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Abstract

Heterogeneous materials are omnipresent in several critical engineering applications such

as polymer electrolyte fuel cells (PEFCs), coal bio-conversion process, geological storage of

CO2 and membrane water filtration. These applications rely on physical processes such as

transport (e.g., mass, momentum, or energy) and chemical reactions for their functioning.

The physical processes in the porous media are strongly dependent on morphology of the

porous media structure. A detailed understanding of the porous media is therefore necessary

for understanding and improving the physical processes in the porous media. A detailed un-

derstanding of microstructure can be utilized to find the physical properties, and then to

estimate and improve the performance.

This work is focused on using statistical correlation functions for characterization and re-

construction of porous media structure. The statistical method is chosen due to its ability to

capture stochastic nature of porous media in practical amount of cost and time. A simulated

annealing based reconstruction method is used to reconstruct porous media structures with

different statistical properties. A new unified pixel swapping method is presented, which

can implement all available pixel swapping techniques in literature. The new pixel swapping

method results in time reduction by a factor of 3-4 compared to conventional random swap-

ping. Furthermore, compared to available biased pixel swapping methods, current method

does not cause unrealistic structures to be reconstructed. A new different phase neighbor

based multigrid hierarchical method has been developed, which reduces reconstruction time

by one to two orders of magnitude, while improving reconstruction accuracy.
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Multiple statistical correlation functions are used to reconstruct porous media structures

which can closely match the original structure in terms of statistical and physical properties.

Effect of different correlation functions on transport properties is studied in order to find a

set of statistical correlation functions which can accurately characterize transport properties

of a porous media. The effective molecular diffusivity was found to strongly depend on the

two-point correlation function of porous media.

Overall, this work provides a novel method for fast and accurate characterization of

porous media structures and transport properties by statistical correlation functions. This

provides an ideal framework for reconstructing random porous media structures, and under-

standing the relationship between correlation functions and their transport properties. With

the relationship between correlation functions and properties known, this work paves way

for designing porous media structures with desired transport properties.

Keywords: Porous media, stochastic reconstruction, correlation functions, diffusion
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Chapter 1

Introduction

1.1 Motivation

Heterogeneous materials are omnipresent in natural and artificial objects, such as porous

media, biological and artificial membranes, and textiles [1]. Heterogeneous media are criti-

cal to several major engineering applications, such as polymer electrolyte fuel cells (PEFCs),

coal gasification and bio-conversion process, geological storage of CO2, and membrane water

filtration. Some of these applications, such as PEFCs and CO2 sequestration, are evolving

technologies with a potential for becoming major future applications in sustainable energy.

For example, PEFCs have emerged as promising energy conversion devices for power elec-

tronics, backup power units, domestic co-generation of electricity and hot water, and as a

replacement for the internal combustion engine in automobiles [2]. Even though promising,

these applications are still not efficient and economic enough for significant market presence

[3]. Performance, cost, and durability of these applications needs to be improved before they

can become consumer oriented applications.

The aforementioned engineering applications rely on physical processes, such as transport

(e.g., mass, momentum, or energy) and chemical reactions inside the porous media for their

functioning. For example, PEFCs depend on transport of gaseous reactants, and gaseous

and liquid products through the void phase of porous electrodes, and transport of electrons

through the solid phase of the electrodes [4, 5]. Utility of these engineering applications is

dependent on the outcome of these physical processes, i.e., the physical processes must run

in an efficient manner for optimized performance of the engineering application. Reduced

reactant transport due to blockage of pores by ionomer electrolyte or liquid water results
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Figure 1.1 – Effect of microstructure on performance of porous media applications

in decreased fuel cell performance [6, 7]. The physical processes are strongly dependent on

morphology of the porous media structure, e.g., mass transport is dependent on the porosity,

tortuousity, pore connectivity, and pore size distribution, electron transport is dependent on

the solid phase connectivity, and chemical reactions are dependent on the surface area [8–12].

A detailed understanding of the porous media is therefore necessary for understanding and

improving these physical processes. Due to the importance of mass transport in our appli-

cation of interest (PEFC), and in other applications, this study is focused on understanding

and enhancing mass transport in porous media.

The effect of porous media structure on physical processes, such as mass transport is

summarized in Figure 1.1. The easiest and most direct way to understand the performance

is by knowing effective properties, such as permeability and diffusivity from experimental

measurements. Several experimental measurements of transport properties have been pre-

sented in literature for PEMFCs [9, 13–17] as well as other porous media [18–23]. Even

though these techniques are able to accurately determine the transport properties, they are

not able to provide sufficient insight on how the microstructural parameters can affect them.

Since the underlying factors are not well understood, any manipulation therefore becomes

challenging. A better way to understand and optimize the transport processes is by increas-

ing our understanding of the porous media microstructure. Microstructure parametrization

can be utilized to find effective properties, and then using appropriate simulation tools to

estimate performance. Using appropriate microstructure parametrization, the effect of ma-

nipulating the microstructure on effective properties can be analyzed, and used to optimize

transport properties in the structure.

The motivation of this study is to develop a reliable and effective methodology to un-

derstand and characterize the microstructure of the porous media. The characterization

methodology should be able to encompass all the features of porous media which are im-
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Figure 1.2 – Summary of different microstructure characterization and reconstruction methods

portant for mass transport. Furthermore, the characterization method should be able to

parametrize the microstructure in order to facilitate structure manipulation and transport

optimization. A methodology to generate microstructures with desired parametrization func-

tions is also necessary for transport simulations. By performing transport simulations on

the generated microstructures, the structural parameters can be correlated to the effective

transport properties, which provides a way for designing porous media with desired transport

performance.

1.2 Literature Review

An understanding of microstructure can be utilized to estimate effective properties, and ul-

timately to estimate material performance. For a complete understanding of the microstruc-

ture, i.e. phase distribution, connectivity, interfacial features and pore sizes, several methods

can be used. Figure 1.2 shows different possible ways of characterizing and reconstructing

the porous media structure. The following sections discuss these methodologies and their

advantages and drawbacks.

1.2.1 Imaging Techniques

The heuristic method of deterministic characterization and reconstruction of porous media

involves imaging techniques, such as X-ray computed tomography (CT) [24–31], or focused

ion bean scanning electron microscopy (FIB-SEM) [32–39]. X-ray computed tomography

(CT) has recently shown good prospects for analyzing geological and porous structures due

to its ability to differentiate between different phases [29, 30, 40–46]. It is a non-invasive and
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non-destructive imaging technique which can provide details of internal structure of porous

media. The porous media is imaged from different directions, thereby generating projections

of the structure in different planes. These projections are combined using a computational

tomographic reconstruction algorithm to generate sequential 2D cross-sections of the porous

media. The different cross sections can be combined together to obtain a 3-D realization of

the imaged structure. Depending on the desired image resolution (minimum resolved feature

size), either a micro-CT (pixel resolution 1–5μm ), or a nano-CT (pixel resolution 10–20 nm)

can be used.

An alternative technique to the CT is the focused ion beam scanning electron microscopy.

FIB-SEM has been extensively used for determination of microstructure of various materials

in past decade [32–39, 47, 48]. FIB-SEM uses a focused ion beam for milling the porous

media, while a scanning electron microscope takes images of newly exposed sections. The

consecutive cross sections are then merged into a three-dimensional structure. FIB-SEM is

a destructive technique, which can offer image resolutions of upto 2nm in each image slice,

and around 10–20 nm in slicing direction.

The deterministic techniques provide a good way of obtaining insight of the internal struc-

ture of the porous media. Furthermore, they provide accurate and realistic reconstruction of

the structure. These techniques however, are extremely time and cost intensive, and there-

fore, can not be used for performing extensive parametric studies [49]. These methods are

also not well suited to capture the stochastic behavior exhibited by the majority of porous

media structures, as they provide only a single realization of the material. Finally, these

methods do not provide a way to mathematically parametrize the structure, and therefore,

combined with the time and cost issues, make it difficult to characterize, manipulate, and

optimize the structure.

1.2.2 Statistical Characterization

The technique of stochastic characterization relies on different statistical functions to char-

acterize the porous media structure. The statistical correlation functions describe the prob-

abilities of different phase encounters and other geometric features, and aim to encompass

all the details of the porous media structure [50]. The statistical correlation functions can
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be used to retrieve the microstructure via the process of stochastic reconstruction.

One of the most common correlation function used to characterize porous media is the

phase volume fraction (e.g., porosity for void phase). Based on the volume fraction, effec-

tive medium approximations such as Bruggeman equation [51], or Maxwell-Garnett equation

[52, 53] have been used to approximate the effective properties of a porous medium. These

effective medium estimates however, are only useful for geometries like packed bed of spheres

with distributed range of diameters, and are not valid for generic porous media structures

[14, 54].

For better characterization of the porous media structure, a more detailed accounting

of the phases is required. Brown Jr. [55] first defined n-point matrix functions for charac-

terizing heterogeneous domains. The n-point functions were defined as the probability of

finding n random points in a given phase. Frisch [56] extended this theory by considering the

random porous media structure as a collection of stochastic processes. Consideration of the

random porous media as a collection of stochastic processes is a critical step, which paved

the way for statistical analysis of the random porous media structures. Frisch [56] also de-

fined the generic n-point correlation functions for two-phase media and derived their unique

properties. Torquato and Stell [50, 57] expanded on the previous work [56] by explaining the

geometric interpretations of the n-point correlation functions, and estimating these functions

for a system of impenetrable and penetrable spheres. Lower order n-point correlation func-

tions, such as two-point correlation functions and three-point correlation functions were also

explicitly computed for the system of spheres. Smith and Torquato [58] computed two-point

correlation functions for a system of spheres using computer simulation and found the re-

sults in agreement with theoretical estimates. Berryman [59], and Coker and Torquato [60]

presented computational methodologies to estimate two-point and three-point correlation

functions from digitized images of random media. These lower order functions, especially

the two-point correlation function have since been used extensively for characterization and

reconstruction of random media structures [61–70].

One of the most common correlation functions, the two-point correlation function is de-

fined as the probability of finding two points separated by a given distance in the same
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phase [63]. The two-point correlation function has been extensively used, and provides a

much better characterization compared to volume fractions alone; however, it has several

limitations for detailed characterization of porous media structure. The two-point correla-

tion function does not contain any long range information [57] and is therefore not able to

characterize long range features such as domain wide phase connectivity [71]. Using higher

order n-point correlation function such as three-point correlation function or four-point cor-

relation function comes at a considerably higher computational complexity, but with little

improvement in long range characterization [72]. Lu and Torquato [73] proposed a new cor-

relation function named lineal path function, which is the probability of finding two points

and the line connecting them in a given phase. Later, Torquato and Lu [74] proposed another

correlation function named chord length function, which is the probability of finding a chord

(line between phase boundaries) of certain length in a given phase. Coker and Torquato [60]

presented a computational methodology to compute lineal path function and chord length

function for a digitized image of porous medium. Manwart et al. [75] proposed a pore size

distribution function, which is the probability that a randomly chosen point in the pore

space lies at a given distance from the nearest surface. Unlike the chord length function or

lineal path function, which only trace connectivity in one direction, the pore size distribution

function estimates the connectivity in all directions at once. A combination of lineal path

function, chord length function, and pore size distribution function with two-point correla-

tion function has been used for reconstructing random media structures [63, 71, 75–78]. The

studies show that adding either lineal path function, or chord length function, or pore size

distribution function to the two-point correlation function improves the overall characteri-

zation of the porous media [66, 71, 75].

Torquato et al. [79] proposed a two-point cluster function, which is the probability of

finding two points in the same phase and in the same cluster. The cluster is defined as the

volume of porous media which is connected and percolating. The two-point cluster function

can be thought as a two-point correlation function with additional restrictions. It was shown

that the two-point cluster function provides a better characterization of the porous media

compared to the two-point correlation function. In a later study, Jiao et al. [72] showed

that the two-point cluster function is able to reconstruct porous media with better long

range connectivity than all other correlation functions aforementioned. With all its benefits
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however, the two-point cluster function is difficult to implement in a computer program for

reconstruction. While computation of all the other correlation functions requires a simple

scan of the digital image, computation of two-point cluster function requires identification

of different clusters [72]. This process is extremely time consuming, and becomes extremely

cumbersome when the cluster identification has to be repeated millions of times for recon-

struction. Due to this very reason, only a few studies actively employ two-point cluster

functions for reconstruction purposes.

Apart from the volume phase based correlation functions, interface correlation functions

are also defined. Torquato [80] defined the surface-surface correlation function, which is the

probability of finding interfaces at both ends of a line of given length. Even though combining

surface correlation function with other functions can results in improved characterization,

the chord length function already contains the information about interface separation. Ei-

ther chord length function, or surface-surface function should therefore provide the desired

improvement in characterization.

Recently, a new class of statistical descriptors known as multiple point statistics have

been used for characterization and reconstruction of porous media structures [81–85]. The

multiple point statistics are obtaining by sampling the image with several templates. A tem-

plate is a set of query points placed at predefined intervals. While scanning the image with

the templates, occurrence of different patterns is recorded. All the occurrences are finally

normalized to obtain a probability distribution. The probability distribution characterizes

the structure as collection of different pattern occurrences with certain probabilities [83].

The reconstructions based on multiple-point statistics have shown to improve long range

connectivity and provide better characterization. This descriptor however, suffers from the

same problem as of two-point cluster function. For obtaining a detailed characterization,

which can reproduce long range features, the templates need to be large and detailed. This

increases the computational complexity considerably, and makes this method slower com-

pared to the one with normal correlation functions [83].

Among all the characterization methods, the use of correlation functions has several ad-

vantages. First, most of the correlation functions have a geometric meaning, and are there-
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fore able to characterize some particular aspect of porous media structure. For example, the

two-point correlation function is related to the interface area [63], the lineal path and chord

length functions characterize the phase cluster sizes, and the cluster function characterizes

long range phase connectivity. Second, using correlation functions enables the use of as

many statistical descriptors as needed. For example, if only interface area is of importance,

then only two-point correlation function needs to be used, while if other properties also

need characterization, more correlation functions can be added sequentially in order to keep

computational costs in check. Due to their relationship with structural properties, volume

fraction, two-point correlation function, lineal path function, and chord length function are

used in this work. The two-point cluster function, and multi-point statistics are not used

because of the computational burden associated with them.

In spite of all the advantages of the statistical correlation functions for characterization

and reconstruction, most of the literature on stochastic methods consists of theoretical ex-

ercises on reconstruction methods [61, 63, 65, 66, 71, 72, 76, 78, 83, 83, 86–92]. The variants

mostly include ways of improving the structural accuracy (in terms of correlation functions),

and improving the computational speed. Very few studies however, have attempted to study

the physical properties of the reconstructions and compare them to the reference structure

[75, 93–100]. The ability of the correlation functions to characterize physical properties has

therefore not been well understood. To optimally utilize the correlation functions for accu-

rate characterization of porous media structure, it is necessary to understand the ability of

each correlation function for characterizing the physical properties.

1.2.3 Fabrication based Reconstruction

To understand the physical properties of porous media, its porous structure must be digitally

reconstructed for use in simulations. An ideal way to obtain the porous media microstruc-

ture is by simulating its formation process. This provides a way to account for each step

in the fabrication/formation process, which will result in a realistic structure. The fabrica-

tion/formation parameters will provide a way to manipulate the structure, and in turn for

optimizing the structure for desired transport properties. For simulating fabrication pro-

cess of artificial porous media, such as PEFC electrodes, an agglomerate growth model is

often used. In PEFC electrode reconstructions for example, random seeds are distributed in
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the domain and the carbon particles grow around them in a stochastic manner [101–103].

Platinum and NafionR© are deposited on the grown structure using heuristic rules. Volume

fractions of different phases are used as optimization variables. These methods even though

promising, lack the inclusion of porous media formation physics, e.g., colloidal interactions

and aggregation mechanics, and rely on heuristic rules to distribute each phase. Further-

more, the spherical agglomerates used are an idealization of what is observed in reality [104].

Latest methods use the information of porous structure features combined with statistical

correlation functions for reconstruction. For example, in PEFCs, the structure is assumed to

consist of ideal building blocks such as spherical agglomerates, and uniform fibres [37, 105–

110]. The distribution of the building blocks is defined by some statistical function, which

becomes the characterizing parameter of the porous media. The assumption of a predefined

building block makes the reconstruction easier, as there are less variables to model (basic

blocks of the porous media are already assumed, only the distribution needs to be adjusted).

These ideal building blocks however do not usually accurately represent the real porous me-

dia structure. In these studies, only a limited number of statistical functions have been used

for reconstruction, which limits its accuracy. Most of the methods use one-point correlation

function (porosity), or autocorrelation function for characterizing the distribution, neither of

which contains information on phase connectivity in the porous medium. Using this method

on natural porous media, such as carbonates, coal, and sandstones is extremely challenging

because of the lack of well defined microstructural features, which can be used as a building

block.

The prospects of formation/fabrication based simulations may be promising; however, it

is extremely difficult to account for all the processes of fabrication/formation. For example,

the PEFC catalyst layers are made by applying an ink composed of platinum supported on

carbon, NafionR©, and solvents on a polymer electrolyte membrane [111]. The final porous

structure of the catalyst layer depends on several parameters including: colloidal interactions

between carbon particles, NafionR©, and solvents; drying temperature; application technique;

and ink-substrate interactions [112]. The physics for several of these processes are either

not well known, or are extremely complicated to model accurately, making the prediction

of final porous structure a daunting task. For natural porous media such as sandstone
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and carbonates, modeling is even more difficult due to the involvement of several geological

processes over the time scale of millions of years.

1.2.4 Stochastic Reconstruction

As discussed in section 1.2.2, statistical correlation functions provide an ideal way of charac-

terizing random porous media. The accuracy and effectiveness of statistical characterization

however, depends on finding a set of correlation functions, which can characterize physical

and transport properties of the porous media. To understand the ability of correlation func-

tions to characterize physical properties (transport properties for this work), one must first

obtain porous media structures with the appropriate correlation functions. Figure 1.3 shows

a schematic for finding the optimum set of correlation functions to characterize a transport

property of the porous media. A reference structure is needed for comparison and bench-

marking of the different correlation functions, as well as for possible experimental testing.

Usually a physical image is used as a reference structure, from which its transport properties

and statistical correlation functions are obtained. To see the ability of a single or a set of

correlation functions to characterize a particular transport property, virtual structures need

to be generated, which have the same correlation functions. Transport properties of these

virtual structures are then obtained and compared against the simulation results of the refer-

ence structure. If a particular correlation function, or a combination thereof can characterize

a particular property, then that property should be similar in reference and reconstructed

structure.

It is evident from the aforementioned discussion, that a reconstruction method which

can generate virtual structures with desired correlation function functions is a necessity for

evaluating the effectiveness of different correlation functions. A good reconstruction method

should be able to provide a virtual structure with desired correlation functions in a practical

amount of time. Several reconstruction methods are available in literature; however, since

this work explores correlation functions for characterization, only the reconstruction meth-

ods which use correlation functions have been explored.

The initial approach towards stochastic reconstruction involved use of filtered Gaussian

fields [61, 62, 86, 87, 89, 93, 113–115]. One of the approaches proposed by Joshi [86] in-
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Figure 1.3 – Schematic for finding the optimum set of correlation functions for porous media
transport property characterization
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volves the use of two filters: one linear, and other non-linear. A random and continuous

Gaussian field is passed through a linear filter, which results in a correlated Gaussian field.

This correlated Gaussian field is then passed through a non-lineal filter to obtain a discrete

field representing phases of the porous media. The non-linear filter also ensures that the

statistical correlation functions of final field are as desired. Overall, the problem reduces

into solving a system of non-linear equations in order to find coefficients of the linear filter

[62, 63]. This approach was enhanced by Quiblier [61] for generating 3D reconstructions, and

by Adler et al. [62] for using periodic boundary conditions. Another approach proposed by

Cahn [113] uses an improved linear filter, and is able to reconstruct structures such as glass

and membranes. Ioannidis et al. [116] proposed use of discrete Fourier transform (DFT),

instead of linear filters for obtaining the correlated set. Even though the method is compu-

tationally superior to the lineal filter, it has high resident memory requirements [117], and

therefore could not be used for large 3D images. Ioannidis et al. [116] proposed use of hybrid

method, combining both DFT and linear filters to avoid the memory issues, while obtaining

the speed advantages. The DFT method is used to generate correlated data sets for each

2D slice, then the z-direction correlations are imposed by the linear filter.

Gaussian random field based method reduces to a set of non-linear equations, which can

be easily solved with minimal computational expense on modern computers. This method

however, can only use correlation functions which can be analytically expressed and incor-

porated into the filtering process. Unfortunately, among the several correlation functions

discussed earlier, only volume fractions and two-point correlation function satisfy these cri-

teria. Due to the limited amount of information contained in the two-point correlation

function, this method is not very successful in most types of porous media (e.g., multiphase,

anisotropic and particulate media) [115] .

Recently, signal processing methods involving fast Fourier transforms (FFT) and phase

separation algorithms have also been used to reconstruct porous media structures [67, 118,

119]. In these methods, a fast Fourier transform (FFT) is used to compute the autocor-

relation function (normalized two-point correlation function). The reconstruction is either

performed using Gaussian random fields, simulated annealing, or phase recovery methods.

The phase recovery method is an iterative process where a trial structure is consecutively
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modified until it has a desired autocorrelation function. FFT based methods have the same

disadvantage as of the Gaussian random field methods, since the FFT transforms can only

be used with autocorrelation function.

Ouenes et al. [88] first proposed a new method of simulated annealing to reconstruct

porous media structures, which was first used by Rintoul and Torquato [90] to reconstruct

dispersion of particles. The simulated annealing technique is based on the physical phenom-

ena of annealing, in which a high energy system (a random structure) is slowly cooled down

to a low energy state (structured media) through a well defined temperature schedule [95].

A random image is used as the starting structure. The structure is perturbed by exchanging

(swapping) pixels from two different phases, and the success or failure of the perturbation

is judged by analyzing system energy. The system energy is defined as the L2-norm of the

difference between the correlation function(s) of reference image and current image. In this

way, the problem of reconstruction becomes an energy minimization problem, where the aim

is to obtain a structure with zero energy, or as close to zero as practically possible. The

structure evolution is guided in such a way that, primarily energy decreasing perturbations

are accepted over energy increasing perturbations. While energy decreasing moves are always

accepted for energy minimization, energy increasing moves are only accepted with a certain

probability. Acceptance of energy increasing moves is done in order to avoid the entrap-

ment of the minimization process in a local minima [63]. The probability of selecting energy

increasing moves is controlled by the system temperature. The temperature is decreased

slowly throughout the reconstruction procedure in such a way, that at the beginning, almost

half the energy increasing moves are allowed, and by the end of reconstruction, almost none

of the energy increasing moves are allowed. An ideal temperature cooling schedule allows

the reconstruction to be performed with minimum steps, while not getting trapped in a local

minima.

The overall mechanism of simulated annealing is mathematically easy to implement.

The crucial advantage of the simulated annealing method is in its ability to include as

many statistical correlation functions as practically possible. L2-norms of differences of all

correlation functions can be combined together to obtain overall optimization of multiple

correlation functions. Weights can also be added to increase the importance of one corre-
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lation function over another. This facilitates the creation of structures with multiple sta-

tistical characteristics, which may be desired to emulate different physical properties. Due

to these advantages, this technique has been extensively used recently [1, 64–66, 71, 75–

78, 90, 91, 96, 98, 99, 102, 119–126] for reconstructing porous media structures as well

particulate suspensions. Two-dimensional as well as three dimensional reconstructions of

Fontainebleau stone were presented with great resemblance to actual porous media. Man-

wart et al. [75] used the same technique to reconstruct Fontainebleau and Berea sandstones

with considerable accuracy. Talukdar et al. [64, 76], Talukdar and Torsaeter [77], Talukdar

et al. [96, 121] used the simulated annealing method to reconstruct pore networks in chalk

and in particulate media. Pant et al. [66] used the simulated annealing method to recon-

struct 2D images of PEFC catalyst layers using multiple correlation functions.

Even though the simulated annealing method is easy to implement, and has immense

potential for characterization and reconstruction of porous media structures, most of the

studies have not focused on the applications of the method. Furthermore, there are several

shortcomings in the conventional simulated annealing which prevent it from being extensively

used in practical porous media studies. The various issues and shortcomings of conventional

simulated annealing method are discussed as follows.

One of the major issues with conventional simulated annealing method is the excessive

computational time and presence of noise (segregated unphysical pixels) in the final recon-

struction [98]. The most common variant of the simulated annealing algorithm discussed in

the literature is based on random pixel swapping, i.e., the pixels to be swapped at each step

are selected at random. The random selection does not take into account the current state

of the structure, and therefore a particular swap has an equal probability of improving or

deteriorating the structure. During the later stages of reconstruction, most of the energy

increasing moves are rejected, causing significant number of rejected swaps, and thereby

significantly increasing the reconstruction time. The random selection also results in sev-

eral segregated pixels being left in the final structure, as the probability of getting these

particular pixels picked is extremely low. To overcome this problem, biased pixel selection

algorithms such as interfacial pixel swapping [91] and different phase neighbor (DPN) based

swapping [78, 98] have recently been proposed. The DPN method [98] gives priority to pixels
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which have the higher number of different phase neighbors, thereby quickly eliminating stray

pixels. The interfacial pixel selection method swaps pixels which are at an interface, i.e., all

pixels with non zero different phase neighbors have equal probability of getting picked. The

studies show that the DPN based method is able to obtain a reconstruction with minimum

number of swaps [66, 98].

The DPN based method, even though promising, has not been studied in detail. Using

two point correlation function with DPN based pixel swapping, Tang et al. [98] have shown

that the DPN method outperforms all other pixel selection methods is terms of speed and

accuracy of the final reconstruction. However, the effect of the biased pixel selection on the

structure has not been analyzed. Furthermore, the application of DPN with multiple cor-

relation functions has not been explored. Given that the ability to use multiple correlation

functions for enhanced accuracy is a crucial aspect of simulated annealing, it is imperative

that the use of DPN based technique with multiple correlation functions be assessed. The

DPN computation method also needs to be computationally improved. Even though the

DPN based method reduces the number of swaps required to achieve a target energy, each

step is more time consuming. One reason for the additional time is due to the calculations

of probabilities for different DPN numbers; however, the majority of time is consumed by

updating the DPN information after each pixel swap. Computing DPN information for the

whole image after each swap can exacerbate the computational cost, especially for large im-

age sizes. Faster updating algorithms therefore need to be developed for DPN information

management.

Another issue with the conventional simulated annealing method has been the lack of

studies using multiple correlation functions. Even with the potential of using multiple cor-

relation functions, only a few articles in the literature use multiple correlation functions

[63, 66, 71, 75, 76, 99, 125]. As discussed in the last section, several correlation functions

may be needed to reproduce pore sizes, surface area, and pore connectivity of the porous

media. Several studies have shown that addition of multiple correlation functions is critical

for better characterization of porous media structure [63, 66, 71, 75]. A few studies on trans-

port properties of reconstructions by Yeong and Torquato [95] and Capek et al. [99] show

that inclusion of multiple correlation function is needed for reconstructions with transport
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properties similar to reference structures. The major impediment in using multiple correla-

tion functions is the increase in computational cost with each correlation function. Increase

in correlation functions increases reconstruction time due to two reasons: 1) additional time

required to compute and update additional correlation functions, and 2) the optimization

objective becomes more complex with increased correlation functions [125].

Due to the aforementioned reasons, reconstructing large images is extremely challeng-

ing with the conventional simulated annealing method. Most of the reconstruction studies

therefore have focused on 2D images [63, 65, 76], which are less computationally exhaustive

for reconstruction. Most of the 3D reconstructions with conventional methods have been of

sizes between 1003 to 1503 voxels. Capek et al. [71] performed a 3D reconstruction of size

3203 voxels, which took around 160− 400 hours for reconstruction.

The conventional random swapping, and use of multiple correlation functions results

in computationally expensive reconstruction process; however, even with better algorithms,

such as surface, or DPN swapping, reconstructing large images is challenging. Two additional

issues in reconstructing large images are as follows:

1. High reconstruction time: In simulated annealing method, the correlation functions

need to be recomputed after each swap, as the structure of porous media changes,

thereby changing the correlation functions. The time to compute the updated corre-

lation functions after swap is directly dependent on the image size, i.e., the larger the

image size, the more time it takes to compute the function. This causes the recon-

struction method to become impractical for large image sizes, as the method can take

several weeks to obtain a single structure.

2. Reduced long range connectivity: Due to random swapping, final reconstructed images

with simulated annealing have many isolated pixels left. These stray pixels contribute

to dead volume (non-connectivity) and reduce the long range connectivity of the recon-

structed image compared to the reference image [98]. The inability to reproduce long

range connectivity is inherent to the simulated annealing technique, and it is exacer-

bated for large image sizes, even with newer pixel selection methods. The simulated

annealing method works by performing multiple pixel swaps on the initial structure.
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Each pixel swap can be thought of as a local perturbation or a local interaction on the

structure, as it will mostly change the structural features in its immediate neighbor-

hood. Apart from the local features, most of the porous media exhibit some kind of

large scale behavior, e.g., percolating volume, which is essential to the performance of

the porous media. Being a Markov chain process, each step of the simulated anneal-

ing process is only dependent on previous step. It is therefore difficult to reconstruct

large-scale features by accumulating multiple continuous local interactions [127].

To mitigate the issues related to image size and long range feature reproduction, multigrid

hierarchical methods have recently been presented [49, 127–129]. In the multigrid hierarchi-

cal methods, the reconstructions are started at small scale (coarse scales). Once a coarse

scale reconstruction is obtained, it is successively refined and annealed to obtain large scale

refined structures. Reconstruction at each scale is treated as an independent simulated an-

nealing problem, where a reference image of corresponding scale is used. The reference image

for coarse scales is obtained by coarsening and thresholding the refined reference image. Ini-

tial attempts by Campaigne et al. [128] and Alexander et al. [127] used a simple hierarchical

annealing, where the reconstruction is started at a coarse scale. Then, after achieving conver-

gence at the coarse scale, the image is refined and used as the initial structure for simulated

annealing at the next scale. Even though this method is faster than conventional single grid

methods, it is not able to improve the reconstruction speed significantly for two reasons:

1. Since each step is treated as an independent simulated annealing problem, the struc-

tural features generated at the coarse scale can be completely undone at the beginning

of next scale simulated annealing, when the temperature is favorable for energy in-

creasing moves. Precise control of temperature is required to reduce the structural

deterioration at refined scales.

2. The random swapping procedure in simulated annealing still permutates among all the

pixels at each image scale, i.e., all the pixels of the image at refined scales are available

for swapping. The computational cost is therefore similar to the conventional single

grid method.

The limitations of the simple multigrid methods were resolved by the frozen state meth-
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ods presented by Campaigne and Fieguth [49] and Chen et al. [129]. The overall process

of multigrid reconstruction remains the same as in simple hierarchy; however, a concept of

freezing is introduced to avoid the issues related to simple hierarchy. While generating refer-

ence images for coarser scales, a gray phase is introduced to indicate a pixel whose phase is

not certain at the given scale. The reconstruction is started at coarsest scale with all three

phases (black, white, and gray), and successively refined. At each refinement step, the pixels

with black or white color have a certainty of placement. These pixels are therefore frozen for

subsequent refinement levels. Some of the gray pixels are converted back to black and white

pixels at each refinement step, in order to keep volume fractions consistent with the reference

image at the corresponding scale. These pixels are not frozen, and are moved during the

simulated annealing procedure. At the finest scale, no gray pixel remain, and all the phases

of image are recovered. This method mitigates both problems associated with the simple

hierarchy. Since certain pixels at the coarse scale are frozen at refined scales, the structure

can not be destroyed at later refinements. Also, since most of the pixels are frozen at refined

scales, the number of possible pixel permutations is significantly reduced, thereby reducing

the reconstruction time. The overall process can be thought of as a two step process: 1)

generating a skeleton at coarse scales, which will dominate the large scale structure in the

final reconstruction, and 2) adding local fine-resolution features at refined scales. These

method has shown significant speed advantages compared to conventional methods [49].

Even though the frozen state hierarchical simulated annealing method provides many ad-

vantages, only a few studies in the literature have explored it. Campaigne and Fieguth [49]

used the grayscale hierarchical simulated annealing method with neighborhood matching in-

stead of correlation function . It is therefore difficult to separate the reported time advantage

between the use of hierarchical simulated annealing method, and the use of neighborhood

matching. To the best of author’s knowledge, only Chen et al. [129] have used hierarchi-

cal annealing for 3D image reconstruction with correlation function; however, they did not

present any comparison with other methods in literature. Although the multigrid method

shows high potential for improving the simulated annealing methods, several improvements

need to be made. The gray pixel based hierarchical simulated annealing is difficult to im-

plement due to the presence of an extra phase. The presence of an extra phase requires

additional correlation functions to be introduced in the optimization function, making the
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process more complex. DPN information could possibly be used instead of the gray pixels for

freezing; however, the used of multigrid methods with DPN has not be explored in literature.

The DPN based method may also be able to further improve the accuracy of the hierarchical

simulated annealing method. A frozen state multigrid hierarchical annealing method suing

DPN will be explored in this work.

Most of the reconstruction studies in the literature have focused on improving reconstruc-

tion speed, accuracy, or the overall optimization of the reconstructed structure (in terms of

correlation functions). It should be noted that, in general, the objective of a reconstruction

procedure is not necessarily to find the set of correlation functions that give the quickest

turn-around time, or best matching of correlation functions. Instead, it is to develop a re-

construction for the most complex class of microstructures that can provide a good estimate

of the physical properties of interest, such as effective diffusivity or Knudsen diffusivity, with

a minimum set of statistical descriptors, in a manageable amount of computational time.

Only a few studies in the literature have attempted to study the physical properties of

the reconstructed structures in order to assess the ability of the reconstructions to estimate

physical properties [75, 93–100]. The earliest attempts were made by comparing the Gaus-

sian filters and variogram based reconstructions to reference porous structures [93, 94]. The

Gaussian filter based reconstructions were found to underpredict solid and void phase prop-

erties compared to reference structures and experimental values. Since the Gaussian filter

based methods can only use two-point correlation functions, it is not possible to improve the

reconstruction methodology. Simulated annealing based reconstructions can include multi-

ple correlation functions, and therefore have a better chance at characterizing the porous

media. Effect of including multiple correlation functions on the transport properties have

been studied using random walk simulation [75, 95, 99, 100]. It is found that inclusion of

a lineal path function, or a pore size function improves the predictions for mean survival

time, effective diffusion coefficient, and permeability. Politis et al. [97] showed that, a hybrid

reconstruction method combining simulated annealing with fabrication process parameters,

results in reconstructions that can better predict transport properties. Recently, Tang et al.

[98] showed that simulated annealing with a DPN based pixel swapping method results in

reconstructions with better transport properties than reconstructions performed using ran-

19



dom pixel swapping.

Table 1.1 shows a comprehensive list of all the literature that presents analysis of physical

properties on the reconstructed structures. Most of the literature has either used empirical

relations like Kozeny–Carman formula, or have used simple random walk simulations. Even

though these methods provide an easy way of understanding the transport in porous media,

they do not fully account for the complex nature of the porous media and its effects on the

physical processes. Some earlier studies have used techniques of finite difference method

[93], and Lattice Boltzmann method [94]; however, due to computational limitations the

domain size was kept at a minimum, thereby compromising accuracy of the simulations. To

the best of author’s knowledge, only Capek et al. [99] have recently used finite difference

method to simulate Stokes flow and obtain permeability in a reconstructed sample. So far

no studies have used finite element method to simulate the mass transport in reconstructed

geometries. With the advancement in computing resources and simulation tools, large scale

simulations can be performed in detail, and accurate transport properties can be obtained.

These simulations can be used to study the effect of different correlation functions on trans-

port properties and to find out the relationship between correlation functions and transport

properties.

Due to the lack of understanding between correlation functions and transport proper-

ties, the impact of correlation functions on structures is not well understood. The effect

pf changing a particular correlation function in the reconstructed structure on its trans-

port properties has not been studied. Since the impact of correlation functions is not well

understood, the correlations functions can not be used as design parameters for obtaining

structures with desired properties. Yeong and Torquato [63] presented some preliminary

work on reconstructing structures with hypothetical correlation functions; however, no anal-

ysis of physical properties was presented. To the best of author’s knowledge, there are no

studies in literature using correlation functions as design parameters for fabricating porous

materials with desired properties.

Stochastic reconstruction using simulated annealing is a versatile and accurate method-

ology for generating virtual structures with desired statistical properties. This technique has
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Table 1.1 – A summary of reconstruction literature related to study of physical properties
of reconstructions. The correlation functions described are: φ- one-point correla-

tion function, S
(v)
2 (r)-void phase two-point correlation function, L(v)(r)- void phase

lineal path function, L(s)(r)- solid phase lineal path function, P (v)(r)- void phase
pore size function. The transport properties described are: K0- compressibility
modulus, E- Young’s modulus, κ- permeability, τ - mean survival time, r̄p- mean
pore size, Pc- capillary pressure, D- effective diffusion coefficient, DK - Knudsen
diffusion coefficient.

Ref. Reconstruction de-
tails

Transport
properties
simulated

Simulation
method

Remarks

[93] Gaussian,
S
(v)
2 (r), φ

K0, E Finite difference
method

Reconstructions over-
predict, poor agreement
with experiments

[94] SA, variogram κ Lattice Boltz-
mann method

Reconstructions under-
predict, poor agreement

[95] SA, S
(v)
2 (r),

(S
(v)
2 (r) + L(v)(r))

τ, κ Random walk
for τ , empirical
for κ

Reconstructions under-
predict, combination of
S
(v)
2 (r)+L(v)(r) improves

properties
[75] SA,

(S
(v)
2 (r) + P (v)(r)),

(S
(v)
2 (r) + L(v)(r))

τ, r̄p Random walk τ underpredicted, rea-
sonable agreement

[96] SA, SA+Gaussian,
S
(v)
2 (r)

Pc, κ Pore network
model with frac-
tal decoration

Reconstructions overpre-
dict, reasonable agree-
ment

[97] Process+SA,
S
(v)
2 (r)

κ Finite difference
method

Reconstructions under-
predict, hybrid method
shows better results
(within 5-6% of refer-
ence) than pure SA

[98] SA with DPN
swapping, S

(v)
2 (r)

κ Kozeny–Carman
formula

Reconstructions under-
predict, DPN based
reconstructions better
than random

[99] SA, (S
(v)
2 (r) +

L(v)(r) + L(s)(r))
κ,D,DK Random walk

for D and DK ,
finite difference
method for κ

Combination of the
correlation functions
increases transport prop-
erties, no comparison
with reference

[100] SA, (S
(v)
2 (r) +

L(v)(r) + L(s)(r))
κ Random walk Reconstructions overpre-

dict but show reasonable
match with reference
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immense potential for accurate characterization and reconstruction of porous media struc-

tures, which can be used for detailed studies of porous media physical processes. For the

technique to become reliable and practically useful, several improvements in the technique

are necessary. Two areas where further research is critical are: 1) improvements of accuracy

and computational speed in stochastic reconstruction method, and 2) understanding the

effect of correlation functions on transport properties. Based on these objectives, and by

analyzing the information in the available literature, the following topics were identified for

this work:

1. Development and implementation of an improved pixel selection algorithm and detailed

comparison with other methods.

2. Development and implementation of an easy to implement multigrid hierarchical sim-

ulated annealing method.

3. Use of multiple correlation functions for reconstruction, and study the effect of corre-

lation functions on transport properties.

1.3 Contributions of This Work

The main contributions of this work are in the area of developing accurate and efficient

stochastic reconstruction methodologies, and using them for characterizing porous media

transport properties. This work contributes to the field by:

• Developing a simple and efficient multigrid hierarchical annealing method based on

different phase neighbors (DPN), which can improve reconstruction time and accuracy,

and that can use multiple correlation functions.

• Studying the sensitivity of molecular diffusion towards the correlation functions used

during reconstructions

In the area of stochastic characterization and design, this work presents one of the first

attempts at trying to characterize and design the transport properties of porous media by

its statistical correlation functions. As such, this work presents for the first time in literature:

• Use of DPN based pixel swapping method for reconstructing porous media with mul-

tiple correlation functions
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• A DPN based frozen state multigrid hierarchical simulated annealing method which

does not require extra gray phases

• Characterization of porous media transport properties by its correlation functions

Characterization of the porous material by its statistical correlation functions is, in the

author’s opinion, the key to design porous media with desired physical properties by manip-

ulating its statistical descriptors.

1.4 Structure of the Thesis

This thesis is organized in six chapters. The first chapter presents the motivation for this

work, and a literature review of earlier work on porous media characterization; stochastic

analysis of random media; stochastic reconstruction methods and variants; and physical

characterization of stochastic reconstructions. Chapter 2 presents the stochastic characteri-

zation approach for random porous media, definitions of different correlation functions, and

the computational methods to compute them. Chapter 3 presents the simulated annealing

based reconstruction methodology, with detailed descriptions of each of its aspects and their

variants. Chapter 4 presents the results of stochastic analysis and reconstruction of several

porous media structures. This chapter also studies the effect of different reconstruction pa-

rameters on the accuracy and speed of the reconstructions. Chapter 5 presents a preliminary

study of mass transport in the porous media structures. Effect of correlation function on

transport properties is determined. Finally, chapter 6 summarizes the contributions of this

work and proposes possible applications and extensions of this work.
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Chapter 2

Theory of Stochastic Analysis†

This chapter describes the different stochastic correlation functions used in this study. As

discussed in Chapter 1, this work uses two-point correlation function, lineal path function,

chord length function, and two-point cluster function for the stochastic analysis and recon-

struction studies. Section 2.1 presents the idea of considering a porous media as an outcome

of a stochastic process, thereby enabling the use of stochastic tools for its analysis. Sec-

tion 2.2 provides the theoretical definitions of the aforementioned correlation functions, with

their unique properties and their relevance in characterizing physical properties of the porous

media. Section 2.3 discusses the methods of computing the correlation functions from dig-

ital images of the porous media. The detailed algorithms corresponding to this section are

presented in Appendix A. Finally, section 2.4 presents some validation studies to test the

accuracies of the computational algorithms which have been developed and implemented for

estimating the correlation functions.

2.1 Porous Media as a Stochastic Process

Random media presents itself in several instances, e.g., geological rock formations, biological

membranes, ceramics, suspensions, and artificial porous media. All of these random media

can be hypothesized as a collection of multiple geometric points, which can be continuous

or discrete [56]. Furthermore, each point can be thought of as an outcome of a stochastic

process, which assigns a material to the point. For example, in a two phase porous media,

the stochastic process may assign solid or void phase to a point. In this way, the entire

†A part of this chapter has been published. L. M. Pant, S. K. Mitra, and M. Secanell, Physical Review
E. 90(2):023306, 2014
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random media becomes a particular outcome of multiple stochastic processes. A collection

of all possible realizations will contain all the possible random media structures in the given

physical domain. This collection is also known as an ensemble [130]. Thinking of a random

media as an outcome of stochastic process allows us to use probability theories combined

with geometric descriptors for characterization of the stochastic process, and in turn of the

random media.

2.1.1 Indicator Functions

The indicator function is used to represent the outcome of the stochastic process at each geo-

metric point in a particular realization. Assume that Ω is the sample space of the stochastic

process and ω is a particular realization. Furthermore, assume that ω ∈ Ω is a particular re-

alization occupying the volumetric space V in a space of dimension d ∈ {1, 2, 3}, i.e., V ∈ R
d.

The location of a geometric point in this realization is defined as r ∈ V. A random media can

have multiple phases i = 1, 2, 3, . . . n. Assume that each phase i occupies a volume subset

Vi of the total volume V. The existence of the phase i at any geometric location r in the

random media realization ω is given by an indicator function, which can be given as follows

[130] :

I(i)(r;ω) =

{
1, if r ∈ Vi(ω),
0, otherwise.

(2.1)

Summing Eq. (2.1) over all phases, the following equation is obtained:

∑
i

I(i)(r;ω) = 1. (2.2)

Equation (2.2) simply states that each geometric point in any realization space V(ω) has

certain phase associated with it. The probability of finding a particular phase at a given

location is the same as finding the probability of having a certain value of the indicator

function at that place, which can be given as follows:

P{I(i)(r;ω) = 1} = 1− P{I(i)(r;ω) = 0}. (2.3)

A complete knowledge of indicator functions at each location of the random media is equiv-

alent to knowing the exact structure of the random media. Once the indicator functions for

the phases are defined, indicator functions for interfaces can be defined. An interface can

exist at a location only if there is change of phase at that location. Hence, the interface
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indicator function is given as follows [130]:

M(r;ω) = |∇I(i)(r;ω)|. (2.4)

When working with a single realization of the stochastic process, the realization indicator

can be dropped. In this case the phase indicator and surface indicator functions can be

expressed as I(i)(r) and M(r), respectively.

2.2 Statistical Correlation Functions

A particular realization of the random media can be characterized by using statistics of

its formation. The statistical functions can provide information on the probabilities of for-

mation of different geometric features of the realization. These probabilities are known as

correlation functions. One mathematical concept which will be used repeatedly for obtaining

the correlation functions is the expectation of a statistical function, or the ensemble average.

Before defining the expectation, let us assume that these estimations are being done on a

single realization, and therefore, I(i)(r) will suffice for indicator function. The expectation

of a function f [I(i)(r)] is the average of the function over the entire geometric space V in all

realizations ω. It is represented by angled brackets, and can be given as follows [130]:

〈f [I(i)(r)]〉 = P{I(i)(r) = 1}f [1] + P{I(i)(r) = 0}f [0]. (2.5)

If f [I(i)(r)] = I(i)(r), then due to the {0, 1} nature of indicator function:

〈I(i)(r)〉 = P{I(i)(r) = 1}. (2.6)

If a single realization is used, the expectation is simply the average of function over the

physical domain V.

2.2.1 n-point Correlation Function

One of the most generic classes of correlation functions is knows as the n-point correlation

functions. To know the exact random media structure V(ω), one must know the indicator

function at each point. The complete probability description of the realization can be given

by knowing the probabilities of the indicator functions at each location. The probability of

finding a given set of points in given phases can be expressed as follows:

P{I(i)(r1) = j1, I
(i)(r2) = j2, . . . , I

(i)(rn) = jn} ∀ji ∈ {0, 1}. (2.7)
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A collection of all the probability functions for each phase can statistically describe the com-

plete random media. The n-point correlation function is a generalized correlation function

giving the probability that n given points with given locations will be in the same phase i,

i.e.

S(i)
n (r1, r2, . . . , rn) = P{I(i)(r1) = 1, I(i)(r2) = 1, . . . , I(i)(rn) = 1}. (2.8)

It can be shown that, the n-point correlation function is the expectation of the multiplication

of indicator functions at the n locations.

S(i)
n (r1, r2, . . . , rn) = P{I(i)(r1) = 1, I(i)(r2) = 1, . . . , I(i)(rn) = 1}

= 〈I(i)(r1)I(i)(r2) . . . I(i)(rn)〉.
(2.9)

Geometrically, the n-point correlation function can be interpreted as the probability of having

all corners of a n-sided polygon in phase i. Using the laws of probability, the n-point

correlation function of a phase in two-phase random media can be given as function of

correlations functions of another phases [130]:

S(2)
n (r1, r2, . . . , rn) =

〈
n∏

i=1

I(2)(rj)

〉

=

〈
n∏

i=1

[
1− I(1)(rj)

]〉

= 1−
n∑

j=1

S
(1)
1 (rj) +

n∑
j<k

S
(1)
2 (rj, rk)

−
n∑

j<k<l

S
(1)
3 (rj , rk, rl) + . . .+ (−1)nS(1)

n (r1, r2, . . . , rn).

(2.10)

By varying the value of n, one can define several specific correlation functions such as one-

point correlation function, two-point correlation function, and three-point correlation func-

tion.

2.2.2 Homogeneous and Isotropic Porous Media

A porous media can be described as statistically homogeneous, if its probability distribution

functions are the same for a transverse shift (shift of the origin) [130], i.e:

P{I(i)(r1) = j1, I
(i)(r2) = j2, . . . , I

(i)(rn) = jn}
= P{I(i)(r1 + y) = j1, I

(i)(r2 + y) = j2, . . . , I
(i)(rn + y) = jn},

(2.11)
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or for the n-point correlation function:

S(i)
n (r1, r2, . . . , rn) = S(i)

n (r1 + y, r2 + y, . . . , rn + y). (2.12)

Hence, for a homogeneous media, it is not the absolute position of the points which matters,

but the relative positions between points.

In most random media, true homogeneity is extremely rare, as it requires the structure to

be periodic at all possible shifts. For practical purposes, a porous media can be considered

homogeneous, if the expected values (averaged values) of probability functions are similar in

all sub-samples ΔV ( ΔV ∈ V) of the physical space. As the physical size of sub-sample is

increased, the homogeneity condition will be more easily satisfied. The minimum sub-sample

size at which the realization shows homogeneity is known as the representative elementary

size (representative elementary volume or REV for a 3D space). For any statistical analysis

or averaging over the physical space, the size of the realization must be at least equal to

the representative elementary size. If the correlation function S
(i)
n is independent of the

magnitude of shift vector y, but dependent on direction, then the porous media is known as

anisotropic.

2.2.3 One-point Correlation Function

The one point correlation function is the probability of finding a given phase at any given

location in a realization. Using the definition of n-point correlation function from Eq. (2.9),

the one-point correlation function can be defined as follows [130]:

S
(i)
1 (r) =

〈
I(i)(r)

〉
= P{I(i)(r) = 1} (2.13)

From a physical perspective, the 1-point correlation function is the probability that a ran-

domly thrown point in the media will land in the given phase Vi. This is the same as

the volume fraction of phase i, given by φi. For a porous media, the one-point correlation

function of the pore space is the void volume fraction, which is also known as porosity.

2.2.4 Two-point Correlation Function

Another specific case of the n-point correlation function is the two-point correlation function,

also known as auto correlation function. The two point correlation function is the probability
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Figure 2.1 – A schematic depicting different instances of same phase and inter-phase two-point
correlation function estimation (White is phase 1 and gray is phase 2)

of finding any two points r1 and r2 in the same phase i. Using the definition of n-point

correlation function from Eq. (2.9), the two-point correlation function can be defined as

follows [130]:

S
(i)
2 (r1, r2) = P{I(i)(r1) = 1, I(i)(r2) = 1} (2.14)

For a homogeneous media, the two points r1 and r2 can also be represented by a vector

between these two points, i.e, r = r2 − r1. In that case, the two-point correlation function is

expressed as S
(i)
2 (r).

S
(i)
2 (r1, r2) = S

(i)
2 (r2 − r1) = S

(i)
2 (r). (2.15)

If the random media is isotropic, the direction of vector r is inconsequential, and the two-

point correlation function only depends on its magnitude r. The two-point correlation func-

tion for an isotropic and homogeneous random media can be simply expressed as S
(i)
2 (r),

which is the probability of finding two points r distance apart in any orientation and at any

location.

Figure 2.1 depicts different instances of obtaining the two-point correlation function.

Each color in the image represents a different phase. It can be seen that the normal two
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point correlation function is the probability of finding the end points of a given vector in the

same phase. Inter-phase two-point correlation functions can also be defined to analyze phase

segregation in random media [124]. An inter-phase two-point correlation function S(i,j)(r)

is the probability of finding a line of length r with one end in phase i, and other end in phase j.

The two point correlation function is linked to several geometric properties of the random

media. For an isotropic random media without long range order, the following limiting values

are obtained for S
(i)
2 (r) [63] :

S
(i)
2 (0) = φi,

lim
r→∞

S
(i)
2 (r) = φ2

i .
(2.16)

For a two-phase random media with phase values 1 and 2, the different two-point correlation

functions of the two phases hold the following relations :

S
(1,1)
2 (r) + S

(1,2)
2 (r) = φ1

S
(2,1)
2 (r) + S

(2,2)
2 (r) = φ2

S
(1,2)
2 (r) = S

(2,1)
2 (r)

φ1 + φ2 = 1,

(2.17)

where S
(i,i)
2 (r) is the same as S

(i)
2 (r). Solving these equations yields the following relationships

between the different two-point correlation functions :

S
(2)
2 (r) = S

(1)
2 (r) + 2φ2 − 1

S
(1,2)
2 (r) = φ1 − S

(1)
2 (r)

S
(2,1)
2 (r) = φ1 − S

(1)
2 (r).

(2.18)

It can be seen that if one of the correlation functions is known, the others can be found

out easily due to the relationships in Eq. (2.18). It is due to these relationships that, for a

two phase media, the two-point correlation function does not distinguish between phases. In

other words, using more than a single two-point correlation function will not augment the

information content.

The specific surface area (area per unit volume) for a two phase medium is an important

characteristic inverse length scale of the porous medium. The specific surface area of a two

phase medium can be obtained as a function of its two-point correlation function as follows:

s = − β
d

dr
S
(1)
2 (r)

∣∣∣∣
r=0

, (2.19)
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where β = 2 × dim for discrete media, and dim is the space dimension [60]. The specific

surface area can also be used to approximate permeability of porous media using the Kozeny-

Carman relations [131].

A normalized version of the two-point correlation function, known as autocorrelation

function is often used in image characterization, random media characterization and recon-

struction. The autocorrelation function for a phase i is defined as follows [121, 131, 132]:

R(i)
z (r) =

S
(i)
2 (r)− φ2

i

φi − φ2
i

(2.20)

The autocorrelation function for a random media has been obtained by image processing,

as well by analyzing its scattering properties from experiments such as small angle X-ray

scattering [133–135]. The autocorrelation function has been used to estimate a characteristic

length scale for the random media. Ioannidis et al. [132] proposed the following expression

for the correlation length of the random media, which can be used as a characteristic length

scale.

λ̄ =

∫ ∞

0

R(i)
z (r)dr (2.21)

The correlation length is a measure of the range of autocorrelation function. It may be

used for estimating sample sizes and representative elementary sizes. Ioannidis et al. [132]

used the correlation length as an estimation parameter for permeability calculations. An

empirical equation of the following form was fitted to experimental data for permeability:

κ = a + b lnφv + c ln λ̄, (2.22)

where κ is the permeability, φv is the volume fraction of void phase, and a, b, c are fitting

parameters. The empirical model did not show strong agreement; however, it can be used for

coarse approximations. Another two-point correlation function based characteristic length

appears in upper bounds of random media permeability as follows [136, 137] :

κ ≤ 2λ2
B

3(1− φv)2
, (2.23)

where κ is the permeability, φv is the volume fraction of void phase and λB is the charac-

teristic length. The relationship between λB and two-point correlation function is given as

[137] :

λB =

{∫ ∞

0

[
S
(v)
2 (r)− φ2

v

]
rdr

}1/2

. (2.24)
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It is evident that the two-point correlation function is an important statistical correlation

function. Due to its strong correlations with several geometric properties, and some weak

correlations with physical properties, it plays an important role is characterization of a

random media. It is therefore critical to include it in any characterization or reconstruction

methodology.

2.2.5 Lineal Path Function

The lineal path function L(i)(r1, r2) is the probability of finding all points of the line con-

necting r1 and r2 in phase i [73]. Mathematically, it can be represented as:

L(i)(r1, r2) = P
{
I(i)(r1) = 1, I(i)(r1 + dr) = 1, I(i)(r1 + 2dr) = 1, . . . , I(i)(r2) = 1

}
=

〈
r2∏
r1

I(i)(r)dr

〉
.

(2.25)

For a homogeneous and isotropic media, the location and orientation of the line between r1

and r2 is inconsequential. In this case, the lineal path function can be simply expressed as

L(i)(r), where r is the distance between r1 and r2 [63]. For an isotropic random media, the

following limiting values are obtained for L(i)(r) [60]:

L(i)(0) = φi,

lim
r→∞

L(i)(r) = 0.
(2.26)

Figure 2.2 shows instances of obtaining lineal path functions for different phases. Each

color in the image represents a different phase. For an isotropic and homogeneous media,

L(i)(r) is the probability of finding any line of length r completely in phase i. The lineal path

function not only contains the phase information at the specific points, but also in between

them, thereby enabling it to capture information on phase connectivity. The lineal path

functions of different phases are not linearly dependent, making it a phase distinguishing

property compared to the two point correlation function [63]. The lineal path functions for

all phases can therefore be incorporated in the characterization and reconstruction process.

2.2.6 Chord Length Function

The chord length function is the probability of finding a chord of given size in phase i

[60, 74]. C(r1, r2)dr is the probability of finding a chord between lim
r→r1−

r and lim
r→r2+

r. For a
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Figure 2.2 – A schematic depicting instances of lineal path functions for different phases
(White is phase 1 and gray is phase 2)

homogeneous and isotropic media, the location and orientation of the line between r1 and r2

is inconsequential, and the chord length function can be simply expressed as C(i)(r), where

r is the distance between r1 and r2. C(i)(r)dr can be defined as the probability of finding

a chord of length between r and r + dr in phase i. A chord is essentially the line segment

between immediate inter-phase boundaries. Figure 2.3 shows an illustration of solid and void

phase chords in a two phase media.

The chord length and lineal path functions are related as follows [74]:

C(i)(r) =
〈l〉
φi

d2L(i)(r)

dr2
, (2.27)

where φi is the void fraction of phase i, and 〈l〉 is the mean chord length given as [60]:

〈l〉 =
∫ ∞

0

rC(r)dr. (2.28)

It may therefore not be necessary to incorporate both lineal path and chord length functions

for same phase, as it will only add marginal additional information about the random media.
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Solid phase chord

Figure 2.3 – An illustration of chords in a two phase medium (White is void phase and gray
is solid)
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The chord length function contains information about the cluster sizes in the image and

is similar to the pore size distribution function. Due to this, the chord length function

can be used to characterize Knudsen diffusion and related transport properties. In pure

Knudsen diffusion (i.e., molecule-wall interactions only), the paths of molecules between

wall collisions are similar to the chords [138, 139]. The mean distance between wall collisions

can be therefore related to the mean chord length 〈l〉 [139]. By comparing the definition of

Knudsen diffusion with the Derjaguin formulation, Berson et al. [139] obtained the following

relationship between mean distance between collisions and mean chord length:

d =

( 〈l2〉
2〈l〉2 − β

)
〈l〉, (2.29)

where β = −
∞∑

m=2

〈cos γm〉, and γm is the angle between particle trajectories separated by m

wall collisions [139]. The Knudsen diffusivity in terms of mean chord length is given as [139]:

Dk =
1

3
〈l〉〈vT 〉

( 〈l2〉
2〈l〉2 − β

)
, (2.30)

where 〈vT 〉 is the mean velocity of the particles given as follows [140]:

〈vT 〉 =
√

8RT

πM
, (2.31)

R is the universal gas constant, and M is the molecular weight of the species.

Based on its effects on pore sizes and Knudsen diffusion, it can be hypothesized that

the chord length function may also be related to permeability. Although no direct relation-

ships are available between chord length function and permeability, inclusion of chord length

function, or its integral (lineal path function) appear to improve the permeability of the

reconstructed structures [99, 100]. It is therefore necessary to include either chord length, or

lineal path function for characterization and reconstruction of random media, where Knudsen

diffusion or permeability are of importance.

2.2.7 Two-point Cluster Function

The two point cluster function C
(i)
2 (r1, r2) is the probability of finding any two points r1 and

r2 in the same phase i and also in the same cluster [79]. Two points are said to be in the

same cluster if they can be connected within the same phase. The two-point cluster function

is related to the two-point correlation function as follows [79]:

S
(i)
2 (r1, r2) = C

(i)
2 (r1, r2) +D

(i)
2 (r1, r2), (2.32)
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Figure 2.4 – A schematic depicting instances of two-point cluster function estimation. Also

shown is an example of D
(i)
2 (r) (White is phase 1 and gray is phase 2)

where D
(i)
2 (r1, r2) is the probability of finding r1 and r2 in different clusters, but still in phase

i.

For a homogeneous and isotropic porous media, the location of r1 and r2 is inconsequen-

tial, and the two-point cluster function can be simply expressed as C
(i)
2 (r), where r is the

distance between r1 and r2. Figure 2.4 shows a schematic of estimating two-point cluster

function for the two phases of a binary random media. As discussed earlier, the two points

must be in the same cluster (i.e., connected through same phase). The figure also shows an

instance of D
(1)
2 (r1), where the two end points are in different clusters, albeit in the same

phase.

The two-point cluster function is a critical parameter to pinpoint the connectivity of a

porous medium. It is linked to the percolation threshold of the random media [79]. The two-

point cluster function inherently contains the connectivity information in three dimensions.

Jiao et al. [72] showed that the two-point cluster function contains the most information
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among all the discussed correlation functions, and can capture the information content of

other correlation functions as well. It is however computationally expensive to calculate,

as the clusters have to be identified before computing the function. This creates challenges

especially during reconstruction, as the cluster identification may have to be done after each

pixel swap.

2.3 Correlation Function Computation for Digital Im-

ages

All the definitions of correlation functions so far have considered the random media as

continuous. In most of the situations however, one must analyze the digital images of

porous media to obtain its correlation functions. The definitions of the correlations functions

must therefore be adjusted to suit the discrete nature of the digital images. The primary

changes are due to the fact that the correlation functions can now be computed only for

certain discrete distances. This section presents the definitions of the correlation functions

for discrete random media, with a special emphasis on computational methods.

2.3.1 One-point correlation function

The one-point correlation function for a digital image can be defined as the probability of

finding a pixel of desired color (phase). The one-point correlation function from an image

can be obtained by taking the ratio of total pixels of the desired color to the total pixels.

The volume fraction of phase i for a digitized image can be given as [59]:

φi =
1

WHD

∑
abc

I
(i)
a,b,c : ∀a ∈ [1,W ], ∀b ∈ [1, H ], ∀c ∈ [1, D], (2.33)

where W , H , and D are the digital dimensions (number of pixels) of the image in x, y and

z directions respectively. I
(i)
a,b,c is the indicator function stating the phase at the location

{x, y, z} ≡ {a, b, c} with the following definition:

I
(i)
a,b,c =

{
1, if pixel{a, b, c} is in phase i

0, otherwise.
(2.34)

Algorithm A.1 presents a computational algorithm for estimating the volume fraction of

phase i.
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2.3.2 Two-point Correlation Function

The two-point correlation function for a digital image can be defined as the probability of

finding two pixels of the same color at a given distance r, where r is always an integer due to

the discrete nature of the image. The two point correlation function S
(i)
2 (r) can be obtained

by translating a line of length r successively pixel by pixel across the whole image and noting

down the number of times both ends fall in the phase i [59, 63]. This is then normalized

by the total number of trials, which is the sampling space. For a complete characterization,

the line must be translated across the whole domain at all possible orientations; however,

for a porous media with no exclusive directional features, sampling in only the orthogonal

directions will suffice. Orthogonal sampling has two advantages: 1) the computation time is

less, because of the limited number of directions used; and 2) during reconstruction, when a

pixel is updated, only the corresponding row and columns need to be sampled again, thereby

resulting in additional time advantage.

The two-point correlation function is calculated separately in x, y, and z directions for

each pixel row and column. For example, the two point correlation function for a pixel row

in x direction for an image of size (W ×H ×D) can be given as follows:

S
(i)
2 (r) =

1

amax

amax∑
a=1

I
(i)
a,b,cI

(i)
a+r,b,c for a pixel row with y = b, and z = c, (2.35)

where amax = W − r is the number of points sampled in the row. For any length r, the

sampling is stopped r pixels away from the edge, as the other end of the line will go over the

image. This can be avoided by using a periodic boundary condition, where the line loops

back to the beginning of image. In this way, all the pixels in the image can be sampled.

The two-point correlation function does not contain any long range information, and be-

comes periodic for an estimation length of more than half the length of image. Therefore, to

avoid redundant computations, the two-point correlation function should only be computed

until half the length of image in any direction. The details of computational algorithm for

computing two-point correlation functions in any row/column are presented in section A.2.

Once the two-point correlation functions for all the rows and columns are obtained, they are

averaged separately in each direction to obtain reference correlation functions.
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2.3.3 Lineal Path Function

The lineal path function for a digital image L(i)(r) is the probability of finding a line spanning

r pixels which are all of the same color corresponding to phase i. To avoid computational

complexity, the sampling can be limited to the orthogonal directions. For estimating the

lineal path function along any direction, chords in the phase of interest must be searched.

To find a chord in phase i, the image is scanned along the given direction (x, y, or z) until

an interfacial pixel is encountered in the phase of interest. This pixel is marked as 0 and

scanning continues until another interfacial pixel is encountered signifying the end of chord.

Once a chord of length l is found in phase i, the lineal-path function of the phase can be

calculated as follows [63]:

L(i)(r) =

{
(l − r)/N, when 0 ≤ r ≤ l

0, otherwise,
(2.36)

where N is the maximum number of lines of length r that can be placed in the sample.

For example, along x direction, a maximum of W − r lines of length r can be found, where

W is the width of the image. For each additional chord in the same line, the lineal path

functions are superimposed. The lineal path function can be computed for any r less than

image length; however, after certain r = rmax it reaches zero, as no lines of such length can

be found in a single phase. To save computational time, the lineal path function can be

computed only up to rmax. Section A.3 presents the details of a computational algorithm to

estimate lineal path function in a pixel row/column for digital images. Once the lineal path

functions for all the rows and columns are obtained, they are averaged separately in each

direction.

2.3.4 Chord Length Function

The chord length function C(i)(r) for a digital image can be defined as the probability of

finding a chord of length r pixels in phase i. The process of estimating chord length function

is similar to the one used for estimating lineal path function. For estimating chord length

function along any direction, all the chords must be searched and recorded. The recorded

chord lengths are then binned by their occurrence frequency, and then normalized by total

number of chords. The chord length function can be computed for any r less than image

length; however, it will be zero for any length bigger than the largest chord present in the
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media. To save computational time, the chord length length function can be computed only

up to the maximum chord length rmax. Section A.4 presents the details of a computational

algorithm to estimate chord length function in a pixel row/column for digital images. Once

the chord length functions for all the rows and columns are obtained, they are averaged

separately in each direction.

2.3.5 Two-point Cluster Function

The two-point cluster function for a digital image can be defined as the probability of finding

two pixels of same color and in the same cluster at a distance of r pixels. The two point

cluster function C
(i)
2 (r) can be obtained by translating a line of length r successively pixel

by pixel across the whole image, and noting down the number of times both ends fall in the

phase i and in the same cluster. To estimate two-point cluster function, the different clusters

have to be identified.

Cluster Identification

Cluster identification is a connected component labeling problem which has been a topic

of thorough research in percolation modeling and image processing. Rosenfeld and Pfaltz

[141] have presented one of the first attempts to identify clusters over an entire image for

percolation determination. The cluster identification algorithm consists of a two pass algo-

rithm. In the first pass, each pixel in the targeted phase is assigned a cluster label. Each

pixel is assigned the minimum label among its neighbors. If no labeled neighbors are found,

a new label is given to the site. When a site joins two sub-clusters and therefore has two

or more different neighbor labels, the minimum label is assigned to the site. To keep track

of the connectivity between labels, an equivalence table is used. The equivalence table is

handled using a disjoint set data-structure such as a union-find algorithm [142], which helps

in finding the minimum equivalent label.

In the second pass, all the labels are replaced by the equivalent minimum labels from

the equivalence table. A variation of this algorithm is well known as the Hoshen and Kopel-

man [143] algorithm. It consists of a single scan algorithm, where the first pass is similar

to the one presented by Rosenfeld and Pfaltz [141]. The only difference is that when an

equivalence of labels is found, the number of sites belonging to the higher cluster number
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are added to the number of sites belonging to the smaller cluster. This algorithm, however

does not assign new labels to the sites with higher cluster numbers. A second pass has to

be used for the cluster identification, if desired. The Hoshen and Kopelman [143] method is

the most widely used algorithm for cluster labeling in percolation physics. Other methods,

such as the well known recursive algorithm by Wolff [144] for Monte Carlo simulations also

exist. These methods however, are known to have stack memory issues due to high number

of consecutive recursive calls [145].

Due to its simple implementation, less memory intensive operations, and a potential for

parallel operations, the Hoshen and Kopelman [143] algorithm was used in conjunction with

the union-find algorithm. Section A.5.1 presents the details and the algorithm for the method

to identify cluster labels in an image. Once the clusters are identified, the two-point cluster

function for a pixel row/column is computed using the algorithm presented in section A.5.2.

It can be seen that the computation of the cluster function is similar to the two-point

correlation function, except for the requirements of cluster identification. The requirement of

cluster identification indeed makes this method computationally much more expensive, espe-

cially during the reconstruction process. Unlike other correlation functions, where changing

a pixel only changes the correlation functions of corresponding row or column, changing a

pixel can change cluster connectivity over a wide range. This in turn means that, the two-

point cluster functions of several rows and columns will change. During reconstruction, this

additional burden of computing new cluster information, and new correlation functions can

make the use of two-point cluster function computationally expensive. In this study there-

fore, the two-point cluster function is only used an an independent verification function to

access the effectiveness of the reconstruction method. Furthermore, it must be kept in mind

that the two-point cluster function essentially represents three-dimensional connectivity of

porous media, and it is not applicable to the 2D cases.

2.3.6 Dealing with Boundaries in Correlation Functions Comput-
ing

There are two methods for computing the correlation functions for an image. The simplest

method is to start at the beginning of the image and sample until the end of the image.
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Chord 2

(a) A normal sampling for chord search (b) A periodic sampling for chord search

Figure 2.5 – An illustration of normal and periodic sampling in a digital image

Another method is to use a periodic boundary condition. Using the normal sampling to

measure the chord length function, the sampling is stopped whenever the end of line r falls

out of the image (see Fig. 2.5(a)). In a periodic boundary condition however, the end of the

line is wrapped back to the beginning of the image and sampling is done until the beginning

of segment r reaches the end of the image (see Fig. 2.5(b)). Since a stochastic reconstruction

process works on the assumption that the reconstruction instance is a representative element

of the entire system, the periodic boundary condition is more appropriate for reconstruction

purposes [66]. In this work, normal sampling is used to analyze reference images obtained

from imaging techniques, as these images do not show periodicity at the edges. During re-

construction however, the correlation functions for the reconstructed structure are estimated

periodically.

2.4 Validation of the Correlation Function Computing

Algorithms

To test the accuracy of the developed algorithms and the computer program based on them,

the correlation function estimations were compared to available analytical results. Berryman

[59], and Coker and Torquato [60] have presented analytical results for void phase two-point

correlation function, lineal path function and chord length function for a random packing of
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Figure 2.6 – 3D image of packing of penetrable spheres (Red shows the solid spheres, and
void phase is white)

penetrable spheres. All the programs developed in this study are made phase independent,

i.e., the same routines are used to compute the correlation functions for all phases by chang-

ing the phase index. Therefore, if the algorithms and programs are verified for one phase,

they should accurately compute correlation functions for other phases as well.

For the validation, a 3D image of fully penetrable sphere packing with each side of length

200 pixels was chosen. The spheres have a radius of 15 pixels and the porosity of the system

is fixed at 0.5. Once the sphere radius and the porosity are decided, the following equation

is used to determine the sphere packing density [59]:

φ = exp

(
−ρ

4π

3
R3

)
, (2.37)

where φ is the desired porosity, ρ is the sphere packing density, and R is the sphere radius.

Using the aforementioned parameters, the required sphere number density is obtained as

4.9 × 10−5 spheres/pixel3. This translates to roughly 392 spheres in the domain of size

200 × 200 × 200 pixels. A MATLAB code was used to generate the 3D image. Figure 2.6

shows the image of penetrable sphere packing.
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2.4.1 Two-point Correlation Function

Berryman [59] derived the following analytical expression for two-point correlation function

of void phase in a packing of fully penetrable spheres:

S
(v)
2 (r) = exp{−ρv2(r)}, (2.38)

where ρ is the number density of spheres, and v2(r) is the normalized union volume of 2

spheres which are separated by a distance r, which is given as follows:

v2(r) =
V2(r)

Vdomain
. (2.39)

Vdomain is the volume of the domain, and V2(r) is the total union volume of 2 spheres separated

by distance r, which is given as:

V2(r)

R3
=

⎧⎪⎨
⎪⎩
4π

3

(
1 +

3

4
x− x3

16

)
for x ≤ 2

8π

3
for x > 2,

(2.40)

where x = r/R and R is the sphere radius.

Figure 2.7 shows the comparison of analytical and estimated two point correlation func-

tion of the void phase for the penetrable sphere packing. The estimation was done using

only the orthogonal sampling in x, y, and z directions. The correlation function in all the

directions and in all pixels rows are averaged together to obtain an estimate of isotropic

two-point correlation function. It can be seen that despite using only orthogonal sampling,

the algorithm is able to estimate the two-point correlation function with good accuracy. It

can also be observed that S
(v)
2 (r)

∣∣∣
r=0

= φv ≡ 0.5, and S
(v)
2 (r)

∣∣∣
r>30

= φ2
v ≡ 0.25, thereby

satisfying two requirements of a two-point correlation function.

2.4.2 Lineal path function

Lu and Torquato [73] derived the following analytical expression for the lineal path function

of void phase in a packing of fully penetrable spheres:

L(v)(r) = φ1+(3r/4R)
v , (2.41)

where φv is the void volume fraction. Figure 2.8 shows the comparison of analytical and

estimated lineal path function for the void phase of penetrable sphere packing. It can
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Figure 2.7 – Comparison of analytical and estimated two-point correlation function for pen-
etrable sphere packing
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Figure 2.8 – Comparison of analytical and estimated lineal path function for penetrable sphere
packing
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be observed that orthogonal sampling results in a good accuracy estimation of lineal path

function as well. Furthermore, it can also be observed that L(v)(r)
∣∣
r=0

= φv ≡ 0.5, and

L(v)(r)
∣∣
r>150

= 0, thereby satisfying two requirements of a lineal path function.

2.4.3 Chord Length Function

Torquato and Lu [74] derived the following expression for the chord length function of the

void phase for a packing of penetrable spheres:

C(v)(r) = − 3

4R
ln(φv)φ

3r/4R
v . (2.42)

Figure 2.9 shows the comparison of analytical and estimated chord length function for the

void phase of penetrable sphere packing. Even though the algorithm provides a good es-

timate, the accuracy is lower than other correlation functions. The major reason for this

higher inaccuracy is the discrete nature of the image being analyzed. While the algorithm

can only account for discrete chord lengths, the analytical expression is obtained assuming a

non-discrete structure. Using multiple instances of randomly packed spheres for estimation,

and averaging over them, the chord length becomes smoother and closer to the analytical

expression. Figure 2.10 shows the comparison of analytical chord length function with the

estimated chord length function averaged over 27 instances of random sphere packing. With

high number of instances, sufficient chords of each length are encountered, resulting in better

statistics and closer match with analytical function.

2.4.4 Two-point Cluster Function

No analytical expressions for two-point cluster function are available in literature; however,

the fact that for a media with completely percolating void phase, the two-point cluster

function is the same as two-point correlation function can be utilized for verification. By

performing percolation analysis on the 3D image shown in Fig. 2.6, 99.999% of the void

phase was found to be in a single percolating cluster. This image can be therefore used to

estimate two-point cluster function and verification. Figure 2.11 shows the comparison of

analytical and estimated two-point cluster function for the void phase of penetrable sphere

packing. The accuracy of estimation is the same as two-point correlation function.

To ensure that the cluster functions are computed accurately in images with more than

one clusters, the cluster identification algorithm was tested in a random media image. For
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Figure 2.9 – Comparison of analytical and estimated chord length function for penetrable
sphere packing
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Figure 2.10 – Comparison of analytical and average estimated chord length function for
penetrable sphere packing. The estimation is averaged over 27 instances of random
sphere packing
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Figure 2.11 – Comparison of analytical and estimated two-point cluster function for penetrable
sphere packing

ease in visualization, an analysis on 2D image is presented here. Figure 2.12(a) shows the

random media image used for testing the cluster identification. The void phase is represented

by white color. Once the clusters are identified and labeled using the computational program,

a unique color is assigned corresponding to each cluster label. Figure 2.12(b) shows the

image with different clusters, where each different color represents a different cluster. It can

be observed that the program can identify each cluster accurately.
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(a) Test image for cluster identification (White
is the void phase)

(b) The test image with different clusters (Each
color represents different cluster)

Figure 2.12 – An illustration of the cluster identification in a random media. The clusters
are identified only for void phase (white).
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Chapter 3

Stochastic Reconstruction of Random
Media†

This chapter describes the simulated annealing based stochastic reconstruction method used

in this work. As discussed in Chapter 1, several variations have been proposed to the method

in terms of pixel swapping, energy minimization and hierarchical annealing. This chapter

discusses the details of all the methods and variations explored in this work. Section 3.1

provides an overview of the general simulated annealing method, followed by Section 3.2,

which discusses the two energy minimization methods: probability, and threshold based min-

imization. Section 3.3 provides the details of temperature reduction in simulated annealing.

Section 3.4 describes the different pixel swapping methods used in this work. Section 3.5

provides the details of a new multigrid hierarchical annealing method. Finally, Section 3.6

provides the details of computational implementation of the simulated annealing method.

Detailed algorithms for the important parts of the reconstruction process are presented in

Appendix B.

3.1 Simulated Annealing

The simulated annealing method presented by Ouenes et al. [88] is used in this work for

generating stochastic reconstructions of porous media. As discussed in Chapter 1, simulated

annealing is a Monte-Carlo process based optimization method, with a primary advantage

of being able to use multiple correlation functions for reconstructions. Figure 3.1 shows

the schematic of a typical simulated annealing based reconstruction process. The aim of the

†Parts of this chapter have been published. (1) L. M. Pant, S. K. Mitra, and M. Secanell, Physical Review
E. 90(2):023306, 2014. (2) L. M. Pant, S. K. Mitra, and M. Secanell, Physical Review E. 92(6):063303, 2015.
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stochastic reconstruction process is to generate a structure with desired statistical properties,

i.e., statistical correlation functions. These reference correlation functions can be obtained

from reference images of the porous media acquired through imaging techniques, or they can

be specified manually. The reconstruction process starts with an initial guess of the structure,

which is mostly obtained by randomly generating a black and white pixel distribution with

the desired volume fractions.

The initial structure is perturbed and annealed to a structure with the desired correlation

functions through the process of simulated annealing. Consider the two phases of porous

media as i and j. A known statistical correlation function for phase i in the reference config-

uration is expressed as f
(i)
0 (r). The same statistical correlation function in the reconstructed

structure is given by f
(i)
r,t (r) at some step t of the reconstruction process. The aim of the re-

construction procedure is to evolve the reconstructed structure towards a reference structure

from the initial guess, i.e., converge f
(i)
r,t (r) towards f

(i)
0 (r). The discrepancy in the recon-

struction compared to the target at any given step t can be expressed as the L2-norm of the

difference of reference and reconstructed correlation functions. This difference is expressed

as follows [63, 64]:

Et =
∑
k

[
f
(i)
0 (rk)− f

(i)
r,t (rk)

]2
, (3.1)

where rk represents the length scale at which the correlation function is evaluated. Et plays

the role of energy in simulated annealing, where the target is to minimize it. At every step of

the reconstruction, two pixels in phase i and j are swapped. Due to the change in structure,

its statistical correlation functions will change, which in turn will change the energy of the

system. Taking the new energy of the system as Et+1, the change in energy can be given as

ΔEt = Et+1−Et. Depending on the change in energy, the swap is either accepted or rejected,

which depends upon the adopted minimization procedure. This process is repeated until the

energy has reached a value close to zero, i.e., the correlation function of the structure is the

same as the reference correlation function.

The primary advantage of the simulated annealing process is its ability to incorporate

as many statistical correlation functions for as many phases as desired. The energy for a

porous media with m phases (e.g., i, j, k) and n correlation functions for each phase can be

51



Figure 3.1 – A general schematic of simulated annealing based reconstruction process
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defined as follows [63]:

Et =

m∑
i=1

n∑
q=1

rmax∑
rk=0

αi,q

[
f
(i,q)
0 (rk)− f

(i,q)
r,t (rk)

]2
, (3.2)

where rk is the length scale at which the statistical correlation function is evaluated, rmax is

the maximum length scale at which the correlation function is evaluated, αi,q is the weight

assigned to the energy of phase i using the correlation function q, and f i,q(rk) is q
th correlation

function for phase i evaluated at length scale rk. The weight αi,q is used to control the

contribution of each correlation function and can be changed during reconstruction. For

example, initially a single suitable correlation function can be chosen for quick convergence

to a rough estimate, and then more functions can be added to improve the accuracy of the

reconstruction.

3.2 Energy Minimization Method

The energy minimization method is at the center of a simulated annealing process. The

energy minimization method is used to determine whether to accept or reject a pixel swap

based on the amount of energy change it causes. One of the simplest energy minimization

method is known as the Deluge algorithm [146]. This algorithm simply accepts all energy

decreasing moves and rejects all energy increasing moves. This algorithm is simple in im-

plementation, and results in fast convergence for simple optimization problems; however,

for complex optimization problems with multiple local minima, this algorithm can result in

locally optimal structures. Since no energy increasing moves are allowed, the optimization

may not recover from a local minimum, and therefore it might result in a sub-optimal solu-

tion. To avoid these issues, enhanced algorithms are presented in the literature, which are

discussed in the following sections.

3.2.1 Probability based Energy Minimization (Metropolis Method)

One of the most common algorithms used for energy minimization in simulated annealing is

the probability based acceptance criteria proposed by Metropolis et al. [147]. The probability

of accepting a swap is given as follows:

p(ΔEt) =

{
1, ΔEt ≤ 0

exp(−ΔEt/Tt), ΔEt > 0,
(3.3)
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where p(ΔEt) is the probability of accepting a swap with energy change ΔEt, and Tt is known

as the annealing temperature. It is used to control the reconstructed structure evolution. A

higher temperature indicates higher entropy of the system, and allows more energy increas-

ing moves, whereas a lower temperature indicates a cooling structure with lower entropy,

where fewer energy increasing moves are permitted.

Similar to the thermal annealing, the simulated annealing method also starts at high

temperatures, so that all the possible structure states are sampled. During reconstruction,

the temperature is slowly reduced in steps, and the structure is allowed to stabilize before

another reduction in temperature. Each level of the temperature reduction is referred to as

a Markov chain. By the end of the reconstruction, the temperature is reduced sufficiently

to freeze the structure, and the probability of accepting energy increasing moves is almost

zero.

The initial temperature of the reconstruction process is decided by knowing the fraction

of energy increasing moves to allow at the start. The temperature is selected in such as

way that, at the beginning, some fraction p0 of energy increasing moves are accepted. To

estimate the temperature, the energy changes are observed for the first N energy increasing

swaps. From these observations, the average energy change is obtained as follows:

ΔEin =
1

N

N∑
i=1

ΔEi. (3.4)

Once the average energy change is known, the following equation is used to obtain the initial

temperature [88].

p0 = exp
(−ΔEin/T0

)
, (3.5)

where p0 is the probability of accepting energy increasing moves at the beginning of recon-

struction (usually 0.5), and T0 is the initial temperature.

3.2.2 Threshold Energy based Energy Minimization

Dueck [148] has proposed an optimization algorithm known as threshold based simulated

annealing method. This method has been used in mathematical optimization problems

such as the traveling salesman problem; however, it has been rarely used in the simulated
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annealing literature [119]. From the studies in the literature [148], this method shows reduced

computational time compared to Metropolis method discussed in Section 3.2.1. Using this

method, a pixel swap at a step t is accepted with the following probability [148]:

p(ΔEt) =

{
1, ΔEt ≤ Eth

0, Otherwise,
(3.6)

where ΔEt is the energy change after pixel swap, and Eth is known as the threshold energy

for acceptance. The threshold energy Eth is always greater than zero. This ensures that all

the energy decreasing moves are accepted, while the extent of accepting energy increasing

moves is determined by the magnitude of Eth.

The threshold energy plays the same role as the temperature in the Metropolis method.

The major difference between these methods is that, while the Metropolis method will al-

ways assign a certain non-zero probability to all energy increasing moves, the threshold

method does not allow energy increasing moves above a certain magnitude. This reduces

the chances of accepting moves which cause high energy increase, and thereby can result is

reduced reconstruction time. The threshold method however is not ergodic [119], as certain

states of the structure become inaccessible due to the threshold energy. The reconstruction

procedure starts with a high threshold energy to allow all possible moves that can result in

a reconstruction. The threshold energy is then slowly reduced, so that by the end of the

reconstruction no energy increasing moves are accepted. Similar to the temperature, the

threshold energy is reduced between Markov chains. The Markov chain length has to be

sufficiently high to achieve equilibrium at the given threshold energy.

To obtain the initial threshold energy, a procedure similar to the one used for estimating

initial temperature is used. The average energy change for the initial N swaps is obtained

using Eq. (3.4). From this, the initial threshold energy is estimated as:

Eth,0 = p0ΔEin, (3.7)

where p0 is the probability of accepting an energy increasing swap at the beginning of re-

construction. The choice of p0 is problem dependent and needs to be optimized for each

study.
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3.2.3 Termination of Energy Minimization

The aim of the simulated annealing method is to minimize energy. If the structure is re-

alizable with given correlation functions, i.e., in the case the functions are obtained from

an existing image, the energy should be minimized to a value of zero, where the statisti-

cal correlation functions of the structure are exactly the same as the reference correlation

functions. Practically however, a tolerance close to zero is specified. For most of the sim-

ulated annealing problems, the annealing is terminated when a threshold/tolerance energy

is reached; however, in many situations the tolerance may not be reached due to a sub op-

timal solution. In these situations, the algorithm may get trapped at a local minima, and

may not terminate; therefore, alternative exit conditions must be specified as well. In this

work, the following three termination conditions are used to terminate a simulated annealing

minimization:

1. Energy tolerance: This is the most relevant termination condition. The simulation

is terminated when the structure has reached a desired tolerance level, which usually

close to zero. In this work, a tolerance of 10−6 is used unless specified otherwise. The

tolerance is not imposed on the total energy, instead it is imposed on L2-norm of each

correlation function separately.

2. Number of failed swaps: This condition is used when the simulated annealing method

is not able to produce any more energy decreasing moves. The simulation is therefore

terminated after certain number of consecutive energy increasing moves. For example,

the simulation may be terminated when no move has resulted in an energy decrease for

X number of Markov chains. In this work, a value of 20 is used for X, unless otherwise

specified.

3. Relative slope of energy: This condition is used to terminate the minimization pro-

cedure, when the rate of energy decrease is lower than a threshold. This is useful,

when either very few energy decreasing moves occur, or moves with negligible energy

decrease occur. These conditions will not be caught by termination condition 2, and

therefore the slope of the energy curve has to be analyzed. In this condition, the sim-

ulated annealing is terminated if the relative slope of the energy curve has been below

a certain threshold for X number of Markov chains. The slope is defined relative to
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the desired energy tolerance. The relative slope across a Markov chain k is defined as:

Eslope,k =
ΔEk

IterMarkovEtol
, (3.8)

where ΔEk is the energy change in Markov chain k, IterMarkov is the size of Markov

chain (number of swaps in a Markov chain), and Etol is the desired energy tolerance.

In this work, the reconstruction is terminated if the relative slope has been less than

10−7 for 20 Markov chains, unless otherwise specified.

3.3 Cooling Mechanisms

The energy minimization process in simulated annealing is based on the annealing of molten

metals. In metal annealing, the temperature is slowly reduced in steps, and at each step

the structure is allowed to achieve thermal equilibrium. In simulated annealing, a similar

ideology is used, where multiple permutations are allowed at each step in order to achieve an

organized state. Depending on the energy minimization method, either the temperature or

the threshold energy is reduced after each step. A collection of swaps at any step is known

as the Markov chain, where each swap is a Markov process.

The temperature reduction method has a significant impact on the success and speed

of the reconstruction process. If the temperature is reduced slowly, significant energy in-

creasing swaps will be accepted, which will increase the time required to reach target energy

tolerance. On the other hand, if the temperature is reduced too quickly, it might lead to the

process getting trapped at a local minima where the temperature is not sufficient to jump

over the barrier. An ideal cooling schedule allows the reconstruction to converge quickly to

the reference structure, while attaining the global minimum energy [63].

Geman and Geman [149] have shown that a logarithmic temperature schedule given by

the following equation is ideal for obtaining a global optimum.

Tk =
T0

log(1 + k)
, (3.9)

where Tk is the temperature of the kth Markov chain. This schedule however, reduces the

temperature extremely slowly, and therefore results in excessive reconstruction time [88].
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The most common temperature reduction scheme is the power law schedule, given as follows

[150] :

Tk = λTk−1 = λkT0, (3.10)

where λ is the temperature reduction parameter, which can be adjusted in order to ensure

both: convergence and speed.

Most of the reconstruction literature using the power law method use a static value of

λ during reconstruction. While it is easy to implement, it may cause reduced convergence.

During the reconstruction process for complex geometries, the energy landscape maybe dif-

ferent at different stages. This causes rapid fluctuations in the energy of system. A static

schedule does not take these fluctuations into account, and therefore may result in an un-

optimized solution or in a high computational time. Siarry et al. [151] have proposed the

following ad-hoc formula for a dynamic temperature schedule, which can take into account

the evolution of energy:

λk = max

[
λmin,min

(
λmax,

Emin

Ek−1

)]
, (3.11)

where λk is the temperature reduction factor for kth Markov chain, λmin and λmax are

specified by the user, Emin is the minimum energy reached, and Ek−1 is the average energy

during the k − 1th Markov chain. Using λk, the temperature of the kth Markov chain is

calculated as follows:

Tk = λkTk−1 (3.12)

Using the dynamic temperature schedule, it must be kept in mind that Tk 
= λk
kT0, as the

parameter λk is most likely different for each Markov chain.

For the threshold energy based method, the threshold energy is also reduced using a

power law schedule. Either using a static λ, or with a dynamic λk, the threshold energy for

Markov chain k is calculated as follows:

Eth,k = λkEth,k−1, (3.13)

where λk is obtained using Eq. (3.11). Even though some researchers have used the dynamic

temperature schedule for reconstruction [64, 76, 96], no proper comparisons have been done
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to the static schedules in order to see the exact amount of time saving which can result from

the dynamic schedule.

3.4 Pixel Swapping Methods

In the simulated annealing based structure optimization, the structure perturbation is per-

formed by swapping pixels of two different phases. Swapping pixels from different phases

ensures that the volume fraction of each phase is preserved. Several methods are available in

the literature to select the pixels for swapping. The following sections describe the different

pixel selection methods which have been used in this work.

3.4.1 Random Pixel Swapping

In random pixel swapping, two pixels in different phases are chosen completely at random.

The probability of a particular pixel getting selected is the same for all pixels in a single

phase. The initial convergence is good for random pixel swapping, as a significant number

of swaps minimize the energy of the system; however, convergence becomes very slow in the

later stages of reconstruction once the random initial structure is partially clustered and

only a few isolated pixels remain disconnected from the primary clusters. The probability

of selecting the isolated pixels in both phases together is very low, and hence they tend

to remain in the final reconstruction. Energy minimization is only possible by temporarily

moving a pixel out of the already formed clusters. This however, increases the energy of the

reconstruction and therefore is not acceptable at later stages of reconstruction due to low

temperatures [152]. This results in a very slow convergence towards the final structure, and

a final reconstruction with several non-physical segregated pixels.

3.4.2 Surface Pixel Swapping

Interfacial pixel swapping was proposed by Torquato [130] and was later implemented by

Capek et al. [71], Rozman and Utz [91], and Tang et al. [98]. In this technique, one needs

to select pixels which are at interfaces in order to avoid disturbing any clusters which are

already formed. It has shown improvements over random swapping by removing the segre-

gated pixels, and by reducing reconstruction time [98]. Usually, the pixel selection has been

done by moving along a random direction from a random starting location until an interface
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is encountered [71]. This method can be time consuming. In this work, the interface pixels

are identified by their neighborhood. If pixels of other phase are present in immediate neigh-

borhood, the pixel is identified as an interfacial pixel. More details about the neighborhood

identification are presented in the next section.

3.4.3 Different Phase Neighbor (DPN) based Pixel Swapping

To avoid the issues related to the random pixel swapping, a biased pixel selection algorithm

known as different phase neighbor (DPN) based pixel selection was proposed by Tang et al.

[98]. A similar algorithm was earlier proposed by Zhao et al. [78]. The DPN based method

preferably selects pixels with more number of different phase neighbors for swapping. Figure

3.2 shows the concept of the pixel neighbors, and shows the biased selection of higher DPN

pixels. The neighbors of a pixel are defined as the pixels which are a unit pixel distance

away either along axes or along diagonals. A different phase neighbor (DPN) is a neighbor

with a different phase than the center pixel. It can be seen in Fig. 3.2(a) that the maximum

possible number of DPNs are 8 and 26 in 2-D and 3-D geometries, respectively.

The first step of the DPN method is grouping the pixels in each phase with the same

number of DPNs. Define Si as the set of pixels with DPN = i, and n(Si) as the number

of pixels is this set. Further, define the probability of selecting a pixel from this set as

p(Si). Even though the maximum number of DPNs are 8 and 26 in 2-D and 3-D geometries

respectively, it is not necessary that all the DPNs will be present in an image. The maximum

DPN present in the system is defined as M , where M = max(i) : n(Si) 
= 0. Since this is

the set with highest DPN, it is usually assigned the highest probability m which is manually

defined. Tang et al. [98] have used a value of m in the range of 0.4− 0.6. For the remaining

sets, Tang et al. [98] have proposed the following formulation for estimating probability of

selection:

p(Si) = ωn(Si)(i+ 1)2 i = 0, 1 . . . ,M − 1, (3.14)

where ω is a weighting factor. Since the probabilities for all sets should add up to unity, the

following equation is obtained by summing Eq. (3.14) over all DPNs:

M∑
i=0

p(Si) =
M−1∑
i=0

ωn(Si)(i+ 1)2 +m = 1. (3.15)

Since m, i and n(Si) are known, ω can be obtained using (3.15). Then, the probabilities
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(a) Illustration of neighborhood of a pixel in a 2D and 3D image

DPN=8                 >                  DPN=5                >               DPN=2

(b) Demonstration of biased pixel selection based on DPN. Geometries in de-
creasing order of priority for pixel of interest.

Figure 3.2 – An illustration of different phase neighbors in image and their selection priority
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for all DPN sets can be found. Using these probabilities, a DPN set is selected, and then a

random pixel is picked from the selected DPN set. The same procedure is used to select a

pixel from another phase. The two selected pixels are then swapped.

Even though the DPN based method has shown to remove pixel noise and reduce re-

construction time, the effects of biased pixel selection on the final structure have not been

studied. Since the highest DPN values are preferably selected for swapping, the algorithm

essentially tries to minimize the maximum DPN values present in the image. This may

cause changes to the structure of the reconstructions. To explore the effects of the DPN

method on the reconstructed structure, the following general formula is used for estimating

the probability of picking a pixel from set Si,

p(Si) = ωn(Si)(i+ a)b, (3.16)

where a is a parameter to decide whether pixels with zero DPN are allowed to be swapped,

and b controls the amount of bias given to the DPN value. The effect of specifying the

maximum probability m was also studied by performing two sets of reconstructions: 1) with

the biggest set Mi being assigned a probability m; and 2) with the biggest set getting its

probability from Eq. (3.16) as well. For the second case, the normalization factor ω is

calculated using the following equation, instead of Eq. (3.15).

M∑
i=0

p(Si) =
M∑
i=0

ωn(Si)(i+ a)b = 1 (3.17)

By varying the values of a and b, and using Eq.(3.17), all possible variations of the pixel

swapping methods can be implemented through DPN method. For a = 1, and b = 0, the

probability of each set is proportional to the number of pixels belonging to it. This is the

same as random pixel swapping, where the probability of picking a particular type of pixel is

proportional to its fraction in the image. For a = 0, and b = ε (0 < ε � 1), the probability

of each set is proportional to the number of pixels belonging to it, except for the set with

zero DPN, which has a selection probability of zero. This case represents surface swapping.

Equation (3.16) therefore provides a way to unify all the swapping methods, and to study

the effect of bias on the reconstructed structure. The value of ε should be kept quite low, in
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order to ensure that, iε is approximately equal to one for all values of i. A value less than

10−4 should be sufficient to satisfy this criteria.

3.5 Multigrid Hierarchical Annealing

To solve the problems of slow convergence in large images, multigrid hierarchical meth-

ods have been presented in the literature [49, 127]. These methods employ either a simple

hierarchy, which is not able to significantly reduce computational time, or gray-scale meth-

ods, where additional phase is introduced for freezing the structure during refinement. The

gray-scale methods even though time saving, are complex to implement. To get the best of

both methods, i.e., ease of implementation, and the benefits of pixels freezing, a DPN based

multigrid hierarchical annealing method is proposed. The multigrid method is initiated by

reconstructing a small scale coarse image, which is then continuously refined until the desired

size has been achieved. At each scale, the reconstruction is performed as an independent

simulated annealing problem. Two critical parts of the multigrid method are the reference

image synthesis and the reconstructed image refinement.

To perform a reconstruction at coarser scales (smaller image size), a reference image

is required at the corresponding scale. Figure 3.3 shows the schematic of the process for

synthesizing coarse reference images from the original high resolution image. Let Ωs represent

a binary image at refinement scale s, where increasing s represents a coarser image. The

binary image is represented as a collection of pixel values Ωs
ij . The pixel values at a coarser

scale s are obtained by averaging the values of its parent pixels at finer scale s − 1, where

the average is represented as Ω
s−1

ij

Ωs
ij =

⎧⎪⎨
⎪⎩
0 if Ω

s−1

ij < 126.5,

255 if Ω
s−1

ij > 126.5,

0 or 255 Otherwise (i.e. Ω
s−1

ij = 126.5).

(3.18)

For the third case, the pixel values are randomly assigned in such a way that the volume

fraction of each phase is conserved; however, due to the digitized nature of the image, the

volume fractions may not stay exactly the same at each scale. The reference image synthesis

can be thought of as a two step process, which involves linear image coarsening followed by

static image thresholding.
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Figure 3.3 – Schematic depicting the reference image synthesis for smaller scales
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During the coarsening of images, the pixels belonging to the interior of pixel clusters in

the parent image will retain their color after coarsening, as they are surrounded by same

color pixels. Many of the pixels at the interfaces of the parent image however, will be in

the neighborhood of opposite color pixels. This will result in many of these pixels being

assigned a color at random in the coarse scale. It is evident that all the uncertain pixels

during coarsening will always end up at the interfaces of coarser images. This fact must be

remembered during the opposite process, i.e., refinement during reconstruction.

The second part of the multigrid process is the refinement of images during reconstruc-

tion. The reconstruction starts at the coarsest scale, where the reconstruction is performed

using simulated annealing with the reference image of corresponding scale. Once a final

solution is obtained at this scale, the image is refined by breaking each pixel into four new

pixels (children pixels), which are then assigned a phase and a freezing status. The color

of the children pixels is kept the same as the parent pixels, in order to keep the volume

fractions constant. In order to account for the volume fraction change between scales due

to digitization, some pixels are randomly assigned a different phase. This is done in order

to match the phase volume fractions of the refined reconstructed structure to the reference

image at the corresponding scale. The freezing status is used to decide which pixels will not

be allowed to move in the next stage. Since all the uncertain pixels are at the interfaces, they

must be allowed to permutate and readjust at refined scales; however, moving the interior

pixels will erode the formed clusters, and nullify the reconstruction process which has been

performed at smaller scales.

To avoid deterioration of the coarse scale structures, all the internal pixels are frozen

in the refined image and all the pixels at the interfaces are non-frozen. In this work, the

interface pixels have been handled using one of two separate methods: 1) all the children of

interfacial pixels at the coarse scale are allowed to be swapped at the next refined scale, or

2) only the interfacial pixels in the refined structure are allowed to be swapped. When an

interfacial pixel at the coarse scale is refined, not all of its children will necessarily be at the

interface in the refined image. Since the second method does not allow the non-interfacial

children to be swapped, it will reduce the number of pixels to be swapped.
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Figure 3.4 – Schematic depicting the reconstructed image refinement and pixel freezing using
method 1. DPN values are calculated using periodic boundaries on the images.
Gray is only used for depiction and does not represent a new phase
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Figure 3.4 shows the schematic of image synthesis and pixel freezing for method 1. The

frozen status of a pixel in the refined image is decided based on its parent’s DPN value.

Children of all the pixels with non zero DPN (DPN > 0, i.e., interfacial pixel) at the coarse

scale are not frozen, while the rest of the pixels are frozen. If the parent of a pixel Ωs
ij at a

refined scale s is Ωs+1
ij at a coarse scale s+ 1, then, the refined image will be synthesized as:

Color(Ωs
ij) = Color(Ωs+1

ij ),

Status(Ωs
ij) =

{
Frozen if DPNs+1

ij = 0

Not frozen otherwise,

(3.19)

where DPNs+1
ij is the number of different phase neighbors for the parent pixel at coarse scale.

For method 2, the frozen status is defined after refinement, and it is based on the DPN

of the refined image itself. For this method, the image is synthesized as:

Color(Ωs
ij) = Color(Ωs+1

ij ),

Status(Ωs
ij) =

{
Frozen if DPNs

ij = 0

Not frozen otherwise,

(3.20)

Not only is the freezing status determined using the DPN information of the image, it

is enforced using the DPN methodology as well. While assembling the pixels in different

DPN sets, all the pixels with a frozen status are not included in the sets. This ensures

that the frozen pixels are not included in swapping process, and are therefore not moved.

In summary, the DPN assisted multigrid hierarchical annealing method uses DPN values to

freeze the interior pixels of clusters at refined scales. This ensures that the structure does

not erode at refined scales, irrespective of the threshold energy/temperature schedule. The

swapping of interfacial pixels allows the small scales features to develop at refined scales

while keeping the majority of the structure intact. This method also reduces the number of

visited pixels at refined stages without needing to introduce gray scale values.

3.6 Computational Implementation

An in-house code has been developed in C++ using object oriented programming for the

reconstruction process. Algorithm 3.1 shows the overall procedure of the multigrid hierar-

chical simulated annealing method using DPN based pixel swapping and threshold based
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energy minimization. The following sections present the computational details of some of

the important sub-components of the overall reconstruction process in order to enhance the

understanding.

3.6.1 Reference Image Scaling

In many cases, the provided reference image may not match the desired reconstruction size.

To preserve statistical accuracy, the provided image should always be equal to or larger than

the desired reconstruction size. In case the desired reconstruction size is smaller than the

provided reference image size, two methods are used for size equalization: a) reference func-

tion resizing, and b) image resizing. For function resizing, the reference correlation functions

are computed on the large reference image. The correlation information is then removed for

lengths which are bigger than desired reconstruction size. The trimmed correlation functions

are then used for reconstruction purpose. This technique preserves the physical resolution

of the image in reconstructions.

For image resizing, the reference image is rescaled to the desired reconstruction size.

The reference correlation functions are then computed on the resized image. Image resizing

changes the physical resolution of the image. In this work, a nearest neighbor interpolation

method is used for scaling binary images. Section B.2 presents the computational details of

the resizing method.

3.6.2 Reference Image Generation for Coarse Scales

The reference images for coarse scales (small lengths) are generated by coarsening the orig-

inal high resolution reference image. At each scale s, the corresponding reference image is

generated by coarsening the reference image at scale s− 1, i.e., one refinement scale higher.

Section B.1 describes the details of the computational algorithm to obtain the reference

images.

3.6.3 DPN Computation

The DPN computations are necessary for pixel swapping and freezing process. This section

describes the procedures for computing DPN values, assembling DPN sets, and updating the

information after pixel swaps.
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Algorithm 3.1 Algorithm for DPN assisted multigrid hierarchical simulated annealing

Read original reference image Ω0
ref;

Define number of multigrid stages as n;
for i = 1 to n-1 do

Generate coarse image Ωi
ref from Ωi−1

ref using Eq. (3.18) ;
end for
for i = n-1 to 0 do

procedure Obtain the starting image for stage i
if (i == (n-1)) then  First (coarsest) stage

Generate random pixel distribution;
Set all pixels as not frozen;

else  Some refinement stage
Get reconstructed image at scale i+ 1;
Get DPN information at scale i+ 1;
Generate pixel color values using Eq. (3.19) or (3.20);
Generate pixel status using Eq. (3.19) or (3.20);

end if
end procedure
procedure Obtain reconstruction for stage i

Get reference correlation functions from image Ωref
i ;

Read starting image ( Ωi
rec);

while None of termination condition reached do
Swap two pixels among not frozen set using DPN method;
Compute update correlation functions;
Compute new energy and ΔE;
Compute applicable threshold energy Eth;
if ΔE ≤ Eth then

Accept pixel swap;
Update image information;
Reset Iterfailed;

else
Reset image information;
Increment Iterfailed;

end if
Increment total iterations;

end while
Save the final image Ωi

rec;
end procedure

end for
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Figure 3.5 – An illustration of DPN sets stored using maps

DPN Value Computation

The DPN value for each pixel is calculated by scanning its neighbors and reading their phase

values. Two arrays, DPNw and DPNb, are used to store the DPN information for white and

black pixels, respectively. Whenever a pixel of different phase is found in the neighborhood,

the DPN count is increased. The final DPN count is assigned to the pixel. To avoid edge

effects, periodic boundary condition is always used for DPN calculations. Section B.3.1

describes the computational details of the DPN computation method.

DPN Set Computation

The DPN sets are necessary to know the number of pixels with certain DPN value. The

simplest way of knowing the number of pixels belonging to each DPN is by moving through

the image and based on the DPN value, incrementing its corresponding count. This method

however, requires that the DPN sets be re-computed after each pixel swap. The work by

Tang et al. [98] does not provide any details to overcome these issues.

In this work, C++ maps are used to store all the pixels belonging to a certain DPN. Two

maps, Setw and Setb, are created for white and black pixels respectively. An illustration

of a DPN set using the maps is shown in Fig. 3.5. Each map contains a key index, which

is the DPN value, and an array of pixels corresponding to the key. The array contains the

coordinates of all the pixels in given phase with a DPN value equal to the key. The array

is assembled by scanning through the image, and assigning each pixel to its corresponding

DPN set based on its phase and DPN value. The algorithmic details for assembling the DPN
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sets are given in section B.4. The number of pixels belonging to a set can be easily found

out using the array size, and can be then used for probability calculations.

DPN Information Updating

After each pixel swap, the phases of the two pixels change. Furthermore, the pixel swap

changes the neighborhood for the pixels which are neighbor to the swapped pixels. The

DPN information for the swapped pixels and their neighbors must be therefore updated

after each swap. Since the DPN values of all the pixels are stored individually, only the

changed DPN values need to be calculated. The DPN values for the swapped pixels and

their neighbors are computed using the Algorithm B.3. Once the DPN arrays, DPNw and

DPNb, are updated, the DPN sets need to be updated. Before updating the DPN arrays,

the swapped pixels and their neighbors are removed from their corresponding sets. Once the

new DPN values for the pixels are calculated, they are inserted in the sets corresponding to

their new DPN values. Section B.5 presents the computational details of the method.

3.6.4 Accounting for Anisotropy

Even though most of the statistical analysis is done assuming a isotropic random media

assumption, the anisotropy can be partially accounted for in this work. As discussed in

section 2.3, the correlation function for each row and column are individually calculated.

In order to facilitate partial accounting for anisotropy, the correlation functions for each

direction are averaged separately. The net energy due to some qth correlation function for

phase i at reconstruction step t is then given as:

E
(i)
q,t =

xmax∑
xk=0

[
f
(i,q)
0 (xk)− f

(i,q)
r,t (xk)

]2
+

ymax∑
yk=0

[
f
(i,q)
0 (yk)− f

(i,q)
r,t (yk)

]2
+

zmax∑
zk=0

[
f
(i,q)
0 (zk)− f

(i,q)
r,t (zk)

]2
,

(3.21)

where xk, yk, and zk are the correlation function evaluation distances in x, y and z directions

respectively. By accounting for separate correlation functions in the three orthogonal direc-

tions, some of the anisotropy can be taken into account. It would however require sampling

in multiple directions to completely account for the anisotropy. Keeping the x, y, and z

directions separate also makes it easy to reconstruct porous media with different lengths in

different directions.
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3.6.5 Updating Correlation Functions

As discussed in Section 2.3, the correlation functions are individually computed for each

row and column of the image. They are then summed over all rows and averaged to get

the overall correlation function for the image. In this work, the correlation functions for

each row and column are stored separately in order to facilitate quick updating after a pixel

swap. Due to the orthogonal sampling in correlation function computing, only the correlation

functions for corresponding rows and columns will change after a pixel swap. The correlation

functions for changed rows and column are re-computed and stored. To avoid summing all

the rows/columns after each swap, the sum of all the rows or columns is also saved. After

updating the functions, the new sum and new average can be easily calculated as:

New sum = old sum − old function + new function

New average function =
New sum

Number of rows/columns
.

(3.22)

Using the new average function, the corresponding system energy can be calculated using

Eq. (3.21).
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Chapter 4

Stochastic Analysis and
Reconstruction of Porous Media†

This chapter describes the analysis and reconstruction studies carried out using the different

methodologies described in Chapter 3. All the different methods are compared against

each other in terms of the reconstruction accuracy and computational time. Section 4.1

describes the different random materials studied in this work, their imaging methodologies,

and image processing methods for obtaining binary images. Section 4.2 discusses the results

of stochastic analysis on different materials, and the structural properties obtained using

statistical analysis. Section 4.3 provides a detailed study of the different reconstructions

performed using different methods. The effects of energy minimization method, annealing

method, pixel swapping method, multigrid method, and number of correlation functions

are studied. Section 4.4 demonstrates the ability of performing reconstructions of large 3D

images using the best methods obtained from Section 4.3. Finally, Section 4.5 summarizes the

findings, and shows a comparison of current method against methods available in literature.

4.1 Materials and Methods

4.1.1 Materials

Three porous materials: a) an inkjet printed catalyst layer (CL) of polymer electrolyte fuel

cell (PEFC) [111], b) a titanium (Ti) foam mesh used as a gas diffusion layer in electrolyzers,

and c) a ceramic are analyzed. These porous media were selected in order to be able to

analyze three porous media with different porosity, pore network and pore morphology.

†Parts of this chapter have been published. (1) L. M. Pant, S. K. Mitra, and M. Secanell, Physical Review
E. 90(2):023306, 2014. (2) L. M. Pant, S. K. Mitra, and M. Secanell, Physical Review E. 92(6):063303 , 2015.
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While the PEFC CL is a low porosity porous media with nanometer size pores, the Ti foam

is a high porosity media with pores in micrometer range. The ceramic is a medium porosity

media with a different porous structure than the CL or Ti foam.

4.1.2 Imaging and Image Processing

Several imaging techniques were used to obtain two-dimensional and three-dimensional im-

ages of the porous media. The imaging techniques were selected based on requirements, and

availability of equipment. While the 2D images are used for reconstruction method assess-

ments, comparisons and parametric studies, the 3D images are primarily used for transport

studies.

2D Image of PEFC Catalyst Layer

For initial studies on the different reconstruction methods, a 2D image of a PEFC CL

was used. Two-dimensional images are less time consuming to reconstruct and therefore

multiple instances can be reconstructed for better statistical analysis. Furthermore, the 2D

reconstructions are easy for visualization and qualitative comparison. A scanning electron

microscope (SEM) at University of Alberta was used for obtaining an in-plane 2D image

of PEFC CL. Figure 4.1(a) shows the raw SEM image of PEFC catalyst layer with a size

of 960 × 960 pixels. The image resolution is approximately 2nm/pixel. First, a histogram

equalization of the image is performed. The image is then passed through a Gaussian filter,

followed by a smoothing operation using a 3 × 3 Kernel. Finally, the image is binarized

using a manual thresholding. Any remaining noise is removed using a median filter. Figure

4.1 shows the SEM image in different stages of pre-processing, which culminates in the final

binary image as shown in Fig. 4.1(d).

2D Images of Ceramic

The 2D image of the ceramic was received from collaborators at Commonwealth Scientific

and Industrial Research Organisation (CSIRO), Land and water division, Australia. The

image was obtained using X-ray microtomography. More details about the imaging method

are not available. Figure 4.2 shows the provided binary 2D image of the ceramic structure

with a size of 500×500 pixels. It can be observed that the porous structure and morphology

of the ceramic is different than the PEFC catalyst layer sample.
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(a) A raw 2D SEM image of PEFC CL (b) Image after cropping and histogram equaliza-
tion

(c) Image after Gaussian filtering and smoothing (d) The binary 2D SEM image of PEFC CL after
thresholding (white is void, and black is solid)

Figure 4.1 – Evolution of 2D SEM image of a PEFC catalyst layer from raw image to final
binary image
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Figure 4.2 – Binary 2D image of ceramic obtained using X-ray microtomography (white is
void, and black is solid)

3D Images of PEFC Catalyst Layer

While the 2D images are easy to obtain, reconstruct and visualize, they are not useful for

simulating transport processes. A three-dimensional structure is required as physical domain

for transport simulation. The 3D structures can be used for estimating transport properties

of reference structures, which provide benchmarks for the reconstructed geometries. For

accurate estimation of transport properties in a reference structure, the 3D image should

resolve structural features in all three directions accurately. The 3D image of catalyst layer

was obtained using a nano-CT system (UltraXRM-L200, Xradia Inc., Pleasanton, CA, USA)

at Carnegie Mellon University [29]. The pixel resolution of the nano-CT images is 16nm/pixel

in each direction. Figure 4.3(a) shows a 2D slice of the reconstructed structure. Each of the

slices were rotated to align them in orthogonal directions. The catalyst layer area from each

slice is then extracted by cropping the image. Figure 4.3(b) shows a cropped and rotated

2D slice of the PEFC nano-CT. Due to the small thickness of PEFC CL, only 100 pixels

were obtained in x direction. To keep the dimensions similar in all three directions, sub-

sections of 100×100 pixels were selected from each slice. The histogram of all the slices were

equalized for contrast adjustment. The slices were then passed through a Gaussian filter for

noise reduction. Finally, Sauvola and Pietikainen [153] algorithm is used for determining the
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(a) A raw 2D slice generated from
nano-CT tomographic reconstruction
algorithm

(b) The image after rotating and cropping. Red
box shows the sub-sample area

(c) The sub-sample of the 2D slice af-
ter histogram equalization

(d) The 2D section after Gaussian fil-
tering

(e) Final binary 2D slice of a the nano-
CT image

Figure 4.3 – Evolution a 2D slice of PEFC CL nano-CT image during different stages of image
pre-processing
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(a) 3D image of complete PEFC CL (b) 3D image of a sub-sample of PEFC CL

Figure 4.4 – A 3D binary image of one of the nano-CT samples for PEFC CL (white is void,
and black is solid)

image threshold for binarization of each slice. The Sauvola and Pietikainen [153] algorithm

is used instead of manual thresholding, because manual thresholding is error prone and

time consuming for multiple slices. Figure 4.3 shows a 2D slice of the nano CT at different

stages of pre-processing. From the large nano-CT image, nine 3D sub-samples of dimension

100 × 100 × 100 pixels were extracted. Figure 4.4 shows a 3D binary image of the entire

sample, and of one of the nine sub-samples.

3D images of Ti Foam

The Ti foam is a high porosity media with pore feature sizes in the range of 5-10 μm. A

micro-CT is therefore sufficient for resolving the features of this media. A micro-CT system

(SkyScan 1172, Bruker microCT, Kartuizersweg, Kontich, Belgium) at University of Alberta

[154] was used for imaging the Ti foam. The pixel resolution of the micro-CT images is

1.6μm/pixel in each direction. Figure 4.5(a) shows a 2D slice of the reconstructed structure.

Each of the slices were rotated to align them in orthogonal directions. The Ti foam image

from each slice is then extracted by cropping the image. Figure 4.5(b) shows a cropped and

rotated 2D slice of the Ti foam image. Only 100 pixels are available along the thickness of the

Ti foam (y − direction). To keep the dimensions similar in all three directions, sub-sections

of 100× 100 pixels were selected from each of the slices. The histogram of all the slices were

equalized for contrast adjustment. The slices were then passed through a Gaussian filter for

noise reduction. Finally, Sauvola and Pietikainen [153] algorithm is used for determining the

image threshold for binarization of each slice. Figure 4.5 shows a 2D slice of the micro-CT
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(a) A raw 2D slice of Ti foam gener-
ated from micro-CT tomographic re-
construction algorithm

(b) The image after rotating and cropping. Red box shows
the sub-sample area

(c) The sub-sample of the 2D slice af-
ter histogram equalization

(d) The 2D section after Gaussian fil-
tering

(e) Final binary 2D slice of a the
micro-CT image

Figure 4.5 – Evolution a 2D slice of Ti foam micro-CT image during different stages of image
pre-processing
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(a) 3D image of complete Ti foam (b) 3D image of a sub-sample of Ti foam

Figure 4.6 – 3D binary images of the Ti foam (white is void, and black is solid)

image at different stages of pre-processing. From the large micro-CT image, thirteen 3D

sub-samples of dimension 100 × 100 × 100 pixels were extracted. Figure 4.6 shows a 3D

image of the entire micro-CT sample, and a sub-sample after binarization.

4.2 Stochastic Analysis

Statistical analysis is used for characterizing the different porous media used in this study.

Comparison of correlation functions in each direction is done to assess the isotropy in each

porous media. The two-point correlation function is used to estimate the interface area, and

the characteristic length of the porous media. Cluster functions are analyzed to study the

percolating volume fraction. The lineal path function and chord length function are used to

analyze the maximum cluster sizes in orthogonal directions.

The characteristic length is obtained by integrating the autocorrelation function. Equa-

tion (2.21) can be rearranged to obtain the following expression for characteristic length

[77]:

λ̄ =

∫ ∞

0

(φi − φ2
i )S

(i)
2 (r)dr. (4.1)

The interface area can be calculated by finding the slope of the two-point correlation function

at r = 0. Using a linear expression for slope estimation, the specific surface area is obtained
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as follows:

s = β[S2(0)− S2(1)], (4.2)

where the value of β is 4 and 6 for 2D and 3D images, respectively [63]. Since the statistical

area calculations rely on large sample sizes, finite sample size results in slight discrepancies;

therefore, the actual surface area was also calculated by counting the interfaces in the im-

age. The percolating volume is analyzed by finding clusters percolating from one face to

the opposing phase. The total volume of the percolating clusters is then identified as the

percolating volume. The percolating volume analysis is only performed for the 3D images,

as it is a transport parameter relevant only to 3D structures.

4.2.1 Analysis of 2D PEFC Catalyst Layer Image

The PEFC CL 2D image shown in Fig. 4.1(d) with a size of 960× 960 pixels was analyzed

to obtain different correlation functions and properties. Based on image analysis, the void

volume fraction was found to be 0.437. Figure 4.7 shows different correlation functions in

x and y directions for the 2D PEFC CL image. Using the two-point correlation function

shown in Fig. 4.7(a) with Eq. (4.1), the characteristic length of the image was found

to be approximately 24 pixels. Any reconstructions or analysis on the 2D image must be

therefore performed at a size significantly larger than this. Another characteristic length can

be obtained by observing the length at which the two-point correlation function reaches φ2

[60]. This is the length after which the long-range pixel interactions are insignificant. The

length is around 100 pixels. Any reconstructions or analysis therefore must be performed

for sizes larger than 100 pixels. Looking at the lineal path and chord length functions in

Figs. 4.7(d) and 4.7(e), it is seen that the maximum feature size in the image is around

300 pixels. In order to account for all the features therefore, the reconstructions should be

either performed at a size larger than 300 pixels, or in a smaller resized image with lower

resolution.

The statistical estimate of specific interface area (surface area per unit volume) using Eq.

(4.2) is 0.0314/pixel, while the actual specific interface area is 0.03147/pixel. It shows that

the two-point correlation function can accurately estimate the interface area. Looking at the

different correlation functions, it can be observed that the correlation functions in x and y

direction are different, signifying that the media is not isotropic. Analysis of the void phase
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Figure 4.7 – Correlation functions in x and y directions for the 2D PEFC CL image
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two-point cluster function in Fig. 4.7(b) shows that the void phase does not percolate across

the entire image length, as the cluster function reaches zero at around 300 pixels. The non

percolating void phase can also be observed in the image. On the other hand, analysis of

solid phase two-point cluster function in Fig. 4.7(c) shows that the solid phase percolates

across the domain, which is also evident from the actual image.

4.2.2 Analysis of 2D Ceramic Image

The ceramic 2D image shown in Fig. 4.2 is of size 500× 500 pixels. The ceramic has a void

volume fraction of 0.391. Figure 4.8 shows different correlation functions in x and y directions

for the ceramic image. Integrating the two-point correlation function shown in Fig. 4.8(a)

with Eq. (4.1), the characteristic length of the ceramic is found to be approximately 9 pixels.

Comparing with the 2D PEFC CL image, this length is much smaller, as the features in the

ceramic image are smaller compared to the PEFC image. The length at which the two-point

correlation function reaches its final value of φ2 is around 25 pixels, which is also smaller

than the PEFC image. The representative size of the ceramic must be therefore smaller than

PEFC CL. Looking at the lineal path and chord length functions in Figs. 4.8(d) and 4.8(e),

it is seen that the maximum feature size in the ceramic image is around 100 pixels. The

reconstructions must be therefore performed at a size larger than 100 pixels

The statistical estimate of specific surface area for ceramic is obtained as 0.107/pixel,

while the actual specific interface area is 0.1067/pixel. The specific surface area of the ce-

ramic is much higher compared to the PEFC, as the ceramic contains higher number of

smaller features in the same image size thereby increasing its interface area. Comparing

the x and y direction correlation functions for the ceramic in Fig. 4.8, it is seen that the

difference between x and y directions is quite small, making the ceramic an almost isotropic

media. Analyzing the void and solid phase two-point cluster functions shown in Figs. 4.8(b),

and 4.8(c) respectively, it can be seen that while the void phase is not percolating across the

domain, the solid phase percolates. These observations can also be verified by analyzing the

actual image.
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Figure 4.8 – Correlation functions in x and y directions for the 2D ceramic image
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4.2.3 Analysis of 3D PEFC Catalyst Layer Images

As discussed earlier, nine sub-samples were extracted from the nano-CT image. All the sub-

samples are of size 100×100×100 pixels. All the images were analyzed and their properties

measured. The average void volume fraction among the nine samples is 0.32±0.005. Figure

4.9 shows the correlation functions for all the images. Since the 3D images are also used

for physical analysis, the correlation functions are also plotted against physical distance.

Integrating the two-point correlation function shown in Fig. 4.9(a), the characteristic length

for the nine samples was found to be 1.24±0.05 pixels. This is much smaller than the length

obtained using 2D SEM image. The main reason for that is the loss of resolution between

the SEM image and nano CT image, which results in nanoCT accounting for fewer features

compared to the SEM image. The length at which the two-point correlation function reaches

its asymptotic value is around 10 pixels. Analysis of lineal path and chord length functions

in Figs. 4.9(d), and 4.9(e) shows that the maximum feature size in the PEFC CL 3D image

is around 30 pixels.

The statistical estimate for specific surface area was obtained as 0.291±0.001/pixel, while

the actual specific interface area was obtained as 0.29± 0.002/pixel. Looking at the shaded

regions in Fig. 4.9, it can be seen that the margin of error between samples is negligible, which

shows that the catalyst layer and the resulting nanoCT image is homogeneous. Furthermore,

the correlation functions in all the three directions are close to each other, leading to the

conclusion that the images are almost isotropic. The percolating volume fractions for the

void and solid phase were found to be 0.99 ± 0.001, and 0.999 ± 0.0001 respectively. This

shows that almost the entire void and solid phase is connected and percolating. This can

also be observed by analyzing the void and solid phase two-point cluster functions shown in

Figs. 4.9(b), and 4.9(c) respectively. The functions reach a plateau and do not decrease to

zero, signifying a domain wide connectivity.

4.2.4 Analysis of 3D Titanium Foam Images

All the thirteen sub-sample of the Ti foam microCT images were analyzed. All the sub-

samples are of size 100 × 100 × 100 pixels. The average void volume fraction among the

thirteen samples is 0.36± 0.009. Figure 4.10 shows the correlation functions for all the im-

ages. Integrating the two-point correlation function shown in Fig. 4.10(a), the characteristic
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Figure 4.9 – Correlation functions in x, y and z directions for the 3D PEFC CL images. Solid
line shows the average, and shaded region shows the 95% margin of error.
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Figure 4.10 – Correlation functions in x, y and z directions for the 3D Ti foam images. Solid
line shows the average, and shaded region shows the 95% margin of error.
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length for the thirteen samples was found to be 1.81 ± 0.11 pixels. The asymptotic con-

vergence length of the two-point correlation function value is around 50 pixels. Analyzing

lineal path and chord length functions in Figs. 4.10(d), and 4.10(e), it can be seen that the

maximum feature size is also approximately 50 pixels. The reconstructions must be therefore

larger than 50 pixels.

The statistical estimate for specific surface area was obtained as 0.135± 0.003, while the

actual specific interface area was obtained as 0.136 ± 0.003/pixel. Looking at the shaded

regions in Fig. 4.10, it can be seen that the margin of error between samples is small, but not

negligible, which shows that the Ti foam may have minor inhomogeneity. The correlation

functions in all the directions are not the same, with the x-direction correlation functions

being significantly different than other two directions. This signifies a strong anisotropy

in x-direction, which also indicates that the transport properties in x-direction should be

different from the other two directions. The percolating volume fractions for the void and

solid phase were found to be 0.994 ± 0.009, and 0.999 ± 0.0001 respectively. This shows

that almost the entire void and solid phase is connected and percolating. This can also be

observed by analyzing the void and solid phase two-point cluster functions shown in Figs.

4.10(b), and 4.10(c) respectively. The functions reach a plateau and do not decrease to zero,

signifying a domain wide connectivity.

4.3 Stochastic Reconstruction

Stochastic reconstruction of the different media described in the previous section is per-

formed. The aim of the reconstruction studies is to assess the accuracy and effectiveness

of the reconstruction algorithm and resulting computer program. Furthermore, the studies

analyze the effect of different reconstruction methods and parameters on the accuracy and

speed of the reconstruction process.

4.3.1 Effect of Energy Minimization Method

To understand the effect of the energy minimization method, i.e. the effect of probability

or threshold based acceptance, a square grid pattern of size 60× 60 pixels, as shown in Fig.

4.11(a) was chosen as the reference geometry. The square grid is easy to reconstruct and
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Table 4.1 – Parameters used for reconstruction of square grid pattern.

Parameter Value
Maximum number of allowed failed Markov chains (X) 20
Minimum relative slope of energy curve required before termination 10−7

Markov chain size 5000
Fixed temperature update factor for probability based method (λ) 0.9
Fixed energy threshold update factor for threshold based method (λ) 0.9
Pixel swapping method random
Boundary condition for reference function computing periodic
Boundary condition for reconstructed function computing periodic
Initial probability for probability based acceptance method (p0) 0.5
Initial factor for threshold based acceptance method(p0) 0.5
Initial iterations N 2000
Number of multigrid levels 1

Correlation function used S
(v)
2 (r)

Number of processors 2

provides a qualitative validation of the accuracy of the reconstruction program. The param-

eters used for reconstruction are given in Table 4.1. The aim is to study the effect of the

minimization method; therefore, conventional random swapping with only void phase two

point correlation function is used. A static annealing schedule is used in both cases. Even

though the reference correlation functions are usually calculated without a periodic bound-

ary condition, for this specific case they were computed using periodic boundaries, as the

reference geometry is periodic. Figures 4.11(b) and 4.11(c) show the reconstructed images

of size 60×60 pixels using probability based and threshold based algorithms respectively. It

can be seen that, apart from a few pixels, the square grid pattern is reconstructed accurately

by both methods. The periodic nature of the reconstruction process can also be observed in

the reconstructed structure. Being a simple geometry, it can be completely characterized by

its two point correlation function [119].

To gain further understanding of both methods, 20 reconstructions were obtained using

both algorithms on a computer with an Intel(R) Core(TM) i7-2600 CPU with a clock speed

of 3.40 GHz. The reconstructions were terminated when either of the three termination

conditions discussed in Section 3.2.3 was reached. The average value of energy at the end

of the simulation was (1.26± 0.29)× 10−5 for threshold based, and (2.05± 0.44)× 10−5 for
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(a) Reference image (b) Probability based recon-
struction

(c) Threshold energy based re-
construction

Figure 4.11 – An illustration of reference and reconstructed square grid pattern

probability based algorithm. The margins of error are with a 95% confidence interval. It

was observed that the accuracy of reconstruction is marginally higher for the threshold based

method. The average number of iterations for final convergence were (7.73± 0.61)× 105 for

threshold based method, and (7.51± 0.70)× 105 for probability based method. The recon-

struction time was (67.29 ± 5.13)s for threshold energy based method, and (65.50 ± 5.89)s

for probability based method. It can be seen that both minimization methods require sim-

ilar time, and number of iterations; however, the threshold based method results in lower

energy, which shows a minor speed advantage of threshold based method. Figure 4.12 shows

the evolution of energy during reconstruction for both algorithms. It is observed that the

threshold based algorithm is slower in the beginning, but becomes faster at the later stages

of reconstruction. It may be therefore marginally faster for low tolerance reconstructions.

The grid of squares is a simple reconstruction geometry with a simple energy landscape

[119]; therefore, it can not provide definite information about the effectiveness of the thresh-

old energy based algorithm. For more extensive testing of the threshold energy based algo-

rithm, a complex energy landscape is required. A random porous media is quite complex

and contains stochastic information at several length scales. The 2D PEFC CL image shown

in Fig. 4.1(d) is therefore used as reference. To reduce computational time while remaining

statistically representative, the image is resized to a size of 200 × 200 pixels using nearest

neighbor interpolation as described in Section 3.6.1. This size is still significantly higher

than the characteristic length of 24 pixels, and the asymptotic convergence length of 100
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Figure 4.12 – Comparison of energy convergence for probability based and threshold based
algorithms for a square grid geometry (solid line represents average and shaded
region represents 95% confidence interval)

pixels. The reconstructed image size was fixed at 200× 200 pixels2, fixed annealing factor λ

was changed to 0.95 for both probability and threshold based methods, initial iterations N

were changed to 5000, and reference functions were computed using non-periodic boundary

condition. The rest of the reconstruction parameters are the same as in Table 4.1.

Figures 4.13(a) and 4.13(b) show the reconstructions using probability based and thresh-

old energy based algorithms respectively. Qualitatively, the images look similar, with signif-

icant noise due to random pixel swapping. A computer with an Intel(R) Core(TM) i7-2600

CPU with a clock speed of 3.40 GHz was used to perform 20 simulations using both methods.

The average value of final energy was found to be (1.61± 0.19)× 10−6 for probability based,

and (1.51± 0.14)× 10−6 for threshold based algorithm, therefore providing minor advantage

with threshold energy based method. The average number of iterations was (1.93±0.18)×106

for probability based and (2.17±0.19)×106 for threshold based method, showing a minor ad-

vantage for the probability based method. The reconstruction time was (1865.3±169.3)s for

the threshold energy based method, and (1665.7±155.3)s for the probability based method.

Overall, for similar target energy, it can be concluded that both methods will provide similar

reconstruction speed. Figure 4.14 shows the convergence profile for both algorithms in the
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(a) Reconstruction using probability based
method

(b) Reconstruction using threshold based
method

Figure 4.13 – Reconstructions of 2D PEFC catalyst layer image using probability and thresh-
old based method

Figure 4.14 – Comparison of energy convergence for probability based and threshold based al-
gorithms for a PEFC catalyst layer image (solid line represents average and shaded
region represents 95% confidence interval. The margin is not visible, as the error
margin is negligible)
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reconstruction of 2D PEFC catalyst layer. Again, it can be observed that the threshold

based algorithm is slower then the probability based method at the beginning, but catches

up to it in the later stages. Since both the algorithms show similar reconstruction speed, one

of them was chosen for further studies. Due to its ease of implementation, and potential of

speed up for lower energy tolerances, threshold based method will be used in all the studies

in upcoming sections.

4.3.2 Effect of Cooling Schedule

Most of the reconstruction studies in literature use a static annealing schedule. The static

schedule uses a constant reduction factor λ for updating temperature or threshold energy

after each Markov chain. The static schedule does not take into account rapid changes in

energy, and may therefore result in the algorithm getting trapped at a local minimum (in

case the static annealing is too fast for problem), or high reconstruction time (in case the

static annealing is too slow for the problem). A dynamic schedule changes the reduction

factor λ between Markov chains to account for the slope of the energy landscape. Since

a direct comparison between static and dynamic methods is not available in literature, a

detailed comparison between the two methods is carried out. The 2D PEFC image shown

in Fig. 4.1(d) was resized to a size of 200× 200 pixels, and was used as the reference image.

The static annealing factor λ was fixed at 0.95, while for the dynamic annealing factors λmin

and λmax were fixed at 0.4 and 0.95 respectively. A threshold energy based minimization

method is used. The number of initial iterations are 5000, and the rest of the parameters

are the same as in Table 4.1.

For a quantitative comparison between these methods, a computer with an Intel(R)

Core(TM) i7-2600 CPU with a clock speed of 3.40 GHz was used to perform 20 simulations

using both methods. The average final energy of the reconstructions was (1.51±0.14)×10−6

for static annealing, and (1.58 ± 0.08) × 10−6 for dynamic annealing, showing a marginal

change in the accuracy between the methods. The average number of iterations were

(2.17 ± 0.19) × 106 for static annealing, and (1.91 ± 0.13) × 106 for dynamic annealing,

showing around 10% reduction in iterations. Overall, the dynamic method seems to improve

the reconstruction speed by only a small margin.
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Figure 4.15 – Comparison of threshold energy change during reconstruction for static and
dynamic methods

To understand the effect of static and dynamic annealing, the threshold energy at each

Markov chain was observed. Figure 4.15 shows the comparison of threshold energy change

during one of the reconstructions for static and dynamic methods. It can be seen that the

threshold energy for both method changes at virtually the same rate, suggesting that the

adaptive λ is mostly close to λmax, which is also the same as the λ for static annealing.

During analysis of the adaptive method, it was observed that the predicted λ using Eq.

(3.11) is mostly the same as λmax, and never the same as λmin. The reason for the calculated

λ being close to λmax is the slow reduction of energy. For a slow reduction in energy, Emin,

and E for a Markov chain are similar in Eq. (3.11), thereby resulting in a value of λ close

to λmax. The adaptive method may result in better time savings for an annealing problem

with simple energy landscape and fast cooling, which is rarely the case with random porous

media. Also, in the beginning of biased pixel selection methods the cooling rate is high,

and therefore, a lower λ can be observed for first few Markov chains. Overall, it can be

concluded that the adaptive annealing schedule results only in small improvements over the

static method due the slow annealing nature of most of the porous media. The adaptive

method is not used for any comparison studies, as it may change the reconstruction time

differently for different methods, making it difficult to perform a direct comparison.
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4.3.3 Effect of Pixel Swapping

The last sections showed that the reconstructions of PEFC catalyst layers using random

swapping produce significant noise in the image. Due to random selection of pixels, remov-

ing this noise is not possible during late stages of reconstruction [98]. To reduce the noise,

and speedup the reconstructions, biased pixel selection algorithms, e.g., DPN and interface

pixel swapping methods are studied. The primary purpose of biased pixel selection methods

is to refine the reconstructed image. Since each swap in the biased methods takes more time

than random swap due to additional computations, a coarsely reconstructed image using

random swapping is used as starting point, which is then refined using random, interfacial

and DPN based pixel swapping algorithms to save time. To compare the swapping methods,

the PEFC catalyst layer 2D image given in Fig. 4.1(d) is resized to 200 × 200 pixels, and

chosen as the reference structure. The coarse reconstruction shown in Fig. 4.16 is used as

the starting structure, which corresponds to an energy value of E = 5 × 10−3. The initial

structure is generated by random pixel swapping, which is terminated when most of the

pixels have formed the clusters, as can be seen in the image. These initial clusters form

the backbone of the image for further refinement and clustering of remaining pixels. All

the parameters are similar to the ones used in the previous section for the PEFC catalyst

layer (Table 4.3), and the threshold based method is used for energy minimization. The

initial factor p0 was reduced to 0.25 in order to reduce the initial energy threshold, which in

turn prevents unraveling (melting) of the initial structure. A static annealing schedule was

used, as a dynamic schedule can cause the reconstruction time to vary between reconstruc-

tions. The reconstructions were terminated when either of the three termination conditions

discussed in Section 3.2.3 was reached. The parameters for termination are given in Table 4.1.

Initially, a comparison between conventional random swapping, conventional interface

swapping, and conventional DPN swapping is done. The surface swapping is done by search-

ing for interfacial pixels at random. The DPN swapping implements the formulation pro-

posed by Tang et al. [98], as given in Eq. (3.14). Ten reconstructions were performed from

the initial image given in Fig. 4.16 with each method on a computer with an Intel(R)

Core(TM) i7-2600 CPU with a clock speed of 3.40 GHz. Figures 4.17(a) 4.17(b) and 4.17(c)

shows the reconstructions using random interfacial and DPN swapping, respectively. It can

be observed that surface and DPN method have significantly improved the reconstructed
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Figure 4.16 – A coarse reconstruction of PEFC catalyst layer using random swapping, used
as starting point with E= 4.99× 10−3.

structure compared to random swapping. Among the two biased methods, the reconstruc-

tions using interface and DPN based swapping have no noise. The improvements in the

reconstructions are also evident from their final energy. While the average final energy using

random swapping is (2.12±0.25)×10−6, which indicates that the structure did not converge

to the desired tolerance of 10−6, the average energy using interfacial and DPN swapping

reached the tolerance of 10−6. The average iterations (swaps) used to reach the final energy

were (2.13± 0.31)× 106, (7.14± 0.34)× 105, and (3.91± 0.08)× 105 for random, interfacial,

and DPN based reconstructions, respectively. On average, the interfacial swapping reduced

the number of required swaps by a factor of three, while the DPN based swapping reduced

them by a factor of five.

The energy evolution of the reconstructed structures was studied for each of the swap-

ping methods. Figure 4.18 shows the comparison of average energy evolution for the three

pixel swapping methods. It can be observed from Fig. 4.18, that the DPN based method

eliminates the noise at the beginning, as evident by the sharp decline in energy. Similarly,

the interfacial pixel swapping also reduces the energy faster than random swapping; however,

it is slower than the DPN based swapping. Due to the higher rate of energy convergence,

96



(a) Reconstruction using random swapping (b) Reconstruction using interfacial swapping

(c) Reconstruction using DPN base swapping

Figure 4.17 – Reconstructed images of PEFC catalyst layer using different swapping methods
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Figure 4.18 – Comparison of energy convergence for random, interfacial and DPN based
pixel swapping (Solid line represents average and shaded region represents 95%
confidence interval. Error margin is not visible, as it is negligible)

the DPN based method reaches the tolerance target in the least number of swaps followed

by the interfacial method. Actual reconstruction time for all the three cases was also ana-

lyzed. The average reconstruction time was 32.56± 4.15 minutes, 10.40± 0.48 minutes, and

5.76±0.20 minutes for random, interfacial, and DPN based swapping respectively. It can be

seen that compared to conventional random swapping, the interfacial swapping method re-

duced reconstruction time by a factor of approximately three, while the DPN based swapping

reduced it by a factor of six. The time reduction should be even higher for larger image sizes.

The DPN based method proposed by Tang et al. [98] improves the reconstruction accu-

racy, and reduces the reconstruction time significantly; however, the bias in the pixel selection

may cause the reconstructed structure to become unrealistic. Even though the reconstructed

image using DPN based swapping in Fig. 4.17(c) looks similar to the reference structure,

the behavior may be different for larger images. A detailed study on the effect of DPN

parameters on the reconstructed structure was carried out. The PEFC catalyst layer 2D

image given in Fig. 4.1(d) is resized to 600× 600 pixels using nearest neighbor interpolation

as described in Section 3.6.1. The large image size should make is easy to visually identify

any abnormalities in the reconstructions. The DPN set probabilities were calculated using
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Table 4.2 – Explanation of different DPN parameters used in DPN based pixel swapping

Parameter value Explanation
m = 0.4 The probability of highest DPN set getting selected for swap is 0.4
m not used The probability of all sets including the highest DPN are obtained

using Eq. (3.16)
a = 0 The pixels with zero DPN are not included in swapping
a = 1 The pixels with zero DPN are included in swapping
b = 0 The value of DPN has no bias
b = 0.5 to 2 The value of DPN has bias dependent on the value of b

the general formula given by Eq. (3.16). Since the images are large, they are reconstructed

using multigrid method. Due to the use of multigrid method, all the images have negligible

noise, even when a random swapping equivalent is implemented. More details about the

multigrid method will be discussed in upcoming section.

Three parameters are of critical importance in pixel selection using DPN based swapping:

1) the value of probability assigned to the maximum DPN set m, 2) the value of parameter

a in Eq. (3.16), which decides whether or not to include the set with zero DPN in pixel

swapping, and 3) the value of parameter b in Eq. (3.16), which increases or decreases the

bias given to the DPN value. Several variations of these parameters are used to study their

effect. The different used parameters and their explanation is given in Table 4.2.

Figure 4.19 shows some of the reconstructed 2D PEFC structures using different DPN

parameters. All the reconstructions use a maximum DPN set probability (m) of 0.4. It can

be seen that all the reconstructed structures bear no similarity to the reference image. Due

to excessive DPN minimization, all the surfaces have been flattened, resulting in unrealistic

images. Varying the parameters a and b has minimal affect on improving the structure.

Similar observations were made for a value of m = 0.2. For a reconstructed image to have all

the contours present in the reference image, some high DPN values must remain. Forcing a

value of m causes the algorithm to consecutively pick the highest DPN, regardless of the set

size, thereby minimizing the highest DPN in the image, and resulting in unrealistic images.

In the next study, no probability for the highest DPN set was specified. The probabilities
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(a) a = 0, b = 1 (b) a = 0, b = 10−5

(c) a = 1, b = 1 (d) a = 1, b = 2

Figure 4.19 – DPN based reconstructions of size 6002 using maximum set probability m = 0.4
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for all the sets were calculated using Eqs. (3.16) and (3.17). Figure 4.20 shows few of the

relevant reconstructed 2D PEFC structures using different DPN parameters. It can be

observed that all the reconstructions shows significant improvement compared to Fig. 4.19.

The reconstruction using conventional DPN parameters of a = 1, and b = 2 shown in Fig.

4.20(d) still shows some surface flattening. The best reconstructions were obtained using

DPN equivalent of random swapping, surface swapping, and DPN swapping with minor

DPN bias (a=0, b=0.5). The noise removal in random swapping is due to the multigrid

method, which is explained later in the thesis.

The three methods resulting in best case reconstructions were compared in terms of

accuracy and speed using the 200× 200 pixel size image of PEFC CL. Ten reconstructions

were performed from the initial image given in Fig. 4.16 using each method on a computer

with an Intel(R) Core(TM) i7-2600 CPU with a clock speed of 3.40 GHz. Since the images are

small, conventional single grid method is used. Figure 4.21 shows the reconstructed images

using random swapping implementation, and new DPN swapping. The images are similar to

the conventional implementation of the methods. The average energy of the final structure is

(2.01±0.29)×10−6 for the random equivalent (a = 1, b = 0), and the desired tolerance (10−6)

for surface equivalent (a = 0, b = 10−5), and new DPN method (a = 0, b = 0.5). These

values are similar to the ones observed in earlier comparison studies of conventional random,

surface and DPN methods. Average amount of time taken is 30.93±3.67 minutes, 11.2±0.59

minutes, and 9.90 ± 1.06 minutes for random equivalent, surface equivalent, and new DPN

method respectively. The reconstruction time for random and surface equivalent methods

is almost similar to their conventional implementation discussed earlier, thereby providing

a unified way of implementing all the swapping methods without significant changes in

computational performance. The reconstruction time using new DPN parameters (a=0,

b=0.5, no maximum probability) is almost two times higher than the conventional DPN

swapping proposed by Tang et al. [98]. The time increase is due to the reduced bias to high

DPN values, which results in lower DPN pixel getting swapped more frequently. The DPN

method with new parameters however is more accurate, results in realistic reconstructions,

and is still around 3-4 times faster than conventional random swapping.
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(a) a = 0, b = 10−5. Equivalent to surface swap-
ping

(b) a = 1, b = 0. Equivalent to random swapping

(c) a = 0, b = 0.5 (d) a = 1, b = 2

Figure 4.20 – DPN based reconstructions of size 6002 using no maximum set probability
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(a) a = 1, b = 0. Equivalent to random swapping (b) a = 0, b = 0.5

Figure 4.21 – PEFC CL reconstructions of size 2002 using different DPN implementations
and without any maximum set probability

4.3.4 Effect of Multigrid Method

The reconstructions so far have focused on small size 2D images; however, the speed ad-

vantages gained by DPN based method are not sufficient for reconstructing large 2D or 3D

images in practical time. The multigrid hierarchical annealing method is therefore imple-

mented to aim at achieving increased reconstruction speed. The 2D SEM image of a PEFC

CL shown in Fig. 4.1(d) was taken as the reference image for 2D reconstructions. The

image was resized to a size of 600× 600 pixels using nearest neighbor interpolation method

described in Section 3.6.1. This large size was chosen in order to clearly demonstrate the

advantages of multigrid method.

As discussed earlier, one of the major factors deciding the reconstruction time is the

time required to compute correlation functions. To understand the effect of image size on

correlation function computing time, a study on the computation time for different correla-

tion functions was performed using different image sizes. The maximum span (rmax) of the

correlation functions was kept fixed. Figure 4.22 shows the increase in computation time

as the image size increases. For a given span size, the computation time increases linearly

with image size for all correlation functions. The increment factor was found to be higher
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Figure 4.22 – Effect of image size on computation time for different correlation functions.
The time is normalized by computation time of chord length function for a size of
100 pixels

for two-point correlation function compared to lineal path and chord length functions. For

n times increase in image size, the computation time increased by 1.5n, 1.02n and 0.96n

times for S2(r), L(r) and C(r) respectively. It was also found that the absolute time taken

by S2(r) is higher than the time taken by L(r) and C(r) by a factor of the span (in this

study 50). During reconstruction, the computational time increment factor is expected to

be slightly higher, as the spans of the correlation functions also increase with image sizes.

It is evident that image size plays a critical role in reconstruction time. In the multigrid

method, the reconstruction sizes are decreased by introducing additional coarse grid levels.

The effect of grid levels was studied by performing reconstructions using different grid lev-

els. The general simulated annealing parameters are shown in Table 4.3. Again, a static

annealing schedule was used, as a dynamic schedule can cause the reconstruction time to

vary between reconstructions. All the reconstructions were performed using the new DPN

based pixel swapping (a = 0, b = 0.5, and no maximum probability). All the reconstructions

converged to the desired tolerance of 10−6. Table 4.4 shows the average reconstruction time
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Table 4.3 – General simulated annealing parameters used for multigrid reconstruction.

Parameter Value
Number of multigrid levels varies (1-4)
Maximum number of allowed failed Markov chains (X) 20
Minimum relative slope of energy curve required before termination 10−7

Target energy tolerance 10−6

Markov chain size 5000
Fixed energy threshold update factor (λ) 0.95
Boundary condition for reference function computing normal
Boundary condition for reconstructed function computing periodic
Initial energy factor (p0) 0.5
Initial iterations (N) 5000

Correlation functions used S
(v)
2 (r)

Cutoff energy for switching to DPN 5× 10−3

Initial energy factor (p0) after starting DPN 0.25
Number of processors 2

for different multigrid levels. The margins of error are reported for 10 samples with a 95%

confidence interval. The levels refer to the number of grid levels used for reconstruction, e.g.,

single grid means reconstruction on original size, two levels means reconstruction at a coarse

scale (300× 300) followed by reconstruction at the final scale (600× 600). Freeze1 refers to

instances where freezing was done using method 1, i.e, Eq. (3.19), whereas Freeze2 refers to

instances where freezing was done using method 2, i.e., Eq. (3.20).

The results in Table 4.4 clearly show that increasing grid levels reduces the reconstruc-

tion time; however, the incremental reduction in time is reduced with each additional grid

level. It is therefore expected that coarsening below a certain size by adding more grid levels

will not result in additional time savings. By introducing four grid levels, the reconstruction

time reduced by a factor of 15.6 for a Freeze2 based method. The reduction factor will be

dependent on the final reconstruction size, i.e., time advantages will be more prominent for

larger images than the smaller ones.

There are two primary reasons for the observed reduction in the reconstruction time with

more grid levels: a) The reduction in image size for coarser grid levels, and b) the smaller

number of pixels to permutate at higher sizes. As all the interior pixels are frozen at coarse
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Table 4.4 – Comparison of average reconstruction times for different multigrid reconstructions
(final image size 600 × 600). The margins of error are based on 10 trials and
represent a 95% confidence interval

Type of reconstruction Reconstruction time (Minutes) Average advantage (tsingle/t)
Single level 448.34± 1.8 1
Two levels (Freeze1) 45.46± 0.56 9.86
Three levels (Freeze1) 38.09± 1.55 11.77
Four levels (Freeze1) 35.38± 0.43 12.67
Two levels (Freeze2) 42.38± 0.39 10.57
Three levels (Freeze2) 30.53± 0.35 14.66
Four levels (Freeze2) 28.69± 0.24 15.62
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Figure 4.23 – Fraction of non frozen (permutating) pixels at each refinement level for multigrid
methods (Values show average over 10 trials. Margins of error are less than 1%
and therefore not plotted)
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Figure 4.24 – Comparison of energy evolution (convergence) for different grid level

scales, very few of the pixels need to be visited by the swapper at refined scales. This reduces

the total number of required swaps and hence the reconstruction time. Figure 4.23 shows

the fraction of non frozen pixels at each grid scale (ratio of image size at current scale to

the image size at finest scale). The fraction of permuting pixels at the finest scale is around

0.1− 0.2, thereby reducing the number of swaps required at the finest scale by a significant

amount compared to a conventional method, where all the pixels are permuting at the finest

scale. As expected, Freeze2 freezes more pixels at each stage compared to Freeze1, which

results in Freeze2 providing more time advantage compared to Freeze1.

The energy evolution for Freeze2 based method was also studied for different grid levels.

Figure 4.24 shows multiple energy evolutions during reconstruction for different number of

multigrid levels. The starting energy is lower when more coarse levels are introduced, as

it reduces the starting image size. Since the starting energy is lower, less iterations will be

required to converge to a given final tolerance. The number of iterations at the finest level

(towards the end of the reconstruction) become smaller with increasing grid levels due to

the pixel freezing. Since image size is one of the main contributing factors towards compu-

tational time, lesser iterations at higher sizes will result in significant time reduction.
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Figure 4.25 shows the evolution of the reconstructed image through all the grid levels

(indicated by s). The overall structure does not change significantly after the first grid level.

After each refinement, most of the changes occur at the interfaces, where more refinements

to the structure are added. It can be seen that no isolated pixels remain in the final recon-

struction, which is due to the use of DPN method, as well as due to multigrid method. Using

multigrid method, reconstructions using random swapping also result in noise free images,

as seen in Fig. 4.20(b). During multigrid annealing, all the segregated pixels at coarse scale

are not frozen at refined scales. Since the swapping is only done among non-frozen pixels,

the chances of a segregated pixel getting picked significantly increase.

As discussed earlier, the advantage of multigrid method is expected to be higher for larger

images. Table 4.5 shows the time advantage of a Freeze2 based multigrid method for different

reconstruction sizes. The speedup factor increases non-linearly with increase in image size.

The time advantage of multigrid methods therefore should be significant for large 2D images

(10002 or bigger), or for 3D images. On the other end, it is seen that, for an image size of

80 × 80 pixels, the multigrid method requires more time than a single grid. The multigrid

method is therefore not advantageous for very small image sizes, as the cost of intermediate

operations (e.g., coarsening and refinement) will become comparable to reconstruction time.

It can also be noticed that, for a single grid method, increasing image size by a factor of 7.5

increases the reconstruction time by almost a factor of 400, while in multigrid method, the

same size increment increases reconstruction time by only a factor of 20. This is due to pixel

freezing in multigrid method, which results in small number of pixel swaps getting performed

at large sizes. On the other hand, in a single grid method, all the swaps are performed at

the largest size.

The overall effect of image size on total reconstruction time was also studied. Table 4.6

shows the average computational time for reconstructing 2D CL images of different sizes using

S
(v)
2 (r). Freeze2 method with four grid levels was used for all image sizes. The overall time

for reconstruction increases non-linearly with increase in image size. The increase in time

can be divided into two parts: 1) Time increase due to additional cost of computing S
(v)
2 (r),

which increases by a factor of approximately 1.5 with image size, and 2) time increase due
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(a) Initial starting
image for s = 3

(b) Reconstructed
image for s = 3

(c) Reconstructed image
for s = 2

(d) Reconstructed image for s = 1

(e) Final reconstructed image (s = 0)

Figure 4.25 – Reconstructed images at different scales using the multigrid method. Images
are to scale
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Table 4.5 – Comparison of speedup factor using Freeze2 based multigrid method for different
image sizes. The margins of error are based on 10 trials and represent a 95%
confidence interval

Image size
Image size

increment factor
(L/80)

Time for single
grid (minutes)

Time for 4 pass
multigrid (min-
utes)

Speedup factor
(tsingle/t)

80× 80 1 1.26± 0.29 1.45± 0.25 0.87
160× 160 2 4.96± 0.35 3.36± 0.25 1.47
320× 320 4 34.61± 0.48 7.19± 0.2 4.81
600× 600 7.5 448.34± 1.8 28.69± 0.24 15.62

Table 4.6 – Reconstruction time for different final reconstructed image sizes. All reconstruc-
tions are performed using Freeze2 with 4 grid levels. The margins of error are based
on 10 trials and represent a 95% confidence interval

Image size
Image size increment

factor (L/80)
Reconstruction
time (Minutes)

Average time increment (t̄/t̄80)

80× 80 1 1.45± 0.25 1
160× 160 2 3.36± 0.25 2.31
240× 240 3 4.85± 0.20 3.34
320× 320 4 7.19± 0.20 4.95
400× 400 5 13.02± 0.41 8.79
600× 600 7.5 28.69± 0.24 19.78

to more pixel swaps (i.e., more iterations) at larger image sizes. It can be observed that the

time increment due to increase in swaps is higher than the time increment due to increase in

correlation function computing time. Due to the non-linear increase in reconstruction time,

reconstructing very large images (20002 pixels or bigger) may become impractical.

4.3.5 Effect of Correlation Functions on Structure

So far, it has been concluded that a combination of DPN swapping, and multigrid hier-

archy based method results in a fast and low tolerance energy minimization; however, the

minimization only optimized the two-point correlation function (i.e., only surface area) and

therefore, can not guarantee a good representation of the actual porous media structure.

Each correlation function contains specific stochastic information regarding the microstruc-

ture of the porous media. It is therefore imperative to assume that inclusion of additional

functions will improve the reconstructed structure. The time savings offered by the combina-

tion of DPN, and multigrid methods provide a feasible way to investigate multiple correlation
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functions in a practical amount of time. To enhance the structural accuracy of the recon-

structions, several combinations of correlation functions were used for reconstruction. When

using multiple correlation functions, the same weight is given to each correlation function. A

threshold energy based acceptance method, DPN based swapping (a=0, b=0.5, no maximum

probability), and multigrid hierarchy with three grid levels is used to reconstruct multiple

2D images of PEFC CL with a size of 200× 200 pixels. A tolerance of 10−6 is specified for

each correlation function. The rest of the parameters are the same as in Table 4.3. Using

the DPN based pixel swapping, all the reconstructions provide a noise free image, which are

qualitatively similar; therefore, a quantitative analysis of the different methods is necessary

for comparison.

For quantitative analysis of the accuracy, a comparison of correlation functions for ref-

erence and reconstructed geometries is done. Table 4.7 shows the L2 norm of the difference

of the different correlation functions (i.e., energy equivalent of that correlation function) for

the reconstructed image compared to reference correlation functions. The cells highlighted

in blue color indicate the function which is the optimization target, and green color indi-

cates a function which is not included in optimization but still improves. It can be observed

that the optimization algorithm is capable of minimizing the error associated with desired

correlation functions. Among all the correlation functions, it is seen that L(s)(r), C(s)(r)

and C(v)(r) do not optimize to the specified tolerance of 10−6, while S
(v)
2 (r), and L(v)(r) are

able to optimize. Since two-point cluster function is only valid for 3D images, it does not

get optimized using any combination. Optimizing both: solid, and void phase constrains the

optimization to a limited space, which makes reaching global optimum difficult, and may

result in sub-optimal solutions. The chord length function is less smooth compared to the

lineal path function and changes suddenly between different length scales. This may result in

a complex energy landscape which is difficult and more time consuming to solve compared

to lineal path functions. It was also observed that a few combinations resulted in added

advantage of error reduction for non-target functions, i.e., functions which were not included

in the optimization function. Among all the combinations, it can be seen that a combination

of S
(v)
2 (r), L(s)(r) and L(v)(r) results in the best optimization results. On the other hand,

adding chord length functions to two-point correlation function improves the optimization of

chord length functions; however, the two-point correlation function does not get optimized
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Table 4.7 – Comparison of discrepancy in different correlation functions for 2D PEFC CL reconstructions of size 200 × 200 pixels
using different correlation function combinations. Blue color indicates the function which is being optimized. Green color
indicates a function which is not included in optimization but still gets optimized. The margins of error are estimated
based on 10 trials and reflect a 95% confidence interval

L2 norms of error for the function

Functions used

S
(v)
2 (r) C

(v)
2 (r) L(s)(z) L(v)(z) C(s)(z) C(v)(z)

S
(v)
2 (r)

(9.91±0.05)
×10−7

(1.26±0.78)
×10−1

(1.20±0.21)
×10−2

(4.63±1.63)
×10−3

(3.78±0.35)
×10−3

(3.36±0.34)
×10−3

S
(v)
2 (r), L(s)(r)

(6.22±0.36)
×10−7

(2.00±1.20)
×10−1

(3.56±1.59)
×10−6

(4.14±1.17)
×10−3

(9.95±0.72)
×10−4

(3.02±0.23)
×10−3

S
(v)
2 (r), L(v)(r)

(9.91±0.03)
×10−7

(2.41±1.19)
×10−1

(1.51±0.35)
×10−2

(8.04±0.77)
×10−7

(3.44±0.37)
×10−3

(9.46±0.77)
×10−4

S
(v)
2 (r), C(s)(r)

(2.48±0.12)
×10−5

(7.00±3.51)
×10−2

(2.24±0.21)
×10−2

(8.47±1.76)
×10−3

(1.64±0.12)
×10−5

(2.87±0.17)
×10−2

S
(v)
2 (r), C(v)(r)

(1.50±0.13)
×10−5

(5.95±3.04)
×10−1

(1.51±0.28)
×10−2

(4.65±0.62)
×10−3

(1.88±0.10)
×10−2

(8.88±0.76)
×10−6

S
(v)
2 (r), L(s)(r), L(v)(r)

(8.50±0.69)
×10−7

(1.60±1.11)
×10−1

(3.08±0.45)
×10−6

(7.07±0.95)
×10−7

(1.05±0.04)
×10−3

(1.05±0.07)
×10−3

S
(v)
2 (r), C(s)(r), C(v)(r)

(4.98±0.43)
×10−5

(1.73±1.23)
×10−1

(1.51±0.32)
×10−3

(6.83±1.96)
×10−4

(6.15±0.40)
×10−5

(3.51±0.23)
×10−5
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to its tolerance. This suggests additional complexity associated with chord length functions.

These results however only indicate better statistical representation in a 2D geometry. The

results may be different for 3D geometries, and for transport properties.

The effect of using multiple correlation functions can also be visualized by comparing the

correlation functions for the reference and the reconstructed image. Figure 4.26 shows the

comparison of the correlation functions for a particular reconstruction using only the void

phase two point correlation function. It can be seen that S
(v)
2 (r) for the reconstructed im-

age, the optimized function, matches quite well with the reference image. However, all other

functions except L(v)(r) do not match, indicating an incomplete representation of the porous

media by the reconstructed image. Using a combination of S
(v)
2 (r), L(s)(r) and L(v)(r), it

can be seen in Fig. 4.27 that all the functions are properly matched. This indicates a better

representation of the original porous media structure, and therefore should be able to pro-

vide more accurate physical characteristics. Even though adding more correlation functions

improves the reconstruction accuracy, it increases computational time. For example, the av-

erage total time consumed for a S
(v)
2 (r) based reconstruction is 4.05± 0.26 minutes, whereas

the average total time for the S
(v)
2 (r), L(s)(r) and L(v)(r) based reconstruction is 22.96±3.61

minutes. The increased time with small 2D images is not a significant issue; however, for

large images, especially large 3D images, using multiple correlation functions becomes cum-

bersome. Due to this enhanced computational requirements, conventional random swapping,

and single grid based methods are not able to use multiple correlation functions. Therefore,

the time savings offered by DPN swapping, and multigrid hierarchy based method are critical

for developing an advance reconstruction algorithm capable of reconstructing porous media

with multiple correlation functions in practical amount of time.

4.4 Reconstruction of 3D Structures of Different Porous

Media

Once the two-dimensional reconstructions were completed and an optimal set of parameters

obtained, three-dimensional reconstruction of porous media was studied. Since the primary

aim of the reconstruction process is to provide a physical domain for studying physical pro-

cesses in the porous media, 3D reconstructions are critical to assess the performance of any
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Figure 4.26 – Comparison of correlation functions for reference and reconstructed 2D PEFC

catalyst layer image. The reconstruction was performed using S
(v)
2 (r) only
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Figure 4.27 – Comparison of correlation functions for reference and reconstructed 2D PEFC

catalyst layer image. The reconstruction was performed using S
(v)
2 (r), L(s)(r) and

L(v)(r)
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(a) 3D reconstruction of catalyst layer (b) 3D reconstruction of ceramic

Figure 4.28 – 3D reconstructions of porous media using only S
(v)
2 (r) (Blue shows solid phase

and red shows void phase)

reconstruction methodology. For this study, 3D reconstructions of two porous media: 1) a

fuel cell CL, and 2) a ceramic were performed. For the CL, the SEM image shown in Fig.

4.1(d) is used for 3D reconstructions as well. For 3D reconstructions of ceramic, the reference

image shown in Fig. 4.2 is used. The reason for using the 2D images instead of the available

3D reference images is that, the 2D images are larger than the 3D images, and provide a way

to understand the feasibility of reconstructing large 3D images with the new methodology.

Since the information in the third direction is not available, the reference correlation func-

tions in the z direction are obtained by averaging the x and y direction correlation functions

of the 2D reference images. Three grid levels are used for reconstructing a CL of size 3003

voxels, and a ceramic of size 3003 voxels. The new DPN method is used for swapping with

a = 0, and b = 0.5. Tolerance for the all the correlation functions used in the reconstruction

is specified as 10−6. Freeze2 is used for pixel freezing and all the reconstructions are done on

a PC with Intel E5-2690 CPU with clock speed of 3.00 GHz. Three processor cores are used

for all the 3D reconstructions. The rest of the parameters are the same as shown in Table 4.3.

First, 3D reconstructions were created by using only two-point correlation function. Fig-

ure 4.28(a) shows the reconstructed 3D image of CL and Fig. 4.28(b) shows reconstructed

3D image of the ceramic. The interior cross sections of the 3D structures are also shown to
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Figure 4.29 – Comparison of reference correlation functions between CL and ceramic

117



analyze the pore connectivity and internal features. Qualitatively, the reconstructed images

show similar features to their reference images with good connectivity of the pore and solid

phases. Five reconstructions of each media were performed using S
(v)
2 (r). The average time

taken for the reconstructions to converge to an energy of 10−6 was 22.67 ± 0.11 hours for

CL and 27.39 ± 0.03 hours for ceramic. The reason for difference in reconstruction times

is likely due to the difference between the correlation functions of the CL and ceramic as

shown in Fig. 4.29. This may result in more complex energy landscape for ceramic, and

therefore a higher computational time. Even though these reconstruction times may appear

large in absolute terms, it must be noted that single grid instances of these reconstructions

using conventional random swapping did not converge even after one and a half months. For

example, the energy for the ceramic went from 0.2 to approximately 3 × 10−4 in 35 days.

Given that the energy reduction is slower at later stages, it can be expected that a final

convergence to 10−6 would have taken at-least 30-40 additional days. Based on this, it can

be concluded that the DPN and multigrid method provided at least around 70–90 times

speedup.

After obtaining 3D reconstructions based on only two-point correlation functions, re-

constructions were performed using several correlation function combinations. Similar to

the 2D images, the combination of S
(v)
2 (r), L(v)(r) and L(s)(r) was found to result in the

best overall optimization of the structure. Figure 4.30(a) shows the reconstructed 3D im-

age of the CL, and Fig. 4.30(b) shows a reconstructed 3D image of the ceramic using this

combination. Qualitatively, the images are similar to the reference images and also to the

two-point correlation function based reconstructions shown in Fig. 4.28. Looking at the

internal cross sections of the reconstructed images, the phase connectivity seems to have

improved compared to only S
(v)
2 (r) based reconstructions. For quantitative comparison, the

discrepancy in all the correlation functions is computed and compared between the different

reconstructions. Table 4.8 shows the average discrepancy in all correlation functions for the

different reconstructions. It can be observed that, the addition of L(v)(r) and L(s)(r) not

only decreases the discrepancy of L(v)(r) and L(s)(r) as expected, but also decreases the

discrepancy of C(v)(r) and C(s)(r). Since a 2D reference image is used, the cluster functions

are still not properly characterized, resulting in high discrepancy of C
(v)
2 (r) and C

(s)
2 (r).
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Table 4.8 – Comparison of discrepancy in different correlation functions for 3D reconstructions using different correlation function
combinations. Blue color indicates the function which is being optimized. Green color indicates a function which is
not included in optimization but still gets optimized. The margins of error are based on 5 trials and represent a 95%
confidence interval.

Porous
Media

Functions used
Average L2 norms of error for the function

S
(v)
2 (r) C

(v)
2 (r) C

(s)
2 (r) L(s)(z) L(v)(z) C(s)(z) C(v)(z)

CL

S
(v)
2 (r) (1.00±0.00)

×10−6
(9.24±0.03) (6.76±0.06)

×10−2
2.96 ± 0.25)

×10−2
(2.89±0.22)

×10−3
(5.52±0.06)

×10−3
6.61± 0.04)

×10−3

S
(v)
2 (r), L(v)(r), L(s)(r) (5.71±0.17)

×10−7
(9.18±0.01) (6.77±0.02)

×10−2
(1.00±0.00)

×10−6
(5.36±0.11)

×10−7
(2.61±0.07)

×10−3
(2.86±0.07)

×10−3

Ceramic

S
(v)
2 (r) (1.00±0.00)

×10−6
(3.11±0.00) (1.37±0.00) (2.67±0.51)

×10−2
(9.80±1.01)

×10−3
(9.46±0.07)

×10−3
(1.19±0.00)

×10−2

S
(v)
2 (r), L(v)(r), L(s)(r) (6.57±0.11)

×10−7
(3.08±0.01) (1.37±0.00) (1.00±0.00)

×10−6
(8.68±0.44)

×10−7
(6.49±0.16)

×10−3
(7.52±0.12)

×10−3
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(a) 3D reconstruction of catalyst layer (b) 3D reconstruction of ceramic

Figure 4.30 – 3D reconstructions using S
(v)
2 (r), L(v)(r) and L(s)(r). Blue shows solid phase

and red shows void phase

Similar to the 2D images, the improvement in the reconstruction comes at the cost of

reconstruction time. While the S
(v)
2 (r) based reconstruction times for CL and ceramic were

22.67 ± 0.11 hours, and 27.39 ± 0.03 hours respectively, S
(v)
2 (r), L(v)(r) and L(s)(r) based

reconstruction times were 36.85 ± 0.41 hours for CL, and 47.19 ± 0.41 hours for ceramic.

As with the S
(v)
2 (r) based reconstructions, ceramic reconstructions take longer to perform

than CL. The addition of correlation functions increases the reconstruction time. There

are two primary reasons for the time increase. First, addition of extra correlation functions

requires extra computations after each swap, thereby increasing the total reconstruction

time. Second, the energy landscape with multiple correlation function may be more complex

than with a single correlation function, thereby requiring more time to exit local minima.

4.5 Summary of the Reconstruction Method

A detailed study of different reconstruction method variants have been performed. The

comparison studies between different methods result in the following conclusions:

• Probability based and threshold energy based energy minimization methods are similar

in accuracy and computational time.

• An adaptive annealing schedule marginally reduces the computational time compared
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to the static annealing schedule.

• The proposed unified pixel swapping method provides a generic method for pixel swap-

ping. The method reduces to random, surface or conventional DPN swapping by

changing the parameters.

• The conventional DPN method proposed by Tang et al. [98] significantly improves

reconstruction time; however, the high amount of bias to DPN values causes unrealistic

structures to be reconstructed

• The new proposed DPN based method results in significant improvements in both, re-

construction time and accuracy when compared to the conventional random swapping.

• DPN based method provides flexibility of implementation, and a way for freezing pixels

during multigrid refinements.

• The proposed multigrid hierarchical method results in significant computational time

reduction compared to the conventional method, which is dependent on the image size.

• Overall, the combination of DPN and multigrid method reduces reconstruction time by

a factor of around 100 compared to conventional single, and random swapping based

method.

• Addition of multiple correlation functions improves the statistical accuracy of the re-

constructions, making them a better representation of the reference media.

It is evident from the studies presented in this chapter that the use of the proposed

multigrid method results in significant amount of time savings compared to the conventional

single grid method. Table 4.9 shows a comparison of reconstruction times between the current

work and the limited information available in literature (Unfortunately very few articles in

the reconstruction literature report the computing specifications and times). It can be seen

that the proposed method outperforms all single grid methods [65, 66, 71, 76]. Among the

single grid methods, the one by Capek et al. [71] shows the most promising results due to

fine tuned simulated annealing parameters and an adaptive temperature schedule; however,

the proposed method outperforms it even when using all three correlation functions for

reconstruction.
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The multigrid methods by Alexander et al. [127] and Campaigne and Fieguth [49] seem

to outperform the proposed method in terms of reconstruction time. These method however

use either neighborhood matching [49] (instead of correlation function optimization), or a

higher energy tolerance [127]. The final energy in references [49, 127] is three order of mag-

nitude higher, i.e. ≥ 10−3, than current results. A higher tolerance in our method results in

a dramatic decrease in computational time. For example, the average reconstruction time

(S
(v)
2 (r) based) for reconstructing a 2D image of size 600×600 with a final energy of 1×10−3

was 0.1±0.006 hours, which is less than half of the time reported by Alexander et al. [127] for

a similar sized 2D image. When comparing to Campaigne and Fieguth [49], it must be noted

that the total time saving is due to the grayscale method, as well as neighborhood matching.

Comparing the reported time (0.1±0.006 hours) to the one for a similarly sized image using

the grayscale method by Campaigne and Fieguth [49], it can be seen that the combination

of grayscale method and neighborhood matching results in a speed advantage of around two

times. Based on this result, it appears that the major time advantage of Campaigne and

Fieguth [49]’s method over the proposed method is due to the use of neighborhood matching,

and not due to the use of the gray-scale based pixel freezing.

In summary, the proposed method based on multigrid hierarchical annealing with DPN

based pixel selection outperforms all conventional single grid methods, and the multigrid

method by Alexander et al. [127]. The grayscale method by Campaigne and Fieguth [49]

is faster than the proposed method due to the use of neighborhood matching; however,

the correlation function of the reconstruction does not match the reference image statistical

correlation functions very well (the L2 norm is approximately ∼ O(10−3)). Even though

the proposed method is able to perform medium size (200-600 pixel length) reconstructions

in practical amounts of time, it may still not be well suited for very large scale image

reconstructions (6003 and above). In most of the physical phenomena studies however, the

required sizes are in the medium range, as a large 3D mesh also causes computational issues

in simulating the physical phenomena. The current method therefore should be able to

reconstruct 3D simulation domains for most of the physical phenomena studies.
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Table 4.9 – Comparison of simulated annealing based reconstruction times in the literature to the proposed method. Acronyms
used are as follows, SG-single grid, MG-multigrid, PA-probability based selection, TA- threshold based selection, RND-
random swapping, INT-interfacial swapping, DPN-DPN based swapping, GSM-gray scale methods (multigrid) using
extra phase for freezing, Ef - final energy of the reconstructed structure. Neighborhood refers to the cases where local
neighborhood matching is carried out instead of correlation function optimization. ∗ represents the cases where Ef is
not known from the reference article. Approximate value is estimated from the available comparison of reference and
reconstructed correlation functions

Ref. System Specs. Correlation Functions Size Reconstruction
Time(Hours)

Remarks

Current work
Intel E5-2690
3.00 GHz

S
(v)
2 (r)

600× 600
0.5

Unified DPN (a=0,
b=0.5), MG, TA,
Ef = 10−6

S
(v)
2 (r) +L(v)(r) +L(s)(r) 5

S
(v)
2 (r)

3003
22-28

S
(v)
2 (r) +L(v)(r) +L(s)(r) 36-47

S
(v)
2 (r) + C(s)(r) 500× 500 220

[76] IBM RS/6000
C(v)(r) + C(s)(r) 500× 500 55

RND, SG, PA, Ef = 10−4

[71]
SGI Altix 350
1.5 GHz

S
(v)
2 (r) + L(v)(r) or

S
(v)
2 (r) + L(s)(r)

3203 160-400 INT, SG, PA, Ef ∼ O(10−7),
Adaptive temperature

[65]
Chebyshev super-
computer

S
(v)
2 (r) 200× 200 48-72 RND, SG, PA, Ef = 10−7

[66]
Intel E5-2690
3.00 GHz

S
(v)
2 (r) 200× 200 1.5

DPN, SG, TA, Ef = 10−6

S
(v)
2 (r) + L(v)(r)+L(s)(r) 200× 200 15

S
(v)
2 (r) + C(v)(r) 512× 512 0.25 RND,MG, PA, Ef = 0.483

[127] N/A
Neighborhood 8192× 8192 96 RND, MG, PA, Ef ∼ O(10−3)∗

[49] N/A Neighborhood
512× 512 0.04
8192× 8192 2-14

RND, GSM, PA, Ef ∼ O(10−3)∗
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Chapter 5

Mass Transport Analysis in Porous
Media

This chapter presents a preliminary study on applications of the developed reconstruction

methodology for real porous media reconstruction, transport estimation, and characteriza-

tion. It primarily analyzes mass transport in reconstructed and reference 3D structures, and

compares their properties. The aim of these studies is to find the effect of different correla-

tion functions on the transport properties of reconstructions. The analysis should identify

the required correlation functions for characterizing diffusion in the reconstructed structures.

Section 5.1 presents a theoretical overview of mass transport in porous media structures, and

provides the mathematical models for mass transport. Section 5.2 presents the details of the

simulation method used for transport analysis in reference and reconstructed images. Section

5.3 presents a representative elementary volume study for estimating required reconstruction

size for Ti foam media studied in this work. Section 5.4 presents the results of the transport

study on the porous media, and analyzes the effects of correlation functions on transport

estimations. Finally, Section 5.5 provides the summary of the transport analysis.

5.1 Mass Transport in Porous Media

Mass transport is of critical importance in several porous media applications. For example,

the performance of the polymer electrolyte fuel cells is primarily restricted by mass trans-

port limitations [8]. To improve mass transport, a detailed understanding of the relationship

between transport properties and porous media structure is required. Statistical correlation

functions provide an ideal way of characterizing and parametrizing the porous media struc-
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ture; however, the relationship between the correlation functions and transport properties is

not well understood. Apart from developing a fast and accurate reconstruction methodology,

another aim of this work is to explore the relationships between different correlation func-

tions and the transport properties of a random porous media. In particular, this preliminary

study is focused on finding the diffusion characterization abilities of different correlation

functions, i.e., how well can the correlation functions capture the diffusion coefficients.

To understand the transport characterization abilities of different correlation functions,

the transport properties of reconstructed images must be compared against reference image

properties. This process can be usually done in four steps: 1) Obtain a 3D reference im-

age, 2) obtain reference correlation functions, and reference transport properties, 3) obtain

stochastic reconstructions from the reference correlation functions, and 4) obtain transport

properties of the reconstructions and compare against reference properties. To understand

the effect of each correlation function on the transport properties, sensitivity of transport

properties must be analyzed against each relevant correlation function. Since only void

phase properties are analyzed, the effect of two-point correlation function, void phase lineal

path unction, and void phase chord length function on the transport properties needs to be

analyzed. For sensitivity studies, reconstructions can be performed using each correlation

function with different final tolerances. The effect of tolerance increase on transport prop-

erties can be then studied.

The sensitivity analysis is able to reveal the correlation function which has most impact

on transport property prediction. The best correlation function can be combined with other

correlation functions for reconstruction in order to improve statistical characterization, which

should also improve the transport characterization. Using these studies, once a correlation

function or a set of correlation functions has been found, which can describe the transport

properties of a media with high accuracy, it can be then used to characterize the transport

properties of the media. This in order paves the way for structure manipulation and trans-

port optimization by changing the correlation functions.

For understanding mass transport in porous media, three phenomena: molecular dif-

fusion, Knudsen diffusion and convection are most important [155]. Molecular diffusion
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accounts for the transport of chemical species under chemical potential gradients [156], con-

vection accounts for transport under pressure gradients [10], and Knudsen diffusion accounts

for slip flow at small length scales or in rarefied gases [157]. These phenomena can be stud-

ied either at pore level, or at macro scale; however, to account for the structural details of

the porous media, pore scale models must be used. For this work, pore scale simulations

of molecular diffusion, and Knudsen diffusion are performed. The convective flow was not

simulated, as the current model in use can only solve Navier-Stokes equations for small

geometries.

5.1.1 Molecular Diffusion

Molecular diffusion of chemical species in a mixture is governed by Maxwell-Stefan equation.

For isothermal diffusion, the equation is given as follows [10]:

∇xi =

n∑
j=1
j �=i

xiN
D
j − xjN

D
i

ctDij
, (5.1)

where xi and xj are molar fractions of species i and j respectively, ND
i and ND

j are molar

fluxes of species i and j respectively, ct is the total mixture concentration, Dij is the binary

diffusion coefficient. For a binary mixture with species 1, and 2, Eq. (5.1) can be written as:

∇x1 =
x1N

D
2 − x2N

D
1

ctD12
,

∇x2 =
x2N

D
1 − x1N

D
2

ctD12

,

(5.2)

where x1 + x2 = 1. For pure diffusion, i.e., in absence of convection, no net flow of mixture

occurs.

ND
t ≡ ND

1 +ND
2 = 0, (5.3)

where ND
t is the net molecular flux of the mixture. By using Eq. (5.3) in Eq. (5.2) and

rearranging, the following equation can be obtained for the species flux:

ND
1 ≡ −ND

2 = −D12ct∇x1 = −D12∇c1. (5.4)

Equation (5.4) is the well known Fick’s equation for binary diffusion [158].

The diffusion coefficient D12 is dependent on the species, temperature and pressure. The

following empirical relation is most commonly used to obtain the diffusivity of a mixture in
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Bar·cm2/s [159]:

pD12 =
0.00266T 1.5

√
M12σ2

12ΩD

, (5.5)

where p is the pressure in Bar, T is the temperature in K, M12 is the harmonic mean of

molecular weights of species 1 and 2 (in gram/mol), and σ12 is the arithmetic mean of the

Lennard-Jones parameter σ (in Å) for species 1 and 2. The collision integral ΩD is given as

follows [159]:

ΩD =
1.06036

T 0.1561
1

+
0.193

exp(0.47635T1)
+

1.03587

exp(1.52996T1)
+

1.76474

exp(3.89411T1)
, (5.6)

where T1 = T/ε12, and ε12 is the geometric mean of Lennard-Jones parameter ε (in K) for

species 1 and 2.

5.1.2 Knudsen Diffusion

For very small pore sizes or in rarefied gases, the mean free path of the gases is much

higher than the length scale of the system. In this case, the molecule wall-collisions will

be much higher compared to molecule-molecule interactions. Maxwell [160] showed that in

rarefied gases the imbalance in stresses results in a slip flow parallel to the wall. The same

phenomenon was observed by Knudsen during his experimentation of flow of rarefied gases

in capillaries. An empirical relationship was derived for the average molar flux in capillaries

as follows [10, 161]:

N = −
(
r20
8μ

〈P 〉+DK,0
1 + ck1
1 + ck2

)
1

RT

ΔP

L
, (5.7)

where 〈P 〉 is the average pressure over capillary, DK is the Knudsen diffusivity and ck1, and

ck2 are empirical parameters. Comparing these equations and matching the observations of

Knudsen to the Maxwell slip, the following equation is derived for Knudsen diffusion in the

capillaries [10, 162]:

ND
i = −DK,i∇ci, (5.8)

whereND
i is the molar Knudsen flux of species i, andDK,i is the Knudsen diffusion coefficient.

The Knudsen diffusion coefficient can be obtained using the following equation [10, 162]:

DK,i =
2

3
r0

√
8RT

πMi
, (5.9)

where r0 is the pore radius, and Mi is the molecular weight of species i.
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Table 5.1 – Applicability of different flow models in different flow regimes based on Knudsen
number [157]

Knudsen number Flow model
Kn < 0.001 Continuum region; Fick’s, Navier-Stokes valid with no-slip

boundary condition
0.001 < Kn < 0.1 Continuum-transition region; Continuum models valid only

with slip boundary condition
0.1 < Kn < 10 Transition region; Continuum models not valid, moment

equations or Burnett equation with slip boundary condition
Kn > 10 Free molecule flow; No continuum model valid

5.1.3 Transport in Transition Region

The extent of molecule-wall interactions over molecule-molecule interactions is given by

Knudsen number, which is given as follows [157]:

Kn =
λ

L
, (5.10)

where λ is the molecular mean free path (not to be confused with the annealing parame-

ter λ is chapter 4), and L is the characteristic length scale of the media. For large pore

sizes (large L), or for high pressures (small λ), the Knudsen number is low, which signifies

that the molecule-wall interactions are negligible. For small pore sizes, or for rarefied gases

however, the Knudsen number is high, signifying the increased importance of molecule-wall

interactions. Based on the Knudsen number, the transport can be characterized in different

domains. Table 5.1 shows the characterization of transport in different Knudsen regions.

In this work, the transport of an oxygen nitrogen mixture in Ti foam is studied. The

mean free paths at STP for oxygen and nitrogen are 63.3nm and 58.8nm, respectively [163].

The characteristic length for the Ti foam is around 10μm, resulting in a Knudsen number of

around 0.006. The Knudsen number suggests that, the transport may have some Knudsen

effects, which may need to be accounted for.

To combine the continuum model (Fick’s diffusion) with the slip flow (Knudsen diffusion),

a series network resistance model known as Bosanquet approximation is conventionally used

[164]. The molecular diffusion and Knudsen diffusion are assumed to be in series. Combining
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Eqns. (5.4), and (5.8), the following equation can be obtained for total diffusion:

Ntot
i = −Dtot

ij ∇ci, (5.11)

where Ntot
i is the total molar flux of species i, and Dtot

ij is the net binary diffusion coefficient

of species i in j, which is given as:

1

Dtot
ij

=
1

Dij
+

1

DK,i
(5.12)

5.2 Simulation Methodology

5.2.1 Governing Equation

For simulating mass transport in the porous media, the mass conservation equation is solved

for each species. In the absence of chemical reactions, the mass conservation for species i

can be given as:

∇ ·Ntot
i ≡ ∇ · (−Dtot

i ∇ci) = 0, (5.13)

To simulate net diffusion with both: molecular, and Knudsen diffusion, Eq. (5.11) is used

for flux estimation. In this study, pure molecular diffusion is also studied in order to be able

to decouple the effective Knudsen parameter from the net parameters. For pure molecular

diffusion simulation, Eq. (5.4) is used for flux estimation.

The simulations are performed for a constant temperature of 353K, and a constant total

pressure of 1atm (101325 Pa). The molecular diffusion coefficient is calculated using Eq.

(5.5). The Knudsen diffusion coefficient is calculated using Eq. (5.9). The pore sizes at each

location of the porous media are obtained by a sphere fitting method based on the distance

transform method [38, 39].

5.2.2 Domain Generation

Once a stack of reference images or the reconstructed images have been obtained, the perco-

lating void phase is identified in the 3D image. The cluster identification method developed

for computing two-point cluster functions is used for this purpose. The entire percolating

void volume is extracted using the cluster labels. An in-house Python based code (developed

by Mayank Sabharwal [165]) is used to generate a 3D discretization (mesh) of the extracted
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void phase. First order Lagrange elements are used for meshing. Each voxel of the 3D image

essentially become an element in the mesh. Since the governing equation is linear, further

grid refinements will not improve the results significantly. The net flow rate across one of

the meshed domains was estimated as 1.254× 10−8 mol/s for a mesh using 100× 100× 100

elements. The net flow rate across the same domain was found to be 1.239 × 10−8 mol/s

for a mesh using 200 × 200 × 200 elements, showing only a 1% change in estimations. The

meshing code also identifies the local pore radius for each element using a sphere fitting

method, which is based on the distance transform method [38, 39]. The pore radius is stored

for simulation purposes.

5.2.3 Simulation

The transport in the discretized domain is solved using a finite element based open source

software openFCST [166, 167]. Gaussian numerical integration is used to evaluate the weak

form of the governing equation. A direct solver MUMPS is used for solving the resulting

system of equations. Transport in each direction is simulated separately to estimate effec-

tive properties in each direction. For example, to estimate x−direction effective properties,

concentration is specified at inlet and outlet yz planes. The boundary conditions for each

case were specified as follows:

xO2
= xin

O2
on Γ1,

xO2
= xout

O2
on Γ2, and

N · n = 0 everywhere else,

(5.14)

where Γ1 is the inlet plane and Γ2 is the outlet plane opposite to the inlet plane. The

governing equations are solved with the boundary conditions, and the fluxes of the species

are calculated at each element. By integrating the fluxes over the outlet cross-section area,

the net flow rate of species (mol/s) can be obtained. From the net flow rate, the effective

diffusion coefficient in direction x can be obtained as follows:

Deff
i,x =

ṄxLx

Ayz(ci,in − ci,out)
, (5.15)

where Ṅx in the net flow rate (mol/s) in x direction, Lx is the length of the media in x direc-

tion, Ayz is the total cross section area of the yz plane, ci,in is the concentration of species i

at the inlet (x = 0), and ci,out is the concentration of species i at the outlet (x = Lx). The
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effective diffusion coefficients for other directions can be obtained in a similar way.

Using the pure molecular diffusion simulations, effective molecular diffusivity in all three

directions is obtained. Similarly, using the combined molecular and Knudsen diffusion sim-

ulations, effective total diffusivity in all three directions is obtained. Finally, the Bosanquet

equation is used for estimating the effective Knudsen diffusion coefficient as follows:

1

Dtot,eff
ij

=
1

DD,eff
ij

+
1

DK,eff
i

(5.16)

Using this methodology, both effective diffusion coefficients: molecular, and Knudsen can be

obtained.

5.3 Representative Size Estimation

For simulation of discretized domains, the size of the domain can affect its properties [68].

For the simulations results to be representative of the actual porous media, the domain size

must be sufficient for capturing the complete physical behavior. This is critical for per-

forming macro scale analysis and comparison on porous media, e.g., the simulations must

be performed on a representative size for the estimated properties to be comparable to

macro-scale properties measured by experiments. There are several ways of estimating the

representative size of a media. The characteristic lengths obtained for different porous media

in Chapter 4 provide one way of approximating representative size. The lengths estimated

using stochastic analysis of two-point correlation function are however small, and may not

results in correct transport estimations. Statistically, the size of an image should be larger

than the representative size of porous media features. The chord length function, and lineal

path function provide a good estimate of the largest features present in porous media. It can

be hypothesized that, for an image to be representative, its size must be sufficiently higher

than the maximum chord size in the porous media.

To ensure that a best possible size is chosen for reconstruction and simulation, several

parameters are used for estimating the representative size of the porous media used for trans-

port studies. Since 3D reference images are needed for comparison, the 3D micro-CT image

of a Ti foam is used in this study. Samples of different sizes are extracted from the refer-

ence images, and their porosity, specific surface area, and effective total diffusion coefficient
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(Dtot,eff ) in each direction are analyzed. The representative size is defined as the size after

which any increase in sample dimension does not affect its effective statistical and transport

properties. Since the thickness of Ti foam is small, the maximum size along the thickness

(y direction) is limited to 100 pixels; however, larger images can be extracted in x direction.

To ensure that representative size analysis was performed accurately, the properties were

evaluated for larger image sizes in the direction where more pixels are available.

Figure 5.1 shows the effect of image size on the properties for the Ti foam micro-CT

images. For image sizes up-to 100 pixels, the image is cubic. For larger sizes, since the

thickness is limited, the size is only increased in x direction, and is kept fixed at 100 pixels

in y and z directions. It can be seen that the statistical properties (porosity, and surface

area) are the same for all sizes above 100 pixels. Among the transport properties, it is

observed that the diffusion coefficient for z direction shows asymptotic behavior after a size

of 100 pixels, and therefore should be representative. The diffusion coefficients in other two

directions however, do not display any asymptotic behavior even at a size of 200 pixels.

Therefore, the transport properties in x and y directions from these samples can not be used

for macro scale analysis. Due to the limitation of reference image size, the reconstructions

can only be performed upto a size of 100 pixels. Even though the reconstructions of size 1003

pixels will not be representative of macro scale, the properties in z direction may be useful for

comparison against reference structure properties. Only z direction properties are therefore

used for further analysis. Since reconstruction size is limited to 100 pixels, representative

analysis for sizes larger than 200 pixels was not performed, as it does not serve any purpose

for current analysis.

5.4 Transport Studies in Ti Foam

To assess the sensitivity of transport properties towards correlation functions, multiple re-

constructions of Ti foam were performed with multiple correlation function combinations,

and different tolerances. Five samples of each porous media were reconstructed with different

correlation functions. A 3D reference image of size 1003 pixels was chosen. The resolution

of the image is 1.6μm/pixel in all the three directions. For comparison purposes, all the re-

constructions were also performed at a size of 1003 pixels. The average transport properties
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(a) Representative size analysis for a cubic image. The size for all the sides
is same corresponding to each data point in the plot
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(b) Representative size analysis for a non-cubic image. y and z dimensions
are 100 pixels each. x dimension is varied and indicated by data points on
the plot

Figure 5.1 – Effect of image size on normalized structural and transport properties of Ti foam
micro-CT image. All the properties are normalized by their value at size 200 pixels
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of each combination are then compared to the reference structure properties. The following

sections describe the transport studies in reference and reconstructed images in details.

5.4.1 Transport Analysis in Reference Images

Mass transport was analyzed in all the thirteen sub-sample of the reference image, in order

to see the variability within the media. As described in Section 5.2, first, the percolating

void phase from each of the reference images is extracted. The void phase is then meshed

using a first order Lagrange element. Figure 5.2 shows the discretized images of the void

phase for two sub-samples. Figure 5.2(a) shows the mesh for the sub-sample which was used

as a reference image for further reconstructions. The directions in all the meshes, and in all

upcoming solutions are the same as depicted in Fig. 5.2(a).

Once the images are discretized to generate a mesh, bulk diffusion and combined bulk

and Knudsen diffusion is simulated in the mesh. The simulation details and boundary

conditions are described in Section 5.2. To validate the accuracy of the implementation and

the solution, oxygen molar fraction over the domain in analyzed. Figure 5.3 shows the oxygen

distribution across the discretized domain shown in Fig. 5.2(a). The direction is as depicted

in Fig. 5.2(a). It can be seen that the boundary conditions are correctly implemented.

The concentration front propagates in almost a linear manner, which is expected in a pure

diffusion problem.

The simulation also yields the net flux of oxygen across the domain, which can be used

to estimate effective diffusion coefficients. Due to large pore sizes in Ti foam, Knudsen

effect is negligible, and does not affect the overall transport. For example, the bulk effective

diffusion coefficient for the reference image in z direction is 5.82 × 10−6m2/s, while the

effective Knudsen diffusion coefficient is 6.07 × 10−4m2/s. Due to almost two-orders of

magnitude difference, Knudsen diffusion is neglected in subsequent Ti foam analysis. The

average effective bulk diffusion coefficients in z direction for the thirteen Ti foam reference

images was obtained as (4.56 ± 0.40)× 10−6m2/s. For the reference image used for further

reconstructions, it was obtained as 5.82× 10−6m2/s.
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(a) A mesh obtained from a 3D image of Ti foam sub-sample. This sub-sample
was used as reference structure for reconstructions

(b) A mesh obtained from another sub-sample of 3D image of Ti foam

Figure 5.2 – The discretized void phase of different sub-samples of Ti foam 3D image

135



0.1

0.2

0.3

oxygen_molar_fraction

0.01

0.4

Figure 5.3 – Oxygen profile for diffusion along z direction in the discretized domain

5.4.2 Transport Analysis in Reconstructed Images

To see the effect of correlation functions on Ti foam reconstruction transport properties, one

of the thirteen sub-samples was taken as a reference image. Reconstructions were performed

using different correlation functions and combinations. The new DPN swapping method

with a = 0, and b = 0.5 is used in conjunction with two grid levels, and threshold based

energy minimization. Five reconstructions were performed using each correlation function

or combination. The rest of the parameters are the same as described in Table 4.3, unless

otherwise specified.

Sensitivity Analysis

First, the sensitivity of molecular diffusion to different correlation functions was studied.

Reconstructions were performed using only S
(v)
2 (r), only L(v)(r), and only C(v)(r). The final

tolerance indicates the level of optimization and accuracy of the reconstruction. For each cor-

relation function, effect of tolerance on diffusion coefficient was studied. Figure 5.4 shows the

concentration profile on the reconstructions using two-point correlation functions for differ-

ent energy tolerances. It can be seen that the quality of reconstructed images improves with

decreasing tolerance. Table 5.2 shows the effective diffusivities in z direction for the reference

and reconstructed images using different tolerances. For easier comparison, the percentage

difference between reference and reconstructed diffusivity (deviation) was plotted against

the energy tolerance. Figure 5.5 shows the deviation in diffusivity estimation compared to

reference image at different energy tolerances. It is observed that all the reconstructed im-
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Table 5.2 – Effect of tolerance on z direction effective bulk diffusivity for two-point correlation
function based reconstructions. The margins of error are estimated based on 5
samples and reflect a 95% confidence interval

Tolerance Deff
O2N2,z

× 10−6m2/s Average % deviation from reference

Reference image 5.82 0.00
100 3.54± 0.00 -39.18
10−1 5.10± 0.02 -13.76
10−2 5.69± 0.04 -12.42
10−3 5.44± 0.05 -2.26
10−4 5.44± 0.05 -6.60
10−5 5.08± 0.24 -12.65
10−6 4.79± 0.39 -17.69
10−7 5.20± 0.24 -10.67
10−8 5.22± 0.08 -10.29

ages underpredict diffusivity. For very coarse reconstructions (high tolerance), the diffusivity

is significantly underpredicted, as significant noise remains in the reconstructions, resulting

in low connectivity. Decreasing the tolerance improves the transport estimation in the be-

ginning; however, for tolerances lower than 10−3, the effective diffusivity does not change

significantly. Even though the porosity of the image is always the same, the diffusivity varies

with two-point correlation function. This shows that porosity alone is not sufficient for dif-

fusion characterization. For all the tolerances lower than 10−3, the diffusivity estimates are

within 17% of the reference value. This suggests that two-point correlation function is able

to characterize molecular diffusion closely, but not completely. Overall, the analysis suggests

that the molecular diffusivity has a relationship with two-point correlation function; how-

ever, it alone is not sufficient to characterize molecular diffusion.

To see whether molecular diffusion has dependence on other void phase correlation func-

tions, a similar tolerance sensitivity study was performed using void phase lineal path func-

tion. Figure 5.6 shows the concentration profile on the discretized geometries at different

tolerances using void phase lineal path function for reconstruction. The images are not sim-

ilar to the reference structure, as they show more jagged interfaces, and have less contours.

A decreasing tolerance seems to make the structure more unrealistic. Table 5.3 shows the

effective diffusivity in z direction for different tolerances of lineal path function. Unlike the

two-point correlation function, the void lineal path function could not be optimized below a
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(a) Concentration profile on a reconstruction using tolerance of 1.0
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(b) Concentration profile on a reconstruction using tolerance of 10−4
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(c) Concentration profile on a reconstruction using tolerance of 10−8

Figure 5.4 – Concentration profile on the discretized geometries of two-point correlation func-
tion based reconstructions with different tolerances
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Figure 5.5 – Variation of error in effective diffusivity with change in energy tolerance for
two-point correlation function based reconstructions

tolerance of approximately 2.45×10−5. This indicates that the lineal path function produces

a more complex energy landscape than two-point correlation function, which is difficult to

optimize. The table also shows the deviation in diffusivity of each reconstruction from ref-

erence image, and the L2 norm of error associated with the two-point correlation function.

The deviation of diffusivity from reference image is shown in Fig. 5.7.

It is observed that most of the lineal path function based reconstructions have the z di-

rection diffusivity within 20% of the reference image. The estimates are similar to two-point

correlation function based reconstructions in accuracy. This is likely due to the fact that,

optimizing lineal path function also results in partial optimization of two-point correlation

function, as can be seen in Table 5.3. Since the two-point correlation function is able to char-

acterize molecular diffusion, an indirect optimization of it should result in close estimations.

An independent verification of this fact is however difficult, as it will require optimization of

lineal path function without affecting the two-point correlation function. Overall, it is likely

that the lineal path function has an indirect relationship with molecular diffusion through

the two-point correlation function.
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(c) Concentration profile on a reconstruction using tolerance of 2.45× 10−5

Figure 5.6 – Concentration profiles on the discretized geometries of void phase lineal path
function based reconstructions with different tolerances
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Table 5.3 – Effect of tolerance on effective bulk diffusivity for void phase lineal path function
based reconstructions. The margins of error are estimated based on 5 samples and
reflect a 95% confidence interval

Tolerance Deff
O2N2,z

× 10−6m2/s
Average %

deviation from
reference

L2 norm of
S
(v)
2 (r)

Reference image 5.82 0.00
100 4.78± 0.00 -17.83 0.31± 0.00
10−1 5.50± 0.00 -5.42 0.09± 0.00
10−2 5.28± 0.01 -9.32 0.06± 0.00
10−3 4.64± 0.18 -20.25 0.05± 0.01
10−4 4.64± 0.62 -20.28 0.06± 0.04

2.45× 10−5 4.99± 0.07 -14.23 0.02± 0.00

10−410−310−210−1100

Tolerance

−25

−20

−15

−10

−5

0

%
D

ev
ia

ti
o
n

Figure 5.7 – Variation of error in effective diffusivity with change in energy tolerance for void
phase lineal path function based reconstructions
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Another tolerance sensitivity study was performed using void phase chord length function.

Figure 5.8 shows the concentration profile on the discretized geometries at different toler-

ances using void phase chord length function for reconstruction. The reconstructions bear

better resemblance to reference structure than the lineal path function based reconstruc-

tions; however, they are worse than two-point correlation function based reconstructions.

Table 5.4 shows the effective diffusivity in z direction for different tolerances of chord length

function, their deviation from reference, and the L2 norm of error associated with two-point

correlation function. The void phase chord length function could not be optimized below

a tolerance of approximately 5.12 × 10−5. This is likely due to the noisy nature of chord

length function, resulting in a complex energy landscape, where reaching a global optimum

is difficult. The deviation of diffusivity from reference image is shown in Fig. 5.9.

It is seen that all the void phase chord length function based reconstructions significantly

underpredict effective diffusivity, and improving the tolerance has no significant impact on

the diffusivity estimations. The overall predictions are significantly worse then two-point

correlation function based, or lineal path function based reconstructions. This suggests that

chord-length function may not have a direct relationship with molecular diffusion in porous

media. One of the reasons for consistent low estimation of diffusivity in chord length function

based reconstructions may be the non-optimization of two-point correlation function. The

L2 norms of two-point correlation function for current reconstructions are almost twice as

high as the L2 norms in lineal path function based reconstructions. This however, does not

account fully for the extent of diffusivity underprediction by chord length function based

reconstructions. Another possible reason is that, optimization of the chord length function

alone may be resulting in creating porous media structures with higher tortuosity.

Effect of Multiple Correlation Functions

The sensitivity analysis shows that the two-point correlation function is able to closely char-

acterize molecular diffusion in porous media; however, it is not sufficient for complete char-

acterization. A combination of other void phase correlation functions with two-point corre-

lation may improve estimate of molecular diffusivity. The two-point correlation function was

combined with void phase lineal path function, and chord length function to estimate the

effect on effective diffusivity estimations. Five reconstructions of size 1003 pixels were made
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Figure 5.8 – Concentration profiles on the discretized geometries of void phase chord length
function based reconstructions with different tolerances
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Table 5.4 – Effect of tolerance on effective bulk diffusivity for void phase chord length function
based reconstructions. The margins of error are estimated based on 5 samples and
reflect a 95% confidence interval

Tolerance Deff
O2N2,z

× 10−6m2/s
Average %

deviation from
reference

L2 norm of
S
(v)
2 (r)

Reference image 5.82 0.00
100 3.95± 0.00 -32.05 0.60± 0.00
10−1 3.38± 0.00 -41.98 0.20± 0.00
10−2 3.53± 0.02 -39.38 0.20± 0.00
10−3 2.85± 0.02 -51.04 0.15± 0.00
10−4 2.90± 0.23 -50.09 0.13± 0.01

5.12× 10−5 3.37± 0.08 -42.04 0.10± 0.00
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Figure 5.9 – Variation of error in effective diffusivity with change in energy tolerance for void
phase chord length function based reconstructions
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Table 5.5 – Comparison of discrepancy in different correlation functions for 3D Ti foam re-
constructions with different correlation functions. Blue color indicates the function
which is being optimized. Green color indicates a function which is not included
in optimization but still gets optimized. The margins of error are estimated based
on 5 samples and reflect a 95% confidence interval

L2 norms of error for the function

Functions used
S
(v)
2 (r) C

(v)
2 (r) L(v)(z) C(v)(z)

S
(v)
2 (r)

(1.00±0.00)
×10−6

(1.32±0.44)
×10−4

(2.52±1.74)
×10−3

(1.03±0.02)
×10−2

S
(v)
2 (r) + L(v)(r)

(3.03±0.12)
×10−8

(2.77±2.57)
×10−5

(2.42±0.00)
×10−5

(3.33±0.02)
×10−3

S
(v)
2 (r) + C(v)(r)

(5.18±0.04)
×10−5

(1.58±0.11)
×10−3

(3.66±0.08)
×10−2

(4.31±0.14)
×10−6

using each correlation function combination, and their transport properties were analyzed.

The energy tolerance for each correlation function was specified as 10−6.

Table 5.5 shows the L2 norms of different correlation functions for different combinations.

It can be seen that when using void phase lineal path function, the two-point correlation

function gets minimized to a low tolerance; however, when using void phase chord length

function, the final convergence is higher. This is due to the noisy nature of chord length

function, which makes a complex energy landscape, making it difficult to optimize. Using

lineal path function also results in partial improvement of chord length function, even when

it is not included in minimization.

Table 5.6 shows the effective molecular diffusion coefficient in z direction for the reference

and reconstructed Ti foam images. It is observed that, adding either void phase lineal path

function, or chord length function to two-point correlation function improves the diffusivity

by a small margin. Using the lineal path function results in a better estimate, as it also

indirectly improves chord length function as seen in Table 5.5. The chord length function

and lineal path function may be weakly related to molecular diffusion, thereby improving its

estimation; however, by themselves, they can not estimate diffusivity, as two-point correlation

function appears to be the key statistical function for characterizing molecular diffusion.
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Table 5.6 – Comparison of transport properties of reference and reconstructed Ti foam struc-
ture. The margins of error are estimated based on 5 samples and reflect a 95%
confidence interval

Type Deff
O2N2,z

× 10−6m2/s Average % deviation from reference

Reference image 5.82 0

S
(v)
2 (r) 4.79± 0.39 -17.69

S
(v)
2 (r) + L(v)(r) 5.08± 0.08 -12.71

S
(v)
2 (r) + C(v)(r) 4.90± 0.08 -15.8

Discussion

For all the reconstructions, it is observed that the effective molecular diffusivity estimations

are always lower than the reference value. The effective diffusivity of a porous media is given

as follows [10]:

Deff
ij =

ε

τ
Dij, (5.17)

where ε is the porosity, τ is the tortuosity, andDij is the bulk diffusivity. For all the optimized

reconstructions, the porosity is the same as the reference image. Since the bulk diffusivity is

specified as same in all the simulations, the underprediction in the reconstructions must be

due to difference in tortuosity between reference and reconstructed images. Conventionally,

the tortuosity is estimated from effective media approximations such as Bruggeman equation

[51]:

τ = ε−0.5. (5.18)

Since the effective diffusivity for the images is known from pore scale simulations, tortuosity

of each image can be estimated by adjusting Eq. (5.17) as follows:

τ = ε
Dij

Deff
ij

. (5.19)

Table 5.7 shows the tortuosity estimations for the reference and reconstructed images

discussed in Table 5.6. As expected, it can be seen that the tortuosity of the reconstructed

images is higher than the reference image, resulting in underprediction of effective diffusiv-

ity. The reason for consistently higher tortuosity may be due to exclusion of some critical

correlation function, or some phenomenon inherent to reconstruction process. It is usually

observed that the interfaces in reconstructions are less smooth than the reference image,

which may contribute in increasing tortuosity. Since the reconstructions are performed by
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Table 5.7 – Tortuosity estimations for reference and reconstructed images from pore scale
simulations, and their comparison with Bruggeman estimation

Type
Tortuosity estimation from pore

scale simulation
Tortuosity estimation from

Bruggeman equation
Reference image 1.814 1.61

S
(v)
2 (r) 2.2± 0.15 1.61

S
(v)
2 (r) + L(v)(r) 2.07± 0.03 1.61

S
(v)
2 (r) + C(v)(r) 2.15± 0.03 1.61

pixel swapping from a random initial image, the surfaces do not posses the same degree of

smoothness as the reference image. This phenomenon is inherent to pixel based reconstruc-

tion methods, and may be a contributing factor in underprediction of effective diffusivity. It

is also observed that Bruggeman correlation underpredicts tortuosity, which has also been

observed for other porous media in literature [168].

5.5 Summary

A preliminary analysis of molecular diffusion was performed in Ti foam. The analysis shows

that two-point correlation function is able to characterize effective molecular diffusivity of a

porous media. For accurate characterization of molecular diffusivity of reference structures,

the two-point correlation function should be optimized. The lineal path function also seems

to characterize the molecular diffusion to some extent, which is most likely due to its in-

direct relationship with two-point correlation function; however, reconstruction using only

lineal path function results in unrealistic structure of porous media. Addition of void phase

lineal path function or chord length function to two-point correlation function improves the

estimations by a marginal amount. Overall, the two-point correlation function appears to be

the key parameter for characterizing molecular diffusion. The two-point correlation function

based reconstructions are able to reproduce the reference structure diffusivity within 17%

error.

It must be noted that all these conclusions are based on a preliminary study of mass

transport in a single porous media; therefore, this study provides only limited information

on mass transport characterization. Since a single porous media was used, the obtained re-
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sults could be very specific to this case. A detailed study is therefore required, using multiple

porous media with different porosity, domain size, and pore features. The characterization

of molecular diffusivity also needs to be improved. There can be two reasons for the small

but consistent underestimation of diffusion: 1) some phenomena inherent to stochastic re-

constructions, which results in higher tortuosity, and lower diffusivity, or 2) some other

statistical information is required for complete characterization. Further detailed analysis of

molecular diffusion in different porous media structures is required to confirm this hypoth-

esis. Also, larger reconstructions need to be used for better representative estimation, and

more accurate contour reproduction.
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Chapter 6

Conclusions and Future Work

Advances in imaging techniques are providing new and interesting insights on the morphology

of porous materials; however, current understanding of key parameters affecting transport

processes in porous media remains limited. A mathematical representation of the porous me-

dia parameters is required for parametric characterization. Mathematical characterization of

the morphology provides a way to relate transport properties of a porous media to its struc-

tural properties. A methodology to generate microstructures with desired parametrization

functions is also necessary for transport simulations. By performing transport simulations on

the generated microstructures, the structural parameters can be correlated to the effective

transport properties, which provides a way for designing porous media with desired transport

performance.

6.1 Conclusions

The primary aim of this work was to develop a methodology to understand transport in

realistic geometries of porous media. Statistical analysis tools and stochastic reconstruction

methodology were required, which could generate high accuracy reconstructions with multi-

ple correlation functions at minimal computational cost. In order to achieve these goals, a

simulated annealing based reconstruction method was implemented using an in-house C++

based program. For improving the conventional simulated annealing based reconstruction

methodology, a detailed literature review was performed in order to identify potential new

techniques. Based on the shortcomings of the conventional method, new pixel swapping

methods, energy minimization methods, and annealing methods were identified. The pro-

gram enables the comparison of different techniques against each other in terms of recon-
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struction accuracy and computational speed.

A new threshold energy based acceptance criteria was implemented, which used threshold

energy instead of conventional probability based acceptance. The threshold based method

fractionally improves the speed of the reconstruction process compared to the conventional

probability based method. A dynamic annealing schedule was also implemented, resulting in

around 15% time saving compared to conventional static annealing for a 2002 pixels size im-

age. The time savings are dependent on image sizes, and can be even higher for larger images.

A unified pixel swapping algorithm was presented, which can implement random, surface

or biased pixel swapping by parameter modification. The conventional DPN based method

presented by Tang et al. [98] was found to result in unrealistic and flattened structures due

to the high amount of bias towards DPN values, a phenomenon, which so far has not been

noticed due to the small image sizes used in reconstructions. A detailed parameter opti-

mization of the DPN method resulted in an optimum set of parameters, which minimize the

reconstruction time while keeping the reconstructions realistic. The optimized method does

not impose maximum probability on highest DPN sets, and asserts a minor bias on DPN

value (b = 0.5). Overall, the new DPN method was found to reduce the reconstruction time

by approximately a factor of 3 compared to random swapping for 2002 pixels size image.

Higher time reductions are expected for larger images.

A multigrid hierarchical method was presented which uses the DPN information for

hierarchy implementation. The method performs reconstructions at small scales and consec-

utively refines them. The new method does not use gray pixels values for freezing. Instead,

DPN information is used to freeze pixels during refinement, which makes its implementation

easy, as DPN information is readily available. For a 6002 pixels size image, the new multigrid

method was found to reduce the reconstruction time by a factor of 15 compared to a single

grid method. For 3D reconstructions, the new DPN based multigrid method provides around

100 times speed reduction compared to conventional single grid and random swapping based

method. Reconstructions of medium 3D images (3003-6003) can now be performed in prac-

tical amount of time, enabling detailed study of physical process in the reconstructed 3D

structures.
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Due to the accuracy and high speed of the developed reconstruction method, using mul-

tiple correlation functions is now possible for reconstructions. A preliminary transport study

was performed on reference and reconstructed structures of Ti foam. The ability of different

correlation functions to characterize molecular diffusivity was studied. A sensitivity anal-

ysis showed that the two-point correlation function is a key parameter for characterizing

molecular diffusion in porous media. The effective diffusivity of the reconstructions shows

a small (approximately 15%), but consistent underprediction compared to reference struc-

ture diffusivity. Combining two-point correlation function with either void phase lineal path

function, or chord length function marginally improves the estimation, suggesting a possible

weak relation between molecular diffusion and these functions.

In summary, this thesis presents:

• Development of a stochastic reconstruction method based on biased pixel swapping

method

• Development of a multigrid hierarchical annealing method based on DPN information

• Implementations of new energy minimization and annealing methods

• A detailed study of effect of pixel bias on reconstructed structures

• Development of a unified pixel swapping algorithm

• Study of effect of correlation functions on structural and physical accuracy of recon-

structions

6.2 Future Work

This thesis has primarily focused on developing a reconstruction framework for porous media

studies. Due to time restrictions and implementation complexities, two important correlation

functions, two-point cluster function and pore size distribution function are not implemented

in the reconstruction methodology. It is observed from literature analysis, and current stud-

ies that these correlation functions may play an important role is improving the physical

accuracy of the reconstructed structures. Future work will therefore focus on implementing
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these correlation functions in the reconstruction program.

This work only performed a preliminary analysis on transport properties of the recon-

structed structures. Since the primary aim of the reconstruction method is to generate

domains for physical studies, future work will focus on use of the program for studying dif-

ferent porous media and their physical properties. The focus will specially be on studying

porous media with different porosity and structural features. The future studies will also

use larger images in order to be representative in all the directions.
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Appendix A

Computational Algorithms for
Correlation Function Estimation

This chapter presents computational algorithms for estimating different correlation functions

from digital images of random media. The algorithms follow C++ style of nomenclature and

indexing. For example, all the indices start at 0 instead of 1, and a variable followed by ++

represents an increment by 1. All the algorithms, except the one-point correlation function,

and cluster identification are presented for computing correlation functions for a pixel row

in x direction, and can be adjusted as per need for other directions. Once the correlation

functions for all the rows and columns are obtained, they can be averaged separately in each

direction. The y and z indices for the row of interest in the following sections are defined B

and C respectively.

A.1 Algorithm for Computing Volume Fraction

Algorithm A.1 presents the computational method for obtaining volume fraction of phase i

in a digital image.

A.2 Algorithm for Computing Two-point Correlation

Function

Algorithm A.2 is presented to compute two-point correlation function of a pixel row for

phase i in a digital image. Once the correlation function for a row is obtained, the average

x-direction two-point correlation function for entire image is obtained by summing the two-

point correlation function of all rows and dividing by the number of rows.
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Algorithm A.1 Algorithm for computing volume fraction for phase i

Read the image;  Let’s define the image as Ω
Read the x, y and z dimensions;  Let’s say W , H , and D
Npixels,i = 0;
for 0 ≤ a < W do

for 0 ≤ b < H do
for 0 ≤ c < D do

if Ω(a, b, c) == i then
Npixels,i++;

end if
end for

end for
end for
φi = Npixels,i/(WHD);

Algorithm A.2 Algorithm for computing two-point correlation function for phase i

Read the image;  Let’s define the image as Ω
Read the x, y and z dimensions;  Let’s say W , H , and D
Define rmax as the maximum r for which you want to compute the function;
Define an array E+[rmax] (size rmax), which keeps track of positive encounters at each r;
for 0 ≤ r ≤ rmax do

Lmax = W − r;
for 0 ≤ a < Lmax do

Pixel1 = Ω(a, B, C);
Pixel2 = Ω(a + r, B, C);
if Pixel1 == i and Pixel2 == i then

E+[r]++;
end if

end for

S
(i)
2 (r) = E+[r]/Lmax;

end for
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Algorithm A.3 Algorithm for computing lineal path function for phase i

Read the image;  Let’s define the image as Ω
Read the x, y and z dimensions;  Let’s say W , H , and D
Define rmax as the maximum r for which you want to compute the function;
Define L[rmax] as the array of lineal path function;
Define Lchord = 0;  Keeps track of the length of each encountered chord
Define pix= 0;  Keeps counter of the pixel index. Started at beginning of image
while pix ≤ W do  While image end not reached

if (pix < W ) and (Ω(pix, B, C)==i) then  While within image and in phase i
Lchord++;

else  Once a complete chord is encountered
for 0 ≤ r < Lchord do

if r < rmax then
L[r] = L[r] + (Lchord − r)/(W − r);

end if
end for
Lchord = 0;  Reset Lchord to 0 for next chord calculation

end if
pix++;  Increment pixel counter

end while

A.3 Algorithm for Computing Lineal Path Function

Algorithm A.3 is presented to compute lineal-path function of a pixel row for phase i in a

digital image. Once the correlation function for a row is obtained, the average x-direction

lineal path function for entire image is obtained by summing the lineal path function of all

rows and dividing by the number of rows.

A.4 Algorithm of computing Chord Length Function

Algorithm A.4 presents a method to compute chord length function of a pixel row for phase i

in a digital image. The average x-direction chord length function for entire image is obtained

by summing the chord encounters over all rows and normalizing them by total number of

chords. It must be noted that simply summing up chord length functions for each row, and

averaging by number of rows will result in incorrect estimation.
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Algorithm A.4 Algorithm for computing chord length function for phase i

Read the image;  Let’s define the image as Ω
Read the x, y and z dimensions;  Let’s say W , H , and D
Define rmax as the maximum r for which you want to compute the function;
Define C[rmax] as the array of chord length function;
Define nchords = 0;  Keeps track of number of chord encountered
Define Lchord = 0;  Keeps track of the length of each encountered chord
Define pix= 0;  Keeps counter of the pixel index. Started at beginning of image
while pix ≤ W do  While image end not reached

if (pix < W ) and (Ω(pix, B, C)==i) then  While within image and in phase i
Lchord++;

else  Once a complete chord is encountered
if r < rmax then

C[Lchord]++;  Increment the number of chords encountered of length Lchord

nchords++;  Increment the number of chords encountered
end if
Lchord = 0;  Reset Lchord to 0 for next chord calculation

end if
pix++;  Increment pixel counter

end while
Normalize C[r] by nchords to obtain chord length function;

A.5 Algorithm for Computing Two-point Cluster Func-

tion

This section presents the algorithm to compute the two-point cluster function for a random

media. Before computing the cluster function however, the cluster labels must be identified.

The following subsections present the algorithms for cluster identification and then cluster

function computing.

A.5.1 Cluster Identification

The overall algorithm for the cluster identification for phase i is given by Algorithm A.5

followed by Algorithm A.6 for final cluster number assignment. Six neighbor connectivity

is used to identify connected components in a 3D image. The neighbors reduce to four for

a 2D image. A cluster equivalence array, EQ, is used for storing cluster label equivalence

information. EQ[i] denotes the equivalent of label i, i.e., when two connected pixels with

different cluster numbers are found (and one of them is i), the other label and i are equivalent,

since they represent pixels belonging to same cluster. EQ[0] stores the maximum cluster label
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Figure A.1 – An illustration of the cluster equivalence array

assigned in the image. Figure A.1 shows an illustration of the cluster equivalence array. At

the indicated stage in the figure, 21 pixels have been identified as indicated by EQ[0]. If

more than a single labeled neighbor is found for the next pixel, a union find algorithm is

used to find a unique cluster label among connected clusters. The root equivalence label is

defined as the equivalent label whose equivalent is the same as the itself, i.e., when EQ[label]

= label. For example, in Fig. A.1, the equivalent of label 2 is 3; however, 3 is not the root,

as its equivalent is 5. Label 5 is its own equivalent, thereby making it the root equivalent

of labels 2, 3 and 5. If a consecutive pixel is found with neighbor labels 2 and 3, it will be

assigned a label of 5. Once all the pixels of the image are labeled, and all the equivalent

labels identified, a second pass is performed to merge all clusters with equivalent labels and

assign single unique labels. Algorithm A.6 describe the algorithm of the second pass.

A.5.2 Cluster Function Computation

Algorithm A.7 presents a method to compute two-point cluster function for phase i in a

digital image. The average x-direction two-point correlation function is obtained by summing

the two-point cluster function of all rows and dividing by the number of rows.
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Algorithm A.5 Algorithm for cluster identification

Read the image;  Let’s define the image as Ω
Read the x, y and z dimensions;  Let’s say W , H , and D
Initiate a label array (Label) to 0;  Contains the cluster label of each pixel
Define a cluster equivalence array EQ with just one element EQ[0];
for 0 ≤ a < W do

for 0 ≤ b < H do
for 0 ≤ c < D do

if Ω(a, b, c)==i then  If the pixel belongs to phase i
Find Label(a-1,b,c), Label(a,b-1,c), Label (a,b,c-1)1;
if Label(a-1,b,c)==0 and Label(a,b-1,c)==0 and Label (a,b,c-1)==0 then2

EQ[0]++;  Make new label
Generate a new element of array EQ;
EQ[EQ[0]] = EQ[0];  Label and equivalent label are same

else  If labeled neighbors exist
if Only one of the labels is non-zero, or if all labels are same then

Label(a,b,c)=non zero label;
else  If multiple labels exist in neighborhood

Find all the non-zero neighbor labels;
Find root label for all these labels;
Assign the maximum label to current pixel;
Update the equivalence labels of the neighbors with maximum label;

end if
end if

end if
end for

end for
end for

1Labels of the pixel above, to the left and on the front of current pixel. Since the image is being scanned
in one direction, it is assured that the label of pixels down, right and behind are not yet assigned, and are
at the default value of zero

2If none of the pixels in the neighborhood haven been assigned any label, i.e., none of them belong to
phase i
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Algorithm A.6 Algorithm for assigning final labels to clusters

for 0 ≤ a < W do
for 0 ≤ b < H do

for 0 ≤ c < D do
if Ω(a, b, c)==i then

tmp=Label(a,b,c);
root=Root label of tmp from EQ;
if No new label assigned for the root then

Assign a new label for the root;
Label(a,b,c)=new label;

else
Label(a,b,c)=new label for root label;

end if
end if

end for
end for

end for

Algorithm A.7 Algorithm for computing two-point cluster function for phase i

Read the image;  Let’s define the image as Ω
Read the image cluster labels;  Let’s define the label array as L
Read the x, y and z dimensions;  Let’s say W , H , and D
Define rmax as the maximum r for which you want to compute the function;
Define an array E+[rmax] (size rmax), which keeps track of positive encounters at each r;
for 0 ≤ r ≤ rmax do

Lmax = W − r;
for 0 ≤ a < Lmax do

Pixel1 = Ω(a, B, C);
Pixel2 = Ω(a + r, B, C);
Label1 = Label(a, B, C);
Label2 = Label(a+r, B, C);
if Pixel1 == i and Pixel2 == i and (Label1==Label2) then

E+[r]++;
end if

end for

C
(i)
2 (r) = E+[r]/Lmax;

end for
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Appendix B

Computational Algorithms for
Stochastic Reconstruction

B.1 Reference Image Synthesis

This section describes the reference image synthesis for a refinement scale s, from an image

of refinement scale s− 1. Algorithm B.1 presents the details of the computational program

for generating the image. The algorithm is designed to half the dimension of the image by

using a 2× 2× 2 pixels (2× 2 for 2D) averaging region for generating a new pixel.

B.2 Image Resizing Method

Algorithm B.2 presents the algorithm for resizing a 2D binary image. The algorithm can be

simply expanded to resize 3D images as well.

B.3 DPN Computation Methods

B.3.1 DPN Value Computation Algorithm

Algorithm B.3 shows the method for computing DPN values of the image. Two arrays,

DPNw and DPNb, of the same dimensions as the image are created. DPNw contains

the DPN information for white pixels, while DPNb contains the DPN information about

the black pixels. The Complete DPN information is computed at the beginning of the

reconstruction, and thereafter updated as per pixel swap. Once the DPNs of each pixel are

known, the DPN sets can be assembled for probability calculations. As the DPN values for

each pixel are known and stored, only the swapped pixels and their neighborhoods need to be
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Algorithm B.1 Algorithm for generating coarse reference image at scale s

Read the image at scale s− 1, Ωs−1;
Compute the void volume fraction φs−1

v of Ωs−1 using Algorithm A.1;
Read the x, y and z dimensions;  Let’s say W , H , and D
Initialize a new black image (pixel=0) of dimension W/2, H/2, and D/2 at scale s, Ωs;
procedure Assign pixel values

Initialize void pixels Pixv = 0;
Initialize undecided pixel collection;
for 0 ≤ a < W/2 do

for 0 ≤ b < H/2 do
for 0 ≤ c < D/2 do

procedure Find average pixel value from parent scale

Initialize total pixel value Pixt = 0;
for 0 ≤ i < 2 do

for 0 ≤ j < 2 do
for 0 ≤ j < 2 do

Pixt=Pixt+Ωs−1(2a + i, 2b+ j, 2c+ k);
end for

end for
end for

end procedure
Pixel average, Pixt=Pixt/8;
if (Pixt < 126.5) then

Ωs(a, b, c) = 0;
else if (Pixt > 126.5) then

Ωs(a, b, c) = 255;
Pixv++;

else
Add Ωs(a, b, c) to undecided collection;

end if
end for

end for
end for
Compute void fraction φs

v = Pixv/(WHD/8);
procedure Assign phases to undecided pixels

while (φs
v < φs−1

v ) do
Pick a random pixel from the undecided list;
Assign it the void phase, i.e., color 255;
Remove from list;
Pixv++;
Re-compute void fraction φs

v = Pixv/(WHD/8);
end while

end procedure
end procedure
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Algorithm B.2 Algorithm for resizing a binary image using nearest neighbor interpolation

Read the original image, Ω;
Read the x and y dimensions of original image;  Let’s say W and H
Read the x and y reconstruction dimensions;  Let’s say Wr and Hr

Define the resized image as Ωr;
scalex=W/Wr;
scaley=H/Hr;
for 0 ≤ i < Wr do

for 0 ≤ j < Hr do
nearestx=round(scalex × i);
nearesty=round(scaley × j);
Ωr(i, j) = Ω(nearestx, nearesty);

end for
end for

updated after a pixel swap. This saves considerable amount of computation time compared

to the method where the DPN information has to be completely recomputed after each swap.

B.4 DPN Set Assembling Algorithm

Algorithm B.4 presents the method for assembling the initial DPN sets for both phases.

The sets are assembled at the beginning of the reconstruction after the DPN values for each

pixel have been computed, and the arrays DPNw, and DPNb are obtained. The array is

assembled by scanning through the image, and assigning each pixel to its corresponding DPN

set based on its phase and DPN value.

B.5 DPN Set Updating

Algorithm B.5 presents the computational method for updating DPN sets after a pixel swap.

First, the old swapped pixels and their neighbors are removed from their corresponding sets.

Then the new DPN values for the pixels are calculated. Finally, the pixels are inserted in

the sets corresponding to their new DPN values. In this algorithm Setx[i] refers to the array

of pixels which are of phase x and have i number of DPNs.
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Algorithm B.3 Algorithm for calculating DPN values for the image

Read the image, Ω;
Read the x, y and z dimensions;  Let’s say W , H , and D
Define two arrays, DPNb (for black pixels), and DPNw (for white pixels);
Initialize DPNb and DPNw to zeros;
for 0 ≤ a < W do

for 0 ≤ b < H do
for 0 ≤ c < D do

procedure Compute number of different phase neighbors

Initialize dpn=0;
for (a− 1) ≤ i ≤ (a+ 1) do

for (b− 1) ≤ j ≤ (b+ 1) do
for (c− 1) ≤ k ≤ (c+ 1) do

if (Ω(i, j, k) 
= Ω(a, b, c)) then
dpn++;

end if
end for

end for
end for

end procedure
procedure Assign DPN value

if (Ω(a, b, c) == 0) then  If black pixel
DPNb(a, b, c) = dpn;

else  If white pixel
DPNw(a, b, c) = dpn;

end if
end procedure
Reset dpn =0 for next pixel;

end for
end for

end for
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Algorithm B.4 Algorithm for assembling initial DPN sets

Read the image, Ω;
Read the x, y and z dimensions;  Let’s say W , H , and D
Read the DPN arrays DPNb and DPNw;
Define two maps Setb, and Setw;
for 0 ≤ a < W do

for 0 ≤ b < H do
for 0 ≤ c < D do

if (Ω(a, b, c) == 0) then  If black pixel
dpn=DPNb(a, b, c);
Insert the coordinate pair (a,b,c) in Setb[dpn];

else  If white pixel
dpn=DPNw(a, b, c);
Insert the coordinate pair (a,b,c) in Setw[dpn];

end if
end for

end for
end for
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Algorithm B.5 Algorithm for updating the DPN sets for a swapped pixel and its neighbors

Read the image before swapping, Ωold;
Read the old DPN arrays DPNb,old and DPNw,old;
Define the swapped pixel locations as (x1, y1, z1), and (x2, y2, z2);
Remove the pixel and neighbors from set(x1, y1, z1);
Remove the pixel and neighbors from set(x2, y2, z2);
procedure Remove the pixel and neighbors from set(x,y,z)

for (x− 1) ≤ i ≤ (x+ 1) do
for (y − 1) ≤ j ≤ (y + 1) do

for (z − 1) ≤ k ≤ (z + 1) do
if (Ωold(i, j, k) == 0) then  Pixel is black

dpnold=DPNb,old(i, j, k);
Remove (i, j, k) from Setb[dpnold];

else  Pixel is white
dpnold=DPNw,old(i, j, k);
Remove (i, j, k) from Setw[dpnold];

end if
end for

end for
end for

end procedure
Read the updated image after swapping, Ωnew;
Read the updated DPN arrays DPNb,new and DPNw,new;
Add the pixel and neighbors to set(x1, y1, z1);
Add the pixel and neighbors to set(x2, y2, z2);
procedure Add the pixel and neighbors to set(x,y,z)

for (x− 1) ≤ i ≤ (x+ 1) do
for (y − 1) ≤ j ≤ (y + 1) do

for (z − 1) ≤ k ≤ (z + 1) do
if (Ωnew(i, j, k) == 0) then  Pixel is black

dpnnew=DPNb,new(i, j, k);
Add (i, j, k) to Setb[dpnnew];

else  Pixel is white
dpnnew=DPNw,new(i, j, k);
Add (i, j, k) to Setw[dpnnew];

end if
end for

end for
end for

end procedure
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