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Bioinformatic analyses in early host
response to Porcine Reproductive and
Respiratory Syndrome virus (PRRSV) reveals
pathway differences between pigs with
alternate genotypes for a major host
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Abstract

Background: A region on Sus scrofa chromosome 4 (SSC4) surrounding single nucleotide polymorphism (SNP) marker
WUR10000125 (WUR) has been reported to be strongly associated with both weight gain and serum viremia in pigs
after infection with PRRS virus (PRRSV). A proposed causal mutation in the guanylate binding protein 5 gene (GBP5) is
predicted to truncate the encoded protein. To investigate transcriptional differences between WUR genotypes in early
host response to PRRSV infection, an RNA-seq experiment was performed on globin depleted whole blood RNA
collected on 0, 4, 7, 10 and 14 days post-infection (dpi) from eight littermate pairs with one AB (favorable) and
one AA (unfavorable) WUR genotype animal per litter.

Results: Gene Ontology (GO) enrichment analysis of transcripts that were differentially expressed (DE) between dpi
across both genotypes revealed an inflammatory response for all dpi when compared to day 0. However, at the early
time points of 4 and 7dpi, several GO terms had higher enrichment scores compared to later dpi, including inflammatory
response (p < 10-7), specifically regulation of NFkappaB (p < 0.01), cytokine, and chemokine activity (p < 0.01). At 10 and
14dpi, GO term enrichment indicated a switch to DNA damage response, cell cycle checkpoints, and DNA replication.
Few transcripts were DE between WUR genotypes on individual dpi or averaged over all dpi, and little enrichment of
any GO term was found. However, there were differences in expression patterns over time between AA and AB animals,
which was confirmed by genotype-specific expression patterns of several modules that were identified in weighted
gene co-expression network analyses (WGCNA). Minor differences between AA and AB animals were observed in
immune response and DNA damage response (p = 0.64 and p = 0.11, respectively), but a significant effect between
genotypes pointed to a difference in ion transport/homeostasis and the participation of G-coupled protein receptors
(p = 8e-4), which was reinforced by results from regulatory and phenotypic impact factor analyses between genotypes.
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Conclusion: We propose these pathway differences between WUR genotypes are the result of the inability of the
truncated GBP5 of the AA genotyped pigs to inhibit viral entry and replication as quickly as the intact GBP5 protein of
the AB genotyped pigs.

Keywords: Pig, PRRS virus, RNA-seq, WUR, GBP5, Ion transport, Homeostasis, Regulatory factors

Background
Porcine reproductive and respiratory disease (PRRS),
also known as mystery swine disease or blue ear disease,
emerged in the late 80’s and 90’s and is one of the most
economically important diseases affecting pigs world-
wide [1]. The disease results in severe reproductive
losses, such as late-term abortions and mummified and
stillborn fetuses, as well as neonatal piglets developing
severe dyspnea and tachypnea and demonstrating an in-
creased morbidity and mortality rate [2]. In weaned pigs,
PRRS manifests itself by pneumonia, lethargy, failure to
thrive and a higher mortality rate, mainly due to the co-
existence with other infections [2]. To date, production
costs of PRRS are estimated at $664 million a year in the
US alone [3].
Many efforts have been, and continue to be, made to

understand the PRRS virus (PRRSV), its replication and
the immune response evoked in the host [4–6]. Modified
live-attenuated and inactivated vaccines against PRRSV
are used widely, primarily to improve performance in
PRRS positive herds, but often fail to elicit complete
protection particularly against highly heterologous
PRRSV isolates [7]. There therefore remains a need for
novel strategies to combat PRRS including the develop-
ment of cross-protective PRRSV vaccines. Moreover,
long-distance airborne transport of PRRSV complicates
control strategies even further [8]. The PRRS host genet-
ics consortium (PHGC) was founded to investigate the
potential for control of the disease from the host point
of view [9]. Boddicker et al. [10] performed a Genome
Wide Association Study (GWAS) on the first three
PHGC trials with 600 infected weaner pigs and identi-
fied a region on Sus scrofa chromosome 4 (SSC4) sur-
rounding a single nucleotide polymorphism (SNP)
marker WUR10000125 (WUR) that was strongly associ-
ated with weight gain and viral load after a PRRS infec-
tion [10]. This association was validated and expanded
to other pig crosses in an additional 5 PHGC trials [11,
12]. Compared to AB and BB animals, the AA animals
for the WUR SNP had higher levels of viremia measured
over 21 days post-infection (dpi) and a reduced growth
rate over 42 dpi. No differences were seen between AB
and BB animals, pointing to a dominant effect of the B
allele [10]. Further examination of the region surround-
ing WUR revealed that guanylate binding protein 5
(GBP5) is a strong candidate gene, due to its differential

expression during PRRSV infection, the presence of
splice variant differences between AA and AB animals
and its role in inflammasome assembly during immune
response [13]. We hypothesized that the global gene ex-
pression can be impacted by the genotype which is asso-
ciated with the different host response. In order to
elucidate these differences, 8 littermate pairs, each with
one AA and one AB animal, from PHGC trial 3 were se-
lected for transcriptome analysis of blood collected up
to 14 days post-infection using RNA-seq.

Results
Identification and annotation of differentially expressed
(DE) transcripts over time
RNA of whole blood from eight littermate pairs of AA
and AB weaner pigs was collected at 5 time points (0, 4,
7, 10 and 14 dpi) during a PRRSV infection. Weight gain
over 42dpi, as well as viral load over 21dpi, measured as
area under the log curve of viremia levels from 0 to 21
dpi, did not significantly differ between these two groups
of animals (p = 0.54 and p = 0.55, respectively). Prior to
RNA-seq analysis, most alpha and beta hemoglobin
mRNAs were removed to increase the detection of low
abundance mRNAs [14]. Paired-end RNA-seq reads
were mapped to the Sus scrofa genome to assign reads
to annotated gene coordinates and mapped reads were
normalized as described [13]. For simplicity, we will
refer hereafter to transcripts as the entity whose expres-
sion is being estimated by the RNA-seq data. A repeated
measures linear model was used to estimate the effects
of WUR genotype, day, and genotype-by-day interac-
tions. To identify DE transcripts across time, a false dis-
covery rate (FDR) of 5 % was used for all possible
pairwise time point comparisons. A total of 3,511 tran-
scripts were found to be DE among all time points. The
number of DE transcripts ranged from 117 in the 14/10
dpi comparison to 1,991 in the 14/4 dpi comparison
(Table 1). Gene ontology (GO) term enrichment analysis
was performed on all 10 comparisons (Additional file 1:
Table S1). Since the DAVID and Gorilla GO annotation
tool gave similar results, only DAVID annotations and
Enrichment scores are shown. Two informative compar-
isons were the list of transcripts that were DE between 4
dpi and 0 dpi and between 14 dpi and 4 dpi. GO enrich-
ment clearly demonstrates that early after infection in-
flammatory response functions were induced, followed
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by a switch to DNA damage response, cell cycle check-
points and DNA replication (Fig. 1).
To explore these results in more detail, BioLayout

Express3D (BE3D) was used to visualize and cluster all
3,511 transcripts that were DE across dpi (Fig. 2). The
histograms shown represent the expression patterns over
time of the three largest clusters. The numbers on the Y-
axis correspond to the log2 fold change (FC) of 4, 7, 10
and 14 dpi compared to 0 dpi. Cluster 1 contained
1,206 nodes and showed greater expression at 4 dpi
compared to 0 dpi, which then decreased at later dpi.
Annotation of this cluster indicated enrichment of tran-
scripts involved in inflammatory response, immune

Table 1 Number of transcripts compared at each day post
PRRSV infection, regardless of WUR genotype

# of DE transcripts based on day effect (FDR < 0.05)

4/0 dpi 7/0 dpi 10/0 dpi 14/0 dpi

1519 356 321 481

7/4 dpi 10/4 dpi 14/4 dpi

422 1025 1991

10/7 dpi 14/7 dpi

127 1026

14/10 dpi

117

Fig. 1 Relevant GO enrichment terms for dpi comparisons of blood RNA DE genes. Significant GO enrichment clusters are described by an explanatory
name, with the enrichment score shown at the end of each bar. a GO enrichment between 4 dpi and 0 dpi. The striped bars are up-regulated at 4 dpi
compared to 0 dpi and point to immune-related GO terms, and the black bars are down-regulated at 4 dpi compared to 0dpi and show RNA processing
and DNA damage GO terms b GO enrichment between 14 dpi and 4 dpi. The striped bars are up-regulated at 14 dpi compared to 4 dpi and point to
cell cycle and DNA damage GO terms, and the black bars are down-regulated at 14 dpi compared to 4 dpi and show immune-related GO terms
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system development, anti-apoptosis, and cytokine and
chemokine activity.
The second largest cluster, cluster 2, contained 1,181

nodes and was down-regulated at 4 dpi, but increased
in expression over time and showed an up-regulated
expression at 14 dpi. GO terms such as ‘DNA repair’,
‘DNA damage checkpoint’, ‘nucleotide excision repair’,
‘DNA packaging’, ‘mitosis’, and ‘ncRNA and rRNA pro-
cessing’ were prominent in enrichment analysis of this
cluster. Thus, this clustering method verified and fur-
ther specified the expression pattern of transcripts re-
sponsible for the inflammatory immune response that
was highly expressed early after infection (cluster 1), as
well as the set of transcripts representing DNA repair
functions (cluster 2) identified in the full DE dataset
GO annotation shown in Additional file 1: Table S1
and Fig. 1.
A third cluster, with 516 nodes, was up-regulated at

7 dpi compared to 0 dpi but down-regulated at all
other dpi compared to 0 dpi and showed an enrich-
ment of terms such as ‘G-protein coupled receptor’,
‘synaptic transmission’, ‘ion homeostasis’ and ‘ion chan-
nel complex’ (cluster 3). Next, these clusters were fur-
ther analyzed by contrasting their expression between
genotypes.

Identification and annotation of DE transcripts between
WUR genotypes
An analysis of differences in transcript expression be-
tween animals with AA versus AB genotype at the WUR
SNP could help unravel this large genotype effect on pig-
let growth and viral load post-infection. Thus, transcript
expression differences between AA and AB animals were
compared within each day or averaged over all days.
Even at an FDR of 10 %, relatively few DE transcripts
were identified, ranging from only 2 DE transcripts be-
tween AA and AB animals at 4 dpi, to 88 transcripts at
10 dpi (Table 2) and no enriched GO terms were found
using DAVID analysis (data not shown). Examining all
1,370 genes with a genotype effect or a genotype x day
interaction effect revealed GO enrichment of “cytoplas-
mic vesicle” (p < 0.004), “regulation of mitogen-activated
protein kinase (MAPK) activity” (p < 0.02) and apoptosis
(p < 0.04) were revealed (data not shown).
Expression pattern differences between pigs with alter-

nate WUR genotypes could also be found for the three
BE3D clusters described earlier (Fig. 3). AA and AB ani-
mals showed no significant difference in average expres-
sion for cluster 1 transcripts (p = 0.64); AB animals
showed an overall higher average expression for the clus-
ter 2 transcripts, however these were not significantly

Fig. 2 BioLayout Express3D (BE3D) clustering of 3,511 transcripts that were DE over time post PRRSV infection. These transcripts were DE at an
FDR < 0.05 in at least one of the 10 pairwise time point comparisons. A total of 13 clusters were formed. The histograms represent the expression
patterns over time of the three largest clusters (green, orange and purple) that had enough nodes to perform a GO term enrichment analysis

Table 2 Number of transcripts compared between WUR genotypes on a given day or averaged over all days

# of DE transcripts based on genotype effect (FDR < 0.10)

AA vs AB, 0 dpi AA vs AB, 4 dpi AA vs AB, 7 dpi AA vs AB, 10 dpi AA vs AB, 14 dpi AA vs AB, avg

20 2 55 88 58 33
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different either (p = 0.11). Remarkably, however, the aver-
age expression of cluster 3 transcripts was significantly dif-
ferent between AA and AB animals (p = 8e-4). The AB
animals down-regulated the cluster 3 transcripts immedi-
ately after infection, while AA animals showed first an ele-
vation up till 7 dpi, after which a decrease in expression
was noticed. When examining differences between geno-
types for cluster 3 transcripts on separate days rather than
log2FC comparisons with 0 dpi, it became clear that differ-
ences between genotypes were greatest at 0 dpi (higher in
AB animals; p-value = 0.07) and 7 dpi (higher in AA ani-
mals; p-value = 0.07), but were not significant at 4 dpi (p-
value = 0.88), 10 dpi (p-value = 0.52) and 14 dpi (p-value =
0.30). Principal Component Analysis (PCA) of data from

individual dpi revealed that differential expression be-
tween AA and AB for these transcripts was already
present at 0 dpi (Fig. 4). Further, the relative positions of
AA and AB were reversed for all other dpi, indicating that
genotype-specific expression patterns captured by princi-
pal component 1 (PC1), which explained over 75 % of the
transcripts expression variance among samples, changed
dramatically after day 0.

Validation of BE3D cluster 3 with independent RNA-seq
data
The log2FC of the 516 transcripts of cluster 3 at 4, 7, 10
and 14 dpi compared to 0 dpi of PHGC3 were plotted
against the log2FC values for those transcripts for the

Fig. 3 Expression over time of blood RNA transcripts in the largest BE3D clusters. Clusters shown are based on all animals or by WUR genotype.
Histograms for combined genotypes are repeated from Fig. 3 for ease of comparison
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same dpi contrasts in similar blood samples collected
from 16 AA and 5 AB animals in the PHGC5 RNA-seq
study (Additional file 1: Table S2, Additional file 2: Figure
S1). Correlation coefficients were 0.39 (p-value = 4.2e-20),
0.31 (p-value = 4.1e-13), 0.23 (p-value = 1.3e-07) and 0.17
(p-value = 1.1e-4) for 4/0, 7/0, 10-11/0 and 14/0 dpi
respectively.

Verification of BE3D transcript clusters using Weighted
Gene Co-expression Network Analysis (WGCNA)
We used another clustering approach to verify that these
clusters were robust and to further explore their bio-
logical meaning. Using WGCNA on datasets comparing
4 dpi, 7 dpi, 10 dpi and 14 dpi with 0 dpi and on data-
sets examining individual days (0 dpi, 4 dpi, 7 dpi, 10
dpi and 14 dpi), we found several modules whose

eigengene was associated with WUR genotype. The
eigengene of a module is defined as the eigenvector as-
sociated with the first principal component of the ex-
pression matrix and is used as a linear combination of
expression from all genes in the module [15]. Significant
modules showing interesting GO enrichment are listed
in Table 3 (datasets 4/0 dpi, 7/0 dpi, 10/0 dpi and 14/0
dpi) and Table 4 (datasets 0 dpi, 4 dpi, 7 dpi, 10 dpi and
14 dpi), together with the number of transcripts in that
module, their association with WUR genotype, quanti-
fied by the correlation coefficient with WUR code (0/1),
and the nominal p-value for this association. When
comparing GO term enrichment, the results of these
analyses were consistent with the BE3D clustering re-
sults shown in Fig. 3. In Table 3, ‘SH2 domain, B, T, NK
cell signaling pathways’ is a GO term enriched in the

Fig. 4 PCA plot for 516 transcripts of the BE3D cluster 3. The PCA plot is created using the model means for AA and AB on each dpi or averaged
across days. The first principal component (PC1) explained 75.2 % of the variance, the second principal component (PC2) explained 6.2 % of the
variance. The largest difference between AA and AB animals was at 0 dpi and 7 dpi

Table 3 Overview of modules of DE genes whose eigengene is significantly correlated with WUR genotype

The table here presented shows immune-related GO enrichment across time-points. For 4/0 dpi, 7/0 dpi, 10/0 dpi and 14/0 dpi comparisons the significant
modules (p ≤ 0.10) are listed together with the number of transcripts, the correlation coefficient with WUR genotype, the nominal p-value for that correlation
and the interesting Gene Ontology (GO) terms, with enrichment scores in brackets. Positive correlation coefficients point to modules that contain transcripts
that are more highly expressed in AA than in AB animals. Negative correlation coefficients refer to modules with transcripts that are more highly expressed in
AB animals. Rows are color-coded according to their agreement with GO terms in clusters formed by BioLayout Express3D (BE3D): green for cluster 1, orange
for cluster 2, purple for cluster 3
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fifth significant module in the 4/0 dpi dataset, with
greater expression in the AA animals, while in Fig. 3, ex-
pression of cluster 1, annotated with immune response
GO terms, is also slightly greater in the AA animals
compared to the AB animals at day 4 compared to 0.
Similarly, the first and third significant modules in the
4/0 dpi contrast, illustrating GO terms such as ‘mitosis’,
‘DNA damage checkpoint’ and ‘DNA repair’, were ele-
vated in the AB animals (Table 3); in Fig. 3, at 4/0 dpi,
the AB animals have greater expression of cluster 2, which
was annotated for DNA repair. GO terms such as ‘GPCR
signaling pathway’, ‘ion transport’ and ‘ion homeostasis’
were enriched in WGCNA modules in the 4/0 dpi, 7/0
dpi and 14/0 dpi dataset with greater expression in the
AA animals (Table 3), and the expression of cluster 3, an-
notated for these GO terms, was significantly higher in
the AA animals at all time points after infection.
Examining each dpi separately with WGCNA showed

that enriched GO terms such as ‘SH3 domain’ and’innate
immune response’ appeared at 7 dpi in the AA animals
and GO terms such as ‘spindle’, ‘transcription from RNA
polymerase II promoter’ and ‘mRNA processing’ appear
in AB animals at 4 dpi (Table 4). Enriched GO terms
pointing to similar functions as those enriched in cluster
3 (Fig. 3) such as ‘GTPase regulatory activity’, GPCR sig-
naling pathway’, ‘ion transport’ and ‘ion homeostasis’ can
be found at 0 dpi in AB animals and at 7 dpi in AA ani-
mals (Table 4). This indicates that AB animals, have
these processes elevated before infection, relative to AA
animals, after which their expression declines; whereas

after infection AA animals maintain activation of such
pathways. Further, compared to AB animals, this differ-
ence was most apparent at 7 dpi.

Cell type enrichment analysis (CTEN)
After clustering transcripts in each dataset based on
their expression patterns, both DAVID and CTEN soft-
ware were used to evaluate whether these clusters repre-
sent transcripts that were usually expressed by (a)
certain cell type(s). If so, a difference in expression of
the cluster between AA and AB animals could indicate
an engagement, or lack of, certain cell types in one of
the two genotypes. The cell type enrichment analyses
were applied on the three clusters formed by BE3D
(Fig. 5). For both DAVID and CTEN, the most enriched
cell types in cluster 1 were macrophages and monocytes,
followed by myeloid cells, early erythroid cells, NK cells,
B cells and T cells. This cluster represented an immune-
related cluster, so it is not surprising that immune cells
were enriched. Cluster 2 showed an enrichment for lym-
phoblasts and leukemia-lymphoma with CTEN but DA-
VID showed carcinoma cells and stem cell enrichment.
Based on CTEN, cluster 3 was characterized by tran-
scripts that are mainly expressed in fetal thyroid and
fetal lung tissue, and the “ion transport” GO annotation
of this cluster is consistent with the known importance
of ion transport in these developing tissues [16–19]. DA-
VID analysis of cluster 3 showed very diverse cell types,
illustrating that it was not easy to classify the transcripts
of this cluster to a specific cell type.

Table 4 Overview of modules of DE genes whose eigengene is significantly correlated with WUR genotype

The table here presented shows immune-related GO enrichment at single time points. For 0 dpi, 4 dpi, 7 dpi, 10 dpi and 14 dpi the significant modules (p ≤ 0.10)
are listed together with their number of transcripts, the correlation coefficient, the nominal p-value for that correlation and the interesting Gene Ontology (GO)
terms, with enrichment scores in brackets. Positive correlation coefficients point to modules that contain transcripts that are more highly expressed in the AA
animals compared to the AB animals. Negative correlation coefficients refer to modules with transcripts that are more highly expressed in the AB animals. Rows
are color-coded according to their agreement with GO terms in clusters formed by BioLayout Express3D (BE3D): green for cluster 1, orange for cluster 2, purple for
cluster 3
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Regulatory Impact Factor (RIF) and Phenotypic Impact
Factor (PIF) analyses
We were also interested in determining whether specific
transcripts could be identified as important players, or
“hubs”, for the differences in expression between geno-
types. We analyzed the full RNA-seq dataset using RIF
and PIF analyses [20]. Whereas RIF1 focuses on regula-
tors that are differentially wired with highly abundant
DE transcripts between two groups of animals (e.g., AA
and AB animals), RIF2 ranks regulators that are predic-
tors of the change in abundance of DE transcripts [20].
The PIF analysis scores transcripts high that are DE and
at the same time highly abundant, since a small differ-
ence in those highly abundant transcripts could impact
networks greatly [20]. A DE transcript that is not highly
abundant will only have a high PIF score when it is
highly DE. After imposing a |z-score| threshold of 2 to
identify hubs with largest differences between genotypes
in neighborhood connections, a total of 429 and 464
transcripts passed that threshold for RIF1 and RIF2 re-
spectively, meaning that a relative large number of tran-
scripts acted in a different way as regulator of other
transcripts in their network between WUR genotypes.

Table 5 and Table 6 list the RIF1 and RIF2 |z-scores| for
the 10 most extreme regulators. For the PIF analysis, al-
most all transcripts (n = 8,585) passed the threshold of
significance (adj. p-value < 0.01). The top 10 transcripts
are shown in Table 7.
IQGAP1 was found in both the top RIF1 and RIF2 lists.

IQGAP1 binds calmodulin [21–23] and CALM1, which
encodes the protein calmodulin, had one of the highest
PIF scores. Other transcripts in these extreme RIF and PIF
lists point to actin cytoskeleton forming processes (ACTB
[24], ACTL6A, ARHGAP30 [25], CAPZA1 [26], CCT4
[27], DYNLRB1 [28]) as well as to ubiquitin/proteoso-
mal degradation (PSMC6, PSMD2, PSME2, UBE3A),
transcriptional and translational regulation (LEO1 [29],
EF1ALPHA, EEF2, RPS21), and endosomal trafficking
(EPS15 [30, 31],VPS41 [32], c19orf50 [33], AP1G1 [34]).

Discussion
The goal of this study was to identify key transcriptomic
differences between AA and AB animals in order to
understand why AB animals respond better to a PRRSV
infection. Analysis using a linear model indicated only
minor differences in expression patterns between these

Fig. 5 Cell type enrichment analyses of genes identified as the three largest clusters from BE3D. For DAVID, enrichment scores (ES) are shown in
front of specific cell types. For CTEN, from red to light yellow are all significant enriched cell-types within each cluster transcript list (enrichment
score≥ 2.0), going from enriched to most enriched
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AA and AB animals over time. However, further analyses
showed a slightly but not significantly higher expression
of transcripts early after infection involved in general
immune response in the susceptible AA animals com-
pared to resistant AB animals, most likely evoked by
monocytes, as indicated by the CTEN analysis. More
substantial was the difference in expression of tran-
scripts with DNA damage repair GO terms, with higher
expression of transcripts involved in DNA repair in the
AB animals, especially early after infection. Cluster 2
showed an enrichment for lymphoblasts and leukemia-
lymphoma, carcinoma cells and stem cell enrichment.
Gene expression studies in lymphoblastic leukemia pa-
tients report involvement of DNA repair and DNA repli-
cation genes [35, 36]. Stem cells need to differentiate,
especially during an immune response, which is consist-
ent with the GO terms found for cluster 2. However, the
most significant differences in transcript expression be-
tween the two WUR genotypes were higher expression
at 7 dpi in AA pigs for transcripts with GO terms for
the G-protein coupled receptor (GPCR) pathway and
ion transport, including for the more specific GO terms
‘calcium’ ion transport and ‘calcium’ homeostasis, and
higher expression at 0 dpi for AB animals for transcripts
with similar functions (Table 4). These patterns indicate

greater involvement of the GPCR pathway and calcium
ion transport/homeostasis in AA animals in response to
a PRRSV infection, or a higher contribution of these
pathways in AB animals prior to infection, i.e., at 0 dpi.
In Fig. 4, the PCA results support this hypothesis, as the
largest differences between genotypes were found at 0
and 7 dpi, with the polarity of the PC1 difference be-
tween genotypes reversing between 0 and 7 dpi. AA ani-
mals at 7 dpi most closely resemble the AB animals at 0
dpi, which could be interpreted as a delayed activation
of the cluster 3 transcripts until 7 dpi in the AA animals
in comparison to the AB animals, who already express
the cluster 3 transcripts at high levels before infection.
In AA animals, a down-regulation of these cluster 3
transcripts starts after 7 dpi, while in AB animals this
down-regulation initiates soon after 0 dpi.
GPCRs are known to activate phosphoinositide 3 kin-

ase (PI3K) and PI3K phosphorylates PIP2 to PIP3, which
leads to activation of Akt [37]. It has been reported that
the PI3K-Akt signal transduction pathway is involved in
PRRSV entry [38, 39], and other viruses also make use
of the PI3K pathway to enter the cells [40–42]. With
PRRS, anti-apoptosis is often seen in the early stage of
infection, and macrophages die by apoptosis only later
[43]. It has been proposed that the PI3K-Akt pathway is

Table 5 Top 10 transcripts in both directions for the RIF1 analysis. The RIF1 analysis was performed on blood RNA DE genes
contrasting AB minus AA animals.. The transcript ID, gene symbol and gene name is shown, together with the RIF1 calculated
z-score. The positive RIF1 scores are > 2, which indicates a large difference between WUR genotypes in linkages to these hub genes

Transcript_id Gene symbol Gene RIF1 z-score

ENSSSCT00000001129 TFAP2A transcription factor AP-2 alpha -0.863

ENSSSCT00000000409 MYL6 myosin, light chain 6 -0.862

ENSSSCT00000000824 LRTM2 leucine-rich repeats and transmembrane domains 2 -0.862

ENSSSCT00000002712 CATSPERB catsper channel auxiliary subunit beta -0.861

ENSSSCT00000000267 KRT5 keratin 5 -0.861

ENSSSCT00000000210 C1QL4 complement component 1, q subcomponent-like 4 -0.861

ENSSSCT00000002491 C15ORF55 a.k.a. NUT midline carcinoma, family member 1 -0.860

ENSSSCT00000004145 MOCOS molybdenum cofactor sulfurase -0.860

ENSSSCT00000000450 GPR182 G protein-coupled receptor 182 -0.860

ENSSSCT00000000014 - Structural maintenance of chromosomes protein -0.859

ENSSSCT00000002033 IQGAP1 IQ motif containing GTPase activating protein 1 7.348

ENSSSCT00000029413 - uncharacterized 7.389

ENSSSCT00000012040 B4GALT1 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 1 7.530

ENSSSCT00000012873 ACTL6A actin-like 6A 7.691

ENSSSCT00000011122 TOMM20 translocase of outer mitochondrial membrane 20 homolog 8.054

ENSSSCT00000001714 PPARD peroxisome proliferator-activated receptor delta 8.557

ENSSSCT00000006566 ATAD2 ATPase family, AAA domain containing 2 9.040

ENSSSCT00000030357 WDR5B WD repeat domain 5B 9.160

ENSSSCT00000005554 PSMC6 proteasome 26S subunit, ATPase, 6 9.500

ENSSSCT00000019067 NPEPPS aminopeptidase puromycin sensitive 14.674
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used by the virus to activate Akt, which in turn phos-
phorylates pro-apoptotic proteins such as Bad, caspase 9
and glycogen synthase kinase 3 beta (GSK-3β). Upon
phosphorylation, these pro-apoptotic proteins are inacti-
vated and apoptosis is delayed, allowing a short-term
cellular survival during the initial stage of viral infection
in favor of viral replication [44]. Since this PI3K-Akt
pathway appears to be activated longer after infection in

AA animals compared to AB animals, the virus may
have a greater opportunity to infect cells and replicate in
these animals, which makes them more susceptible to
PRRS.
Ma et al. [45] reported cytoskeletal reorganization by

G-coupled protein receptors dependent on PI3K, a
guanosine exchange factor (GEF), and Rac1. PIP3 is in-
volved in actin polymerization [46] and our results

Table 7 Top 10 transcripts for the PIF analysis based on adjusted p-value. The transcript ID, gene symbol and gene are shown,
together with the adjusted p-value and the PIF score

Transcript_id Gene symbol Gene adj.P.Val PIF.value

ENSSSCT00000025260 ACTB beta actin 5.11E-93 136.357

ENSSSCT00000031794 EEF2 eukaryotic translation elongation factor 2 1.25E-93 118.423

ENSSSCT00000006982 ARHGAP30 Rho GTPase-Activating Protein 30 9.51E-96 103.526

ENSSSCT00000031940 CALM1 calmodulin 1 3.94E-96 96.954

ENSSSCT00000013301 SH3KBP1 SH3-domain kinase binding protein 1 2.29E-94 74.865

ENSSSCT00000024405 PSMD2 proteasome 26S subunit, non-ATPase, 2 7.17E-99 73.512

ENSSSCT00000003036 AP1G1 AP-1 complex subunit gamma-1 2.20E-100 67.972

ENSSSCT00000018259 VPS41 vacuolar protein sorting 41 4.95E-96 64.869

ENSSSCT00000015192 C19ORF50 a.k.a. KxDL Motif-Containing Protein 1 2.40E-93 61.293

ENSSSCT00000019336 KIAA0100 breast Cancer Overexpressed Gene 1 2.13E-94 58.151

Table 6 Top 10 transcripts in both directions for the RIF2 analysis. The RIF2 analysis was performed on blood RNA DE genes
contrasting AB minus AA animals. The transcript ID, gene symbol and gene name is shown, together with the RIF2 calculated
z-score. The positive RIF2 scores are > 2, the negative RIF2 scores are < -2, and thus all genes presented here are highly significant,
which indicates a large difference between WUR genotypes in linkages to these hub genes

Transcript_id Gene symbol Gene RIF2 z-score

ENSSSCT00000005054 - uncharacterized -12.312

ENSSSCT00000002033 IQGAP1 IQ motif containing GTPase activating protein 1 -10.874

ENSSSCT00000007586 CCBL2 cysteine conjugate-beta lyase 2 -10.365

ENSSSCT00000004284 EPS15 epidermal growth factor receptor pathway substrate 15 -8.242

ENSSSCT00000002542 FUT8 fucosyltransferase 8 (alpha (1,6) fucosyltransferase) -7.621

ENSSSCT00000005334 UBE3A ubiquitin protein ligase E3A -7.528

ENSSSCT00000007421 CAPZA1 capping protein (actin filament) muscle Z-line, alpha 1 -7.337

ENSSSCT00000007964 DYNLRB1 dynein, light chain, roadblock-type 1 -7.336

ENSSSCT00000010053 RG9MTD2 tRNA methyltransferase 10 homolog A -7.285

ENSSSCT00000001175 CDKAL1 CDK5 regulatory subunit associated protein 1-like 1 -6.995

ENSSSCT00000002288 - 40S ribosomal protein S3a 7.188

ENSSSCT00000004971 ATP5A1 ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1 7.207

ENSSSCT00000009172 CCT4 chaperonin containing TCP1, subunit 4 (delta) 7.218

ENSSSCT00000006787 TRAM1 translocation associated membrane protein 1 7.360

ENSSSCT00000004039 SF3A3 splicing factor 3a, subunit 3, 60 kDa 7.966

ENSSSCT00000000103 TOMM22 translocase of outer mitochondrial membrane 20 homolog 8.628

ENSSSCT00000005108 LEO1 Paf1/RNA polymerase II complex component 8.708

ENSSSCT00000002242 PSME2 proteasome activator subunit 2 (PA28 beta) 9.040

ENSSSCT00000002808 RPS21 ribosomal protein S21 11.614

ENSSSCT00000004960 EF1ALPHA eukaryotic translation elongation factor 1 alpha 1 11.644

Schroyen et al. BMC Genomics  (2016) 17:196 Page 10 of 16



support evidence of its involvement by a multitude of
actin-related transcripts that are significantly differen-
tially regulated between AA and AB, based on the RIF
analyses. Insall and Weiner (2001) hypothesized that
PIP3 stimulates actin polymerization by recruitment and
activation of Rho GTPases Rac1 and Cdc42.
IQGAP is highly differentially wired, as indicated by a

high RIF score when comparing AA with AB animals,
meaning that it regulates a considerable amount of tran-
scripts differently. This gene is a GTPase activating pro-
tein that binds calmodulin, a calcium binding protein
that was identified as a high PIF transcript when com-
paring AA with AB animals [21–23], and is found to be
important in cell migration through its function in actin
polymerization [47]. IQGAP is a scaffolding protein for
Rac1 and Cdc42 [48] and the actin binding activity of
IQGAP1 is believed to be regulated by calmodulin [49].
In addition, IQGAP1 has been found to play a pivotal
interactive role in several viral attack strategies [50, 51].
Additional transcripts showing differential wiring be-

tween AA and AB animals in the RIF analysis were in-
volved in the endosomal trafficking, which is important
for viral entry [30, 52], and in the ubiquitin/proteosomal
degradation pathway, which is required for efficient viral
replication [53, 54]. TOMM22 had one of the highest
RIF2 scores and may be important for viral survival and
replication since it encodes a mitochondrial receptor for
the pro-apoptotic protein BAX [55] and has been found
to be a viral miRNA target through which the virus pro-
motes cell survival [56]. All together, it seems that AA
animals are more susceptible to PRRS due to increased
viral entry and replication in these animals when com-
pared to the more resistant AB animals.
Molecular details on how PRRSV and other viruses

interact with the host cell indicate the importance of cal-
cium, calmodulin, and IQGAP in a PRRSV infection. Vi-
ruses often induce host cell cycle arrest to benefit viral
proliferation by making the host cell environment avail-
able for viral replication, translation and assembly [57].
PRRSV infection delays cell cycle progression at the S
phase, and as a result there is an accumulation of cells
at this phase [58]. Similarly, rotavirus has been shown to
hijack the host cellular machinery and push cells from
the G1 to the S phase [59]. Bhowmick et al. [59] noted
that viral gene expression was significantly higher in ex-
perimentally induced S phase arrested cells than in G0/
G1 phase arrested cells, suggesting greater rotaviral rep-
lication during the S phase. This accumulation of cells in
the S phase appeared to be Ca+2/calmodulin pathway
dependent [59]. Rotavirus infection increased intracellu-
lar Ca+2 concentrations [60] and the level of calmodulin
was related to progression into the S phase [61]. Bhow-
mick et al. [59] showed that inhibition of Ca+2 and
calmodulin inhibited this G1 to S phase transition.

IQGAP1, which is regulated by calmodulin and is an im-
portant regulator of the actin cytoskeleton, accumulated
in the nucleus when cells were arrested in the G1/S
phase [62].
However, how AA animals rather than AB animals ac-

tivate or prolong the use of the PI3K pathway and favor
viral entry and replication remains a question. It has
been reported that murine guanylate binding protein 2
(mGBP2), which resembles human GBP1 (hGBP1), can
form a protein complex with the catalytic subunit of
PI3K [63]. By binding to PI3K, mGBP2 inhibits the acti-
vation of downstream processes involving Akt and Rac1,
and thus interrupts the signal transduction pathway that
otherwise could have been activated by external stimuli
[63]. Furthermore, the S52N mutation, a single amino
acid substitution in the GTP binding domain of mGBP2,
disrupts its binding with PI3K [63]. GBPs are large
GTPases that coordinate the activation of G proteins by
controlling the switch from an inactive GDP-bound state
to an active GTP-bound state. Three GBP proteins
(GBP1, GBP2 and GBP5) contain a C-terminal CAAX
prenylation motif, which allows the protein to anchor to
cellular membranes [64]. Mutations in the CAAX box
prevent prenylation or farnesylation, which is required
for the correct localization of GTPases and for the en-
zyme to become completely functional [65]. Itsui et al.
[66] reported that the GTPase activity of human GBP1
was required for anti-viral response against the hepatitis
C virus. Fellenberg et al. [67] studied an alternatively
spliced GBP5 variant in human T cell lymphomas that
misses 97 amino acids at the C terminus of the protein
including the CAAX box and resembles the porcine
GBP5 truncated variant of the AA genotype for the
WUR SNP that was described by Koltes et al. [13]. They
propose that this truncated variant plays an important
role in oncogenesis, possibly due to its loss of proper
GTPase activity, and therefore formation of constitu-
tively active, and potentially oncogenic, proteins [67]. Al-
though this has not been confirmed, we expect that the
porcine GBP5 will be able to bind PI3K in a similar
manner as mGBP2 or hGBP1, because of the high hom-
ology between GBP proteins. We further hypothesize
that the truncated version of GBP5, as seen in the AA
animals, will not be able to bind PI3K and thus not
inhibit processes downstream of PI3K, thus favoring
viral entry and replication. We believe this is a plaus-
ible hypothesis because our analysis of the expression
data indicates extended expression of the G-protein
coupled receptor (GPCR) pathway in AA animals over
AB animals.

Conclusions
The goal of this study was to elucidate transcript expres-
sion pathway differences that can explain the association
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between the WUR SNP and host response to PRRS. A
whole blood RNA-seq experiment was performed on
blood collected during PRRSV infection of carefully se-
lected AA (unfavorable) and AB (favorable) littermates.
The main difference found between WUR genotypes in-
dicated involvement of ion transport-homeostasis and
the G-coupled protein receptor necessary for the PI3K
signaling pathway, which is vital for PRRSV entry. For
AB animals, this pathway is already activated before in-
fection and declines rapidly after PRRSV infection, while
in AA animals, a delayed response with regard to this
pathway is observed until 7 dpi, after which it turns
down. The mutation in GBP5, which is believed to be
the causal mutation for the difference in PRRS suscepti-
bility between AA and AB animals, likely influences the
activation of this PI3K signaling pathway.

Methods
Experimental Design
This study was conducted as part of the PHGC project
and described as PHGC3 in Boddicker et al. [10]. Experi-
mental design and details of the infection trials are de-
scribed in Lunney et al. [9] and Rowland et al. [68].
Briefly, approximately 200 commercial Landrace x Large
White crossbred pigs were transported at weaning age
to the biosecure testing facility at Kansas State Univer-
sity and allocated to pens with 10 to 15 pigs per pen. All
animals came from farms that were free of PRRSV,
Mycoplasma hyopneumoniae and swine influenza virus.
After a one-week acclimation, pigs were intramuscularly
and intranasally infected with a known isolate of PRRSV
(105 TCID50 of NVSL 97-7985). Approximately 3 mL of
whole blood samples were collected on all pigs at 0, 4, 7,
10, 14, 21, 28, 35, and 42 dpi into Tempus blood RNA
tubes (Life Technologies, Carlsbad, CA, USA) and stored
at -20 °C. For the RNA-seq analysis, samples up to
14dpi were analyzed for 16 selected animals, 8 pairs
of littermates consisting of one pig with the AA and
one pig with the AB genotype for the WUR SNP to
avoid presence of hidden genetic structure not associ-
ated with the SNP.

Ethical statement
The study was approved by the Kansas State University
Institutional Animal Care and Use Committee (IACUC)
under registration number 3000.

RNA extraction and globin reduction
Total RNA was isolated using the Tempus Spin RNA
Isolation Kit (Life Technologies, Carlsbad, CA, USA) ac-
cording to the manufacturer’s protocol. The quantity
and quality of the RNA were assessed using a ND-1000
spectrophotometer (Nano-Drop Technologies, Wilming-
ton, DE, USA) and an Agilent 2100 Bioanalyzer (Agilent

Technologies, Inc., Santa Clara, CA, USA), respectively.
The globin reduction procedure was performed using
RNase H with porcine specific oligonucleotides targeting
hemoglobin alpha and beta mRNAs [14], and then RNA
quality was determined again with the Bioanalyzer to
examine the RNA integrity (RIN) change during globin
reduction procedure.

Library construction, RNA-seq and RNA-seq analysis
The RNA-seq analyses are described in more detail in
Koltes et al. [13]. In short, library construction was con-
ducted at the Iowa State University DNA facility with
the TruSeq™ library kit (Illumina, Inc., San Diego, CA,
USA) according to manufacturer’s protocol. Sequencing
was done on an Illumina HiSeq machine using 50 cycles
and the paired-end read methodology as described by
the manufacturer (Illumina, Inc., San Diego, CA, USA).
All samples from each pair of littermates were allocated
into one lane, for a total of 8 lanes, such that litter ef-
fects were confounded with lane effects and power to
detect genotype effects was maximized. Initial read pro-
cessing of reads from the HiSeq machine were processed
using the Illumina CASAVA (v1.8) software.
After mapping reads to the reference genome (Sscrofa

10.2) using Tophat/Bowtie2 [69, 70], a total of 70 sam-
ples were retained for DE analysis after removing sam-
ples with low RIN score, samples with no or low
number of reads mapped, and samples with inconsistent
sequence-based genotypes with previous SNP chip based
genotypes [13]. To normalize the data, the trimmed
mean of M values (TMM) normalization procedure [71]
from the EdgeR package in R [72] was used to normalize
transcript counts based on the full set of genome-wide
counts. This procedure also adjusts for difference in li-
brary size between samples. Normalized counts were
then log2 transformed to obtain scaled values for statis-
tical analysis with a repeated measures linear model that
included the effects of WUR genotype (2 levels, AA and
AB), day (5 levels, representing 0, 4, 7, 10 and 14 dpi),
and genotype-by-day interactions as class variables. Add-
itionally and independently for each transcript, the fixed
effect of litter (8 levels) and the covariates of pre- and
post-globin reduction RIN and 5’-3’ transcript read
skewness were considered to be included based on
model selection using Aikake information criterion
(AIC) comparisons to select the best model. This model
selection process was repeated for 4 error model types:
uncorrelated errors, AR(1) based on day, ARH(1) based
on day, or an unstructured error model. The best fitting
model was determined by AIC. A total of 8,997 tran-
scripts, with a specified minimal expression level of at
least 10 normalized counts across samples, were
retained. Contrasts were constructed to determine ex-
pression differences between WUR genotypes within
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and across days. The models were developed in R using
the gls function from the nlme package. Multiple testing
correction was conducted using the Benjamini and
Hochberg false discovery rate (FDR) [73].

Cluster visualization using BioLayout Express3D (BE3D)
BE3D was used to visualize transcript expression pat-
terns across days of all DE transcripts [74]. A total of
3,511 transcripts were found to be DE (FDR < 0.05) in at
least one of the 10 possible pairwise time point compari-
sons (4/0 dpi, 7/0 dpi, 10/0 dpi, 14/0 dpi, 7/4 dpi, 10/4
dpi, 14/4 dpi, 10/7 dpi, 14/7 dpi and 14/10 dpi). A Pear-
son correlation of 0.90 was used to create clusters with
similar transcript expression patterns over time. For the
clustering, the Markov Cluster Algorithm (MCL) was
used [75], which resulted in 13 clusters of transcripts.

Principal Component Analysis (PCA)
PCA was performed using the ggbiplot function from
the ggbiplot package in R. The input files were the
model means for AA and AB animals, at each day and
averaged over all days, of the 516 transcripts of cluster 3
discovered using BE3D.

Validation of RNA-seq results
Validation of identified DE transcripts was performed
using data from an RNA-seq study conducted on 21 in-
fected (15 AA and 6 AB animals) Duroc x Landrace/
Yorkshire pigs of the 5th PHGC trial. The experimental
design of this trial was similar as described for PHGC3,
but blood collection was performed at 0, 4, 7, 11, 14, 21,
28, 35, and 42 dpi and RNA-seq analyses were executed
up to 28dpi. More details of this trial are described in
Boddicker et al. [12]. To normalize the RNA-seq data,
the same model selection procedure as described above
for PHGC3 was used, except for not having family in the
model, since piglets used for RNA-seq were not selected
based on litter in this experiment. The transcripts
chosen to validate were 516 transcripts of cluster 3 dis-
covered using BE3D in the PHGC3 data. The RNA-seq
PHGC5 data up to 14dpi was used to compare both
datasets.

WGCNA analysis
WGCNA is an analysis tool to cluster transcripts that
have a similar expression pattern across the samples ex-
amined [76]. WGCNA was originally developed to
analyze microarray data but can and is used to examine
RNA-seq data as well [77, 78]. Input for the WGCNA
analyses were the TMM normalized values for each tran-
script. First, this was done for all available samples at
each individual day (0 dpi, 4 dpi, 7 dpi, 10 dpi and 14 dpi)
to identify modules that had different expression between
WUR genotypes. Second, analyses were performed on

values created by comparing every dpi with 0 dpi (4/0 dpi,
7/0 dpi, 10/0 dpi and 14/0 dpi) on all animals that had ex-
pression data for both days. A soft threshold was chosen
to create networks with a scale free topology, using the
method described by Langfelder and Horvath (2008) [76].
After the networks were built, modules of transcripts with
similar expression patterns are created and eigengenes for
these modules are calculated. Finally, correlations between
these eigengenes and the factor of interest were calculated.
The factor of interest was the WUR genotype, and the ge-
notypes were coded so that the AB animals were “0” and
the AA animals were “1”. A negative (positive) correlation
between module eigengene and WUR genotype therefore
signifies a greater expression level of the module in the
AB (AA) animals.

GO enrichment analysis
GO terms were obtained for the DE lists between days
and between genotypes on specific days, as well as for
those WGCNA clusters of transcripts that were signifi-
cantly different between genotypes. For this purpose, the
annotation tool DAVID Bioinformatic Resources v6.7
[79] was used. In addition, lists were examined using the
annotation tool Gorilla [80]. All 8,997 expressed tran-
scripts expressed were used as a background transcript
dataset for these analyses.

Cell type enrichment analysis
Both DAVID [79] and CTEN [81] were used to investi-
gate evidence of cell type specific enrichment, as in-
creases or decreases of transcript expression in blood
could be due to the proportion of different cell types ra-
ther than or in addition to the up- or down-regulation
of transcripts expressed by one cell [81]. For this ana-
lysis, these tools consider a broad range of cell types,
from tissue cells to specific immune cells in whole
blood, and even cells in a particular state [81]. These
analyses were performed on the clusters created by
BE3D. The DAVID analysis of enrichment of specific
GO terms for different cell types was performed using
the tissue expression annotation libraries CGAP_SA-
GE_Quartile and GN_U133_Quartile. The background
list used by DAVID was as described above. For CTEN,
expression levels for marker genes representing specific
cell types are used to estimate changes in cell numbers
between dpi. The background list used by CTEN is
based on the human dataset embedded in the CTEN
tool. For CTEN, Benjamini-Hochberg adjusted p-values
determine the significance of enriched cell types.

RIF and PIF analyses
RIF analyses explore differential wiring of transcript net-
works between two groups, i.e., AA and AB animals in
this study. RIF1 and RIF2 were computed as described
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by Hudson et al. [82]. To test all transcripts for such dif-
ferential wiring between WUR genotypes, all samples
from the AB group (8 animals, 5 time points) were con-
trasted with all samples from the AA group (8 animals, 5
time points). In order to compare RIF1 and RIF2, z-scores
were calculated by subtracting the mean and dividing by
the standard deviation of all RIF1 and RIF2 scores, re-
spectively. To create RIF1, PIF scores were calculated as
described by [82].

Availability of Supporting Data
RNA-seq data was submitted to the NCBI database
under the accession number PRJNA311061: http://
www.ncbi.nlm.nih.gov/bioproject/PRJNA311061/.

Additional files

Additional file 1: Table S1. GO term enrichment performed on all 10
dpi time by time comparisons. For every time by time comparison the
Enrichment Score for the significant DAVID clusters as well as a description
of these clusters is presented for up-regulated and down-regulated lists of
transcripts with an FDR < 0.05 for the respective comparison. Table S2.
BE3D cluster 3 transcripts log2FC comparisons between PHGC3 and PHGC5.
PHGC3 was the current RNA-seq study and a similar study (PHGC5) was
used for validation. The log2FC of the 516 transcripts of cluster 3 for 4, 7, 10
and 14 dpi compared to 0 dpi of PHGC3 were plotted against the log2FC
values at 4, 7, 11 and 14 dpi compared to 0 dpi for those transcripts in the
PHGC5 RNA-seq study of 15 AA and 6 AB animals. Correlation coefficients
and p-values are shown at the bottom of the table. (XLSX 85 kb)

Additional file 2: Figure S1. Correlation plots of BE3D cluster 3 log2FC
values of transcripts in PHGC3 and PHGC5. PHGC3 was the current
RNA-seq study and a similar study (PHGC5) was used for validation. The
log2FC of the 516 transcripts of cluster 3 for 4, 7, 10 and 14 dpi compared
to 0 dpi of PHGC3 were plotted against the log2FC values at 4, 7, 11 and
14 dpi compared to 0 dpi for those transcripts in the PHGC5 RNA-seq
study of 15 AA and 6 AB animals. Correlation coefficients and p-values
are provided. (BMP 1243 kb)
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