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ABSTRACT 
 
The design phase of a commercial software project is tightly constrained by resources – there is a fixed 
amount of time and money to invest in design.  The most powerful motivation on most projects is cost 
reduction, with the goal of finding the cheapest way to deliver the most functionality in the shortest time.  
Under this sort of pressure, inadequate time is spent reasoning about the long term impact of low-level 
software design decisions.  This could lead to sub-optimal designs that are overly expensive to maintain 
over the project lifecycle.  A major difficulty faced by developers is justifying additional investment in 
design at the expense more immediately beneficial activities such as adding new functionality.  The reason 
for this is that the long-term benefits of design are hard to quantify and validated models, tools, and 
techniques to predict these benefits do not currently exist. A long-standing technique for improving an 
existing design is diligent restructuring through local code transformations, more recently re-discovered as 
“Refactoring”.  While there is general agreement that refactoring is beneficial, it is not currently possible 
to quantify the tradeoff between the up-front cost of restructuring and the expected downstream savings .In 
this work we hypothesize that a good design will cost less to maintain than a poor design.  Our goal is to 
develop a well-defined method for estimating the costs and benefits of refactoring so that the decision of 
whether or not to restructure can be better informed. Specifically, we attempt to predict the Return on 
investment (ROI) for a planned refactoring activity where ROI = (Maintenance Savings from Proposed 
Refactoring) / (Development Cost of Proposed Refactoring).  If the ROI is greater than or equal to one, 
then the refactoring will be cost effective. Well-known and validated models such as COCOMO can be used 
to calculate the denominator in the equation above given a defined code restructuring plan.  Determining 
the maintenance savings of the proposed design change is a more difficult challenge. To calculate the 
numerator we must find a model that predicts maintenance effort for a given design. The most common 
approach to this problem is to try and relate design metrics to observed maintenance costs through 
regression analysis. One can theoretically determine which metrics influence maintenance effort and then 
strategically modify future designs to optimize the selected metrics.  After surveying the literature 
regarding these approaches, we conclude that while metrics can be used to identify outlier design 
components and provide relative ranking of designs, there are currently no suitable predictive models of 
absolute maintenance effort.  One reason for this is the nature of software maintenance. Corrective 
maintenance effort is directly related to latent defects or faults in the system, while perfective and adaptive 
maintenance are directly related to system enhancement in response to functional evolution or 
environmental changes.  There is some evidence that the perfective effort category accounts for the 
majority of maintenance cost.  Because this type of maintenance is influenced by factors external to the 
system, it is not obvious that such effort can be predicted by design metrics.  In addition, there is a lack of 
agreement regarding which metrics can predict system fault density.  Our attempt to construct a viable, 
general-purpose predictive model of maintenance effort from published regression analysis results was 
unsuccessful. We propose an alternative strategy for predicting maintenance savings by assuming that 
maintenance activities occur randomly with respect to the design. Through the use of code dependency 
analysis, we predict the average regression testing costs for competing designs and quantify the potential 
effort savings per maintenance activity. We demonstrate this approach with two exploratory Java case 
studies: a trial academic system with 740 SLOC and a commercial database application containing 2.5 
KSLOC.  The case study results provide measurements of the effects of restructuring on parameters such as 
mean code re-test impact, number of system data and control dependency paths, and system size. In 
addition, we estimate the break -even point in terms of the number of maintenance activities to achieve ROI 
> 1 for the proposed design transformations. Our results show that common low-level source code 
transformations change the system dependency structure in a beneficial way, allowing recovery of the 
initial refactoring investment over a number of maintenance activities.  
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1 Introduction 

1.1 Scope 
 
This document is the final report for the CMPUT 790 Project Course, partially fulfilling 
the requirements for the degree of Master of Science (Software Technology). 

1.2 Acknowledgements 
 
The author wishes to thank Dr. Eleni Stroulia from the University of Alberta and Dr. Phil 
Gray from MacDonald Dettwiler and Associates (MDA) for their review and 
contributions toward this work.  Thanks also to the NLIS project team at MDA for 
allowing access to their source code and documentation for the case study.  

1.3 Acronyms and Abbreviations 
 
AA  Assessment and Assimilation Increment 
ACAP  Analyst Capability (COCOMOII.2000 parameter) 
AHF  Attribute Hiding Factor 
AIF  Attribute Inheritance Factor 
APEX  Applications Experience (COCOMOII.2000 parameter) 
AT  Automated Translation 
C&K  Chidamber and Kemerer Object-Oriented Metrics Suite 
CBO  Coupling Between Objects 
CM  Percent Code Modified (COCOMOII.2000 parameter) 
COCOMO Constructive Cost Model 
COF  Coupling Factor 
CPLX  Product Complexity (COCOMOII.2000 parameter) 
DATA  Database Size (COCOMOII.2000 parameter) 
DIT  Depth of Inheritance Tree 
DM  Percent Design Modified 
DOCU  Documentation Match to Life-Cycle Needs (COCOMOII.2000 parameter) 
FLEX  Development Flexibility (COCOMOII.2000 parameter) 
IM  Percent of Integration Required for Adapted Software 
KSLOC Thousands of SLOC 
LCOM  Lack of Cohesion of Methods  
LTEX  Language and Tool Experience (COCOMOII.2000 parameter) 
MDA  MacDonald Dettwiler and Associates 
MHF  Method Hiding Factor 
MIF  Method Inheritance Factor 
MOOD Metrics for Object Oriented Design 
NLIS  National Land Information Service 
NOC  Number of Children (i.e. immediate sub-classes) 
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OO  Object Oriented 
PCAP  Programmer Capability (COCOMOII.2000 parameter) 
PCON  Personnel Continuity (COCOMOII.2000 parameter) 
PLEX  Platform Experience (COCOMOII.2000 parameter) 
PMAT  Process Maturity (COCOMOII.2000 parameter) 
POF  Polymorphism Factor 
PREC  Precedentedness (COCOMOII.2000 parame ter) 
PVOL  Platform Volatility (COCOMOII.2000 parameter) 
RELY  Required Software Reliability (COCOMOII.2000 parameter) 
RESL  Architecture/Risk Resolution (COCOMOII.2000 parameter) 
RFC  Response for Class 
ROI  Return on Investment 
RUSE  Developed for Reusability (COCOMOII.2000 parameter) 
SCED  Required Development Schedule (COCOMOII.2000 parameter) 
SITE  Multi-site Development (COCOMOII.2000 parameter) 
SLOC  Source Lines of Code (logical source statements) 
STOR  Main Storage Constraint (COCOMOII.2000 parameter) 
SU  Software Understanding Increment 
TEAM  Team Cohesion (COCOMOII.2000 parameter) 
TIME  Execution Time Constraint (COCOMOII.2000 parameter) 
TOOL  Use of Software Tools (COCOMOII.2000 parameter) 
UNFM  Programmer Unfamiliarity 
WMC  Weighted Method Complexity 
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2 Literature Survey 

2.1 Introduction 
 
The question of what constitutes “good” or “cost-effective” design is something that 
confronts software developers and software project managers on a daily basis.  It would 
be extremely useful to develop a method for these practitioners to quantitatively assess 
the cost-benefit aspects of their proposed design decisions.  A challenging goal is 
therefore to establish a basis for making intelligent design decisions from the “value-
added” perspective.  As stated by Boehm and Sullivan in their analysis of the current 
state of Software Economics [23], most software design decisions today are made by 
finding the minimum cost approach as opposed to searching for the “maximum value” 
solution. In the field of software engineering, we are currently seeing a paradigm shift as 
more research is focused on the measurement of added value in design and architecture. 
 
The goal of this project is to explore the cost-benefit equation related to low-level 
software design restructuring (i.e. “refactoring”).  The key hypothesis of this project is 
that there exists a relationship between specific design properties and downstream 
development effort.  In other words, if we invest in refactoring to strategically modify the 
design properties of a system, then we should expect a future payoff.  In this project we 
have constrained the problem by focusing on the maintenance effort required for legacy 
systems.  The problem is summarized by the following question: Is it worth the cost to re -
structure the design of a legacy system in order to save future maintenance effort? 
 

2.2 Definitions 
 
Before outlining our approach to investigating this problem, we would like to clearly 
define a number of important concepts.   
 
“Return on Investment” (ROI) is the measure of the effectiveness of proposed design 
changes from a cost-benefit perspective.  Since we are interested in creating a predictive 
model, we will be attempting to assess the ROI in advance of actually implementing 
changes to a legacy system.  In this context, our definition of refactoring ROI is the 
following: 
 
ROIp = (Maintenance Savings from Proposed Refactoring) / (Development Cost of Proposed Refactoring) 
 
From this definition, ROIp greater than one indicates a positive return on investment (i.e. 
projected benefits outweigh the costs), while ROIp less than or equal to one indicates a 
break-even or negative return on investment. Note that we choose to measure both the 
Maintenance Savings and the Development Cost in terms of effort (e.g. person-months), 
as this is the parameter most relevant to project managers.  In addition, ROI is typically 
defined with a specific time horizon – in this study we do not limit the time horizon when 
trying to determine the break-even point for the investment.  In practice, in order to 
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achieve a positive ROI the break-even point must be considered against a pre-determined 
time threshold. 
 
The IEEE standard definitions for software maintenance and maintainability, as 
documented in [26], are the following: 
 
Maintenance: The process of modifying a software system or component after delivery to 
correct faults, improve performance or other attributes, or adapt to a changed 
environment. 
 
Maintainability: The ease with which a software system or component can be modified to 
correct faults, improve performance or other attributes, or adapt to a changed 
environment. 
 
Coleman, Ash, Lowther, and Oman [15] extend these standard definitions to identify 
three main “areas of focus” for the software maintenance process: 
 
• Corrective maintenance:  Maintenance performed to correct faults in hardware or 

software. 
• Adaptive maintenance: Software maintenance performed to make a computer 

program usable in a changed environment. 
• Perfective maintenance: Software maintenance performed to improve the 

performance, maintainability, or other attributes of a computer program. 
 
In this study, we use the Corrective/Adaptive/Perfective classifications as defined above 
when referring to maintenance effort.  
 

2.3 Proposed Methodology 
 
In order to address the cost-benefit question, we first need to establish a viable approach 
for attacking the problem.   
 
The first phase of the project considered the use of existing empirical models as 
published in the software engineering literature. In order to establish a predictive model 
of refactoring ROIp, the following empirical models are required: 
 
a) Models relating design metrics to system maintenance effort (Maintenance Effort 
Prediction Category). 
 
b) Models relating low-level design restructuring operations to changes in design metrics 
(Refactoring Impact Category). 
 
c) Models that predict the cost of implementing design re-structuring operations 
(Refactoring Cost Prediction Category). 
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For the first category of empirical models, the idea is to find one or more models that 
relate maintenance effort (as the independent variable) to one or more specific software 
design metrics (as dependent variables). Such models would be validated by empirical 
data from the field. We hoped to find models that would allow us to predict the future 
maintenance effort for a given legacy system – the input to a model would be design 
metrics from the code, and the output would be maintenance effort. 
 
For the second category of empirical models, the goal is to find a way to estimate the 
impact of refactoring without actually having to perform the refactoring.  These models 
would be based on experiments that evaluate the impact (as measured by specific design 
metrics) of low-level design restructuring operations. 
 
The third category of empirical models is more straightforward.  In this category, we are 
searching for a model to estimate the up-front development cost of re -engineering the 
legacy system. These are the costs associated with analyzing the system for restructuring, 
re-coding, and re-testing the modified parts of the code.  These models should also take 
into account the impact of automated tools on the re-engineering cost, as well as 
associated cost items such as developer training (if this is a new technology). 
 
Using these three empirically  derived models, the proposed methodology for this analysis 
is described by the following sequence: 
 
a) Select a legacy system for analysis. 
 
b) Find empirical models in the literature that relate specific design metrics to 
downstream maintenance effort. A t a minimum, such models must be relevant to the type 
of legacy system under consideration. 
 
c)  Establish a baseline quality measurement of the legacy system by extracting design 
metrics from the code.  These metrics are specified by the experimental inde pendent 
variables from the models identified from step b). 
 
d) Using the baseline quality measurement as the input, run the predictive model(s) 
chosen in step b). This will establish a baseline maintenance effort prediction for the 
system. 
 
e) Analyse the legacy code for design re-structuring opportunities.  For example, search 
the code for instances where refactoring could be applied as defined by Fowler et al in 
their Refactoring text [1]. 
 
f) Find empirical models in the literature that relate design re-structuring activities to 
changes in software design metrics. 
 
g) Establish the predicted design quality improvement for the legacy system by using the 
model(s) found in step f) in conjunction with the design restructuring opportunities 
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identified in step e).  In other words, establish a predicted set of design metrics for the 
legacy system that would result from the proposed restructuring activities.  
 
h) Re-using the maintenance effort prediction model from step b), establish the predicted 
maintenance effort for the “improved” legacy system - the input to this run is the set of 
modified design metrics established in step g). 
 
i) Compare the maintenance effort results obtained in steps d) and h) above.  The 
difference between these results is the benefit associated with the planned refactoring 
operations. 
 
j) Find an empirical model from the literature that can predict the development effort 
required to re-structure the legacy system as per the list of refactoring opportunities 
established in step e). 
 
k) Using the model identified in step j), establish the predicted cost of modifying the 
legacy system to implement the proposed restructuring. 
 
l) Calculate the Return on Investment (ROI) of the proposed design re-structuring by 
dividing the result from step i) with the result from step k).  If the ROI is greater than 
one, this indicates that the re-structuring operation has a net benefit and should be 
implemented.  
 
This methodology is described at a high level in Figure 1, which uses a data-flow-
diagram representation. 
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Figure 1 – Refactoring ROI Analysis Methodology 

 
Note that this process could be used iteratively to find an optimal set of refactorings that 
produce the biggest downstream benefit for the legacy system.  In other words, this 
algorithm could be re-executed for different combinations of refactoring opportunities in 
order to determine the set of transformations that maximize the ROI. In order to support 
this approach the selected empirical models must be accurate when dealing with 
relatively small system changes (i.e. “micro” re-engineering operations). 
 

2.4 Model Evaluation Criteria 
 
When evaluating a model that predicts maintenance effort from design properties, it is 
very important to establish how the model addresses each of the three types of software 
maintenance (perfective, corrective, adaptive).  A predictive effort model can only be 
considered complete if it handles each of the key maintenance process aspects.   
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There is some evidence in the literature that Perfective maintenance accounts for the 
majority of overall maintenance effort in a project.  Examples of this evidence include the 
following: 
 
• Polo, Piattini, and Ruiz (PPR01) [11] report on the maintenance effort distribution for 

55 applications (database programs written in COBOL for the banking industry) over 
two years of operations.  These programs range from very small applications of a few 
thousand SLOC to very large applications containing over a million SLOC.  The 
study indicates that 88% of the total maintenance effort for these programs was 
expended in “Perfective” maintenance, while 12% of the effort resulted from 
Corrective maintenance.  This study only classified effort into these two general 
categories, suggesting that “Perfective” effort is actually the sum of Perfective and 
Adaptive effort. 

• Basili et al (BAS96) [13] studied the maintenance effort for the flight dynamics 
software developed by the Goddard Space Flight Center.  This code base includes 
over 100 applications totaling approximately 4.5 million SLOC, mostly written in 
FORTRAN.  On average, they report that 61% of the total maintenance effort was 
spent on “enhancement” which is equivalent to Perfective maintenance according to 
our definition.  Of the larger applications in the study, the percentage of Perfective 
maintenance effort varied between 51% and 89% of the total effort. “Correction” 
accounted for an average of 14% of the total effort, while “Adaptation” accounted for 
5% of the total effort.  The remaining 20% is classified as “Other” - this category 
contains effort that could not be neatly classified (for example training effort for the 
maintainers as a result of a port to a new environment).  

 
This evidence suggests that Perfective maintenance, which is directly related to the 
“evolvability” properties of the software, is the dominant factor that must be addressed by 
a predictive model.   
 
Another interesting issue is the distribution of maintenance effort among the individual 
modules that make up each application. There is some evidence in the literature that 
suggests a small percentage of modules account for a large percentage of the 
application’s maintenance effort.  This evidence is mostly for Corrective maintenance, 
which is closely related to fault density in the delivered code.  For example, Fenton and 
Ohlsson [14] state that 10% of the modules account for between 80% and 100% of the 
observed operational failures.  They suggest that the Pareto principle (i.e. the 80/20 rule) 
could apply to fault density (it follows that this would then apply to Corrective 
maintenance effort).  If this is the case, then a predictive maintenance model used to 
judge refactoring benefits must look at the code down to at least the module level.  For 
example, if one were to apply preventative restructuring uniformly over all the modules 
of a system, it may be that only 10% of this refactoring has a beneficial impact to the 
overall corrective maintenance effort. 
 
In summary, there are some general criteria that must be applied when trying to construct 
a general-purpose predictive maintenance model: 
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• The model must address the Corrective/Perfective/Adaptive aspects of the process, 

with the Perfective aspect possibly being the most important. 
• The model must look at system design properties at least down to the module level. 
• The model must be applicable to applications of different overall sizes and types. 
• The model must be applicable across development environments (i.e. organizations). 
 
The last two criteria are almost certainly not achievable given the current state of 
research.  Every study that offers a predictive model also clarifies that the results cannot 
be extended to other environments or other classes of systems.  
 

2.5 Literature Survey Results 
 

2.5.1 Maintenance Effort Prediction Models 
 
Briand and Wüst [16] have performed a comprehensive analysis of the empirical studies 
that exist concerning software quality models for Object-Oriented systems.  This analysis 
examines every previous study in the software engineering literature in which scientific 
attempts were made to correlate software quality metrics with some form of dependent 
variable (e.g. fault-proneness, development effort, maintenance effort, etc.). Reviewing 
Table 1 of their analysis, we find four independent studies in the literature that attempt to 
correlate design metrics with maintenance or “rework” effort: 
 
• AM96: Abreu and Melo, [18]  
• CDK98: Chidamber, Darcy, and Kemerer, [19] 
• LH93: Li, Henry, [25], 
• WH98: Wilkie and Hylands, [27] 
 
Regarding the design metrics used in these studies as independent variables, AM96 
analyses a set of “MOOD” metrics while the remaining studies use various forms of the 
famous “C&K” metrics that have been derived by Chidamber and Kemerer [20].  
 

2.5.1.1 AM96 Summary 
 
This study measures the correlation of the “Metrics for Object Oriented Design” 
(MOOD) set with resulting defect density and rework effort.  The data analysis technique 
employed by the authors is univariate linear regression.  The experimental data for the 
study includes measurements of rework effort and defect density from eight small C++ 
systems developed in a university environment (the initial developers were students).  A 
waterfall development process was followed, using Object-Oriented analysis, design and 
coding techniques. 
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The eight software systems under investigation were small applications ranging in size 
from approximately 5 KSLOC to 14 KSLOC. Each of these systems was designed and 
implemented by a separate group of students. The paper does not provide much detail 
regarding the functional requirements of these systems, but does say that they are 
information management systems to support a hypothetical video rental business. 
 
The MOOD set includes the following metrics (see the paper itself for extensive 
definitions): Method Hiding Factor (MHF), Attribute Hiding Factor (AHF), Method 
Inheritance Factor (MIF), Attribute Inheritance Factor (AIF), Polymorphism Factor 
(POF), and the Coupling Factor (COF).  Of these metrics, MIF, COF, and POF were 
found to have good correlation with defect density and “normalized” rework.   
 
Since we are seeking a predictive model of maintenance effort, the “rework” results from 
this study are the most relevant.  “Rework” as defined in the study is the effort expended 
by the students in the “repair” phase of the project in order to fix problems detected by an 
independent professional test team.  This definition does not fully coincide with the 
definition and scope of “maintenance effort” established for this project.  For example, 
the rework effort measured by AM96 does not include the impact of system enhancement 
and evolution which represent the dominant components of overall maintenance costs (as 
we have stated previously).  In other words, the “changeability” of the systems was not 
investigated. As well, the rework effort in AM96 is rea lly repair effort from a final stage 
of testing – it does not represent effort to repair latent faults uncovered by users in the 
field. As a result, while this study provides some valuable data, it does not meet all our 
criteria for use in the refactoring cost/benefit equation.  It is certainly not clear that these 
results can be applied to predict real maintenance effort for other systems – the only 
concrete conclusion is that for the metrics and specific systems analyzed, there was some 
significant correlation. 
 
The table below summarizes the results from AM96, including the linear equations 
predicting rework effort based on MIF, COF and POF.  
 

Linear Model Properties MIF COF POF
Slope (person-hours/KSLOC) -19.64 77.31 -75.76
Y-intercept (person-hours/KSLOC) 15.64 4.20 12.41
Pearson "r" coeff. of correlation -0.78 0.91 -0.71  

Table 1 – AM96 Model Results  

 
The COF metric has the highest coefficient of correlation, and appears to be the most 
promising candidate to predict rework effort.  Closer analysis of the COF data reveals 
that the average error of the model (i.e. the average difference between the modeled value 
and the measured value for the eight experimental systems) is approximately 37%.  
Across the eight systems, the modeling error ranges from 11% to 106%. 
 

2.5.1.2 CDK98 Summary 
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This study is an exploratory investigation into the predictive powers of the “C&K” OO 
design metrics with respect to three dependent variables: programmer productivity, 
“rework” effort, and design effort. 
 
As stated in their paper, the six “C&K” metrics can be described by the following 
simplified definitions: 
 

• NOC: count of the immediate subclasses of a class, 
• WMC: count of the methods in a class, 
• DIT: maximum path length from the current class to the root of the class 

hierarchy, 
• CBO: count of the number of couples between the current class and other classes 

(e.g. external method invocations), 
• RFC: the total number of methods that could possibly be executed as a result of a 

message arriving at the current class, 
• LCOM: count of the number of method pairs in a class that do not share a 

common instance variable minus the count of the method pairs in a class that do 
share one or more instance variables (i.e. unlike method pairs minus similar 
method pairs). 

 
As seen from the above definitions, the C&K design metrics are at the class level. 
 
The study attempts to correlate these six design metrics with productivity and effort data 
measured from three commercial banking applications (all developed within a single 
organization).  The first system (TPM) is a 15 KSLOC C++ database application 
possessing 45 classes.  The second system (FIS) is a 2.7 KSLOC “Objective C” 
application possessing 27 classes.  The third system (SLB) was not yet coded; the metrics 
were derived from design documentation. The paper does not describe any details 
regarding the development process used for each system. 
 
Regarding dependent variables, “rework” effort was analyzed for the FIS system only.  
Immediately, due to the small size of this single application, we can anticipate that the 
results will not be extendable to a general-purpose predictive maintenance model.  
 
In this study, “rework” is defined as the effort to make a class usable in another project.  
This is more a measurement of reusability than maintainability – this definition does not 
obviously include effort to correct defects, nor does it fully account for maintenance due 
to system evolution.  This definition introduces a major problem when trying to interpret 
the rework results presented in CDK98. It is not clear whether the rework effort was 
expended as a result of the class design properties or instead as a direct result of the new 
functional requirements associated with the adaptation of the class to the new project.   
 
In terms of the predictive power of the C&K metrics, the CDK98 study concludes that the 
CBO and LCOM metrics are correlated with rework effort.  More specifically, “high” 
values of the CBO and LCOM metrics have a positive correlation with rework effort. 
Regarding the definition of “high”, the authors apply the 80/20 Pareto principle. The 
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other metrics do not show significant correlation – in particular, the inheritance-based 
metrics (NOC and DIT) do not appear to be useful effort predictors.   
 
In summary, the results of CDK98 are not suitable to include in a general-purpose 
predictive maintenance model.  The reasons for this are: 
 
• The sample size is extremely small (one application), 
• The system size is extremely small (2.7 KSLOC), and 
• The study’s definition of “rework” does match very well with the standard definitions 

of software maintenance that include corrective and perfective components. 
 

2.5.1.3 LH93 Summary 
 
Henry and Li [25] studied the correlation of a number of OO design metrics with 
maintenance effort, using project data from two commercial systems over three years.  
The systems were coded in a language called “Classic-Ada” – the first system was 
approximately 4 KSLOC in size, while the second sys tem contained 16 KSLOC.  In 
addition to investigating the C&K metrics, the authors looked at coupling metrics for OO 
systems and code size metrics at the class level.  The basic approach was to develop a 
regression model relating effort measurements to different groups of the analyzed 
metrics. 
 
The authors define their dependent variable (i.e. maintenance effort) as the “number of 
lines changed per class in its maintenance history”.  From their regression model the 
authors conclude that the metrics are good predictors of the dependent variable - most of 
the change in the effort measurements can be explained statistically by changes within 
the group of independent variables.  The study also provides evidence that while size 
metrics alone have predictive power for maintenance effort, the other design metrics are 
also strong contributors over and above what can be predicted by code size. The authors 
go on to refine their analysis and arrive at a smaller group of eight metrics (the compact 
model) that have potential for predicting maintenance effort. 
 
While this study provides evidence that there is likely a relationship between the code 
changes in these systems and design metrics, it is not easy to apply these results in a 
meaningful way to our cost-benefit analysis.  For starters, the study does not present a 
predictive model – it only suggests that there is a correlation within the collective group 
of the metrics and that there is the potential of determining a model. In addition, there is 
no breakdown of the “effort” measurements into perfective, corrective, and adaptive 
categories. The nature of the maintenance activities measured in this study is not evident 
from the paper. 
 
As well, the definition of the dependent variable in this study presents a problem when 
trying to use the results in a cost-benefit analysis.  The issue is whether or not counting 
changed lines of code is a fair measure of maintenance effort.  We suggest that this is not 
necessarily a good measure, mainly for the following reason:  when correcting a defect in 
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the maintenance phase (a corrective change), it may take a substantial amount of time to 
isolate and determine the solution to the problem.  For example, it may take several days 
of programmer effort to arrive at and implement a very small code change in a poorly 
designed system.  By measuring only the end result of the change, this method does not 
account for such expense.  This may also be the case for perfective maintenance - if a 
system is designed such that it is not easily maintainable, then it may require more effort 
to enhance than other equivalent systems.  The dependent variable used in [25] will not 
pick up on this relative difference between systems.  These factors make the LH93 results 
difficult to use in our cost-benefit equation, especially when we wish to rate the relative 
merits of competing designs.  The bottom line is that we cannot see a way to extend these 
results to actually predict maintenance cost. 
 
There is another issue with this definition of maintenance effort – by only looking at the 
number of lines of code changed within each class, it becomes extremely difficult to 
assess the effects of perfective maintenance.  For example, the fact that a particular class 
has many lines of code changed over its maintenance history does not necessarily mean 
that the class is poorly designed.  It could be that the changes are the result of functional 
enhancements that have nothing to do with “bugs” or latent defects in the code.  In this 
way, perfective maintenance is not really accounted for in this approach – the 
maintenance is assumed to be corrective in nature. 
 

2.5.1.4 WH98 Summary 
 
Wilkie and Hylands [27] examined the C&K metrics suite in detail and studied the 
change in these code metrics for a commercial C++ application over its 2.5 year 
maintenance history.  The system under investigation contained approximately 25000 
lines of code within 114 classes. The dependent variable in the study was maintenance 
effort (classified either as “bug fix” or “enhancement” effort), where maintenance effort 
is defined as the number of lines of code changed in each class.  This definition is similar 
to the definition from LH93, with the same problems regarding the application of the 
results to an absolute cost-benefit model. Records of actual person effort were not 
available to the researchers. 
 
The results of this study provide insight into what happens to a system under maintenance 
– the metrics collected from the code over time reflect the architectural impact of  
maintenance activities. Each of the C&K metrics was trended over the maintenance 
period (at the class level), and the study presents the results for each metric in the form of 
frequency charts.  The authors found that the WMC metric tended to increase with each 
new version of the system, suggesting that maintenance increases program complexity. 
(Note that the study considers two adapted forms of the C&K WMC metric, one based on 
Cyclomatic Complexity and the other based on Halstead Software Science metrics – the 
complexity-based WMC clearly increased over time). The RFC and LCOM metrics also 
tended to increase over time.  LCOM in particular appeared to be a good predictor of 
future class evolution.  There was no decisive trend in the other C&K metrics during the 
maintenance period. 
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In addition to the trending analysis, the authors performed a stepwise multivariate 
regression analysis to determine whether the metrics were correlated with fault proneness 
in the system. The results of this regression analysis indicate that WMC (Halstead-based)  
and DIT are the only metrics that can significantly predict fault proneness. More 
precisely, the study concludes that 48% of the variation in corrective maintenance effort 
can be explained by a combination of the WMC and DIT metrics.  This result is not as 
strong as the result from the LH93 study discussed above where the authors concluded 
that the measured changes in the C&K suite could account for a much larger percentage 
of the maintenance effort variation. 
 
Enhancement effort (i.e. perfective maintenance) was also measured in the study, and the 
authors again applied a multivariate regression analysis to determine the predictive 
powers of the C&K metrics suite. The authors could not find a significant contributor in 
the C&K metrics for enhancement effort prediction – the only significant metric appeared 
to be RFC which could account for only 13% of the observed variation in enhancement 
effort. The authors make a very interesting point:  because perfective maintenance is 
driven by external requirements changes (e.g. for business reasons), the complexity based 
metrics cannot be expected to predict the resulting enhancement effort. This poses a 
fundamental problem when we try to quantify system maintenance effort over time – 
applicable design metrics for perfective effort may not exist. 
 
The authors conclude that the C&K metrics suite is useful for examining the design 
impact of changes during the maintenance phase, and the metrics should be used as a tool 
for detecting “outlier” classes that may warrant restructuring.  However, there is no 
strong evidence from this study that a predictive maintenance effort model can be built 
from the C&K metrics. 
 

2.5.1.5 Other Studies 
 
As mentioned above, Polo, Piattini, and Ruiz (PPR01) [11] attempted to correlate 
maintenance effort with module size and number of modules using a databank of 55 
COBOL applications.  However, they could not derive a meaningful effort prediction 
equation from their data, and instead produced a complex equation designed to give a 
binary result.  This result (either a 1 or a 0) indicates whether or not the particular 
application will present above average or below average maintenance challenges.  While 
this is possibly useful to predict “outlier” systems that require special remedial attention, 
this equation is not useful in our refactoring cost-benefit analysis. 
 
Coleman, Ash, Lowther, and Oman [15] developed an equation using polynomial 
regression to calculate a system’s “maintainability index” based on four input metrics.  
These metrics are: Halstead’s volume metric, extended V(G) (McCabe Complexity), 
average lines of code, and number of comment lines per submodule.  The maintainability 
index equation stated in [15] is: 
 
MI = 171 – 5.2*ln(aveVol) – 0.23*aveV(G) – 16.2*ln(aveLOC) + 50*sin(SQRT(2.46*perCM)) 
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The above equation yields a number, and the authors contend that a high number 
indicates good maintainability while a low number indicates poor maintainability.  Based 
on the Hewlett-Packard project data used in the study, the authors conclude that an MI 
greater than 85 represents good maintainability while an MI less than 65 represents poor 
maintainability that requires attention or some sort of corrective action in the design. 
 
Unfortunately, this equation does not relate the maintainability index back to 
maintenance effort.  As such, the “Coleman-Oman” model is a tool that seeks to identify 
candidates for refactoring.  This tool does not predict the relative maintenance effort for 
two competing designs.  However, it does indicate whether a design is “good” or “bad” 
with respect to potential downstream maintenance.  The index also provides way to check 
the impact of software changes over time – in this sense it could be very useful for design 
trending and monitoring.  Unfortunately, the index does not provide a means for 
predicting absolute maintenance effort for a given design.  It is therefore difficult to use 
this index in the refactoring cost-benefit analysis model. 
 

2.5.1.6 General Conclusions for Maintenance Effort Prediction Models 
 
Based on an analysis of the available literature regarding empirically-derived 
maintenance effort prediction models, we make the following general observations: 
 
• No general-purpose models exist for predicting maintenance effort based on system 

design properties. 
• There is some agreement (but not clear, consistent results) regarding what design 

metrics are interesting from a maintenance perspective.  In particular, the C&K 
metrics suite has potential for predicting corrective maintenance effort. 

• There is little evidence of direct correlation between design metrics and perfective 
maintenance effort.  As perfective maintenance often accounts for the majority of 
costs, this presents a serious problem. 

• There is some empirical evidence from the four studies described above that 
establishes correlation between design properties and maintenance effort, but the 
models from these studies cannot be directly applied to other systems or other 
organizations. 

• The main result of the empirical research into maintenance effort prediction is that 
design metrics can identify “outliers”, or rogue system components that may warrant 
remedial attention.  This is a useful result, but it does not help establish a model to 
compare the absolute maintenance costs of various design approaches. 

• There is a lack of consistency regarding the definition of dependent variables between 
studies in this area.  For example, the definitions for “rework” in AM96 and CDK98 
do not match so the results cannot be usefully compared. In addition, the definition of 
maintenance effort in LH93 and WH98 is not a direct measure of person effort and 
does not match the definitions from AM96 and CDK98. 

• There is only a small volume of scientific data available in the literature – the four 
substantial studies described above only provide insight into 14 systems (written in 
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various languages).  The empirical studies are based on limited sample sizes and the 
system sizes are small (most under 10 KSLOC). This makes it difficult to apply the 
results to other larger systems, and it is also difficult to draw general conclusions 
from the pool of results. 

• The main accomplishment of these empirical studies is that they demonstrate how an 
organization might go about creating a self-calibrated model that predicts 
maintenance effort.  If an organization religiously collects the right data and 
continuously re-calibrates its model, there is hope of making decent effort 
predictions.  However, it is clear that no universal model has so far been identified. 

 

2.5.2 Refactoring Impact Models 
 
Models in this category attempt to relate low-level design transformations to changes in 
quality metrics.  We are interested in a predictive model – we do not want to actually 
perform the refactoring (i.e. make the investment) in order to assess the potential quality 
impact.  
 
Tahvildari, Kontogiannis, and Mylopoulos [3] have created a software re-engineering 
framework that considers the impact of design level and source code level 
transformations on system performance and maintainability metrics.  Their premise of 
legacy system re-engineering is very similar to the refactoring we are investigating in this 
project. In their study, the authors link certain design transformations to maintainability 
using “soft” goal interdependency graphs constructed according to the Non Functional 
Requirement (NFR) framework. The soft goal graph presented in [3] makes connections 
between maintainability and design qualities such as: high modularity, high cohesion, 
low coupling, low I/O complexity, good commenting and naming practices, high 
encapsulation, and high reuse.  This graph was constructed by the authors based on a 
literature review. 
 
When analyzing maintainability, the authors use some familiar metrics to assess the pre 
and post-transformation states of the system: lines of code, the Halstead suite of metrics, 
McCabe cyclomatic complexity, and the number of comment lines per module.  They use 
these metrics to compute three different maintainability indices, two of which are 
versions of the Coleman-Oman model [15] described previously.   
 
The source-code level transformations associated with improving maintainability are 
assumed to be the following: 
 

• Maximize Cohesion (splitting methods and functions), 
• Minimize Coupling (introduce parameter passing and reduce global data flow), 
• GOTO Statement Elimination, 
• Global Data Type Elimination, 
• Dead Code Elimination. 
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In addition, the study suggests that some architectural-level changes in the form of design 
pattern introduction will also improve maintainability. The target design patterns selected 
for this purpose (from the repository in [28]) include: Factory Method, Abstract Factory, 
Composite, Facade, Iterator, and Visitor. The basis for selecting these particular patterns 
is not totally clear in the paper. 
 
The study provides some experimental data from two systems: an election tabulation 
system (4.25 KLOC) that has been maintained for approximately 30 years, and the GNU 
AVL libraries (4 KLOC) written in C. The study suggests that these are “medium” sized 
systems, but they are actually very small compared to most industrial or business 
programs. 
 
Results of the experimental application of re -engineering to these systems indicate that 
most of the source code level transformations had a positive impact on the 
maintainability indices, especially the elimination of dead code.  In addition, four of the 
design patterns also had a positive impact on the maintainability indices. 
 
We encounter considerable difficulty when trying to use these results in our cost-benefit 
analysis.  Firstly, the study does not quantify the amount of transformation applied to the 
code.  In other words, how much of the code was changed to produce the stated 
improvements? Secondly, the results are obtained for two small systems with very 
specific initial properties.  There is no way to say whether different systems (with 
different initial states in terms of the quality metrics) will yield similar improvements 
when transformed in this way.  While this research is interesting and focuses attention on 
the process of achieving quality objectives, the results are not useful for our predictive 
cost-benefit model. 
 
As the study in [3] is the only substantial work we could find that tries to quantify the 
maintainability impact of specific refactoring operations, we conclude that there is 
currently no way to predict the impact of proposed refactoring based on an initial set of 
design quality conditions. 
 

2.5.3 Refactoring Cost Prediction Models 
 
A model to predict refactoring effort for a legacy system must account for the following 
development activities: 
 

a) Identification of candidate refactoring opportunities in the legacy code. 
b) Selection of design changes for implementation. 
c) Update of design documentation (if necessary) to reflect the changes. 
d) Code and unit test of all potentially affected modules. 
e) Update of test specifications and plans (if necessary) to reflect the design changes. 
f) Regression testing of the system. 
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Note that the amount of system regression testing required is subjective and depends on 
the nature of the application.  Some projects may require full regression testing (e.g. for a 
safety or mission-critical system) in order to guarantee that the refactoring has not 
introduced any new errors. With the advent of automated tools to support refactoring the 
effort model must also take into account manual execution of these processes versus tool-
based execution.  
 
The refactoring activities list above is simply an example of a standard waterfall 
development model.  For such processes, there are many useful software cost estimation 
models in the literature.  The most successful of these is the COCOMO model first 
created by Barry Boehm in 1981.  This model has been revised and updated since its 
original release to reflect changes in software engineering technology and methodology. 
The latest release of the model is called COCOMO II.2000, described by Boehm et al in 
[9]. This latest model is based upon a dataset of metrics collected from 161 software 
projects.  
 
The difficulty in using COCOMO is that it relies upon subjective inputs from the user 
regarding a wide range of model input parameters.  Even so, the predictive accuracy of 
the model is shown to be within 30% of the project actuals 75% of the time [9]. With 
local calibration of the model parameters to a particular organization, this percentage 
rises to 80%.  This level of accuracy may be suitable for predicting refactoring costs for 
our model.  Certainly, we can make conservative assumptions regarding the input 
parameters in order to find an upper bound for the development cost. The question is how 
to use COCOMO to best represent the process of refactoring. 
 
While the COCOMO model does not explicitly predict refactoring effort, it does 
incorporate a model to deal with software re-use.  The model considers varying degrees 
of re-use, from none to “adapted” software to complete re-use.  Adapted software is code 
that is not directly re-used, but must be modified to some extent in order to form part of a 
new product.  The refactoring of a legacy system can be thought of as an exercise in 
software adaptation.  We are transforming an application by changing parts (but not all) 
of the design.   This is very similar to the COCOMO definition of adapted software, and 
we can attempt to apply the re-use model to predict the re-engineering effort. 
 
As a result, we consider the COCOMO II.2000 model to be useful in our ROI analysis 
and we propose to use this model in performing sample ROI calculations for a case study. 
 

2.6 Literature Survey Conclusions 
 
Of the three types of empirically-derived models required in order to analyze the 
refactoring cost-benefit equation, we can find usable models for only one category: 
refactoring effort cost prediction.  While there is some published data in the other two 
categories, there is not enough data to construct viable models for use in our predictive 
study.  Specifically, general-purpose models that predict maintenance effort from design 
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properties do not currently exist. Similarly, models that can accurately predict the quality 
impact of design transformations do not exist. 
 
Due to the lack of available models, our proposed approach for calculating the refactoring 
ROI is not viable at this time. In order to make progress on this problem we must find an 
alternate method of assessing the benefit side of the re-engineering cost-benefit equation. 
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3 Revised Methodology Definition 

3.1 Introduction 
 
In section 2, we showed that it was not feasible to construct a general purpose cost-
benefit model for refactoring based on existing empirical models that rely on design 
metrics.  In this chapter, we explore an alternate approach to assessing the benefits of 
design re-structuring that is based upon code dependency analysis techniques. 
 
When reasoning about what makes a particular design more maintainable than another 
design, we must consider the economic impact of the maintenance process.  A “good” 
design from a maintainability perspective should cost less to maintain than a “poor” 
design.  The major difficulty in directly correlating design properties to maintenance cost 
data is the nature of the maintenance task itself.  It is extremely difficult to determine 
whether the cost of a particular maintenance activity is related directly to the software 
design itself or some other environmental factor (e.g. poorly understood requirements, 
unanticipated functional evolution, etc.).  In addition, when trying to create a predictive 
model of maintenance cost it is also extremely difficult to estimate important factors such 
as fault density and defect distribution within a delivered system.  In fact, there is very 
little support for some commonly held beliefs in the software engineering community 
regarding fault density as it relates to code size and complexity [14]. 
 
A potential way around this uncertainty is to assume, for predictive purposes, that the 
maintenance process is random with respect to the design – a maintenance activity could 
strike a legacy system at any location in the design with equal probability.  The activity 
could fall into to any one of the maintenance process categories defined in Chapter X (i.e. 
perfective, corrective, or adaptive). 
 
Maintenance costs will be driven by the number of maintenance activities that occur for a 
given system over its operational lifetime, as well as the cost to complete each activity.   
 
In the field of software change impact analysis, techniques have been developed to 
evaluate the scope of design modifications that occur during the maintenance process.  
These techniques fall into two general categories: traceability analysis and dependency 
analysis.  We will focus on the latter, which can be used effectively to estimate the 
amount of regression testing required for a system assuming a part of the system 
experiences change. 
 
Potential cost savings in the regression testing of a system under maintenance represent 
real, tangible benefits that can be linked to code structure through dependency analysis.  
We will show in this chapter how this property can be exploiting to estimate the relative 
maintenance effort of competing designs, leading to a feasible cost-benefit analysis for 
refactoring a legacy system. 
 



 27 

In this chapter we will describe the dependency analysis methodology, and then present 
preliminary results from a trial case study of a small Java system. 
 

3.2 Proposed Methodology 
 
In this section we define the following algorithm as a method to calculate the refactoring 
ROI: 
 
1. Using the dependency analysis technique defined in [29], create procedure-level 
dependency graphs for the legacy system.  These graphs include data and control 
dependencies.   
 
2. Review the legacy system code and identify opportunities for refactoring, based on the 
criteria established in [1]. 
 
3. Review the list of refactoring opportunities and arrive at a detailed re-structuring plan 
for the legacy system, identifying new and modified procedures in the design. 
 
4. Based on the restructuring plan, create revised data and control dependency graphs for 
the legacy system representing the predicted state of the system after implementing the 
proposed restructuring. 
 
5. For the legacy system prior to refactoring, construct a list of procedures and the 
number of lines of code in each procedure.  The percentage of the overall code contained 
in each procedure represents the probability of a random maintenance activity striking 
that procedure. 
 
6. For each procedure in the system, identify from the dependency graphs how much 
additional code in the system must be checked or re-tested as a result of a change to the 
procedure.  If the dependency graph is expressed as a matrix with each element identified 
by {row, column}, a dependency exists from row to column if there is a “1” in the matrix 
at this location.  The list of procedures dependent on a particular procedure corresponds 
to the list of “1s” in the matrix column associated with that procedure.  This column 
multiplied by the amount of code in each procedure yields the expected amount of code 
to be regression tested as a result of the maintenance activity. 
 
7. For each procedure in the system, take the result from step 6 above and multiply this 
result by the percentage of the overall code contained in that procedure.  The sum of all 
these results for the system yields the average expected regression testing impact as a 
result of a maintenance activity. 
 
8. Repeat steps 5-7 above for the predicted legacy system state post-refactoring. 
 
9. Estimate the effort required to implement the restructuring plan identified in step 3 
using the COCOMOII.2000 model. 
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10. Using an assumed maintenance scenario for both designs, calculate the anticipated 
maintenance costs for regression testing again using the COCOMOII.2000 model. 
 
11. Subtract the maintenance cost for the proposed restructured system from the predicted 
cost of the baseline system design to determine the effort savings associated with the 
restructuring. 
 
12. Divide the result from step 11 by the estimated cost of refactoring from step 9 in 
order to determine the Return on Investment. 
 

3.2.1 Dependency Analysis Description 
 
The technique we have used for procedure-level dependency analysis is based on the 
language-independent methodology defined by Loyall and Mathison in [29].  The 
concepts of data and control dependency are formally defined in [29], but we can 
summarize these definitions as follows: 
 
A procedure X is data-dependent on procedure Y if procedure X uses data (either a global 
variable or passed parameter) that has been produced or modified by procedure Y. 
 
A procedure X is control-dependent on procedure Y if procedure Y invokes procedure X.  
In [29], they make a dist inction between ordinary control dependence and “strong” 
control dependence – for the purposes of this analysis we assume that any procedure 
invocation implies dependence. 
 
It must be noted that the analysis technique from [29] does not explicitly cater to object-
oriented languages.  In our study, we perform a case study using a Java-based system.  
The main assumption made in applying this analysis technique to a Java program is that 
the class-level data definitions as well as the class creation method are associated with a 
single entity (i.e. they form a single “procedure” in the analysis).  In addition, when 
assessing the code size of subclasses we did not include methods that were directly 
inherited from the superclass – only “new” code was considered in the analysis of the 
sub-class.  As well, when considering a procedure that instantiates a class (i.e. creates a 
new object), we consider the class creation method to be control dependent on the 
instantiating procedure. 
 
In creating the top-level dependency graph for a legacy system design, we first create two 
separate graphs – the direct data dependency graph and the direct control dependency 
graph.  These graphs are “adjacency” matrices that capture directed dependencies 
between each distinct pair of nodes (with each node representing a procedure in the 
system). These graphs do not capture the overall connectivity – in other words, they do 
not answer the question of whether or not there is a dependency path in the graph 
between two particular nodes.  In order to answer this question we calculate the  transitive 
closure of each graph using Warshall’s algorithm.  This results in the overall data and 
control dependency graphs for the system. 
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In order to evaluate the regression testing impact when modifying a particular procedure, 
we perform the logical “OR” of the overall data and control dependency graphs.  Before 
performing this operation, it is necessary to take the transpose of the control dependency 
graph.  The reason for this is that a control dependence from procedure X to procedure Y 
means that that Y must be checked if X changes.  On the other hand, a data dependence 
from procedure X to procedure Y means that X must be checked if Y changes.  By taking 
the transpose of the control graph prior to the combination with the data graph, we ensure 
consistency from a regression testing impact perspective. 
 
This approach to dependency graph construction is conservative as described in [29], and 
will generally overestimate the number of dependency paths within the system.  
 

3.3 Trial Case Study – Traffic Light Simulation 

3.3.1 Introduction 
 
In this section we attempt to apply the preceding methodology to a small Java system in 
order to assess the effectiveness of the approach.  The trial system was created in a 
student environment as part of a graduate course in Object-oriented analysis and design.  
The code followed a typical OO development cycle, including user requirements 
definition through use-case analysis, development of a class model, and dynamic state 
modeling prior to implementation.  The application is a real-time traffic light control 
system for a 4-way intersection, including a graphical simulation of the intersection 
operation.  This includes control of the lights and a simulation of car traffic through the 
intersection. 
 
For the purpose of counting “Source Lines of Code” (SLOC) in a procedure, we use the 
definition of a logical source statement as defined in the COCOMOII.2000 model [9].  
Using this definition, the entire legacy program contains 740 SLOC, broken down into 6 
classes and 29 procedures as shown in the tables below. Note that these tables represent 
the code properties prior to any restructuring. The SLOC count was performed manually 
by the programmer. 
 

Class SLOC
% of 
Total

No. of 
Proc.

Avg. 
Proc. 
Size

UserInterface 411 55.5% 4 103
SignalController 164 22.2% 7 23
Direction 95 12.8% 6 16
Light 23 3.1% 5 5
TurnArrow 23 3.1% 2 12
WholeNumberField 24 3.2% 5 5
TOTAL 740 100.0% 29 26  

Table 2 – Traffic Light Simulation Class Summary 
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Proc. 
No. Class_Name.Proc_Name SLOC Cum.

% of 
Total

1 UserInterface 306 306 41.4%
2 UserInterface.actionPerformed 80 386 10.8%
3 UserInterface.updateTime 18 404 2.4%
4 UserInterface.main 7 411 0.9%
5 SignalController 27 438 3.6%
6 SignalController.restart 3 441 0.4%
7 SignalController.pause 1 442 0.1%
8 SignalController.getAction 3 445 0.4%
9 SignalController.executeAction 15 460 2.0%

10 SignalController.setDirectionStates 49 509 6.6%
11 SignalController.run 66 575 8.9%
12 Direction 29 604 3.9%
13 Direction.Initialize 7 611 0.9%
14 Direction.setState 18 629 2.4%
15 Direction.setSubState 18 647 2.4%
16 Direction.getState 1 648 0.1%
17 Direction.updateLaneStatus 22 670 3.0%
18 Light 9 679 1.2%
19 Light.turnOn 3 682 0.4%
20 Light.turnOff 3 685 0.4%
21 Light.getPreferredSize 1 686 0.1%
22 Light.paintComponent 7 693 0.9%
23 TurnArrow 3 696 0.4%
24 TurnArrow.paintComponent 20 716 2.7%
25 WholeNumberField 7 723 0.9%
26 WholeNumberField.getValue 5 728 0.7%
27 WholeNumberField.setValue 1 729 0.1%
28 WholeNumberField.createDefaultModel 1 730 0.1%
29 WholeNumberDocument.insertString 10 740 1.4%  

Table 3 – Traffic Light Simulation Procedure Summary 

 

3.3.2 Refactoring Opportunities 
 
The Refactoring text by Fowler [1] provides guidelines for identifying code problems that 
warrant restructuring – he refers to these problems as typical “bad smells in code”.  In 
order to identify opportunities for refactoring in the Traffic Light Simulation code, we 
manually inspected the code based on the problem definitions in [1].  A brief definition of 
these “bad smells” appears below, summarized from Chapter 3 of [1]: 
 
Duplicated Code: the same code structure appears in more than one place. 
 
Long Method: methods containing higher than average lines of code, including many 
parameters, temporary variables, loops, and conditional structures. 
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Large Class: a class with too many instance variables (i.e. a class that is trying to do too 
much). 
 
Long Parameter List: too much data passed to a method in parameters (instead only 
enough information should be passed to the method so it can retrieve other data it needs). 
 
Divergent Change: evidence that a class has been changed in distinctly different ways for 
different reasons (i.e. the class should likely be split up). 
 
Shotgun Surgery: for a particular kind of maintenance change, many classes are impacted 
(this is the opposite of Divergent Change). 
 
Feature Envy: methods that are more interested in external classes than the class they are 
in (usually with respect to another class’s data).   
 
Data Clumps:  small groups of data items that appear together in multiple places within 
the code (could be candidates for new classes). 
 
Primitive Obsession : the overuse of primitive types when small objects should be 
developed. 
 
Switch Statements: the presence of switch (or case) statement blocks. 
 
Parallel Inheritance Hierarchies: every time a subclass of one class is created, a subclass 
of another class must also be created. 
 
Lazy Class:  a class that is not doing enough to justify its existence. 
 
Speculative Generality:  code containing all sorts of hooks or special cases to handle 
things that aren’t required. 
 
Temporary Field :  an object with an instance variable that is set up in only certain 
circumstances. 
 
Message Chains: when an object must go through many other objects (e.g. a cascading 
series of “get” operations) to get the information it needs. 
 
Middle Man: too much delegation in the code. 
 
Inappropriate Intimacy: classes that have too much detailed knowledge of each other. 
 
Alternative Classes with Different Interfaces :  methods with different signatures that do 
the same thing. 
 
Incomplete Library Class: library classes that do not contain enough functionality for 
your immediate purposes. 
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Data Class: classes with accessible fields (through get/set methods), but very little real 
behaviour. 
 
Refused Bequest:  subclasses that don’t need some of the data or methods inherited from 
the super class. 
 
Comments:  comments can sometimes indicate that a particular piece of code is not clear 
and should be refactored to make it’s purpose more obvious. 
 
The following table provides the resulting list of weak areas in the code according to 
these definitions. 
 

No. Class
Start Line 

No.
End Line 

No. Problem
1 UserInterface 1 306 Long Method
2 UserInterface 69 131 Duplicated Code, Feature Envy
3 UserInterface 312 342 Duplicated Code
4 UserInterface 307 386 Long Method
5 SignalController 35 49 Switch Statement
6 SignalController 51 98 Switch Statement, Duplicated Code, Feature Envy
7 SignalController 106 161 Long Method, Switch Statement, Duplicated Code
8 Direction 139 152 Switch Statement
9 Direction 173 186 Switch Statement
10 Direction 197 255 Long Method  

Table 4 – Traffic Light Simulation Refactoring Opportunities 

 

3.3.3 Refactoring Plan 
 
In response to the list of opportunities for code improvement, we constructed a set of 
specific refactorings (from the master list of standard refactorings in [1]) in order to 
remove some of the problems.  Note that we did not address the issue of “switch 
statements” from the list above.  The following table details the proposed restructuring to 
be applied to the baseline Traffic Light Simulation code. Note that in the Modified Code 
column, a negative number indicates code that is removed from the original procedure as 
a result of the refactoring. 
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Class.Proc Name
New 
Code

Modified 
Code

Proposed 
Refactoring Refactoring Description

UserInterface 4 0 Extract Method Add new proc: UserInterface.addLightsToPanel

16 -64
Remove duplicate code (68-131) and replace with calls 
to new proc

UserInterface 9 0 Extract Method Add new proc: UserInterface.addDirectionLabel

4 -26
Remove duplicate code (132-157) and replace with calls 
to new proc

UserInterface 10 0 Extract Method Add new proc: UserInterface.addTimeLabel

1 -10
Remove code from main proc (158-167) and add call 
statement for new proc

UserInterface 27 0 Extract Method Add new proc: UserInterface.createSimControlPanel

1 -27
Remove code from main proc (173-197) and add call 
statement for new proc

UserInterface 81 0 Extract Method Add new proc: UserInterface.createCarInitPanel

1 -81
Remove code from main proc (199-279) and add call 
statement for new proc

UserInterface 17 0 Extract Method Add new proc: UserInterface.setPanelPositions

1 -17
Remove code from main proc (286-302) and add call 
statement for new proc

UserInterface.actionPerformed 9 0 Extract Method Add new proc: UserInterface.initDirectionState

4 -28
Remove code from main proc (312-318, 320-326, 328-
334, 336-342) and add call statements for new proc

SignalController.setDirectionStates 13 0 Move Method Add new proc: Direction.switchStates

4 -49
Remove code from main proc (51-98) and add call 
statements for new proc

SignalController.run 14 0 Extract Method Add new proc: SignalController.triggerCycleActions

4 -56
Remove code from main proc (106-161) and add call 
statements for new proc  

Table 5 – Traffic Light Simulation Refactoring Plan 

 

3.3.4 Summary of Design Refactoring Impact 
 
Based on the refactoring plan defined above, a detailed code analysis was performed to 
predict the new structure of the software after implementation of the plan (the analysis 
involved pseudo-coding the changes and new interfaces, but not compiling).  The table 
below summarizes the top-level structural changes, including the overall code size, 
number of procedures, and average procedure size within each class before and after 
restructuring. 
 

SLOC No. of Proc. Avg. Proc. Size
Class Name Before After Change Before After Change Before After Change
UserInterface 411 343 -17% 4 11 175% 103 31 -70%
SignalController 164 81 -51% 7 8 14% 23 10 -57%
Direction 95 108 14% 6 7 17% 16 15 -3%
Light 23 23 0% 5 5 0% 5 5 0%
TurnArrow 23 23 0% 2 2 0% 12 12 0%
WholeNumberField 24 24 0% 5 5 0% 5 5 0%
TOTAL 740 602 -19% 29 38 31% 26 16 -38%  

Table 6 – Summary of Refactoring Impact 

 
The key predicted results in this table regarding the proposed design changes for the 
Traffic Light Simulation application are: 

• Overall code size would be reduced by 19%, 
• The total number of procedures in the system would increase by 31%, and 
• The average procedure size would be reduced by 38%. 
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The table below shows the predicted procedure-level structure of the code after 
refactoring. Note that procedures 1-29 represent the same set of procedures in the original 
code, while procedures 30-38 are the new procedures planned in the refactored code. 
 

Proc. No. Class_Name.Proc_Name SLOC Cum.
% of 
Total

1 UserInterface 105 105 17.4%
2 UserInterface.actionPerformed 56 161 9.3%
3 UserInterface.updateTime 18 179 3.0%
4 UserInterface.main 7 186 1.2%
5 SignalController 27 213 4.5%
6 SignalController.restart 3 216 0.5%
7 SignalController.pause 1 217 0.2%
8 SignalController.getAction 3 220 0.5%
9 SignalController.executeAction 15 235 2.5%
10 SignalController.setDirectionStates 4 239 0.7%
11 SignalController.run 14 253 2.3%
12 Direction 29 282 4.8%
13 Direction.Initialize 7 289 1.2%
14 Direction.setState 18 307 3.0%
15 Direction.setSubState 18 325 3.0%
16 Direction.getState 1 326 0.2%
17 Direction.updateLaneStatus 22 348 3.7%
18 Light 9 357 1.5%
19 Light.turnOn 3 360 0.5%
20 Light.turnOff 3 363 0.5%
21 Light.getPreferredSize 1 364 0.2%
22 Light.paintComponent 7 371 1.2%
23 TurnArrow 3 374 0.5%
24 TurnArrow.paintComponent 20 394 3.3%
25 WholeNumberField 7 401 1.2%
26 WholeNumberField.getValue 5 406 0.8%
27 WholeNumberField.setValue 1 407 0.2%
28 WholeNumberField.createDefaultModel 1 408 0.2%
29 WholeNumberDocument.insertString 10 418 1.7%
30 UserInterface.addLightsToPanel 4 422 0.7%
31 UserInterface.addDirectionLabel 9 431 1.5%
32 UserInterface.addTimeLabel 10 441 1.7%
33 UserInterface.createSimControlPanel 27 468 4.5%
34 UserInterface.createCarInitPanel 81 549 13.5%
35 UserInterface.setPanelPositions 17 566 2.8%
36 UserInterface.initDirectionState 9 575 1.5%
37 Direction.switchStates 13 588 2.2%
38 SignalController.triggerCycleActions 14 602 2.3%  

Table 7 – Procedure Summary After Refactoring 

 

3.3.5 Dependency Graphs Before Refactoring 
 
This section includes the data and control dependency graphs for the Traffic Light 
Simulation code prior to refactoring.  In addition, the overall dependency graph (logical 
“OR” of the data graph and the transposed control graph) is presented. 
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Each graph represents a matrix of size (N, N), where N is the number of procedures in the 
system.  A “1” in entry (r, c) of the matrix indicates that procedure “r” depends on 
procedure “c” (represented by a symbol in the chart). The row and column numbers in the 
graphs refer to the procedure numbers in the tables presented earlier.   
 

0

5

10

15

20

25

30

0 5 10 15 20 25 30

TO Proc. No.

F
R

O
M

 P
ro

c.
 N

o
.

 
Figure 2 – Data Dependency Graph Before Refactoring  
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Figure 3 – Control Dependency Graph Before Refactoring 
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Figure 4 – Combined Dependency Graph Before Refactoring 
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3.3.6 Predicted Dependency Graphs After Refactoring 
 
This section shows the predicted dependency graphs for the restructured system. 
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Figure 5 – Data Dependency Graph After Refactoring  
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Figure 6 – Control Dependency Graph After Refactoring 
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Figure 7 – Combined Dependency Graph After Refactoring 
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3.3.7 Dependency Graph Comparison 
 
The table below provides a comparison between the dependency graphs before and after 
refactoring, measuring the number of dependency paths shown in each graph. This result 
shows that the density of dependency paths in the restructured graphs is lower than for 
the original design.  
 

BEFORE AFTER

Graph

No. of 
Depende

ncies
Matrix Fill 

Ratio

No. of 
Depende

ncies
Matrix Fill 

Ratio
% 

Change
Data Dependency Graph 112 13.3% 147 10.2% -23.6%
Control Dependency Graph 73 8.7% 101 7.0% -19.4%
Overall Dependency Graph 179 21.3% 241 16.7% -21.6%  

Table 8 – Dependency Graph Comparison 

 

3.3.8 Code Re-test Impact Before Refactoring 
 
The following table shows the change impact (as measured in lines of code to be re-
tested) as a result of a maintenance activity striking each procedure in the original design.  
The table includes a probability calculated directly as the size of the procedure as a 
percentage of the overall system lines of code – this assumes that any line of code in the 
procedure could be hit by a maintenance activity with equal probability.  As well, the 
table assumes that a particular maintenance activity will strike only one procedure 
directly.  The re-test impact of the procedure is assumed to be all the lines of code in the 
procedure itself plus all the lines of code that depend on the modified procedure 
(according to the combined dependency graph in Figure 4).  Taking an example from 
Figure 4, if procedure #15 is struck by a maintenance activity, then we determine from 
the graph that all the code from procedures 9, 11, and 15 must be re-tested.  The 
probability of procedure #15 being hit by a maintenance event is the proportion of its 
code size to the overall application size (2.4% from Table 9). The contribution towards 
the mean system re-test impact is the sum of the procedure’s impact multiplied by the 
probability of occurrence.  The contributions from all procedures are then summed to 
provide the mean re-test impact for the system. 
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Proc. No. Class_Name.Proc_Name

Re-Test 
Impact 
(SLOC) Probability

Contrib. 
to Mean

1 UserInterface 677 41.4% 279.9
2 UserInterface.actionPerformed 106 10.8% 11.5
3 UserInterface.updateTime 84 2.4% 2.0
4 UserInterface.main 7 0.9% 0.1
5 SignalController 530 3.6% 19.3
6 SignalController.restart 203 0.4% 0.8
7 SignalController.pause 201 0.1% 0.3
8 SignalController.getAction 120 0.4% 0.5
9 SignalController.executeAction 99 2.0% 2.0
10 SignalController.setDirectionStates 133 6.6% 8.8
11 SignalController.run 120 8.9% 10.7
12 Direction 677 3.9% 26.5
13 Direction.Initialize 447 0.9% 4.2
14 Direction.setState 562 2.4% 13.7
15 Direction.setSubState 99 2.4% 2.4
16 Direction.getState 188 0.1% 0.3
17 Direction.updateLaneStatus 106 3.0% 3.2
18 Light 357 1.2% 4.3
19 Light.turnOn 605 0.4% 2.5
20 Light.turnOff 605 0.4% 2.5
21 Light.getPreferredSize 1 0.1% 0.0
22 Light.paintComponent 614 0.9% 5.8
23 TurnArrow 336 0.4% 1.4
24 TurnArrow.paintComponent 20 2.7% 0.5
25 WholeNumberField 321 0.9% 3.0
26 WholeNumberField.getValue 111 0.7% 0.8
27 WholeNumberField.setValue 401 0.1% 0.5
28 WholeNumberField.createDefaultModel 1 0.1% 0.0
29 WholeNumberDocument.insertString 11 1.4% 0.1

MEAN RE-TEST IMPACT (SLOC): 408  
Table 9 – Code Re-test Impact Before Refactoring 

 

3.3.9 Code Re-test Impact After Refactoring 
 
The following table shows the change impact at the procedure level for the restructured 
design. 
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Proc. No. Class_Name.Proc_Name

Re-Test 
Impact 
(SLOC) Probability

Contrib. 
to Mean

1 UserInterface 539 17.4% 94.0
2 UserInterface.actionPerformed 91 9.3% 8.5
3 UserInterface.updateTime 32 3.0% 1.0
4 UserInterface.main 7 1.2% 0.1
5 SignalController 228 4.5% 10.2
6 SignalController.restart 141 0.5% 0.7
7 SignalController.pause 139 0.2% 0.2
8 SignalController.getAction 64 0.5% 0.3
9 SignalController.executeAction 61 2.5% 1.5
10 SignalController.setDirectionStates 18 0.7% 0.1
11 SignalController.run 82 2.3% 1.9
12 Direction 539 4.8% 26.0
13 Direction.Initialize 222 1.2% 2.6
14 Direction.setState 253 3.0% 7.6
15 Direction.setSubState 61 3.0% 1.8
16 Direction.getState 97 0.2% 0.2
17 Direction.updateLaneStatus 54 3.7% 2.0
18 Light 156 1.5% 2.3
19 Light.turnOn 310 0.5% 1.5
20 Light.turnOff 310 0.5% 1.5
21 Light.getPreferredSize 1 0.2% 0.0
22 Light.paintComponent 319 1.2% 3.7
23 TurnArrow 135 0.5% 0.7
24 TurnArrow.paintComponent 20 3.3% 0.7
25 WholeNumberField 120 1.2% 1.4
26 WholeNumberField.getValue 96 0.8% 0.8
27 WholeNumberField.setValue 176 0.2% 0.3
28 WholeNumberField.createDefaultModel 1 0.2% 0.0
29 WholeNumberDocument.insertString 11 1.7% 0.2
30 UserInterface.addLightsToPanel 116 0.7% 0.8
31 UserInterface.addDirectionLabel 121 1.5% 1.8
32 UserInterface.addTimeLabel 122 1.7% 2.0
33 UserInterface.createSimControlPanel 139 4.5% 6.2
34 UserInterface.createCarInitPanel 193 13.5% 26.0
35 UserInterface.setPanelPositions 129 2.8% 3.6
36 UserInterface.initDirectionState 91 1.5% 1.4
37 Direction.switchStates 49 2.2% 1.1
38 SignalController.triggerCycleActions 61 2.3% 1.4

MEAN RE-TEST IMPACT (SLOC): 216  
Table 10 – Code Re -test Impact After Refactoring 

 

3.3.10 Summary of Dependency Analysis Results 
 
This section illustrates the probability distributions of the regression testing impact for 
the Traffic Light Simulation code before and after refactoring, assuming a random 
maintenance activity as defined in section 3.  
 
In Figure 8, Figure 10, and Figure 12, each data point represents the re-test impact of a 
single procedure versus the probability of that impact occurring for a random 
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maintenance event.  Note that the impact data is expressed as a percentage of the total 
SLOC in the system rather than as an absolute SLOC number.  For the combined graph in 
Figure 12, the code size reference is the original, unchanged version of the Traffic Light 
Simulation code. 
 
Figure 9 and Figure 11 illustrate the distribution of re-test impact with respect to the total 
number of procedures in the system.  Note that in these two distribution charts, the data 
has been sorted from the highest impact procedure to the lowest so that the procedure 
numbers in the graphs do not correspond to the absolute procedure identifiers. 
 
When comparing the two distributions in Figure 12, we note that the refactored (“After”) 
design shows reduced peaks in terms of maximum probability as well as maximum 
impact compared with the orginal (“Before”) design. The entire distribution in the After 
case appears to be shifted down and to the left of the original distribution. 
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Figure 8 – Re-test Impact By Procedure Before Refactoring 
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Figure 9 – Cumulative Re-test Impact Before Refactoring 
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Figure 10 – Re -test Impact By Procedure After Refactoring 
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Figure 11 – Cumulative Code Re -test Impact After Refactoring 
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Figure 12 – Re -test Impact Comparison 
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As a direct result of the planned restructuring activities, we predict that the mean re-test 
impact for the Traffic Light Simulation software will decrease from 408 SLOC to 216 
SLOC.  This is a potential reduction of 47.1% in the average regression testing effort for 
a random maintenance activity. 
 
A downside of this method is that it is conservative when estimating the code re-test 
impact.  For example, consider the large UserInterface procedure in the original Traffic 
Light Simulation system design.  As shown in Figure 4, 18 out of 29 procedures in the 
system depend on UserInterface.  This procedure has many lines of code (306) – it is 
clear that not every line of code is linked to all the external dependencies listed in Table 
9.  Some lines of code may in fact have no external dependencies whatsoever, meaning 
that a change to that line of code does not require the substantial re-testing assumed for 
this large procedure.  So while the potential exists for a large impact whenever 
UserInterface is modified, not every modification will result in the maximum amount of 
regression test ing. 
 
One solution to this problem is to perform line-by-line dependency analysis within the 
program to determine the “micro” dependencies beneath the procedure level. Due to the 
large amount of data involved, this is not practical to analyze for a large system – this 
approach was not investigated further. 
 
However, even if we assume the wildly optimistic case that there are no external 
dependencies in any of the procedures and only the immediately impacted procedure 
must be re-tested, then the average re-test impact becomes 150 SLOC for the original 
design and 44 SLOC for the refactored design.  This is a 71 % improvement, an even 
better result for the restructuring activity.  It is clear that the regression testing effort will 
be less for the redesigned system.  
 

3.3.11 Maintenance Effort Estimation 
 
Now that we have established a method to quantify how much code must be regression 
tested for a maintenance activity, we must determine how to convert this benefit into an 
effort estimate.  The refactoring cost-benefit equation components use person-effort units. 
 
One approach is to use the COCOMOII.2000 model (introduced earlier in section 2). 
This model contains a method for estimating the effort associated with adapting a system 
(i.e. modifying part of a system taking advantage of a re-use opportunity).  We can think 
of each maintenance activity as an exercise in software adaptation – when refactoring we 
are changing a relatively small part of the system, usually for perfective or corrective 
reasons.  The COCOMOII.2000 re-use model input parameters include a special variable 
called “IM”, the “Percentage of Integration Required for Adapted Software”.  This is 
essentially the amount of testing that must be done for the adapted code as compared to 
redeveloping the whole application.  We can exploit the IM parameter to predict the 
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maintenance effort based on the regression testing impact (in SLOC) determined from the 
previous section. 
 

3.3.12 Traffic Light Simulation Before Refactoring 
 
This section presents a number of sample calculations of maintenance activity effort 
using the COCOMOII.2000 re-use model defined in [9] (primarily using the model 
equations defined in sections 2.2.4.2 and 2.3 of [9]).  In the tables below we show the key 
input values used in the model – most of the  numbers are hypothetical assumptions that 
would be replaced with local environment knowledge if applied to an industrial project.  
For example, in the effort adjustment factors (Table 11) we have assumed the “Nominal” 
value for each parameter.   
 
The driving variables in our sample calculation are DM, CM, and IM from Table 14. 
These variables represent the amount of change occurring in the system during the 
maintenance activity.  Because we don’t know the exact size of our hypothetical 
maintenance activities, we have assumed a value of 5% for DM and CM (this is 
approximately 30-40 SLOC per activity for the Traffic Light Simulation system).  IM is 
taken as the average percentage of the total code that must be re-tested as a result of the 
change, as determined from our analysis of the previous section. The data in these tables 
are used to configure the COCOMOII.2000 model. 
 
 

Param. Very Low Low Nominal High Very High
Extra 
High SCORE

RELY 0.82 0.92 1.00 1.10 1.26 N/A 1.00
DATA N/A 0.90 1.00 1.14 1.28 N/A 1.00
CPLX 0.73 0.87 1.00 1.17 1.34 1.74 1.00
RUSE N/A 0.95 1.00 1.07 1.15 1.24 1.00
DOCU 0.81 0.91 1.00 1.11 1.23 N/A 1.00
TIME N/A N/A 1.00 1.11 1.29 1.63 1.00
STOR N/A N/A 1.00 1.05 1.17 1.46 1.00
PVOL N/A 0.87 1.00 1.15 1.30 N/A 1.00
ACAP 1.42 1.19 1.00 0.85 0.71 N/A 1.00
PCAP 1.34 1.15 1.00 0.88 0.76 N/A 1.00
PCON 1.29 1.12 1.00 0.90 0.81 N/A 1.00
APEX 1.22 1.10 1.00 0.88 0.81 N/A 1.00
PLEX 1.19 1.09 1.00 0.91 0.85 N/A 1.00
LTEX 1.20 1.09 1.00 0.91 0.84 N/A 1.00
TOOL 1.17 1.09 1.00 0.90 0.78 N/A 1.00
SITE 1.22 1.09 1.00 0.93 0.86 0.80 1.00
SCED 1.43 1.14 1.00 1.00 1.00 N/A 1.00

Product: 1.00  
Table 11 – Assumed COCOMOII.2000 Effort Adjustment Factors  
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Param. Very Low Low Nominal High Very High
Extra 
High SCORE

PREC 6.20 4.96 3.72 2.48 1.24 0.00 3.72
FLEX 5.07 4.05 3.04 2.03 1.01 0.00 3.04
RESL 7.07 5.65 4.24 2.83 1.41 0.00 4.24
TEAM 5.48 4.38 3.29 2.19 1.10 0.00 3.29
EPML 7.80 6.24 4.68 3.12 1.56 0.00 4.68

Sum: 18.97
Exponent 1.10  

Table 12 – Assumed COCOMOII.2000 Model Scale Factors 

 

Parameter Very Low Low Nominal High Very High Ext. High SCORE
SU - Structure 50 40 30 20 10 N/A 30
SU - Application Clarity 50 40 30 20 10 N/A 30
SU - Self-Descriptiveness 50 40 30 20 10 N/A 30

None Low Nominal High Very High Ext. High SCORE
AA 0 2 4 6 8 N/A 4

Comp. 
Familiar

Mostly 
Familiar

Some. 
Familiar

Consid. 
Familiar

Mostly 
Unfam.

Comp. 
Unfamiliar SCORE

UNFM 0.0 0.2 0.4 0.6 0.8 1.0 0.4  
Table 13 – Assumed COCOMOII.2000 Re-use Model Parameter s 

 

Code Meaning
DM Percent Design Modified
CM Percent Code Modified
IM Percent of Integration Required for Adpated Software
SU Software Understanding Increment
AA Assessment and Assimilation Increment
UNFM Programmer Unfamiliarity Increment
AT Percentage of Code Automatically Translated  
Table 14 – COCOMOII.2000 Re -use Model Parameter Definitions  

 

3.3.13 Maintenance Savings Prediction 
 
The table below summarizes the predicted maintenance effort savings for the Traffic 
Light Simulation application based on the proposed design restructuring and calculations 
using the COCOMOII.2000 model. Note that the results were obtained from a 
spreadsheet tool developed for this project based on the equations defined in [9]. 
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Model Parameters (Before) (After)
Code Size (KSLOC) 0.740 0.602
DM (0-100) 5.0 5.0
CM (0-100) 5.0 5.0
IM (0-100+) 55.1 35.9
Equivalent KSLOC 0.213 0.131
Effort (Person-months) 0.538 0.313
Net Benefit/Maint. Activity 0.225  
Table 15 – Maintenance Effort Savings Summary 

 
It should be noted that the COCOMOII.2000 model (as presented in [9]) is not well 
calibrated for systems this small – if an organization routinely generated such systems 
then a calibration could be performed to improve the accuracy of the results. 
 

3.3.14 Refactoring Effort Estimation 
 
Just as we applied the COCOMOII.2000 re-use model to specific maintenance activities 
in the previous section, we can apply the same model to the refactoring effort prediction 
itself for the Traffic Light Simulation code.  This effort prediction represents the cost side 
of the cost-benefit analysis. 
 
In this particular example we assume that there is no training costs or tool purchase costs 
associated with the refactoring activity.  In reality, if new technologies are being 
introduced into an organization these sorts of costs must be accounted for.  However we 
assume that the refactoring will be manually performed (no automated tools) and that the 
programmers already have the necessary knowledge to restructure the program.  
 
We summarize here the sample calculation for the three key input parameters to the 
model based on the refactoring plan from Table 4: 
 

• DM = (4 modified procedures)/(29 original procedures) = 13.79% 
• CM = (220 new SLOC)/(740 original SLOC) = 29.73% 
• IM = 100% 

 
Note that so much of the code is impacted by the refactoring that the dependency graph 
indicates the entire system must be re-tested (i.e. we have set IM = 100%). Using the 
same default model settings shown previously, Table 16 shows the results of the 
refactoring effort prediction. 
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Cost
Model Parameters Calc.

Code Size (KSLOC) 0.740
DM (0-100) 13.8
CM (0-100) 29.7
IM (0-100+) 100.0
Equivalent KSLOC 0.437
Effort (Person-months) 1.18  

Table 16 – Refactoring Effort Prediction 

 

3.3.15 Cost-Benefit Equation 
 
The refactoring ROI equation was previously defined in section 2.  This equation can be 
restated as follows: 
 
ROI = (# of Expected Maintenance Activities)*(Effort Savings per Activity) / (Refactoring Effort) 
 
From our previous calculations: 
Effort Savings per Activity = 0.225 person-months 
Refactoring Effort = 1.18 person-months 
Break-even point = 1.18/0.225 = 5.27 Activities 
 
From the above result, the ROI will be greater than one if the number of Expected 
Maintenance Activities is greater than or equal to six.  In other words, if six or more 
maintenance activities (bug fixes, enhancements, etc.) occur after the design restructuring 
takes place, then this refactor ing becomes cost-effective. 
 
This number is sensitive to the assumed size of each maintenance activity – in our sample 
calculation we assumed 5% of the code size is modified per activity (represented by the 
DM and CM model variables).  A higher number for DM and CM will increase the 
maintenance savings and reduce the required number of events to “break even”.  A lower 
assumed number for DM and CM means that the investment will take longer to become 
cost effective. 
 
This small example shows how legacy systems can be evaluated to determine the 
effectiveness of strategic design enhancements. 
 

3.3.16 Class-level Dependency Analysis 
 
There are a number of commercial tools available that support Java code depende ncy 
analysis.  However, these tools typically generate dependency data at the class level and 
not the procedure level.  Since tool support is essential for performing a refactoring cost-
benefit analysis for a large system, it is therefore important to investigate the impact of 
performing such an analysis at the class level. 
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The hypothesis is that a class-level dependency analysis should yield similar overall 
results as a procedure-level analysis for the same system. 
 
In order to test this hypothesis, the Traffic Light Simulation application was re-analyzed 
considering dependencies only at the class level.  The code base and refactoring plan 
were identical to that considered for the procedure-level analysis.   
 
The class-level dependency graphs before and after system restructuring were constructed 
using the same technique presented for the procedure-level graphs.  The result is that the 
class-level graph is not predicted to change as a result of the proposed refactoring plan.  
The class-level dependency graph is shown in the table below. 
 

1 2 3 4 5 6
UserInterface 1 1 1 1 1 1 1
SignalController 2 1 1 1 1 1 1
Direction 3 1 1 1 1 0 1
Light 4 0 0 0 1 0 0
TurnArrow 5 0 0 0 0 1 0
WholeNumberField 6 1 1 1 1 0 1  

Table 17 – Traffic Light Simulation Class-level Dependency Graph 

 
Even though the class-level dependency graph is not predicted to change, the class-level 
code statistics will definitely change as a result of the refactoring.  This results in a 
change to the mean regression testing impact for the system. 
 
The class-level code size statistics and the predicted mean re-test impact for a random 
maintenance activity are presented in the tables below. 
 

BEFORE Refactoring SLOC % of Total
Re-test 
Impact

Contrib. to 
Mean

UserInterface 411 55.5% 694 385
SignalController 164 22.2% 694 154
Direction 95 12.8% 694 89
Light 23 3.1% 717 22
TurnArrow 23 3.1% 598 19
WholeNumberField 24 3.2% 694 23
TOTAL: 740 692  

Table 18 – Class-level Re -test Impact Before Refactoring 
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AFTER Refactoring SLOC % of Total
Re-test 
Impact

Contrib. to 
Mean

UserInterface 343 57.0% 556 317
SignalController 81 13.5% 556 75
Direction 108 17.9% 556 100
Light 23 3.8% 579 22
TurnArrow 23 3.8% 447 17
WholeNumberField 24 4.0% 556 22
TOTAL: 602 553  

Table 19 – Class-level Re -test Impact After Refactoring  

 
The mean re-test impact after refactoring is predicted to decrease from 692 SLOC to 553 
SLOC, a decrease of 20.1%.  The regression testing savings are caused by a reduction in 
the overall code size, meaning the peak re-test impact is smaller (i.e. primarily for the 
UserInterface and SignalController classes).   
 
This result differs from the procedure-level result that predicted a decrease of 47.1% in 
the re-test impact. The class-level analysis is clearly less sensitive to this type of 
restructuring than the procedure-level analysis. 
 
Using the COCOMOII.2000 model, the anticipated effort savings per maintenance 
activity based on the reduced re-test impact were calculated. 
 

Cost Benefit Calc.
Model Parameters Calc. (Before) (After)

Code Size (KSLOC) 0.740 0.740 0.602
DM (0-100) 13.8 5.0 5.0
CM (0-100) 29.7 5.0 5.0
IM (0-100+) 100.0 93.5 91.9
Equivalent KSLOC 0.437 0.319 0.256
Effort (Person-months) 1.18 0.84 0.66
Net Benefit/Maint. Activity 0.18
Break-Even Point (# Activities) 6.56  

Table 20 – Predicted Effort Savings (Class-level analysis) 

 
The resulting maintenance effort savings is 0.180 person-months per event, which is less 
than the 0.225 person-months per event predicted from the procedure-level analysis.  
Based on this revised result, it would take seven maintenance activities before the 
restructuring investment becomes cost-effective, as opposed to six activities determined 
from the procedure-level analysis. 
 
These results indicate that the hypothesis is false, and that results obtained at the class-
level are different from the results obtained at the procedure-level. This one example 
suggests that the class-level analysis produces more conservative results than the 
procedure-level analysis. 
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3.3.17 Trial Case Study Conclusions 
 
The proposed refactoring is predicted to decrease the overall code size (by 19%) and 
increase the number of procedures in the system (by 31%).  In addition, the density of 
dependency paths in the system is predicted to decrease by approximately 22%. This 
decrease in density appears to result from the introduction of new procedures into the 
system possessing relatively few external dependencies. These new procedures are 
created by extracting code from larger original procedures, therefore generating very few 
new dependencies. 
 
The refactoring appears to reduce the peaks along both axes of the impact probability 
distribution. Compared to the original distribution, the refactored distribution appears 
shifted down and to the left. 
 
Procedure-level dependency analysis predicts that the mean regression testing impact (in 
terms of affected SLOC) of a random maintenance activity will decrease by 
approximately 47% as a result of the proposed design restructuring. 
 
Cost estimation modeling using COCOMOII.2000 suggests that the restructuring will be 
cost effective if six or more maintenance events occur after the refactoring investment. 
 
The results of the procedure-level analysis are not duplicated by a class-level analysis of 
the same design transformations.  In general, the class-level analysis yields more 
conservative results regarding cost-effectiveness.  It appears that the class-level approach 
is not as sensitive to the proposed design restructuring activities. 
 
This trial case study suggests that this methodology can be applied and can yield 
meaningful results.  The next step is to apply this methodology to a larger, commercial-
grade software system. 
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4 Case Study – NLIS Channel Server 

4.1 Introduction 
 
The NLIS Channel Server is a production system built by MacDonald Det twiler and 
Associates (MDA).  For this case study, we have selected the Settlement Agent stand-
alone component of NLIS – we refer to this component as the “system”, even though it 
represents a relatively small part of the overall application. This software is responsible 
for processing land information database financial transactions as part of a web-based 
server system.  This system has been operational for the past two years, and is currently 
in the maintenance phase of its lifecycle. 
 
The version of the system analyzed in this case study consists of 27 Java classes 
containing 227 methods and approximately 2500 SLOC. Section 7.1.1 lists the detailed 
internal structure (classes, methods, and SLOC) of this software. 
 
The NLIS source code was analyzed using the methodology described in section 3, 
following the same approach as used for the trial case study.  Manual code inspections 
were performed in order to determine the refactoring plan and construct the system 
dependency graphs. The following sections present the results of the case study, 
following a similar format to the results of the trial case study from section 3.3. 
 
Regarding regression testing of the NLIS system, the project team is typically 
conservative in assuming that the entire system must be re-tested as a result of any 
maintenance to the delivered product, regardless of the dependency graph.  Many other 
mission or business -critical project teams follow a similar philosophy.  Strictly speaking, 
our methodology may not be suited to such projects.  Alternatively, this methodology 
might persuade some that full system testing may not be necessary for every change (if 
the dependencies are well characterized).  Nevertheless, we feel the results of the case 
study are relevant and provide a good demonstration of our methodology. 
 
Note also that the class-level results were not computed for the NLIS case study – only 
the procedure-level results are presented in this report. 
 

4.2 Refactoring Plan and Design Impact 
 
The following tables describe the refactoring opportunities uncovered during the analysis 
of the NLIS code, as well as the restructuring plan designed to address these 
opportunities. 
 
In addition, the tables show the predicted impact of the proposed changes to the design 
and code structure (in terms of classes, procedures, and SLOC). 
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Note that, after further review and consideration, not every opportunity identified in the 
list in Table 21 led to a proposed design change.  Some changes were judged too difficult 
to be worthwhile, and some would not have had an impact on the code dependency 
structure.  These instances are clearly marked in Table 22. 
 
As seen in Table 24, the net effect of the proposed refactoring is to decrease the overall 
code size by 3.0%, while increasing the number of procedures in the system by 2.6%. 
 
 

Prob. No. Problem Unit Name Comment
1 Large Class STL_Agent 11 methods, 210 SLOC
2 Large Class STL_Database 17 methods, 267 SLOC
3 Large Class REP_Manager_Transactions 22 methods, 430 SLOC
4 Large Class STL_Reports 21 methods, 441 SLOC
5 Duplicated Code STL_Agent.run
6 Long Method STL_Agent.run 97 SLOC
7 Switch Statement STL_Database.getPartyList
8 Long Method STL_Database.updateSettlementStatus 43 SLOC
9 Duplicated Code STL_Database.updateSettlementStatus

10 Duplicated Code STL_Database.getSageSrSupplierCode Similar to getSateMapSupplierCode method.
11 Duplicated Code STL_Database.updateEndUserEFT
12 Duplicated Code STL_Database.isPartyInSync
13 Duplicated Code STL_Database.synchronizeEndUser
14 Duplicated Code STL_BusinessManager.buildAUDDISPartyList Similar to buildPartyList method.
15 Duplicated Code REP_Manager_Transactions.getAdministratorEmail Similar to getMapVatRate
16 Long Method REP_Manager_Transactions.getServiceType 106 SLOC
17 Duplicated Code REP_Manager_Transactions.getServiceType
18 Duplicated Code REP_Manager_Transactions.getVatableAmount Similar structure to getNonVatableAmount method.
19 Data Class STL_EndUser 11 fields, very little behavior (get methods only)
20 Duplicated Code STL_EndUser.invoicedByEmail Similar to testMode method.
21 Feature Envy STL_EndUser.postCredit Retrieval of data from STL_Transaction class.
22 Duplicated Code STL_EndUser.postDebit Similar to postCredit method.
23 Data Class STL_Transaction 24 fields, but no behavior (just get methods)
24 Long Method STL_Reports.generateBacsTransactionFile 60 SLOC
25 Feature Envy STL_Reports.generateBacsTransactionFile Uses STL_EndUser to get data.
26 Long Method STL_Reports.generateSageTransactionFile
27 Feature Envy STL_Reports.generateSageTransactionFile Uses STL_Transaction to get data.
28 Duplicated Code STL_Reports.getUsersManagers Similar to userHasNonManagedTransactions method.
29 Duplicated Code STL_Reports.createInvoiceStatements Similar to createInvoices method.
30 Duplicated Code STL_Reports.generateReport
31 Feature Envy STL_Reports.transactionAlreadyCreated Method could be part of STL_EndUser/STL_Party.  

Table 21 – NLIS Refactoring Opportunities  

 



 55 

Prob. No. Unit Name
Planned 
Refactoring Comment

1 STL_Agent None
2 STL_Database None
3 REP_Manager_Transactions None
4 STL_Reports Move Method See prob. #27 below.
5 STL_Agent.run Extract Method 3 new methods created (new proc. 228, 229, 230).
6 STL_Agent.run Extract Method Same as above.
7 STL_Database.getPartyList None
8 STL_Database.updateSettlementStatus Extract Method New method created (proc. 231).
9 STL_Database.updateSettlementStatus Extract Method Same as above.

10 STL_Database.getSageSrSupplierCode Extract Method Method deleted (calls changed to proc. 21).
11 STL_Database.updateEndUserEFT Extract Method New method created (proc. 232).
12 STL_Database.isPartyInSync Extract Method New method created (proc. 232).
13 STL_Database.synchronizeEndUser Extract Method New method created (proc. 232).
14 STL_BusinessManager.buildAUDDISPartyList None
15 REP_Manager_Transactions.getAdministratorEmail Extract Method Method deleted (calls changed to proc. 40).
16 REP_Manager_Transactions.getServiceType None
17 REP_Manager_Transactions.getServiceType None
18 REP_Manager_Transactions.getVatableAmount None
19 STL_EndUser Move Method 3 new methods added with behavior (234, 235, 236).
20 STL_EndUser.invoicedByEmail Extract Method Same as above.
21 STL_EndUser.postCredit None
22 STL_EndUser.postDebit Extract Method Method deleted (calls changed to proc. 87).
23 STL_Transaction Move Method 8 methods moved from STL_Reports (176 to 184).
24 STL_Reports.generateBacsTransactionFile Extract Method Created 2 new methods in STL_EndUser (234, 236)
25 STL_Reports.generateBacsTransactionFile Move Method Same as above.
26 STL_Reports.generateSageTransactionFile Extract Method Moved to STL_Transaction (new proc. 237).
27 STL_Reports.generateSageTransactionFile Move Method Same as above.
28 STL_Reports.getUsersManagers None
29 STL_Reports.createInvoiceStatements Extract Method Method deleted (calls changed to proc. 172).
30 STL_Reports.generateReport Extract Method New method created (proc. 233).
31 STL_Reports.transactionAlreadyCreated Move Method Moved to STL_EndUser (new proc. 235).  

Table 22 – NLIS Refactoring Plan 

 
Proc. Code Changes (SLOC)
No. Proc. Name Added Modified Deleted Net Sum

2 STL_Agent.run 7 0 36 -29 43
20 STL_Database.updateSettlementStatus 2 0 16 -14 18
22 STL_Database.getSageSrSupplierCode 0 0 8 -8 8
24 STL_Database.updateEnduserEFT 1 0 6 -5 7
25 STL_Database.isPartyInSync 1 0 4 -3 5
26 STL_Database.synchronizeEndUser 1 0 4 -3 5
28 STL_Database.getSystemTableParameter 1 0 3 -2 4
41 REP_ManagerTransactions.getAdministratorEmail 0 0 10 -10 10
85 STL_EndUser.invoicedByEmail 0 0 3 -3 3
87 STL_EndUser.postCredit 0 6 0 0 6
88 STL_EndUser.postDebit 0 0 6 -6 6

167 STL_Reports.generateBacsTransactionFile 2 0 40 -38 42
168 STL_Reports.generateSageTransactionFile 1 0 22 -21 23
172 STL_Reports.createInvoices 2 0 0 2 2
173 STL_Reports.createInvoiceStatements 0 0 22 -22 22
174 STL_Reports.generateReport 2 0 20 -18 22
186 STL_Reports.transactionAlreadyCreated 0 0 12 -12 12
228 STL_Agent.proc228 9 0 0 9 9
229 STL_Agent.proc229 7 0 0 7 7
230 STL_Agent.proc230 2 0 0 2 2
231 STL_Database.proc231 8 0 0 8 8
232 STL_Database.proc232 7 0 0 7 7
233 STL_Reports.proc233 11 0 0 11 11
234 STL_EndUser.proc234 20 0 0 20 20
235 STL_EndUser.proc235 12 0 0 12 12
236 STL_EndUser.proc236 20 0 0 20 20
237 STL_Transaction.proc237 22 0 0 22 22

TOTAL: 138 6 212 -74 356  
Table 23 – NLIS Predicted Code Changes 
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SLOC No. of Proc. Avg. Proc. Size

Class Name Before After
% 

Change Before After
% 

Change Before After
% 

Change
REP_Constants 143 143 0.0% 1 1 0.0% 143 143 0.0%
REP_ManagerTransactions 430 420 -2.3% 22 21 -4.5% 20 20 2.3%
RPT_PrintDate 23 23 0.0% 2 2 0.0% 12 12 0.0%
STL_Agent 210 199 -5.2% 11 14 27.3% 19 14 -25.5%
STL_BusinessManager 131 131 0.0% 8 8 0.0% 16 16 0.0%
STL_Constants 123 123 0.0% 1 1 0.0% 123 123 0.0%
STL_Database 267 247 -7.5% 17 19 11.8% 16 13 -17.2%
STL_DatabaseInterface 4 4 0.0% 16 16 0.0% 0 0 0.0%
STL_Day 14 14 0.0% 4 4 0.0% 4 4 0.0%
STL_EndUser 51 94 84.3% 14 16 14.3% 4 6 61.3%
STL_EndUserFactory 19 19 0.0% 2 2 0.0% 10 10 0.0%
STL_Party 69 69 0.0% 26 26 0.0% 3 3 0.0%
STL_PartyException 1 1 0.0% 1 1 0.0% 1 1 0.0%
STL_Reports 441 190 -56.9% 21 11 -47.6% 21 17 -17.7%
STL_Transaction 85 260 205.9% 27 37 37.0% 3 7 123.2%
STL_TransactionException 1 1 0.0% 1 1 0.0% 1 1 0.0%
STL_TransactionFactory 38 38 0.0% 2 2 0.0% 19 19 0.0%
STL_Util 48 48 0.0% 9 9 0.0% 5 5 0.0%
UTL_Constant 38 38 0.0% 1 1 0.0% 38 38 0.0%
UTL_CSVFormattedFile 9 9 0.0% 2 2 0.0% 5 5 0.0%
UTL_DBConnection 85 85 0.0% 11 11 0.0% 8 8 0.0%
UTL_DBConstant 53 53 0.0% 1 1 0.0% 53 53 0.0%
UTL_FCFFormattedFile 17 17 0.0% 2 2 0.0% 9 9 0.0%
UTL_FormattedFile 11 11 0.0% 3 3 0.0% 4 4 0.0%
UTL_Logger 45 45 0.0% 8 8 0.0% 6 6 0.0%
UTL_Mail 52 52 0.0% 8 8 0.0% 7 7 0.0%
UTL_Property 58 58 0.0% 6 6 0.0% 10 10 0.0%
TOTAL: 2466 2392 -3.0% 227 233 2.6% 10.9 10.3 -5.5%  

Table 24 – NLIS Predicted Design Impact Summary 

 

4.3 Dependency Analysis Results 
 
This section presents the results of the data and control dependency analyses performed 
on the original system (the “Before” case) as well as the predicted state of the refactored 
system (the “After” case).  The adjacency graphs, illustrating the direct data and control 
dependencies in the system prior to calculating the transitive closure, are presented here 
to help see the changes introduced by the refactoring. 
 
For the NLIS case study, the combined dependency graphs are not presented as these 
charts do not look substantially different from the very dense data dependency graphs 
presented below.  However, the re-test impact was calculated in exactly the same manner 
as in the trial case study, using the logical OR of the data graph and the transposed 
control graph.  
 
The summary comparison of the dependency graph fill ratio in Table 25 shows a different 
result than obtained in the trial case study.  The NLIS results show only a very slight 
decrease (0.4%) in the overall density of dependency paths as a result of the restructuring, 
compared with a 22% reduction in the Traffic Light Simulation system.  As well, the 
NLIS control dependency path density actually increased by 13.5% as a result of the 
refactoring. 
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Figure 13 – NLIS Control Dependency Adjacency Graph Before Re factoring  
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Figure 14 – NLIS Control Dependency Graph Before Refactoring  
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Figure 15 – NLIS Data Dependency Adjacency Graph Before Refactoring 
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Figure 16 – NLIS Data Dependency Graph Before Refactoring 
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Figure 17 – NLIS Control Dependency Adjacency Graph After Refactoring 
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Figure 18 – NLIS Control Dependency Graph After Refactoring 
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Figure 19 – NLIS Data Dependency Adjacency Graph After Refactoring 
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Figure 20 – NLIS Data Dependency Graph After Refactoring 
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BEFORE AFTER

Graph

No. of 
Depende

ncies
Matrix Fill 

Ratio

No. of 
Depende

ncies
Matrix Fill 

Ratio
% 

Change
Data Dependency Graph 27957 54.3% 29512 53.9% -0.7%
Control Dependency Graph 941 1.8% 1135 2.1% 13.5%
Overall Dependency Graph 28291 54.9% 29952 54.7% -0.4%  

Table 25 – NLIS Dependency Graph Fill Ratio Comparison 

 
Comparing Figure 16 with Figure 20, it is clear that the NLIS refactoring plan as 
presented will not have a dramatic impact on the overall dependency structure of the 
system.  The before and after data dependency graphs are both very dense with a similar 
pattern.   
 
The following sections attempt to measure the difference in average re-test impact 
between the original system and the modified system using the above dependency 
relationships. 
 

4.4 Re-test Impact Analysis Results 
 
This section illustrates the probability distributions of the regression testing impact for 
the NLIS code before and after refactoring, assuming a random maintenance activity as 
defined in section 3. 
 
In Figure 21, Figure 23, and Figure 25, each data point represents the re-test impact of a 
single procedure versus the probability of that impact occurring for a random 
maintenance event.  Note that the impact data is expressed as a percentage of the total 
SLOC in the system rather than as an absolute SLOC number.  For the combined graph in 
Figure 25, the code size reference is the original, unchanged version of the NLIS code. 
 
Figure 22 and Figure 24 illustrate the distribution of re-test impact with respect to the 
total number of procedures in the system.   
 
Table 26 summarizes the average re-test impact for the two systems, and predicts that the 
re-test impact for the refactored system will be 5.8% less than for the original system.  
The data behind these calculations is listed in the case study appendix, in sections 7.1.2 
and 7.2.2. 
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Figure 21 – NLIS Re -test Impact Probability Before Refactoring 
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Figure 22 – NLIS Cumulative Re-test Impact Before Refactoring 
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Figure 23 – NLIS Re-test Impact Probability After Refactoring 
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Figure 24 – NLIS Cumulative Re-test Impact After Refactoring 
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Figure 25 – NLIS Re-test Impact Probability Comparison 

 

Total 
SLOC

Mean Re-
test 

Impact
Before 2466 1782
After 2392 1678
% Change -3.0% -5.8%  

Table 26 – NLIS Mean Re-test Impact Summary 

 

When comparing the results in Figure 25 with the equivalent results from the trial case 
study, we see a less pronounced difference between the Before and After impact 
probability distributions.  For example, the peak probability in Figure 25 is the same for 
both distributions.  However, the After distribution is clearly shifted to the left with 
respect to the Before distribution – this shift is especially apparent on either side of the 
80% impact threshold.   

4.5 Cost-Benefit Effort Calculations 

4.5.1 COCOMO Model Assumptions 
 
The tables below show the assumed parameters for the NLIS project used as input to the 
COCOMOII.2000 model.  
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Param. Very Low Low Nominal High Very High
Extra 
High SCORE

RELY 0.82 0.92 1.00 1.10 1.26 N/A 1.10
DATA N/A 0.90 1.00 1.14 1.28 N/A 1.00
CPLX 0.73 0.87 1.00 1.17 1.34 1.74 0.87
RUSE N/A 0.95 1.00 1.07 1.15 1.24 1.00
DOCU 0.81 0.91 1.00 1.11 1.23 N/A 1.00
TIME N/A N/A 1.00 1.11 1.29 1.63 1.00
STOR N/A N/A 1.00 1.05 1.17 1.46 1.00
PVOL N/A 0.87 1.00 1.15 1.30 N/A 1.00
ACAP 1.42 1.19 1.00 0.85 0.71 N/A 0.85
PCAP 1.34 1.15 1.00 0.88 0.76 N/A 1.00
PCON 1.29 1.12 1.00 0.90 0.81 N/A 1.00
APEX 1.22 1.10 1.00 0.88 0.81 N/A 1.00
PLEX 1.19 1.09 1.00 0.91 0.85 N/A 1.00
LTEX 1.20 1.09 1.00 0.91 0.84 N/A 1.00
TOOL 1.17 1.09 1.00 0.90 0.78 N/A 1.00
SITE 1.22 1.09 1.00 0.93 0.86 0.80 1.22
SCED 1.43 1.14 1.00 1.00 1.00 N/A 1.00

Product: 0.99  
Table 27 – NLIS Assumed COCOMOII.2000 Effort Adjustment Factors 

 

Param. Very Low Low Nominal High Very High
Extra 
High SCORE

PREC 6.20 4.96 3.72 2.48 1.24 0.00 3.72
FLEX 5.07 4.05 3.04 2.03 1.01 0.00 2.03
RESL 7.07 5.65 4.24 2.83 1.41 0.00 4.24
TEAM 5.48 4.38 3.29 2.19 1.10 0.00 3.29
EPML 7.80 6.24 4.68 3.12 1.56 0.00 4.68

Sum: 17.96
Exponent 1.09  

Table 28 – NLIS Assumed COCOMOII.2000 Model Scale Factors  

 
Note that the Re-use Model parameters for NLIS are assumed to be the same as for the 
trial case study presented earlier. We have assigned the Effort Adjustment Factors and 
Model Scale Factors in Table 27 and Table 28 based on a review of the NLIS project 
documentation – these assumptions are slightly different than for the trial case study 
(which was an academic system). We felt that since NLIS is a commercial system we 
should attempt to pass meaningful numbers to the model rather than assuming the default 
values. 
 

4.5.2 Effort Prediction Model Results 
 
The results of the COCOMOII.2000 analysis, using the same technique as for the trial 
case study, are summarized in Table 29.  The analysis predicts that the refactoring will 
result in a benefit of 0.14 person-months per maintenance event, meaning that the 
refactoring becomes cost effective after 28 maintenance activities. 
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Cost Benefit Calc.
Model Parameters Calc. (Before) (After)

Code Size (KSLOC) 2.466 2.466 2.392
DM (0-100) 11.9 5.0 5.0
CM (0-100) 14.4 5.0 5.0
IM (0-100+) 100.0 72.3 70.2
Equivalent KSLOC 1.294 0.869 0.824
Effort (Person-months) 3.86 2.50 2.36
Net Benefit/Maint. Activity 0.14
Break-Even Point (# Activities) 27.50  

Table 29 – Effort Prediction Model Calculation Results 

 

4.6 Case Study Conclusions 
 
The proposed refactoring is predicted to decrease the overall code size (by 3%) and 
increase the number of procedures in the system (by 2.6%).  In addition, the density of 
the overall dependency path graph for the system is predicted to decrease by 0.4%. 
 
The refactoring appears to slightly reduce the peak code re-test impact in the impact 
probability distribution.  Compared with the original distribution, the refactored 
distribution appears shifted to the left. 
 
Procedure-level dependency analysis predicts that the mean regression testing impact (in 
terms of affected SLOC) of a random maintenance activity will decrease by 5.8% as a 
result of the proposed design restructuring. 
 
Cost estimation modeling using COCOMOII.2000 suggests that the restructuring will be 
cost effective if 28 or more maintenance events occur after the refactoring investment. 
 
The NLIS case study results are less pronounced than the results of the trial case study, 
although the two studies show very similar trends  in terms of the parameters listed above.  
One possible explanation is that the effect of source-code level refactoring is less 
influential as system size increases.  This hypothesis should be tested in future work. It is 
possible that the results are less pronounced simply because there were relatively fewer 
refactoring opportunities identified for NLIS than for the Traffic Light Simulation code. 
An experiment to test the effect of system size on refactoring benefits should take this 
factor into account. 
 
Based on the case study results, we conclude that this sort of analysis is practical for 
commercial-grade systems and yields insight into the impact of source code refactoring. 
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5 Project Conclusions and Future Work 

5.1 Achievements 
 
In this project we have defined a new way to attack the problem of predicting the 
downstream maintenance benefits of software design changes.  In addition, we 
established through a literature survey that existing knowledge is not sufficient to 
construct a general purpose predictive model of maintenance effort based solely on 
software design metrics. Instead of a design metrics approach, we have proposed a 
methodology that uses dependency analysis to evaluate competing designs  and perform a 
cost-benefit analysis of legacy system refactoring. 
 
The proposed methodology makes predictions of system regression testing impact 
quantified through code dependency analysis, followed by maintenance effort predictions 
using the COCOMOII.2000 model. A major assumption of this methodology is that 
maintenance activities are random with respect to the design location, thereby de -
coupling the maintenance effort prediction problem from design metrics. In other words, 
we assume that maintenance will happen and we focus on the cost of this maintenance 
rather than the originating cause of the maintenance. 
 
In order to demonstrate the methodology we performed two case studies: one trial study 
of a small Java system (740 SLOC) built in an academic environment, and a second study 
of a larger industrial Java application (2466 SLOC). These case studies generated 
concrete results regarding the effect of source code refactoring on system data and 
control dependencies, as well as the effect on code size and number of procedures. 
Specifically, the case study results provide support to the following conclusions about 
refactoring: 
 

• Refactoring tends to reduce the average re -test impact associated with a random 
maintenance activity within the design. 

• Refactoring tends to reduce the amount of code in the system.  
• Refactoring tends to increase the number of procedures in the system. 
• Refactoring tends to reduce the density of dependency paths within the overall 

system dependency graph.  
• Refactoring tends to reduce the peak re-test impact within the impact probability 

distribution. 
• The regression testing benefits associated with refactoring may decrease as 

system size increases (this is a hypothesis only). 
• Class-level dependency analysis appears to be more conservative than procedure-

level dependency analysis regarding the benefits of refactoring. 
 
In addition, the methodology generated quantitative predictions of Return on Investment 
(ROI) for the proposed design restructuring, providing some basis for project teams to 
assess whether proposed restructuring activities are worth the up-front effort. 
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At the very least, this project has contributed some data to the software engineering 
literature on the measurement of low-level design transformations. 
 

5.2 Future Work 
 
In order to make stronger claims about this proposed methodology and the maintenance 
impact of refactoring, we feel the following work should be undertaken: 
 

• Further validation of ROI calculations performed using this methodology using 
maintenance data from industry. Such a project might involve measuring 
maintenance activities on parallel streams of a system (one stream using a 
refactored design and another using the original design, with both streams 
undergoing the same maintenance regime). 

• Further investigation and validation of the approach regarding the use of the 
COCOMOII.2000 re-use model for maintenance effort prediction.   

• The identification or development of automated tool support for this 
methodology.  The manual analysis performed in the case studies becomes very 
difficult and labour-intensive for large systems. 

• The application of this methodology to multiple larger systems in order to 
evaluate the relationship between the predicted benefits of refactoring and system 
code size.  
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7 Appendix – Case Study Data 

7.1 Before Refactoring 

7.1.1 Procedure Characteristics 
Proc. 
No. 

Class Method Size (SLOC) 

1 STL_Agent STL_Agent 55 
2 STL_Agent run 97 
3 STL_Agent main 7 
4 STL_Agent setupProperties  18 
5 STL_Agent startLogger 5 
6 STL_Agent getRuntimeDir 1 
7 STL_Agent getConfigFileFullPath 1 
8 STL_Agent renameFile 5 
9 STL_Agent mergeVectors 6 
10 STL_Agent setupScafFiles  7 
11 STL_Agent initialize  8 
12 STL_Database STL_Database 26 
13 STL_Database create 3 
14 STL_Database getEndUser 3 
15 STL_Database getPartyList 8 
16 STL_Database getPreviousDays 22 
17 STL_Database getRetroactiveBusinessDaysForDate 25 
18 STL_Database getTransactionsForParty 15 
19 STL_Database isBusinessDay 9 
20 STL_Database updateSettlementStatus 43 
21 STL_Database getSageMapSupplierCode 8 
22 STL_Database getSageSrSupplierCode 8 
23 STL_Database close 1 
24 STL_Database updateEnduserEFT 16 
25 STL_Database isPartyInSync 16 
26 STL_Database synchronizeEndUser 42 
27 STL_Database assignRankingToEftStatus 11 
28 STL_Database getSystemTableParameter 11 
29 STL_BusinessManager STL_BusinessManager 6 
30 STL_BusinessManager buildPartySettlementList 3 
31 STL_BusinessManager buildTransactionSettlementList 25 
32 STL_BusinessManager buildPartyList 17 
33 STL_BusinessManager synchronizeAllEndusers 10 
34 STL_BusinessManager buildAUDDISPartyList 24 
35 STL_BusinessManager firstTransactionDelay 30 
36 STL_BusinessManager mergePartiesByEFTSTATUS 16 
37 REP_ManagerTransactions REP_ManagerTransactions 70 
38 REP_ManagerTransactions setupProperties  27 
39 REP_ManagerTransactions getManagerDetails  17 
40 REP_ManagerTransactions getMapVatRate 13 
41 REP_ManagerTransactions getAdministratorEmail 10 
42 REP_ManagerTransactions generateCSVReport 41 
43 REP_ManagerTransactions getResults  21 
44 REP_ManagerTransactions createLine 2 
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45 REP_ManagerTransactions displayNegative 3 
46 REP_ManagerTransactions getTransactionType 15 
47 REP_ManagerTransactions getServiceType 106 
48 REP_ManagerTransactions dump  6 
49 REP_ManagerTransactions getNonVatableAmount 8 
50 REP_ManagerTransactions getVatableAmount 8 
51 REP_ManagerTransactions getVAT 3 
52 REP_ManagerTransactions getVATRate 34 
53 REP_ManagerTransactions isMapTransaction 3 
54 REP_ManagerTransactions getAmount 1 
55 REP_ManagerTransactions sendMailMessage 22 
56 REP_ManagerTransactions startLogger 4 
57 REP_ManagerTransactions setupScafFiles  7 
58 REP_ManagerTransactions main 9 
59 STL_DatabaseInterface STL_DatabaseInterface 4 
60 STL_DatabaseInterface close 0 
61 STL_DatabaseInterface getEndUser 0 
62 STL_DatabaseInterface getPartyList 0 
63 STL_DatabaseInterface getRetroactiveBusinessDaysForDate 0 
64 STL_DatabaseInterface getTransactionsForParty 0 
65 STL_DatabaseInterface isBusinessDay 0 
66 STL_DatabaseInterface getPreviousDays 0 
67 STL_DatabaseInterface updateSettlementStatus 0 
68 STL_DatabaseInterface getSageMapSupplierCode 0 
69 STL_DatabaseInterface getSageSrSupplierCode 0 
70 STL_DatabaseInterface updateEnduserEFT 0 
71 STL_DatabaseInterface isPartyInSync 0 
72 STL_DatabaseInterface synchronizeEndUser 0 
73 STL_DatabaseInterface assignRankingToEftStatus 0 
74 STL_DatabaseInterface getSystemTableParameter 0 
75 STL_EndUser STL_EndUser 23 
76 STL_EndUser settlementAmount 1 
77 STL_EndUser totalFees  1 
78 STL_EndUser totalVat 1 
79 STL_EndUser creditCode 1 
80 STL_EndUser debitCode 1 
81 STL_EndUser eftStatus 1 
82 STL_EndUser eftStatusDate 1 
83 STL_EndUser testMode 3 
84 STL_EndUser invoiceEmail 1 
85 STL_EndUser invoicedByEmail 3 
86 STL_EndUser setEFTSTATUS 2 
87 STL_EndUser postCredit 6 
88 STL_EndUser postDebit 6 
89 STL_EndUserFactory STL_EndUserFactory 0 
90 STL_EndUserFactory create 19 
91 STL_Party STL_Party 33 
92 STL_Party creditCode 0 
93 STL_Party debitCode 0 
94 STL_Party settlementAmount 0 
95 STL_Party totalFees  0 
96 STL_Party totalVat 0 
97 STL_Party addTransaction 4 
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98 STL_Party removeTransaction 5 
99 STL_Party addTransactionToList 1 
100 STL_Party removeTransactionFromList 1 
101 STL_Party getTransaction 6 
102 STL_Party getTransactions 1 
103 STL_Party getNumberOfTransactions  1 
104 STL_Party electronicSettlementFrequency 1 
105 STL_Party getSettlementGracePeriod 1 
106 STL_Party getBacsPayeeName 1 
107 STL_Party getPartyName 1 
108 STL_Party sortCode 1 
109 STL_Party accountNumber 1 
110 STL_Party referenceNumber 1 
111 STL_Party weeklySettlementDay 1 
112 STL_Party paymentMethod 1 
113 STL_Party getPartyId 1 
114 STL_Party toString 5 
115 STL_Party getPartyType 1 
116 STL_Party setPartyType 1 
117 STL_Transaction STL_Transaction 48 
118 STL_Transaction toString 12 
119 STL_Transaction domainTransactionId 1 
120 STL_Transaction transactionType 1 
121 STL_Transaction action 1 
122 STL_Transaction customerId 1 
123 STL_Transaction acctSysCustId 1 
124 STL_Transaction serviceRequestId 1 
125 STL_Transaction serviceRequestType 1 
126 STL_Transaction transactionDate 1 
127 STL_Transaction paymentMethod 1 
128 STL_Transaction currency 1 
129 STL_Transaction dataProviderFee 1 
130 STL_Transaction dataProviderVat 1 
131 STL_Transaction channelCharge 1 
132 STL_Transaction channelVat 1 
133 STL_Transaction hubCharge 1 
134 STL_Transaction hubVat 1 
135 STL_Transaction total 1 
136 STL_Transaction settlementDate 1 
137 STL_Transaction transactionMode 1 
138 STL_Transaction llc1 1 
139 STL_Transaction con29 1 
140 STL_Transaction cr21 1 
141 STL_Transaction setSettlementDate 1 
142 STL_Transaction sageSRSupplierCode 1 
143 STL_Transaction managerId 1 
144 UTL_Mail UTL_Mail 15 
145 UTL_Mail setFrom 1 
146 UTL_Mail setSubject 1 
147 UTL_Mail setMessageBody 1 
148 UTL_Mail setRecipients 1 
149 UTL_Mail addAttachment 2 
150 UTL_Mail reset 6 
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151 UTL_Mail send 25 
152 STL_TransactionFactory STL_TransactionFactory 1 
153 STL_TransactionFactory create 37 
154 STL_TransactionException STL_TransactionException 1 
155 UTL_DBConnection UTL_DBConnection 15 
156 UTL_DBConnection getConnection 1 
157 UTL_DBConnection rollback 2 
158 UTL_DBConnection commit 2 
159 UTL_DBConnection close 2 
160 UTL_DBConnection exe cuteQuery 9 
161 UTL_DBConnection setValues 25 
162 UTL_DBConnection executeUpdate 8 
163 UTL_DBConnection executeIdQuery 8 
164 UTL_DBConnection getLatestSequenceValue 9 
165 UTL_DBConnection zValue 4 
166 STL_Reports STL_Reports 4 
167 STL_Reports generateBacsTransactionFile 60 
168 STL_Reports generateSageTransactionFile 38 
169 STL_Reports createBacsSummary 31 
170 STL_Reports userHasNonManagedTransactions 9 
171 STL_Reports getUsersManagers  11 
172 STL_Reports createInvoices  21 
173 STL_Reports createInvoiceStatements 22 
174 STL_Reports generateReport 58 
175 STL_Reports mailReport 16 
176 STL_Reports statementTransactionType  16 
177 STL_Reports statementParty 8 
178 STL_Reports statementAction 6 
179 STL_Reports statementServiceRequestType 91 
180 STL_Reports  statementDate 2 
181 STL_Reports statementPaymentMethod 8 
182 STL_Reports statementCurrency 6 
183 STL_Reports statementTransactionMode 6 
184 STL_Reports statementServiceDeliveryMechanism 10 
185 STL_Reports getSupplierCode 6 
186 STL_Reports transactionAlreadyCreated 12 
187 RPT_PrintDate RPT_PrintDate 2 
188 RPT_PrintDate main 21 
189 STL_Day STL_Day 11 
190 STL_Day getDay 1 
191 STL_Day getDayOfWeek 1 
192 STL_Day isBusinessDay 1 
193 STL_PartyException STL_PartyException 1 
194 STL_Util STL_Util 5 
195 STL_Util doubleToString 6 
196 STL_Util justifyString 12 
197 STL_Util dateToString 3 
198 STL_Util stringToDate 5 
199 STL_Util buildFilenameString 2 
200 STL_Util prepJob 3 
201 STL_Util prepAttachment 3 
202 STL_Util ftpFile 9 
203 UTL_CSVFormattedFile UTL_CSVFormattedFile 3 
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204 UTL_CSVFormattedFile addLine 6 
205 UTL_FCFFormattedFile UTL_FCFFormattedFile 7 
206 UTL_FCFFormattedFile addLine 10 
207 UTL_Property UTL_Property 17 
208 UTL_Property getPropertyValue 2 
209 UTL_Property setPropertyValue 5 
210 UTL_Property writeToDisk 13 
211 UTL_Property tokenize 6 
212 UTL_Property main 15 
213 UTL_FormattedFile UTL_FormattedFile 2 
214 UTL_FormattedFile addLine 0 
215 UTL_FormattedFile generateFile 9 
216 UTL_Logger UTL_Logger 18 
217 UTL_Logger setLogFile 1 
218 UTL_Logger setOutput 1 
219 UTL_Logger label 2 
220 UTL_Logger severityToInt 4 
221 UTL_Logger log 11 
222 UTL_Logger output 3 
223 UTL_Logger main 5 
224 UTL_DBConstant UTL_DBConstant 53 
225 STL_Constants STL_Constants  123 
226 UTL_Constant UTL_Constant 38 
227 REP_Constants REP_Constants  143 
  TOTAL: 2466 

7.1.2 Re-test Impact Calculation 
Proc. 
No. 

Size (SLOC) % of Total Re-test 
Impact 
(SLOC) 

% of Total Contrib. to 
Mean 

1 55 2.2% 1985 80.5% 44.3 
2 97 3.9% 1985 80.5% 78.1 
3 7 0.3% 25 1.0% 0.1 
4 18 0.7% 1985 80.5% 14.5 
5 5 0.2% 31 1.3% 0.1 
6 1 0.0% 1 0.0% 0.0 
7 1 0.0% 1985 80.5% 0.8 
8 5 0.2% 5 0.2% 0.0 
9 6 0.2% 6 0.2% 0.0 
10 7 0.3% 77 3.1% 0.2 
11 8 0.3% 1985 80.5% 6.4 
12 26 1.1% 1985 80.5% 20.9 
13 3 0.1% 1985 80.5% 2.4 
14 3 0.1% 1985 80.5% 2.4 
15 8 0.3% 1985 80.5% 6.4 
16 22 0.9% 1978 80.2% 17.6 
17 25 1.0% 1985 80.5% 20.1 
18 15 0.6% 1978 80.2% 12.0 
19 9 0.4% 1985 80.5% 7.2 
20 43 1.7% 1985 80.5% 34.6 
21 8 0.3% 1985 80.5% 6.4 
22 8 0.3% 1985 80.5% 6.4 
23 1 0.0% 105 4.3% 0.0 
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Proc. 
No. 

Size (SLOC) % of Total Re-test 
Impact 
(SLOC) 

% of Total Contrib. to 
Mean 

24 16 0.6% 381 15.5% 2.5 
25 16 0.6% 16 0.6% 0.1 
26 42 1.7% 1985 80.5% 33.8 
27 11 0.4% 1985 80.5% 8.9 
28 11 0.4% 1985 80.5% 8.9 
29 6 0.2% 1985 80.5% 4.8 
30 3 0.1% 1985 80.5% 2.4 
31 25 1.0% 1985 80.5% 20.1 
32 17 0.7% 1985 80.5% 13.7 
33 10 0.4% 1985 80.5% 8.0 
34 24 1.0% 1978 80.2% 19.3 
35 30 1.2% 1978 80.2% 24.1 
36 16 0.6% 1985 80.5% 12.9 
37 70 2.8% 1978 80.2% 56.1 
38 27 1.1% 1978 80.2% 21.7 
39 17 0.7% 1978 80.2% 13.6 
40 13 0.5% 1978 80.2% 10.4 
41 10 0.4% 1978 80.2% 8.0 
42 41 1.7% 1978 80.2% 32.9 
43 21 0.9% 1978 80.2% 16.8 
44 2 0.1% 1978 80.2% 1.6 
45 3 0.1% 55 2.2% 0.1 
46 15 0.6% 1978 80.2% 12.0 
47 106 4.3% 1978 80.2% 85.0 
48 6 0.2% 85 3.4% 0.2 
49 8 0.3% 9 0.4% 0.0 
50 8 0.3% 1978 80.2% 6.4 
51 3 0.1% 4 0.2% 0.0 
52 34 1.4% 1978 80.2% 27.3 
53 3 0.1% 1978 80.2% 2.4 
54 1 0.0% 1 0.0% 0.0 
55 22 0.9% 1978 80.2% 17.6 
56 4 0.2% 102 4.1% 0.2 
57 7 0.3% 86 3.5% 0.2 
58 9 0.4% 1978 80.2% 7.2 
59 4 0.2% 1982 80.4% 3.2 
60 0 0.0% 0 0.0% 0.0 
61 0 0.0% 0 0.0% 0.0 
62 0 0.0% 0 0.0% 0.0 
63 0 0.0% 0 0.0% 0.0 
64 0 0.0% 0 0.0% 0.0 
65 0 0.0% 0 0.0% 0.0 
66 0 0.0% 0 0.0% 0.0 
67 0 0.0% 0 0.0% 0.0 
68 0 0.0% 0 0.0% 0.0 
69 0 0.0% 0 0.0% 0.0 
70 0 0.0% 0 0.0% 0.0 
71 0 0.0% 0 0.0% 0.0 
72 0 0.0% 0 0.0% 0.0 
73 0 0.0% 0 0.0% 0.0 
74 0 0.0% 0 0.0% 0.0 
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Proc. 
No. 

Size (SLOC) % of Total Re-test 
Impact 
(SLOC) 

% of Total Contrib. to 
Mean 

75 23 0.9% 1985 80.5% 18.5 
76 1 0.0% 1985 80.5% 0.8 
77 1 0.0% 1985 80.5% 0.8 
78 1 0.0% 1985 80.5% 0.8 
79 1 0.0% 1 0.0% 0.0 
80 1 0.0% 1 0.0% 0.0 
81 1 0.0% 1985 80.5% 0.8 
82 1 0.0% 1985 80.5% 0.8 
83 3 0.1% 1978 80.2% 2.4 
84 1 0.0% 1985 80.5% 0.8 
85 3 0.1% 1985 80.5% 2.4 
86 2 0.1% 264 10.7% 0.2 
87 6 0.2% 1985 80.5% 4.8 
88 6 0.2% 1985 80.5% 4.8 
89 0 0.0% 1985 80.5% 0.0 
90 19 0.8% 1985 80.5% 15.3 
91 33 1.3% 1978 80.2% 26.5 
92 0 0.0% 1985 80.5% 0.0 
93 0 0.0% 1985 80.5% 0.0 
94 0 0.0% 1985 80.5% 0.0 
95 0 0.0% 1985 80.5% 0.0 
96 0 0.0% 1985 80.5% 0.0 
97 4 0.2% 1985 80.5% 3.2 
98 5 0.2% 1978 80.2% 4.0 
99 1 0.0% 1985 80.5% 0.8 
100 1 0.0% 1978 80.2% 0.8 
101 6 0.2% 1985 80.5% 4.8 
102 1 0.0% 1985 80.5% 0.8 
103 1 0.0% 1985 80.5% 0.8 
104 1 0.0% 1985 80.5% 0.8 
105 1 0.0% 1985 80.5% 0.8 
106 1 0.0% 1985 80.5% 0.8 
107 1 0.0% 1985 80.5% 0.8 
108 1 0.0% 1985 80.5% 0.8 
109 1 0.0% 1985 80.5% 0.8 
110 1 0.0% 1985 80.5% 0.8 
111 1 0.0% 1 0.0% 0.0 
112 1 0.0% 1985 80.5% 0.8 
113 1 0.0% 1985 80.5% 0.8 
114 5 0.2% 5 0.2% 0.0 
115 1 0.0% 1985 80.5% 0.8 
116 1 0.0% 1979 80.3% 0.8 
117 48 1.9% 1978 80.2% 38.5 
118 12 0.5% 12 0.5% 0.1 
119 1 0.0% 1985 80.5% 0.8 
120 1 0.0% 1985 80.5% 0.8 
121 1 0.0% 1985 80.5% 0.8 
122 1 0.0% 1 0.0% 0.0 
123 1 0.0% 1985 80.5% 0.8 
124 1 0.0% 1985 80.5% 0.8 
125 1 0.0% 1985 80.5% 0.8 
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Proc. 
No. 

Size (SLOC) % of Total Re-test 
Impact 
(SLOC) 

% of Total Contrib. to 
Mean 

126 1 0.0% 1985 80.5% 0.8 
127 1 0.0% 1985 80.5% 0.8 
128 1 0.0% 13 0.5% 0.0 
129 1 0.0% 1985 80.5% 0.8 
130 1 0.0% 1985 80.5% 0.8 
131 1 0.0% 1985 80.5% 0.8 
132 1 0.0% 1985 80.5% 0.8 
133 1 0.0% 1985 80.5% 0.8 
134 1 0.0% 1985 80.5% 0.8 
135 1 0.0% 1 0.0% 0.0 
136 1 0.0% 1 0.0% 0.0 
137 1 0.0% 1985 80.5% 0.8 
138 1 0.0% 1985 80.5% 0.8 
139 1 0.0% 1985 80.5% 0.8 
140 1 0.0% 1985 80.5% 0.8 
141 1 0.0% 1985 80.5% 0.8 
142 1 0.0% 1985 80.5% 0.8 
143 1 0.0% 1985 80.5% 0.8 
144 15 0.6% 1985 80.5% 12.1 
145 1 0.0% 1985 80.5% 0.8 
146 1 0.0% 1985 80.5% 0.8 
147 1 0.0% 1985 80.5% 0.8 
148 1 0.0% 1985 80.5% 0.8 
149 2 0.1% 1985 80.5% 1.6 
150 6 0.2% 1985 80.5% 4.8 
151 25 1.0% 318 12.9% 3.2 
152 1 0.0% 1979 80.3% 0.8 
153 37 1.5% 1978 80.2% 29.7 
154 1 0.0% 1 0.0% 0.0 
155 15 0.6% 1985 80.5% 12.1 
156 1 0.0% 1985 80.5% 0.8 
157 2 0.1% 2 0.1% 0.0 
158 2 0.1% 383 15.5% 0.3 
159 2 0.1% 157 6.4% 0.1 
160 9 0.4% 1985 80.5% 7.2 
161 25 1.0% 813 33.0% 8.2 
162 8 0.3% 414 16.8% 1.3 
163 8 0.3% 1978 80.2% 6.4 
164 9 0.4% 1978 80.2% 7.2 
165 4 0.2% 4 0.2% 0.0 
166 4 0.2% 1989 80.7% 3.2 
167 60 2.4% 1985 80.5% 48.3 
168 38 1.5% 1985 80.5% 30.6 
169 31 1.3% 1985 80.5% 25.0 
170 9 0.4% 1985 80.5% 7.2 
171 11 0.4% 1985 80.5% 8.9 
172 21 0.9% 1985 80.5% 16.9 
173 22 0.9% 1985 80.5% 17.7 
174 58 2.4% 1985 80.5% 46.7 
175 16 0.6% 1985 80.5% 12.9 
176 16 0.6% 1985 80.5% 12.9 
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Proc. 
No. 

Size (SLOC) % of Total Re-test 
Impact 
(SLOC) 

% of Total Contrib. to 
Mean 

177 8 0.3% 1985 80.5% 6.4 
178 6 0.2% 1985 80.5% 4.8 
179 91 3.7% 1985 80.5% 73.3 
180 2 0.1% 1985 80.5% 1.6 
181 8 0.3% 1985 80.5% 6.4 
182 6 0.2% 6 0.2% 0.0 
183 6 0.2% 1985 80.5% 4.8 
184 10 0.4% 1985 80.5% 8.0 
185 6 0.2% 1985 80.5% 4.8 
186 12 0.5% 1985 80.5% 9.7 
187 2 0.1% 23 0.9% 0.0 
188 21 0.9% 21 0.9% 0.2 
189 11 0.4% 1992 80.8% 8.9 
190 1 0.0% 1979 80.3% 0.8 
191 1 0.0% 1 0.0% 0.0 
192 1 0.0% 1979 80.3% 0.8 
193 1 0.0% 1 0.0% 0.0 
194 5 0.2% 1983 80.4% 4.0 
195 6 0.2% 1985 80.5% 4.8 
196 12 0.5% 1985 80.5% 9.7 
197 3 0.1% 1985 80.5% 2.4 
198 5 0.2% 1990 80.7% 4.0 
199 2 0.1% 1985 80.5% 1.6 
200 3 0.1% 1978 80.2% 2.4 
201 3 0.1% 3 0.1% 0.0 
202 9 0.4% 27 1.1% 0.1 
203 3 0.1% 1985 80.5% 2.4 
204 6 0.2% 202 8.2% 0.5 
205 7 0.3% 1985 80.5% 5.6 
206 10 0.4% 21 0.9% 0.1 
207 17 0.7% 1985 80.5% 13.7 
208 2 0.1% 1985 80.5% 1.6 
209 5 0.2% 1983 80.4% 4.0 
210 13 0.5% 13 0.5% 0.1 
211 6 0.2% 1978 80.2% 4.8 
212 15 0.6% 1978 80.2% 12.0 
213 2 0.1% 11 0.4% 0.0 
214 0 0.0% 0 0.0% 0.0 
215 9 0.4% 292 11.8% 1.1 
216 18 0.7% 2012 81.6% 14.7 
217 1 0.0% 101 4.1% 0.0 
218 1 0.0% 2013 81.6% 0.8 
219 2 0.1% 616 25.0% 0.5 
220 4 0.2% 618 25.1% 1.0 
221 11 0.4% 618 25.1% 2.8 
222 3 0.1% 614 24.9% 0.7 
223 5 0.2% 24 1.0% 0.0 
224 53 2.1% 2031 82.4% 43.7 
225 123 5.0% 2104 85.3% 104.9 
226 38 1.5% 2016 81.8% 31.1 
227 143 5.8% 2121 86.0% 123.0 
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No. 

Size (SLOC) % of Total Re-test 
Impact 
(SLOC) 

% of Total Contrib. to 
Mean 

    TOTAL: 1782 
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7.2 After Refactoring 

7.2.1 Procedure Characteristics 
Proc. 
No. 

Class Method Size (SLOC) 

1 STL_Agent STL_Agent 55 
2 STL_Agent run 68 
3 STL_Agent main 7 
4 STL_Agent setupProperties  18 
5 STL_Agent startLogger 5 
6 STL_Agent getRuntimeDir 1 
7 STL_Agent getConfigFileFullPath 1 
8 STL_Agent renameFile 5 
9 STL_Agent mergeVectors 6 
10 STL_Agent setupScafFiles  7 
11 STL_Agent initialize  8 
12 STL_Database STL_Database 26 
13 STL_Database create 3 
14 STL_Database getEndUser 3 
15 STL_Database getPartyList 8 
16 STL_Database getPreviousDays 22 
17 STL_Database getRetroactiveBusinessDaysForDate 25 
18 STL_Database getTransactionsForParty 15 
19 STL_Database isBusinessDay 9 
20 STL_Database updateSettlementStatus 29 
21 STL_Database getSageMapSupplierCode 8 
22 STL_Database getSageSrSupplierCode 0 
23 STL_Database close 1 
24 STL_Database updateEnduserEFT 11 
25 STL_Database isPartyInSync 13 
26 STL_Database synchronizeEndUser 39 
27 STL_Database assignRankingToEftStatus 11 
28 STL_Database getSystemTableParameter 9 
29 STL_BusinessManager STL_BusinessManager 6 
30 STL_BusinessManager buildPartySettlementList 3 
31 STL_BusinessManager buildTransactionSettlementList 25 
32 STL_BusinessManager buildPartyList 17 
33 STL_BusinessManager synchronizeAllEndusers 10 
34 STL_BusinessManager buildAUDDISPartyList 24 
35 STL_BusinessManager firstTransactionDelay 30 
36 STL_BusinessManager mergePartiesByEFTSTATUS 16 
37 REP_ManagerTransactions REP_ManagerTransactions 70 
38 REP_ManagerTransactions setupProperties  27 
39 REP_ManagerTransactions getManagerDetails  17 
40 REP_ManagerTransactions getMapVatRate 13 
41 REP_ManagerTransactions Deleted 0 
42 REP_ManagerTransactions generateCSVReport 41 
43 REP_ManagerTransactions getResults  21 
44 REP_ManagerTransactions createLine 2 
45 REP_ManagerTransactions displayNegative 3 
46 REP_ManagerTransactions getTransactionType 15 
47 REP_ManagerTransactions getServiceType 106 
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Proc. 
No. 

Class Method Size (SLOC) 

48 REP_ManagerTransactions dump  6 
49 REP_ManagerTransactions getNonVatableAmount 8 
50 REP_ManagerTransactions getVatableAmount 8 
51 REP_ManagerTransactions getVAT 3 
52 REP_ManagerTransactions getVATRate 34 
53 REP_ManagerTransactions isMapTransaction 3 
54 REP_ManagerTransactions getAmount 1 
55 REP_ManagerTransactions sendMailMessage 22 
56 REP_ManagerTransactions startLogger 4 
57 REP_ManagerTransactions setupScafFiles  7 
58 REP_ManagerTransactions main 9 
59 STL_DatabaseInterface STL_DatabaseInterface 4 
60 STL_DatabaseInterface close 0 
61 STL_DatabaseInterface getEndUser 0 
62 STL_DatabaseInterface getPartyList 0 
63 STL_DatabaseInterface getRetroactiveBusinessDaysForDate 0 
64 STL_DatabaseInterface getTransactionsForParty 0 
65 STL_DatabaseInterface isBusinessDay 0 
66 STL_DatabaseInterface getPreviousDays 0 
67 STL_DatabaseInterface updateSettlementStatus 0 
68 STL_DatabaseInterface getSageMapSupplierCode 0 
69 STL_DatabaseInterface getSageSrSupplierCode 0 
70 STL_DatabaseInterface updateEnduserEFT 0 
71 STL_DatabaseInterface isPartyInSync 0 
72 STL_DatabaseInterface synchronizeEndUser 0 
73 STL_DatabaseInterface assignRankingToEftStatus 0 
74 STL_DatabaseInterface getSystemTableParameter 0 
75 STL_EndUser STL_EndUser 23 
76 STL_EndUser settlementAmount 1 
77 STL_EndUser totalFees  1 
78 STL_EndUser totalVat 1 
79 STL_EndUser creditCode 1 
80 STL_EndUser debitCode 1 
81 STL_EndUser eftStatus 1 
82 STL_EndUser eftStatusDate 1 
83 STL_EndUser testMode 3 
84 STL_EndUser invoiceEmail 1 
85 STL_EndUser Deleted 0 
86 STL_EndUser setEFTSTATUS 2 
87 STL_EndUser postCredit 6 
88 STL_EndUser Deleted 0 
89 STL_EndUserFactory STL_EndUserFactory 0 
90 STL_EndUserFactory create 19 
91 STL_Party STL_Party 33 
92 STL_Party creditCode 0 
93 STL_Party debitCode 0 
94 STL_Party settlementAmount 0 
95 STL_Party totalFees  0 
96 STL_Party totalVat 0 
97 STL_Party addTransaction 4 
98 STL_Party removeTransaction 5 
99 STL_Party addTransactionToList 1 
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Proc. 
No. 

Class Method Size (SLOC) 

100 STL_Party removeTransactionFromList 1 
101 STL_Party getTransaction 6 
102 STL_Party getTransactions 1 
103 STL_Party getNumberOfTransactions  1 
104 STL_Party electronicSettlementFrequency 1 
105 STL_Party getSettlementGracePeriod 1 
106 STL_Party getBacsPayeeName 1 
107 STL_Party getPartyName 1 
108 STL_Party sortCode 1 
109 STL_Party accountNumber 1 
110 STL_Party referenceNumber 1 
111 STL_Party weeklySettlementDay 1 
112 STL_Party paymentMethod 1 
113 STL_Party getPartyId 1 
114 STL_Party toString 5 
115 STL_Party getPartyType 1 
116 STL_Party setPartyType 1 
117 STL_Transaction STL_Transaction 48 
118 STL_Transaction toString 12 
119 STL_Transaction domainTransactionId 1 
120 STL_Transaction transactionType 1 
121 STL_Transaction action 1 
122 STL_Transaction customerId 1 
123 STL_Transaction acctSysCustId 1 
124 STL_Transaction serviceRequestId 1 
125 STL_Transaction serviceRequestType 1 
126 STL_Transaction transactionDate 1 
127 STL_Transaction paymentMethod 1 
128 STL_Transaction currency 1 
129 STL_Transaction dataProviderFee 1 
130 STL_Transaction dataProviderVat 1 
131 STL_Transaction channelCharge 1 
132 STL_Transaction channelVat 1 
133 STL_Transaction hubCharge 1 
134 STL_Transaction hubVat 1 
135 STL_Transaction total 1 
136 STL_Transaction settlementDate 1 
137 STL_Transaction transactionMode 1 
138 STL_Transaction llc1 1 
139 STL_Transaction con29 1 
140 STL_Transaction cr21 1 
141 STL_Transaction setSettlementDate 1 
142 STL_Transaction sageSRSupplierCode 1 
143 STL_Transaction managerId 1 
144 UTL_Mail UTL_Mail 15 
145 UTL_Mail setFrom 1 
146 UTL_Mail setSubject 1 
147 UTL_Mail setMessageBody 1 
148 UTL_Mail setRecipients 1 
149 UTL_Mail addAttachment 2 
150 UTL_Mail reset 6 
151 UTL_Mail send 25 
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Proc. 
No. 

Class Method Size (SLOC) 

152 STL_TransactionFactory STL_TransactionFactory 1 
153 STL_TransactionFactory create 37 
154 STL_TransactionException STL_TransactionException 1 
155 UTL_DBConnection UTL_DBConnection 15 
156 UTL_DBConnection getConnection 1 
157 UTL_DBConnection rollback 2 
158 UTL_DBConnection commit 2 
159 UTL_DBConnection close 2 
160 UTL_DBConnection executeQuery 9 
161 UTL_DBConnection setValues 25 
162 UTL_DBConnection executeUpdate 8 
163 UTL_DBConnection executeIdQuery 8 
164 UTL_DBConnection getLatestSequenceValue 9 
165 UTL_DBConnection zValue 4 
166 STL_Reports STL_Reports 4 
167 STL_Reports generateBacsTransactionFile 22 
168 STL_Reports generateSageTransactionFile 17 
169 STL_Reports createBacsSummary 31 
170 STL_Reports userHasNonManagedTransactions 9 
171 STL_Reports getUsersManagers  11 
172 STL_Reports createInvoices  23 
173 STL_Reports Deleted 0 
174 STL_Reports generateReport 40 
175 STL_Reports mailReport 16 
176 STL_Transaction statementTransactionType  16 
177 STL_Transaction statementParty 8 
178 STL_Transaction statementAction 6 
179 STL_Transaction statementServiceRequestType 91 
180 STL_Transaction statementDate 2 
181 STL_Transaction statementPaymentMethod 8 
182 STL_Transaction statementCurrency 6 
183 STL_Transaction statementTransactionMode 6 
184 STL_Transaction statementServiceDeliveryMechanism 10 
185 STL_Reports getSupplierCode 6 
186 STL_Reports Deleted 0 
187 RPT_PrintDate RPT_PrintDate 2 
188 RPT_PrintDate main 21 
189 STL_Day STL_Day 11 
190 STL_Day getDay 1 
191 STL_Day getDayOfWeek 1 
192 STL_Day isBusinessDay 1 
193 STL_PartyException STL_PartyException 1 
194 STL_Util STL_Util 5 
195 STL_Util doubleToString 6 
196 STL_Util justifyString 12 
197 STL_Util dateToString 3 
198 STL_Util stringToDate 5 
199 STL_Util buildFilenameString 2 
200 STL_Util prepJob 3 
201 STL_Util prepAttachment 3 
202 STL_Util ftpFile 9 
203 UTL_CSVFormattedFile UTL_CSVFormattedFile 3 
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Proc. 
No. 

Class Method Size (SLOC) 

204 UTL_CSVFormattedFile addLine 6 
205 UTL_FCFFormattedFile UTL_FCFFormattedFile 7 
206 UTL_FCFFormattedFile addLine 10 
207 UTL_Property UTL_Property 17 
208 UTL_Property getPropertyValue 2 
209 UTL_Property setPropertyValue 5 
210 UTL_Property writeToDisk 13 
211 UTL_Property tokenize 6 
212 UTL_Property main 15 
213 UTL_FormattedFile UTL_FormattedFile 2 
214 UTL_FormattedFile addLine 0 
215 UTL_FormattedFile generateFile 9 
216 UTL_Logger UTL_Logger 18 
217 UTL_Logger setLogFile 1 
218 UTL_Logger setOutput 1 
219 UTL_Logger label 2 
220 UTL_Logger severityToInt 4 
221 UTL_Logger log 11 
222 UTL_Logger output 3 
223 UTL_Logger main 5 
224 UTL_DBConstant UTL_DBConstant 53 
225 STL_Constants STL_Constants  123 
226 UTL_Constant UTL_Constant 38 
227 REP_Constants REP_Constants  143 
228 STL_Agent proc228 9 
229 STL_Agent proc229 7 
230 STL_Agent proc230 2 
231 STL_Database proc231 8 
232 STL_Database proc232 7 
233 STL_Reports proc233 11 
234 STL_EndUser proc234 20 
235 STL_EndUser proc235 12 
236 STL_EndUser proc236 20 
237 STL_Transaction proc237 22 
  TOTAL: 2392 

7.2.2 Re-test Impact Calculation 
Proc. 
No. 

Size (SLOC) % of Total Rel. to Old 
SLOC 

Re-test 
Impact 
(SLOC) 

% of Total Contrib. to 
Mean 

1 55 2.3% 2.2% 1899 79.4% 43.7 
2 68 2.8% 2.8% 1899 79.4% 54.0 
3 7 0.3% 0.3% 1899 79.4% 5.6 
4 18 0.8% 0.7% 1899 79.4% 14.3 
5 5 0.2% 0.2% 1899 79.4% 4.0 
6 1 0.0% 0.0% 1 0.0% 0.0 
7 1 0.0% 0.0% 1899 79.4% 0.8 
8 5 0.2% 0.2% 5 0.2% 0.0 
9 6 0.3% 0.2% 6 0.3% 0.0 
10 7 0.3% 0.3% 77 3.2% 0.2 
11 8 0.3% 0.3% 1899 79.4% 6.4 
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Proc. 
No. 

Size (SLOC) % of Total Rel. to Old 
SLOC 

Re-test 
Impact 
(SLOC) 

% of Total Contrib. to 
Mean 

12 26 1.1% 1.1% 1899 79.4% 20.6 
13 3 0.1% 0.1% 1899 79.4% 2.4 
14 3 0.1% 0.1% 1899 79.4% 2.4 
15 8 0.3% 0.3% 1899 79.4% 6.4 
16 22 0.9% 0.9% 1899 79.4% 17.5 
17 25 1.0% 1.0% 1899 79.4% 19.8 
18 15 0.6% 0.6% 1892 79.1% 11.9 
19 9 0.4% 0.4% 1899 79.4% 7.1 
20 29 1.2% 1.2% 1899 79.4% 23.0 
21 8 0.3% 0.3% 1899 79.4% 6.4 
22 0 0.0% 0.0% 0 0.0% 0.0 
23 1 0.0% 0.0% 76 3.2% 0.0 
24 11 0.5% 0.4% 308 12.9% 1.4 
25 13 0.5% 0.5% 20 0.8% 0.1 
26 39 1.6% 1.6% 250 10.5% 4.1 
27 11 0.5% 0.4% 250 10.5% 1.1 
28 9 0.4% 0.4% 1892 79.1% 7.1 
29 6 0.3% 0.2% 1899 79.4% 4.8 
30 3 0.1% 0.1% 1899 79.4% 2.4 
31 25 1.0% 1.0% 1899 79.4% 19.8 
32 17 0.7% 0.7% 1899 79.4% 13.5 
33 10 0.4% 0.4% 1899 79.4% 7.9 
34 24 1.0% 1.0% 1899 79.4% 19.1 
35 30 1.3% 1.2% 1899 79.4% 23.8 
36 16 0.7% 0.6% 1899 79.4% 12.7 
37 70 2.9% 2.8% 1892 79.1% 55.4 
38 27 1.1% 1.1% 1892 79.1% 21.4 
39 17 0.7% 0.7% 1892 79.1% 13.4 
40 13 0.5% 0.5% 1892 79.1% 10.3 
41 0 0.0% 0.0% 0 0.0% 0.0 
42 41 1.7% 1.7% 1892 79.1% 32.4 
43 21 0.9% 0.9% 1892 79.1% 16.6 
44 2 0.1% 0.1% 1892 79.1% 1.6 
45 3 0.1% 0.1% 55 2.3% 0.1 
46 15 0.6% 0.6% 1892 79.1% 11.9 
47 106 4.4% 4.3% 1892 79.1% 83.8 
48 6 0.3% 0.2% 85 3.6% 0.2 
49 8 0.3% 0.3% 9 0.4% 0.0 
50 8 0.3% 0.3% 1892 79.1% 6.3 
51 3 0.1% 0.1% 4 0.2% 0.0 
52 34 1.4% 1.4% 1892 79.1% 26.9 
53 3 0.1% 0.1% 1892 79.1% 2.4 
54 1 0.0% 0.0% 1 0.0% 0.0 
55 22 0.9% 0.9% 1892 79.1% 17.4 
56 4 0.2% 0.2% 1892 79.1% 3.2 
57 7 0.3% 0.3% 86 3.6% 0.3 
58 9 0.4% 0.4% 1892 79.1% 7.1 
59 4 0.2% 0.2% 1896 79.3% 3.2 
60 0 0.0% 0.0% 0 0.0% 0.0 
61 0 0.0% 0.0% 0 0.0% 0.0 
62 0 0.0% 0.0% 0 0.0% 0.0 



 88 

Proc. 
No. 

Size (SLOC) % of Total Rel. to Old 
SLOC 

Re-test 
Impact 
(SLOC) 

% of Total Contrib. to 
Mean 

63 0 0.0% 0.0% 0 0.0% 0.0 
64 0 0.0% 0.0% 0 0.0% 0.0 
65 0 0.0% 0.0% 0 0.0% 0.0 
66 0 0.0% 0.0% 0 0.0% 0.0 
67 0 0.0% 0.0% 0 0.0% 0.0 
68 0 0.0% 0.0% 0 0.0% 0.0 
69 0 0.0% 0.0% 0 0.0% 0.0 
70 0 0.0% 0.0% 0 0.0% 0.0 
71 0 0.0% 0.0% 0 0.0% 0.0 
72 0 0.0% 0.0% 0 0.0% 0.0 
73 0 0.0% 0.0% 0 0.0% 0.0 
74 0 0.0% 0.0% 0 0.0% 0.0 
75 23 1.0% 0.9% 1899 79.4% 18.3 
76 1 0.0% 0.0% 1899 79.4% 0.8 
77 1 0.0% 0.0% 1899 79.4% 0.8 
78 1 0.0% 0.0% 1899 79.4% 0.8 
79 1 0.0% 0.0% 1 0.0% 0.0 
80 1 0.0% 0.0% 1 0.0% 0.0 
81 1 0.0% 0.0% 1899 79.4% 0.8 
82 1 0.0% 0.0% 1899 79.4% 0.8 
83 3 0.1% 0.1% 1899 79.4% 2.4 
84 1 0.0% 0.0% 1899 79.4% 0.8 
85 0 0.0% 0.0% 0 0.0% 0.0 
86 2 0.1% 0.1% 221 9.2% 0.2 
87 6 0.3% 0.2% 1899 79.4% 4.8 
88 0 0.0% 0.0% 1892 79.1% 0.0 
89 0 0.0% 0.0% 1899 79.4% 0.0 
90 19 0.8% 0.8% 1899 79.4% 15.1 
91 33 1.4% 1.3% 1892 79.1% 26.1 
92 0 0.0% 0.0% 1899 79.4% 0.0 
93 0 0.0% 0.0% 1899 79.4% 0.0 
94 0 0.0% 0.0% 1899 79.4% 0.0 
95 0 0.0% 0.0% 1899 79.4% 0.0 
96 0 0.0% 0.0% 1899 79.4% 0.0 
97 4 0.2% 0.2% 1899 79.4% 3.2 
98 5 0.2% 0.2% 1892 79.1% 4.0 
99 1 0.0% 0.0% 1899 79.4% 0.8 
100 1 0.0% 0.0% 1892 79.1% 0.8 
101 6 0.3% 0.2% 1899 79.4% 4.8 
102 1 0.0% 0.0% 1899 79.4% 0.8 
103 1 0.0% 0.0% 1899 79.4% 0.8 
104 1 0.0% 0.0% 1899 79.4% 0.8 
105 1 0.0% 0.0% 1899 79.4% 0.8 
106 1 0.0% 0.0% 1899 79.4% 0.8 
107 1 0.0% 0.0% 1899 79.4% 0.8 
108 1 0.0% 0.0% 306 12.8% 0.1 
109 1 0.0% 0.0% 293 12.2% 0.1 
110 1 0.0% 0.0% 136 5.7% 0.1 
111 1 0.0% 0.0% 1 0.0% 0.0 
112 1 0.0% 0.0% 1899 79.4% 0.8 
113 1 0.0% 0.0% 1899 79.4% 0.8 
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114 5 0.2% 0.2% 5 0.2% 0.0 
115 1 0.0% 0.0% 1899 79.4% 0.8 
116 1 0.0% 0.0% 1893 79.1% 0.8 
117 48 2.0% 1.9% 1892 79.1% 38.0 
118 12 0.5% 0.5% 12 0.5% 0.1 
119 1 0.0% 0.0% 1899 79.4% 0.8 
120 1 0.0% 0.0% 1899 79.4% 0.8 
121 1 0.0% 0.0% 1899 79.4% 0.8 
122 1 0.0% 0.0% 1 0.0% 0.0 
123 1 0.0% 0.0% 1899 79.4% 0.8 
124 1 0.0% 0.0% 1899 79.4% 0.8 
125 1 0.0% 0.0% 1899 79.4% 0.8 
126 1 0.0% 0.0% 1899 79.4% 0.8 
127 1 0.0% 0.0% 1899 79.4% 0.8 
128 1 0.0% 0.0% 13 0.5% 0.0 
129 1 0.0% 0.0% 1899 79.4% 0.8 
130 1 0.0% 0.0% 1899 79.4% 0.8 
131 1 0.0% 0.0% 1899 79.4% 0.8 
132 1 0.0% 0.0% 1899 79.4% 0.8 
133 1 0.0% 0.0% 1899 79.4% 0.8 
134 1 0.0% 0.0% 1899 79.4% 0.8 
135 1 0.0% 0.0% 1 0.0% 0.0 
136 1 0.0% 0.0% 1 0.0% 0.0 
137 1 0.0% 0.0% 1899 79.4% 0.8 
138 1 0.0% 0.0% 1899 79.4% 0.8 
139 1 0.0% 0.0% 1899 79.4% 0.8 
140 1 0.0% 0.0% 1899 79.4% 0.8 
141 1 0.0% 0.0% 1899 79.4% 0.8 
142 1 0.0% 0.0% 1899 79.4% 0.8 
143 1 0.0% 0.0% 1899 79.4% 0.8 
144 15 0.6% 0.6% 1899 79.4% 11.9 
145 1 0.0% 0.0% 1899 79.4% 0.8 
146 1 0.0% 0.0% 1899 79.4% 0.8 
147 1 0.0% 0.0% 1899 79.4% 0.8 
148 1 0.0% 0.0% 1899 79.4% 0.8 
149 2 0.1% 0.1% 1899 79.4% 1.6 
150 6 0.3% 0.2% 1899 79.4% 4.8 
151 25 1.0% 1.0% 262 11.0% 2.7 
152 1 0.0% 0.0% 1893 79.1% 0.8 
153 37 1.5% 1.5% 1892 79.1% 29.3 
154 1 0.0% 0.0% 1 0.0% 0.0 
155 15 0.6% 0.6% 1899 79.4% 11.9 
156 1 0.0% 0.0% 1899 79.4% 0.8 
157 2 0.1% 0.1% 2 0.1% 0.0 
158 2 0.1% 0.1% 343 14.3% 0.3 
159 2 0.1% 0.1% 128 5.4% 0.1 
160 9 0.4% 0.4% 1899 79.4% 7.1 
161 25 1.0% 1.0% 680 28.4% 7.1 
162 8 0.3% 0.3% 382 16.0% 1.3 
163 8 0.3% 0.3% 1892 79.1% 6.3 
164 9 0.4% 0.4% 1892 79.1% 7.1 
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165 4 0.2% 0.2% 4 0.2% 0.0 
166 4 0.2% 0.2% 1903 79.6% 3.2 
167 22 0.9% 0.9% 1899 79.4% 17.5 
168 17 0.7% 0.7% 1899 79.4% 13.5 
169 31 1.3% 1.3% 1899 79.4% 24.6 
170 9 0.4% 0.4% 1899 79.4% 7.1 
171 11 0.5% 0.4% 1899 79.4% 8.7 
172 23 1.0% 0.9% 1899 79.4% 18.3 
173 0 0.0% 0.0% 1892 79.1% 0.0 
174 40 1.7% 1.6% 1899 79.4% 31.8 
175 16 0.7% 0.6% 1899 79.4% 12.7 
176 16 0.7% 0.6% 1899 79.4% 12.7 
177 8 0.3% 0.3% 1899 79.4% 6.4 
178 6 0.3% 0.2% 1899 79.4% 4.8 
179 91 3.8% 3.7% 1899 79.4% 72.2 
180 2 0.1% 0.1% 1899 79.4% 1.6 
181 8 0.3% 0.3% 1899 79.4% 6.4 
182 6 0.3% 0.2% 6 0.3% 0.0 
183 6 0.3% 0.2% 1899 79.4% 4.8 
184 10 0.4% 0.4% 1899 79.4% 7.9 
185 6 0.3% 0.2% 1899 79.4% 4.8 
186 0 0.0% 0.0% 0 0.0% 0.0 
187 2 0.1% 0.1% 23 1.0% 0.0 
188 21 0.9% 0.9% 21 0.9% 0.2 
189 11 0.5% 0.4% 1906 79.7% 8.8 
190 1 0.0% 0.0% 1900 79.4% 0.8 
191 1 0.0% 0.0% 1 0.0% 0.0 
192 1 0.0% 0.0% 1900 79.4% 0.8 
193 1 0.0% 0.0% 1 0.0% 0.0 
194 5 0.2% 0.2% 1897 79.3% 4.0 
195 6 0.3% 0.2% 1899 79.4% 4.8 
196 12 0.5% 0.5% 1899 79.4% 9.5 
197 3 0.1% 0.1% 1899 79.4% 2.4 
198 5 0.2% 0.2% 1904 79.6% 4.0 
199 2 0.1% 0.1% 1899 79.4% 1.6 
200 3 0.1% 0.1% 1892 79.1% 2.4 
201 3 0.1% 0.1% 3 0.1% 0.0 
202 9 0.4% 0.4% 1901 79.5% 7.2 
203 3 0.1% 0.1% 1899 79.4% 2.4 
204 6 0.3% 0.2% 173 7.2% 0.4 
205 7 0.3% 0.3% 1899 79.4% 5.6 
206 10 0.4% 0.4% 21 0.9% 0.1 
207 17 0.7% 0.7% 1899 79.4% 13.5 
208 2 0.1% 0.1% 1899 79.4% 1.6 
209 5 0.2% 0.2% 1897 79.3% 4.0 
210 13 0.5% 0.5% 13 0.5% 0.1 
211 6 0.3% 0.2% 1892 79.1% 4.7 
212 15 0.6% 0.6% 1892 79.1% 11.9 
213 2 0.1% 0.1% 11 0.5% 0.0 
214 0 0.0% 0.0% 0 0.0% 0.0 
215 9 0.4% 0.4% 204 8.5% 0.8 
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216 18 0.8% 0.7% 1926 80.5% 14.5 
217 1 0.0% 0.0% 101 4.2% 0.0 
218 1 0.0% 0.0% 1927 80.6% 0.8 
219 2 0.1% 0.1% 530 22.2% 0.4 
220 4 0.2% 0.2% 1913 80.0% 3.2 
221 11 0.5% 0.4% 1913 80.0% 8.8 
222 3 0.1% 0.1% 528 22.1% 0.7 
223 5 0.2% 0.2% 1897 79.3% 4.0 
224 53 2.2% 2.1% 1945 81.3% 43.1 
225 123 5.1% 5.0% 2018 84.4% 103.8 
226 38 1.6% 1.5% 1930 80.7% 30.7 
227 143 6.0% 5.8% 2035 85.1% 121.7 
228 9 0.4% 0.4% 1899 79.4% 7.1 
229 7 0.3% 0.3% 1899 79.4% 5.6 
230 2 0.1% 0.1% 1899 79.4% 1.6 
231 8 0.3% 0.3% 1899 79.4% 6.4 
232 7 0.3% 0.3% 341 14.3% 1.0 
233 11 0.5% 0.4% 1892 79.1% 8.7 
234 20 0.8% 0.8% 135 5.6% 1.1 
235 12 0.5% 0.5% 1911 79.9% 9.6 
236 20 0.8% 0.8% 1899 79.4% 15.9 
237 22 0.9% 0.9% 1899 79.4% 17.5 
     TOTAL: 1678 
 


