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Abstract

Condition monitoring is an effective tool for protecting equipment against unplanned

and costly downtime. Conventionally, condition monitoring is only focused on the

state of equipment’s health and tracks the internal changes. However, more recent

studies pointed out that an effective monitoring system not only should track the

changes occurring at the equipment level, but it should also take the variability in the

equipment operational environment into account. In this approach, environmental

variability, along with the load and speed changes are considered as operational

variations. These external changes, similar to the internal ones, trigger a non-

stationary operating envelope, and therefore need to be monitored at a system

level. Shovels and wind turbines are primary examples of systems exposed to such

conditions.

In this context, the present work aims to advance the body of knowledge in the

area of system level monitoring for earthmoving equipment, such as ground engaging

equipment. System level monitoring presented in this study entails assessment

of environmental properties as well as equipment condition, and it is addressed

in two steps. An algorithm is developed for monitoring and detection of the

environmental/external variation. It takes machine-ground interaction force as input,

and estimates characteristic features of the ground. The detection of the internal

changes (i.e. structural damages) is accomplished through a novel acceleration-based

monitoring method. It tracks the changes in the kinetic energy of the system caused

by developing structural defect. By performing the internal and external monitoring,
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it is possible to identify the root cause of the change in the system level.

To evaluate these methods, a simplified shovel test rig is designed and fabricated.

Using an off-set crank-slider mechanism, the rig can generate a time-varying motion

and simulate the tool-ground interaction of a real shovel. The design of the test

rig allows for it to be used as a platform to study the behavior of a system that

is under speed and load variations. The test rig can perform cutting and pushing

through a variety of granular material, in a controlled manner which facilitates the

study of the environmental variation. Measuring the soil-tool interaction force and

using a tool-ground interaction model the mechanical properties of the medium can

be estimated. The test rig is designed such that it enables the replication of various

structural damages. Acceleration signal of the slider, that is a representation of

the kinetic energy of the system, is recorded and used for the assessment of the

condition of the test rig. In order to extract fault signatures from the signal, a

variety of signal processing methods in time, frequency and time-frequency domains

are used. Analyzing these features, it is found that the acceleration signal carries

fault signatures, and all faulty conditions can be distinguished from the healthy

ones. Application of advanced signal processing methods such as STFT and HHT,

support the proposed approach and suggest that it can be successfully used for both

detection and identification of the considered faults.

Methods developed for external and internal monitoring provide a platform

for equipment situational awareness that can be adopted in other areas such as

earthwork planning, excavation automation and equipment health monitoring.
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ẋs First Time Derivative of the Slider’s Displacement

γ Soil Density

φ Soil-Soil Internal Friction Angle

ϕ Crank’s Angular Displacement

ξ Mass Displacement

As Slider’s Acceleration

C Coriolis and Centripetal Matrix

c Soil Cohesion

ca Adhesion Between the Soil and Blade

F Total Resistive Force

F SH Shaking Force

Fs Cutting Force

Fint Soil-Tool Interaction Force

G Gravity Matrix

H Height of the Blade

xvi



h Depth of Penetration

J Jacobian Matrix

KA Active Earth Pressure Coefficient

KP Passive Earth Pressure Coefficient

Lf Length of the Failure Surface

Lt Length of the Tool

M Inertia Matrix

Q Surcharge Pressure

q Tool Depth Below Soil

R Force Resisting Movement of Wedge

W Weight of the Moving Soil Wedge

w Width of the Blade

xs Slider’s Displacement

DOF Degree of Freedom

EMD Empirical Mode Decomposition

FDI Fault Detection and Identification

FEE Fundamental Earthmoving Equation

FFT Fast Fourier Transform

FRF Frequency Response Function

HHT Hilbert-Huang Transform

HT Hilbert Transform

IMF Intrinsic Mode Function

IRF Impulse Response Function

IRF Impulse response Function

MHS Marginal Hilbert Spectrum

xvii



OA Order Analysis

PCA Principal Component Analysis

PDF Probability Density Function

RMS Root Mean Square

ROT Revolution Order Transform

STFT Short Time Fourier Transform

TF Time-Frequency

xviii



Chapter 1

Introduction

Among many different types of loading units used in surface mining, shovels and

excavators are the primary equipment for removing the overburden and collecting

the ore material [Paes and Throckmorton, 2008, Tatum et al., 2006a,b]. The basic

operating cycle of a shovel consists of a digging pass through the face (ground

engaging tool interacting with the environment), swinging and carrying to the

dump position, dumping into a truck, swinging empty back to the digging face,

and repositioning the bucket at the face [Rodriguez et al., 2004]. Fragmenting and

loading rock and soil during the excavation requires a high amount of interaction

between the machine and the environment [Flores, 2007, Frimpong and Li, 2007,

Ho and Hodkiewicz, 2013]. Repetitive and often variable interaction loads (due to

variability in the terrain) can damage structural components and elements of the

power transmission, if the reaction load on the machine exceed a certain level [Allen

and Sundermeyer, 2005, Yin et al., 2007, Raza and Frimpong, 2013]. Other factors

such as soft ground conditions, and recurring excessive pay load can also contribute

to fatigue failure in equipment elements [Joseph, 2003, Frimpong et al., 2008a,

Raza and Frimpong, 2013]. Repetitive overloading of key asset, with a developing

structural fault, can originate or worsen a fault condition, and potentially propagate

it to other components. A component failure may then lead to consequential damage

1



to other parts of the machine, long and costly shutdowns, reduced availability, and

potentially high cost of lost production [Majumdar, 1995, Dhillon, 2008, Edwards

et al., 2002, Hall and Daneshmend, 2003].

The presence of a fault in a piece of machinery will not only degrade the reliability

of the equipment but also hinder effective use of models developed for those systems.

Dynamic model of the equipment, and the equipment-environment interaction model,

are developed based on an the ideal representation - fault free condition - of the

equipment [Martin and Kinkead, 1983]. For example, a progressive failure mode

can impact the structure of the machine in a way that it will affect the fidelity of

the dynamical models [Khoshzaban-Zavarehi, 1997, Lipsett and Yousefi, 2011], and

lead to miscalculate the internal forces acting on machine elements. Hence the force

calculated for the end-effector will differ from what the actual force the machine

is sensing, or estimated through the machine-ground interaction model [Karmakar

and Kushwaha, 2006, Luengo et al., 1998, Hemami, 1992]. There are methods

for dealing with the small variabilities in a system model due to presence of fault,

i.e., sliding-mode, model predictive control, observer-based and adaptive control

approaches [Shekhar and Maciejowski, 2010, Tafazoli et al., 2002, Lever, 2001, Lever

and Wang, 1995, Araya and Kagoshima, 2001]. Another strategy is to deploy a

control system that has a dynamic response independent from the characteristics

of the environment [Richardson-Little and Damaren, 2005]. There are two major

downsides to these methods. First, the degree of the inaccuracy that a controller

can compensate for is limited [Maeda, 2013]. Hence, as the fault condition worsens,

the corrective actions get more limited. Second, these approaches can correct the

system response while masking the mechanical faults [Dabrowski and Madej, 2012].

If repetitive overloading of machine parts and consequential damage propagation

goes unnoticed (because of the way the algorithm ignores the variability), it will

only aggravate the faulty condition and may accelerate machine level failure and

costly shutdowns [Majumdar, 1995, Dhillon, 2008, Edwards et al., 2002, Hall and
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Daneshmend, 2003].

For the above reasons, high availability is preferred to be achieved by on-line

monitoring and early maintenance, and not by replacement of the key assets at the

end of each operation [Elevli et al., 2008]. Monitoring the condition of the system

(equipment health and the environment) can be a primary tool to ensure the system

model being used is still valid [Ho and Hodkiewicz, 2013].

While the reliability of the earthmoving equipment depends on the environment

[Raza and Frimpong, 2013, Lever, 2011], many studies have considered it from an

‘equipment only’ standpoint [Frimpong and Li, 2007, Frimpong et al., 2005, Raza and

Frimpong, 2013, Ho and Hodkiewicz, 2013, Gao et al., 2013]. Only a few works have

acknowledged the importance [Frimpong et al., 2008a, Raza and Frimpong, 2013]

or recommended to explore this territory - accounting for the environment - from

a high level point of view [Lever, 2011]. In the context of autonomous excavation,

the present work reviews the reliability and condition monitoring literature in the

area of the mining equipment, and introduces alternative approaches for monitoring

environmental and structural variations.

1.1 Motivation

Shovels and excavators are complex dynamic systems, and their operating conditions

are non-stationary, randomly changing, and severe in terms of the interaction loads

and the power requirement. Access to machine is often very limited, and downtime

of equipment due to unexpected maintenance interventions (breakdown, failures)

is extremely costly. Therefore, reducing the downtime through the use advanced

maintenance techniques is a critical motivation.

The presence of a fault in a piece of machinery, can change the behavior of a

system such that the system can no longer deliver the required level of performance.

This will not only affect the machine reliability and integrity, but may also lower its
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acceptable loading threshold. Progressive failure modes can affect the dynamics of the

machine, which in turn affects the structure of the dynamical model [Khoshzaban-

Zavarehi, 1997, Lipsett and Yousefi, 2011]. The repetitive and often variable

interaction loads (due to variability in the terrain) can damage structural components

and elements of the power transmission, if the interaction loading exceed the

equipment’s force capacity [Tan et al., 2003, Ha and Rye, 2004, Hemami, 1995,

Allen and Sundermeyer, 2005, Yin et al., 2007, Frimpong et al., 2008a]. Many

studies reported strong correlation between the method and magnitude of loading

and the equipment structural damage [Yin et al., 2007, Allen and Sundermeyer,

2005, Raza and Frimpong, 2013, Hall, 2002, Frimpong and Li, 2007, Frimpong

and Hu, 2004]. The behavior of an item of mechanical equipment can be regarded

as being dictated by a number of interactive systems with associated structural

elements constituting a load chain [Martin, 1980]. In this context, each element of

the equipment may be regarded as operating within different environment [Martin

and Kinkead, 1983]. Hence it can be suggested that any equipment has internal and

external environments where the failure can occur.

The objective of this work is to develop tools capable of systematically monitoring

the environmental properties and health of the equipment such as shovels that

operate under non-stationary and severe conditions in real-time. This will be done

by defining and studying the two major modes of variabilities: internal changes,

which represent the physical changes in the equipment structure, and external

changes, which represent the changes in the environmental properties of the ground

(i.e. ore body). If the external variabilities (change in the environmental properties)

could be successfully detected and isolated, then variability in the emitted energy

can be contributed to the internal variabilities (i.e. structural fault). Therefore, it

is critical to understand whether the machinery’s integrity is compromised or not

and; how the medium characteristics is changing over time.

To study the external variabilities, machine-environment interaction will be
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reviewed and a medium property estimation algorithm will be developed that

accounts for the impact of the environmental variability.

For the study of the internal variability in the system, non-interactive phase of

the operation is investigated using a novel approach. Advanced signal processing

techniques will be used for monitoring the changes in the components of the kinetic

energy of the system and to detect presence of fault.

1.2 Background and Challenges

Forecasting the future of the equipment automation, particularly needed for shovels,

Lever identified three areas where technology gaps need to be addressed [Lever,

2011], with a clear emphasis on the machine and load area situational awareness as

demonstrated in fig. 1.1:

• Machine situational awareness,

• Shovel automation,

• Load area situational awareness capabilities

Equipment integrity and structural health fall under developing and future

development categories related to situational awareness. Terrain information col-

lection e.g. medium characterization lends itself to dig assisting, dig energy and

optimal dig planning and relates to both shovel automation and load area situational

awareness capabilities, depicted in fig. 1.1. These areas are among the developing or

future development efforts. Accordingly, autonomous excavators require advanced

status monitoring capabilities to identify situations associated with the machine and

the environment. This includes monitoring structural and health trends for early

prognostication of events and failures; and on-line information gathering e.g terrain

information for planning every next step [Lever, 2011]. Lever’s study suggested that

such interactive machines should have accurate models with high fidelity.
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Figure 1.1: Autonomous Digger Capability Plan to 2025 after [Lever, 2011]

Some other pioneering studies in automatic excavation have also commented

on the parallel importance of the environmental properties and the equipment

integrity. In a review of the fundamentals of excavation automation, Hemami

categorized the earthmoving equipment based on a number of factors that affect

their operations [Hemami, 1995]. Accordingly, he proposed that the two detrimental

factors highlighted in autonomous earthmoving machinery are the ‘mechanical

properties’ and ‘power requirement’ of the excavation - which are affected by “the
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variation in the properties of the material to be excavated” - and “the structure of

the machine carrying the tool”.

In a more recent group of studies, Frimpong et al. investigated the energy

requirements for the excavation activity, and noted how the change in the property

of the material can result in varying mechanical energy input to the machine, and

deteriorate shovel’s health and longevity [Frimpong et al., 2008a, Frimpong and Li,

2007]. Hence, the power requirement of the earthmoving equipment in general terms

can be defined as a function of the medium property and the ground interaction

force. Knowing that the power is the energy consumed per unit time, one can use

the conservation of energy to explain the Power in/Power out relation:

Energy in ≈ Energy out + Dissipated Energy.

Internal variabilities representing faults (e.g. misalignment and unbalance) may be

reflected in vibration in rotating machinery [Toth and Ganeriwala, 2014, Rameshku-

mar et al., 2011], and presence of these faults can lead into increased vibration,

thereby increasing the energy and power requirements above the normal condition.

Hence, structural integrity, interaction force and power consumption are closely

linked.

Using the ground-tool interaction model and the dynamic model of the equip-

ment, it is assumed that the environment properties are known and time-invariable

[Dechao and Yusu, 1992, Zhang and Kushwaha, 1995, Cannon, 1999, Xia, 2008, Mak

et al., 2012]. This assumptions might be valid in well-controlled environment, but

it is rarely the case in the field: A variety of medium properties can be found in a

given work site. It means that, even though the machine might be digging the same

material, internal properties of the medium can be different. Variability in internal

properties of the medium will vary the required interaction forces [Bernold, 1993].

Assuming the invariability of the medium characteristics significantly increases the

prediction error probability [Tan et al., 2003, 2005a,b, Vahed et al., 2007, 2008],

which will make the system control unstable.
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Figure 1.2: System Level Monitoring: Equipment & Environment Conditions

Although the earlier studies in automated excavation pointed out the need to con-

sider both environmental and structural variabilities, there is still a number of

challenges associated with each of the two subjects. Figure 1.2 summarizes the

equipment and environmental factors, and their effect on the overall equipment.

A. Machine-Ground Interaction Models and Property Estimation

Over the past few decades many have studied the Machine-Ground interaction

models to predict the interaction force. A significant body of work has contributed

to robotic excavation, with a focus on planning and optimizing a dig, or simple

control scheme developments to avoid collision. While they are primarily focused on

predicting the interaction force only, a few of them have attempted to solve the more

challenging problem of estimating the properties of the soil. This is a critical step

for proper assessment of the ground condition, and to identify the environmental
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variabilities. Among the few studies that have tackled this problem, none have been

able to develop a universal property estimation scheme that is capable of handling

both cohesive (c > 0) and non-cohesive (c = 0) materials effectively. This thesis

is intended to fill a gap in the existing body of research and present an enhanced

methodology for property estimation that can be applied to larger selection of

mediums and used for assessment of the ground condition in earthmoving activity.

A variety of models are developed based on classical soil mechanics, plasticity

theory, fluid dynamics and finite element approaches [Gill and Berg, 1967, Godwin

and Spoor, 1977, McKyes and Ali, 1977, Alekseeva et al., 1985, Swick and Perumpral,

1988, Hemami et al., 1994, Karmakar et al., 2009]. These models have been used for

machine-ground interaction control [Hong, 2001, Shekhar and Maciejowski, 2010,

DiMaio, 1998, Richardson-Little and Damaren, 2005, Zweiri et al., 2003, Maeda,

2013], autonomous excavation [Singh, 1991, Bernold, 1993, Malaguti, 1994, Cannon

and Singh, 2000, Singh, 2002, Awuah-Offei, 2005], and for predicting the resistive

force [Vaha et al., 1991, Hemami et al., 1994, Zhang and Kushwaha, 1995, Singh,

1995, Shiau et al., 2008, Awuah-Offei and Frimpong, 2006, Godwin and O’Dogherty,

2007, Frimpong and Hu, 2004]. There are two main streams for approaching the

interaction modeling problem:

The first approach is based on the Fundamental Equation of Earthmoving (FEE)

developed by Reece [Reece, 1964]. An improved form of this equation was developed

by McKyes [McKyes and Ali, 1977] is among the most studied models for predicting

the forces acting on a soil cutting blade. In an effort to predict the interaction

force for automated excavation, Luengo, Singh, and Cannon [Luengo et al., 1998]

developed a reformulated model of the Fundamental Earth-moving Equation (FEE)

for interaction force prediction. They also presented an online method to estimate

the inherent soil properties from measured force data.

The second approach to interaction modeling was developed to overcome the

shortcomings of methods based on FEE model. In his review of the existing methods,

9



Hong argued that the properties estimated based on FEE model in [Luengo et al.,

1998] are not unique [Hong, 2001]. Also, in addition to the interaction forces, other

prior information is also required to make the estimation work. Among a few

other interaction models, Hong examined Coulomb’s earth pressure model, earlier

introduced by Terzaghi [Terzaghi et al., 1995], for parameter estimation and control

of robot-soil interaction. The test apparatus used in Hong’s study had to obey a

certain loading requirements, ruled by a control system. The inherent parameters

of this model were similar to the (FEE) model. Despite the improvement made by

Hong, this method was limited by the number of parameters it could estimate and

the estimation time [Tan et al., 2003].

Following this work, other researchers proposed different methods for soil property

estimation. Tan et al. used a combination of Coulomb’s earth pressure model and

Chen and Liu Upper Bound (CLUB) models for failure force prediction and the

experimental results presented in [Hong, 2001]. They applied the Newton-Raphson

Method (NRM), instead of the parameter space intersection method (PSIM), to

minimize the failure force prediction error, and estimated two parameters of (soil-soil

friction) and (density) for some low-cohesion soil samples [Tan et al., 2003, 2005b,a].

In an attempt to expand the number of parameters they can estimate, Althoefer

et al. used a robotic manipulator and developed a modified version of their estima-

tion method (MNRM) which would estimate two parameters from two separate force

reading, and then use the two estimated parameters and two additional cutting force

readings to estimate the remaining two parameters [Althoefer et al., 2009]. For cohe-

sionless (c = 0) materials, which is a much simpler problem, their algorithm showed

an error of up to 22.1% for estimation of the three remaining parameters. They

also applied their algorithm to moderately cohesive material (moist soil sample).

In order for their method to converge, they used a prior knowledge of approximate

soil parameters to make initial estimates that were sufficiently close or the same

as the actual values. Under these conditions, the relative error in their estimated
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parameters could go as high as 9%. Recognizing the error in estimation is yet based

on a very close initial guess, the algorithm would have very little practical value.

B. Integrity and Structural Health Monitoring

Any device or equipment can fail as a result of degradation processes resulting

from the combined effects of the loading and environmental conditions [Martin and

Kinkead, 1983]. Loading applied on mechanical components has a more pronounced

effect, once it is random or variable. As the variability and randomness gets greater,

it would be more difficult to determine and predict the strength degradation [Gao

et al., 2013]. However, the failure mechanism of mechanical equipment would

involve a failure event initiating a sequence of ‘consequential’ failure events that

may lead into the catastrophic failure of the equipment [Martin and Kinkead, 1983].

Equipment level mechanical failure is often the end product of a series of failures

that are triggered by one of the three basic modes of physical degradation: Cracking,

Deformation and Wear [Martin and Kinkead, 1983]. These degradation processes

are often slow enough to allow for a fault signatures to surface.

With predictive maintenance methods such as condition monitoring potential

failure could be forecasted early enough to take action and avoid system break

down. Over the last decade the science and practice of the condition monitoring

has advanced, and a variety of techniques are now available. The most commonly

used method for rotating machinery, among these methods, is vibration monitoring.

Vibration monitoring or vibration analysis entails measurement of the vibration of

the casing in one or more locations, and processing these signals in order to identify

the presence of abnormalities or defects in elements of the rotating equipment, e.g.

bearings, gears, and shafts [Randall, 2011, John M. Vance, 2010, Girdhar, 2004].

The use of vibration analysis methods for condition monitoring can be classified

into time domain and frequency domain methods. Time domain methods are often

based on statistical analysis techniques, that apply statistical operation such as
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standard deviation and kurtosis on the actual time series of the vibration signal.

Features based on these operations will be defined and used to detect parametric

or pattern changes as the anomaly occurs. Frequency domain methods such as the

Fast Fourier Transform (FFT) on the other hand transform the signals from the

time domain into their corresponding frequency domain. After conditioning the

signal, and similar to time domain analysis, specific operations can be applied on

the transformed signals in order to define appropriate features. These features can

then be used to monitor development and progression of potential failures [Randall,

2011, John M. Vance, 2010].

Mining equipment such as shovels and trucks have a variety of rolling elements

and therefore vibration monitoring techniques have been historically used for fault

detection. A number of studies investigated the application of time-domain anal-

ysis for monitoring the shovel condition [Brown and Jorgensen, 1988, Burrows,

1996, Ramirez, 2009, 2010]. Effective condition monitoring using these methods

often require extensive prior knowledge about the normal operating condition of

the equipment, and also how each of the failure modes will affect the vibration

signature. Development of the database of normal operating conditions, particularly

for machines with transient operating modes has been the subject of many studies

[Timusk et al., 2008, 2009b, McBain and Timusk, 2009].

When it comes to the application of the frequency based methods, there lies

a fundamental challenge. Vibration monitoring for machines that operate under

conditions of constant speed and load could be accomplished through conventional

signal processing techniques e.g. Fourier transform. However, such methods are

not suitable tools for monitoring of equipment that operate under transient and

non-stationary conditions, i.e. in presence of variable load or rotational speed.

Earthmovers and shovels are examples of such systems. Some researchers attempted

to apply the conventional frequency-domain techniques to a period when machine is

not in a transient or non-stationary operating mode [Brown and Jorgensen, 1988,
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Burrows, 1996, Nower, 2013]. Some others have applied modern and improved

signal processing techniques such as order tracking to overcome this challenge. For

example, Saavedra et el. suggested to normalize the machinery vibration data with

order spectrum analysis to relax speed change effects [Saavedra and Molina Vicuna,

2007].

Others signal processing techniques such as Time-Frequency transformations

have also provided more powerful tools for vibration analysis investigation. These

methods will be further discussed in chapter 2. Although these method have shown

promising results, they only have been used for a limited number of applications,

and are still at an early stages of development.

Limited capability of the processing techniques, is not the only challenge. In most

applications of the vibration-based monitoring effective detection of an anomaly

relies on the appearance of particular fault-related frequencies in the vibration signal

emitted from the equipment. A known downfalls of this approach is when the

equipment is operating in the presence of external vibrations that can interfere with

the fault signature. Additionally, the physical distance of the faulty component

from the vibration probe location can also weaken the visibility of the signatures

furthermore.

For machines operating in transient and non-stationary condition, such as in

earthmoving activity, it is desired to use indicators that are sensitive to the condition

of the equipment and not to the condition of operation. Variability of the operating

condition may come from variability in the speed or load [Timusk et al., 2009b]. For

interactive systems (systems that interact with their environment) such as shovels,

an additional source of variability is the change in the environment.

Some earlier studies have suggested the use of novelty detection [Timusk et al.,

2009b,a] to identify the operating mode of the equipment for improved condition

monitoring. However, this approach will not suffice to deal with the complexity of

interactive systems, where the load variability is not sufficiently an indicator of a
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different operating condition. However, if the load variability can be contributed to

environmental variabilities, then a new operating condition can be concluded.

Classical novelty detection is based on the identification of new or unknown data,

that may represent a faulty condition. Some modern novelty detection algorithms,

as stated earlier, can benefit from classification algorithms to detect operating modes

[Timusk et al., 2009b,a].

Unlike the classical novelty detection methods that are sensitive to changes in

the operating condition, system level monitoring allows multiple states of normal

operating condition, by accounting for environmental variabilities. Change in the

system level needs to be tested for environmental variability first. Once external

variabilities are detected and isolated, then the change can be contributed to internal

variability (a physical change in the system), as shown in fig. 1.3. It should be noted

that (internal/external) monitoring can be done concurrently, or in two separate

steps as is the case in this investigation.

1.3 Scope of Work

This work aims to advance the body of knowledge needed for system level monitoring

of earthmoving equipment, such as shovels. Considering the equipment and its

surrounding environment as a system, system level monitoring entails assessment of

the environmental properties, as well as the equipment condition.

This is done in two steps: First, by developing a soil property estimation algo-

rithm for detection of (external) environmental variability, and then by investigating

the changes in the acceleration signal for detection of the internal variabilities

(faults).

A new methodology for environmental property estimation is developed and

validated based on data collected from a custom-designed, laboratory-scale shovel

test rig. The shovel test rig performed dirt-pushing operation during a time-varying
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Figure 1.3: Proposed System Level Monitoring vs. Classical Condition Monitoring

condition of load/speed, and for different attack angles and on a variety of mediums.

Interaction force and other controlled parameters of the shovel rig were monitored

in a laboratory setting and as such is not entirely reflective of the true shovel

operations. Environmental variability was introduced by changing the medium to

be dug entirely, which also discounts the level of complexity an actual shovel might

face during its operation.

The approach used in this work for fault detection is based on monitoring change

in the acceleration signal of the end-effector during the non-interactive period of
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operation. Unlike the conventional methods, the vibration signal of the machine

casing is not used. There were two reasons for this. First, to eliminate the effect

of distance of fault from the vibration probe, and second, to be able to observe

the impact of the fault on the dynamics of the system. The acceleration signal

(measured at the end effector), is more resistent to external excitation, which is a

plus compared to the vibration measurement on the frame. It is hypothesized that

a mechanical fault in key elements of the equipment must dissipate a fraction of the

input energy. With properly defined failure modes, this would change the dynamic

response of the equipment and might become observable (e.g. through acceleration,

speed, or angular velocity).

Consequently, the scope of effort in the investigation of the proposed system

level monitoring is limited to the following:

1. Design, development and fabrication of a shovel test rig with an inherent

time-varying behavior. The shovel test rig will perform a dirt-pushing action

at multiple rake angles which is essential for generating the interaction force

between the machine and environment. It also will provide a platform to

introduce controlled mechanical faults at multiple locations. Such design will

allow investigating both internal and external variabilities.

2. Development and validation of a method for online assessment of the en-

vironmental variability and estimation of the medium property based on

experimental data generated from the dirt-pushing action. It is desired to be

able to handle both cohesive and non-cohesive material.

3. Assess the observability of the internal variabilities (presence of fault) through

the use of the acceleration signal, under non-interactive phase of the operation.

This will be done by developing a baseline for healthy condition, and monitoring

the change in the signal in presence of internal variabilities (i.e. three types

of structural defects). Signal processing techniques in Time and Frequency
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domain will be applied for fault detection.

1.4 Thesis Outline

To better understand the concept of the system level monitoring, Chapter 2 is

divided into two sections and offers the necessary background and trends for external

(Environment) and internal (Equipment) monitoring. Predicting the interaction

force has been the primary focus of the studies in the area of automated excavation,

and is regarded as a subsection of equipment modeling. Pioneering studies in this

area come from geomechanics and civil engineering disciplines. System modeling is

broken down in section 2.1. First, an overview of the fundamental of the interaction

modeling is presented in section 2.1.1. Different approaches to modeling and

important factor for setting up a model, that includes properties of the medium

that undergoes the earthwork in some models, will be reviewed. It is then followed

by the review of the literature on property estimation in section 2.1.2. Medium

property estimation uses the inverses model of the interaction and the measured

interaction force, in addition to some auxiliary assumption in order to predict the

properties of the medium that is being excavated.

The second part of the review is dedicated to the review of equipment condition

monitoring, and its methods and applications in section 2.2. It will offer an overview

of the maintenance paradigm, its relation to equipment reliability and life, equipment

monitoring in earthmoving, and commercial monitoring systems. This chapter

pays particular attention to the reviews of condition monitoring, and provides an

introduction to the types and root causes of the vibration in equipment, especially

rotating equipment. Vibration analysis tools and techniques (in time, frequency,

and time frequency) will be discussed with a particular focus on the methods that

are appropriate for systems under time-varying condition. This chapter will be

concluded with a high level review of the state of the art condition monitoring
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methods for earthmoving equipment.

A high level summary of the remaining challenges toward the development of a

system level monitoring is presented in chapter 3, followed by the description of the

methodology used in this investigation. Sections 3.1 to 3.3 outline the procedures

used in design of the test rig and data collection, and explains the techniques used

for analyzing the data for environmental and equipment monitoring.

The experimental platform designed and fabricated for this investigation is

presented in chapter 4. Description of the apparatus design and its time-varying

behavior and subsystems are reviewed in section 4.2. It is followed by the details of

the data collection system. The remainder of the chapter gives an overview of the

specifications of the shovel assembly, and potential failure modes and their possible

behaviors.

The next two chapters investigate the proposed environmental (external) and

equipment (internal) monitoring: The proposed property estimation algorithm

is presented in chapter 5. This chapter presents the method and formulation

developed for property estimation, underlying assumptions and the steps taken

to validate the estimation method. Experiment details and the results from the

application of the property estimation algorithm are discussed in section 5.3.

Vibration analysis techniques are adopted to monitor the structural integrity

of the equipment through the dynamic parameters of the system in chapter 6.

Experimental procedure for development of the baseline condition (fault free) and

the three faulty conditions is presented. First, a time-domain analysis based on

the statistical features of the signals is used for detection of faulty conditions and

presented in section 6.2.1. Using Principal Component Analysis (PCA) and the

healthy data, a linear transformation was developed that would map the signal from

time domain to a new coordinate system based on principle components. A linear

classifier is then used to separate all four classes of health condition. Upon successful

fault detection and identification (FDI) in time-domain, application of Frequency
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and Time-Frequency domains analysis is discussed in this chapter. Time-Frequency

signal processing techniques such as STFT and HTT are applied on the signals, and

their effectiveness in fault detection is compared.

Chapter 7 summarizes the main results of the work and discusses the limitations

of the proposed methods and directions for future work.
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Chapter 2

Literature Review

Earthwork and excavation entails physical treatment or moving of the earth’s

surface. The task is often done using a piece of earthmoving machinery and requires

interaction with a medium of some sort (soil, gravel or unformed rock).

Application and development of the earthmoving equipment (earthmovers) and

their systems is discussed extensively in a number of references [Rutherford, 1971,

Haycraft, 2002, Tatum et al., 2006a,b]. Earthmovers act like a simple machine in

the sense that they transform the input force applied by the machine (through the

Power train) into the force that the machine exerts on the environment (through

elements of Implement). These two systems, along with the Structure, Control &

information and the Traction system are the five key systems that determine the

capability of a piece of equipment to operate under varying operating condition and

production rates [Tatum et al., 2006a], are shown in fig. 2.1.

Control and information system is the latest addition to the earthmoving systems.

Hence, there’s a lot of development needed in the areas of communication, control,

automation, performance monitoring and health monitoring [Tatum et al., 2006a,

Lever, 2001]. There are already a number of onboard information system that

monitor a set of key parameters associated with each of the systems (e.g. engine

temperature, oil level). Monitoring these parameters will allow users to detect
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Figure 2.1: Machine and Environmental Factors Contributing to the Production,
after [Tatum et al., 2006a]

anomaly or faulty conditions and trigger a maintenance procedure. However, the

progress made to date in this area has been very slow and capabilities developed

toward the autonomous digger plan is much behind the forecasted objectives [Lever,

2001].

The concept of the system level monitoring proposed in the present study, suggest

that for systems that interaction with their environment, critical environmental and

equipment parameters must be monitored. This is particularly important for systems

that operate under variable or non-stationary conditions, e.g mining machinery,

wind turbines, aerospace. This way the variability in the operating condition due to

an environmental factor can be identified and separated from a degradation process

[Bartelmus, 2012].

In this context two streams of research are of particular interest to the present

work. Under the first stream studies that included the external loading in the model

constructed for the equipment will be reviewed. Special attention will be paid to

the ones that accounted for the machine/environment interaction. Also, previous

studies that investigated methods for modeling the interaction force, and applied

inverse models to estimate environmental properties will be reviewed.
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Figure 2.2: Division of Factors Influencing Vibration Signals [Bartelmus, 2012]

Equipment condition monitoring draws on a broad range of topics. Hence, the

literature reviewed for the second stream of studies would have a wider variety.

The review would start with equipment reliability, maintenance paradigms, and

condition monitoring methods particularly the ones applied to rotating equipment.

Then it will explore methods and applications of vibration analysis, and will delve

further into signal processing and statistical approaches for interpreting the vibration

data for systems including non-stationary ones. The review will be concluded by

an overview of the state of the art studies and products in earthmovers condition

monitoring.

2.1 System Modeling

Automated excavation has been a very attractive research area for more than a

quarter century, with a variety of applications from mining in remote and hazardous

area, to space explorations [Seward et al., 1988, Hemami, 1993, Vaha and Skibniewski,

1993, Baiden et al., 1996, Bradley and Seward, 1998, Cannon, 1999, Cannon and

Singh, 2000, Marshal, 2001, Singh, 2002, Huntsberger et al., 2005, Zeng et al., 2007,

Marshall et al., 2008, Shao et al., 2008, Bonchis et al., 2011, Lever, 2011]. Each of
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Figure 2.3: Modeling of Equipment and the Interaction for Earthmovers

these studies contributed to several areas of excavators control and automation, but

one way or another all had to adopt a system model to work with.

While some of the earlier shovel models were mere kinematics or multi-body

dynamic models developed for trajectory planning [Koivo, 1994, Bradley and Seward,

1998], later studies began to develop more detailed models to address complex

problems such as position control [Bernold, 1993, Richardson-Little and Damaren,

2005], load control [Frimpong et al., 2008b, DiMaio, 1998, Salcudean et al., 1997,

Quang, 2000, Richardson-Little and Damaren, 2005], and dig planning [Singh and

Cannon, 1998, Cannon and Singh, 2000, Shao et al., 2008]. These models started

to deploy the machine-ground interaction, accounting for track-terrain and the

tool-ground interaction [DiMaio, 1998, Singh, 1997, Wang et al., 2008], as shown in

fig. 2.3.

Soil-Tool interactions contribute to the external interaction force exerted to the

equipment, and needs to be considered in the dynamic model of the system. Shovels

can be represented as a multi-body mechanism consisting of a series of connected

elements, and actuators at each joint [Koivo et al., 1996]. Hence, benefiting from

the robotic terminology [Spong et al., 2005] the standard equation of motion can

represent the dynamic model of this system as shown in eq. (2.1):

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = τ − JT (θ) FInt (2.1)

where θ is the joint position vector, θ̇ joint velocity vector, M(θ) is the equipment

inertia matrix, C(θ, θ̇) is the manipulator coriolis and centripetal matrix, G(θ) is
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the gravity matrix, τ is joint torque vector, J manipulator jacobian matrix, FInt

is the interaction force vector representing the end-effector contact forces [Luengo

et al., 1998, Richardson-Little and Damaren, 2005]. It is often assumed that the

acceleration and velocity terms are negligible during digging [Luengo et al., 1998],

hence the system model can be reduced to eq. (2.2):

F = JT (τ −G) (2.2)

Therefore, accurate soil parameter identification is essential for precise traction

and cutting force prediction, and machine control. This in return requires the

knowledge of mechanics of the medium e.g. soil, for earthmoving activities and

soil manipulation operations [Selig, 1966]. Although the track-terrain interaction

contributes to the full model of the excavator, by assuming a rigid contact between

the carriage and the ground, the effect of the ground condition on the track-terrain

interaction could be discounted.

2.1.1 Ground-Tool Interaction Models

As describe in previous section for automation and control purposes, a ground

interaction model is a necessary part of the equipment model. Early investigations

and experimental work on the excavation force components have been conducted

by Zelenin et al. [Zelenin et al., 1985], and Alekseeva et al. [Alekseeva et al.,

1985]. These studies developed the earliest empirical methods for calculating the

soil-cutting force based on characteristics of the soil and geometrical parameters of

the bucket. Many other studies in the area of the ground-tool interaction focused on

developing analytical models for cutting force prediction. Cutting force is defined

as the maximum resistive force of a medium on a tool during a general excavation

task before the medium fails. Soil cutting models can be defined and used to

describe the motion of the tool in the medium for both cutting and excavation

actions, using a wide blade or a bucket [McKyes, 1985]. Ideally it is represented
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by a number of parameters of the medium (generally soil), the tool, and the tool

motion [Hemami et al., 1994]. Based on classical soil mechanics Terzaghi [Terzaghi,

1943] developed a method to predict the interaction load between the ground and

an object. In this approach Coulomb’s Earth Pressure theory was used to predict

the magnitude of the total pressure ground and an object (with a relative motion)

could apply on each other. Active pressure (FA: pressure applied to the back of

the of the object) and passive pressure (FP : pressure required to fail the soil in

front of the object) could be calculated and used to predict the total amount of the

interaction force (F = FP − FA). A number of studies have adopted this model for

soil-tool interaction [Hong, 2001, Tan et al., 2003, 2005b]. Reece also developed

the Fundamental Equations for Earthmoving mechanics based on soil mechanics

[Reece, 1964]. Reece et al. later on presented an additive equation for calculation of

the forces required to produce any kind of two-dimensional soil failure [Hettiaratchi

et al., 1966]. This model got improved and further developed by McKyes [McKyes

and Ali, 1977], which became one of the most used models for predicting the forces

acting on a soil cutting blade. In addition to the studies mentioned above, many

have developed and improved a variety of methods for 2-D and 3-D soil failure [Gill

and Berg, 1967, Godwin and Spoor, 1977, Swick and Perumpral, 1988], and also

models based on Computational Fluid Dynamics principals Karmakar et al. [2009],

Karmakar and Kushwaha [2006], Finite Element Shiau et al. [2008], and Discrete

element method Franco [2005], Asaf [2006], Franco et al. [2007], Shmulevich et al.

[2007], Shmulevich [2010], Mak et al. [2012], Obermayr et al. [2011], Obermayr M.

[2013], Obermayr et al. [2013].

Hemami et al. expanded this research in a series of studies, added more details

and established a mathematical basis for interaction modeling [Hemami et al., 1994,

Hemami, 1995, Hemami and Hassani, 2007].

Hemami broke the ground-tool activities into (cutting, digging and scooping) and

explained how these activities may involve one or more of the following key forces
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Figure 2.4: A Simple Mass/Spring/Damper Model to Describe a System of the
Cutting Tool and Excavation Medium

[Hemami and Hassani, 2007]: The weight of the soil accumulated in the bucket,

the compacting resistance of the soil in front of the bucket blade, the friction force

between the soil and the bucket walls, and the cutting force required to shear the

soil. He discussed the case of a one-dimensional excavator, where single blade (tool)

is connected to a hydraulic cylinder and is inserted into a heap of soil [Hemami,

1995]. The tool assembly (actuator and blade), and the material can be modeled

as two systems of mass-spring-damper system, as shown in fig. 2.4. Material, as

seen in the model, has a larger stiffness (KR), mass (mR) and damping factor (bR).

Applying active force FA to the tool, and in presence of the resistive force FR, the

equation of motion can be defined as:

FA −KA(xA − x)− bA(ẋA − ẋ)

− (mA −mR)ẍ− kRx− bRẋ− FR = 0
(2.3)

where, xA and x are the displacements of the actuator and the material respec-

tively. Bucket’s motion through the medium, shown in fig. 2.5, is very similar to
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Figure 2.5: Shovel’s Bucket Interacting with the Environment (adapted from
[Richardson-Little and Damaren, 2005])

the motion of the blade, and this approach can be applied. Equation (2.4) presents

a simple rheological model for the interaction force between the bucket and the

ground. This way the interaction force can be modeled as a passive resistance to

motion (in vertical and horizontal directions).

Mtρ̈+Btρ̇+Kt(ρ− ρenv) = FInt (2.4)

where, ρ = [x y]T , and ρenv = [xenv yenv]
T .

Penetration represent a vertical insertion of the tool in the medium, motion in y

direction, while cutting is a lateral motion, in x direction, into a medium. The tool

is a solid, blade-like body, which is inclined (attack angle α) and usually maintained

at a constant depth (h) and with respect to the surface of the medium, as shown

in fig. 2.6. Soil progressively fails at a regular interval as the tool moves forward

through it. This forms a sawtooth force profile that represent the built up force at

the blade interface. Once the built up force is enough to shear soil, it will shear

along a new rupture surface. The phenomena is shown in fig. 2.5, with an example

of the resultant force shown in fig. 2.7. Recalling eq. (2.4), the stiffness parameter

of the environment (Kt), relates to the depth of penetration, and resets to zero

every time soil fails. Damping coefficient (Bt), represent the soil-tool friction, and
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Figure 2.6: Rheological Modeling of the Bucket-Ground Interaction Using Spring-
Damper: Bucket Is Moving Left and Down.

only produces the frictional component of the interaction force when the tool moves

forward. Lastly, mass parameter (Mt) relates to the soil accumulated in front of the

tool. The medium under excavation deforms plastically, whereas the spring term

represent elastic deformation. Variability in soil parameters (e.g. density, texture

and moisture) is a major challenge in modeling the interaction force and hence an

obstacle for control and automation [DiMaio, 1998], whereas varying the stiffness

parameter has a limited effect on the model.

Many of the studies in the area of ground-tool interaction are based on the

Figure 2.7: Example of the Interaction Force Cycles Due to Progressive Soil Failure
(adapted from [Richardson-Little and Damaren, 2005])

28



pioneering work of Reece, Hettiaratchi and McKyes in 70s. Due to the importance

of these studies, two of these approaches will be reviewed. In one approach the

Fundamental Earthmoving Equation (FEE) is used for interaction force prediction

[Reece, 1964, McKyes and Ali, 1977, Hettiaratchi et al., 1966]. This model is

well-known and many researchers have developed different variations of it [Luengo

et al., 1998]. The other important approach to the interaction modeling problem

applies the Coulomb’s earth pressure model introduced by Terzaghi [Terzaghi, 1943]

for prediction of the interaction force [Liang et al., 1985].

2.1.1.1 Fundamental Earthmoving Equation (FEE)

By the time Reece tackled the soil cutting problem, it was already known that the

force required for a cutting blade in earthmoving can be expressed as a function of

soil and tool properties shown in fig. 2.8:

F

γd2
= f(

c

γd
, φ, δ,

ca
γd
,
q

γd
, θ) (2.5)

This was is based on the idea that the mechanics of earthmoving are similar

to the bearing capacity of shallow foundations on soil, where soil weight, cohesion

and surcharge pressure can be added to produce the maximum bearing pressure.

Equation (2.5) represents a dimensionless relationship between the draught force,

cohesion, internal friction, soil-metal friction, soil-metal adhesion, and surcharge

force due to gravity [Reece, 1964]. In this equation, θ represented the shape of the

engaging tool, which can be described by the rake angle for the case of an inclined

plate. Velocity did not show up in the equation, as it is widely accepted that the

rate of shearing does not appreciably affect the shear strength of soil for earthmoving

machinery.

Reece developed the fundamental earthmoving equation (FEE) in [Reece, 1964]

which was later adopted and improved by McKyes [McKyes and Ali, 1977, McKyes,
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Figure 2.8: Cutting Soil with a Blade Can Be Modeled with FEE (after [Luengo
et al., 1998]): F Is the Total Tool Force, W Is the Weight of the Moving Soil in Front
of the Blade, Q Is the Surcharge Pressure Vertically Acting on the Soil Surface, R
is the Force Resisting Movement of Wedge

1985] into the following form:

F = (γgd2Nγ + cdNc + qdNq)w (2.6)

where γ is the total soil density, g is the acceleration due to gravity, d is the

tool working depth below the soil surface, c is the soil cohesion strength, q is the

surcharge pressure vertically acting on the soil surface and w is the tool width. Nγ ,

Nc, and Nq are factors which depend not only on the soil frictional strength, but

also on the tool geometry and tool to soil strength properties [McKyes, 1985, Luengo

et al., 1998] presented in eq. (2.7).

Nγ =
cot ρ+ cot β

2 [cos(ρ+ δ) + sin(ρ+ δ) cot(β + φ)]

Nc =
1 + cot β cot(β + φ)

cos(ρ+ δ) + sin(ρ+ δ) cot(β + φ)

Nq =
cot ρ+ cot β

cos(ρ+ δ) + sin(ρ+ δ) cot(β + φ)

(2.7)
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Figure 2.9: For a Soil-Tool system with Known γ = 1.3t/m3, φ = 35◦, c = 30 kPa,
δ = 25◦, α = 30◦, w=90 cm and d=30 cm, Nγ and Nc Can Be Found to Be 1.8 and
1.86. This Allows to Calculate the Cutting Force of the Excavator Bucket F=16.9
kN (Example after [McKyes, 1985])

Luengo et al. reformulated the soil-tool model to account for inclined surface

and surcharge accumulation, and decomposed the total force into the following three

forces [Luengo et al., 1998]:

Fs = d2wγgNγ + cwdNc + Vsγg(Nq − 1)

Fg = Vsγg

Fr = Vrγgd

(2.8)

Where Fs is the cutting force experienced at a blade, Fg is the gravity force, Fr is

the remolding force (in case bucket is used). Note that in eq. (2.8) the gravitational
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Figure 2.10: Static Equilibrium Analysis for the reformulated soil-tool interaction
after [Luengo et al., 1998]

force (Fg) has been subtracted from the cutting force equation (Fs) so that it is not

accounted for twice.

The update parameters of Nγ, Nc, and Nq can be described as:

Nγ =
(cot β − tanα)(cosα + sinα cot(β + φ))

2 [cos(ρ+ δ) + sin(ρ+ δ) cot(β + φ)]

Nc =
1 + cot β cot(β + φ)

cos(ρ+ δ) + sin(ρ+ δ) cot(β + φ)

Nq =
cosα + sinα cot(β + φ)

cos(ρ+ δ) + sin(ρ+ δ) cot(β + φ)

(2.9)

2.1.1.2 Mohr-Coulomb Soil Model

Terzaghi described the interaction of a cohesive material and frictional object with

a relative motion in [Terzaghi, 1943, Terzaghi et al., 1995, McKyes, 1985]. He

adopted the Coulomb’s theory of earth pressure - a Limit Equilibrium Method - to

calculate the active and passive pressures, and to predict the soil failure force when
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Figure 2.11: Coulomb’s Earth Pressure Model after [Hong, 2001]

cutting the soil with wide blades (a large width to depth ratio, near 5:1 or greater).

Limit equilibrium methods investigate the equilibrium of the soil mass tending

to slide down under the influence of gravity. These models, which pre-assume a

failure surface and compute a force equilibrium based upon this failure surface, are

commonly referred to as limit equilibrium methods. Mohr-Coulomb failure criterion

is presented in appendix A. One limitation to the theory proposed by Coulomb is

that for soil-tool interfaces that exhibit friction, the larger the friction angle is, the

greater the prediction error will be[Hong, 2001]

Hong [Hong, 2001] reformulated the equation to account for the sloped surfaces

and inclined tools as shown in fig. 2.11. To calculate the failure force, the required

soil parameters are: soil density γ, soil-tool interface (external) friction angle δ,

soil-soil internal friction angle φ, and soil cohesion c. Required geometric properties

of the tool include: height of the blade H, the rake angle of the blade with respect

to horizontal axis α, and angle of soil surface β.

The net force on the plate at failure for cohesive material can then be expressed

as [Terzaghi et al., 1995]:

F (α, β, φ, δ, c, γ, ) = FP − FA

=
1

2
γH2

([
KP +

4c

γH

√
KP

]
−
[
KA −

4c

γH

√
KA

]) (2.10)
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Where FP is the passive force and FA is the active force for cohesive material,

and passive and active pressure coefficients can be described as [Hong, 2001]:

KP (α, β, φ, δ) =
sin2(α− φ) cos δ

sinα sin(α + δ)
[
1−

√
sin(φ+δ) sin(φ+β)
sin(α+δ) sin(α+β)

]2

KA(α, β, φ, δ) =
sin2(αA + φ) cos δ

sinαA sin(αA − δ)
[
1 +

√
sin(φ+δ) sin(φ−βA)

sin(αA−δ) sin(αA+βA)

]2
(2.11)

In active pressure coefficient, αA= π - α and βA = - β.

2.1.2 Medium Property Estimation

Priory knowledge of the mechanical properties of the medium (e.g. density ρ, internal

friction angle φ, cohesion c) and soil-tool properties (e.g. soil-tool friction angle δ)

is the key to accurate prediction of the interaction force. These parameters can be

measured directly with basic equipment available in a soil mechanics lab [Terzaghi

et al., 1995, Anochie-Botaeng, 2007, Stafford and Tanner, 1983a,b]. However, direct

measurement of these parameters require multiple steps, and are often very time

consuming.

Since the soil under excavation is not always homogenous, its mechanical prop-

erties can vary dramatically from one location to another. Hence using the lab data

for prediction of the interaction force is not an effective choice in such a dynamic

environment. This has motivated development of an on-line estimation algorithms

for medium property, which can give in-situ information as the machine continues

its operating.

Figure 2.12 demonstrates the basic idea behind the use of property estimation

for real-time interaction force prediction. In theory, property estimation algorithms

employs the inverse model of the tool-ground interaction and the external force

measurements, to provide an estimate for the mechanical properties of the medium.

34



Figure 2.12: On-line Medium Property Estimation and its Implication for Interaction
Force Prediction

An effective estimation algorithm will account for the critical mechanical properties

and specific properties of the tool-ground, while minimizing the error between the

measured and predicted force. Obviously, the estimated properties can be compared

to the directly measured values for validation.

Pioneering work on soil property estimation has been conducted for surface

sampling in space explorations. Viking 1 and 2 landers (1976-1978), and the

Pathfinder lander (1997), conducted studies of soil properties on Mars [Hong, 2001].

In the former mission, investigators measured the force applied by a robotic arm,

and estimated the cohesion (c), and internal friction angle (φ) using the model

developed by McKyes [McKyes and Ali, 1977], presented in section 2.1.1.

There are two major streams of studies in parameter estimation: the first group

of studies were carried out by Singh et. al. [Luengo et al., 1998, Cannon, 1999,

Cannon and Singh, 2000] that applies the FEE soil-tool model. The other group

of studies started with the extensive study carried out by Hong [Hong, 2001] on

property estimation for cohesionless material. Inspired by this work, Tan et al.

conducted a series of theoretical work on cohesionless material applying the Mohr-

Coulomb soil model. Their work eventually evolved into experimental work that

tackled property estimation for cohesive material [Tan et al., 2003, 2005b,a].
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Figure 2.13: Soil Property Estimation Algorithm Using the FEE Model [Cannon
and Singh, 2000]

2.1.2.1 Estimation based on the Fundamental Earthmoving Equation

Defining Γ as a function of the geometry of the Tool/Terrain intersection, and Ψ as

a function of the inherent properties of the soil

Γ = f(d, α, ρ, Vs)

Ψ = g(δ, φ, β, γ, c)
(2.12)

the resistive force F (force acting on the tool) can be presented as:

F = f (Γ,Ψ) (2.13)

Assuming, F̂ = Γ̂Ψ where F̂ and Γ̂ are the actual measured values, then Ψ can

be estimated by forming the pseudo-inverse of the geometry matrix:

Ψ = (Γ̂T Γ̂)−1Γ̂T F̂ (2.14)

Due to the difficulties arising from the non-linearity of the FEE interaction model

presented in eqs. (2.8) and (2.9), the equation is not invertible [Luengo et al., 1998,

Cannon, 1999, Cannon and Singh, 2000]. Therefore, finding the soil parameters

(vector Ψ) requires solving an optimization problem, as shown in fig. 2.13: finding

Ψ that minimizes the difference between the predicted and measured forces.
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Exhaustive search was one of the methods used by Cannon et al. and the

results were considered to form a baseline. They applied two other optimization

methods, efficient gradient descent and the stochastic search, on 20 digs to extract

soil parameters. Best estimation was possible using the exhaustive search (after

almost 20 hours). While the stochastic search estimates the properties in as quickly

as 4 minutes, but convergence was non-uniform. Cannon et al. reported a force

prediction accuracy roughly within 10-60%, but they did not assess the error of

their soil property estimation method.

2.1.2.2 Estimation Based on the Coulomb Earth Pressure Model

Hong applied limit equilibrium techniques (including Mohr-Coulomb, Ohde, and

Caquot & Kerisel) introduced in [Terzaghi et al., 1995], and Limit analysis methods

(Chen & Liu CLUB model, Numerical FE model) for interaction force prediction

[Hong, 2001].

In this approach a flat blade is inserted into cohesionless soils, at a fixed depth

of insertion and constant soil surface (horizontal), sets of forces required to fail the

soil at various attack angles are recorded. The problem then is reduced to finding

estimates of the physical soil properties given these sets of data pairs {αn, Fn}:

where αn is the tool angle for the nth measurement and Fn is the force required

to move the embedded plate and fail the soil. Using these data pairs, the goal is

then to invert the soil models to determine the estimates φ̂, δ̂, and γ̂ which would

account for these measurements.

Hong used a nonlinear optimization methods (weighted sum squared error)

presented in eq. (2.15), and discussed that the mapping of parameters to forces are

non-unique.

WSSE(φ, γ, δ) =
∑
n

(
Fn − Fpred(αn, φ, γ, δ)

Fn

)2

(2.15)

To overcome this problem, he developed the Parameter Space Intersection
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Figure 2.14: Robotic Arms Used for Soil Parameter Estimation in [Althoefer et al.,
2009] (left and middle) and [Hong, 2001] (right).

Method (PSIM), a graphical method for model inversion. PSIM uses pre-computed

tabulated model predictions for the estimation of the properties of the cohesionless

soils in the parameter space (φ, γ, and δ) which are consistent with a given set

of measurements with associated uncertainties. Hong claimed that the estimated

values are in agreement with the direct shear results to within approximately 3◦.

Exploring other non-linear optimization techniques for model inversion, Tan et al.

applied Newton-Raphson Method (NRM) on the same data from Hong’s experiments

[Hong, 2001] and estimated two parameters of φ and γ for some cohesionless soil

samples. They reported the same accuracy as in PSIM, but 25 times faster when

Figure 2.15: Soil Property Estimation Scheme Based on Newton-Raphson Method
Adopted from [Tan et al., 2005b].
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using Mohr-Coulomb model (in the order of 0.05 s) and 2000 times faster when

using Chen & Liu CLUB model (in the order of 0.2 s) [Tan et al., 2003]. Using a

combination of Coulomb’s model and Chen & Liu Upper Bound (CLUB) model, Tan

et al. applied the Newton-Raphson optimization technique to replicate the results

presented in [Hong, 2001]. The optimization technique was used to minimize the

failure force prediction error as depicted in fig. 2.15, and estimated two parameters

of φ and γ for some cohesionless soil samples [Tan et al., 2003, 2005a]. It was also

found that the Mohr-Coulomb model provides much better prediction once the

attack angles α ≤ 80◦.

Modifying their estimation method, Althoefer et al. used a robotic manipulator

to conduct a series of dig and estimate four parameters: (δ) and (γ) from two

separate force reading, and then using the two estimated parameters and two

additional cutting force reading to estimate the remaining parameters of (φ) and (c)

depicted in fig. 2.16 [Althoefer et al., 2009, Tan et al., 2005b]. Applying the Modified

Newton-Raphson Method (MNRM) on non-cohesive material (c = 0), they observed

relative error of up to 22.1% in the three remaining parameters estimates. They

also applied the method on moderately cohesive material (watered soil sample),

where the convergence and accuracy of the estimates required initial values that

were sufficiently close or the same as the actual values.

2.2 Maintenance & Condition Monitoring

Reliability is defined as the ability of a component or a system to perform its

required functions under the desired conditions of operation within a given time

frame. Therefore most equipment maintenance programs are designed around the

philosophy of delivering reliable equipment consistently [Tomlingson, 2009]. These

maintenance programs are aimed to improve equipment reliability, to lower the

downtime and also to allow realizing the productivity built into the equipment
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Figure 2.16: MNRM Using the Hybrid Soil Model: Each Module Computes Estimates
for the Two Soil Parameters, Reducing the Error Between Estimated Forces Fe
and Measured Forces Fm at Different Attack Angles α1, α2, α3, and α4 at Each
Iteration. The Cycle Is Repeated Until the Overall Force Error Is Below a Predefined
Threshold. After [Althoefer et al., 2009]

[Sottile and Holloway, 1994].

Traditional maintenance strategies were developed solely on time-based actions

such as inspections, component replacements, and overhauls, assuming the equip-

ment’s reliability degrades proportional to the time in service. This is not necessarily

the right assumption for equipment and machines that operate in variable condi-

tions. For a given earthwork activity, carried out with a piece of earthmoving

equipment, of the proper power capacity, the active force delivered to the tool

must be greater than the resistive force of the medium. However, if the resultant

of the excavating force is greater than the capacity of the excavating machine (in

terms of power, or rigidity of the elements) it can cause damage to the elements

of the power terrain (motor/engine, hydraulic system, gears and bearings) as well

as the structural components of the equipment [Hemami, 1995]. In addition to the

excessive external loading, there are a handful of other sources that could cause

component and machine level failure. Infant mortality, reaching the end-of-service

life of the parts, poor maintenance, equipment misuse or poor operating method,

and pre-existing conditions are some of the examples or the failure root cause. A
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Figure 2.17: Taxonomy of Maintenance Philosophies According to [Kothamasu
et al., 2006].

component failure may lead to consequential damage to other parts of the machine,

long and costly shutdowns, and a high opportunity cost of lost production [Ma-

jumdar, 1995, Dhillon, 2008, Hall and Daneshmend, 2003, Dhillon, 2002, Edwards

et al., 2002]. Depending on the criticality of the equipment, implementation of the

maintenance program could vary from simple reactive maintenance based on “Fail

and Fix” approach, to more complicated proactive maintenance approaches that

employ advanced condition monitoring techniques. In preventative (time-based)

and Predictive (condition-based) methods, potential failure could be predicted

early enough to take action and avoid system/functional break down. Figure 2.17

demonstrates the reactive and proactive trends in maintenance practices [Girdhar,

2004].

2.2.1 Condition-Based Maintenance

One of the most cost efficient methods for critical equipment maintenance is Predic-

tive Maintenance (PdM), with the focus on the equipment condition as it is operating.

It relies on incipient failures and the resultant change in some of the monitored

parameter [Randall, 2011]. Condition-based maintenance (CBM) is commonly used

for diagnostic (identifying the nature or cause of a failure) and prognostic (prediction

about how a failure will develop) [Jardine et al., 2006], through detection of a change
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Figure 2.18: Condition Monitoring Allows Early Detection of Potential Failures
[Tomlingson, 2009].

in the features of a system (potential failure/fault) that could be an indication of a

functional failure down the road, as shown in fig. 2.18. Any fault detection system

comprises of data collection, feature extraction and assessment of the features. The

two main streams in fault detection are pattern-based methods and model-based

methods. Model-based methods can only be applied to systems where the complete

physics of the system is understood well enough to construct a model under both

acceptable and unacceptable operations. On the other hand, pattern-based methods

function by distinguishing the patterns of ‘acceptable’ from ‘unacceptable’ based

on a limited knowledge of the system, gained from system’s behavior, operation

or certain parameters. The change in the pattern of the system, compared to the

frame of reference (often the normal operating condition), is an indication of fault

presence. Fault diagnostic (or pattern recognition) is commonly described as a

mapping between the information from measurement space or feature space to

machine faults in the fault space [Jardine et al., 2006], and is tied very closely to the

detection concept. Vibration is the main parameter for monitoring many mechanical

systems. Other parameters of interest are the lubricant composition, temperature

and noise.
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2.2.2 Vibration Analysis

Mechanical vibrating systems can be modeled with three elements: inertia element,

elastic element, and damping element [Bobrovnitskii, 2007]. The dynamic state of

such systems can be fully described by one variable that characterizes deflection of

the inertia element from the equilibrium position as shown in fig. 2.19.

It is commonly accepted to represent a general Single-Degree-of-Freedom (SDOF)

system as the mass-spring-dashpot system shown in fig. 2.19 with:

mẍ(t) + cẋ(t) + kx(t) = f(t) (2.16)

where x(t) is the displacement of the mass from the equilibrium position, and

f(t) is an external force applied to the mass - in the form of Re(fejwt) for harmonic

vibrations. The three terms in the left-hand side of the equation represent the

force of inertia, dashpot reaction force, and the force with which the spring acts

on the mass. Common for all types of vibration is that the mass gives rise to an

inertia force, the spring acts as an elastic restoring force, and the damper acts as

a converter of mechanical energy into some other form, most commonly heat. To

apply the results to physically different SDOF systems, the parameters m, k, c, and

the displacement x should be replaced by the corresponding quantities as shown in

fig. 2.19. Equation (2.16) can be generalized to represent the equation of motion of

Multi-Degree-of-Freedom (MDOF) systems with N degrees of freedom as well:

Mẍ(t) + Cẋ(t) + kx(t) = f(t) (2.17)

where x(t) and f(t) are the displacement and external force vectors associated

with each element.

x(t) = [x1(t), x2(t), . . . , xn(t)]T

f(t) = [f1(t), f2(t), . . . , fn(t)]T
(2.18)

Vibration in most mechanical systems involves the periodic oscillation of energy

from potential to kinetic [McBain, 2012]. Linear mechanical vibrations can be
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Figure 2.19: Examples of Single Degree of Freedom (SDOF) System (after [Bo-
brovnitskii, 2007])

described in exponential form [Petersson, 2007]:

ξ(t) = Re[Aejwt] (2.19)

where A is the amplitude - which is complex in general - and it has a phase

shift relative to some reference, and ξ is the mass displacement. Vibration power

represents the energy transmitted per unit of time along continuous lines or discrete

points in vibrating structures [Heo and Kim, 2015]. Non-stationary processes such

as vibrations resulting from impacts encompassing a finite amount of energy are

assessed by means of

E =

∫ Tp

0

F (t)ξ(t)dt =

∫ Tp

0

Re[F̂ jwt] Re[ξ̂ejwt]dt

=
1

2
Re[F̂ ξ̂∗]

(2.20)

where F(t) is the excitation force, and the ∗ denotes the complex conjugate.

Similarly, those processes that can be considered stationary, can be assessed by
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means of the power averaged over time:

W = lim
T→∞

1

T

∫ T

0

F (t)
∂ξ(t)

∂t
dt

= lim
T→∞

1

T

∫ T

0

Re[F̂ jwt] Re[ ˆ̇ξejwt]dt

=
1

2
Re[F̂ ˆ̇ξ

∗
]

(2.21)

where ξ̇ is the velocity in the direction of the force F. The advantage of using

energy or power is seen in the fact that the transmission process involves both

kinematic (motion) and dynamic (force) quantities.

The mechanical vibration process can be summarized into four main steps as

depicted in fig. 2.20: A mechanism triggers the vibration (generation), oscillatory

energy transfers from the mechanisms of generation to a passive structure (trans-

mission), energy distributes throughout the structural system (propagation) and

finally power imparts to the environment (radiation). Rotating and reciprocating

equipment, even in good condition, can generate vibrations. These vibrations can

be directly linked to periodic events in the machines operation, such as rotating

shafts, meshing gearteeth, rotating electric fields, and so on Randall [2011].

Imparted energy flows into the subsystems, whereas parts of it turns into energy

losses. The power balance for two coupled subsystems is illustrated in fig. 2.21 where

power is injected in subsystem 1 W1in. This is partially transmitted to subsystem 2

W21, and partially dissipated W1diss. Similarly, the power transmitted to subsystem

2 is partially retransmitted to subsystem W12 and partially dissipated W2diss. This

Figure 2.20: Mechanical Vibration As A Process (after [Petersson, 2007])
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Figure 2.21: Energy Flows in Two Coupled Subsystems (after [Petersson, 2007])

means that the power balance for the system can be written as:

W1in +W12 = W21 −W1diss

W21 = W12 +W2diss

(2.22)

When the number of modes in a frequency band (modal density) gets sufficiently

large, it is often more appropriate and convenient to consider an energetic description

of the vibration [Petersson, 2007]. This way, the distribution of the energy throughout

the vibrating system can be estimated. A remarkable feature of this description is its

capability to capture the variation in the vibration characteristic of the system. For

example, small geometrical deviations from a nominal design have a strong influence

on the transmitted vibration frequency [Petersson, 2007]. Note that the power

transmitted between two subsystems is proportional to the energy of the emitting

subsystem and, hence, to the average mean square velocity, where the equality of

kinetic and potential energies for resonantly vibrating systems is invoked [Petersson,

2007]. A spatial average is denoted by 〈〉 enclosing the variable. Accordingly, the
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energy flows can be written as:

W21 = C21〈ξ̇1
2〉

W12 = C12〈ξ̇2
2〉

(2.23)

where C21 and C12 are coefficients that are dependant of the spatial and temporal

coupling of the two vibration fields.

Vibration analysis works on the premise that defects in a machine change the

normal vibration signature in a way that can be related to the fault [Tomlingson,

2009, Randall, 2011]. Mechanical objects vibrate in response to the pulsating force of

a machine defect. An increase in the vibration amplitude, can signify the growth of

a potential defect. Vibration monitoring can reveal problems in machines involving

unbalance, misalignment, looseness and impact. It can uncover and track the

development of defects in machine components such as bearings, gears, belts, and

drives Tomlingson [2009]. In moving systems, potential energy can be temporarily

stored in rotor shaft deflection, bearing deflection, or the deformation of the machine

elements [McBain, 2012]. Temporary spring-like storage can be found in virtually

every component of the machinery [McBain, 2012], and which can cause vibration

when released. The basic problem of the condition monitoring is further explained

next.

Source of information in Vibration signal

Measured vibration signals are always a combination of source effects and trans-

mission path effects. The contribution to the response at one measurement point

from one source, in the time domain, is a convolution of the force signal with the

impulse response function (IRF) of the transmission path from the source to the

measurement point [Randall, 2011]:

xi =
∑
j

sj ∗ hij (2.24)

where sj is the source, and xi is the measured impulse response. In the frequency

domain this simplifies to a product of their respective spectra, the spectrum of the
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Figure 2.22: Combination of Forcing Function and Transfer Path to Give Response
Vibration for One Source (after [Randall, 2011].

IRF being equal to the corresponding frequency response function (FRF), and can

be presented as:

Xi =
∑
j

SjHij (2.25)

where Sj , and Xi are the Fourier transform of their respective signals in eq. (2.24).

Figure 2.22 depicts the combination of forcing function and transfer path to give

response vibration for a single source. Here, ‘mobility’ is the FRF corresponding

to force input and vibration velocity output. Identifying a change in response

vibration, the diagnosing problem is to decide whether the change has occurred at

the ‘source(s)’ or in the ‘structural’ transmission path. While in many cases, the

change at the source (e.g. increase in imbalance, change in the gear meshing force,

etc.) is the root cause of the change in the condition, there are also instances where

the changes in the structural response can be due to other types of faults (e.g. a

developing crack in a machine element) [Randall, 2011].

An example with a combined effect is a developing tooth root crack that affects

the local structural properties (i.e. the stiffness), but in terms of responses at the

bearings this can be interpreted as a change in the forcing function at the tooth

mesh. Another example is the case of a crack in a moving element, if the crack is

breathing, that is opening and closing every revolution of the shaft, the character of

the forcing function changes (increases or decreases) as the crack opens and closes,
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which would change the magnitude of the responses at each those instances [Randall,

2011, Shih and Chung, 2013].

Signal Classes

Most machine components (e.g. gears, bearings, etc.) give rise to specific vibration

signals that characterize the behavior of the component. This allows to distinguish

them from other components It is well-known that gear-generated signals are usually

at harmonics (integer multiples) of the associated shaft rotation speeds, whereas the

frequencies associated with the bearings are not [Randall, 2011]. The presence of a

defect in machine parts can change this characteristic of the component, depending

on the failure mode. Signals are often distinguished by the repetition frequencies

of periodic events, which justifies the use of frequency spectrum for studying how

their constitutive components are distributed with frequency.

The characteristics of the signal under study determines what signal processing

techniques should be used. Signal classes can basically be broken down into two

classes of ‘stationary’ and ‘non-stationary’ as is presented in fig. 2.23. Stationary

signals have statistical properties that are invariant with time. If the signal does

not satisfy the conditions for stationarity, it is considered non-stationary.

Figure 2.23: Main Signal Categories (after [Randall, 2008])
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Stationarity condition for deterministic signals means that they are composed

entirely of discrete frequency sinusoids, and their value can be predicted. The

frequency spectrum of deterministic signals (i.e. Periodic and Quasi-periodic)

consists of discrete lines at the frequencies of those sinusoids as shown in fig. 2.24.

On the other hand, the value of the random signals cannot be predicted, however

they have unchanging statistical properties. Stationary random signals do not

appear very different in the time domain from the quasi-periodic signal, but their

spectrum is entirely different, with no discrete frequencies as shown in fig. 2.24.

Non-stationary signals can be divided into two main classes, continuously varying

and transient. Transient signals only exist for a finite length of time and are typically

analyzed as an entity. Typical example of transient signal is the impulsive force,

and the impulse response of the structure to which the force is applied. The energy

and power of the signal can be used to distinguish between transient and continuous

signals. The true power associated with a vibration signal is related to the square

of its amplitude. A transient signal has an instantaneous power at each point in

time but is characterized by the integral of this power over its whole length in time,

this being called its energy. Energy of the non-stationary transient signal is finite

and explained earlier in eq. (2.20). Cyclostationary signals by definition have power

which is always positive but varies periodically with time, and so their total energy

is infinite.

Vibration signals measured during the run-up or coast-down of a machine, also

have a finite length, but are considered as continually changing non-stationary

signals, rather than transients. They are analyzed by being divided into short

quasi-stationary sections, to see how their power varies with time (time/frequency

analysis). Continuously varying non-stationary signals will often be treated by the

techniques of time/frequency analysis.
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Figure 2.24: Typical Signals in the Time and Frequency Domains (after [Randall,
2008])

2.2.2.1 Vibration Signature and Failure Modes

Every machinery can be considered as a mechanical multi-body systems which is

made of several components. These components can be divided in two major groups:

links, that is, bodies with a convenient geometry, and joints, which introduce some

restrictions on the relative motion of the various bodies of the system [Flores et al.,

2011]. Signals generated from machines during constant speed and load condition,

are typically stationary and/or cyclostationary, whereas start-up and coast down

signals are non-stationary signals. Most faults manifest themselves at a frequency

corresponding to the speed of the shaft in question, e.g. 1× (one time), 2× (two

times), and so on. Changes in vibration signals are ascribed to changes in condition,

so it is important to pick up the fault signature incorporated in these signals through
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Figure 2.25: Some of the Machinery Defects Detected using Vibration Analysis.

the use of proper transducers (i.e. proximity probes, accelerometers, encoders).

Radial vibration is in the plane perpendicular to the axis of rotation, and can be

detected by radial vibration transducers (accelerometers and proximity probes) as

a result of their radial component. Some failures in machine components occur

because of excessive torsional vibration. Torsional vibrations, are variations in

angular velocity of the shaft, result directly from the fluctuating torque (that can

be associated with a varying loading in a reciprocating system).

Vibration signal generated by the machine components defect - depending on

their geometry - can be produced at different harmonics of the rotating shaft and in

different direction, e.g. the unbalance gives a response primarily at 1× in the radial

direction, and the vibration from misalignment amplifies a response at 2× and in

the axial direction. Figure 2.25 summarizes the commonly witnessed machinery

faults diagnosed by vibration analysis.

Unbalance and misalignment are two very common type of faults, where the

asymmetric mass distribution of the rotor produces centripetal forces that rotate with

the rotor and causes high vibration. These faults along with mechanical looseness,

rotor rub, bearing and gear faults often produce an axial or radial vibration response.

Torsional/angular vibration - in the direction parallel to the axis of rotation - most

often experienced often because of variations in gear geometry, periodic rotor-to-

stator contact, misaligned couplings, reciprocating drivers or loads, or because of

radial vibration [Girdhar, 2004].
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Some of the more common failure modes of interest associated with multi-body

mechanisms are excessive clearance in joints, cracks in load-bearing elements, and

faults related to gearbox. These failure modes are further described next.

Joint Clearance

Mechanical looseness in rotating equipment can occur at three locations: internal

assembly looseness, looseness at machine, and structure looseness. This category

of fault could be between a bearing liner in its cap, a sleeve or rolling element

bearing (this is discussed later), or an impeller on a shaft. The functionality of a

joint relies upon the relative motion allowed between the connected components,

with inevitable clearance between the mating parts. This leads to surface contact,

shock transmission, and the development of friction and wear. No matter how small

that clearance is, it can cause vibration and fatigue phenomena, lack of precision or,

even random overall behavior [Flores et al., 2011]. To study the loss of contact due

to joint clearance proximity probes and accelerometers can be used [Haines, 1985,

Dubowsky et al., 1984, Soong and Thompson, 1990].

For an ideal or perfect revolute joint, with small or no clearance, the journal and

bearing centers coincide. The inclusion of the clearance (c), the difference between

Figure 2.26: (a) Representation of a revolute Joint with Clearance, (b) Normal and
Tangential Forces Due to the Impact Between the Journal and Bearing Surfaces, (c)
Different Types of Journal Motion Inside the Bearing (after [Flores et al., 2011]).
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the bearing radius RB and the journal radius RJ , allows for the separation of these

two centers as shown in fig. 2.26(a). In a dry contact situation, the journal can

move freely within the bearing until contact between the two bodies takes place.

Figure 2.26(b) illustrates the normal and tangential force components due to the

impact between the journal and the bearing wall. This would create a normal

contact force together with a friction force that can be evaluated to obtain the

dynamics of the journal-bearing. These forces are of a complex nature, and their

corresponding impulse is transmitted throughout the mechanical system [Flores

et al., 2011]. In a revolute clearance joint, three different modes of motion between

the journal and the bearing can be considered, as shown in fig. 2.26(c): continuous

contact mode, free flight mode, and impact mode. In the continuous contact mode,

the journal and the bearing are in contact and a sliding motion related to each

other is assumed to exist. This mode is ended at the instant when the journal and

bearing separate and the journal enters the free flight mode. In the free flight mode,

the journal can move freely inside the bearing boundaries, i.e., the journal and the

bearing joint are not in contact, and hence there is no reaction force between these

two elements. After the end of the free flight mode, the journal enters the impact

mode, in which impact forces are applied and removed. At the termination of the

impact mode, the journal can enter either free flight or following mode. Measuring

the acceleration of the moving element, the impact force between the journal and

bearing can be measured and monitored indirectly.

Revolute joint with clearance has been investigated through a Crank-Slider

mechanism in a number of studies [Flores et al., 2011, Erkaya and Uzmay, 2010,

Sun and Xu, 2013, Gummer and Sauer, 2014]. Experimental results indicates that

the force variations on the mechanism can reach beyond the expected design values

due to the impact force acting only during a small time interval of contact, which

can cause a sudden increase in the vibration amplitude. The number and magnitude

of the contribution of the dominant frequencies increase with the crank speed and
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Figure 2.27: Effect of Revolute Joint Clearance on Acceleration Signal: c=0.25
mm, ω=200 rpm (top), c=1.00 mm, ω=200 rpm (middle), c=0.25 mm, ω=250 rpm
(top) (after [Flores et al., 2011]).

the clearance size. Furthermore, the maximum slider acceleration increases with

crank speed and clearance, as illustrated in fig. 2.27.

Once a journal bearing goes through excessive wear, it may display a whole series

of running speed harmonics, which can be up to 10× or 20×. At this point, the

FFT spectrum of the clearance looks very much like that of mechanical looseness.

Presence of minor unbalance or misalignment can exacerbate the condition and cause

higher vibration amplitudes compared with bearings having a normal clearance with
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the journal [Girdhar, 2004].

Breathing Crack

The basic principle during crack development is that the rotor loses stiffness in

the direction perpendicular to the crack direction. If a crack develops on the

circumference of a rotor, transverse to the shaft axis, the stiffness in the plane

perpendicular to the crack decreases and remains the same in the other orthogonal

plane. This would cause two major deflections per revolution, which would cause

the 2× rpm vibration frequency. There are two fundamental symptoms of a shaft

crack: An unexplained changes in the 1× shaft relative amplitude and phase, and

occurrence of a 2× vibration frequency.

While many has studied the presence of a crack in a rotor [Ishida, 2008, Bach-

schmid et al., 2010, Babu et al., 2008, Stoisser and Audebert, 2008], and beams

[Saavedra and Cuitino, 2001, Douka and Hadjileontiadis, 2005] not many studies are

carried out on a developing crack on elements of a multi-body system [Yin et al.,

2007, Shih and Chung, 2013, Raza and Frimpong, 2013]. The existence of a crack

in an element of a linkage not only influences the rigidity of the component, but

also changes dynamic characteristics of the system. Considering the crank-slider

Figure 2.28: Slider-Crank Mechanism with a Flexible Cracked (x=l/2) Connecting
Rod Under Undeformed Configuration (after [Shih and Chung, 2013]).
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Figure 2.29: Left: Comparison Among the Uncracked, Open, and Breathing Crack
Models of Transverse Amplitude Under Constant Crank Angular Speed Ω1. Right:
Transient Transverse Amplitude for the Breathing Crack Model with Different Crack
Depth Ratios Under Reduced Angular Speed Ω2 = 0.9Ω1 (after [Shih and Chung,
2013]).

multi-body system shown in fig. 2.28, presence of crack in the connecting rod has

been studied in [Fung, 1997, Chondros et al., 2001, Shih and Chung, 2013].

To analyze the behavior of a cracks, two breathing crack models are commonly

used: an open crack model and a breathing crack model. The breathing crack model

assumes that the stiffness of the link varies between a maximum (closed crack under

compressive load) and a minimum (open crack under tensile load). When a crack

locates at the surface of the connecting rod, the natural frequency of the cracked

connecting rod is influenced by the crack depth. The transverse vibration of the

connecting rod with a breathing crack, is directly influenced by the crack severity,

and the rotating speed of the crank (ω).

Figure 2.29 demonstrates that the larger the crack severity index (α) is, and

the greater the angular velocity ratio (Ω), the greater the increase in the vibration

amplitude will be.

Gearbox Faults

57



Figure 2.30: Interaction Between Components in Multi-Stage Gearbox System and
External Components to the Gearbox Such As: Motor, Damping Coupling, External
loading (after [Bartelmus and Zimroz, 2014]).

Gearboxes often act as the link between the driving and driven machine, therefore

they have to be designed for high reliability. A common type of gearbox has parallel

shafts and consists of several elements - gears, bearings and shafts - that interact

with each other as illustrated in fig. 2.30. Hence, gearbox needs to be treated as

a system, and not as individual gears and bearings. In monitoring the gearbox

system, factors influencing the vibration, i.e. change of condition and operation

factors, and the effect of elements on each other should be taken into account as

demonstrated earlier in fig. 2.2 [Bartelmus and Zimroz, 2009a, Bartelmus et al.,

2010, Bartelmus and Zimroz, 2014]. Gearbox degradation can be contributed to two

groups of failure: Primary unbalance and misalignment associated with the way

the gearbox is coupled with the motor or the load at the beginning of operation;

and Secondary misalignment - also known as the inner gearbox shafts and gears

misalignment (IGSGM) - due to frictional wear of bearings and linear increase of

inter-teeth forces [Bartelmus and Zimroz, 2014]. The main cause of gearbox failure

is often the secondary misalignment which can trigger the degradation process of

the gear tooth.

A looseness (between a bearing liner in its cap, a sleeve or rolling element
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Figure 2.31: FFT of the Vibration Signal Associated with Some of the Common
Failure Modes of the Gearbox System (after [Girdhar, 2004]).

bearing), can cause the inner misalignment and turn into the rubbing between shafts

and stationary parts (due to misalignment under severe pre-loading) and cause

sever damage to gearbox assembly and must hence be identified immediately. In

many cases gearbox systems operate under non-stationary load/speed conditions

during their normal state, e.g. in wind turbines and excavators. In such systems

the vibration signal is directly linked to the operation factor - instantaneous speed

or the external load variation [Bartelmus et al., 2010].

FFT spectrum of the vibration signal associated with some of the common failure

modes of the gearbox system under stationary condition is illustrated in fig. 2.31.

For fault diagnosis of gearboxes under non-stationary operations, researchers have

proposed other statistical analysis [Samuel and Pines, 2005], time domain averag-

ing [McFadden, 1991], Time - Frequency analysis [Williams and Zalubas, 2000],

Cyclostationary analysis [Zimroz and Bartelmus, 2009, Bartelmus et al., 2009].

Extraction of the diagnostic features from vibration signal often requires extensive
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signal conditioning, i.e. filtering, modeling or decomposition. One of the most

recent approaches in gearbox monitoring is a novel decomposition method called

Empirical Mode Decomposition (EMD) and has shown its effective application in

many diagnostic tasks [Ricci and Pennacchi, 2011, Lei et al., 2013, Amarnath and

Krishna, 2014, Dybala and Galezia, 2014, Li et al., 2015, Liu et al., 2015].

2.2.2.2 Signal Processing

The type of the signals emitted from a machine is the primary factor in the selection

of an appropriate processing method. This becomes more important knowing that

time and frequency manifestation of various signals can be significantly different. In

rotating equipment, faults such as imbalance and misalignment manifest themselves

at shaft speed and its harmonics. Power spectra of the signal in time domain or

frequency domain can be used for detection of these faults, if the signal is stationary.

In reciprocating machines, signal varies both in time and frequency domains due to

variable loading/speed conditions and the signal that is measured during one shaft

rotation may be severely non-stationary [Randall, 2011]. Furthermore, faults with

short duration transient effect have an intermittent or transient characteristic and

give rise to sudden and brief changes in signal amplitude or phase. Impacts of this

nature will hardly be visible in the spectrum, because energy is dispersed in the

temporal averaging process.

One appropriate group of signal processing methods for continuously varying

non-stationary signals is the family of time-frequency methods, such as the STFT

(Short Time Fourier Transform), which will be discussed later.

Time Domain

Vibration signals are initially obtained as time series representing proximity, ve-

locity, or acceleration in the time domain. Time domain feature extraction has 3

main categories: Raw signal method, filter-based method, and stochastic/advanced

methods [Yang et al., 2003]. The most commonly used approach in time domain is
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Table 2.1: Time-Domain Features Extracted Based on Statistical Method

Order Feature Description

Fr1 Standard deviation σ2 =
∫∞
−∞[x− µ]2p(x)dx

Fr2 Skewness S =

∫∞
−∞[x− µ]3p(x)dx

σ3

Fr3 Kurtosis K =

∫∞
−∞[x− µ]4p(x)dx

σ4

Fr4 Peak to Peak P2P = Max(x)−min(x)

Fr5 Mean µ =
∫∞
−∞ xp(x)dx

Fr6 Peak to Mean P2M =
Fr4
Fr5

Fr7 Root Mean Square RMS =
√
Mean(x2)

Fr8 Crest Factor CF =
Max(x)

RMS(x)

Fr9 Shape Factor SF =
RMS(x)

Mean(|x|)

Fr10 Impulse Factor IF =
Max(x)

Mean(|x|)

the statistical method, which is used to define certain features of the signal that are

sensitive to certain characteristics in the signal. Statistical features of the signals

are generally a good indicator for change detection in stationary signals (such as

fault) or a change in the state of the signal from stationary to non-stationary. In

the statistical approach it is assumed that p(x), the underlying probability density

function (pdf) of the monitored variables x(t), under normal and faulty states will

show a noticeable difference. The success in detection of change depends on the

significance of the deviation and effectiveness of the algorithm that is used for the

interpretation of the data [Lebold et al., 2000, Randall, 2011].
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The root mean square (RMS) of a vibration signal is a statistical feature that

measures the power content in the vibration signature. It is the most basic approach

to measuring defects (e.g. imbalance) in the time domain, but it is not sensitive

enough for detection of incipient faults. Crest factor is an effective measure of

the impulsiveness of the signal, as is defined as the ratio of the peak level of the

input signal to the RMS level. Mean, variance, and skewness are the first, second,

and third moments of probability distribution function (pdf ) and are some of the

other features used in the time domain. Kurtosis is defined as the fourth moment

of the pdf and measures the relative peakedness or flatness of a distribution as

compared to a normal distribution. Kurtosis provides a measure of the size of the

tails of distribution and is used as an indicator of major peaks in a set of data. As

rotating machinery faults present themselves, Kurtosis should signal an error due

to the increased level of vibration. Various other statistical features such as Shape

factor, Absolute mean, Zero crossing rate, Maximum Peak, and Peak to Peak can be

computed from the information obtained from the spectrogram representation of

different faults. These features can be calculated from the raw, synchronous or time

averaged signal. Some of the statistical features that can be applied in time-domain

are presented in table (2.1). When the number of features are large, multivariate

statistical techniques can be applied to compress data and reduce the dimensionality

problem. Techniques such as the Principal Component Analysis (PCA) are used to

transform a number of related process variables to a smallest set of uncorrelated

variables; in other words reproduce factors with lower dimensions that can still

describe the trend in the data set [Venkatasubramanian et al., 2003].

Frequency & Time-Frequency Domains

The conventional diagnostic technique is based on the Frequency-domain or spectral

analysis. Traditional spectral analysis based on Fourier Transform (FT) transforms

a time-series signal x(t) from time-domain to frequency-domain and generates its
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spectrum X(ω) defined as:

X(ω) =

∞∫
−∞

x(t)e−iωtdt (2.26)

Fourier analysis works on the premise that the signal can be expressed as a

summation of sinusoidal components, and hence all signals can be decomposed

in this way. Fast Fourier Transform (FFT) allows to study the fundamental and

harmonic frequencies existing in a signal. With such capability, failure modes with

pronounced frequencies of repetition or fault that change the frequencies of the

normal signal can be identified. An important condition for application of the FFT

is the invariability of load/speed of the operation. FFT assumes the frequency does

not change over time and hence it is incapable of handling non-stationary signals

(i.e. frequency-modulated signals with underlying time-varying phenomenon, and

transient signals with short duration and unpredictable time behavior). It is also

known that the presence of localized fault introduces non-stationary property into

the vibration signal [Li, 2012].

Order Analysis (OA) is another FFT-based technique that transforms the revo-

lution domain into an order spectrum and tries to overcome the effect of frequency

changes. OA works on the premise that the frequency change within each time

interval is small, and hence the signal behaves stationary at those intervals. This

assumption fails if the frequency changes within time intervals are significant.

To overcome the deficiencies of the FFT, time-frequency transformations are

developed that account for the time dependence of the signal. Short-Time Fourier

Transform (STFT), Spectrogram (Power of the STFT), Wigner-Ville distribution,

Wavelet and Hilbert-Huang transform are examples of such methods.

a. Short-Time Fourier Transform

Short-Time Fourier Transform (STFT) transforms the time-series signal into a

two-dimensional map of time and frequency. STFT works by moving a short time
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window along the signal and perform the Fourier transform as a function of the

time shift as explained in equation eq. (2.28):

X(τ, ω) =

∞∫
−∞

x(t)ω(t− τ)e−iωtdt (2.27)

The amplitude squared |X(τ, ω)|2 is known as the spectrogram. It should be

noted that the window ω(t) is fixed, and thus the resolution of the spectrum is fixed.

b. Continuous Wavelet Transform

Wavelet transform offers a better frequency resolution compared to STFT, as it uses

a more general function as the basis to construct the signal. Therefore, it offers

a better timefrequency localization. The transformation of a signal from the time

domain to wavelet coefficients allows for signal decomposition. Continuous Wavelet

Transform (CWT) is defined in the following way:

CWT (a, τ) =
1√
|a|

∞∫
−∞

x(t)ψ∗(
t− τ
a

)dt (2.28)

where τ is the position parameter (time shift of the mother wavelet), a is the

scaling parameter (or pseudo-frequency), ψ is the mother wavelet, and ψ∗ is the

complex conjugate of ψ. The mother wavelet is a function that is used to create a set

of wavelets by changing the scaling parameter a and the wavelet position parameter

τ . The wavelet coefficients are interpreted as the correlation measure of signal and

wavelet, and are obtained by comparing the wavelet with the signal. Accuracy

of the results from classic wavelet techniques such as Discrete Wavelet Transform

(DWT) and Wavelet Packet Transform (WPT) depends on the proper choice of the

mother wavelet (i.e. Haar, Daubechies, Morlet, Mexican hat,etc.). In principle, the

wavelet decomposition would achieve a better result if the wavelet basis is similar

to the signal under analysis [Loutas and Kostopoulos, 2012]. A variety of Second

Generation Wavelet Transform (SGWT) are being developed which are independent

of the choice of the mother wavelet.
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c. Hilbert-Huang Transform

Unlike the other time-frequency methods that take a predetermined structure

either through time or frequency (i.e STFT and Wavelet transform), Hilbert-Huang

Transform (HHT) is a self-adaptive technique designed to extract the instantaneous

frequency of non-stationary and nonlinear time-series [Huang, 2005]. Application of

the EMD and other extended forms of it for fault diagnosis of rotating equipment has

become a very hot topic and many researchers are investigating it [Bin et al., 2012,

Georgoulas et al., 2013, Feng et al., 2013, Zheng et al., 2013, Ricci and Pennacchi,

2011, Lei et al., 2013, Amarnath and Krishna, 2014, Dybala and Galezia, 2014, Li

et al., 2015, Liu et al., 2015]. HHT specifically developed to analyze data from

non-stationary and nonlinear signals consists of two main steps: the empirical mode

decomposition (EMD) that decomposed the signal into a number of orthogonal

components called intrinsic mode function (IMF) and the Hilbert Spectral Analysis

(HSA) that applies Hilbert-transform and computes the instantaneous frequencies

embedded in the signal [Huang et al., 1998, Huang, 2005, Lei et al., 2013]. The

steps taken can be summarized as follows:

1) IMF extraction: Also known as sifting, the EMD algorithm first decomposes

the signal into its IMFs. Algorithm starts by feeding the signal x(t), and generates

a residue ‘rn’ where rn = rn−1 − cn and a collection of n IMFs ‘cj’ (j = 1, 2, ..., n):

x(t) =
n∑
j=1

cj + rn (2.29)

2) Hilbert Spectral Analysis: Applying the Hilbert transform (HT) on each IMF,

instantaneous frequency can be computed as the derivative of the phase function.

Repeating this procedure for all IMFs, the original data can be expressed as:

x(t) = Real Part
n∑
j=1

aj(t)e
i
∫
ωj(t)dt (2.30)

The time-frequency distribution is designated as the Hilbert-Huang spectrum
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H(ω, t):

H(ω, t) = Real Part
n∑
j=1

aj(t)e
i
∫
ωj(t)dt (2.31)

From the Hilbert Spectrum (HS) H(ω, t), it is also possible to estimate the

Marginal Hilbert Spectrum (MHS), h(ω) , defined as

h(ω) =

∫ T

0

H(ω, t)dt (2.32)

where T is the total data length. While the Hilbert spectrum (HHS) offers a measure

of amplitude contribution from each frequency and time, the marginal spectrum

(MHS) offers a measure of the total amplitude contribution from each frequency

[Yang et al., 2013, Chen and Jegen-Kulcsar, 2007]. The important difference between

HT and FFT is visible in this expanded form of the equation (2.30). In HHT, each

IMF component is described with their own different amplitude and frequency

(which are time-varying functions of time and frequency), whereas in FFT each

component would have a constant amplitude and frequency. Hunag also showed

that the EMD method is equivalent to an adaptive wavelet, and hence avoids the

shortcoming of using a priori-defined wavelet basis. A comparison of the HHT to

FFT and Wavelet methods can be found in [Huang, 2005].

2.3 State of the Art in Earthmoving Equipment

Monitoring

Performance measures of the earthmoving equipment, typically from drives and

engines, are used to monitor the status of the equipment. Information about the

payload, cycle times, and number of loads hauled are collected and stored in on-

board computers during each cycle or working periods and can be downloaded to a

computer for subsequent analysis [Tomlingson, 2009].

Many studies have applied vibration analysis to monitor the condition of mining

equipment such as shovels and trucks, and used to detect and diagnose faults [Brown
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and Jorgensen, 1988, Burrows, 1996, Saavedra and Molina Vicuna, 2007].

One of the first applications of the vibration monitoring technique for shovels is

reported in the pioneering work by Brown and Jorgensen [Brown and Jorgensen,

1988]. By comparing the Fast Fourier Transform of the vibration signals acquired

from the equipment (healthy and faulty states), imbalance and misalignment in

power and transmission components, and faults in bearings were detected. The

authors were aware of the fact that their method is limited to the period when the

speed is constant.

Burrows conducted a review of the automatic detection of anomalies and diagnosis

for mobile mining equipment, with a focus on the application of vibration analysis

[Burrows, 1996]. He summarized the time-based vibration analysis techniques that

can be used for monitoring, e.g. the signal RMS, peak level detection for signal

impulsiveness, Crest factor, Spike energy, Kurtosis, and envelope detection. The

study also covered frequency-based vibration analysis techniques such as spectrum

analysis (FFT: Fast Fourier Transform, CPB: Constant Percentage Band Filtering),

Spectral mapping (waterfall plot), Cepstrum analysis, Spectrum comparison and

Trending of the spectral differences.

On a different scale and in the industrial front, P&H was the first mining equip-

ment manufacturer to offer predictive technology solutions for shovels. Through

collaboration with Emerson process management, P&H also utilize portable vibra-

tion analyzers to detect impending mechanical defects in mechanical components of

the machine. This was done by taking the machine out of service, once a month to

go through routine maintenance for such inspections [Nower, 2013]. P&H expanded

their line of product to include health monitoring and diagnostic features, for faults

i.e. bearing, gears, alignment and structural defects. For continuous monitoring,

they have been developing systems based on the PreVail r platform [Nower, 2013],

a remote health monitoring packages for electrical driven equipment, as well as

Centurion r control system, for monitoring and fault detection. These systems
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are equipped with accelerometers mounted close to bearings and gearbox on the

shovel. Measurements are only conducted when shovel makes particular movements

at particular speeds, and still acquiring the proper data is very challenging (out of

300 cycles that a shovel completes in a shift only 3 cycles meet the criteria for data

collection). A key step in this method is the so called ‘Staged Testing’ which is data

collection during a simulated cycle of machine operation with no loading while the

machine is waiting for a truck [Nower, 2013].

Earthmovers and ground engaging equipment, operate under transient conditions

and they have short work cycles with variable load and speed, with some very

slow speed shafts. This poses a challenge for applying methods such as Fourier

Transform on the vibration data. Saavedra and Salamanca addressed the transient

nature of the shovel’s operation, and proposed to use vibration analysis to monitor

electromechanical Shovel components, i.e. the hoist, crowd, swing and propel

transmissions [Saavedra and Salamanca, 2002]. They demonstrated how the effect of

variable rotational speed causes the spectral components to spread over a number of

adjacent spectral lines, which makes it impossible to perform a diagnostic procedure.

Accounting for the variability in load or speed, they investigated how Revolution-

Order Transform (ROT) and Time-Frequency Transformation (TFT) can be used

to recover the diagnostic features of the signal purpose while the shovel is still in

operation [Saavedra and Gonzalez, 2005, Saavedra and Molina Vicuna, 2007].

The findings of these studies and two unpublished masters thesis by Ramirez

[Ramirez, 2003] and Vicuna [Molina Vicuna, 2006], eventually turned into SiAMFlex.

SiAMFlex is a commercial vibration monitoring system specially designed for the

electro-mechanical mining shovels, and developed by Cadetech based on a National

Instrument platform [Ramirez, 2009, 2010]. SiAMFlex was used to identify failure

modes such as defects and faults in gears and bearings, misalignment in engine-

input shaft, looseness of components (all based on vibration signal), and crack in

shovel’s structure (based on strain gauge reading). Vibration signal is acquired from
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strategic locations on certain components (e.g transmission). While the shovel is

in operation, the algorithm in the program identifies intervals of time where the

rotational speed remains approximately constant, and then processes the data to

compute a classic FFT spectrum. The data is also processed through the OSA and

TFT during the non-stationary period. It also performs time-domain analysis and

extracts features of the vibration, strain, acceleration and rotational signals, such

as RMS, peak, peak-to-peak, average, minimum, maximum and crest factor. The

application records data, and then analyzes it to find the best measurement period,

where interpretations will be made. They also proposed to use the SiAMFlex as

a visual tool for crack monitoring. Proposed parameters of interest during a load

cycle of the dipper were the strains (measured with strain gauges located in the rear

right and left post of the shovel’s frame) and rotational accelerations of the hoist,

crowd, and swing transmission motors.

Timusk, Lipsett and Mechefske also investigated the application of the vibration

analysis for machinery in transient operating modes [Timusk et al., 2008]. They

developed a laboratory apparatus with variable speed and loading capability to

replicate the duty cycle of the excavator swing machinery. Unlike the studies

conducted by Saavedra and his team [Saavedra and Salamanca, 2002, Saavedra and

Molina Vicuna, 2007] who used the characteristics of the normal operating condition

as a prior information, they adopted a novelty detection scheme for fault detection.

In this context the novelty detection algorithm has a training period, where it will

be considered as the baseline for the normal operating condition. Any condition

with significant difference will receive a novelty score.

Appreciating the effect of the operating mode on the physical response of the

system and the diagnostic parameters, Timusk et al. investigated a number of

classification methods to obtain real-time information regarding the shovel operating

modes [Timusk et al., 2008, 2009b]. McBain and Timusk reported that the speed

changes have a strong relation with the vibration responses acquired by accelerome-
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ters [McBain and Timusk, 2009]. They proposed that segmentation of the vibration

signal based on speed segments will improve the classification method adopted in

their novelty detection algorithm.

Operation of the gearbox in Bucket-Wheel Excavator provides a platform to

study different vibration monitoring algorithms in an environment with highly

variable load/speed, and has attracted many researchers in recent years [Bartelmus

and Zimroz, 2009a,b, 2014, Wylomanska et al., 2014, Vicuna, 2014]. These studies

reported that time-frequency methods can be successfully applied to detect local

damage for such systems under time varying cyclic load. Carrying out excavation

with different loads and rotational speeds, it is reported that at lower rotational

speeds, the influence of the load in the resulting signal can be significant. This is

while at higher rotational speeds, the influence of the load is masked by the influence

of the rotational speed [Vicuna, 2014].

As illustrated earlier in fig. 2.2, the vibration signal can be influenced by the

change of condition (e.g. in presence of fault) and change of operation. Many studies

have recognized the importance of the load and rotational velocity variability as

contributing factors to the change of operation. However, none has looked into the

environmental variability, which is the main source of load variability in many cases.

A change in the environmental parameters not only can impact the interaction load

experienced by the equipment and its elements, it can also affect the overall vibration

response of the system through changing the elastic and damping parameters of

the base. Therefore, a complete condition monitoring system for mobile equipment,

should not only monitor the condition of the equipment, but also it must be able to

continuously assess the environmental condition of the operation.

Furthermore, reviewing the condition monitoring literature in the area of earth-

moving equipment, it is found that most successful detection algorithms often require

a variety of sensors (accelerometers, strain gauges, encoders, load sensors, etc.), and
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in several locations. Each of these probes are then tasked with detection of certain

localized failure mode in their vicinity (e.g. misalignment, looseness and rubbing,

rotor crack development), and yet successful detection depends on the proximity

of the probe to the faulty component. Hence, establishing an effective monitoring

system for these equipment requires extensive data acquisition infrastructure and

sophisticated processing algorithms, which becomes very costly and time consuming.

Additionally, most studies are focused on certain failure modes (i.e. gears and

bearings) and there is a need to study and develop methods for monitoring the

equipment for other more complex failure modes such as crack development in a

structural element, or a progressively wearing joint.
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Chapter 3

Methodology

Many types of industrial equipment operate under stationary condition, that is,

constant state of loading and invariable rotating speed. These machines behavior

are well studied and their performance can be easily monitored to detect any change

in their normal status due to a change of condition - presence of fault. Therefore,

maintenance system can be developed with relative ease, and high cost unplanned

shut downs can be avoided or minimized.

Machinery with non-stationary behavior however, that operate in a time-varying

manner and often exposed to operational and environmental changes, belong to

a different class of equipment that are much harder to monitor, and therefore are

more probe to experience costly down times. They might undergo a change in the

way they operate, due to variability in the external loading, rotational speed or

changing environmental conditions. Examples of such machinery are earthmovers

and wind turbines, shown in fig. 3.1. While this is becoming an active research area,

efforts are largely focused on the variability of the loading and the rotational speed,

and not many has considered the environmental side of the equation.

Internal and external changes can affect the operating envelope, and therefore a

formerly safe operating mode becomes unsafe, as can be seen in fig. 3.2. The root
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Figure 3.1: Wind Turbine and Earthmovers Are Exposed to Excessive Environmental
and External Loading Variabilities, Which Affects Their Performance and Mode of
Operation. Simulation courtesy David Bock [Bock, 2014, Stevens et al., 2015].

cause for the change in the operating envelope can be a change in one or multiple

critical parameters of the environment (a change in the speed of the wind, change

in the environmental property, etc.) or a change in the equipment (Structural

defect, Fluctuation of the available Power, Change in the operating speed, etc.).

In some cases, a change in the operating mode might allow to recover from the

operating envelope change and bring the system back into a newly identified safe

zone. Therefore, identification of the safe operating envelope, a combined set of

equipment and environment parameters, becomes very critical.

Operating conditions of ground engaging equipment are often non-stationary,

randomly changing, and severe in terms of the interaction loads. The correlation
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Figure 3.2: Internal and External Changes can Affect the Operating Envelope, and
Therefore a Formerly Safe Operating Mode Becomes Unsafe. Change of Operating
Mode Might be Feasible for Some Operation, while the others Might Remain Unsafe
Under the New Condition.

between the magnitude and variability of the loading due to variability in the terrain,

and the equipment structural damage is well documented [Yin et al., 2007, Allen and

Sundermeyer, 2005, Raza and Frimpong, 2013, Hall, 2002, Frimpong and Li, 2007,

Frimpong and Hu, 2004]. Some studies suggested that the change in the property

of the material being dug can result in varying mechanical energy input to the

machine, and deteriorate equipment’s health and longevity [Frimpong et al., 2008a,

Frimpong and Li, 2007]. Therefore, it is very important to detect how environmental

properties change over time, whether such changes impact the operating envelope

or not, and if they necessitate a change in the operating mode. This means that the

interaction force, and environmental properties are critical parameters that needs

to be monitored.

Collecting real-world data from ground engaging equipment, such as shovels, is

nearly impossible due to the harsh environment of operation and the inaccessibility

of the condition data. Also, conventional methods of environmental property

assessment, are very time consuming which makes the measured values useless for

continuous assessment. Therefore study of the new methods for equipment and

environmental monitoring is very difficult. To overcome these challenges in the
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present study, it is proposed to investigate them on a simplified experimental set

up in a well-controlled environment of a laboratory where equipment’s condition,

modes of operation and environmental parameters can be varied and experimented

in a desired fashion.

A special ground engaging equipment based on a crank-slider mechanism is

designed and fabricated that operates under time-varying behavior, and allows to
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Figure 3.3: Research Road Map: Preliminary Study, Experimental set-up and
Design of Experiment, Experiments and Data Collection, Implementation of Moni-
toring Methods, System Level Monitoring: Environment Characterization and Fault
Detection
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simulate the underlying non-stationary operating condition of the ground engaging

equipment. For the case studied in this work, monitoring the environment offers

continuous assessment of the physical properties of the medium being dug, and

this will be done during ground-tool interaction. For the equipment monitoring,

a slightly different approach from the classical vibration monitoring methods is

proposed, which explores the fault signatures through certain dynamic parameter of

the system, i.e. acceleration.

For the conduct of this research a preliminary analysis was completed, where

assumptions and constraints were identified. It was decided to focus on the granular

material, where soil-tool interaction models can be used reliably for the interaction

force prediction and soil property estimation. Shortcomings of the existing estimation

algorithms were studied, and a few creative suggestions were made and tested.

Additionally, a numerical study was carried out and observability of the fault

signature was evaluated using a combination of finite element analysis and MATLAB

Simulink tool box as presented in appendix B.

Findings of the preliminary study was used for the development of the exper-

imental set-up, where general and task specific requirements were identified and

addressed in the design. Acknowledging the limitations of the equipment and tools,

a series of experiments were designed. This included the cutting force measurements

during the interactive period of operation, and acceleration-based monitoring during

the interactive and non-interactive period of operation.

Results from both series of experiments were recorded and post-processed using

the proposed methods. Cutting force measurements were fed to the proposed

estimation algorithm and the acceleration data was used for condition monitoring.

Research road map and steps are summarized in fig. 3.3. These steps are broken

down into three major phases: experimental platform design, experiments and

numerical analysis for the soil property estimation, and experiments, and signal

processing work for fault detection and condition monitoring.
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3.1 Experimental Platform Design

The test apparatus was designed to simulate the simplified operation of an earth-

moving equipment with a simple back and forth motion. There were a number of

competing objective that shaped the design criteria. Test rig must:

• Produce a soil pushing action in a continuum at different attack angles and

depth

• Produce a time-varying behavior (through speed and/or load)

• Offer potential for structural integrity manipulation (controlled failure modes)

Accordingly, the apparatus was designed based on an offset crank-slider mecha-

nism that would produce the time-varying behavior throughout its reciprocal motion.

A shovel assembly was designed to provide the dozing action, where the blade’s

attack angle α, and the depth of penetration h can be adjusted manually. Also,

the modular design of the test rig, allowed to offer potential failure modes at the

shovel assembly joint and link, and also on the elements of the power train. The

test rig was equipped with a variety of off-the-shelf and in-house sensors that would

support the data collection required for the property estimation and fault detection

experimentations.

3.2 Environment Monitoring

There are a number of medium property estimation methods described in the

literature, mostly for non-cohesive methods. In this work, an improved algorithm is

developed, which can be used for both cohesive and non-cohesive material. Selection

of the non-cohesive and low-cohesion medium types (Glass beads and Play sand)

was based on the relative similarity of the soil samples available and soils used in

studies reported in the literature. Oil sands, a highly cohesive material, is the sole
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cohesive material of interest, due to the massive application they have in Alberta’s

surface mining operations.

An important measurement for this algorithm is the measure of the failure force

for different attack angles, during the soil-tool interaction. The description of the

failure force and the methods used for measuring and processing the force, are

further explained in section 5.1. Similar to the approach used in literature, several

measurements are made and averaged. The cutting force required for two types of

medium (Play sand and and Glass beads) are measured at multiple attack angles.

These measurements are then fed into the proposed property estimation algorithm.

At the first step, soil samples are assumed to be non-cohesive, in order to construct

and validate the algorithm used in the literature. The estimated properties obtained

from this approach, are compared and verified against the results obtained from the

standard lab measurements. Next, accounting for cohesion, the proposed estimation

algorithm was used to predict the properties of all the same soil samples (Glass

beads and Play sand), and relative estimation error are calculated. At the end, the

validated estimation algorithm was used to predict the properties of highly cohesive

oil sands samples. The actual oil sand properties are also directly measured, and

used to measure the accuracy of the estimation algorithm.

3.3 Equipment Monitoring

Despite the primary role the shovels have in surface mining, there is hardly any

study focused on monitoring the health of the equipment. In rotating equipment,

where most of the literature comes from, equipment monitoring focuses on the

energy-out representations, e.g., a vibration signal emitted from the equipment,

either from the casing or close to the moving parts. In those studies, the most

common methods used for processing the vibration data are based on time-domain

analysis, and some FFT-based (fast Fourier-transform) methods.
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Unlike the conventional vibration monitoring method that uses the casing vi-

bration, the approach presented in this work relied on the displacement (xs) and

acceleration (As) signals from the slider. A few studies demonstrated how presence

of fault changes the acceleration of a crank-slider mechanism. So the motivation for

the choice of signal, was to investigate the effectiveness of the acceleration signal as

a monitoring tool. In crank-slider, the acceleration signal can be directly linked to

the the kinetic energy. Thus, monitoring the acceleration of the slider, allows to

monitor the changes in the kinetic energy in presence of energy sinks (i.e. failure

modes).

To investigate this, the following methodology was adopted: First, displacement,

acceleration and angular displacement signals (xi, Ai, φi)N were acquired during

the free motion of the shovel under Normal (fault-free) state to develop a baseline

for the healthy state of the equipment. Next, failure modes (FX) were introduced

one by one, and the signals (xj, Aj, φj)FX
were collected under each Faulty state.

Signal processing techniques were applied in time and frequency domain, and certain

features of the collected signals were compared. Features were correlated to certain

faulty conditions, and used to detect fault presence and identify fault type. The

signals of interest were collected with a potentiometer, accelerometer and an encoder.

For each trial, signals were acquired for several cycles (1 cycle= One full rotation of

the crank), where the slider moved back and forth.

For the equipment monitoring, some of the less studied, but equally important

failure modes, i.e. breathing crack, extreme clearance and misalignment, were

investigated through advanced signal processing techniques. Each of the three faults

(FA, FB, FC) were introduced separately and the data was collected over several

cycles of free motion. Some of these failure modes, do not display themselves in every

cycle. To accommodate the property estimation investigation, the rig was designed

to simulate a slow process, e.g. operating at f ≤ 1 Hz. Hence, the signatures

associated with the faults needed several cycles to appear in the signals recorded.
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Each of the faulty were repeated and data collected from several runs.

Signal processing techniques in time and frequency were applied to evaluate

the changes in the signal, caused by presence of these faults. Signals under study

were not necessarily at the close proximity of the faulty component. Hence, the

modulation effect caused by a particular fault, may disappear in the carrier signal.

Other imperfection in the system were also combined with the fault signature and

added to the noise level. Additionally, some of the failure modes under investigation

demonstrated a transient behavior, which made the detection even harder. To get

rid of the unwanted noise and to extract the valuable information, some signal

conditioning was necessary. A variety of time, frequency, and time-frequency signal

processing methods were applied and their effectiveness in fault detection is discussed.

Acceleration signal calculated from the displacement is the primary signal of interest.

However, some of the results from the other two signals are also considered for

monitoring.
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Chapter 4

Experimental Platform

This chapter discusses the evolution of the test rig from a simple soil cutting tool

to the final design of an equipment that is used for property estimation and fault

detection.

It starts with an overview of the design requirements for the property estimation

experiments, and additional requirements for the structural monitoring study. The

process by which these requirements are incorporated in the test apparatus design

also will be reviewed. The limitations of the test rig resulting from design choices

and how those limitations exhibit themselves in data collection are outlined.

In addition to the test rig itself, the development of the supporting hardware for

sensing, and recording the data is presented. Finally, the structural failure modes

that are studied and their seeding method is discussed.

4.1 Design Requirements

The movement of a single blade in a granular material (e.g. soil and sand) is the

basis for generating the interaction force in our investigation. Other material type
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such as gravel and rock has not been studied. Once the tool is engaged in the

medium and moves horizontally, it can break the internal bonding of the medium,

and the tool-ground interaction force can be measured. The first peak represent the

cutting force and is of interest. The following peaks - associated with successive

failure surfaces are not of interest. Two main parameters affecting the interaction

force, are the depth of penetration H and the attack angle of the blade α. A drive

train mechanism (electro-motor and a reducing gearbox) can be coupled with a

shovel assembly through a crank-slider mechanism to provide the power required

for the soil cutting and the horizontal motion in the x direction.

4.1.1 System Dynamic & Time-Varying Behavior

An interesting feature of a centered crank-slider mechanism is that the crank angle,

with respect to horizon, is the same in both forward and return stroke of the slider,

e.g. zero at either of the limiting positions of the stroke. However, in an offset

crank-slider, the crank angle for executing the forward stroke is different from that of

the return stroke [Bautista, 2009]. This feature is widely used to design quick return

mechanisms where the period of the working stroke will be greater than period of

the return stroke. In other words, speed and acceleration signals are time-varying.

In addition to external load due to the interaction, inertial forces are also another

source of load variability in the system. Fast-moving machinery with rotating and

reciprocating masses, produce fluctuating forces in presence of unbalance, which

is a significant source of vibration excitation [Arakelian and Briot, 2015]. This

force is also known as shaking force (SF). An off-set crank-slider mechanism (with

eccentricity e) is illustrated in fig. 4.1. It produces a shaking force F sh
B due to

internal unbalance of system. The shaking force of the reciprocating motion, crank

moves from A′ to A while slider moves from B′ to B, can be expressed as:

F sh
B = −m3ẍB = F1 + F1′ + F2 (4.1)

82



Figure 4.1: Offset Crank-Slider Mechanism: Once crank rotates from A′ to A, slider
moves from B′ to B. ϕ is the angle of the rotation of the crank, ψ is the angle of
the connecting rod with horizontal axis, e is the offset, and S1 and S2 are the center
of gravity of the Crank and the Connecting rod respectively.

where,

F1 = −mBϕ̇
2r cosϕ

F1′ = −mBϕ̇
2λe sinϕ

F2 = −mBϕ̇
2λr cos 2ϕ

(4.2)

where r = lOA, l = lAB, λ = r/l, mB = m2lAS2/l + m3, m2 is the connecting

rod’s mass, and m3 is the mass of the slide [Arakelian and Briot, 2015].

Replacing the crank bar in fig. 4.1, with a disk with mass m1 and radius r, and

for the connected rod with mass m2 and length l, and the slider with mass m3 are,

the kinetic energies of the crank (T1), connecting rod (T2), and slider (T3),

T1 =
1

2
I1ϕ̇

2 =
1

2
(
1

2
m1r

2)ϕ̇2 =
1

4
m1r

2ϕ̇2,
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2
I2ψ̇

2 +
1

2
m2ẋ

2
2cg +

1

2
m2ẏ

2
2cg

=
1

6
m2l

2ψ̇2 +
1

2
m2r

2ϕ̇2 sin2 ϕ+
1

2
m2rlϕ̇ψ̇ sinϕ sinψ,

T3 =
1

2
m3ẋ

2
3 =

1

2
m3r

2ϕ̇2 sin2 ϕ+m3rlϕ̇ψ̇ sinϕ sinψ +
1

2
m3l

2ψ̇2 sin2 ψ.

(4.3)

Then, the total kinetic energy of a the entire shovel assembly can be obtained as

T = T1 + T2 + T3. (4.4)
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We also know that (ψ) can be described in terms of (ϕ): r sinϕ = l sinψ+ e. Which

yields to,

ψ = sin−1
(
r sinϕ− e

l

)
. (4.5)

In other words, ψ̇ can be described in terms of ϕ

ψ̇ =
r cosϕ

l cosψ
ϕ̇. (4.6)

Also,

ψ̈ =
rϕ̈ cosϕ+ lψ̇2 sinψ − rϕ̇2 sinϕ

l cosψ
. (4.7)

Assuming Q = [ψ ϕ]T , as the vector of generalized coordinates, the equation of

motion of the crank-slider system can be derived as,

M(Q)Q̈+N(Q, Q̇) + ΦT
Q = QA, (4.8)

where

M =

A E

E B

 , N =

KW

PW

 , QA =

 Fextl sinψ

Fextr sinϕ− τ

 (4.9)

Discounting for frictional force, Fext represents the external force [Ha et al., 2006].

Also, ΦQ = [−l cosψ r cosϕ], and

A =
1

3
m2l

2 +m3l
2 sin2 ψ,

B =
1

2
m1r

2 + (m2 +m3)r
2 sin2 ϕ,

E = (
1

2
m2 +m3)rl sinϕ sinψ,

KW = m3l
2ψ̇2 sinψ cosψ + (

1

2
m2 +m3)rlϕ̇

2 cosϕ sinψ +
1

2
m2gl cosψ,

PW = (
1

2
m2 +mB)rlψ̇2 sinϕ cosψ + (m2 +mB)r2ϕ̇2 sinϕ cosϕ

4.1.2 Task-Specific Requirements

The offset of the slider rail to the center of the crank (e), also allows to house

a sandbox, where mediums with different property will be subject to the dozing.
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Figure 4.2: Shovel Assembly Driven by the Slider-Crank: Depth of Penetration h,
and Blade’s Angle of Attack α = 90◦

The sandbox can be adjusted to accommodate different depth of penetration (h),

as shown in fig. 4.2. Also, the blade angle of attack (α) is another controlled

parameters that is discussed further in section 4.2.1. The signals of interest for

property estimation are interaction force (Fint) and the displacement (x), which are

collected with a potentiometer and a force sensor.

The design of this multi-linkage mechanism would present various opportunities to

simulate common structural defects of a ground engaging equipment as discussed in

section 2.2.1. In particular, three failure modes are proposed and can be implemented

for the fault detection experiment: excessive clearance in the revolute joint between

the connecting rod and the slider (FA), a breathing crack in the connecting rod

(FB), and an excessive looseness/misalignment in the intermediate parallel shaft of

the gearbox (FC). These failure modes are further discussed in section 4.3.

Note that, for a full clockwise rotation of the crank, the slider makes a forward

(←) and a return (→) stroke as illustrated in fig. 4.3. Necessary signals to be

acquired are slider’s displacement (x), acceleration (A), and angular velocity of

gearbox input (φ̇i) and output (φ̇o) shafts. These signals of interest are collected

with a potentiometer, an accelerometer, a tachometer and a digital encoder, and
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Figure 4.3: A full Cycle of the Crank-Slider Motion: (a-d) Connecting rod is under
tensile load, and slider is moving to the left with ẋS ≥ 0; (e-h) Connecting rod is
under compressive load, and slider is moving to the right with ẋS ≤ 0. Note that
the positive and negative Max |ẍS| occurs at (a) and (e) at the either ends of the
reciprocal motion, where ẋ = 0. ẍS = 0 occurs twice in each cycle in the mid way.

will be discussed in depth in section 4.4.

4.2 Structure and Subsystems

The test rig is comprised of the following subsystems: the implement assembly,

which provides the soil-tool interaction; the support structure for the mechanism

(including the frame); the power train to provide the digging power, and a sensing

and data acquisition system to acquire and process data from the rig.
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4.2.1 Structure & Implement Assembly

The implement assembly uses a flat metal blade as the soil engaging tool, that

is mounted on the slider. Assembly’s motion is constrained in the x direction

through a prismatic joint. Blade passes through a bed of granular material in a

prismatic container with vertical walls. The flat blade was chosen for its similarity

to theoretical cutting and failure models, such as the Mohr-Coulomb model for

planar soil failure. The blade is designed to be sensitive to applied loads in bending,

so that force can be measured. This configuration constrains the blade in the y

direction, and the load through the mechanism varies in the x direction.

The soil accumulated in front of the blade applies a normal force in the x

direction and shear force components in the y & z directions. However, the amount

of shear force from friction is low compared to the cutting force for low-cohesion soils.

Figure 4.4: Shovel Assembly with the Blade at an Attack Angle of α = 70◦
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Depending on the type of medium and the depth of penetration, the interaction force

Fint may vary from 0.1 N up to 100 N for a small digging implement (depending on

the H, α, and the medium type). Preliminary trials with the test rig, suggested

that for cutting through soil and pushing it at low speed ẋ ≤ 0.5 m/s until it fails,

a distance of 0.2 m to 0.5 m proved to be sufficient.

The shovel assembly is driven by a connecting rod (con-rod) attached to a

flywheel, producing a reciprocal motion along the slider rail. One full rotation of the

crank allows the blade to cut and doze the medium over a range of 0.26 m. Table 4.1

presents the geometrical properties of the crank, the con-rod and the slider. For the

implement, four attack angles (αi=60◦, 70◦, 80◦, 90◦), may be attained by manually

changing the orientation of the blade. These angles were used to compare the results

with the ones reported in the literature. Once the blade is in position, the medium

will be deposited in the sandbox. Negligible adhesion of the medium allows free flow

motion of the medium grains. The depth of penetration h can be adjusted between

0.001 m to 0.003 m by changing the height d of the sand box, using leveling screws

Table 4.1: Properties of the Crank-Slider System

Properties Value

e 0.15 m

r 0.135 m

l 0.65 m

mc = m1 3.750 kg

mr = m2 2.760 kg

ms = m3 1.350 kg

Ic = I1
1
2
m1r

2 = 0.0341

Ir = I2
1
3
m2l

2 = 0.3887

Is = I3
1
12
ms(a

2 + b2) = 0.069
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as illustrated in fig. 4.2. The surface of the medium is leveled manually using a

roller before each trial, and in excess of the overburden, that is above the level line,

is removed.

4.2.2 Power & Transmission

The drive system used to power the shovel assembly is the Gearbox Dynamic

Simulator (GDS) by SpectraQuest Inc. It is built and assembled using high tolerances

so that it would not be affected by undesired vibration. GDS consists of an electric

motor and a parallel shaft gearbox system. The speed of the electromotor can be

controlled via a variable frequency drive (VFD). The motor provides power up to a

maximum of 1 hp which is far greater than the maximum power required for the

low-speed soil cutting:

100 N × 0.5 m/s = 50 Nm = 0.07 hp.

The gearbox is filled with SAE 80W-90 lubricant in order to minimize gear wear.

There are two sets of gears in the GDS, and both sets are spur gears. The parallel

shaft gearbox is set up as a speed reducer, with the first stage consisting of a pinion

with 24 teeth and a gear with 60 teeth, and the second stage consisting of a pinion

with 36 teeth and a gear with 48 teeth, as shown in table 4.2. The bearings used

in the GDS are rolling element bearings, with bushing that house the bearing on

the gearbox walls. The complete shovel rig, shovel assembly and the power train, is

depicted in fig. 4.5.

4.3 Failure Modes of Experimental Apparatus

The original condition of the equipment (which is free of any physical faults) is

considered as healthy or normal state. Different failure modes can produce different
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Table 4.2: Gear Numbers in the Parallel Shaft Gearbox

Gear Location No. of Teeth

Input shaft 24
Intermediate shaft 60
Intermediate shaft 36

Output shaft 48

types of response. Some faults generate a linear forced response (LFR), in presence

of an external harmonic force f(t). Some other faults will generate a transient

response whenever the forcing function is not purely harmonic (e.g., a chipped gear,

rapid speed ramp), or when the system is demonstrating non-linear behavior (e.g.,

seal rubs, ball bearing deadband) [John M. Vance, 2010].

To evaluate the hypothesis, three classes of structural faults were selected:

excessive looseness in a joint, a crack in a link, and misaligment/rubbing of the

rotating shaft. These faults are selected because they represent similar failure modes

Figure 4.5: Commissioned Shovel Test Rig and Data Acquisition System
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Figure 4.6: Characteristic of Intermittent vs. Abrupt faults

that occur in a real shovel components. Another reason for choosing these different

faults is that they have different characteristics: shaft misalignment has an abrupt

nature, whereas the crack and looseness have an intermittent nature. As illustrated

in Fig. (4.6), abrupt faults have a step-like behavior, where the signal changes

abruptly from the nominal value to a faulty value, and may stay at or near the

new value (continuous). In contrast, intermittent faults have a temporary effect:

the signal changes from the nominal value to a faulty value, and returns to the

nominal value after a short period of time (transient) [Contant et al., 2004, Donders,

2002]. This choice, allows us to test the viability of the hypothesis over different

fault types.

Three fault classes used in this research were earlier introduced in section 2.2.2.1.

The first fault under study (FA) is described by excessive looseness in the revolute

joint as illustrated in fig. 2.26. It is seeded in the test rig by reducing the radius of

the journal (RJ) inside the bearing. Under repeated cyclic motion and over time,

this fault can cause excessive wear of the bearing housing.

The joint between the connecting rod and the slider consists of three bearings

mated at two parallel planes as illustrated in fig. 4.7. The bearing on the end of

the connecting rod fits in between the two bearings on the slider, and the journal

(pin) goes through the three bearings. The journal is held in place with two snap

rings on either end. Under normal condition, the journal has a diameter of DJ1=9.5
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Figure 4.7: Select Structural Fault Locations: Fault A (left), Fault B (middle) and
Fault C (right)

mm, with each of the bearings diameter DB=10 mm, and offers 1 degree of freedom

(DOF). Under FA, a new journal is installed that has about 50% of the previous

diameter DJ2=5 mm. This fault not only significantly increases the looseness of

the joint connecting the con-rod to the slider but also changes the DOF. This is

because the new journal not only can rotate, but also can now move in vertical

and horizontal directions. Once the con-rod is moving from a resting position, the

journal starts to move with the bearing on the con-rod in a plane. It would not

move the slider, until the DOF in the horizontal direction is lost. At that point, the

slider starts to move with the connecting rod. The contact between the surfaces of

the journal and the bearings, generates normal and tangential forces which would

have a greater appearance in the form of impact once the slider reaches its limits.

At that point, the connecting rod is still in motion.

Therefore, FA is expected to represents an intermittent class of faults that

manifests itself with a greater magnitude at either end of the reciprocal motion and

disappears/weakens in between. By definition, intermittent faults have a transient

behavior, and if appear periodically can manifest itself as a cyclostationary effect.

The second fault under study (FB), is described as a crack in a link as illustrated

in fig. 2.28. As noted in section 2.2.2.1, a crack in a link often demonstrate a breathing

effect, which means that the stiffness of the link varies between a maximum (closed

crack under compressive load) and a minimum (open crack under tensile load).

Observability of the crack through vibration signal is directly proportional to the
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Figure 4.8: Finite Element Analysis of a Defective Connecting Rod (Crack size
a = 0.25h2): It Shows that the Highest Stress Concentration Occurs When the
Connecting Rod is Under Tensile Loading.

ratio of the crack to link size, and the angular velocity and the load applied to the

link [Shih and Chung, 2013]. In the test rig design, the connecting rod is made of 3

pieces of metal shafts that are rigidly connected to each other. The middle piece has

a different thickness compared to the other two ends (h1 = h3 =15 mm, h2=10 mm),

and can be disconnected and replaced. This design allows to removed the middle

piece and install a faulty one, where a crack with the depth of a = 0.25h2, is seeded.

This ratio is large enough to have noticeable signature in the acceleration signal as

studied in [Shih and Chung, 2013] and also demonstrated in the preliminary finite

element modeling study in fig. 4.8. The impact of this fault is further investigated,

and the results are presented in appendix B.

The third fault under study (FC) is described by the misalignment of the

intermediate shaft in the gearbox and the associated rub between the shaft and the

gearbox wall. This fault is seeded in the test rig by removing the supporting bearing

on one end of the intermediate shaft. By hindering the tolerance required for shaft
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Table 4.3: Description of the Failure Modes Under Study

Fault A Fault B Fault C

Location Joint (Slider/Conrod) Link (Connecting Rod) Rotating Shaft (Gearbox)

Description Excessive Looseness Breathing Crack Misalignment/Rub

Behavior Cyclostationary Transient Abrupt/Transient

alignment, it will cause the spur gears on the shaft to depart from their ideal involute

profiles and will disrupt the gear meshing. As a side effect, the rotating shaft may

come in contact with the non-rotating parts (i.e. bearing bushing on the gearbox

wall), and cause a rubbing effect (see section 2.2.2.1). While the misalignment

demonstrates an abrupt behavior, the rub - if occurs - will have a transient behavior.

Abrupt faults have a step-like behavior, where the signal changes abruptly from the

nominal value to a faulty value, and often is observed through truncated waveform.

4.4 Data Acquisition and Sensors

The monitored parameters of the system are the interaction force between the blade

and the medium fint, displacement xs and acceleration of the slider assembly ẍs, the

angular displacement of the crank φ, effective torque applied on the crank shaft τ .

As shown in eq. (4.8), monitoring these parameters provides complete observability

of the system. Fig. (4.9) illustrates the sensing, data acquisition, and actuation

elements of the system.

For the test rig, in order to study the kinematics of the end-effector, the slider

position and its vibration are recorded. Displacement can be measured through

LVDT (linear variable differential transformer). LVDT has low susceptibility to

noise and interferences and it can offer infinitesimal resolution. Since the operation

of the shovel rig is within the low-frequency range (having a bandwidth on the
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Tachometer

Figure 4.9: Sensing and Data Acquisition Element

order of 1 Hz), position and displacement measurements provide good accuracy

[Fraden, 2010]. The slider’s position along the x axis is measured through a linear

potentiometer, and the signal is captured in a NI9219 analogue input module at a

rate of 100 S/s.

It is common practice to have seismic transducers, such as accelerometers

and velocity sensors, mounted on machine housing components to measure their

vibration level, often in ips and gs [John M. Vance, 2010]. The output signal from

an accelerometer is both amplitude and frequency modulated since the transducer

produces a voltage proportional to the instantaneous vibration. To pick up the

vibration signature of the failure modes, a piezoelectric accelerometer is mounted

on the slider. The signal recorded from the accelerometer goes to a NI9234 IEPE

module.

Some failures in machines occur because of excessive torsional vibration. When

there are gearbox and couplings in the drive train, torque fluctuations have to be

supported by the housing and foundation, giving rise to lateral vibrations. Shaft
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Table 4.4: Shovel Rig Sensors

Transducer Model Spec. Module

Optical Encoder BEI HS35 5000 cpt NI9221 C series

Torque transducer In-house NI9237 simultaneous bridge

Force plate (In-house) In-house NI9237 simultaneous bridge

Accelerometer ICP(R) 603C01 NI9234 iepe

LVDT Potentiometer Omega LP801 NI9219 analogue input

encoders are not considered torsional vibration transducer, but they can carry

information about torsional vibration (i.e. angular velocity variations) that can be

obtained by analyzing the shaft encoder signals. The angular position of the crank

is measured through an incremental encoder that is mounted on the output shaft of

the gearbox. The digital signal from the encoder goes to a C Series NI9221 module.

To measure the soil-cutting force, a strain-gauge-based force sensor is mounted

on the back of the shovel blade. Signals from the force plate are acquired at a rate

of 50 kS/s, through an NI9237 simultaneous bridge module connected to the same

microcomputer. The force sensor was calibrated using a hydraulic press, applying

known forces within the sensor’s elastic range.

The input torque τ applied by the gearbox was captured by a set of shear strain

gauges mounted on the shaft. For the torque sensor, a calibration device with a

lever arm and weights was used to produce specific values of torque, and then the

calibration curve was used to correlate the voltages to the associated torques.

Table 4.4 summarizes the sensors and modules of the data acquisition system. All

the collected signals are routed to the NI cdaq-9178 chassis, and then forwarded to

the LabView VI developed for data collection and pre-processing. The VI program

is presented in appendix C. Preliminary signal processing is carried out to convert

collected voltage and current signals to the proper parameters of interest.

Acknowledging the limitations of the test rig, the next two chapters presents the
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experimental approach and data analysis methods used to evaluate the hypothesis

and the idea of environment and equipment monitoring. Chapter 5 introduces how

the rig is used to dig through a variety of soil types, and how the cutting force is

measured, and describes the methodology developed to obtain information about

the environmental properties of the site of operation. The rig is also used to perform

a time-varying behavior and the data collected from the equipment is analyzed to

monitor the condition of equipment through vibration analysis.
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Chapter 5

Soil Parameter Estimation

Equipment situation awareness is an important system level monitoring [Lever,

2011]. Knowledge of the environment of operation is not only important for dig

planning [Cannon and Singh, 2000] and production optimization [Tatum et al.,

2006b], but it also contributing factor to the greater cause of autonomous digger

[Lever, 2011]. Additionally, environmental factors has been identified as a source

of operational variabilities that should be accounted when addressing equipment

monitoring [Bartelmus, 2012]. In this context, the present study considers soil

property estimation as an important component of the environment monitoring.

This chapter presents the methodology and formulation developed for property

estimation of cohesive and noncohesive medium.1 Using the shovel test rig developed

for this study, these methods will be applied and experimentally tested for property

estimation. At the end of this chapter, the estimated properties are compared to

physically measured ones for cohesive and noncohesive material.

Material covered in this chapter help to gain a better understanding of the

environment of operation, and allows to have a better estimation of the machine-

1Parts of this chapter have been published in Journal of Terramechanics, [Yousefi et al., 2012],
Contributing authors: Yousefi, R. and Kotchon, A. and Lipsett, M. G., Online publication date:
1-Jun-2012.
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ground interaction force, and thus the effect on machine dynamics.

5.1 Machine-Ground Interaction

Property estimation, is the inverse of the interaction force model. As explained in

the literature, and due to complexity of these models, they can not be analytically

inversed. Hence, most property estimation schemes work on the principle of mini-

mizing the error between the predicted force (computed from an interaction model)

and the actual measured failure force from the interaction.

Other estimation methods, attempt to numerically solve the non-linear system

of equations that can be constructed by multiple digs. Newton-Raphson method, is

an example of such methods. For each unknown parameter that is to be estimated,

a unique function is required. However, there are more than one parameter to be

estimated, while there is only one equation to describe the interaction system. This

can be solved by including an additional measurement of the cutting force forces -

at a new rake angles - for each additional unknown and expand the equation around

those points. This effectively creates multiple independent equations, which can be

used to obtain the desired soil parameters. Figure 5.2 shows how the rake angle α is

set to 70◦ and 80◦ for the experiments. These two angles are selected, because the

Mohr-Coulomb method gives more accurate estimations below 80◦ [Hong, 2001].

To calculate the failure force based on the Mohr-Coulomb equation presented

in eqs. (2.10) and (2.11), the required soil parameters are: soil density γ, soil-

tool interface (external) friction angle δ, soil-soil internal friction angle φ, and soil

cohesion c. The required geometric properties of the tool include: the height of

the blade H, the rake angle of the blade with respect to the horizontal axis α, and

the angle of the soil surface β. These parameters are illustrated in fig. 5.1. The

Mohr-Coulomb model assumes that the soil or substance fails on a flat plane in a

wedge-like shape, starting from the tip of the blade and proceeding to the surface of
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Figure 5.1: Planar Failure Surface According to Coulomb Theory: Internal Friction
Angle φ, External Friction Angle δ, Attack Angle α, Planar Failure Line θ, Surface
angle β, and Depth of Penetration H

the soil. This approximation works well for granular material with low cohesion.

Previous experiments has shown that the Mohr-Coulomb method is accurate for

rake angles between 50◦ and 80◦ [Hong, 2001].

The failure force of the material during the soil-tool interaction is described

as the maximum amount of pressure the soil wedge can withstand during cutting

before it fails in shear. During the soil-tool interaction, the exerted load on the

Figure 5.2: While Changing the Attack Angle (αi), by Changing di, Depth of
Penetration is Kept Constant at H.
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medium will incrementally increase before the failure, while the blade is still in place.

As a result, the force required to cut the soil will have an obvious peak right before

the soil fails for the first time. After the soil failed, if the soil overburden is pushed

with the blade horizontally, then the soil will fail continually and at intervals [Singh,

1995].

5.2 Modified Newton-Raphson Method (MNRM)

Non-linear terms in the Mohr-Coulomb model described in eqs. (2.10) and (2.11)

makes it impossible to obtain an analytical inverse. Therefore, a non-linear iterative

solving method must be applied to obtain the two unknown parameters (Internal

and external friction angles: φ, δ). The Newton-Raphson iterative method operates

by making a series of guesses to improve an initial estimate [Gilat, 2010].

For the following system of equation,

F (z) = f(z)− z = 0 (5.1)

we can expand it about an arbitrary point zi,

z = f(z) = f (zi + (z − zi)) (5.2)

using the Taylor expansion, and some simplification, the iterative method will

become,

zi+1 = zi −
(
I − ∂f

∂z

)−1
[zi − f(zi)] , i = 0, 1, . . . , (5.3)

This is known as the Newton-Raphson method. For a system of equation, it can

be written as,

F (z) = F (x, y) =

 F1(x, y)

F2(x, y)

 (5.4)
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and the Jacobian matrix,

∂F

∂z
= J(x, y) =

 ∂F1

∂x
∂F1

∂y

∂F2

∂x
∂F2

∂y

 (x, y) (5.5)

This estimate is then refined until the difference between the current and previous

estimation falls beneath a chosen value.

∆z = zi+1 − zi (5.6)

The challenge in the implementation of the Newton-Raphson method is the

extensive computation power, as it needs to compute and evaluate the entire Jacobian

matrix ∂f
∂z

(zi) at every iteration. Moreover, each Newton-Raphson iteration requires

the inverse of the Jacobian. To avoid these two challenges, a modified Newton-

Raphson method can be applied (See appendix D)). In the modified Newton-Raphson

method, the Jacobian is approximated by a fixed matrix e.g. ∂f
∂z

(z0). Therefore, we

no longer need to compute the Jacobian in every iteration, nor do we need to solve

the linear system (invert the Jacobian) in every iteration [D. Vaughan Griffiths,

2006, Anandarajah, 2010].

For our system of equations fi(φ, δ, αi), the Newton-Raphson method can be

expressed as follows:

 φ

δ


k+1

=

 φ

δ


k

− λ

 ∂f1
∂φ

∂f1
∂δ

∂f2
∂φ

∂f2
∂δ

−1∣∣∣∣∣∣
φ,δ

×

 f1 (φ, δ, α1)

f2 (φ, δ, α2)


k

(5.7)

Including a relaxation factor of λ = 0.5 [Althoefer et al., 2009], the change in

each desired parameter is:

∆δ = λ
−f1

(
∂f2
∂φ

)
+ f2

(
∂f1
∂φ

)
J(f1, f2)

∆φ = −λ
−f2

(
∂f1
∂δ

)
+ f1

(
∂f2
∂δ

)
J(f1, f2)

(5.8)
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∆φ and ∆δ are the incremental improvements of the desired parameters; and f1

and f2 are the failure force functions and different angles of α.

5.2.1 Proposed Estimation Scheme

Building upon the method of estimation for 2 unknown parameters, a new estimation

scheme is proposed that can account for cohesion as well. In this method, and to

predict all three soil parameters, φ, δ, and c, three sets of equations are required,

However, when using three sets of Mohr-Coulomb equations at different rake angles

as the input equations, solution of the Newton-Raphson method will become wildly

unstable or divergent. Hence, a modified parameter estimation method is required

to obtain a solution, and similar to the interaction model, the modification comes

from soil mechanics.

The soil-tool friction angle represents the tool roughness. For cohesionless soil,

δ = 0 models a perfectly smooth wall, while δ = φ indicates a completely rough wall

[Shiau et al., 2008]. In the soil mechanics field, it is commonly accepted to consider

the soil-tool friction angle δ equal to 2
3

of the soil-soil friction angle φ [Shiau et al.,

2008, Look, 2007]. This relationship is adopted and used as a third equation in the

proposed parameter estimation scheme.

As a result, the parameter estimation algorithm returns a set of values for φ
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Figure 5.3: Proposed Material Property Estimation Scheme: It Takes Force Measure-
ments from Two Different Attack Angles, and Estimates for up to 3 Soil Parameters.
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and δ, choosing a cohesion value c that results in a δ that is 2
3

the magnitude of φ.

Figure (5.3) demonstrates how the proposed estimation scheme operates.

5.3 Experiments & Results

The main objective of the experimental work is to obtain failure forces required for

a medium, at multiple rake angles, under controlled conditions (i.e. temperature,

humidity, input power and cutting speed) for each experiment. Soil cutting tests

were performed on three soil samples: Play sand, Glass beads, and Oil sand. It is

important to note that the first two material are assumed to be cohesionless, while

the Oil sand is highly cohesive. To account for this, the following two steps were

taken for processing the data:

Step 1 For the first approach, play sand and glass beads are treated to be cohesion-

less (c = 0). This way the NRM algorithm for the estimation of two friction

angles (φ) and (δ) proposed in [Tan et al., 2003] is applied. This step, allows

to validate the estimation algorithm, and also to establish a baseline.

Step 2 In the second approach, the new estimation scheme is applied on all soil

samples (including Oil Sands), assuming non-zero values for cohesion (c ≥ 0).

Using two sets of failure force readings and an auxiliary equation, frictional

angles (φ) and (δ) and the cohesion (c) values are estimated for all soil samples..

Shear box tests were also performed to measure of the friction angles where it

was possible, for comparison purpose and to assess the estimation error.

Under similar experimental procedure, failure forces are recorded for Oil Sand

samples. Characterizing Oil Sand is difficult because it is highly cohesive and

inhomogeneous, hence the failure force might significantly fluctuate.
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5.3.1 Shearbox Measurement of Soil Properties

Shearbox test provide a direct but lengthy measurement of the soil parameters

(density, friction angle and cohesion), which can be used as a baseline to compare

and validate the estimation results. A direct shear test is a controlled set up for

testing and measurement of the shear strength properties of a medium over an

extended period of time. In this procedure, the material is sheared slowly, at a speed

of less than 5 mm/min, at different loading pressures. The slope of the failure force

versus the loading pressure is taken to be the shear angle of the material (φ), while

the y-intercept provides the cohesion (c) [Craig, 1990]. For Glass beads and Play

sand samples, Shear angle (φ) and cohesion (c) were obtained using a standard shear

box test. Soil-tool friction angle (δ) was measured using the procedure described

by McKyes [McKyes, 1985]. The results of these measurements are presented in

table 5.1.

Hong [Hong, 2001] and Tan et al. [Tan et al., 2005a] used glass beads and Ticino

samples. The measured values of the mechanical properties of soil samples reported

in their studies are presented in table 5.2.

Figure 5.4: Principles of Direct Shear Testing (after [Mecsi, 2009])
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Table 5.1: Measured Density and Friction Angles for Soil Samples

Parameter Glass beads Play Sand

γ (kg/m3) 1460 1650

φ (◦) 27 36

δ (◦) 20 22

Table 5.2: Reported Density and Friction Angles of Soil Samples Used in [Tan et al.,
2005a]

Parameter Glass beads Ticino

γ (kg/m3) 1460 1430

φ (◦) 31 42.3 ∼ 45.4

δ (◦) 18 22 ∼ 24

5.3.2 Cutting Force

Play sand and glass beads were tested for two different attack angles, α1 = 70◦ and

α2 = 80◦, at a penetration depth of H = 0.0254 (m), as shown in fig. 5.2, with a

blade of width 0.10 (m). These values were assumed, to replicate the experimental

conditions similar to [Tan et al., 2005a]. Figures 5.5 and 5.6, demonstrates the

soil-tool interaction forces measured from multiple soil cutting trials on Play Sand

at α1 = 70◦ and α2 = 80◦. The first peak value for each trial indicates the failure

force. Interaction forces from soil cutting trials on Glass beads for 70◦ and 80◦ rake

angles are also illustrated in figs. 5.7 and 5.8, failure forces are similarly extracted,

and presented in table 5.3. The averaged failure force for each specific rake angle is

then calculated, and fed to the estimation scheme for each of the soil samples.
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Figure 5.5: Interaction Force Experienced from Multiple Play Sand Cutting Trials
at 70◦.
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Figure 5.6: Interaction Force Experienced from Multiple Play Sand Cutting Trials
at 80◦.
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Figure 5.7: Interaction Force Experienced from Multiple Glass Beads Cutting Trials
at 70◦.
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Figure 5.8: Interaction Force Experienced from Multiple Glass Beads Cutting Trials
at 80◦.
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Under similar experimental procedure, failure forces are recorded for highly

cohesive Oil Sand samples. This material can be difficult to characterize because it

is not only cohesive but also inhomogeneous. Cutting the more dense and cohesive

Oil Sand required higher amount of input energy, and interaction forces. Figures 5.9

and 5.10 show the Oil Sand demonstrated much higher resistive force before it failed.

It is noticeable, that the interaction force did not show as much fluctuation as the

other two soil samples. The averaged cutting forces recorded for Oil Sand at 60◦,

70◦, and 80◦ rake angles, are 22 (N), 45 (N) and 58 (N) respectively, and presented

in table 5.4).

Table 5.3: Cutting Force Measurement for Glass Beads & Play Sand at α1 = 70◦ &
α2 = 80◦. Averaged Value from Multiple Trials Is Used for Estimation.

Glass beads Play sand

i 70◦ 80◦ 70◦ 80◦

1 2 2.65 3.3 5.4

2 2.2 2.75 4.2 6.4

3 1.9 2.7 3.2 4.1

4 2 3.2 3.3 4.1

5 2.3 3.5 4.1 4.7

6 2.25 2.65 3.7 4.6

7 2.3 3.05 3.8 5.3

8 2.45 2.65 4.6 5.7

9 1.6 2.65 3.7 5.3

10 1.95 2.6 3.6 6.2

Average 2.1 2.85 3.75 5.2
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Table 5.4: Averaged Oil Sand Cutting Force at 60◦, 70◦, and 80◦.

Attack angle Cutting Force

60◦ 22 N

70◦ 45 N

80◦ 58 N
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Figure 5.9: Interaction Force Experienced from Multiple Oil Sand Cutting Trials at
60◦.

110



0 0.5 1 1.5 2 2.5 3 3.5 4
−10

0

10

20

30

40

50

60

Time (s)

In
te

ra
ct

io
n

 F
o

rc
e

 (
N

)

Soil−Tool Interaction Forces from Multiple Trials for Oil Sand at Attack Angle of α =70 °  

Figure 5.10: Interaction Force Experienced from Multiple Oil Sand Cutting Trials
at 70◦.

5.4 Discussion and Chapter Summary

While Glass bead and Play sand have each been treated as cohesionless material,

on the other hand, materials such as oil sand are known to be highly cohesive. This

means that previous algorithms developed for property estimation of cohesionless

material cannot be used for cohesive materials such as oil sand. Therefore, an

effective estimation scheme for such soils needs to incorporate the cohesion term.

The proposed estimation scheme allows to account for cohesion, hence Glass

beads and Play sand are tested under two scenarios. First as cohesionless material

(assuming c=0), and the with cohesion (assuming non-zero cohesion). This feature

also allows estimating the mechanical properties of the highly cohesive oil sand.

Note that the starred values for the oil sand are from [Wong, 2001]. Applying

the proposed estimation scheme, described in section 5.2.1, all of the three soil

parameters, φ, δ, and c, could be estimated as presented in table 5.5. As can be

seen in table 5.5, cohesion values for play sand and glass beads is less than 5 kPa,
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Table 5.5: Property Estimation Result for Cohesive and Non-Cohesive Soils

Non-Cohesive φ◦ φ◦est φ◦err δ◦ δ◦est δ◦err

Glass Beads 27 32 5 20 26 6

Play Sand 36 62 26 22 20 2

Cohesive φ◦ φ◦est φ◦err δ◦ δ◦est δ◦err c(kPa) cest(kPa) cerr(kPa)

Glass Beads 27 32 5 20 26 6 0 0 0

Play Sand 36 39 3 22 25 3 2.85 4.4 1.55

Oil Sand 60 56 4 – 33 – 94 95 1

this classifies them as cohesionless or low-cohesion materials.

Table 5.5 compares the estimated values of the three parameters, with shear

box measurements and previously reported values, and provides a relative error for

each estimation. Previously reported error in estimated parameters is between 10%

and 30% [Tan et al., 2005a]. In a field setting, this is sufficient to provide useful

information for design and for control of equipment such as an automated excavator.

Treating the soil samples to be cohesionless provides a shear angle estimation

for the glass beads within the range of acceptable error (i.e. ≤ 30%), but not for

the play sand (indicating that the assumption that play sand is cohesionless is not

appropriate). Taking cohesion into account significantly brings down the associated

error of the friction angles of the play sand. The error in the predicted cohesion

of the play sand is comparable to that of other parameter estimation methods for

sands [Tan et al., 2005a].

There is a considerable range of reported properties for oil sand in the literature.

Brookere reported an angle of shearing resistance below 45◦, with a cohesion intercept

of 80 (kPa) [Brookere, 1975]. Agar performed triaxial tests on Athabasca oil sand

samples, where friction angles ranging from 27◦ − 55◦ were reported [Agar et al.,

1987], under the assumption that oil sand was cohesionless. These are similar to

results from Wong, who reported a peak friction angle of 48◦ and a cohesion of
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94 (kPa) [Wong, 2001] for oil sand samples from Fort McMurray - similar to the

samples used in our experiment. Compositional differences between types of oil

sand are likely responsible for the wide range of reported values. Additionally, there

are multiple sets of test conditions, sampling methods, and sample preparation

techniques used, which could contribute to the variability in the results.

Shear-box tests performed on the sample also showed that there can be a wide

range of shear angles obtained for oil sand, depending on the type of oil sand tested

and the methods used for sample preparation and testing. This is particularly

complicated by the lack of a clear failure peak in shear box testing for this material.

While the loose, non-cohesive materials had a well-defined failure peak in the shear

box tests, the oil sand did not, and the failure peak was considered to occur when

the sample strain dropped to 10% of its original value. Due to the change in shear

box test procedure, the calculated friction angle for the oil sand may not represent

the failure condition of the material in the same manner that it represents the failure

of the loose, non-cohesive materials.

There are two discrepancies between the theoretical model used to approximate

the cutting process and the experimental apparatus, which contribute to the error

in the parameter estimation. First, the Mohr-Coulomb model does not take into

account boundary conditions or edge effects caused by the walls of the soil container.

Second, the model considers density to be a fixed parameter during the cutting

process; and the estimation method does not account for compaction of the material

due to the movement of the cutting blade. Additionally, the Mohr-Coulomb model

does not account for the adhesion of the oil sand. Unlike the play sand and glass

beads, oil sand adheres strongly to the cutting blade and soil container. The adhesion

between the oil sand and the walls of the container could cause an increase in cutting

force not represented in the Mohr-Coulomb model. It may also affect the shape

of the failure plane, causing a more complex failure. Furthermore, the cohesion

and adhesion of the oil sand also affect the shear box tests used to determine the

113



properties of the materials investigated in this experiment.

Summary of the findings of this chapter is as follows

• Using the principals of the Soil Mechanics, the theoretical relationship between

internal and external friction angles is adopted as an auxiliary equation to

initiate the soil property estimation scheme. This would allow expanding the

estimation for three unknown parameters.

• The proposed estimation scheme takes two force readings and produces an

estimate for three soil parameters: Cohesion (c), Internal friction angle (φ),

and external friction angle (δ). Accounting for the cohesion is a significant

improvement over previous estimation schemes reported in the literature,

which were only suitable for cohesionless material. Material such as Play

sand (with low cohesion) has been previously treated as cohesionless, which

produces inaccurate estimate.

• Proposed scheme provides an acceptable estimate (error≤ 30%) for non-

cohesive material such as Glass beads, and offers significant improvement

for property estimation in relatively cohesive material such as Play sand

(error≤ 15%).

• Using the new estimation scheme, mechanical properties of highly cohesive

oil sand were successfully estimated for the first time, which are in agreement

with directly measured values in literature.
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Chapter 6

Monitoring and Fault Detection

Structural health monitoring and prognosis, along with the environmental monitor-

ing, is another important side of the equipment situation awareness [Lever, 2011].

Knowledge of the equipment condition, allows to better predict machines response

to the environment, external and internal forces, and ultimately better planing of

the operational strategy. In the context of the system level monitoring, equipment

condition monitoring is defined by identifying the influential factors such as wear and

degradation and the effect of variable operating condition (load, and speed). These

factors can affect equipment structural integrity, reliability, and machine availability

to perform certain tasks (i.e. pay load capacity, cycle time, dig energy) as shown

in fig. 1.1. Through application of environmental monitoring, changes associated

with the environment can be successfully identified, and hence it contribution to the

operational variability (whether it is the load variability, or change in the monitored

signal) can be isolated. As a result, any change in the operating condition of the

system then can be identified as a change in the condition of the equipment, as was

portrayed in fig. 1.2.

This chapter presents a new look at equipment monitoring from the perspective

of system dynamics. Using the shovel test rig developed for this study, conventional
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vibration analysis is adopted to monitor the variation in two of the dynamic

parameter of the system (i.e., acceleration of the slider, and crank angular velocity).

It is widely accepted in the literature that some faults can potentially change the

dynamics of the entire system. The slider, that is the end-effector located at the

end of the kinematic chain, is a good location for monitoring such changes, because

it responds to deviations from normal state caused by faults in other machine

elements. Angular velocity of the crank is a state variable of the system that was

also monitored. The crank, being in the middle of the mechanism, allows assessment

of the impact of the proximity of the sensor on the fault identification outcome at

the tool.

The effectiveness of the condition monitoring through acceleration signal will

be discussed and application of different signal processing methods for detection

and identification of the faults will be reviewed. This approach views the condition

monitoring problem from a energy balance point of view, and promotes the use of

dynamic parameters of the system for fault detection and condition monitoring.

This chapter is structured as follows. The time-varying behavior of the system

is first studied, which impacts the choice of the signal processing technique. Using

the statistical features of the waveform, a time-domain analysis is carried out on

the acceleration signal to identify fault presence. Features extracted from this

step are then used to establish a baseline and to separate failure modes using a

dimension reduction technique. Following the time-domain analysis, Frequency and

Time-Frequency domains analyses are considered. Time-Frequency signal processing

techniques are applied on the both acceleration and angular velocity signals, and

their effectiveness in fault detection is compared. Interactive phase of operation

(when the shovel engages with the medium) has not been the focus of the monitoring

study. However, some preliminary results from the interactive period are presented

in appendix E.

116



6.1 Non-Stationary Behavior

As discussed earlier in section 2.2.2 stationary signals have statistical properties

that are invariant with time. Signals that lack such characteristic are considered

non-stationary and are categorized into continuously varying and transient.

The monitoring process starts with establishing a baseline for the normal oper-

ating condition during free motion (non-interactive). Signals from the displacement

of the slider (ẋs, A), and rotation of the crank φ are acquired for several cycles

(one cycle being one full rotation of the crank). With each rotation of the crank,

the slider completes a forward and return stroke, as was shown in fig. 4.3. Normal

operating condition trials were repeated and four sets of signals were collected to

develop a reliable baseline.

The effect of the offset design and shaking force, which is the unbalanced force

acting on the frame of machine, are discussed in section 4.1.1. Figure 6.1 illustrates

the response of xs, A and φ̇ for 10(s), equal to about six cycles of operation under

normal conditions (with T ≈ 1.5 s). The effect of the offset is clear in the asymmetric

shape of the slider’s acceleration signal, where it demonstrates different behavior

in the forward and return strokes. Also, the disturbance in the acceleration signal,

while the the slider reaches its left limit, is the passing of the connecting rod through

its singularity point. The crank angular velocity varies as well, as it completes one

full rotation (one cycle).

This variability is primarily due to the unbalance and the effect of the shaking

force, as previously discussed. Using eqs. (4.2) and (4.2), the shaking force is

calculated and plotted for the same cycles. Shaking force under normal condition

(F SH
N ) demonstrate a near-symmetric sinusoidal waveform. The magnitude of the

maximum shaking force during the free motion is of the same order of magnitude

experienced when the apparatus is cutting cohesionless medium. Also, it is observed

that the maximum shaking forces experienced at the end of the return stroke (→),

is slightly higher (∼ 15%) than the ones at the end of the forward (←) stroke. Also
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as expected, it is observed that the maximum shaking force, and maximum slider’s

acceleration is happening at the same instance.

Operating under Normal Condition
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Figure 6.1: Slider’s Displacement xs, Acceleration signal As, Crank Angular Velocity
φ̇, and Shaking Force F SH

N for 10 (s) under Normal Condition.
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6.2 Fault Diagnostic

Once the baseline was established, faulty components were seeded and the signals

of interest (xs, A and φ̇) were collected. For each faulty condition, similar to the

normal operating condition, four sets of samples were collected.

Shaking forces (F SH
FX ) were calculated and plotted along with the other signals,

as illustrated in figs. 6.2 to 6.4. There are a number of differences in the time series

data that can be seen immediately. As discussed in the literature, a number of data

processing techniques are available to analyze these signals. Time-domain analysis,

Frequency-domain analysis, and Time-Frequency analysis will be applied and the

results will be discussed in the following sections.

6.2.1 Time-Domain Analysis

The time domain approach taken in this section was based on statical feature

extraction, explained earlier in section 2.2.2.2. Statistical features presented in

table 2.1 can be used to separate normal from faulty states based on the assumption

that the presence of faults will change such features. These features were calculated

for the acceleration signal from all four operating conditions measured as presented

in table 6.1.

To assess the changes made to the acceleration signal due to the presence of faults,

Standard deviation (Fr1) and Mean (Fr5), provides the first insight. Comparing

the distribution of the acceleration signal in Normal and Fault conditions, it can

be seen in fig. 6.2 that the signal is largely distorted under Fault A, whereas in

Faults B and C, it is not deviating from the normal signal as much, as depicted in

fig. 6.3 and fig. 6.4. This explains the relative changes in the ‘standard deviation’

and ‘mean’ values. The changes in the signal ‘mean’ and ‘standard deviation’, can

be contributed to the rubbing effect that occurs at the either end of the slider’s

movement in presence of Fault A. This is evident in the displacement signal shown
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Operating under Fault A Condition
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Figure 6.2: Slider’s Displacement xs, Acceleration Signal As, Crank Angular Velocity
φ̇, and Shaking Force F SH

FA for 10 (s) under Fault A Condition.

in fig. 6.2, which is flattened on both ends of the motion. The excessive clearance in

the revolute joint, activates the additional DOF of the revolute joint, which disrupts

the continuity of the slider motion in the x direction. Allowing the revolute to move

freely, increases the chance of contact and causes impact. On the other hand, under

Fault B, this only happens when the slider starts its forward stroke. At that point,

the compressive load on the connecting rod becomes tensile which activates the

‘open mode’ of the breathing crack.
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The next three features, Peak to Peak (Fr4), Peak to Mean (Fr6) and RMS

(Fr7), are conventionally used for vibration monitoring. While RMS values are

pretty much the same as the standard deviation (by definition), Fr4 and Fr6 offer

interesting information about the failure modes. Acceleration signal under Fault

A demonstrates a significant amount of increase to both features (around 8× the

normal). While the change in these two features are noticeable for Fault C, ‘peak

Operating under Fault B Condition
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Figure 6.3: Slider’s Displacement xs, Acceleration Signal As, Crank Angular Velocity
φ̇, and Shaking Force F SH

FB for 10 (s) under Fault B Condition.
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Operating under Fault C Condition
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Figure 6.4: Slider’s Displacement xs, Acceleration Signal As, Crank Angular Velocity
φ̇, and Shaking Force F SH

FC for 10 (s) under Fault C Condition.

to peak’ and ‘peak to mean’ values demonstrate no significant change in presence of

fault B.

Skewness (Fr2) and Kurtosis (Fr3) are descriptors of the shape and symmetry

of the probability distribution. Skewness, the third centered moment of inertia,

is zero for symmetrical functions and large for asymmetrical functions. Kurtosis,

fourth centered moment of inertia, is large for ‘spiky or impulsive signals, because of

the considerable weighting given to local spikes by taking the fourth power [Randall,
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Table 6.1: Typical Statistical Features Extracted from the Acceleration Signal

Feature Description Normal Fault A Fault B Fault C

Fr1 Standard Deviation 2.0 2.6 1.8 1.6

Fr2 Skewness -0.1 -0.9 -0.2 -0.5

Fr3 Kurtosis 2.5 10.9 2.5 3.8

Fr4 Peak to Peak 8.6 37.7 8.5 11.8

Fr5 Mean(abs) 1.6 1.8 1.4 1.2

Fr6 Peak to Mean 5.4 21.2 6.0 10.1

Fr7 RMS 2.0 2.6 1.8 1.6

Fr8 Crest factor 2.0 6.0 2.1 4.1

Fr9 Shape factor 1.2 1.5 1.2 1.3

Fr10 Impulse factor 2.4 8.8 2.6 5.5

2011]. The acceleration signal for the normal operating condition, demonstrate near

zero ‘skewness’ value, while signal under Fault A conditions has a skewness of about

10× the normal. Fault B shows the least amount change, and this can be confirmed

by looking at the waveform signal as well. Kurtosis is a good indicator of spikiness

of the signal [Randall, 2011], the large spikes in the acceleration signal under Fault

A are clear evidence of such high kurtosis value (5× the normal). Note that the

negative skew indicates that the probability density function (pdf) has a longer

left-side tail.

The simplest measure of impulsiveness is the crest factor (Fr8), which is defined

as the ratio of ‘Peak’ or ‘Max’ to the ‘RMS’ value of a the waveform. The crest

factor for a sinusoidal waveform is 1.414, because the peak of a true sinusoid is

1.414 times the RMS value. Crest factor is a less stable feature than the kurtosis,

as it relies on the maximum value of the measured signal which can change from

one reading to another. However, the next two features, Fr8 and Fr10, match the

same trend found earlier in Crest Factor: 3× higher in the presence of Fault A and

2× higher in the presence of Fault C.
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6.2.1.1 Dimension Reduction and Classification

Extracting the statistical features from all trial constructs a 16× 10 matrix (16 sets

of data, each with 10 features). Multivariate statistical techniques are useful in

compressing data and reducing its dimensionality. Using such techniques essential

information can be retained, that is easier to analyze than the original larger data

set. Transforming a number of related variables to a smaller set of uncorrelated

variables is one of the key functions of multivariate statistical techniques. Principal

Component Analysis (PCA) is a standard multivariate technique that was used

to develop the baseline by reducing the dimension of extracted features [Jolliffe,

2002, Abdi and Williams, 2010]. Three sets of data from normal operating condition

were used to train the PCA and to extract the linearized transformation that would

best represent the normal condition data. Figure 6.5 demonstrates that using the

first two principal components 99.9% of the variation in the ten features can be

captured. Hence, these two principal components suffice to describe the baseline with

high confidence. The linear transformations to express first and second principal

components are presented in eqs. (6.1) and (6.2). These two principal components

(PC1 and PC2) are then used to map all the statistical features extracted earlier,

into a two-dimensional map.

PC1 = 0.3136Fr1 − 0.0823Fr2 + 0.4962Fr3 − 0.423Fr4

+ 0.218Fr5 − 0.17Fr6 + 0.314Fr7 + 0.29Fr8 + 0.218Fr9 + 0.407Fr10,
(6.1)

PC2 = −0.201Fr1 − 0.108Fr2 − 0.346Fr3 − 0.392Fr4

− 0.211Fr5 + 0.745Fr6 − 0.201Fr7 − 0.127Fr8 + 0.103Fr9 − 0.082Fr10,

(6.2)

The remaining normal data set was used to validate the principal components

construction, and it’s effectiveness for clustering the normal data. Figure 6.5 shows

the training data in red circles and the validation data in cyan circle. Also, four

124



Figure 6.5: Feature Extraction and PCA Are Applied on Acceleration Signal (A) to
Separate Healthy and Faulty states. Four Health Classes Are Separated Using PC1

and PC2

classes of operating condition (N,FA, FB, FC) can be successfully separated from

the normal data, for all four sets of trials (total of 16 data sets).

Furthermore, using these two principal components (PC1 and PC2), all four

classes of operating condition can be separated using a linear classifier. The linear

Figure 6.6: Normal (circles), Fault A (stars), Fault B (diamonds) and Fault C
(squares) Operating Conditions Can Be Separated Using A Linear Classifier.
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classifier in Matlab R2012a - classify(sample, training, group, ‘linear′) - fits a

multivariate normal density to each of the four groups of condition, with a pooled

estimate of covariance. The result of the classification is presented in fig. 6.6.

6.2.2 Frequency and Time-Frequency Domain

The Fast Fourier Transform (FFT) is the most widely used spectral analysis method

used for fault detection in sample data sequence for stationary or nearly stationary

systems. It was discussed in section 2.2.2.2 that if the stationary condition is not

met, results obtained from the FFT are not reliable. For all the trials, motor nominal

speed was set constant at 126 rpm (∼2.1 Hz). With the gearbox ratio of 0.3, the

output shaft of the gearbox rotates at the speed of 37.8 rpm (∼0.63 Hz). Fourier

transform was applied on 15 (s) of the acceleration signal, about 10 cycles, from

all 4 health conditions and the spectra are presented in fig. 6.7. Spectrum of the

normal condition, demonstrate a dominating frequency of 0.67 Hz which is close to

the 1× of the rotation of the crank. Second peak is at 2.1 Hz, which is about 3×.

There are also many harmonics at half and full cycles, but they are all smaller peaks.

Spectrum of the signal under Fault A demonstrates the 1×, at a slightly smaller

frequency (0.64 Hz), but many larger spikes can be seen at high frequncy range.
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Figure 6.7: FFT Spectrum of the Acceleration signal for Normal (Blue), Fault A,
Fault B and Fault C conditions (in Red). Spectrum of the Normal condition is
Plotted in the Background.
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This is primarily due to the impulsive and spiky nature of fault A. In the presence

of Fault B, acceleration signal shows a lot of harmonics at 1×, 2×, 3×, . . . , but

the spectrum is not much different from Normal condition. In presence of Fault C,

the dominating frequency of the signal reduces by about 18%. Additionally, and

similar to Fault A, Fault C demonstrates a whole array of high frequency content.

Although, some changes are observed in the spectra, the non-stationary condition of

the signal prevents it from being used as a reliable tool for detecting fault presence.

Just as like as purely time-based approach to monitoring, which loses the fre-

quency information, a purely frequency based method, will lose the time information;

whereas a time-frequency approach conserves both time and frequency information

[Randall, 2011]. Among many time-frequency methods, Short Time Fourier Trans-

form (STFT), has been widely used for fault detection for non-stationary signals.

The STFT uses sliding windows in time to capture the frequency characteristics as

functions of time. Therefore, spectrum is generated at discrete time instants (which

allows to regard the signal stationary at such a short time span) and provides a

better tool to deal with the non-stationary signals as noted earlier in section 2.2.2.2.

To evaluate the effectiveness of the STFT for the time-varying behavior of the

test rig, ’Spectrogram’ of the acceleration signal was generated. The failure modes

of the interest demonstrate themselves in terms of harmonics of the rotational speed.

Because of the low angular speed of the system (under 1 Hz), and to focus on the

low frequency events (fault signatures), a low pass filter was applied on the signal.

In fig. 6.8 the STFT provides a time-frequency distribution of the signal under

all four conditions. Under normal condition 1×, and 3× components are visible.

Spectrogram of the signal under Fault A and Fault B reveal several concentrated

high frequency events. The high magnitudes of these events, affect the frequency

content of the signal. The impulsive nature of the phenomena indicates the presence

of a large transient (i.e. impact), which is the characteristic of Fault A and Fault

B. Figure 6.8c and fig. 6.8d demonstrate that the frequency has a modulating
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characteristic, which can be used for fault detection and to further separate these

two faulty modes (Fault B and Fault C) from Fault A. To further investigate this,

signal is analyzed using Empirical Mode Decomposition (EMD) and Hilbert-Huang

Transform (HHT) in the next section. As discussed in section 2.2.2.2, EMD is

specifically developed to analyze data from non-stationary and nonlinear signals

and uses a self-adaptive approach to deal with signal.

Figure 6.8: Spectrogram (stft) of the Acceleration Signal for All Four Health
Conditions. Figures (b) and (c) Demonstrate Significant Impact. Also, in figures
(b) and (c) It is Observed that the Dominating Frequency is Modulating Along the
Time Axis.
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6.2.2.1 Hilbert-Huang Transform (HHT)

Principles of HHT are explained in section 2.2.2: HHT represents the signal in the

time-frequency domain by combining empirical mode decomposition (EMD) with

the Hilbert transform. In contrast to FT which uses constant amplitude sine and

cosine functions to represent each constituent frequency components, HHT first

extracts the instantaneous frequency (IMF) using the EMD (which offers smoothing

the nonstationary signals), and imposes Hilbert Transform on the IMFs. Hilbert

spectrum and its marginal spectrum are extracted for the four cases based on the

acceleration signal.

a. HHT analysis of the signal under Normal Condition

Decomposition results of the acceleration signal in normal condition is demonstrated

in fig. 6.9, which shows eight IMFs and one residue.

IMF1 shows a very small localized disturbance representing an impact type force,

which is synchronized with maximum negative acceleration. This represents the

rotation of the crank as it passes through its singularity point (end of forward stroke

of the slider). IMF2 shows a distributed disturbance, which has its maximum at

the end of the forward stroke of the slider. Comparing it to the waveform signal, it

can be seen that it represents the shaking force effect. IMF3 also shows a periodic

noise. IMF4 is the 1× component of the acceleration.

Hilbert spectrum (HHS) demonstrates a measure of amplitude contribution from

each frequency and time. Marginal spectrum (MHS) offers a measure of the total

amplitude contribution from each frequency. Figure 6.10 shows the HS of the signal

under normal operating condition. It can be seen that the instantaneous frequency

of the signal is unstable noticeably. This reflects the fluctuation of the rotational

speed of the test rig due to the unbalance of the system, as noticed and illustrated

in fig. 6.1. The main energy peak in the marginal Hilbert spectrum appears at the

0.625 Hz, with two smaller sidebands observed at 0.375 Hz and 1 Hz.
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Figure 6.10: HHT analysis of the Acceleration Signal for Normal Condition (a)
Hilbert Spectrum is the instantaneous frequency of each IMF (top), (b) Marginal
Spectrum of the entire IMFs (bottom).

132



b. HHT analysis of the signal under Fault A Condition

Decomposition results of the acceleration signal under Fault A (excessive clearance)

condition is demonstrated in fig. 6.11, which shows nine IMFs and one residue.

IMF1 to IMF4 are the localized high magnitude disturbances, that represent

the impulse components caused by the failure mode. IMF5 is the 1× component of

the acceleration, which is completely disrupted at t=10 (s) and after t=20 (s), in

presence of impact.

The transient nature of this failure mode is completely evident in the first four

IMFs. Figure 6.12a shows the Hilbert spectrum of the signal under Fault A condition.

From this figure it can be seen that the instantaneous frequencies of high-frequency

components appear and scatter the time-frequency spectrum of the acceleration

signal.

Figure 6.12b shows the main energy peak appears in the frequency 0.5 Hz,

followed by a number of sub-harmonics. Note the energy of the peak spectrum is

reduced from 800 (in normal condition) to 500, and is spread around the higher

frequency components.
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Condition. The first four IMFs carry signatures of Fault A.
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c. HHT analysis of the signal under Fault B Condition

Decomposition results of the acceleration signal under Fault B (breathing crack)

condition is demonstrated in fig. 6.13, which shows seven IMFs and one residue. In

addition to the impulse observed in normal condition, which is at the end of forward

stroke of the slider, IMF1 demonstrate a new and greater impulse synchronized

with maximum positive acceleration. This is at the beginning of the forward stroke,

when the compressive loading of the connecting rod changes to a tensile loading,

and as a result activates the ‘open mode’ of the breathing crack in the connecting

rod.

IMF2 also shows two sets of disturbances at those instances. There is larger

impact at the end of the forward stroke, which can be correlated to the breathing

crack switching back to the closed more, and a distributed disturbance that can be

contributed to the shaking force. The cyclic behavior of this failure mode is evident

in the first two IMFs. IMF3 also shows a periodic noise. IMF4 is the 1× component

of the acceleration, with little to no sign of the impulsive force.

Figure 6.14a shows the Hilbert spectrum of the signal under Fault B condition.

From this figure it can be seen that the instantaneous frequency of the acceleration

signal is modulating noticeably. Figure 6.14b shows the main energy peak appears

in the frequency 0.63 Hz, followed by a 3× harmonic at 1.6 Hz. Note the energy

of the peak spectrum is concentrated at the dominating frequency components,

increasing it to 1150 from 800 (in normal condition).
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Condition. The first three IMFs carry signatures of Fault B.
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Figure 6.14: HHT analysis of the Acceleration Signal for Fault B Condition (a)
Hilbert Spectrum is the instantaneous frequency of each IMF (top), (b) Marginal
Spectrum of the entire IMFs (bottom).
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d. HHT analysis of the signal under Fault C Condition

Decomposition results of the acceleration signal under Fault C (imbalance/rub)

condition is demonstrated in fig. 6.15, which shows nine IMFs and one residue.

Along with the normal impulse (at singularity point), IMF1 to IMF3 show two

instances of localized and transient disturbance, which can represent impact type

force due to rubbing effect.

IMF5 and IMF6 are the 1× and 3× component of the acceleration signal.

Figure 6.16a shows the Hilbert spectrum of the signal under Fault C condition.

From this figure it can be seen that the instantaneous frequency of the acceleration

signal is stable but it is modulated noticeably.

Figure 6.14b shows the main energy peak appears in the frequency 0.5 Hz,

followed by a 0.75 Hz sideband. Also a 3× subharmonic is observed at 1.6 Hz. Energy

of the spectrum is greatly concentrated at the dominating frequency components

for this fault, and shows the highest peak at 1450 (nearly doubled from the normal

condition).
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Figure 6.15: EMD Decomposed the Acceleration Signal into nine IMFs for Fault C
Condition. The first four IMFs carry signatures of Fault C.
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Figure 6.16: HHT analysis of the Acceleration Signal for Fault C Condition (a)
Hilbert Spectrum is the instantaneous frequency of each IMF (top), (b) Marginal
Spectrum of the entire IMFs (bottom).
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d. Study of the IMFs of interest with mhs

When Marginal Hilbert Spectrum mhs is applied on the entire IMFs from each of

the four conditions, the frequency content is dominated by the 1× rotational speed.

However, by studying the IMFs one can identify the IMFs of interest, the ones that

are influenced by the presence of fault. Therefore, applying the marginal spectrum

on the select IMFs can provide a greater distinction, compared to mhs of the entire

IMFs.

Marginal Spectrum mhs is applied on the select IMFs and the result is shown

in fig. 6.17 to fig. 6.20. After applying mhs on the sum of {IMF1, IMF2, IMF3}

from the Normal condition, it can be observed that the dominating frequency of the

select IMFs remains at 1×, as expected. This is shown in fig. 6.17.

Similarly, applying mhs on the sum of {IMF1, . . . , IMF4} from the Fault A

condition, it can be observed that 1× is no longer among the peaks of the spectrum.

The largest peak is at 5×, with a number of other smaller peaks at 2×, 3×, 4×
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Figure 6.17: Marginal Hilbert Spectrum for the IMFs 1 to 3 for the Acceleration
signal for Normal case.
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Figure 6.20: Marginal Hilbert Spectrum for the IMFs 1 to 4 for the Acceleration
signal for Fault C case.

and 6×, as shown in fig. 6.18. This is a significant deviation from the normal

behavior (with the largest peak at 1×), is similar to the high clearance journal

bearing spectral analysis presented in fig. 2.31. Applying mhs on the select IMFs of

acceleration signal from Fault B and Fault C also provide a greater insight to the

changes of the signal. As noted earlier, IMFs of interest for these two conditions

are {IMF1, . . . , IMF3} and {IMF1, . . . , IMF4}, and therefor sum of the IMFs

are calculated for each of these conditions. mhs of the summed up IMFs, shows

that similar to Fault A, 1× is no longer the dominating frequency. There is a

dominating peak at 2× for Fault B, and a dominating peak at 3× for Fault C.

Marginal spectrum for Fault B demonstrated side bands at half frequencies, which

are signatures of looseness in the assembly. A common feature of all 3 failure modes,

is presence of harmonics of (2×, 3×, 4×, ...).
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6.3 Chapter Summary

The main motive for this chapter was the assessment of the potential for monitoring

the condition of the equipment through variation in the dynamic parameters of

the system. This is in contrast to the conventional monitoring schemes which uses

the vibration emitted through equipment housing. This concept is more important

when dealing with mobile equipment, and in highly variable environment.

Earlier studies on the failure modes of interest have suggested that presence of

these faults can change the dynamics of the system in a way that will affect the

acceleration of the slider. In an attempt to monitor the structural integrity through

dynamic parameters, it was proposed to investigate the effect of three different

failure modes on the acceleration signal of the slider, by adopting the vibration

analysis techniques on the data from the non-interactive phase of operation.

The shovel rig is designed based on a crank-slider mechanism, to generate a

reciprocal time-varying motion. In section 6.1 the waveform signals obtained from

the test rig revealed the non-stationary behavior of the system. Two common

monitoring approaches in time-domain and frequency domain were investigated in

section 6.2.

Statistical features of the signal were extracted from the acceleration signal

in section 6.2.1. Comparison of the extracted features revealed that the failure

modes used in this study have an obvious impact on the statistical features of

the acceleration signal. A principal component analysis was done to reduce the

dimension of the features, and to establish a baseline for normal condition. It

was found that for the given training data, the first to principal components can

effectively capture the variation in the normal operation. These two ‘pc’s were

used to reduce the number of features and mapped them into a two-dimensional

coordinate. Then, linear classification was successfully used to separate machines

operation with faulty conditions from normal.

Frequency and Time-frequency approaches were investigated in section 6.2.2. The
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time-domain analysis is simple and effective, however, it loses frequency information

of the signal. Similarly, a frequency-domain analysis one usually look at power

spectrum which rejects phase, or oversample to reduce contribution of white noise,

and boost signal.

Particularly, for a time-varying system, under conditions of variable loading

and speed, a time-frequency approach is more appropriate. To deal with the non-

stationary condition of the signal, Short Time Fourier Transform (STFT) was used,

which would analyze the signal in small fractions of time; therefore, it can handle the

non-stationary signals. However, Fourier transform uses sine and cosine functions

to represent the constituent frequency components of the signal. Dealing with

signal with modulating frequency, STFT does not offer a very good resolution. An

alternative solution, is the application of the Hilbert-Huang transform which can

adapt to the changes in the frequency.

Using the Empirical Mode Decomposition (EMD) method, acceleration signal is

decomposed into its intrinsic mode function (instantaneous frequencies).

The IMFs extracted for Normal and Fault conditions are found to have a large

amount of information about the system behavior. Concentrated and distributed

components such as impact and shaking force can be observed through the de-

composed signal. Applying the Hilbert Transform (HT) on the decomposed IMFs,

Hilbert spectrum of the signal was obtained. In contrast to the STFT, HT demon-

strated the frequency modulation very clearly, where changes made to it due to each

failure mode can be studied.

Marginal Hilbert Spectrum (mhs) provides a more interpretable data once ap-

plied on the Hilbert spectrum. The marginal spectrum of the IMFs of interest,

demonstrate that presence of the failure modes impacts both the energy and the

frequency of the Hilbert spectrum, and can be quantified to separate the faulty

conditions from normal.
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Summary of the findings of this chapter is as follows

• Acceleration of the end-effector is used as a monitored signal for fault detection

for the first time. Variation in the acceleration signal is a representative of

the change in the dynamics of the system, hence effect of a fault can be

directly measured. This is a significant improvement over the conventional

vibration monitoring, where the vibration signal picked up from the equip-

ment/component housing needs to be propagated through the supporting

structure. Furthermore, using the acceleration signal the monitoring system

will be unaffected by the environmental disturbance.

• Time-domain analysis demonstrated that this signal (acceleration of the end-

effector) can be successfully used to detect presence of fault in the system,

and identify all three classes of fault.

• Given the non-stationary behavior of the system, STFT and EMD methods

demonstrated that the acceleration signal can be also successfully used in

frequency domain for fault detection (presence of fault). Accurate fault

classification requires further investigation.
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Chapter 7

Conclusions and

Recommendations for Future

Work

Condition monitoring is an effective tool to protect equipment against unplanned and

costly downtime. Conventionally, the monitoring is only focused on the condition of

the equipment. However, a number of recent studies pointed out that a complete

monitoring approach for mobile equipment (e.g. shovels) should account for both

equipment and environment variabilities. Environmental variability of the operating

site, such as variable ground condition, can hinder the effectiveness of the condition

monitoring efforts, or limit its applicability. Knowledge of the environmental

condition, is not only an important factor monitoring the shovel, but it can also

offer useful operational information about the payload that can be used to estimate

dig capacity, production rate. The scope of the proposed system level monitoring

was earlier presented in fig. 1.3 and further explained in fig. 3.2.
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Accordingly, internal and external changes can affect the operating envelope,

and therefore a formerly safe operating mode becomes unsafe. Change of operating

mode might be feasible for some operation, while the others might remain unsafe

under the new condition; and this must be detected.

Figure 7.1 demonstrates how the proposed system level monitoring can be imple-

mented to improve the monitoring performance. The process starts by establishing a

baseline for the normal condition of the equipment under non-interactive mode (free

motion of the end-effector). Immediately after, and during the interactive mode,

force measurements can be fed into the estimation scheme to establish the initial

Figure 7.1: Implementation of the System Level Monitoring
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soil properties. At this point system level monitoring is completely initiated. Using

the updated interaction force, soil properties variation can be tracked and used to

identify internal changes in the system. Data collected during the non-interactive

mode of operation is also used to detect and classify the failure modes.

7.1 Conclusions

The system level monitoring studied in this work, required a combined approach

to monitor the conditions of the environment (soil property estimation) and the

equipment (fault detection) through model-based analysis and experimental data.

A simplified shovel test rig was designed and fabricated to generate a time-varying

motion with significant environmental interaction.

Simulating the cutting and pushing action of a shovel is required for the soil

property estimation study. The test rig accounts for all parameters of a soil-tool

interaction model, which allows control and adjustment of every parameter of the

system, such as angle of attack, depth of penetration, width of the cutting plate, etc.

The rig is capable of cutting and dozing through cohesive and noncohesive granular

material for a short distance. It is equipped with the instrumentation required for

measurement of the cutting force.

The time-varying behavior feature of the rig allowed the study of fault detection

under non-stationary conditions. This was accounted by designing the rig based on

an off-set crank-slider mechanism, driven by a gearbox system. The modular design

of the rig allows seeding of a number of faulty components, replicating certain failure

modes.

Significant modifications were made to adapt the design with the requirements

for both soil property estimation and fault detection experiments.

Using the shovel test rig, this method was experimentally tested and used to

estimated the mechanical property of 3 types of granular material: highly cohesionless
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Glass Beads, low cohesion Play Sand, and highly cohesive Oil Sand. The results from

estimation algorithm was compared to the directly measured data from standard

testing, when available. The algorithm successfully estimated soil properties within

8− 30%. The estimation accuracy is far greater than the precision required for the

force prediction.

The present work proposed and investigated a novel method for monitoring the

condition of the equipment through variation in the dynamic parameters of the

system. This method, unlike the conventional approach that uses the emitted frame

vibration for monitoring, directly uses the acceleration signal of the slider. Hence

it is unaffected by the environmental variabilities, and independent of how the

vibration propagates through the equipment. The crank-slider mechanism was used

as a platform to generate the desired non-stationary signal. Data were collected

under normal and faulty condition, and time and frequency domain analysis were

applied for fault detection.

Time-domain analysis based on the statistical features of the acceleration signal,

proved that the acceleration signal carries important information about the failure

modes. Extracted features, were successfully classified using dimension reduction

and a linear classifier. The combined technique allowed to identify all four operating

condition based on a limited number of data points.

Failure modes not only increased the non-stationary condition of the signal, but

in some cases they modulated the frequency of the acceleration signal and this was

revealed using the Time-Frequency methods. STFT and HHT methods were used to

extract signatures of the failure modes on the acceleration signal. The best results

were obtained using the Hilbert-Huang transform, where the influence of each failure

mode were observed in the instantaneous frequency of the decomposed acceleration

signal. Using HHT, the unique signatures of the failure modes were identified in

frequency domain and used toward development of a fault detection algorithm.

Conclusions of this research can be summarized as followings:
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• Acceleration signal carries enough information for monitoring the structural

integrity of the equipment

• Hilbert-Huang Transform is an effective tool for monitoring the condition of

the non-stationary system of interest exposed to structural defects

• Ground-tool interaction force can be used for characterizing the condition of

the environment

• System level monitoring studied in this work, presents an opportunity to

expand the application of situational awareness

7.2 Recommendations for Future Work

Based on the experience gained from this research, it is highly recommended to

further explore the idea of system level monitoring. Although, the wide scope of this

research opened up many avenues to explore, but at the same time it limited the

extent of our research. It is recommended to develop tools and methods for testing

the learning of this research in an industrial setting/application. An examples of

an immediate application, is using the soil-tool interaction force measurement -

based on the hydraulic pressure of the actuators - for online soil-property estimation.

Another example, is using the hoist cable linear displacement/acceleration in cable

shovels for monitoring the internal changes in the system.

For soil property estimation study, the Mohr-Coulomb interaction model was

used which has some known restrictions (e.g. low predictions at angle of attacks

greater than 80◦). It is highly recommended to use a soil-tool interaction with higher

fidelity. Using a higher fidelity model, requires the use of improved nonlinear solvers,

that can handle more parameters. It is a worthwhile effort to use solving methods

other than the modified Newton-Raphson method, that are computationally less
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expensive and can handle more than two parameters at a time. It is worthwhile to

explore methods that can overcome the singularity of the jacobian matrix.

Most of the data used in the fault detection section of this thesis are collected

from 20 trials. There were many uncontrolled parameters in the test apparatus due

to the evolving procedure of the design, that hampered the quality of data collection.

For future work, it is recommended to use high precision manufacturing process or

use standard test set ups, which would facilitate larger data collection.

Although the test rig generated the non-stationary condition required for the

fault detection study, it is recommended to conduct the test under greater speed and

load variability. This would have a more pronounced impact on the stationarity of

the signal. Additionally, it is recommended to investigate the monitoring approach,

using external loading (i.e. during the interactive phase).

One goal of this thesis has been to evaluate the possibility of condition monitoring

and fault detection through system dynamics parameters. This was carried out

using the acceleration signal. Acceleration signal was mainly used because the

influence of the failure modes on the signal was previously documented. There is

opportunity to explore other parameters, e.g. angular velocity and kinetic energy,

that may carry the fault signatures as well.

While the fault detection techniques proved that fault signatures are carried

over in certain dynamic parameters of the system, it is recommended to use a larger

variety of time and frequency method, and evaluate the detection and classification

performance on a larger data. It is recommended to use improved decomposition

methods such as Ensemble Empirical Mode Decomposition (EEMD), and Winning-

EEMD. It is also recommended to use additional features for fault detection. This

includes statistical analysis of the time-frequency domain data, and Fusion of the

features from both time and time-frequency domain.
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Appendix A

Mohr-Coulomb Failure Criterion

The Mohr-Coulomb criterion states that the shear stress in a plane at failure is a

function of the normal stress in the plane.

τmax = S0 + σn tanφ (A.1)

where S0 is the inherent shear strength, also known as cohesion c; and φ is the

angle of internal friction, with the coefficient of internal friction µ = tanφ. The

criterion contains two material constants, S0 and φ [Labuz and Zang, 2012]. The

representation of eq. (A.1) in the Mohr diagram is a straight line inclined to the

σ-axis by the angle φ, as shown in fig. A.1.

By constructing a Mohr circle tangent to the line (a stress state associated with

failure) and using trigonometric relations, the alternative form of eq. (A.1) in terms

of principal stresses is obtained:

(σI − σIII) = (σI + σIII) sinφ+ 2S0 cosφ (A.2)

One form of Mohrs failure criterion is:

τmax = f(σm) (A.3)
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Figure A.1: Mohr Diagram and Failure Envelopes (after [Labuz and Zang, 2012])

where τmax = (σI − σIII)/2, and σm = (σI + σIII)/2,

Knowing the relationship given by eq. (A.3), the Mohr envelope can be con-

structed on the τ , σ plane (fig. A.1), and failure occurs if the stress state at failure,

the circle of diameter (σI − σIII), is tangent to the failure envelope, τ = g(σ). Thus,

from eq. (A.2), Coulombs criterion is equivalent to the assumption of a linear Mohr

envelope.

Coulombs and Mohrs criteria are notable in that an effect of σm, the mean stress

in the σI , σIII plane, is considered, which is important for materials such as rock

and soil; i.e., experiments on geomaterials demonstrate that τm at failure increases

with σm.
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Appendix B

Numerical Study of the Crack

Fault

A numerical study was conducted to investigate the impact of the structural defect on

machine dynamic behavior. For this purpose a model of the assembly was developed

by solid modeling computer-aided design (CAD) software - SOLIDWORKS - and

was used as a baseline (healthy condition). The CAD model developed for the

assembly is shown in fig. B.1, and is comprised of the crank-slider mechanism and

the blade/cutting compartment.

This CAD model is then converted into a MATLAB/SimMechanicsTM model

for simulation and analysis, through a process called CAD translation [Mathworks,

2015]. By translating the CAD assembly into a SimMechanics model, one can

combine the benefits of the CAD platform with the strengths of SimMechanics

software. Translated CAD model - also known as the XML file - is an ‘import file’

that reflects assembly structure and contains part parameters of the original model.

SimMechanics then interprets the import file and generates a new model. During

CAD export, the SimMechanics Link utility generates one XML file and a set of
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Figure B.1: Original CAD Model Built in SOLIDWORKS

geometry files in STEP or STL format. This process is shown in fig. B.2. Final model

structure and part parameters mirror the original CAD assembly. Components of

the dynamic behavior of the model, i.e. displacement and velocity, can be monitored

and evaluated for different operating conditions. Parameters of interest in our

investigation are angular displacement for the crank φ1 and the connecting rod φ2,

angular velocity of the crank φ̇1, and slider’s position xs and velocity vs.

The baseline model can be modified and re-translated. For example, one can

modify the integrity of the components and produce an artificially fault components,

e.g. crack in the connecting rod. By comparing the monitored parameters under

healthy and faulty condition a residual can be generated. Therefore, residual signals

for all five parameters of interest were generated. Figure B.3 demonstrates the effect

of presence of a crack in the residue signals of (R1,. . . , R5).
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Figure B.2: Numerical Analysis using CAD Translation and SimMechanics: Faulty
Condition can be Compared to the Baseline Condition and for Residual Generation.

Figure B.3: Impact of the Crack Fault on the Residue Signal
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Appendix C

VI Program for Data Collection

All the collected signals are routed to the NI cdaq-9178 chassis, and then forwarded

to the LabView VI developed for data collection and pre-processing. This includes

slider’s displacement and acceleration, motor’s speed through tachometer, gearbox

output speed through digital encoder, active torque on the crank, and interaction

force acting on the blade.

Preliminary signal processing is carried out to convert collected voltage and

current signals to the proper parameters of interest. This is shown in the VI screen

shot presented in fig. D.1. The digital signal from the encoder is fed into a separate

processing box, which first translates the signal into the angular displacement.

Time-derivative of This signal is the obtained and converted to the angular velocity

in RPM. Both signals are then forwarded to the workspace (the dataset that is

logged on the pc).

Remaining four signals are analog and fed to the analog processing box. First

and second time derivatives of the slider’s displacement signal are obtained and along

the displacement are sent to the workspace. Voltage recorded from the strain gauges

are converted to torque and force (using the proper relationship), and recorded as

well. The acceleration signal acquired through accelerometer is used to calculate
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the velocity, and both signals are recorded. Finally, the the signal from tachometer

is forwarded to the workspace. All ten signals are time stamped and recorded for

every experiment.

Figure C.1: LabView VI Program for Data Collection
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Appendix D

Newton-Raphson Method

For any f(x) as shown in fig. D.1, Newton-Raphson method can be used to find a

solution of x = x̂ such that

f(x̂) = f̄ (D.1)

where f̄ is a constant.

The Newton-Raphson method begins with an estimate for x̂, say x0 and iteratively

refines this estimate until eq. (D.1) is satisfied within a specified tolerance. The

algorithm for the iterative process is derived by the Taylor series expansion of the

error (or residual) [Anandarajah, 2010]. Let us define the error as:

ψ(x) = f(x̂)− f̄ (D.2)

Denoting the next best estimate by x1, let us express the value of ψ(x1) in Taylor

series by expansion about x0 as

ψ(x1) = ψ(x0) +
[dψ
dx

]
x0

∆x+
1

2

[d2ψ
dx2

]
x0

∆x2 + . . . (D.3)

where

∆x = x1 − x0 (D.4)
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Figure D.1: Newton-Raphson (a) and Modified Newton-Raphson (b) Methods

Truncating the series after the term with the first derivative of ψ, and denoting

the derivative at x = x0 by:

Kt0 =
[dψ
dx

]
x0

=
[ df
dx

]
x0

(D.5)

and setting ψ(x1) to zero (which is the ultimate desired result), we get

∆x = ∆x0 = −K−1t0 ψ(x0) = K−1t0 (f̄ − f0) (D.6)

The refined estimate then is (from eq. (D.4))

x1 = x0 + ∆x0 (D.7)

Since the Taylor series expansion was truncated after two terms, the estimate x1

is still an approximation to x̂, but in general x1 is expected to be a closer to x̂ than

x0 is. The geometrical interpretation of the iterative process is shown in fig. D.1(a).
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The procedure may be repeated until

|ψ(xn)| < eacc (D.8)

where eacc is the acceptable error. Since the slope of the curve is used to guide

the iteration, it is seen that the process should quickly converge to the solution of

the problem x̂. The rate of convergence is approximately quadratic.

Kt0 appearing in eq. (D.5) and eq. (D.6) must be evaluated and the full system of

equations solved at every iteration. Both of these tasks are highly computationally

intensive [Anandarajah, 2010]. In the Modified Newton-Raphson Method however,

the tangent Kt0 is evaluated once at the beginning of the iteration, and kept

unchanged throughout the iteration. This process is also depicted in fig. D.1(b).

These methods can be easily extended to a non-linear system of equations simply

by appropriately treating the scalars as either vectors or matrices.
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Appendix E

Interactive Period Monitoring

Acceleration data was also collected and studied during the interactive period,

while the tool was engaged with the medium. It is worth mentioning that the data

collected during this period has a significantly smaller size (less than a half rotation).

Once the blade starts moving it pushes and compresses the soil in front of it.

The amount of accumulated soil - and the reactive force - eventually prevents the

shovel assembly to go further.

Therefore, there is a physical limitation for collecting further data. This entire

process happens in under 1 second. Study of the non-interactive data showed that

collecting enough data from multiple cycles is a necessary step for establishing a

proper baseline.

Studying the faulty condition it is observed that external loading becomes the

dominating factor when using the STFT and masks other smaller excitations (i.e.

contributions from structural defects).
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E.1 Short-time Fourier Transform

It can be seen from figs. 5.5 and 5.8 that the interaction under normal condition

takes less than a second in most cases. This is not sufficient to establish a steady

acceleration signal.

Spectrogram of the acceleration signal for two cases are presented in fig. E.1.

It can be seen that the dominating frequency does not look much different from

non-interactive operation of the shovel assembly.

This pattern changes once the shovel is used for pushing and cutting the medium

under faulty conditions. As can be seen in figs. E.2 and E.4, it takes the assembly

a longer time - up to 4 seconds - to complete the half cycle (until the slider stops

moving).

Therefore, a larger data set is collected. However, the spectrogram does not offer

much valuable data, for detection and identification purpose.

Figure E.1: STFT of the Acceleration During the Soil-Tool Interaction for Normal
Condition: Both Trials are Cutting Through Glass Beads
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Figure E.2: STFT of the Acceleration During the Soil-Tool Interaction for Fault A
Condition: Glass Beads (left) Play Sand (right)

Figure E.3: STFT of the Acceleration During the Soil-Tool Interaction for Fault B
Condition: Glass Beads (left) Play Sand (right)
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Figure E.4: STFT of the Acceleration During the Soil-Tool Interaction for Fault C
Condition: Glass Beads (left) Play Sand (right)

E.2 Hilbert-Huang Transform

Applying Hilbert-Huang transform of the acceleration signal offers a more interesting

outlook for how the signal changes in presence of fault. Similar to non-interactive

operation, IMFs are extracted using the EMD procedure. Figure E.5 shows that

the acceleration signal - during the tool-medium interaction with Play sand - under

normal condition is decomposed into 3 IMFs, and it appears to stay close to zero,

with no particular sign of impact or disturbance. Marginal spectrum shows a very

weak dominating frequency at about 1×, and a few harmonics at higher frequencies.

Applying the EMD on all 3 faulty conditions, the IMFs can be extracted similarly

as depicted in fig. E.7, fig. E.9 and fig. E.11.

In all three cases, it can be seen that IMF1 and IMF2 are affected by presence of

fault. Another interesting feature is that unlike the STFT, mhs detects a dominating

frequency at about 1×, and appears to be unaffected by the interaction force, as

can be seen in fig. E.8, fig. E.10 and fig. E.12.
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Figure E.5: IMF of the Acceleration During the Soil-Tool Interaction (Play sand)
for Normal Condition
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for Normal Condition
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Figure E.7: IMF of the Acceleration During the Soil-Tool Interaction (Play Sand)
for Fault A Condition
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Figure E.8: HHT of the Acceleration During the Soil-Tool Interaction (Play Sand)
for Fault A Condition
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Figure E.10: HHT of the Acceleration During the Soil-Tool Interaction (Play Sand)
for Fault B Condition
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for Fault C Condition
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