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Abstract

As researchers collect spatiotemporal population and genetic data in tandem,

models that connect demography and dispersal to genetics are increasingly

relevant. The dominant spatiotemporal model of invasion genetics is the

stepping-stone model which represents a gradual range expansion in which

individuals jump to uncolonized locations one step at a time. However, many

range expansions occur quickly as individuals disperse far from currently col-

onized regions. For these types of expansion, stepping-stone models are in-

appropriate. To more accurately reflect wider dispersal in many organisms,

we created kernel-based models of invasion genetics based on integrodiffer-
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ence equations. Classic theory relating to integrodifference equations sug-

gests that the speed of range expansions is a function of population growth

and dispersal. In our simulations, populations that expanded at the same

speed but with spread rates driven by dispersal retained more heterozygosity

along axes of expansion than range expansions with rates of spread that were

driven primarily by population growth. In addition, mutations that initially

occurred at the fronts of expanding population waves reached higher mean

abundances in waves driven by wider dispersal kernels than in waves trav-

eling at the same speed but driven by high demographic growth rates. In

our models based on random assortative mating, surfing alleles remained at

relatively low frequencies and surfed less often compared to previous results

based on stepping-stone simulations with asexual reproduction.
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1. Introduction1

Range expansions explain the wide spatial distribution of many dominant2

species. Unfortunately however, researchers often have only a snapshot of the3

extent of a recently expanded range rather than a complete spatiotemporal4

dataset. Genetic data have been used to elucidate processes underlying range5

expansions based on these snapshots, from our own planetary conquest (Ra-6

machandran et al., 2005) to the post-glacial expansion of grasshoppers (He-7

witt, 1999). Such insights, based on snapshots of genetic patterns on the land-8

scape, are predicated on models that connect the dynamics, movement and9

genetics of populations. Thus, spatiotemporal genetic models are increas-10
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ingly relevant as we accumulate large genetic databases. In this research we11

introduce integrodifference models as an alternative modeling framework in12

invasion genetics with a sound mathematical and ecological basis. Integrod-13

ifference equations are discrete-time, continuous-space models that apply to14

range expansions in which populations have synchronized growth and disper-15

sal stages (Neubert et al., 1995). Thus, they are useful for many herbaceous,16

invertebrate, and vertebrate species prone to invasion (Kot et al., 1996).17

18

Currently, invasion models with analytical solutions for the patterns of19

genetic diversity that they produce are limited to the island model (Wright,20

1951; Buerger and Akerman, 2011) and the stepping-stone model (Kimura21

and Weiss, 1964; Thibault et al., 2009; DeGiorgio et al., 2011; Slatkin and22

Excoffier, 2012). In the island model, subpopulations receive migrants at a23

constant rate from a single unchanging source population, whereas in the24

stepping-stone model, unoccupied demes are colonized sequentially one after25

another, and only receive migrants from adjacent subpopations (Kimura and26

Weiss, 1964; DeGiorgio et al., 2009, 2011). Many dispersing organisms how-27

ever, can move to locations beyond adjacent unoccupied areas (Levin et al.,28

2003) and dispersal is an important determinant of the speed of population29

expansion in space (Kot et al., 1996). For these reasons, neither the island30

nor the stepping-model in their original form is realistic in terms of popula-31

tion processes or dispersal (Le Corre and Kremer, 1998).32

33

Realism has been added in modeling studies in a variety of ways. The34

stepping-stone model has been amended to include more realism by incorpo-35
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rating logistic population growth (Austerlitz et al., 1997). The consequences36

of Allee effects have also been explored in haploid model systems using the37

reaction-diffusion framework (Hallatschek and Nelson, 2008; Roques et al.,38

2012). The impact of stepping-stone, diffusive, and leptokurtic dispersal on39

genetic patterns has been explored by Nichols and Hewitt (1994) and by40

Ibrahim et al. (1996) using simulations featuring logistic population growth.41

Other simulation studies investigated differences between the effect of strat-42

ified and diffusive dispersal on the genetic structure of maternally inherited43

genes (Le Corre et al., 1997) and on genetic diversity along axes of range44

expansion (Bialozyt et al., 2006).45

46

Results from simulations and simple models with analytical solutions un-47

derpin our understanding of how heterozygosity within populations decreases48

along axes of expansion (Austerlitz et al., 1997; Le Corre et al., 1997; Nichols49

and Hewitt, 1994). Heterozygosity reduction in expanding populations is a50

consequence of genetic drift that results from population bottlenecks at the51

front of range expansions (Austerlitz et al., 1997). Heterozygosity loss due52

to genetic drift can explain how genetic diversity is reduced at the front53

of expanding populations, but another mechanism called allele surfing (Ed-54

monds et al., 2004; Hallatschek et al., 2007; Hallatschek and Nelson, 2010;55

Lehe et al., 2012) may explain why certain alleles persist there. In allele56

surfing, alleles and mutations that occur near the front of population expan-57

sions are able to proliferate and acheive higher frequencies than expected in58

populations at equilibrium (Excoffier and Ray, 2008). Most studies of al-59

lele surfing have focused on stepping-stone models with maternally inherited60
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alleles, which is equivalent to asexual reproduction (Edmonds et al., 2004;61

Hallatschek et al., 2007; Hallatschek and Nelson, 2008; Lehe et al., 2012).62

Therefore, the importance of allele surfing in range expansions with other63

mating systems and wide dispersal has not been established.64

65

In part due to wide dispersal, many biological invasions expand quickly66

rather than at the evolutionary time scales typically associated with human67

expansion out of Africa (Ramachandran et al., 2005) or with the expansion68

of oak trees in Europe (Hewitt, 1999). Therefore ecologists are often inter-69

ested understanding processes that underly expansions that have occurred70

over ecological time scales of tens of years rather than over thousands of71

years. The speed at which populations expand in space is determined by72

demographic growth and dispersal (Kot et al., 1996) and therefore models73

that clearly connect invasion speeds to these population traits are essential74

when studying rapid range expansions. Using integrodifference equations as75

the basis for our investigation of the genetic signature of range expansions76

allowed us to compute theoretical invasion speeds from demographic growth77

and dispersal parameters using classic theory (Kot et al., 1996).78

79

The primary objective of this research was to study genetic diversity80

patterns arising in rapid range expansions. We therefore used integrodiffer-81

ence equation-based models to simulate over relatively short time periods82

with wide dispersal kernels that overlapped many demes. We compared the83

relative impacts of demographic growth and dispersal on the genetic signa-84

tures of range expansions spreading at the same speed, explored the genetic85
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consequences of varying diffusivity in expansions with identical demography,86

simulated anisotropic range expansions in two spatial dimensions, and com-87

pared heterozygosity patterns as well as the distribution of surfing alleles88

produced by simulated range expasions with a variety of dispersal kernels.89

As much of the previous work on allele surfing in range expansions has fo-90

cused on asexual or haploid model systems, we also contrasted results from91

simulations with random assortative mating to those with asexual mating.92

93

2. Models94

2.1. Population dynamics and spread models95

We consider a species with Beverton-Holt population dynamics (Bever-96

ton, 1957). The species reproduces synchronously before dispersing in space97

according to a dispersal kernel k(x− y), which describes the probability that98

an animal moves from location y to location x. The resulting integrodiffer-99

ence model is100

f(Nt(y)) =
R0(Nt(y))

1 + (R0 − 1)Nt(y)/K
, y ∈ Ω, (1a)

Nt+1(x) =

∫
Ω

k(x− y)f(Nt(y))dy, (1b)

where Nt(x) is the population density in space at time t, R0 is the geo-101

metric growth parameter and K is the carrying capacity. The infinite one-102

dimensional spatial domain is represented by Ω.103

104
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The dispersal kernel formulation is very flexible and a variety of dispersal105

behaviors can be modeled by changing it (Neubert et al., 1995). The assump-106

tion of spatially homogenous diffusive dispersal is embodied in the Gaussian107

dispersal kernel:108

k(x− y) =
1√

4πD
exp

(
−(x− y)2

4D

)
, (2)

where D is the diffusion constant. Note our diffusion constant represents Dt109

in standard formulations of random-walk-based diffusion models (Codling110

et al., 2008). This diffusion constant can be derived based on the proba-111

bility that an individual will jump to the right, to the left, or not move112

(Codling et al., 2008). Although it is tempting to use diffusion to describe113

all animal movement, dispersal in many species is better approximated using114

leptokurtic distributions (Walters et al., 2006; Skarpaas and Shea, 2007) in115

which individuals have a higher probability of dispersing short and long dis-116

tances than in a Gaussian kernel with the same variance. Therefore, we also117

simulate range expansions with double exponential (Laplace) and fat-tailed118

kernels, both of which are leptokurtic.119

120

The Laplace kernel, when derived based on a diffusive model with con-121

stant settling (Neubert et al., 1995), has the form122

k(x− y) =
1

2

√
a/Dexp

(
−
√
a/D|x− y|

)
, (3)

where D is the diffusion constant as before, a is the constant settling rate,123

and k(x− y) describes the distribution of settled individuals.124

125
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Fat-tailed dispersal kernels are those without exponentially bounded tails.126

Authors have argued based on simulation studies that longer-distance dis-127

persal is increasingly selected for over the course of invasions leading to the128

evolution of fat-tailed kernels (Phillips et al., 2008). A typical fat-tailed129

kernel comes from Wallace (1966) and Taylor (1978) who described the re-130

lationship between distance from a release point and density of fruit flies131

using132

k(x− y) =
α2

4
exp
(
− α

√
|x− y|

)
, (4)

where α determines the rate of decrease with the square root of distance.133

134

For kernels with moment-generating functions such as (2) and (3), the135

model equation (1) has traveling wave solutions that connect the zero equi-136

librium in front of the wave to to the carrying capacity equilibrium at the top137

of the wave (Kot et al., 1996). For range expansions that have these trav-138

eling wave solutions, we can compute the minimum traveling wave speed.139

Locally introduced populations that grow and spread according to the Gaus-140

sian kernel (2) have a minimum traveling wave speed c(R0, D) = 2
√
Dln(R0)141

(Kot et al., 1996). The expression for spreading speed for models with the142

Laplacian kernel (3) is more complicated and must be solved numerically by143

minimizing {(1/s)Ln(R0/(1 − s2D/a)} on the interval s ∈ (0,
√
a/D) (Kot144

et al., 1996). In this study, we sometimes standardize the traveling wave145

speed of simulations to investigate the relative impacts of dispersal and pop-146

ulation growth on the spatial genetics of range expansions traveling at the147

same speed.148
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149

Unlike integrodifference equations with kernels that have moment gen-150

erating functions, integrodifference equation models with fat-tailed kernels151

(4) give rise to continually accelerating invasions with asymptotically infinite152

spreading speeds (Kot et al., 1996). This means that spreading speeds in-153

crease over time—a phenomenon that may seem counter-intuitive, but which154

has been observed in natural invasions and attributed to the evolution of155

more frequent long-distance dispersal over the course of the invasion (Phillips156

et al., 2008).157

158

To illustrate the effect of anisotropic dispersal on heterozygosity, we con-159

struct a two-dimensional model similar to (1):160

f(Nt(y)) =
R0(Nt(y))

1 + (R0 − 1)Nt(y)/K
,y ∈ R2, (5a)

Nt+1(x) =

∫
R2

k(x− y)f(Nt(y))dy. (5b)

Here y is the vector (y1, y2) and k(x− y) is the kernel describing the proba-161

bility of moving from y to location x = (x1, x2):162

k(x− y) = (C)exp

(
−[(x1 − y1)2 + b(x2 − y2)2]

4D

)
, (6)

which is the two-dimensional analog of (2) except that diffusivity in the x1 di-163

rection is b times that in the x2 direction and C is the normalization constant164

that ensures that the density sums to one. If b 6= 1, in (6) the integrodiffer-165

ence equation model (5) produces populations expanding at different speeds166

in different directions.167
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2.2. Stochastic discretized model168

To simulate (1) on a computer, it is necessary to discretize in space,169

leading to a coupled map lattice:170

f(Nt(y)) =
R0(Nt(y))

1 + (R0 − 1)Nt(y)/K
, y ∈ Z, (7a)

Nt+1(x) =
u∑

y=1

k(x− y)f(Nt(y)), (7b)

where the spatial domain is now divided into u equal segments. The two-171

dimensional analog of (1) can be discretized in two-dimensional space in an172

analogous way.173

174

The birth component of (7a) given by f(Nt(y)) is a model for the den-175

sity of individuals within a given segment of the discretized domain. To176

accommodate the stochastic genetics model we need an integer number of177

individuals in each segement. Therefore, we assume that birth is a stochastic178

Poisson process within each segment with mean λt(y) = f(Nt(y)). Thus, the179

number of individuals in the next generation is a Poisson distributed random180

variable Xt+1/2(y) resulting in a stochastic coupled map lattice181

Xt+1/2(y) ∼ Poisson(λt(y) = f(Nt(y))), (8a)

Nt+1(x) =
u∑

y=1

k(x− y)Xt+1/2(y). (8b)

2.3. Genetics model182

We overlaid a genetics model based on a hermaphroditic diploid species183

in which we considered a single neutral biallelic locus on top of the stochastic184
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coupled map lattice. This is a standard genetics model used for investigating185

the dynamics of neutral alleles that avoids the more complicated mating dy-186

namics in two-sex systems. The current version of the model does not include187

random mutation. Instead, to investigate the fate of mutations that initially188

occur in the wave front, we introduced mutations at specific locations at189

the front of population expansions, and then followed their distribution over190

mutltiple stochastic simulations of our model (see section 3.4: Simulating191

surfing).192

193

The species mates according to the laws of random assortative mating194

meaning that any allele at a particular location is equally likely to pair with195

any other allele at the same location (Gillespie, 2004). Thus, to determine196

the genotype of each new individual we drew from a multinomial distribution:197

NAA,AB,BB
t+1/2 (y) ∼ Multinom(Xt+1/2(y),p) (9)

where NAA,AB,BB
t+1/2 (y) is the number of individuals in each genotye (AA, AB, or198

BB) at location y, Xt+1/2(y) is the Poisson random variable used in (8), and199

p is a vector of probabilities p = ([ρt(y)]2, 2[[ρt(y)][1 − [ρt(y)], [1 − [ρt(y)]2).200

The frequency of the A allele at time t and location y is ρt(y). Now, rather201

than redistributing individuals as in (8), the coupled map lattice redistributes202

individuals of each genotype as follows:203

Nt+1(x) =
u∑

y=1

k(x− y)NAA,AB,BB
t+1/2 (y). (10)

After individuals have been redistributed, a new ρt+1(x) is calculated:204
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ρt+1(x) =
NAA

t+1(x) + 0.5NAB
t+1(x)

NAA
t+1(x) +NAB

t+1(x) +NBB
t+1 (x)

, (11)

where NAA
t+1(x) is the number of individuals with the AA genotype at time205

t + 1 and location x. At the next iteration ρt+1(x) → ρt(y), which is a206

parameter in (9).207

3. Methods208

3.1. Simulation algorithm209

We simulated the coupled map lattice with overlayed genetics using a210

spatial domain running in increments of 800/214 from -400 to 400. Fast211

Fourier transforms facilitated the computation of the convolution in (10).212

The boundaries were reflecting but the size of the domain was chosen such213

that the spreading population was far from the domain limits over the en-214

tire simulation period. We ran 100 Monte Carlo simulations of each invasion215

model to generate mean population and heterozygote densities at each loca-216

tion in our spatial domain at each generation. Example R (R Core Team,217

2013) code for this simulation parallelized using the parallel package in R is218

provided in the online supplement.219

220

1. set-up221

(a) We started with a density of K (carrying capacity) individuals222

distributed around the center of the spatial domain and defined223

an initial allele frequency for these sub-populations (ρ0(xi)).224
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(b) We fast Fourier transformed (FFT) the dispersal kernel using the225

FFT function in the base installation of R (Singleton, 1969). Note226

this only needed to be done once and the same FFT transformed227

dispersal kernel was used in each iterative step described below.228

2. At each time iteration we simulated local population dynamics using229

(7a), then drew from a Poisson distribution as in (8a) to compute the230

number of new individuals at each location (Xt+1(y)).231

3. We then drew from a multinomial distribution with number of trials232

equal to Xt+1(y) and probability of drawing the A allele given by ρt(y)233

as in (9).234

4. We redistributed individuals of each genotype by convolving their dis-235

tribution on the landscape with the dispersal kernel. To do this we used236

the convolution theorem and multiplied the FFT for the dispersal ker-237

nel by the FFT of the distribution of each genotype before inverse fast238

Fourier transforming the result and shifting the convolution to center239

it.240

5. We then computed the new frequency of the A allele at each location241

using (11). This allele frequency was then used to initialize the next242

iteration of random mating (return to step 2).243

In all of our one-dimensional simulations we initialized the simulations by244

placing K = 40 individuals in the 3 central locations in the one-dimensional245

domain each with a starting frequency of the A allele of ρ = 0.5.246

3.2. Two-dimensional simulations247

Our simulation algorithm for our two-dimensional model was similar to248

the algorithm for our one-dimensional model except that due to increased249
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computational burden, we simulated on a domain running in increments of250

50/210 from -25 to 25 in both the x and y directions. We chose this do-251

main size such that the area of our grids, or equivalently the size of our252

demes, would be equal to the square of the length of our demes in the one-253

dimensional simulations. Thus heterozygosity patterns generated in our one254

dimensional simulations could be compared to marginals generated by our255

two-dimensional simulations in either the x or y direction.256

257

The simulation althorithm for two-dimensional range expansions is iden-258

tical to the one-dimensional simulation algorithm except we initialized our259

two-dimensional simulation by placing 9 K = 40 individuals in the 9 central260

grid squares in our square domain, each with a frequency of the A allele of261

ρ = 0.5.262

3.3. Comparing range expansion models263

To compare the effect of population growth to the effect of dispersal264

on heterozygosity within sub-populations, we standardized so that invasions265

were progressing at the same speed, but one simulation featured faster growth266

and the other, higher dispersal. However, to compare the genetic signature267

of Gaussian, Laplace and fat-tailed dispersal kernels, we were unable to stan-268

dardize in this way because the fat-tailed kernel leads to asymptotically in-269

finite spreading speeds (Kot et al., 1996). Therefore, we standardized the270

kernels by matching their second central moments (equivalent to variance).271

The second central moments of the Guassian, Laplace and fat-tailed kernels272

respectively are 2D, 2D/a, and 5!/α4 where the parameters are the same as273

defined in (2, 3, and 4).274
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275

We initially simulated range expansions for 50 generations with ker-276

nels with standardized second central moments. Due to different spreading277

speeds, the maximum extent of each simulated expansion varied. Most pop-278

ulation genetics data, however, consist of snapshots of genetic patterns over279

a given spatial area. For this reason it may sometimes be more relevant to280

compare patterns generated over the same spatial extent. We therefore also281

standardized the extent of simulated range expansions generated by the dif-282

ferent kernels by running the simulations for different numbers of generations.283

284

To compute the number of generations needed for the simulated pop-285

ulations to expand over similar spatial extents, we compared the distance286

covered by simulated range expansion featuring each of the dispersal kernels287

after 50 generations. After 50 generations the numerical solutions for sim-288

ulations featuring each kernel were traveling wave solutions. Therefore the289

inflection point of each wave profile (where the wave profile was equal to290

half the carrying capacity), could be used to determine relative expansion291

in the different simulations. Using these inflection points, we computed the292

difference between the distance travelled after 50 generations by simulations293

with the fat-tailed kernel and Gaussian and Laplace kernels. Then, knowing294

the theoretical spreading speeds of range expansions featuring Gaussian and295

Laplace kernels, we were able to compute how many additional generations296

were required for these slower range expansions to cover the same extent as297

the fat-tailed simulation. A table detailing the various standardizations used298

in the figures is provided in the Appendix.299
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3.4. Simulating surfing300

To simulate surfing we initialized populations as described in our simula-301

tion algorithm above with one difference. Instead of initializing with ρ = 0.5,302

we initialized with only B alleles (ρ = 0) such that all individuals were ho-303

mozygous for the B allele. We simulated range expansions with Gaussian and304

Laplace kernels until generation 11. By generation 11 all of our simulations305

had reached constant spreading speeds and had traveling wave solutions. We306

then introduced a single A allele at a location in the traveling wave where the307

population density was one individual per unit length of our spatial domain308

at the very front of our traveling wave. We were able to track the location309

of the descendents of this introduced allele over time. We simulated for only310

20 generations and we were therefore able to use a smaller spatial domain311

running from -100 to 100 divided into increments of 200/212. All other details312

were identical to those described above.313

314

For comparison, we also simulated surfing for an asexually reproduct-315

ing haploid organism by modifying our simulation algrithm as follows. In-316

stead of drawing from a multinomial distribution, we drew from a bino-317

mial distribution to determine the number of individuals in the next gen-318

eration that possessed the A allele: NA
t+1/2(y) = Binom(Xt+1/2(y), µt(y)),319

where µt(y) is the frequency of the A allele at location y given by µt+1(y) =320

NA
t+1(y)/(NA

t+1(y) + NB
t+1(y)). We then redistributed individuals possessing321

either the A or B allele using a convolution as before and computed the new322

frequency of the A allele at each location to proceed to the next interation323

of the model.324
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4. Calculations325

When simulating over only a few generations, as we have done for surfing,326

it is worthwhile to compare deterministic solutions for the prevalence of the327

surfing allele to stochastic simulations. To compute determinisitic solutions,328

we ignore genetic drift to arrive at the following system of integrodifference329

equations for a range expansion with individuals mating at random:330

f(Nt(y)) =
R0(Nt(y))

1 + (R0 − 1)Nt(y)/K
, y ∈ Ω, (12a)

AAt+1(x) =

∫
Ω

k(x− y)(ρt(y)2)f(Nt(y))dy, (12b)

ABt+1(x) =

∫
Ω

k(x− y)2ρt(y)(1− ρt(y))f(Nt(y))dy, (12c)

BBt+1(x) =

∫
Ω

k(x− y)(1− ρt(y))2f(Nt(y))dy, (12c)

Nt+1(x) = AAt+1(x) + ABt+1(x) +BBt+1(x), (12d)

ρt+1(x) =
2AAt+1(x) + ABt+1(x)

2Nt+1(x)
, (12e)

where AAt+1(x), ABt+1(x) and BBt+1(x) are the density of AA, AB and331

BB genotypes at location x and time t + 1. Deterministic solutions of this332

system can be compared to stochastic simulations to determine the impact333

of stochasticity on the location and abundance of rare alleles introduced at334

the wave front.335

336

Similarly for an asexual haploid population we can write the following337

system of equations338
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f(Nt(y)) =
R0(Nt(y))

1 + (R0 − 1)Nt(y)/K
, y ∈ Ω, (13a)

At+1(x) =

∫
Ω

k(x− y)µt(y)f(Nt(y))dy, (13b)

Bt+1(x) =

∫
Ω

k(x− y)(1− µt(y))f(Nt(y))dy, (13c)

Nt+1(x) = At+1(x) +Bt+1(x), (13d)

µt+1(x) = At+1(x)/(Nt+1(x)). (13e)

5. Results339

5.1. Gradients in expected heterozygosity340

During and after invasions simulated using our kernel-based models, het-341

erozgosity always decreased along the axis of expansion in the direction of342

spread. In invasions traveling at the same speed, heterozygosity declined343

more gradually in expansions driven by population growth than in expan-344

sions driven by dispersal (Fig. 1). Eventually, because no mutation restored345

genetic diversity in the population, the heterozygotes went extinct near the346

expansion front (Fig. 1f). As a result, mean heterozygosity at the front347

of the expansion monotonically approached zero, and in the long term, the348

spatial pattern of heterozygosity resembled a normal distribution (Fig. 1f).349

350

The leptokurtic double exponential kernel led to faster range expansions351

(Fig. 2b) and more heterozygosity retained along the axis of spread (Fig.352

2b and Fig. 2e) than did diffusive kernels with the same second moment353

(Fig. 2a and Fig. 2d). This effect was even stronger for leptokurtic fat-tailed354
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kernel (Fig. 2c and Fig. 2f).355

356

In expansions with the same growth parameters but different dispersal357

parameters the slower invaders dispersed less extensively and therefore, lost358

heterozygosity relatively quickly along the axis of expansion compared to359

an invasion in which organisms were more dispersive (Fig. 3). Similarly, in360

our anistropic dispersal simulations in two spatial dimensions, steeper de-361

clines in heterozygosity occurred in directions that corresponded to slower362

expansion rates (Fig. 4). Heterozygosity gradients along transects in our363

two-dimensional simulations were, however, much less pronounced than in364

comparable one-dimensional simulations (Fig. 4 versus Fig. 3).365

366

Regions that were visually separable due to differences in allele frequency367

were evident when plots of the frequency of the A allele were plotted after368

a single stochastic realization of a range expansion (Fig. 5). However, these369

patterns were smoothed over when we averaged over 100 Monte Carlo simu-370

lations and computed heterozygosity as we have done in the majority of our371

graphics.372

5.2. Mutant alleles373

Dispersal-dominated range expansions retained more mutant alleles than374

growth-dominated range expansions traveling at the same speed (Fig. 5) af-375

ter they were introduced in wave fronts. In dispersal-dominated expansions,376

introduced mutant alleles followed along with advacing waves for a few gener-377

ations as can be seen in Fig 5a)-c) in the right-skewed distribution of mutant378

alleles. Thus, mutants that initially occurred in waves driven by dispersal379
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kernels with larger diffusion constants are able to persist in the wave longer380

(Fig. 5a)-c)) than mutants that initially occurred in waves driven by popu-381

lation growth (Fig. 5e)-f)). Note that even in the simulation experiment in382

which the mutant allele persisted much longer (Fig. 5a)-c)), its maximum383

frequency at any location was much less than the frequency at which it was384

originally introduced in the population (ρ = 1/2).385

386

In 100 Monte Carlo simulations of the range expansion shown if Fig. 5c),387

surfers succesfully remained in the wave front in only approximately 1-2%388

of simulations (Fig. 7). Thus, if the success of surfers is based on their389

ability to propagate in the wave front, surfing success was exceedingly low390

in kernel-based range expansions featuring random assortative mating and391

wide dispersal kernels. Even in the simulation which resulted in a surfing392

allele keeping up with the wave front (Fig. 7), the maximum frequency of393

the mutant allele was less than 0.05.394

395

Rare alleles occuring at the front of traveling waves of asexually repro-396

ducing organisms increase more than in organisms reproducing by random397

assortative mating (Fig. 8a) even when the mutant initially occurs further398

behind the front of the wave such that the initial frequency of the mutant is399

0.5 as in the diploid surfing simulations (Fig. 8b).400

401

In both the random assortative mating and the asexual surfing simula-402

tions, the mean spatial distribution of mutant alleles at any time was very403

well described by deterministic solutions of equations (12 and 13 respectively)404
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(Fig. 8a)&b)). Thus, cases in which the mutant allele surfed to frequencies405

above those predicted by the deterministic integrodifference equation were406

balanced by cases in which the mutant allele decreased to frequencies below407

those predicted by the deterministic model leading to the concordance be-408

tween the predictions of the deterministic model and the expected density of409

mutant alleles at any location.410

6. Discussion411

Population growth and dispersal are important determinants of the speed412

of traveling waves in integrodifference models of range expansions. In our413

simulations, fast range expansions resulted in higher heterozygosity reten-414

tion along the axis of spread than slow range expansions. The amount of415

heterozygosity retained depended not only on the speed of expansion, but416

also on whether the spread rate was primarily dispersal driven or growth417

driven. Population growth and dispersal were also important determinants418

of the eventual abundance of mutant alleles that originated in the wave front.419

Dispersal-dominated range expansions traveling at the same speed as growth-420

dominated range expansions had higher mean abundances of mutant alleles421

at any time after they were introduced. Mean abundances of mutant alleles422

must be distuinguished from rare surfing alleles that are able to remain in423

the population wave. For these surfing alleles, we found that in expanding424

populations with genetic recombination and kernel-based redistibution of in-425

dividuals, the frequency of surfing alleles in the wave front was much lower426

than surfing results reported for stepping-stone models with asexual repro-427

duction.428
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429

The shape of the dispersal kernel underlying population range expansions430

changes both the invasion speed and the rate of heterozygosity loss along the431

axis of range expansion. Gaussian redistribution kernels with larger dif-432

fusion terms (larger variance) resulted in slower heterozygosity loss as the433

range expansion progressed than narrower Gaussian kernels even when inva-434

sions were traveling the same speed. Because leptokurtic dispersal kernels435

permit demes further behind the expansion front to contribute more genetic436

material to demes located at the wave front, range expansions with the same437

growth parameters and leptokurtic kernels resulted in higher heterozygosity438

retention than diffusive kernels with the same variance. As demes behind the439

wave-front are generally more heterozygous, leptokurtic kernels enable better440

mixing in pushed population waves, thereby reducing heterozygosity decay.441

Dispersal in many plants and insects is leptokurtic with dispersal character-442

istics resembling those in our simulations (Kot et al., 1996; Walters et al.,443

2006; Skarpaas and Shea, 2007). Consequently, when species with leptokurtic444

dispersal expand their ranges, we expect to see little loss of heterozygosity—445

especially when range expansions are sudden.446

447

Range expansion with leptokurtic kernels produced gradually decreasing448

heterozygosity suggesting a smooth pattern in the distribution of genotypes449

on the landscape. This finding contrasts the findings of Ibrahim et al. (1996)450

whose simulation results suggested that leptokurtic kernels led to pockets of451

similar genotypes on the landscape. Differences between our findings and452

those of Ibrahim et al. (1996) are likely due to our use of Monte Carlo tech-453
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niques to remove variability from overall trends. Examining a few outcomes454

of stochastic simulations as Ibrahim et al. (1996) have done reveals trends455

that are the result of stochastic interactions whereas Monte Carlo approaches456

smooth over the stochasticity and reveal the deterministic drivers of overall457

patterns. In addition, stochasticity is slightly different in our models than in458

those of Ibrahim et al. (1996). In their models, whether or not individuals459

leave their current demes is also random, and individuals had a relatively460

low probability of dispersing (0.05), whereas in our models all individuals461

dispersed according to the deterministic dispersal kernel. Consequently, our462

models are likely more representative of broad trends in highly dispersive463

species while the models of Ibrahim et al. (1996) are likely more representi-464

tive of fine scale patterns generated by less vagile species.465

466

Many organisms disperse asymmetrically in space (Gammon and Mau-467

rer, 2002; Munoz et al., 2004; Austerlitz et al., 2007; Morin et al., 2009) and468

therefore, their populations expand faster in some directions than in others.469

This occurs naturally when organisms are dispersing outwards from a port470

of entry or within a wind field. Mountain pine beetles (Dendroctonus pon-471

derosae Hopkins) in western Canada provide a good example of anisotropic472

expansion because they are undergoing a slow post-glacial range expansion473

to the North while rapidly invading eastward (Samarasekera et al., 2012).474

In our two-dimensional simulations, we found that heterozygosity retention475

was high in directions of faster range expansion relative to heterozygosity476

retention in directions of slower spread. Therefore, by sampling heterozy-477

gosity along transects, researchers may be able to infer the directions of478
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fastest and slowest spread. Our findings suggest, however, that gradients479

in two-dimensional range expansions are much more subtle in the direction480

of spread, than in one dimensional range expansions. This is largely be-481

cause a dispersal kernel with a given variance can lead to gene flow between482

many more demes in two-dimensional simulations than in one-dimensional483

simulations. Thus, our two-dimensional results reaffirm that deme intercon-484

nectedness through dispersal is an important determinant of genetic diversity485

in expanding populations. In real populations, deme interconnectedness is486

likely impacted by factors such as landscape heterogeneity, the presence of487

movement corridors, and the size of the smallest habitable patch of land for488

a subpopulation.489

490

Heterozygosity gradients may be obscured in empirical data due to sec-491

toring. The sectoring phenomenon, in which sectors of a spatial domain492

are dominated by different genotypes in the absence of selection, has been493

observed in petri-dish experiments of spreading bacteria as well as in two-494

dimensional simulations (Hallatschek et al., 2007; Hallatschek and Nelson,495

2010). Sectoring can lead to stronger changes in allelic distribution along496

transects perpendicular to axes of expansion than in the direction of expan-497

sion (Francois et al., 2010). Because we used Monte Carlo simulations to498

average over random changes in allelic frequency from one simulation to an-499

other, these sectoring patterns were not evident in our plots of simulation500

averages. However, they became evident when we plotted allelic distribution501

after a single stochastic run of our two-dimensional model. Therefore, to de-502

tect heterozygosity gradients along axes of range expansion in the presence of503
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these stronger perpendicular gradients in allelic composition, researchers will504

need to average heterozygosity across many independently assorting loci,505

such as non-linked single neucleotide polymorphisms to remove stochastic506

sectoring patterns that will occur at any particular locus. Averaging over507

multiple independent loci in empirical data should yield similar results to508

averaging over multiple stochastic simulations as we have done.509

510

Mutations in organisms that reproduce according to the laws of random511

mating were much less likely to reach frequencies higher than five percent512

than in simulations of range expansions in asexually reproducing organisms.513

Klopfstein et al. (2006) found that in 60% of new mutations occuring in the514

wave front of a simulation with similar maximum deme sizes (K = 50), mu-515

tants increased to levels of 5–50% whereas we found that only 1–2% of new516

mutations reached a frequency near 5% or higher. Stochastic birth processes517

in combination with kernels that widely distributed mutant alleles in our518

simulations resulted in low probabilities that a mutant allele would occur at519

levels high enough for it to flourish. To a lesser extent, this effect may have520

been observed in simulations reported by Klopfstein et al. (2006) who found521

that increased migration between demes decreased the prevalence of surfing522

mutant alleles. Our simulations imitate a highly connected and highly vagile523

species. In such systems, allele surfing seems to be less influential than in524

systems with narrow dispersal and asexual reproduction.525

526

Distinguishing allele surfing from selection in empirical data remains diffi-527

cult because allele surfing may generate false signals of selection. Our findings528
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suggest that in genetic data arising from organisms that mate sexually and529

disperse widely, allele surfing should be much less prevalent than in asexually530

producing organisms with very localized dispersal. Therefore, in these types531

of organisms, researchers can be more confident in selection results based on532

outlier detection even when both selection and surfing are possible. Posi-533

tive selection, however, may enable rare alleles to surf where they otherwise534

would not, leading to interactive effects and further confusion. Surfing in535

combination with selection has been investaged in simulation studies (Travis536

et al., 2007; Hallatschek and Nelson, 2010).537

538

It is important to distinguish between the rare occurence of surfers that539

remain in the wave front and the overall distribution of mutant alleles after540

they occur at the front of range expansions. The latter can be represented541

using distributions that describe the mean behaviour of mutant alleles in542

the population. In our simulations, distributions of mutant alleles at any543

time after they were introduced in the population wave were very well ap-544

proximated using determinisitic solutions of our integrodifference equation545

models. Therefore, any individual simulation in which alleles surfed to rel-546

atively high frequencies was balanced by a simulation where the same allele547

nearly drifted out of the population. When looking at a variety of inde-548

pendently assorting loci, for example in a single neucleotide polymorphism549

dataset in which linked loci have been removed, we expect that the mean550

fequency of any mutation will be well-represented by a deterministic model551

such as those described in our calculation section.552

553
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The distribution and diversity of neutral markers on the landscape can554

elucidate the history of populations as events and population characteristics555

become embedded in their collective DNA. Early on, researchers established556

the importance of population growth, and population mixing, in determin-557

ing how much diversity is retained on landscapes (Wright, 1951; Nei et al.,558

1975; Malecot, 1975). These two components interact to determine the rate559

at which populations expand in space. As expansion tends to be anisotropic560

in real populations, direction-dependent information pertaining to invasion561

speed is therefore coded in their genetics—both in the loss of heterozygos-562

ity along the expansion axis, as well as in the prevalence of surfing and563

non-surfing mutations. Thus, interactions between growth and dispersal de-564

termine the genetic signature of range expansions such that in directions of565

fast invasion populations exhibit more gradual heterozygosity loss than in566

directions of slow expansion.567

568

Appendix A. Standardizations569

Table 1: Standardizations used to compare range expansions with a variety570

of demographic growth parameters, dispersal parameters and redistrbution571

kernels.572
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Standardization Calculation Figures

Speed 2
√
DlnR0 Fig. 1, Fig. 6

Variance Given in text Fig. 2

Spatial extent Location of half maximum

population size obtained

numerically

Fig. 2e)-f)

Generations — Fig. 1, Fig. 2a)-c), Fig. 3,

Fig. 4d), Fig. 7, Fig. 8
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Figure 1: Dispersal-dominated range expansions exhibit less loss of heterozygosity along

the axis of expansion than growth-dominated range expansions. Numerical solutions of

equations (2), (8) - (11) are shown with the dispersal-dominated range expansion a)-c)

simulated with R0 = 10, K = 40, and D = 0.8, while the growth-dominated range

expansion d)-f) was simulated with R0 = 10000, K = 40, and D = 0.2. Both range

expansions have theoretical invasion speeds of 2.71 units/generation and were initialized

with 40 individuals at the origin and 40 individuals on either side of the origin all with a

frequency of the A allele of 0.5.

35



Figure 2: Range expansions with leptokurtoic and fat-tailed dispersal kernels exhibit less

loss of heterozygosity along the axis of expansion than range expansions with Gaussian

kernels with the same variance. Numerical solutions of equations (8) - (11) with the

Gaussian kernel (2) with D = 0.8, the Laplace kernel (3) with D = 0.8 and a = 1, and the

fat-tailed kernel (4) with α = 2.94, Simulations with each kernel were run for 50 generations

a) - c) or until the inflection point of the traveling population wave corresponded to x ≈ 291

d) - f). All range expansion were simulated with R0 = 10, K = 40 and were initialized

with 40 individuals at the origin and 40 individuals on either side of the origin all with a

frequency of the A allele of 0.5.
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Figure 3: Range expansions with Gaussian kernels with lower diffusivity exhibit more rapid

loss of heterozygosity along the axis of expansion than range expansions with Gaussian

kernels with higher diffusivity. Numerical solutions of equations (2), (8) - (11) with a)

R0 = 2, K = 40, D = 0.1, b) R0 = 2, K = 40, D = 0.025 and c) their heterozygosities.

Fast and slow invasions had theoretical invasion speeds of 0.53 and 0.26 units/generation

respectively. Both simulations were initialized with 40 individuals at the origin and 40

individuals on either side of the origin all with a frequency of the A allele of 0.5. The fast

and slow expansion simulations were both run for 40 generations.
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Figure 4: An a) anisotropic dispersal kernel (equation 6 with D = 0.1, and b = 4)

combined with Beverton-Holt population dynamics with R0 = 2 and K = 40 leads to b)

an anisotropic range expansion with c)-d) steeper declines in heterozygosity in directions

of slow expansion than in directions of fast expansion. Lines at the base of c) represent

transects in directions of fastest and slowest expansion. The surface plots b) and c) show

numerical solutions of a spatially discretized version of (5) with stochastic population

growth as in (8) and genetics as in equations (9) - (11). The model was simulated for

40 generations after it was initialized with 40 individuals in each of the nine central grid

squares around the origin and with a frequency of the A allele of 0.5.
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Figure 5: After a single realization of the anisotripic two-dimensional range expansion

with parameter values as in Fig. 4, sectors of genetically similar regions in the colonized

spatial domain were evident only if a single simulation is depicted (without averaging over

multiple simulations).
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Figure 6: Rare alleles or mutations that occur at the front of the traveling wave persist

longer and in larger numbers in dispersal-dominated expansions than in growth-dominated

expansions. Numerical solutions of equations (2), (8) - (11) are shown with the dispersal-

dominated range expansion a)-c) simulated with R0 = 10, K = 40, and D = 0.8, while the

growth-dominated range expansion d)-f) was simulated with R0 = 10000, K = 40, and

D = 0.2. Both range expansions have theoretical invasion speeds of 2.71 units/generation

and were initialized with 40 individuals at the origin and 40 individuals on either side of

the origin all with a frequency of the A allele of 0 (All individuals possessed only the B

allele). In generation 11, a single A allele was introduced at the location in the traveling

wave where the population density was approximately one individual per unit length of

the spatial domain as indicated by the vertical dashed line.
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Figure 7: In only one out of 100 stochastic simulations with a Gassian dispersal kernel,

did the mutant allele keep up with the front of the traveling wave nine generations after

it was introduced in the wave front. The figure shows stochastic realizations of the range

expansion shown in Fig. 6c) after 20 generations are shown. Simulation parameters were

R0 = 10, K = 40, and D = 0.8. In generation 11, a single A allele was introduced at

the location indicated by the vertical arrow which represents the point in the traveling

wave where the population density was approximately one individual per unit length of

the spatial domain.
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Figure 8: The mean distribution of rare alleles that were initially introduced at the wave

front is well predicted by deterministic models. Deterministic solutions (equations 12 and

13) are plotted over means of 100 stochastic simulations of range expansions in which all

individuals initially possessed only the B allele. The dispersal kernel was a Gaussian kernel

with D = 0.8 and demographic growth parameters were R0 = 10, K = 40. Analogous

range expansions were simulated with a) random assortative mating and b) asexual repro-

duction. Simulations were initialized with 40 individuals at the origin and 40 individuals

on either side of the origin all with a frequency of the A allele of 0. In generation 11, a

single A allele was introduced at the location in the traveling wave where the population

density was approximately one individual per unit length for the simulation with random

assortative mating and where the population density was approximately two individu-

als per unit length for the simulation featuring asexual reproduction. Thus, the initial

frequency at which the A allele was introduced was ρ = 0.5.
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