ERA

Download the full-sized PDF of Reclamation of Unconventional Oil Processed Water through the Adsorption of Naphthenic Acids by Carbon XerogelDownload the full-sized PDF

Analytics

Share

Permanent link (DOI): https://doi.org/10.7939/R39K46682

Download

Export to: EndNote  |  Zotero  |  Mendeley

Communities

This file is in the following communities:

Graduate Studies and Research, Faculty of

Collections

This file is in the following collections:

Theses and Dissertations

Reclamation of Unconventional Oil Processed Water through the Adsorption of Naphthenic Acids by Carbon Xerogel Open Access

Descriptions

Other title
Subject/Keyword
Naphthenic Acids
Processed Water
Unconventional Oil
Hydraulic Fracturing
Adsorption
Oil Sands
Carbon Xerogel
Type of item
Thesis
Degree grantor
University of Alberta
Author or creator
Rashed, Yara A
Supervisor and department
Gamal El-Din, Mohamed (Civil and Environmental Engineering)
Zeng, Hongbo (Chemical and Materials Engineering)
Examining committee member and department
Zeng, Hongbo (Chemical and Materials Engineering)
Gamal El-Din, Mohamed (Civil and Environmental Engineering)
Boluk, Yaman (Civil and Environmental Engineering)
Department
Department of Civil and Environmental Engineering
Specialization
Environmental Engineering
Date accepted
2017-05-09T14:06:59Z
Graduation date
2017-11:Fall 2017
Degree
Master of Science
Degree level
Master's
Abstract
This study examines the use of carbon xerogel (CX) material for the adsorption of naphthenic acids (NAs). The adsorption of NAs is crucial for the reclamation of unconventional oil processed water, more specifically Alberta’s oil sands process-affected water (OSPW). CX material is synthesized at specific operating pH conditions to result in a material that exhibits an extensive mesoporous character. Therefore, the employment of CX as an adsorbent can not only promote the adsorption of a wider range of complex NAs present in OSPW, but can also be synthesized to provide textural characteristics that adhere to contaminants present in all forms of unconventional oil processed water. This thesis begins with a review of the fundamentals of the adsorption phenomena, then provides a comprehensive analysis of Alberta’s OSPW with an elaborate description of the characteristics of NAs present in OSPW. Furthermore, the various treatment technologies that have been studied to treat OSPW from NAs is discussed with special focus on adsorption processes. The evaluation of the adsorbents discussed in this section reveals that their performance is restricted given that they are derived from raw materials, which accordingly limits their textural properties. As a result, the utilization of synthesized CX is necessary to enhance the removal of NAs form OSPW through adsorption. As a preliminary investigation of CX to treat OSPW, identifying the adsorption mechanisms responsible for the removal of NAs is initially required to further enhance the performance of CX in actual OSPW. Therefore, this study focusses on examining the efficacy of CX in terms of adsorbing model NA compounds; more specifically, heptanoic acid (HPA), 5-cyclohexanepentanoic acid (CHPA), and 5-Phenylvaleric acid (PVA). All three model NAs contain a carboxylic acid and long chain structure, with exception to CHPA which contains an additional cyclic ring, and PVA contains an aromatic ring. Therefore, by exploring the adsorption of these three model compounds, at pH 8, onto CX, the structure-activity relations responsible for adsorption are deduced. Furthermore, HPA, the simplest compound among the three, is examined in focus at three pH conditions, pH 8, 6.5, and 5, which are above, near, and below the pH of point zero charge for CX, 6.8. Therefore, the electrostatic interactions responsible for the adsorption of NAs onto CX can be identified. Note that at all conditions, similar investigations were conducted with granular activated carbon (GAC) to evaluate the effectiveness of CX relative to the conventional adsorbent used for the removal of NAs form OSPW. Moreover, the results were analyzed per adsorbent capacity, the internal diffusion model, and adsorption rate models; pseudo-first order and pseudo-second order, to demonstrate that CX performs exceptionally well relative to GAC due to its mesoporous structure. More specifically, the results have revealed that PVA, the more complex NA is adsorbed more easily by CX due to π-π interactions, followed by HPA due to its surfactant-like structure, and finally CHPA is adsorbed least due to its high molecular weight which delays its kinetics. The role of hydrophobic-hydrophobic forces has been noted during the diffusion of the three model NAs into the stagnant film surrounding the CX surface, and the hydrophobic bonding may be recognized as negatively charged assisted hydrogen bonding (-CAHB). In terms of HPA, van der Waals attractive forces, in the form of dipole-dipole attractions, have been recognized as the probable electrostatic mechanism responsible for the stronger attraction of HPA onto CX.
Language
English
DOI
doi:10.7939/R39K46682
Rights
This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for the purpose of private, scholarly or scientific research. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
Citation for previous publication

File Details

Date Uploaded
Date Modified
2017-05-09T20:07:02.096+00:00
Audit Status
Audits have not yet been run on this file.
Characterization
File format: pdf (PDF/A)
Mime type: application/pdf
File size: 2381561
Last modified: 2017:11:08 17:25:32-07:00
Filename: Rashed_Yara_A_201704_MSc.pdf
Original checksum: b4fa1a11110e177c4cbf8a38b1af6601
Activity of users you follow
User Activity Date