.01 9.07 9.51 9.76 9.90
NDS 8.24 9.64 9.88 9.97 9.99 9.99
UCB 0.90 4.24 5.62 6.52 7.08 7.47
Rand 5.43 5.53 5.52 5.51 5.50 5.50

Table 5.2: Average ∆wp for algorithms initialized with random samples.

test state with the given sampling budgets 250 times. (In addition, domain knowledge was

also used in the initial sample set for DS and the results for these experiments are shown in

Table 5.1 under DS+Gen.)

Finally, as a benchmark against which to compare the performance of all the algorithms,

the experiments were also performed by selecting an action at random. For each state, each

turn had received half the sampling budget, all of which went toward sampling randomly in

the action space of each turn. The action with the highest observed value was selected and

its expected value calculated. This procedure was performed 250 times for each state.

To determine if DS’s average WP on the test states was statistically significantly different

than the average WP of the humans or other systems tested, we ran a Wilcoxon signed-rank

test (WSRT) with one pair of values for each of the 515 test states (one of the values was

DS’s WP on the state, the other was the WP of the system DS was being compared to).

Unless otherwise noted, WSRT produced p-values sufficiently small to conclude with greater

than 99% confidence that DS’s superior average WP (for any specific sample budget) is not

due to chance.

5.2 Analysis

In § 2.4, we described the function that we are trying to optimize using the various algo-

rithms. While the algorithms are indeed optimizing over actions to find the action that

achieves the greatest WP, we report the results of their performances in terms of gain in

WP, ∆wp. That is, for any state an optimization algorithm is run on, we record the WP of

44

the hammer team before taking an action. Then we find the WP of the team after taking

the action selected by the algorithm. ∆wp is the difference between these two values of WP.

Table 5.1 shows the performance in terms of average ∆wp over all test states for each of

the optimization methods in our study. The performance of DS increased as we increased

the number of samples in its sampling budget. With a low sampling budget, DS had

significantly worse performance than the other optimization algorithms, excluding HOO

and UCB. It surpassed the performance of PSO, CMA and GPO with a budget of at least

1000 samples. Its performance, however, was consistently better when it was initialized

with random samples instead of uniform samples. The random initialization increased the

chances of DS finding good actions in the beginning of each trial.

NDS performed better than DS and significantly better than all other algorithms over

all sampling budgets.

Budget 100 150 200 250 300 350 400 450 500
NDS -2.86 4.50 6.21 6.99 7.46 7.81 8.07 8.24 8.40

Table 5.3: NDS with smaller sampling budgets.

Since, NDS exceeded the performance of other algorithms by a large margin with even the

smallest sampling budget, NDS was tested with even fewer samples. In these experiments,

NDS was given sampling budgets from 100 through 500. It was initialized by a 5 × 5 grid

of samples. At each iteration of the algorithm, 50 new samples were observed. The UCB

phase was given a budget of 50 samples (at a sampling budget of 100, NDS did not refine the

triangulation with new samples.) The results of these trials are shown below in Table 5.3.

HOO performed worse than DS for smaller sample budgets because it was slower to build

its cover tree deep enough in the more promising parts of the action space to accurately

locate the best shots. We believe this is largely due to the effects of the bias term on the value

of Equation (3.2a). The bias term was scaled using a static UCB constant for all hammer

shots. In some states, this may have resulted in much of the sampling budget being used

exploring the space (where the constant C is set too high). In other states, this may have

caused the samples to prematurely concentrate on a local optimal region (when C is too

low). Choosing a different constant for each hammer shot may have helped the performance

of HOO however it not a feasible task because it would require a parameter sweep for

each state and you would have to pay the cost of those samples to have a fair comparison.

However, higher sampling budgets drown out these adverse effects as its performance grows

closer to DS’s as the sample budget increases.

PSO’s ∆wp changed very little as its sample budget increased. This is due to PSO’s

tendency to converge to local optima of the function space. It may, however, converge to a

global optimum if the random initial sampling places a particle on or near a global optimum.

45

Number of Particles 10 25 50 75 100
∆wp 4.99 5.39 5.51 5.51 5.43

Table 5.4: Average ∆wp of PSO after 20 iterations with different number of particles.

Increasing the number of particles (at the cost of decreased number of iterations of PSO

given a set sampling budget) would increase the chances of PSO finding a global optimum

but this reaches a limit in performance increase at 50 particles. Table 5.4 shows how the

performance of PSO changes with an increase in the number of particles after 20 iterations

of PSO. CMA-ES also suffers from convergence to suboptimal local optima.

GPO performs considerably worse than DS when DS is given a sampling budget of

at least 1000 samples. One of the main contributing factors to the poorer performance of

GPO is its noise parameter. The noise parameter σ provides an estimate of the variance

of the distribution of the rewards observed at any point in the action space. The setting

of this variance is vital in generating an accurate predictive model of the function and in

determining points to sample. Since GPO seeks a global optimal action, one static value

for σ over all states may result in excessive exploration of the action space (regions not

near promising points sampled so far) depending on the state for which it is trying to find

the best action. This is further complicated by the fact that the noise in our application is

actually not on the function values but on the values of the parameters that are passed to

the objective function (the parameters of the actions are perturbed before an observation.)

While this ultimately results in some distribution of rewards with an expected value for

each of the actions, these distributions are different for each action in any state (see next

paragraph.) So for each state we have heteroscedastic noise which one value for σ fails to

model. In addition, it is infeasible to set a separate σ for each action since an appropriate

σ for each action is not possible without knowing the actual objective function.

To demonstrate this with an example we examined how the value of σ selected affects

the performance in a single state. For the state chosen, we chose two set values for velocity

to produce two different 1-dimensional functions for which we try to optimize the angle.

Figure 5.1 illustrates the two functions fA and fB . A velocity v = 0.1 and v = 0.3 was set

for fA and fB respectively and the WP achieved over the angles is plotted. The x-axis is

the normalized range of angles and the y-axis is the WP achieved. The dark lines are the

average WPs observed and the gray region depicts the pointwise variance of the distribution

of the WP. GPO was used to find the angle that observes the highest WP. For each function,

GPO was run with σ values from [0.1, 0.01, 0.001, 0.0001, 0.00001] given sampling budgets

of 15 and 30 samples with 50 trials at each σ. The average expected WP achieved over all

trials was then calculated. Table 5.5 show the results of this experiment. As can be seen,

looking at the σ value that yields the greatest WP for each functions, even in a single state

46

(a) fA (b) fB

Figure 5.1: Examples of 1-dimensional versions of our objective function.

σ
fA fB

15 30 15 30
0.1 33.6 36.9 31.1 34.6
0.01 33.3 36.7 27.5 32.4
0.001 35.1 38.4 31.8 31.5
0.0001 32.2 37.6 32.7 36.4
0.00001 33.8 34.6 32.6 33.6

Table 5.5: Average ∆wp achieved with different noise variance.

different values for σ are required to optimize the function at different regions. Despite these

disadvantages, we believe that given a more generous sampling budget, it would eventually

find better shots, but its running time would be prohibitive.

KR-UCT performs significantly better than vanilla DS for budget sizes of 500, 1000

and 1500. However, NDS significantly outperforms KR-UCT over all budget sizes. This

might be due to KR-UCT’s tendency to do local exploration (actions near previous actions).

The algorithm was originally designed to use domain knowledge for candidate actions and

improve upon those actions. Therefore in the optimization scenario we explore, any new

shots the algorithm explores would be actions close to the initial uniform grid set of samples.

As a result the performance of the algorithm relies entirely on the quality of the initial set

of actions.

UCB-Uni and UCB-Rand both start off performing poorly at lower sample budgets

but increase in performance as their budgets in increase with UCB-Rand performing signif-

icantly better than UCB-Uni over all budget sizes. UCB-Gen consistently performs well

over all sampling budgets. DS only reaches similar performance with a budget of at least

2500 samples while NDS requires only 500 samples. NDS however exceeds the performance

of UCB-Gen when given a budget of 1000 samples or more. This might be because UCB-Gen

is restricted to selecting the best action solely among the actions produced using domain

47

knowledge. NDS, however, is not limited by these restrictions and may find newer, better

actions. DS-Gen performs worse than UCB-Gen at lower sample budgets but exceeds it

when given larger budgets. This indicates that while the expert knowledge from humans

used in our simulator may help us to find good actions they may not be best actions.

48

Chapter 6

Comparing to Humans

In the previous chapter, the performance of Delaunay sampling was compared to only that

of other algorithms and we learned that, for our application, the normalized DS algorithm

outperforms the others when it comes to selecting actions for hammer shots. One of the

main goals of this research is to explore the possibility of using AI agents to outperform

humans. In this chapter, we examine how the strategies selected by NDS for hammer shots

compare to the strategies Olympic-level humans chose.

Blanks Humans
NDS

500 1000 1500 2000 2500 3000
All 4.82 8.22 9.58 9.84 9.92 9.98 9.96
Late 5.52 9.20 10.74 11.02 11.11 11.18 11.17

Table 6.1: Average ∆wp for NDS and Humans

The performance for Olympic-level humans was calculated using the data from the 2010

Olympic’s men’s and women’s games logs. There were a total of 912 states: 515 was used

for testing and 397 were used for parameter sweeps. For each of the 515 hammer states

on which NDS was tested, the WP that the human team had before the hammer shot was

computed from the state information. The state information for the outcomes of the actions

taken by humans were then used to compute the WP of the team after the shot was taken.

The difference between these two values were the ∆wp Olympic humans observed for each

hammer state. Table 6.1 show these results.

The first row of results in the table show the performance of humans over all states.

Olympic-level humans had an average ∆wp of 4.822%. NDS outperforms humans signifi-

cantly (WSRT p-value < 0.01) with a sampling budget of at least 200 samples (∆wp = 6.21%,

see Table 5.3). An interesting thing to note is that in practice, humans play with one general

convention: most teams choose to blank the early ends of the game. To see how this affects

the average ∆wp of humans, we also include their performance by removing all the early

blanked ends from the data. The second row of results reflect these changes for humans

49

Figure 6.1: NDS advantage over humans for each state.

and NDS. Without the early blanked ends, it can be seen that the average ∆wp for humans

increased to 5.52%. Similarly, the performance of NDS also increased.

Figure 6.1 plots the differences between the ∆wp achieved by actions selected by NDS

and humans for each state (which we will call NDS advantage). The x-axis in the plot is the

set of the 515 test states (in order of increasing difference in performance) and the y-axis

is the NDS advantage. The blue, solid line is the plotted NDS advantage. The red, dashed

line marks the points of zero difference. Wherever the NDS advantage is negative, humans

achieved better performance and points where NDS advantage is positive are states where

NDS performed better. It can be seen on the graph, for approximately 20% of the states,

humans performed worse than NDS (the proportion of the solid line below the zero mark).

On approximately half the states, NDS performed better than humans.

In the following two sections, we will examine more closely several states where NDS

outperforms humans and vice versa. For each case, we provide the diagram of the state

with shot trajectories, NDS advantage over humans (the difference between their ∆wp

values), the the intended shot of the human team, the shot chosen by NDS and

a brief analysis. We also provide, in terms of WP, the expected difference of the action

chosen by NDS over humans in cases where the shots they chose are different. The data

logs from the actual games contain the type of shot that the human team intended to take

for every hammer state. Then using the heatmaps, for each of the cases we studied, we

manually identified the parameters for the human team’s intended shot that achieved the

best expected WP. Then we executed the action with those parameters using the simulator

for 2500 times and calculated the expected ∆wp for the intended human shot. We then

provide the difference between this expected value and the expected value for the action

chosen by NDS. In the diagrams, trajectories depicted as dashed lines are the human shots,

solid lines are the NDS shots. Out turns are trajectories curving upwards and in turns are

50

trajectories curving downwards. Red rocks (darker rocks in grayscale) in the state pertinent

to the hammer shot selection are labelled as ri and yellow rocks (lighter shaded rocks) are

similarly labelled as yi. For the sake of simplicity, all hammer teams are throwing red rocks

in these examples.

6.1 Cases NDS Exhibits Improvement

6.1.1 Case 1

DEN: 6 USA: 6
E: 11 S: 16

y0 r0

Human/NDS

Figure 6.2: NDS v Humans Case 1

NDS Advantage: 98.28%1

Expected Difference: -

Human Shot/Turn: Clearing/Out

NDS Shot/Turn: Clearing/Out

The first case (Fig 6.2) that we examine, is the case where NDS shows the most improvement.

It is the last shot of the 11th end with the scores tied. The yellow team is currently sitting

at winning 1 point for the end to win the game, with y0 being closest to the button. The

red team intended to use their shot to knock out y0 from play to allow them to score at

least 3 points (depending on where the shot rock ends.) However, instead they ended up

hitting the y0 into r0, knocking their own rock out instead with y0 being the closest to the

button scoring 1 point for the yellow team. NDS actually chose the same shot as humans

1It is important to note that these differences are not exactly 100% because the shots NDS chooses have
a chance of blanking the end (scoring 0).

51

but executed it with the intended result a majority of the time during repeated trials. In

this case, the humans were just “unlucky” in their shot execution.

6.1.2 Case 2

SWE: 6 CAN: 6
E: 11 S: 16

y0

y1Human

NDS

Figure 6.3: NDS v Humans Case 2

NDS Advantage: 96.22%

Expected Difference: 22.3%

Human Shot/Turn: Double Takeout/In

NDS Shot/Turn: Takeout/In

The second case (Fig 6.3) shows a situation of the last shot of the 11th end with scores

tied. The yellow team has two rocks y0 and y1 in the house and are currently sitting on

two points. The humans decided to hit y1 with their shot rock into y0 with the intent of

knocking both rocks out of play to score 1 point to win the game. However, they ended up

hitting y1 straight on and only knocking that rock out resulting in a loss of 1 point for the

end. NDS decided to only try to take out y0 instead. This shot has a 22.3% improvement on

the action selected by humans. This is probably a more robust shot because taking out one

rock is more likely to be successful than taking out two rocks. Furthermore, even though

the gap to hit y0 is not a large width of space, takeouts are much straighter in trajectory

than other shots so it is not too difficult a shot.

52

USA: 5 GBR: 5
E: 11 S: 16

y0
Human

NDS

Figure 6.4: NDS v Humans Case 3

6.1.3 Case 3

NDS Advantage: 89.6%

Expected Difference: 1.7%

Human Shot/Turn: Draw/In

NDS Shot/Turn: Takeout/In

Fig 6.4 illustrates the third case NDS chooses a better shot than humans. It is the last shot

of the 11th end with the scores tied. The yellow team has one rock y0 in position to score a

point to win the game with a red rock sitting just behind it. The humans decided to draw

in closer to the button right in front of y0. However, the human player missed this shot

completely. They ended up shooting a little too strongly (since they wanted to use y0 for

backing) and did not have enough curl for the rock to stop in the button. NDS decided to

take out y0. Similar to the previous case, a takeout is probably a more robust shot (this shot

has and expected value of 96.7% while the draw has an expected value of 95.0%) because it

will be straighter and the shooter would not have to be as rigid about the shot velocity with

a takeout as with a draw. However, both shots have high expected values and the human

team failed to execute it.

6.1.4 Case 4

NDS Advantage: 81.52%

Expected Difference: -

53

SUI: 6 USA: 6
E: 11 S: 16

y0

y1

r0
Human/NDS

Figure 6.5: NSD v Humans Case 4

Human Shot/Turn: Promotion Takeout/Out

NDS Shot/Turn: Promotion Takeout/Out

Fig 6.5 is another case where NDS chooses the same shot the humans did. This state is the

hammer shot of the 11th end of a game and the scores are tied. In this case, both teams

have two rocks each in the house. However, rocks y0 and y1 are the closest to the button, so

the yellow team is currently sitting to gain 2 points and win the game. The hammer team

decided to promote their rock r0 into y0 to remove it from the house with the hope that r0

would end up being the closest rock to the button. NDS chose to execute the exact same

shot. However, during execution, r0 indeed ended up hitting y0 out of the house but r0

then travelled further resulting in y1 becoming the closest rock to the button. As a result,

the human team with the hammer lost a point to the other team. This marks another

case, where both humans and NDS chose the same but humans suffered bad luck during

execution. It is important to note that NDS chose to ignore drawing in to the button in

this case as well suggesting that draw shots are probably harder to execute.

6.1.5 Case 5

NDS Advantage: 80.77%

Expected Difference: -16.48

Human Shot/Turn: Draw/Out

NDS Shot/Turn: Promotion Takeout/Out

54

SUI: 7 DEN: 7
E: 10 S: 16

y0
y1

r0

Human

NDS

Figure 6.6: NDS v Humans Case 5

Fig 6.6 is the final example we will look at where NDS outperformed humans in our exper-

iments. It is the hammer shot for the 10th end of the game and scores are tied. In this

case there are three rocks in the house: two yellow rocks y0, y1 and one red rock r1. The

yellow team is set to gain two points with y0, y1. The hammer team decided to draw to

the button with an out turn to score 1 point. However they failed to execute it and lost 2

points. This is a straightforward shot in that there are no rocks in the way (the one yellow

rock at the bottom is too far to be an obstacle.) However, it still requires the shooter to

control the shot’s velocity to not be too high or too low. The intended shot selected by

humans has an expected value of 86.52%. NDS chose a shot that is more complex than a

draw. It chose to take out both y0 and y1. This requires the shot bounce between r0 and

y0 and then move on to hit y1. This is a case where NDS chose a shot that has a lower

expected value (70.04%) than the intended shot selected by humans but still did better (hu-

mans were probably unlucky during execution.) NDS consistently chose the double takeout

on repeated trials.

6.2 Cases NDS Exhibited Deterioration

6.2.1 Case 6

NDS Advantage: -56.73%

Expected Difference: -

Human Shot/Turn: Promotion Takeout/Out

NDS Shot/Turn: Promotion Takeout/Out

55

CHN: 5 FRA: 4
E: 10 S: 16

y0

r0

Human/NDS

Figure 6.7: NDS v Humans Case 6

Case 6 (Fig 6.7) is the first example we will look at where NDS does worse than humans.

It is the final shot of the 10th end and the red team is down by 1 point. The yellow team

currently has a rock y0 closest to the button and has a potential score of 1 point for the

end. The red team needs 2 points to win the game and 1 point to blank the end and move

to an extra end. In this case humans chose to hit their own rock r0 and promote that to

take out y0. They executed the shot perfectly and scored 2 points. NDS found the same

shot to be the best possible action to take. Unfortunately this is a very difficult shot to

execute perfectly (it has an expected value of 38.5%). A draw in to the button seems like

an easier shot to take but it would at most score 1 point. This would result in a tied score

and another end would have to be played, but in this end the other team would possess the

hammer and have an advantage. The promotion takeout is the only viable shot that allows

the hammer team to win. In this situation, the human team successfully executed a difficult

shot.

6.2.2 Case 7

NDS Advantage: -21.85%

Expected Difference: -

Human Shot/Turn: Promotion Takeout/Out

NDS Shot/Turn: Promotion Takeout/Out

Case 7 (Fig 6.8) is similar to the previous case. It is the final shot of the 7th end of a game

and the red is leading by 1 point. The yellow team currently has a rock y0 closest to the

56

GER: 3 CAN: 4
E: 7 S: 16

y0

r0

Human/NDS

Figure 6.8: NDS v Humans Case 7

house and has a potential score of 1 point for the end. Again humans chose to hit their

own rock r0 and promote that to take out y0. They executed the shot perfectly to score

3 points. NDS found the same shot to be the best action to take. Just like the previous

example, humans executed a shot that was not easy (expected value of 63.0%).

6.2.3 Case 8

SWE: 2 GBR: 0
E: 3 S: 16

y0

r0

Human

NDS

Figure 6.9: NDS v Humans Case 8

NDS Advantage: -15.48%

57

Expected Difference: -1.1%

Human Shot/Turn: Draw/Out

NDS Shot/Turn: Promotion/Out

Case 8 (Fig 6.9) illustrates a state where there are 5 rocks in play. It is the last shot of the

3rd end and red is down by 2 points. The yellow team currently has three rocks closest to

the house and has a potential score of 3 points for the end. The red team has 2 rocks in the

outer ring. To avoid losing points, the human team decided to draw to the button along the

path shown. NDS however chose a shot that would raise y0 into r0 to promote it closer to

the button. The human shot requires precision to navigate the shot rock between 4 other

rocks to reach the house. This shot has an expected value of 5.94%. Humans managed to

execute the shot to score 1 point. The shot chosen by NDS is only slightly less robust than

the shot chosen by humans with an expected value of 5.83%.

6.2.4 Case 9

CAN: 4 DEN: 3
E: 10 S: 16

y0

r1r2

r0

Human

NDS

Figure 6.10: NDS v Humans Case 9

NDS Advantage: -15.31%

Expected Difference: 39.7%

Human Shot/Turn: Raise/Out

NDS Shot/Turn: Promotion/Out

58

In Case 9 (Fig 6.10) there are 3 yellow rocks and 1 red rock in the house. It is the final

shot of the 10th end and the hammer team (red) is down by 1 point. The hammer team

needs 1 point to tie and move on to extra ends or 2 points to win. Rock y0 is in position to

potentially score 1 point for the yellow team. The hammer team decided to tap y0 so that

r1 or the shot rock (with the intent that both) is the closest rock to the button. As shown

in the diagram, the shot’s trajectory passes between two rocks in front of the house which

demands a higher level of precision from the shooter for the shot to be executed with the

intended outcome. The alternate shot consistently chosen by NDS is to raise r0. Here the

shot rock collides with r0 and deflects it to the button. This shot is more robust - it has an

expected value of 60.97% while the human team’s intended shot has an expected value of

21.2%. Depending on the angle of the shot, r0 can be knocked into the house or the shot

rock can glance off of r0 and move into the house itself.

From the examples that we examined we see that in most states where NDS performed

better than humans, it was because they found an action with a higher expected value or

the same shot as humans but humans were unlucky. However, in one case (Case 5), NDS

selected a shot less robust than the humans did (nonetheless, humans failed to execute their

intended shot). Usually, in cases where humans did better, they were successful in executing

a difficult shot (actions with low expected WP). In these cases, NDS selected similar shots

and in one case they found a better shot (this action was still a difficult shot to execute).

In one state, NDS selected a slightly worse action but both actions selected by NDS and

humans had very low expected values. Overall for the rest of the states, there are many

cases where NDS performed as well as humans (the expected difference in WP was close to

0.)

6.3 Caveats

There were a substantial number of test states in which the curlers and NDS chose the same

shot but the curlers mis-executed the shot and NDS, on average, did not. This highlights

one of the limitations of this comparison — we were not able to repeatedly sample human

execution of a shot to obtain its expected value. This works both ways, of course: just as

the curlers may have been unlucky and mis-executed a shot they would make 80% of the

time, there may have been shots where they got lucky and perfectly executed a shot they

would make only 20% of the time.

A related limitation is that our execution model may be miscalibrated, making NDS more

(or less) accurate at shot execution than the Olympic teams. The model was calibrated to

Olympic-level curlers to the best of our ability. Likewise, our physics simulation is not a

perfect replica of the true physics of curling. So even if our execution model was perfect and

exactly the same shot was executed by NDS and by the curlers, the distribution of outcomes

59

might be different because our model fails to model the physics of varying ice conditions,

physical differences between the rocks, etc.

A final limitation of this comparison to Olympic performance is that the data from the

Olympics was logged by hand, so the positions of the rocks, as recorded in the logs and used

by NDS in our study, might not be exactly the positions faced by the curlers during the

Olympic games. Small differences in rock positions can substantially affect the distribution

of a shot’s outcomes. As with all the limitations we have discussed, this could work in favour

of NDS but it could equally well work against it.

60

Chapter 7

Related Work

In this chapter, we look at a number of previous works that have been done in similar

problem settings to that on which we focused in this thesis. We also briefly explore the

approaches that each of these works took to address the problem.

7.1 Optimization Problems

7.1.1 Lipschitz Optimization

There are a slew of other approaches to global optimization that we have not applied to our

application. One of the earlier approaches to global optimization is known as Lipschitz

optimization [Danilin and Piyavskii, 1967; Shubert, 1972]. Algorithms in this family aim

to find the optimal point of a function by assuming that the slopes of a function f in a

d-dimensional space X ⊆ Rd are bounded. The most common of these assumptions is the

Lipschitz continuity [Eriksson et al., 2013] of f given as

∀x1,x2 ∈ X : |f(x1)− f(x2)| ≤ b∥x1 − x2∥ (7.1)

where b is known as the Lipschitz constant. Lipschitz continuity is the assumption that the

rate at which a function can change is strictly bounded. Lipschitz optimization algorithms

use this assumption to compute an upper bound over the function and iteratively choose

points with the highest upper bound to evaluate. While algorithms exist that can find

optimal points of function using this approach in tractable time [Danilin and Piyavskii, 1967;

Shubert, 1972; Mladineo, 1986], Lipschitz optimization algorithms have one discouraging

drawback: they work on the assumption that the Lipschitz constant is known. Practical

considerations need to be taken when using these algorithms in real-world cases such as when

the objective function to be optimized is a complex physics simulator (i.e., our application).

To relax this reliance on a known Lipschitz constant, the DIviding RECTangles or

DIRECT algorithm seeks a global optimum by considering all possible values 0 < b <∞ of

61

the Lipschitz constant [Jones et al., 1993]. DIRECT is an iterative algorithm where the func-

tion space is repeatedly partitioned into hyperrectangles and the function evaluated at the

center points of these hyperrectangles. The observed values are then used to calculate upper

bounds on the estimates of the function values at these points. The hyperrectangle that

contains the point with the highest upper bound with respect to some value of b is chosen

to be partitioned. Originally designed to be used for deterministic functions, a modifica-

tion of the DIRECT algorithm exists for optimization of noisy functions [Deng and Ferris,

2007]. In this version, the center point of each hyperrectangle is not evaluated just once.

They are instead evaluated multiple times. However, this results in an increased amount of

overall function evaluations. To combat this, at each iteration the set of evaluations already

performed is used to create a posterior distribution over function values to determine the

appropriate number of repeated evaluations at any center point. This posterior distribution

also provides further information about the variance at any point improving the accuracy

of determining potentially optimal regions to partition and the final point selection.

7.1.2 Other Optimization Approaches

Other optimization techniques exist that do not explicitly look at the local structure of

the function using Lipschitz continuity. STAGE [Boyan and Moore, 2000] is an algorithm

that uses local optimization techniques as heuristics to guide the search for global optima.

The performance of a local optimization technique is reliant on the sample points that are

used to initialize the technique. If the random initial samples are evaluated in suboptimal

regions of the function space, it is unlikely that the performance of the technique is better

than suboptimal. In order to increase the likelihood of finding a good approximation of the

optimal value, local optimization techniques are repeated a number of times with random

restarts. STAGE seeks to find a global optimum of an objective by changing the trajectory

of the local search at each restart. Let us assume, that ẋ is the initial “state” of a local

search technique π. A state constitutes the starting point and other properties of a local

search. Using the result of this search on the objective function f , STAGE builds another

evaluation function Fπ(ẋ). This evaluation function is an approximation of the optimum

value found by technique π from any given state ẋ in f . After each local search, Fπ(ẋ)

is approximated using polynomial regression using the results from all local searches. The

algorithm then optimizes Fπ(ẋ) to determine the starting state of the next local search. This

algorithm has demonstrated good performance in several optimization domains including

the design of VLSI circuitry [Boyan and Moore, 2000].

62

7.2 Resource Allocation Problems

7.2.1 Budgeted Learning

A problem similar in nature to our action selection setting is resource allocation for medical

diagnosis, for example, how do we select which diagnostic tests are best for detecting cancers

in a tissue balancing the cost of the tests and their effectiveness. This general problem is

called budgeted learning. In the traditional learning setting, a learner is given data

samples with which it learns an optimal model. Budgeted learning tasks [Madani et al.,

2004], are problem settings where a learner does not begin with any data about the samples

but can retrieve data for a cost. The objective is then, given a set of resources (a budget)

with which to collect data, to efficiently allocate the budget to retrieve the data needed about

any instance to learn the optimal model. For instance, selecting the best subset of diagnostic

tests among all possible tests to diagnose cancers of a type of tissue. A variant of this task

called active model selection constitutes determining the best model from a given set

of models that most accurately evaluates the given data (i.e., which individual test most

accurately diagnoses cancer in a set of tissues). For a simplified example of the problem,

we can imagine a learner is given a set of indistinguishable coins with varying unknown

head probabilities. The learner can sequentially flip coins to observe the outcomes. After a

specified number of flips, the learner has to decide which coin has the highest expectation

of landing heads. The budgeted active model selection task is congruent to the problem

of finding the best action given a set of actions, which is what we focus on. Madani et

al. [2004] investigate this problem and analyze the performance of various techniques (i.e.,

round-robin sampling, Gittins) to complete the task. They also show that the simple biased

robin algorithm is more effective than other algorithms in practice at addressing budgeted

active learning problems where the costs for sampling every point is identical. The biased

robin works similarly to round robin: each action is sampled iteratively. However unlike

round-robin, in the biased robin, whenever an action yields a desired outcome it is repeatedly

sampled until it yields an undesired outcome before sampling the next action (i.e., if a coin

flip results in a heads, keep flipping that particular coin till it lands tails.)

7.2.2 Pure Exploration in Multi-Armed Bandits

Another way we can look at the resource allocation problem from above is as amulti-armed

bandit problem with pure exploration [Bubeck et al., 2009a; Audibert and Bubeck,

2010]. In the standard multi-armed bandit setting we described earlier (§3.1), the objective

is to find the sequence of actions, where each action is an arm of the bandit, that maximize

the cumulative reward. In the pure exploration problem each action has an associated cost

for sampling. The goal is then to identify the single best action with efficient use of the

63

budget for sampling actions. For instance, in real world settings, each action may require

a considerable amount of CPU time and we want to use the CPU time effectively when

improving our expectation of the actions. Audibert and Bubeck [2010] provide a simple

modification to the UCB formula (Eq. 3.1) to adapt it to the exploration setting. The

result is the UCB-E action selection strategy where at each stage N of the algorithm an

agent would play an arm i among a set of k arms according to

argmax
i∈{1,2,...,k}

[
r̄i +

√
a

N

]
(7.2)

where r̄i is the average reward observed by arm i afterN samples and a is tunable parameter.

The authors show that in practice, this algorithm works effectively and they prove that it

has at most logarithmic cumulative regret (the cost for choosing a suboptimal action over

the optimal action at each stage). However, both the pure exploration bandit algorithm

and active learning techniques suffer from the same limitations preventing them from being

useful to our application: they only work with a finite set of actions while our problem

setting consists of an infinite set of possible actions. Furthermore, when these techniques

are given a finite set of candidate actions, they are limited to those and cannot identify new

actions.

7.3 Curling and Billiards

Previous work has been done on developing strategies for curling in [Yamamoto et al., 2015].

Work in billiards, a game which is similar to curling with continuous actions and states

along with stochastic outcomes, has received some attention in the literature [Archibald et

al., 2009; Smith, 2007; Smith, 2006]. However, in all of this work, the authors use domain

knowledge to create a finite set of discrete actions. This makes it possible for search to be

employed without addressing the challenges of optimization in continuous settings. This

work sought to forego domain knowledge as much as possible, in favor of a more domain-

independent approach.

64

Chapter 8

Conclusion

8.1 Summary

This thesis studied optimal decision making for selecting actions in settings where the actions

have stochastic outcomes. Curling was presented as an ideal domain for this study. This

thesis described the research challenges that arise in this particular setting. This work then

showed how this setting could be reduced to a low-dimensional optimization problem with

continuous, stochastic actions. An algorithm based on Delaunay triangulation was adapted

to be used for this setting and compared to existing methods for optimization. Then finally

this research compared strategies developed by an artificial intelligence agent against those

of Olympic-level humans in the domain of curling.

The optimization problem modelled reflects finding the last shot of an end in curl-

ing called the hammer shot. This was the focal point of this thesis and various existing

approaches were surveyed for solving this problem. The new algorithm designed, called De-

launay Sampling, was shown to perform well, significantly better than existing algorithms,

finding good robust actions without any domain-specific knowledge.

All the algorithms studied and NDS were tested on actual hammer shot situations that

transpired during 2010 men’s and women’s Olympic curling games. Data logged from the

games provided a set of 515 hammer states on which the algorithms were tested. The actions

examined by the algorithms were evaluated by a curling physics simulator calibrated using

over 30000 games played between 2011 and 2014. These tests showed that DS and the

normalized version of DS performed better than existing algorithms. One of the main

objectives of this research was to explore the possibility of using AI agents to beat human

strategies for curling (or stochastic action optimization in general). Testing using Olympic

data also allowed strategies selected by DS to be compared to those of humans and this

work has shown that our algorithm, with a few caveats, does outperform human strategies.

This research has produced several important results. One of the key results is that even

in a more simplified setting, decision making for selecting actions when there is uncertainty

65

in the action outcomes is a non-trivial task. Although our research has shown some algo-

rithms, notably DS and normalized DS, have exhibited good performance in our setting, it

is difficult to assume that comparable performance can be had in other settings or whether

they can even be scaled to problems in higher dimensions. Another result from the exper-

imental evaluations has shown that even when ignoring domain knowledge in our setting,

AI algorithms can be used to improve human decision making strategies and incorporating

domain knowledge can help to increase the efficiency of these algorithms. It follows that this

is also an indication that there are limitations to humans’ abilities to judge the expectation

of stochastic actions.

8.2 Limitations

One of the key limitations stems from the use of a physics simulator for our experimental

evaluations. Our simulator was based on the physics of real-world curling which is not com-

prehensively understood therefore our simulator is not a perfect replica of the true physics

of curling. The execution model of the simulator adds stochasticity to actions by attempt-

ing to accurately model the execution errors due to human inaccuracy and unpredictable

ice conditions. Although calibrated using actual Olympic games, this model is not perfect.

While these do not affect the results gleaned from the comparisons between the various

algorithms that has been tested in this thesis, it does however, affect the certainty of our

comparisons of AI algorithms with the performance of humans. A lack of repeated samples

of actions chosen by humans also add some limitations to our analysis.

Another limitation of this research is due to where stochasticity lies in our particular

optimization setting. In conventional optimization problems, stochasticity is introduced

as a Gaussian noise added to function evaluations. However, in ours, the noise is added

to parameters of the function instead. While this does have an equivalent noise model

on function evaluations, it is impossible to compute this model using the former during

action optimization. This adds a challenge when investigating approaches in our setting

that explicitly require knowledge of noise on the function observations.

Simplification of the curling problem introduces some limitations. The first simplification

is how turns are modelled for shots in curling. Instead of representing a turn using a

continuous variable with a value for the angular velocity on the rock being shot, only the

direction of the turn is taken into consideration. While the angular velocity on a rock has

but a small effect on the trajectory of a shot, it is still a variable that adds uncertainty to

shot execution. In our simulator, this is ignored. The second simplification is that sweeping

is not explicitly modelled as a variable for taking a shot. Since for the most part, sweeping is

used to correct for execution error, it is incorporated into the execution model of simulator.

However, in certain situations in curling, there are actions that can only be taken using

66

sweeping. By not explicitly modelling sweeping separately, we remove any possibility that

these actions are recognized by the AI agents.

8.3 Final Word

Optimal decision making in situations where the actions have uncertainty in their outcomes

is a difficult task. In order to find good solutions to problems of this nature, we must develop

algorithms that are robust to complex, unknown noise models. This thesis has shown that

curling is a real-world scenario where this non-trivial setting exists and has explored various

existing approaches and a novel approach to solving this problem with reasonable success.

Finally, while the setting we have tested our approaches on was more simplistic than most

real-world situations, they show promise in being applied to various larger problems.

67

Bibliography

[Archibald et al., 2009] Christopher Archibald, Alon Altman, and Yoav Shoham. Analy-
sis of a winning computational billiards player. In IJCAI, volume 9, pages 1377–1382.
Citeseer, 2009.

[Audibert and Bubeck, 2010] Jean-Yves Audibert and Sébastien Bubeck. Best arm iden-
tification in multi-armed bandits. In COLT-23th Conference on Learning Theory-2010,
pages 13–p, 2010.

[Auer et al., 2002] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis
of the multiarmed bandit problem. Machine learning, 47(2-3):235–256, 2002.

[Auger and Hansen, 2009] Anne Auger and Nikolaus Hansen. Benchmarking the (1+1)-
CMA-ES on the BBOB-2009 function testbed. In Genetic and Evolutionary Computation
Conference, GECCO 2009, Proceedings, Montreal, Québec, Canada, July 8-12, 2009,
Companion Material, pages 2459–2466, 2009.

[Bäck et al., 1991] Thomas Bäck, Frank Hoffmeister, and Hans-Paul Schwefel. A survey
of evolution strategies. In Proceedings of the 4th International Conference on Genetic
Algorithms, San Diego, CA, USA, July 1991, pages 2–9, 1991.

[Boyan and Moore, 2000] Justin Boyan and Andrew W Moore. Learning evaluation func-
tions to improve optimization by local search. Journal of Machine Learning Research,
1(Nov):77–112, 2000.

[Boyd and Vandenberghe, 2004] Stephen Boyd and Lieven Vandenberghe. Convex optimiza-
tion. Cambridge university press, 2004.

[Browne et al., 2012] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M
Lucas, Peter Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon
Samothrakis, Simon Colton, et al. A survey of monte carlo tree search methods. Compu-
tational Intelligence and AI in Games, IEEE Transactions on, 4(1):1–43, 2012.

[Bubeck et al., 2009a] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration
in multi-armed bandits problems. In International conference on Algorithmic learning
theory, pages 23–37. Springer, 2009.

[Bubeck et al., 2009b] Sébastien Bubeck, Gilles Stoltz, Csaba Szepesvári, and Rémi Munos.
Online optimization in x-armed bandits. In D. Koller, D. Schuurmans, Y. Bengio, and
L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 201–
208. Curran Associates, Inc., 2009.

[Danilin and Piyavskii, 1967] Yu M Danilin and SA Piyavskii. An algorithm for finding the
absolute minimum. Theory of Optimal decisions, 2:25–37, 1967.

[De Berg et al., 2000] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Ot-
fried Cheong Schwarzkopf. Computational geometry. In Computational geometry, pages
1–17. Springer, 2000.

[Deng and Ferris, 2007] Geng Deng and Michael C Ferris. Extension of the direct optimiza-
tion algorithm for noisy functions. In 2007 Winter Simulation Conference, pages 497–504.
IEEE, 2007.

68

[Denny, 1998] Mark Denny. Curling rock dynamics. Canadian journal of physics, 76(4):295–
304, 1998.

[Eriksson et al., 2013] Kenneth Eriksson, Donald Estep, and Claes Johnson. Applied Math-
ematics: Body and Soul: Volume 1: Derivatives and Geometry in IR3. Springer Science
& Business Media, 2013.

[Hansen and Ostermeier, 1996] Nikolaus Hansen and Andreas Ostermeier. Adapting arbi-
trary normal mutation distributions in evolution strategies: The covariance matrix adap-
tation. In Evolutionary Computation, 1996., Proceedings of IEEE International Confer-
ence on, pages 312–317. IEEE, 1996.

[Hansen, 2016] Nikolaus Hansen. The CMA evolution strategy: A tutorial.
arXiv:1604.00772, 2016.

[Jensen and Shegelski, 2004] ET Jensen and Mark RA Shegelski. The motion of curling
rocks: experimental investigation and semi-phenomenological description. Canadian jour-
nal of physics, 82(10):791–809, 2004.

[Jones et al., 1993] Donald R Jones, Cary D Perttunen, and Bruce E Stuckman. Lips-
chitzian optimization without the lipschitz constant. Journal of Optimization Theory and
Applications, 79(1):157–181, 1993.

[Kennedy, 2011] James Kennedy. Particle swarm optimization. In Encyclopedia of machine
learning, pages 760–766. Springer, 2011.

[Kleinberg, 2004] Robert D Kleinberg. Nearly tight bounds for the continuum-armed bandit
problem. In Advances in Neural Information Processing Systems, pages 697–704, 2004.

[Kocsis and Szepesvári, 2006] Levente Kocsis and Csaba Szepesvári. Bandit based monte-
carlo planning. In Machine Learning: ECML 2006, pages 282–293. Springer, 2006.

[Lee and Schachter, 1980] Der-Tsai Lee and Bruce J Schachter. Two algorithms for con-
structing a delaunay triangulation. International Journal of Computer & Information
Sciences, 9(3):219–242, 1980.

[Lizotte et al., 2007] Daniel J Lizotte, Tao Wang, Michael H Bowling, and Dale Schuur-
mans. Automatic gait optimization with gaussian process regression. In IJCAI, volume 7,
pages 944–949, 2007.

[Lozowski et al., 2015] Edward P Lozowski, Krzysztof Szilder, Sean Maw, Alexis Morris,
Louis Poirier, Berni Kleiner, et al. Towards a first principles model of curling ice fric-
tion and curling stone dynamics. In The Twenty-fifth International Offshore and Polar
Engineering Conference. International Society of Offshore and Polar Engineers, 2015.

[Madani et al., 2004] Omid Madani, Daniel J Lizotte, and Russell Greiner. Active model
selection. In Proceedings of the 20th conference on Uncertainty in artificial intelligence,
pages 357–365. AUAI Press, 2004.

[Mladineo, 1986] Regina Hunter Mladineo. An algorithm for finding the global maximum
of a multimodal, multivariate function. Mathematical Programming, 34(2):188–200, 1986.

[Nadaraya, 1964] Elizbar A Nadaraya. On estimating regression. Theory of Probability &
Its Applications, 9(1):141–142, 1964.

[Nyberg et al., 2012] Harald Nyberg, Sture Hogmark, and Staffan Jacobson. Calculated
trajectories of curling stones sliding under asymmetrical friction. In Nordtrib 2012, 15th
Nordic Symposium on Tribology, 12-15 June 2012, Trondheim, Norway, 2012.

[Nyberg et al., 2013] Harald Nyberg, Sara Alfredson, Sture Hogmark, and Staffan Jacobson.
The asymmetrical friction mechanism that puts the curl in the curling stone. Wear,
301(1):583–589, 2013.

[Rasmussen, 2006] Carl Edward Rasmussen. Gaussian processes for machine learning. 2006.

[Shewchuk, 2002] Jonathan Richard Shewchuk. Delaunay refinement algorithms for trian-
gular mesh generation. Computational geometry, 22(1):21–74, 2002.

69

[Shi and Eberhart, 1998] Yuhui Shi and Russell Eberhart. A modified particle swarm opti-
mizer. In Evolutionary Computation Proceedings, 1998. IEEE World Congress on Com-
putational Intelligence., The 1998 IEEE International Conference on, pages 69–73. IEEE,
1998.

[Shubert, 1972] Bruno O Shubert. A sequential method seeking the global maximum of a
function. SIAM Journal on Numerical Analysis, 9(3):379–388, 1972.

[Smith, 2006] Michael Smith. Running the table: An ai for computer billiards. In PRO-
CEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE,
volume 21, page 994. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;
1999, 2006.

[Smith, 2007] Michael Smith. Pickpocket: A computer billiards shark. Artificial Intelli-
gence, 171(16):1069–1091, 2007.

[Snoek et al., 2012] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian
optimization of machine learning algorithms. In Advances in neural information processing
systems, pages 2951–2959, 2012.

[Surovik and Scheeres, 2015] David Allen Surovik and Daniel J Scheeres. Heuristic search
and receding-horizon planning in complex spacecraft orbit domains. In Eighth Annual
Symposium on Combinatorial Search, 2015.

[Watson, 1964] Geoffrey S Watson. Smooth regression analysis. Sankhyā: The Indian Jour-
nal of Statistics, Series A, pages 359–372, 1964.

[Yamamoto et al., 2015] Masahito Yamamoto, Shu Kato, and Hiroyuki Iizuka. Digital curl-
ing strategy based on game tree search. In Computational Intelligence and Games (CIG),
2015 IEEE Conference on, pages 474–480. IEEE, 2015.

[Yee et al., 2016] Timothy Yee, Viliam Lisy, and Michael Bowling. Monte carlo tree search
in continuous action spaces with execution uncertainty. In IJCAI, 2016.

70

	Introduction
	Problem Definition
	Thesis Contributions
	Outline

	Background
	Optimization
	Convex Optimization
	Non-convex Optimization

	Curling
	Ends
	Scoring
	Shots
	The Hammer Shot

	Modelling the Hammer Shot
	Objective Function

	Algorithms
	Hierarchical Optimistic Optimization
	The Continuous-Bandit Problem
	HOO

	Kernel Regression UCT
	Kernel Regression
	KR-UCT

	Gaussian Process Optimization
	Gaussian Processes
	Acquisition Functions

	Covariance Matrix Adaptation - Evolution Strategy
	Sampling
	Shifting the Mean
	Updating the Covariance Matrix

	Particle Swarm Optimization

	Delaunay Sampling
	Delaunay Triangulation
	Sampling with Delaunay Triangulation
	Original Algorithm
	Adaptation for Curling

	Selecting the Optimal Point
	Preliminary Analysis
	The Phases of DS
	Parameter Sensitivity

	Normalized Delaunay Sampling

	Experiments and Results
	Experimental Design
	Analysis

	Comparing to Humans
	Cases NDS Exhibits Improvement
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5

	Cases NDS Exhibited Deterioration
	Case 6
	Case 7
	Case 8
	Case 9

	Caveats

	Related Work
	Optimization Problems
	Lipschitz Optimization
	Other Optimization Approaches

	Resource Allocation Problems
	Budgeted Learning
	Pure Exploration in Multi-Armed Bandits

	Curling and Billiards

	Conclusion
	Summary
	Limitations
	Final Word

	Bibliography

