
University of Alberta

Large-Scale Semi-Supervised Learning for Natural Language Processing

by

Shane Bergsma

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

c©Shane Bergsma
Fall 2010

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,
except as herein before provided, neither the thesis nor anysubstantial portion thereof may be printed or

otherwise reproduced in any material form whatsoever without the author’s prior written permission.

Examining Committee

Randy Goebel, Computing Science

Dekang Lin, Computing Science

Greg Kondrak, Computing Science

Dale Schuurmans, Computing Science

Chris Westbury, Psychology

Eduard Hovy, Information Sciences Institute, University of Southern California

Abstract

Natural Language Processing (NLP) develops computationalapproaches to processing lan-

guage data. Supervised machine learning has become the dominant methodology of modern

NLP. The performance of a supervised NLP system crucially depends on the amount of data

available for training. In the standard supervised framework, if a sequence of words was

not encountered in the training set, the system can only guess at its label at test time. The

cost of producing labeled training examples is a bottleneckfor current NLP technology. On

the other hand, a vast quantity of unlabeled data is freely available.

This dissertation proposes effective, efficient, versatile methodologies for 1) extracting

useful information from very large (potentially web-scale) volumes of unlabeled data and

2) combining such information with standard supervised machine learning for NLP. We

demonstrate novel ways to exploit unlabeled data, we scale these approaches to make use

of all the text on the web, and we show improvements on a variety of challenging NLP

tasks. This combination of learning from both labeled and unlabeled data is often referred

to assemi-supervised learning.

Although lacking manually-provided labels, the statistics of unlabeled patterns can of-

ten distinguish the correct label for an ambiguous test instance. In the first part of this

dissertation, we propose to use the counts of unlabeled patterns as features in supervised

classifiers, with these classifiers trained on varying amounts of labeled data. We propose a

general approach for integrating information from multiple, overlapping sequences of con-

text for lexical disambiguation problems. We also show how standard machine learning

algorithms can be modified to incorporate a particular kind of prior knowledge: knowledge

of effective weightings for count-based features. We also evaluate performance within and

across domains for two generation and two analysis tasks, assessing the impact of com-

bining web-scale counts with conventional features. In thesecond part of this dissertation,

rather than using the aggregate statistics as features, we propose to use them to generate

labeled training examples. By automatically labeling a large number of examples, we can

train powerful discriminative models, leveraging fine-grained features of input words.

Acknowledgements

I would like to recognize a number of named entities for theircontributions to this thesis.
I gratefully acknowledge support from the Natural Sciencesand Engineering Research

Council of Canada, the Alberta Ingenuity Fund, and the Alberta Informatics Circle of Re-
search Excellence (the latter two now part of the Alberta Innovates organization).

Thank you to Dekang Lin and Randy Goebel, my excellent supervisors. I admire and
appreciate you guys very much. Thanks to the other brilliantcollaborators on my thesis pub-
lications: Emily Pitler, Greg Kondrak, and Dale Schuurmans. Thanks to Dekang, Randy,
Greg, Dale, and Chris Westbury for their very helpful contributions as members of my the-
sis committee, and to my esteemed external, Eduard Hovy. Thank you to the members of
the NLP group at the University of Alberta, including friends and co-authors Colin Cherry,
Chris Pinchak, Qing Wang, and Sittichai Jiampojamarn. Thank you, Greg, for showing me
how to squeeze extra text into my papers by usingvspacein LaTeX. A special thanks also to
Colin for hosting me at the NRC in Ottawa and helping me throughout my graduate career.

Thank you also to Kristin Musselman and Chris Pinchak for assistance preparing the
non-referential pronoun data used in Chapter 3. Thank you toThorsten Brants, Fernando
Pereira, and everyone else at Google Inc. for sharing the Google N-gram data and for mak-
ing my internships in Mountain View so special. Thank you to Frederick Jelinek and many
others at the Center for Language and Speech Processing at Johns Hopkins University for
hosting the workshop at which part of the Chapter 5 research was conducted, and thank
you to the workshop sponsors. Thank you to the amazing Ken Church, David Yarowsky,
Satoshi Sekine, Heng Ji, and my extremely capable fellow students on Team N-gram.

Finally, I provide acknowledgments in the form of a sample ofsome actual Google 5-
gram counts. The frequency ranking is pretty good; I would only suggest thatwife should
be at the top. I would like to thank my. . .

like to thank my family 10068
like to thank my parents 5447
like to thank my colleagues 4175
like to thank my wife 4006
like to thank my advisor 3819
like to thank my supervisor 3779
like to thank my friends 2375
like to thank my mother 1477
like to thank my committee 1068
like to thank my husband 998
like to thank my mom 872
like to thank my brother 660
like to thank my father 619
like to thank my sister 486
like to thank my mum 441
like to thank my girlfriend 296

like to thank my fans 258
like to thank my son 245
like to thank my guests 245
like to thank my collaborators 244
like to thank my hairdresser 229
like to thank my readers 214
like to thank my daughter 174
like to thank my coach 142
like to thank my assistant 96
like to thank my boyfriend 90
like to thank my hands 87
like to thank my uncle 71
like to thank my opponent 71
like to thank my buddies 67
like to thank my grandmother 54
like to thank my computer 50

Table of Contents

1 Introduction 1
1.1 What NLP Systems Do . 1
1.2 Writing Rules vs. Machine Learning 2
1.3 Learning from Unlabeled Data .. 3
1.4 A Perspective on Statistical vs. Linguistic Approaches. 6
1.5 Overview of the Dissertation .. . 8
1.6 Summary of Main Contributions .. 10

2 Supervised and Semi-Supervised Machine Learning in Natural Language Pro-
cessing 12
2.1 The Rise of Machine Learning in NLP 12
2.2 The Linear Classifier . 14
2.3 Supervised Learning . 17

2.3.1 Experimental Set-up . 17
2.3.2 Evaluation Measures . 18
2.3.3 Supervised Learning Algorithms 19
2.3.4 Support Vector Machines . 20
2.3.5 Software . 22

2.4 Unsupervised Learning .22
2.5 Semi-Supervised Learning .. 24

2.5.1 Transductive Learning . 25
2.5.2 Self-training . 27
2.5.3 Bootstrapping . 27
2.5.4 Learning with Heuristically-Labeled Examples 29
2.5.5 Creating Features from Unlabeled Data 32

3 Learning with Web-Scale N-gram Models 35
3.1 Introduction . 35
3.2 Related Work . 36

3.2.1 Lexical Disambiguation . 36
3.2.2 Web-Scale Statistics in NLP . 38

3.3 Disambiguation with N-gram Counts 39
3.3.1 SUPERLM . 40
3.3.2 SUMLM . 41
3.3.3 TRIGRAM . 42
3.3.4 RATIOLM . 42

3.4 Evaluation Methodology .43
3.5 Preposition Selection .. 43

3.5.1 The Task of Preposition Selection 43
3.5.2 Preposition Selection Results 44

3.6 Context-Sensitive Spelling Correction 46
3.6.1 The Task of Context-Sensitive Spelling Correction 46
3.6.2 Context-sensitive Spelling Correction Results 47

3.7 Non-referential Pronoun Detection 48
3.7.1 The Task of Non-referential Pronoun Detection 48
3.7.2 Our Approach to Non-referential Pronoun Detection 49

3.7.3 Non-referential Pronoun Detection Data 50
3.7.4 Non-referential Pronoun Detection Results 51
3.7.5 Further Analysis and Discussion 51

3.8 Conclusion . 54

4 Improved Natural Language Learning via Variance-Regularization Support
Vector Machines 55
4.1 Introduction . 56
4.2 Three Multi-Class SVM Models .57

4.2.1 Standard Multi-Class SVM . 57
4.2.2 SVM with Class-Specific Attributes 59
4.2.3 Variance Regularization SVMs .61

4.3 Experimental Details .63
4.4 Applications . 63

4.4.1 Preposition Selection . 63
4.4.2 Context-Sensitive Spelling Correction 64
4.4.3 Non-Referential Pronoun Detection 65

4.5 Related Work . 66
4.6 Future Work . 66
4.7 Conclusion . 67

5 Creating Robust Supervised Classifiers via Web-Scale N-gram Data 68
5.1 Introduction . 68
5.2 Experiments and Data . 69

5.2.1 Experimental Design . 69
5.2.2 Tasks and Labeled Data . 70
5.2.3 Web-Scale Auxiliary Data . 71

5.3 Prenominal Adjective Ordering 71
5.3.1 Supervised Adjective Ordering 72
5.3.2 Adjective Ordering Results .73

5.4 Context-Sensitive Spelling Correction 75
5.4.1 Supervised Spelling Correction 75
5.4.2 Spelling Correction Results .76

5.5 Noun Compound Bracketing . 78
5.5.1 Supervised Noun Bracketing . 78
5.5.2 Noun Compound Bracketing Results78

5.6 Verb Part-of-Speech Disambiguation 79
5.6.1 Supervised Verb Disambiguation 80
5.6.2 Verb POS Disambiguation Results81

5.7 Discussion and Future Work .82
5.8 Conclusion . 82

6 Discriminative Learning of Selectional Preference from Unlabeled Text 83
6.1 Introduction . 83
6.2 Related Work . 84
6.3 Methodology . 85

6.3.1 Creating Examples . 85
6.3.2 Partitioning for Efficient Training 86
6.3.3 Features . 87

6.4 Experiments and Results .88
6.4.1 Set up . 88
6.4.2 Feature weights . 89
6.4.3 Pseudodisambiguation . 89
6.4.4 Human Plausibility . 91
6.4.5 Unseen Verb-Object Identification 92
6.4.6 Pronoun Resolution . 93

6.5 Conclusions and Future Work .. 94

7 Alignment-Based Discriminative String Similarity 96
7.1 Introduction . 96
7.2 Related Work . 97
7.3 The Cognate Identification Task .. . 98
7.4 Features for Discriminative String Similarity 99
7.5 Experiments . 101

7.5.1 Bitext Experiments . 101
7.5.2 Dictionary Experiments . 102

7.6 Results . 102
7.7 Conclusion and Future Work .106

8 Conclusions and Future Work 108
8.1 Summary . 108
8.2 The Impact of this Work . 109
8.3 Future Work . 110

8.3.1 Improved Learning with Automatically-Generated Examples 110
8.3.2 Exploiting New ML Techniques 110
8.3.3 New NLP Problems . 110
8.3.4 Improving Core NLP Technologies 111
8.3.5 Mining New Data Sources . 112

Bibliography 113

A Penn Treebank Tag Set 127

List of Tables

1.1 Summary of tasks handled in the dissertation 8

2.1 The classifier confusion matrix 19

3.1 SUMLM accuracy combining N-grams from orderMin to Max 45
3.2 Context-sensitive spelling correction accuracy on different confusion sets . 48
3.3 Pattern filler types .49
3.4 Human vs. computer non-referentialit detection 53

4.1 Accuracy of preposition-selection SVMs. 64
4.2 Accuracy of spell-correction SVMs. 64
4.3 Accuracy of non-referential detection SVMs. 65

5.1 Data for tasks in Chapter 5 .70
5.2 Number of labeled examples for tasks in Chapter 5 70
5.3 Adjective ordering accuracy .. . 73
5.4 Spelling correction accuracy 76
5.5 NC-bracketing accuracy .79
5.6 Verb-POS-disambiguation accuracy 81

6.1 Pseudodisambiguation results averaged across each example 89
6.2 Selectional ratings for plausible/implausible directobjects 92
6.3 Recall on identification of Verb-Object pairs from an unseen corpus 92
6.4 Pronoun resolution accuracy on nouns in current or previous sentence. . . . 94

7.1 Foreign-English cognates and false friend training examples. 99
7.2 Bitext French-Englishdevelopment setcognate identification 11-pt average

precision . 103
7.3 Bitext, Dictionary Foreign-to-English cognate identification 11-pt average

precision . 103
7.4 Example features and weights for various Alignment-Based Discriminative

classifiers . 105
7.5 Highest scored pairs by Alignment-Based Discriminative classifier 106

List of Figures

2.1 The linear classifier hyperplane 16
2.2 Learning from labeled and unlabeled examples 26

3.1 Preposition selection learning curve 44
3.2 Preposition selection over high-confidence subsets 45
3.3 Context-sensitive spelling correction learning curve. 47
3.4 Non-referential detection learning curve 51
3.5 Effect of pattern-word truncation on non-referentialit detection. 52

4.1 Multi-class classification for web-scale N-gram models. 59

5.1 In-domain learning curve of adjective ordering classifiers on BNC. 74
5.2 Out-of-domain learning curve of adjective ordering classifiers on Gutenberg. 74
5.3 Out-of-domain learning curve of adjective ordering classifiers on Medline. . 75
5.4 In-domain learning curve of spelling correction classifiers on NYT. 76
5.5 Out-of-domain learning curve of spelling correction classifiers on Gutenberg. 77
5.6 Out-of-domain learning curve of spelling correction classifiers on Medline. 77
5.7 In-domain NC-bracketer learning curve 79
5.8 Out-of-domain learning curve of verb disambiguation classifiers on Medline. 81

6.1 Disambiguation results by noun frequency. 91
6.2 Pronoun resolution precision-recall on MUC. 93

7.1 LCSR histogram and polynomial trendline of French-English dictionary pairs.102
7.2 Bitext French-English cognate identification learningcurve. 104

Chapter 1

Introduction

Natural language processing (NLP) is a field that develops computational techniques for
analyzing human language. NLP provides the algorithms for spelling correction, speech
recognition, and automatic translation that are used by millions of people every day.

Recent years have seen an explosion in the availability of language in the form of elec-
tronic text. Web pages, e-mail, search-engine queries, andtext-messaging have created a
staggering and ever-increasing volume of language data. Processing this data is a great
challenge. Users of the Internet want to find the right information quickly in a sea of irrel-
evant pages. Governments, businesses, and hospitals want to discover important trends and
patterns in their unstructured textual records.

The challenge of unprecedented volumes of data also presents a significant opportunity.
Online text is one of the largest and most diverse bodies of linguistic evidence ever com-
piled. We can use this evidence to train and test broad and powerful language-processing
tools. In this dissertation, I explore ways to extract meaningful statistics from huge volumes
of raw text, and I use these statistics to create intelligentNLP systems. Techniques from
machine learning play a central role in this work; machine learning provides principled
ways to combine linguistic intuitions with evidence from big data.

1.1 What NLP Systems Do

Before we discuss exactly how unlabeled data can help improve NLP systems, it is impor-
tant to clarify exactly what modern NLP systems do and how they work. NLP systems
take sequences of words as input and automatically produce useful linguistic annotations as
output. Suppose the following sentence exists on the web somewhere:

• “The movie sucked.”

Suppose you work for J.D. Power and Associates Web Intelligence Division. You cre-
ate systems that automatically analyze blogs and other web pages to find out what people
think about particular products, and then you sell this information to the producers of those
products (and occasionally surprise them with the results). You might want to annotate the
whole sentence for its sentiment: whether the sentence is positive or negative in its tone:

• “The movie sucked→ 〈Sentiment=NEGATIVE〉”

Or suppose you are Google, and you wish to translate this sentence for a German user.
The translation of the wordsuckedis ambiguous. Here, it likely does not mean, “to be

1

drawn in by establishing a partial vacuum,” but rather, “to be disagreeable.” So another
potentially useful annotation is word sense:

• “The movie sucked→ The movie sucked〈Sense=IS-DISAGREEABLE〉.”

More directly, we might consider the German translation itself as the annotation:

• “The movie sucked→ Der Film war schrecklich.

Finally, if we’re the company Powerset, our stated objective is to produce “parse trees”
for the entire web as a preprocessing step for our search engine. One part of parsing is to
label the syntactic category of each word (i.e., which are nouns, which are verbs, etc.). The
part-of-speech annotation might look as follows:

• “The movie sucked→ The\DT movie\NN sucked\VBD

WhereDT means determiner,NN means a singular or mass noun, andVBD means a
past-tense verb.1 Again, note the potential ambiguity for the tag ofsucked; it could also
be labeledVBN (verb, past participle). For example,suckedis a VBN in the phrase, “the
movie sucked into the vacuum cleaner was destroyed.”

These outputs are just a few of the possible annotations thatcan be produced for tex-
tual natural language input. Other branches and fields of NLPmay operate over speech
signals rather than actual text. Also, in the natural language generation (NLG) community,
the input may not be text, but information in another form, with the desired output being
grammatically-correct English sentences. Most of the workin the NLP community, how-
ever, operates exactly in this framework: text comes in, annotations come out. But how
does an NLP system produce these annotations automatically?

1.2 Writing Rules vs. Machine Learning

One might imagine writing some rules to produce these annotations automatically. For part-
of-speech tagging, we might say, “if the word ismovie, then label the word asNN.” These
word-based rules fail when the word can have multiple tags (e.g. saw, wind, etc. can be
nouns or verbs). Also, no matter how many rules we write, there will always be new or rare
words that didn’t make our rule set. For ambiguous words, we could try to use rules that
depend on the word’s context. Such a rule might be, “if the previous word isTheand the
next word ends in-ed, then label asNN.” But this rule would fail for “the Oilers skated,”
since here the tag is notNN but NNPS: a plural proper noun. We could change the rule
to: “if the previous word isTheand the next word ends in-ed, and the word is lower-case,
then label asNN.” But this would fail for “The begrudgingly viewed movie,” where now
“begrudgingly” is an adverb, not a noun. We might imagine adding many many more rules.
Also, we might wish to attach scores to our rules, to principally resolve conflicting rules.
We could say, “if the word iswind, give the score for being aNN a ten and for being a
VBa two,” and this score could be combined with other context-basedscores, to produce a
different cumulative score for each possible tag. The highest-scoring tag would be taken as
the output.

1Refer to Appendix A for definitions and examples from the PennTreebank tag set, the most commonly-
used part-of-speech tag set.

2

These rules and scores might depend on many properties of theinput sentence: the word
itself, the surrounding words, the case, the prefixes and suffixes of the surrounding words,
etc. The number of properties of interest (what in machine learning is called “the number
of features”) may be quite large, and it is difficult to choose the set of rules and weights that
results in the best performance (See Chapter 2, Section 2.1 for further discussion).

Rather than specifying the rules and weights by hand, the current dominant approach
in NLP is to provide a set oflabeledexamples that the system canlearn from. That is,
we train the system to make decisions using guidance from labeled data. By labeled data,
we simply mean data where the correct, gold-standard answerhas been explicitly provided.
The properties of the input are typically encoded as numerical features. A score is produced
using a weighted combination of the features. The learning algorithm assigns weights to the
features so that the correct output scores higher than incorrect outputs on the training set.
Or, in cases where the true output can not be generated by the system, so that the highest
scoring output (the system prediction) is as close as possible to the known true answer.

For example, feature 96345 might be a binary feature, equal to one if “the word is
wind,” and otherwise equal to zero. This feature (e.g.f96345) may get a high weight for
predicting whether the word is a common noun,NN (e.g. the corresponding weight param-
eter,w96345, may be 10). If the weighted-sum-of-features score for theNN tag is higher
than the scores for the other tags, thenNN is predicted. Again, the key point is that these
weights are chosen, automatically, in order to maximize performance on human-provided,
labeled examples. Chapter 2 covers the fundamental equations of machine learning (ML)
and discusses how machine learning is used in NLP.

Statistical machine learning works a lot better than specifying rules by hand. ML sys-
tems are easier to develop (because a computer program fine-tunes the rules, not a human)
and easier to adapt to new domains (because we need only annotate new data, rather than
write new rules). ML systems also tend to achieve better performance (again, see Chapter 2,
Section 2.1).2

The chief bottleneck in developing supervised systems is the manual annotation of data.
Historically, most labeled data sets were created by experts in linguistics. Because of the
great cost of producing this data, the size and variety of these data sets is quite limited.

Although the amount of labeled data is limited, there is quite a lot of unlabeled data
available (as we mentioned above). This dissertation explores various methods to combine
very large amounts of unlabeled data with standard supervised learning on a variety of NLP
tasks. This combination of learning from both labeled and unlabeled data is often referred
to assemi-supervised learning.

1.3 Learning from Unlabeled Data

An example from part-of-speech tagging will help illustrate how unlabeled data can be use-
ful. Suppose we are trying to label the parts-of-speech in the following examples. Specifi-
cally, there is some ambiguity for the tag of the verbwon.

(1) “He saw the Bears won yesterday.”

2Machine learned systems are also more fun to design. At a talklast year at Johns Hopkins University (June,
2009), BBN employee Ralph Weischeidel suggested that one ofthe reasons that BBN switched to machine
learning approaches was because one of their chief designers got so bored writing rules for their information
extraction system, he decided to go back to graduate school.

3

(2) “He saw the trophy won yesterday.”

(3) “He saw the boog won yesterday.”

Only one word differs in each sentence: the word before the verb won. In Example 1,
Bears is thesubject of the verbwon (it was the Bearswho won yesterday). Here,won
should get theVBD tag. In Example 2,trophy is theobject of the verbwon (it was the
trophy that was won). In this sentence,wongets aVBN tag. In a typical training set (i.e.
the training sections of the Penn Treebank[Marcuset al., 1993]), we don’t seeBears won
or trophy wonat all. In fact, both the wordsBearsandtrophyare rare enough to essentially
look like Example 3 to our system. They might as well beboog! Based on even a fairly
large set of labeled data, like the Penn Treebank, the correct tag forwon is ambiguous.

However, the relationship betweenBearsand won, and betweentrophy and won, is
fairly unambiguous if we look atunlabeleddata. For both pairs of words, I have collected
all 2-to-5-grams where the words co-occur in the Google V2 corpus, a collection of N-grams
from the entire world wide web. An N-gram corpus states how often each sequence of words
(up to length N) occurs (N-grams are discussed in detail in Chapter 3, while the Google V2
corpus is described in Chapter 5; note the Google V2 corpus includes part-of-speech tags).
I replace non-stopwords by their part-of-speech tag, and sum the counts for each pattern.
The top fifty most frequent patterns for{Bears, won} and{trophy, won} are given:

Bears won:

• Bears won:3215
• the Bears won:1252
• Bears won the:956
• The Bears won:875
• Bears have won:874
• NNP Bears won:767
• Bears won their:443
• Bears won CD:436
• The Bears have won:328
• Bears won their JJ:321
• Bears have won CD:305
• , the Bears won:305
• the NNP Bears won:305
• The Bears won the:296
• the Bears won the:293
• The NNP Bears won:274
• NNP Bears won the:262
• the Bears have won:255
• NNP Bears have won:217
• as the Bears won:168
• the Bears won CD:168
• Bears won the NNP:162
• Bears have won 00:160
• Bears won the NN:157
• Bears won a:153

• the Bears won their:148
• NNP Bears won their:129
• The Bears have won CD:128
• Bears won ,:124
• Bears had won:121
• The Bears won their:121
• when the Bears won:119
• The NNP Bears have won:117
• Bears have won the:112
• Bears won the JJ:112
• Bears , who won:107
• The Bears won CD:103
• Bears won the NNP NNP:102
• The NNP Bears won the:100
• the NNP Bears won the:96
• Bears have RB won:94
• , the Bears have won:93
• and the Bears won:91
• IN the Bears won:89
• Bears also won:87
• Bears won 00:86
• Bears have won CD of:84
• as the NNP Bears won:80
• Bears won CD .:80
• , the Bears won the:77

trophy won:

• won the trophy:4868

• won a trophy:2770

• won the trophy for:1375

• won the JJ trophy:825

• trophy was won:811

• trophy won:803

4

• won a trophy for:689
• won the trophy for the:631
• trophy was won by:626
• won a JJ trophy:513
• won the trophy in:511
• won the trophy.:493
• RB won a trophy:439
• trophy they won:421
• won the NN trophy:405
• trophy won by:396
• have won the trophy:396
• won this trophy:377
• the trophy they won:329
• won the NNP trophy:325
• won a trophy .:313
• won the trophy NN:295
• trophy he won:292
• has won the trophy:290
• won the trophy for JJS:284
• won a trophy in:274
• won the trophy in 0000:272
• won the JJ NN trophy:267

• won a trophy and:249
• RB won the trophy:242
• who won the trophy:242
• and won the trophy:240
• won the trophy,:228
• won a trophy ,:215
• won a trophy at:199
• , won the trophy:191
• also won the trophy:189
• had won the trophy:186
• won DT trophy:184
• and won a trophy:178
• the trophy won:173
• won their JJ trophy:169
• JJ trophy:168
• won the trophy RB:161
• won the JJ trophy in:155
• won a JJ NN trophy:155
• I won a trophy:153
• won the trophy CD:145
• won the trophy and:141
• trophy , won:141

In this data,Bearsis almost always thesubjectof the verb, occurring beforewonand
with an object phrase afterwards (likewon theor won their, etc.). On the other hand,trophy
almost always appears as an object, occurring afterwonor in passive constructions (trophy
was won, trophy won by) or with another noun in the subject role (trophy they won, trophy he
won). If, on the web, a pair of words tends to occur in a particularrelationship, then for an
ambiguous instance of this pair at test time, it is reasonable to also predict this relationship.

Now think aboutboog. A lot of words look likeboog to a system that has only seen
limited labeled data. Now, ifglobally the wordsboogandwonoccur in the same patterns
in which trophy andwonoccur, then it would be clear thatboog is also usually the object
of won, and thuswon is likely a past participle (VBN) in Example 3. If, on the other hand,
boogoccurs in the same patterns asBears, we would consider it a subject, and labelwonas
a past-tense verb (VBD).3

So, in summary, while a pair of words, liketrophyandwon, might be very rare in our
labeled data, the patterns in which these words occur (thedistribution of the words), like
won the trophy, and trophy was won, may be very indicative of a particular relationship.
These indicative patterns will likely be shared by other pairs in the labeled training data
(e.g., we’ll see global patterns likebought the securities, market was closed, etc. for labeled
examples like “the securities bought by” and “the market closed up 134 points”). So, we
supplement our sparse information (the identity of individual words) with more-general
information (statistics from the distribution of those words on the web). The word’s global
distribution can provide features just like the features taken from the word’slocal context.
By local, I mean the contextual information surrounding the words tobe classified in a
given sentence. Combining local and global sources of information together, we can achieve
higher performance.

Note, however, that when the local context isunambiguous, it is usually a better bet to
rely on the local information over the global, distributional statistics. For example, if the

3Of course, it might be the case thatboogandwondon’t occur in unlabeled data either, in which case we
might back off to even more general global features, but we leave this issue aside for the moment.

5

actual sentence said, “My son’s simple trophy won their hearts,” then we should guess VBD
for won, regardless of the global distribution oftrophy won. Of course, we let the learning
algorithm choose the relative weight on global vs. local information. In my experience,
when good local features are available, the learning algorithm will usually put most of the
weight on them, as the algorithm finds these features to be statistically more reliable. So we
must lower our expectations for the possible benefits of purely distributional information.
When there are already other good sources of information available locally, the effect of
global information is diminished. Section 5.6 presents some experimental results on VBN-
VBD disambiguation and discusses this point further.

Using N-grams for Learning from Unlabeled Data

In our work, we make use of aggregate counts over a large corpus; we don’t inspect the in-
dividual instances of each phrase. That is, we do not separately process the 4868 sentences
where “won the trophy” occurs on the web, rather we use the N-gram,won the trophy, and
its count, 4868, as a single unit of information. We do this mainly because it’s computation-
ally inefficient to process all the instances (that is, the entire web). Very good inferences can
be drawn from the aggregate statistics. Chapter 2 describesa range of alternative methods
for exploiting unlabeled data; many of these can not scale toweb-scale text.

1.4 A Perspective on Statistical vs. Linguistic Approaches

When reading any document, it can be useful to think about theauthor’s perspective. Some-
times, when we establish the author’s perspective, we mightalso establish that the document
is not worth reading any further. This might happen, for example, if the author’s perspec-
tive is completely at odds with our own, or if it seems likely the author’s perspective will
prevent them from viewing evidence objectively.

Surely, some readers of this document are also wondering about the perspective of its
author. Does he approach language from a purely statisticalviewpoint, or is he interested in
linguistics itself? The answer: Although I certainly advocate the use of statistical methods
and huge volumes of data, I am mostly interested in how these resources can help with
real linguistic phenomena. I agree that linguistics has an essential role to play in the future
of NLP [Jelinek, 2005; Hajič and Hajičová, 2007]. I aim to be aware of the knowledge of
linguists and I try to think about where this knowledge mightapply in my own work. I try to
gain insight into problems by annotating data myself. When Itackle a particular linguistic
phenomenon, I try to think about how that phenomenon serves human communication and
thought, how it may work differently in written or spoken language, how it may work
differently across human languages, and how a particular computational representation may
be inadequate. By doing these things, I hope to not only produce more interesting and
insightful research, but to produce systems that work better. For example, while a search on
Google Scholar reveals a number of papers proposing “language independent” approaches
to tasks such as named-entity recognition, parsing, grapheme-to-phoneme conversion, and
information retrieval, it is my experience that approachesthat pay attention to language-
specific issues tend to work better (e.g., in transliteration [Jiampojamarnet al., 2010]). In
fact, exploiting linguistic knowledge can even help the Google statistical translation system
[Xu et al., 2009] – a system that is often mentioned as an example of a purely data-driven
NLP approach.

6

On the other hand, mapping language to meaning is a very hard task, and statistical
tools help a lot too. It does not seem likely that we will solvethe problems of NLP anytime
soon. Machine learning allows us to make very good predictions (in the face of uncertainty)
by combining multiple, individually inadequate sources ofevidence. Furthermore, it is
empirically very effective to make predictions based on something previously observed
(say, on the web), rather than trying to interpret everything purely on the basis of a very rich
linguistic (or multi-modal) model. The observations that we rely on can sometimes be subtle
(as in the verb tagging example from Section 1.3) and sometimes obvious (e.g., just count
which preposition occurs most frequently in a given context, Section 3.5). Crucially, even
if our systems do not really model the underlying linguistic(and other mental) processes,4

such predictions may still be quite useful for real applications (e.g., in speech, machine
translation, writing aids, information retrieval, etc.).Finally, once we understand what
can be solved trivially with big data and machine learning, it might better help us focus our
attention on the appropriate deeper linguistic issues; i.e., thelong tail of linguistic behaviour
predicted by Zipf’s law. Of course, we need to be aware of the limitations of N-gram models
and big data, because, as Mark Steedman writes[Steedman, 2008]:

“One day, either because of the demise of Moore’s law, or simply because we
have done all the easy stuff, the Long Tail will come back to haunt us.”

Not long ago, many in our community were dismissive of applying large volumes of
data and machine learning to linguistic problems at all. Forexample, IBM’s first paper
on statistical machine translation was met with a famously (anonymous) negative review
(1988) (quoted in[Jelinek, 2009]):

“The crude force of computers is not science. The paper is simply beyond the
scope of COLING.”

Of course, statistical approaches are now clearly dominantin NLP (see Section 2.1). In
fact, what is interesting about the field of NLP today is the growing concern that our field
is now too empirical. These concerns even come from researchers that were the leaders
of the shift to statistical methods. For example, an upcoming talk at COLING 2010 by
Ken Church and Mark Johnson discusses the topic, “The Pendulum has swung too far. The
revival of empiricism in the 1990s was an exciting time. But now there is no longer much
room for anything else.”5 Richard Sproat adds:6

“... the field [of computational linguistics] has devolved in large measure into a
group of technicians who are more interested in tweaking thetechniques than
in the problems they are applied to; who are far more impressed by a clever
new ML approach to an old problem, than the application of known techniques
to a new problem.”

Although my own interests lie in both understanding linguistic problems and in “tweak-
ing” ML techniques, I don’t thinkeveryoneneed approach NLP the same way. We need

4Our models obviously do not reflect real human cognition since humans do not have access to the trillions
of pages of data that we use to train our models. The main objective of this dissertation is to investigate what
kinds of useful and scientifically interesting things we cando with computers. In general, my research aims to
exploit models of human linguistic processing where possible, as opposed to trying to replicate them.

5http://nlp.stanford.edu/coling10/full-program.html# ring
6http://www.cslu.ogi.edu/ ˜ sproatr/newindex/ncfom.html

7

Uses Web-Scale N-grams Auto-Creates Examples

Problem Ch. 3 Ch. 4 Ch. 5 Ch. 6 Ch. 7
Preposition selection § 3.5 § 4.4.1
Context-sensitive spelling correction§ 3.6 § 4.4.2 § 5.4
Non-referential pronoun detection § 3.7 § 4.4.3
Adjective ordering § 5.3
Noun-compound bracketing § 5.5
VBN-VBD disambiguation § 5.6
Selectional preference Ch. 6
Pronoun resolution § 6.4.6
Cognate identification Ch. 7

Table 1.1: Summary of tasks handled in the dissertation, with pointers to relevant sections,
divided by the main method applied (using web-scale N-gram features or automatic creation
of training examples)

both tweakers and theorists,doers andthinkers, those that try to solve everything using
ML/big data, and those that feel data-driven successes are ultimately preventing us from
solving the real problems. Supporting a diversity of views may be one way to ensure uni-
versally better funding for NLP research in the future[Steedman, 2008].

I hope that people from a variety of perspectives will find something they can appreciate
in this dissertation.

1.5 Overview of the Dissertation

Chapter 2 provides an introduction to machine learning in NLP, and gives a review of previ-
ous supervised and semi-supervised approaches related to this dissertation. The remainder
of the dissertation can be divided into two parts that span Chapters 3-5 and Chapters 6-7,
respectively. Each chapter is based on a published paper, and so is relatively self-contained.
However, reading Chapter 3 first will help clarify Chapter 5 and especially Chapter 4.

We now summarize the specific methods used in each chapter. For easy reference,
Table 1.1 also lists the tasks that are evaluated in each of these chapters.

Using Unlabeled Statistics as Features

In the first part of the dissertation, we propose to use the counts of unlabeled patterns as
features in supervised systems trained on varying amounts of labeled data. In this part of
the dissertation, the unlabeled counts are taken from web-scale N-gram data. Web-scale
data has previously been used in a diverse range of language research, but most of this
research has used web counts for only short, fixed spans of context. Chapter 3 proposes a
unified view of using web counts for lexical disambiguation.We extract the surrounding
textual context of a word to be classified and gather, from a large corpus, the distribution
of words that occur within that context. Unlike many previous approaches, our supervised
and unsupervised systems combine information from multiple and overlapping segments of
context. On the tasks of preposition selection and context-sensitive spelling correction, the
supervised system reduces disambiguation error by 20-24% over current, state-of-the-art

8

web-scale systems. This work was published in the proceedings of IJCAI-09[Bergsmaet
al., 2009b]. This same method can also be used to determine whether a pronoun in text
refers to a preceding noun phrase or is insteadnon-referential. This is the first system for
non-referential pronoun detection where all the key information is derived from unlabeled
data. The performance of the system exceeds that of (previously dominant) rule-based
approaches. The work on non-referentialit detection was first published in the proceedings
of ACL-08: HLT [Bergsmaet al., 2008b].

Chapter 4 improves on the lexical disambiguation classifiers of Chapter 3 by using a
simple technique for learning better support vector machines (SVMs) using fewer train-
ing examples. Rather than using the standard SVM regularization, we regularize toward
low weight-variance. Our new SVM objective remains a convexquadratic function of the
weights, and is therefore computationally no harder to optimize than a standard SVM. Vari-
ance regularization is shown to enable dramatic improvements in the learning rates of SVMs
on the three lexical disambiguation tasks that we also tackle in Chapter 3. A version of this
chapter was published in the proceedings of CoNLL 2010[Bergsmaet al., 2010b]

Chapter 5 looks at the effect of combining web-scale N-gram features with standard,
lexicalized features in supervised classifiers. It extendsthe work in Chapter 3 both by
tackling new problems and by simultaneously evaluating these two very different feature
classes. We show that including N-gram count features can advance the state-of-the-art
accuracy on standard data sets for adjective ordering, spelling correction, noun compound
bracketing, and verb part-of-speech disambiguation. Moreimportantly, when operating on
new domains, or when labeled training data is not plentiful,we show that using web-scale
N-gram features is essential for achieving robust performance. A version of this chapter
was published in the proceedings of ACL 2010[Bergsmaet al., 2010c].

Using Unlabeled Statistics to Generate Training Examples

In the second part of the dissertation, rather than using theunlabeled statistics solely as
features, we use them to generate labeled examples. By automatically labeling a large
number of examples, we can train powerful discriminative models, leveraging fine-grained
features of input words.

Chapter 6 shows how this technique can be used to learn selectional preferences. Mod-
els of selectional preference are essential for resolving syntactic, word-sense, and reference
ambiguity, and models of selectional preference have received a lot of attention in the NLP
community. We turn selectional preference into a supervised classification problem by ask-
ing our classifier to predict which predicate-argument pairs should have high association
in text. Positive examples are taken from observed predicate-argument pairs, while neg-
atives are constructed from unobserved combinations. We train a classifier to distinguish
the positive from the negative instances. Features are constructed from the distribution of
the argument in text. We show how to partition the examples for efficient training with 57
thousand features and 6.5 million training instances. The model outperforms other recent
approaches, achieving excellent correlation with human plausibility judgments. Compared
to mutual information, our method identifies 66% more verb-object pairs in unseen text,
and resolves 37% more pronouns correctly in a pronoun resolution experiment. This work
was originally published in EMNLP 2008[Bergsmaet al., 2008a].

In Chapter 7, we apply this technique to learning a model of string similarity. A
character-based measure of similarity is an important component of many natural language
processing systems, including approaches to transliteration, coreference, word alignment,

9

spelling correction, and the identification of cognates in related vocabularies. We turn string
similarity into a classification problem by asking our classifier to predict which bilingual
word pairs are translations. Positive pairs are generated automatically from words with a
high association in an aligned bitext, or mined from dictionary translations. Negatives are
constructed from pairs with a high amount of character overlap, but which are not transla-
tions. We gather features from substring pairs consistent with a character-based alignment
of the two strings. The main objective of this work was to demonstrate a better model of
string similarity, not necessarily to demonstrate our method for generating training exam-
ples, however the overall framework of this work fits in nicely with this dissertation. Our
model achieves exceptional performance; on nine separate cognate identification experi-
ments using six language pairs, we more than double the average precision of traditional
orthographic measures like longest common subsequence ratio and Dice’s coefficient. We
also show strong improvements over other recent discriminative and heuristic similarity
functions. This work was originally published in the proceedings of ACL 2007[Bergsma
and Kondrak, 2007a].

1.6 Summary of Main Contributions

The main contribution of Chapter 3 is to show that we need not restrict ourselves to very
limited contextual information simply because we are working with web-scale volumes of
text. In particular, by using web-scale N-gram data (as opposed to, for example, search
engine data), we can:

• combine information from multiple, overlapping sequencesof context of varying
lengths, rather than using a single context pattern (Chapter 3), and

• apply either discriminative techniques or simple unsupervised algorithms to integrate
information from these overlapping contexts (Chapter 3).

We also make useful contributions by showing how to:

• detect non-referential pronouns by looking at the distribution of fillers that occur in
pronominal context patterns (Section 3.7),

• modify the SVM learning algorithm to be biased toward a solution that isa priori
known to be effective, whenever features are based on counts(Chapter 4), and

• operate on new domains with far greater robustness than approaches that simply use
standard lexical features (Chapter 5).

• exploit preprocessing of web-scale N-gram data, either viapart-of-speech tags added
to the source corpus (Chapter 5), or by truncating/stemmingthe N-grams themselves
(Section 3.7).

The technique of automatically generating training examples has also been used previ-
ously in NLP. Our main contributions are showing:

• very clean pseudo-examples can be generated from aggregatestatistics rather than
individual words or sentences in text, and

10

• since many more training examples are available when examples are created automat-
ically, we can exploit richer, more powerful, more fine-grained features for a range
of problems, from semantics (Chapter 6) to string similarity (Chapter 7).

The new features we proposed include the first use of character-level (string and capi-
talization) features for selectional preferences (Chapter 6), and the first use of alignment in
discriminative string similarity (Chapter 7).

I really do hope you enjoy finding out more about these and the other contributions of
this dissertation!

11

Chapter 2

Supervised and Semi-Supervised
Machine Learning in Natural
Language Processing

“We shape our tools. And then our tools shape us.”
- Marshall McLuhan

This chapter outlines the key concepts from machine learning that are used in this dis-
sertation. Section 2.1 provides some musings on why machinelearning has risen to be
such a dominant force in NLP. Section 2.2 introduces thelinear classifier, the fundamen-
tal statistical model that we use in all later chapters of thedissertation. Section 2.2, and
the following Section 2.3, address one important goal of this chapter: to present a sim-
ple, detailed explanation of how the tools of supervised machine learning can be used in
NLP. Sections 2.4 and 2.5 provide a higher-level discussionof related approaches to un-
supervised and semi-supervised learning. In particular, these sections relate past trends in
semi-supervised learning to the models presented in the dissertation.

2.1 The Rise of Machine Learning in NLP

It is interesting to trace the historical development of thestatistical techniques that are
so ubiquitous in NLP today. The following mostly relies on the brief historical sketch in
Chapter 1 of Jurafsky and Martin’s textbook[Jurafsky and Martin, 2000], with insights
from [Church and Mercer, 1993; Manning and Schütze, 1999; Jelinek, 2005; Fung and
Roth, 2005; Hajič and Hajičová, 2007].

The foundations of speech and language processing lie in the1940s and 1950s, when
finite-state machines were applied to natural language by Claude Shannon[1948], and sub-
sequently analyzed as a formal language by Noam Chomsky[1956]. During the later 1950s
and 1960s, speech and language processing had split into twodistinct lines of research:
logic-based “symbolic” methods and probabilistic “stochastic” research.

Researchers in the symbolic tradition were both pursuing computational approaches to
formal language theory and syntax, and also working with natural language in the logic
and reasoning framework then being developed in the new fieldof artificial intelligence.
From about 1960 to 1985, stochastic approaches were generally out-of-favour, and remain

12

so within some branches of psychology, linguistics and artificial intelligence even today.
Manning and Schütze believe that

“much of the skepticism towards probabilistic models for language (and cog-
nition in general) stems from the fact that the well-known early probabilistic
models (developed in the 1940s and 1950s) are extremely simplistic. Because
these simplistic models clearly do not do justice to the complexity of human
language, it is easy to view probabilistic models in generalas inadequate.”

The stochastic paradigm became much more influential again after the 1970s and early
1980s when N-gram models were successfully applied to speech recognition by the IBM
Thomas J. Watson Research Center[Jelinek, 1976; Bahlet al., 1983] and by James Baker
at Carnegie Mellon University[Baker, 1975]. Previous efforts in speech recognition had
been rather “ad hocand fragile, and were demonstrated on only a few specially selected ex-
amples”[Russell and Norvig, 2003]. The work by Jelinek and others soon made it apparent
that data-driven approaches simplywork better. As Hajič and Hajičová[2007] summarize:

“[The] IBM Research group under Fred Jelinek’s leadership realized (and ex-
perimentally showed) that linguistic rules and Artificial Intelligence techniques
had inferior results even when compared to very simplistic statistical tech-
niques. This was first demonstrated on phonetic baseforms inthe acoustic
model for a speech recognition system, but later it became apparent that this
can be safely assumed almost for every other problem in the field (e.g., Je-
linek [1976]). Statistical learning mechanisms were apparently and clearly
superior to any human-designed rules, especially those using any preference
system, since humans are notoriously bad at estimating quantitative character-
istics in a system with many parameters (such as a natural language).”

Probabilistic and machine learning techniques such as decision trees, clustering, EM,
and maximum entropy gradually became the foundation of speech processing[Fung and
Roth, 2005]. The successes in speech then inspired a range of empirical approaches to
natural language processing. Simple statistical techniques were soon applied to part-of-
speech tagging, parsing, machine translation, word-sensedisambiguation, and a range of
other NLP tasks. While there was only one statistical paper at the ACL conference in 1990,
virtually all papers in ACL today employ statistical techniques[Hajič and Hajičová, 2007].

Of course, the fact that statistical techniques currently work better is only partly respon-
sible for their rise to prominence. There was a fairly large gap in time between their proven
performance on speech recognition and their widespread acceptance in NLP. Advances
in computer technology and the greater availability of dataresources also played a role.
According to Church and Mercer[1993]:

“Back in the 1970s, the more data-intensive methods were probably beyond the
means of many researchers, especially those working in universities... Fortu-
nately, as a result of improvements in computer technology and the increasing
availability of data due to numerous data collection efforts, the data-intensive
methods are no longer restricted to those working in affluentindustrial labora-
tories.”

Two other important developments were the practical application and commercializa-
tion of NLP algorithms and the emphasis that was placed on empirical evaluation. A greater

13

emphasis on “deliverables and evaluation”[Church and Mercer, 1993] created a demand
for robust techniques, empirically-validated on held-outdata. Performance metrics from
speech recognition and information retrieval were adoptedin many NLP sub-fields. People
stopped evaluating on their training set, and started usingstandard test sets. Machine learn-
ing researchers, always looking for new sources of data, began evaluating their approaches
on natural language, and publishing at high-impact NLP conferences.

FlexiblediscriminativeML algorithms like maximum entropy[Bergeret al., 1996] and
conditional random fields[Lafferty et al., 2001] arose as natural successors to earlier sta-
tistical techniques like naive Bayes and hidden Markov models (generativeapproaches;
Section 2.3.3). Indeed, since machine learning algorithms, especially discriminative tech-
niques, could be specifically tuned to optimize a desired performance metric, ML systems
achieved superior performance in many competitions and evaluations. This has led to a shift
in the overall speech and language processing landscape. Originally, progress in statistical
speech processing inspired advances in NLP; today many ML algorithms (such as structured
perceptrons and support vector machines) were first developed for NLP and information re-
trieval applications and then later applied to speech tasks[Fung and Roth, 2005].

In the initial rush to adopt statistical techniques, many NLP tasks were decomposed into
sub-problems that could be solved with well-understood andreadily-available binary classi-
fiers. In recent years, NLP systems have adopted more sophisticated ML techniques. These
algorithms are now capable of producing an entire annotation (like a parse-tree or trans-
lation) as a single global output, and suffer less from the propagation of errors common
in a pipelined, local-decision approach. These so-called “structured prediction” techniques
include conditional random fields[Lafferty et al., 2001], structured perceptrons[Collins,
2002], structured SVMs[Tsochantaridiset al., 2004], and rerankers[Collins and Koo,
2005]. Others have explored methods to produce globally-consistent structured output via
linear programming formulations[Roth and Yih, 2004]. While we have also had success in
using global optimization techniques like integer linear programming[Bergsma and Kon-
drak, 2007b] and re-ranking[Dou et al., 2009], the models used in this dissertation are
relatively simple linear classifiers, which we discuss in the following section. This disserta-
tion focuses on a) developing better features and b) automatically producing more labeled
examples. The advances we make are also applicable when using more sophisticated learn-
ing methods.

Finally, we note that recent years have also seen a strong focus on the development of
semi-supervisedlearning techniques for NLP. This is also the focus of this dissertation. We
describe semi-supervised approaches more generally in Section 2.5.

2.2 The Linear Classifier

A linear classifier is a very simple, unsophisticated concept. We explain it in the context
of text categorization, which will help make the equations more concrete for the reader.
Text categorization is the problem of deciding whether an input document is a member of
a particular category or not. For example, we might want to classify a document as being
aboutsportsor not.

Let’s refer to the input asd. So for text categorization,d is a document. We want to
decide ifd is about sports or not. On what shall we base this decision? Wealways base the
decision on somefeaturesof the input. For a document, we base the decision on the words
in the document. We define afeature function Φ(d). This function takes the inputd and

14

produces afeature vector. A vector is just a sequence of numbers, like(0, 34, 2.3). We can
think of a vector as having multipledimensions, where each dimension is a number in the
sequence. So0 is in the first dimension of(0, 34, 2.3), 34 is in the second dimension, and
2.3 is in the third dimension. For text categorization, each dimension might correspond to
a particular word (although character-based representations are also possible[Lodhi et al.,
2002]). Thevalue at that dimension could be1 if the word is present in the document, and
0 otherwise. These arebinary feature values. We sometimes say that a featurefires if that
feature value is non-zero, meaning, for text categorization, that the word is present in the
document. We also sometimes refer to the feature vector as the feature representationof
the problem.

In machine learning, the feature vector is usually denoted as x̄, sox̄ = Φ(d).
A simple feature representation would be to have the first dimension be for the presence

of the wordthe, the second dimension for the presence ofcurling, and the third for the pres-
ence ofObama. If the document read only “Obama attended yesterday’s curling match,”
then the feature vector would be(0, 1, 1). If the document read “stocks are up today on
Wall Street,” then the feature vector would be(0, 0, 0). Notice the order of the words in the
text doesn’t matter. “Curling went Obama” would have the same feature vector as “Obama
went curling.” So this is sometimes referred to as thebag-of-words feature representation.
That’s not really important but it’s a term that is often seenin bold text when describing
machine learning.

Thelinear classifier, h(x̄), works by multiplying the feature vector,x̄ = (x1, x2, ...xN)

by a set of learned weights,̄w = (w1, w2, ...):

h(x̄) = w̄ · x̄ =
∑

i

wixi (2.1)

where thedot product (·) is a mathematical shorthand meaning, as indicated, that each
wi is multiplied with the feature value at dimensioni and the results are summed. We
can also write a dot product using matrix notation asw̄T x̄. A linear classifier using an
N -dimensional feature vector will sum the products ofN multiplications. It’s known as a
linear classifier because this is alinear combination of the features. Note, sometimes the
weights are also represented usingλ = (λ1, ...λN). This is sometimes convenient in NLP
when we might want to usew to refer to a word.

The objective of the linear classifier is to producelabelson new examples. Labels are
almost always represented asy. We choose the label using the output of the linear classifier.
In a common paradigm, if the output is positive, that is,h(x̄) > 0, then we take this as a
positive decision: yes, the documentd doesbelong to the sports category, so the label,y

equals+1 (the positive class). Ifh(x̄) < 0, we say the document does not belong in the
sports category, andy = −1 (the negative class).

Now, the job of the machine learning algorithm is to learn these weights. That’s really
it. In the context of the widely-used linear classifier, the weights fully define the classifier.
Training means choosing the weights, andtesting means computing the dot product with
the weights for new feature vectors. How does the algorithm actually choose the weights?
In supervised machine learning, you give some examples of feature vectors and the correct
decision on the vector. The index of each training example isusually written as a super-
script, so that a training set ofM examples can be written as:{(x̄1, y1), ..., (x̄M , yM)}.
For example, a set of two training examples might be{(0, 1, 0),+1}, {(1, 0, 0),−1} for
a positive (+1) and a negative (−1) example. The algorithm tries to choose theparame-
ters (a synonym for the weights,̄w) that result in the correct decision on this training data

15

Figure 2.1: The linear classifier hyperplane (as given by an SVM, with support vectors
indicated)

when the dot product is computed (here between three weightsand three features). For our
sportsexample, we would hope that the algorithm would learn, for example, thatcurling
should get a positive weight, since documents that contain the wordcurling are usually
about sports. It should assign a fairly low weight, perhaps zero weight, to the wordthe,
since this word doesn’t have much to say one way or the other. Choosing an appropriate
weight for theObamafeature is left as an exercise for the reader. Note that weights can
be negative. Section 2.3 has more details on some of the different algorithms that learn the
weights.

If we take a geometric view, and think of the feature vectors as points inN -dimensional
space, then learning the weights can also be thought of as learning a separating hyperplane.
Once we have any classifier, then all feature vectors that getpositive scores will be in one
region of space, and all the feature vectors that get negative scores will be in another. With
a linear classifier, a hyperplane will divide these two regions. Figure 2.1 depicts this set-up
in two dimensions, with the points of one class on the left, the points for the other class on
the right, and the dividing hyperplane as a bar down the middle.1

In this discussion, we’ve focused on binary classification:is the document aboutsports
or not? In many practical applications, however, we have more than two categories, e.g.
sports, finance, politics, etc. It’s fairly easy to adapt the binary linear classifier to themul-
ticlasscase. ForK classes, one common approach is theone-versus-allstrategy: we have
K binary classifiers that each predict whether a document is part of a given category or
not. Thus we might classify a document about Obama going curling as both asportsand
a politics document. In cases where only one category is possible (i.e., the classes are mu-
tually exclusive, such as the restriction that each word have only one part-of-speech tag),
we could take the highest-scoring classifier (the highesth(x̄)) as the class. There are also
multiclass classifiers, like the approach we use in Chapter 3, that essentially jointly opti-
mize theK classifiers (e.g.[Crammer and Singer, 2001]). Chapter 4 defines and evaluates
various multi-class learning approaches.

A final point to address: should we be using a linear classifierfor our problems at
all? Linear classifiers are very simple, extremely fast, andwork very well on a range of

1From: www.stat.columbia.edu/ ˜ cook/movabletype/archives/2006/02/
interesting_cas_1.html

16

problems. However, they do not work well in all situations. Suppose we wanted a binary
classifier to tell us whether a given Canadian city is either in Manitoba or not in Manitoba.
Suppose we had only one feature: distance from the Pacific ocean. It would be difficult to
choose a weight and a threshold for a linear classifier such that we could separate Manitoban
cities from other Canadian cities with only this one feature. If we took cities below a
threshold, we could get all cities west of Ontario. If we tookthose above, we could get
all cities east of Saskatchewan. We would say that the positive and negative examples are
not separableusing this feature representation; the positives and negatives can’t be placed
nicely onto either side of a hyperplane. There are lots of non-linear classifiers to choose
from that might do better.

On the other hand, we’re always free to choose whatever feature function we like; for
most problems, we can just choose a feature space that does work well with linear classifiers
(i.e., a feature space that perhaps does make the training data separable). We could divide
distance-from-Pacific-oceaninto multiple features: say, a binary feature if the distance is
between 0 and 100 km, another if it’s between 100 and 200, etc.Also, many learning
algorithms permit us to use thekernel trick , which maps the feature vectors into an implicit
higher-dimensional space where a linear hyperplane can better divide the classes. We return
to this point briefly in the following section. For many natural language problems, we have
thousands of relevant features, and good classification is possible with linear classifiers.
Generally, the more features, the more separable the examples.

2.3 Supervised Learning

In this section, we provide a very practical discussion of how the parameters of the linear
classifier are chosen. This is the NLP view of machine learning: what you need to know to
use it as a tool.

2.3.1 Experimental Set-up

The proper set-up is to have at least three sets of labeled data when designing a supervised
machine learning system. First, you have atraining set, which you use to learn yourmodel
(yet another word that means the same thing as the weights or parameters: the model is the
set of weights). Secondly, you have adevelopment set, which serves two roles: a) you can
set any of your algorithm’s hyperparameters on this set (hyperparameters are discussed be-
low), and b) you can test your system on this set as you are developing. Rather than having
a single development set, you could optimize your parameters by ten-fold cross validation
on the training set, essentially re-using the training datato set development parameters.
Finally, you have ahold-out set or test setof unseen data which you use for your final
evaluation. You only evaluate on the test set once, to generate the final results of your ex-
periments for your paper. This simulates how your algorithmwould actually be used in
practice: classifying data it has not seen before.

To run machine learning in this framework, we typically begin by converting the three
sets into feature vectors and labels. We then supply the training set, in labeled feature
vector format, to a standard software package, and this package returns the weights. The
package can also be used to multiply the feature vectors by the weights, and return the
classification decisions for new examples. It thus can and often does calculate performance
on the development or test sets for you.

17

The above experimental set-up is sometimes referred to as abatch learning approach,
because the algorithm is given the entire training set at once. A typical algorithm learns
a single, static model using the entire training set in one training session (remember: for
a linear classifier, by model we just mean the set of weights).This is the approach taken
by SVMs and maximum entropy models. This is clearly different than how humans learn;
we adapt over time as new data is presented. Alternatively, an online learning algorithm
is one that is presented with training examples in sequence.Online learning iteratively
re-estimates the model each time a new training instance is encountered. The perceptron
is the classic example of an online learning approach, whilecurrently MIRA [Crammer
and Singer, 2003; Crammeret al., 2006] is a popular maximum-margin online learner (see
Section 2.3.4 for more on max-margin classifiers). In practice, there is little difference
between how batch and online learners are used; if new training examples become available
to a batch learner, the new examples can simply be added to theexisting training set and the
model can be re-trained on the old-plus-new combined data asanother batch process.

It is also worth mentioning another learning paradigm knownasactive learning [Cohn
et al., 1994; Tong and Koller, 2002]. Here the learner does not simply train passively
from whatever labeled data is available, rather, the learner can request specific examples
be labeled if it deems adding these examples to the training set will most improve the
classifier’s predictive power. Active learning could potentially be used in conjunction with
the techniques in this dissertation to get the most benefit out of the smallest amount of
training data possible.

2.3.2 Evaluation Measures

Performance is often evaluated in terms ofaccuracy: what percentage of examples did we
classify correctly? For example, if our decision is whethera document is aboutsportsor not
(i.e.,sportsis thepositive class), then accuracy is the percentage of documents that are cor-
rectly labeled assportsor non-sports. Note it is difficult to compare accuracy of classifiers
across tasks, because typically the class balance stronglyaffects the achievable accuracy.
For example, suppose there are 100 documents in our test set,and only five of these are
sportsdocuments. Then a system could trivially achieve 95% accuracy by assigning every
document thenon-sportslabel. 95% might be much harder to obtain on another task with
a 50-50 balance of the positive and negative classes. Accuracy is most useful as a measure
when the performance of the proposed system is compared to abaseline: a reasonable,
simple and perhaps even trivial classifier, such as one that picks themajority-class (the
most frequent class in the training data). We use baselines whenever we state accuracy in
this dissertation.

Accuracy also does not tell us whether our classifier is predicting one class dispropor-
tionately more often than another (that is, whether it has abias). Statistical measures that
do identify classifier biases arePrecision, Recall, andF-Score. These measures are used
together extensively in classifier evaluation.2 Again, supposesportsis the class we’re pre-
dicting. Precisiontells us:of the documents that our classifier predicted to be sports, what
percentage are actually sports? That is, precision is the ratio of true positives (elements
we predicted to be of the positive class that truly are positive, wheresportsis the positive
class in our running example), divided by the sum of true positives and false positives (to-

2Wikipedia has a detailed discussion of these measures:http://en.wikipedia.org/wiki/
Precision_and_recall

18

true class
+1 -1

predicted class
+1 TP FP
-1 FN TN

Table 2.1: The classifier confusion matrix. Assuming “1” is the positive class and “-1” is
the negative class, each instance assigned a class by a classifier is either a true positive (TP),
false positive (FP), false negative (FN), or true negative (TN), depending on its actual class
membership (true class) and what was predicted by the classifier (predicted class).

gether, all the elements that we predicted to be members of the positive class).Recall, on
the other hand, tells usthe percentage of actual sports documents that were also predicted
by the classifier to be sports documents. That is, recall is the ratio of true positives divided
by the number of true positives plus the number of false negatives (together, all the true,
gold-standard positives). It is possible to achieve 100% recall on any task by predicting all
instances to be of the positive class (eliminating false negatives). In isolation, therefore,
precision or recall may not be very informative, and so they are often stated together. For a
single performance number, precision and recall are often combined into the F-score, which
is simply the harmonic mean of precision and recall.

We summarize these measures using Table 2.1 and the following equations:

Precision=
TP

TP+ FP

Recall=
TP

TP+ FN

F-Score=
2 ∗ Precision∗ Recall

Precision+ Recall

2.3.3 Supervised Learning Algorithms

We want a learning algorithm that will give us the best accuracy on our evaluation data
– how do we choose it? As you might imagine, there are many different ways to choose
the weights. Some algorithms are better suited to some situations than others. There are
generativemodels like naive bayes that work well when you have smaller amounts of train-
ing data[Ng and Jordan, 2002]. Generative approaches jointly model both the input and
output variables in a probabilistic formulation. They require one to explicitly model the in-
terdependencies between the features of the model. There are also perceptrons, maximum
entropy/logistic regression models, support vector machines, and many otherdiscrimina-
tive techniques that all have various advantages and disadvantages in certain situations.
These models are known as discriminative because they are optimized to distinguish the
output labels given the input features (to discriminate between the different classes), rather
than to jointly model the input and output variables as in thegenerative approach. As Vap-
nik [1998] says, (quoted in[Ng and Jordan, 2002]): “One should solve the [classification]
problem directly and never solve a more general problem as anintermediate step.” In-
deed,[Roth, 1998] shows that generative and discriminative classifiers both make use of
a linear feature space. Given the same representation, the difference between generative

19

and discriminative models therefore rests solely in how theweights are chosen. Rather
than choosing weights that best fit the generative model on the training data (and satisfy
the model’s simplifying assumptions, typically concerning the interdependence or indepen-
dence of different features), a discriminative model chooses the weights that best attain the
desired objective: better predictions[Fung and Roth, 2005]. Discriminative models thus
tend to perform better, and are correspondingly the preferred approach today in many areas
of NLP (including increasingly in semantics, where we recently proposed a discriminative
approach to selectional preference; Chapter 6). Unlike generative approaches, when using
discriminative algorithms we can generally use arbitrary and interdependent features in our
model without worrying about modeling such interdependencies. Use of the worddiscrim-
inative in NLP has thus come to indicate both an approach that optimizes for classification
accuracy directlyand one that uses a wide variety of features. In fact, one kind of feature
you might use in a discriminative system is the prediction oroutput of a generative model.
This illustrates another advantage of discriminative learning: competing approaches can
always be included as new features.

Note the clear advantages of discriminative models are really only true for supervised
learning in NLP. There are now a growing number of generative, Bayesian, unsupervised
algorithms that are being developed. It may be the case that the pendulum will soon swing
back and generative models will again dominate the supervised playing field as well, par-
ticularly if they can provide principled ways to incorporate unlabeled data into a semi-
supervised framework.

2.3.4 Support Vector Machines

When you have lots of features and lots of examples, support vector machines[Cortes and
Vapnik, 1995] (SVMs) seem to be the best discriminative approach. One reason might be
because they perform well in situations, like natural language, where many features are
relevant[Joachims, 1999a], as opposed to situations where a few key indicators may be
sufficient for prediction. Conceptually, SVMs take a geometric view of the problem, as
depicted in Figure 2.1. The training algorithm chooses the hyperplane location such that
it is maximally far away from the closest positive and negative points on either side of it
(this is known as themax-marginsolution). These closest vectors are known as support
vectors. You can reconstruct the hyperplane from this set ofvectors alone. Thus the name
support vector machine. In fact, Figure 2.1 depicts the hyperplane that would be learned by
an SVM, with marks on the corresponding support vectors.

It can be shown that the hyperplane that maximizes the margincorresponds to the
weight vector that solves the following constrained optimization problem:

min
w̄

1

2
||w̄||2

subject to : ∀i, yi(w̄ · x̄i) ≥1 (2.2)

where||w̄|| is the Euclidean norm of the weight vector. Note||w̄||2 = w̄ · w̄. The 1
2 is a

mathematical convenience so that that coefficient goes awaywhen we take the derivative.
The optimization says that we want to find the smallest weightvector (in terms of its Eu-
clidean norm) such that our linear classifier’s output (h(x̄) = w̄ · x̄) is bigger than one when
the correct label is a positive class (y = +1), and less than -1when the correct label is a
negative class (y = -1). The constraint in Equation 2.2 is a succinct way of writing these
two conditions in one line.

20

Having the largest possible margin (or, equivalently, the smallest possible weight vector
subject to the constraints) that classifies the training examples correctly seems to be a good
idea, as it is most likely togeneralizeto new data. Once again, consider text categorization.
We may have a feature for each word in each document. There’s enough words and few
enough documents such that our training algorithm could possibly get all the training ex-
amples classified correctly if it just puts all the weight on the rare words in each document.
So if Obamaoccurs in a single sports document in our training set, but nowhere else in the
training set, our algorithmcould get that document classified correctly if it were to put all
its weight on the wordObamaand ignore the other features. Although this approach would
do well on the training set, it will likely not generalize well to unseen documents. It’s likely
not the maximum margin (smallest weight vector) solution. If we can instead separate the
positive and negative examples using more-frequent words like scoreandwin and teams
then we should do so. We will use less weights overall, and theweight vector will have
a smaller norm (fewer weights will be non-zero). It intuitively seems like a good idea to
rely on more frequent words to make decisions, and the SVM optimization just encodes
this intuition in a theoretically well-grounded formulation (it’s all based on ‘empirical risk
minimization’ [Vapnik, 1998]).

Sometimes, the positive and negative examples are not separable, and there will be no
solution to the above optimization. At other times, even if the data is separable, it may
be better to turn the hard constraints in the above equation into soft preferences, and place
even greater emphasis on using the frequent features. That is, we may wish to have a
weight vector with a small norm even at the expense of not separating the data. In terms of
categorizing sports documents, words likescoreandwin andteamsmay sometimes occur
in non-sports documents in the training set (so we may get some training documents wrong
if we put positive weight on them), but they are a better bet for getting test documents
correct than putting high weight on rare words likeObama(blindly enforcing separability).
Geometrically, we can view this as saying we might want to allow some points to lie on the
opposite side of the hyperplane (or at least closer to it), ifwe can do this with weights on
fewer dimensions.

[Cortes and Vapnik, 1995] give the optimization program for a soft-margin SVM as:

min
w̄,ξ1,...,ξM

1

2
||w̄||2+C

m∑

i=1

ξi

subject to : ∀i, ξi ≥ 0

yi(w̄ · x̄i) ≥ 1− ξi (2.3)

Theξi values are known as the slacks. Each example may use some slack. The classification
must either be separable and satisfy the margin constraint (in which caseξ = 0) or it may
instead use its slack to satisfy the inequality. The weighted sum of the slacks are minimized
along with the norm of̄w.

The relative importance of the slacks (getting the trainingexamples separated nicely)
versus the minimization of the weights (using more general features) is controlled by tun-
ingC. If the feature-weights learned by the algorithm are theparameters, then thisC value
is known as ahyperparameter, since it’s something done separately from the regular pa-
rameter learning. The general practice is to try various values for this hyperparameter, and
choose the one that gets the highest performance on the development set. In an SVM, this
hyperparameter is known as theregularization parameter. It controls how much we penal-
ize training vectors that lie on the opposite side of the hyperplane (with distance given by

21

their slack value). In practice, I usually try a range of values for this parameter starting at
0.000001 and going up by a factor of 10 to around 100000.

Note you would not want to tune the regularization parameterby measuring perfor-
mance on thetraining set, as less regularization is always going to lead to betterperfor-
mance on the training data itself. Regularization is a way topreventoverfitting the training
data, and thus should be set on separate examples, i.e., the development set. However, some
people like to do 10-fold cross validation on the training data to set their hyperparameters.
I have no problem with this.

Another detail regarding SVM learning is that sometimes it makes sense to scale or
normalize the features to enable faster and sometimes better learning. For many tasks,
it makes sense to divide all the feature values by the Euclidean norm of the feature vector,
such that the resulting vector has a magnitude of one. In the chapters that follow, we specify
if we use such a technique. Again, we can test whether such a transformation is worth it by
seeing how it affects performance on our development data.

SVMs have been shown to work quite well on a range of tasks. If you want to use a
linear classifier, they seem to be a good choice. The SVM formulation is also perfectly
suited to using kernels to automatically expand the featurespace, allowing for non-linear
classification. For all the tasks investigated in this dissertation, however, standard kernels
were not found to improve performance. Furthermore, training and testing takes longer
when kernels are used.

2.3.5 Software

We view the current best practice in most NLP classification applications as follows: Use as
many labeled examples as you can find for the task and domain ofinterest. Then, carefully
construct a linear feature space such that all potentially useful combinations of proper-
ties are explicit dimensions in that space (rather than implicitly creating such dimensions
through the use of kernels). For training, use the LIBLINEARpackage[Fanet al., 2008],
an amazingly fast solver that can return the SVM model in seconds even for tens of thou-
sands of features and instances (other fast alternatives exist, but haven’t been explored in
this dissertation). This set-up allows for very rapid system development and evaluation,
allowing us to focus on the features themselves, rather thanthe learning algorithm.

Since many of the tasks in this dissertation were completed before LIBLINEAR was
available, we also present results using older solvers suchas the logistic regression pack-
age in Weka[Witten and Frank, 2005], the efficient SVMmulticlass instance of SVMstruct

[Tsochantaridiset al., 2004]), and our old stand-by, Thorsten Joachim’s SVMlight [Joachims,
1999a]. Whatever package is used, it should now be clear that in terms of this dissertation,
training simply means learning a set of weights for a linear classifier using a given set of
labeled data.

2.4 Unsupervised Learning

There is a way to gather linguistic annotations without using any training data: unsupervised
learning. This at first seems rather magical. How can a systemproduce labels without ever
seeing them?

Most current unsupervised approaches in NLP are decidedly unmagical. Probably since
so much current work is based on supervised training from labeled data, some rule-based

22

and heuristic approaches are now being calledunsupervised, since they are not based on
learning from labeled data. For example, in Chapter 1, Section 1.1, we discussed how a
part-of-speech tagger could be based on linguistic rules. Arule-based tagger could in some
sense be consideredunsupervised, since a human presumably created the rules from intu-
ition, not from labeled data. However, since the human probably looked atsomedata to
come up with the rules (a textbook, maybe?), calling thisunsupervisedis a little mislead-
ing from a machine learning perspective. Most people would probably simply call this a
“rule-based approach.” In Chapter 3, we propose unsupervised systems for lexical disam-
biguation, where a designer need only specify the words thatare correlated with the classes
of interest, rather than label any training data. We also discuss previous approaches that
use counts derived from Internet search engine results. These approaches have usually been
unsupervised.

From a machine learning perspective, true unsupervised approaches are those that in-
duce output structure from properties of the problem, with guidance from probabilistic mod-
els rather than human intuition. We can illustrate this concept most clearly again with the
example of document classification. Suppose we know there are two classes: documents
about sports, and documents that are not about sports. We cangenerate the feature vectors
as discussed above, and then simply form two groups of vectors such that members of each
group are close to each other (in terms of Euclidean distance) in N -dimensional space. New
feature vectors can be assigned to whatever group orcluster they are closest to. The points
closest to one cluster will be separated from points closestto the other cluster by a hyper-
plane inN -dimensional space. Where there’s a hyperplane, then there’s a corresponding
linear classifier, with a set of weights. So clustering can learn a linear classifier as well. We
don’t know what the clusters represent, but hopefully one ofthem has all the sports docu-
ments (if we inspect the clusters and define one of them as thesportsclass, we’re essentially
doing a form ofsemi-supervisedlearning).

Clustering can also be regarded as an “exploratory science”that seeks to discover useful
patterns and structures in data[Pantel, 2003]. This structure might later be exploited for
other forms of language processing; later we will see how clustering can be used to provide
helpful feature information for supervised classifiers (Section 2.5.5).

Clustering is the simplest unsupervised learning algorithm. In more complicated set-
ups, we can define a probability model over our features (and possibly over otherhidden
variables), and then try to learn the parameters of the modelsuch that our unlabeled data has
a high likelihood under this model. We previously used such atechnique to train a pronoun
resolution system using expectation maximization[Cherry and Bergsma, 2005]. Similar
techniques can be used to train hidden markov models and other generative models.

These models can provide a very nice way to incorporate lots of unlabeled data. In some
sense, however, doing anything beyond an HMM requires one tobe a bit of probabilistic-
modeling guru. The more features you incorporate in the model, the more you have to ac-
count for the interdependence of these features explicitlyin your model. Some assumptions
you make may not be valid and may impair performance. It’s hard to know exactly what’s
wrong with your model, and how to change it to make it better. Also, when setting the
parameters of your model using clustering or expectation maximization, you might reach
a point only of local optimum, from which the algorithm can proceed no further to better
settings under your model (and you have no idea you’ve reached this point). But, since
these algorithms are not optimizing discriminative performance anyways, it’s not clear you
want the global maximum even if you can find it.

23

One way to find a better solution in this bumpy optimization space is to initialize or
fix parameters of your model in ways that bias things toward what you know you want.
For example,[Haghighi and Klein, 2010] fix a number of parameters in their entity-type /
coreference model usingprototypesof different classes. That is, they ensure, e.g., thatBush
or Gore are in the PERSON class, as are the nominalspresident, official, etc., and that
this class is referred to by the appropriate set of pronouns.They also set a number of other
parameters to “fixed heuristic values.” When the unsupervised learning kicks in, it initially
has less freedom to go off the rails, as the hand-tuning has started the model from a good
spot in the optimization space.

One argument that is sometimes made against fully unsupervised approaches is that the
set-up is a little unrealistic. You will likely want to evaluate your approach. To evaluate
your approach, you will need some labeled data. If you can produce labeled data for test-
ing, you can produce some labeled data for training. It seemsthatsemi-supervised learning
is a more realistic situation: you have lots of unlabeled data, but you also have a few labeled
examples to help you configure your parameters. In our unsupervised pronoun resolution
work [Cherry and Bergsma, 2005], we also used some labeled examples to re-weight the pa-
rameters learned by EM (using the discriminative techniqueknown as maximum entropy).3

Another interaction between unsupervised and supervised learning occurs when an un-
supervised method provides intermediate structural information for a supervised algorithm.
For example, unsupervised algorithms often generate the unseen word-to-word alignments
in statistical machine translation[Brown et al., 1993] and also the unseen character-to-
phoneme alignments in grapheme-to-phoneme conversion[Jiampojamarnet al., 2007].
This alignment information is then leveraged by subsequentsupervised processing.

2.5 Semi-Supervised Learning

Semi-supervised learning is a huge and growing area of interest in many different research
communities. The namesemi-supervised learninghas come to essentially mean that a
predictor is being created from information from both labeled and unlabeled examples.
There are a variety of flavours of semi-supervised learning that are relevant to NLP and
merit discussion. A good recent survey of semi-supervised techniques in general is by
Zhu [2005].

Semi-supervised learning was the “Special Topic of Interest” at the 2009 Conference
on Natural Language Learning. The organizers, Suzanne Stevenson and Xavier Carreras,
provided a thoughtful motivation for semi-supervised learning in the call for papers.4

“The field of natural language learning has made great strides over the last 15
years, especially in the design and application of supervised and batch learning
methods. However, two challenges arise with this kind of approach. First, in
core NLP tasks, supervised approaches require typically large amounts of man-
ually annotated data, and experience has shown that resultsoften depend on the

3The line between supervised and unsupervised learning can be a little blurry. We called our use of labeled
data and maximum entropy the “supervisedextension” of our unsupervised system in our EM paper[Cherry
and Bergsma, 2005]. A later unsupervisedapproach by Charniak and Elsner[2009], which also uses EM
training for pronoun resolution, involved tuning essentially the same number of hyperparameters by hand (to
optimize performance on a development set) as the number of parameters we tuned with supervision. Is this
still unsupervised learning?

4http://www.cnts.ua.ac.be/conll2009/cfp.html

24

precise make-up and genre of the training text, limiting generalizability of the
results and the reach of the annotation effort. Second, in modeling aspects
of human language acquisition, the role of supervision in learning must be
carefully considered, given that children are not providedexplicit indications
of linguistic distinctions, and generally do not attend to explicit correction of
their errors. Moreover, batch methods, even in an unsupervised setting, can-
not model the actual online processes of child learning, which show gradual
development of linguistic knowledge and competence.”

Theoretical motivations aside, the practical benefit of this line of research is essentially
to have the high performance and flexibility of discriminatively-trained systems, without
the cost of labeling huge numbers of examples. One can alwayslabel more examples to
achieve better performance on a particular task and domain but the expense can be severe.
Even companies with great resources, like Google and Microsoft, prefer solutions that do
not require paying annotators to create labeled data. This is because any cost of annotation
would have to be repeated in each language and potentially each domain in which the sys-
tem might be deployed (because of the dependence on the “precise make-up and genre of
the training text” mentioned above). While some annotationjobs can be shipped to cheap
overseas annotators at relatively low cost, finding annotation experts in many languages
and domains might be more difficult.5 Furthermore, after initial results, if the objective
of the program is changed slightly, then new data would have to be annotated once again.
Not only is this expensive, but it slows down the product development cycle. Finally, for
many companies and government organizations, data privacyand security concerns pre-
vent the outsourcing of annotation altogether. All labeling must be done by expensive and
overstretched internal analysts.

Of course, even when there is plentiful labeled examples andthe problem is well-
defined and unchanging, it may still boost performance to incorporate statistics from un-
labeled data. We have recently seen impressive gains from using unlabeled evidence, even
with large amounts of labeled data, for example in the work ofAndo and Zhang[2005],
Suzuki and Isozaki[2008], and Pitler et al.[2010].

In the remainder of this section, we briefly outline approaches to transductive learning,
self-training, bootstrapping, learning with heuristically-labeled examples, and using fea-
tures derived from unlabeled data. We focus on the work that best characterizes each area,
simply noting in passing some research that does not fit cleanly into a particular category.

2.5.1 Transductive Learning

Transductive learning gives us a great opportunity to talk more about document classifica-
tion (where it was perhaps most famously applied in[Joachims, 1999b]), but otherwise this
approach does not seem to be widely used in NLP. Most learnersoperate in theinductive
learning framework: you learn your model from the training set, and apply it to unseen data.
In the transductive framework on the other hand, you assume that, at learning time, you
are given access to the test examples you wish to classify (but not their labels).

5Another trend worth highlighting is work that leverages large numbers of cheap, non-expert annotations
through online services such as Amazon’s Mechanical Turk[Snowet al., 2008]. This has been shown to work
surprisingly well for a number of simple problems. Combining the benefits of non-expert annotations with the
benefits of semi-supervised learning is a potentially rich area for future work.

25

Figure 2.2: Learning from labeled and unlabeled examples, from (Zhu, 2005)

Consider Figure 2.2. In the typical inductive set-up, we would design our classifier
based purely on the labeled points for the two classes: theo’s and+’s. We would draw the
best hyperplane to separate these labeled vectors. However, when we look at all the dots
that do not have labels, we may wish to draw a different hyperplane. It appears that there
are two clusters of data, one on the left and one on the right. Drawing a hyperplane down
the middle would appear to be the optimum choice to separate the two classes. This is only
apparent after inspecting unlabeled examples.

We can always train a classifier using both labeled and unlabeled examples in the trans-
ductive set-up, but then apply the classifier to unseen data in an inductive evaluation. So in
some sense we can group other semi-supervised approaches that make use of labeled and
unlabeled examples into this category (e.g. work by Wang et al. [2008]), even if they are
not applied transductivelyper se.

There are many computational algorithms that can make use ofunlabeled examples
when learning the separating hyperplane. The intuition behind them is to say something
like: of all combinations ofpossiblelabels on the unseen examples, find the overall best
separating hyperplane. Thus, in some sense we pretend we know the labels on the unlabeled
data, and use these labels to train our model via traditionalsupervised learning. In most
semi-supervised algorithms, we either implicitly or explicitly generate labels for unlabeled
data in a conceptually similar fashion, to (hopefully) enhance the data we use to train the
classifier.

These approaches are not applicable to the problems that we wish to tackle in this
dissertation mainly due to practicality. We want to leverage huge volumes of unlabeled
data: all the data on the web, if possible. Most transductivealgorithms cannot scale to this
many examples. Another potential problem is that for many NLP applications, the space
of possible labels is simply too large to enumerate. For example, work in parsing aims to
produce a tree indicating the syntactic relationships of the words in a sentence.[Church and
Patil, 1982] show the number of possible binary trees increases with the Catalan numbers.
For twenty-word sentences, there are billions of possible trees. We are currently exploring
linguistically-motivated ways to perform a high-precision pruning of the output space for

26

parsing and other tasks[Bergsma and Cherry, 2010]. One goal of our work is to facilitate
more intensive semi-supervised learning approaches. Thisis an active research area in
general.

2.5.2 Self-training

Self-training is a very simple algorithm that has shown somesurprising success in natural
language parsing[McClosky et al., 2006a]. In this approach, you build a classifier (or
parser, or any kind of predictor) on some labeled training examples. You then use the
learned classifier to label a large number of unlabeled feature vectors. You then re-train
your system on both the original labeled examples and the automatically-labeled examples
(and then evaluate on your original development and test data). Again, note that this semi-
supervised technique explicitly involves generating labels for unlabeled data to enhance the
training of the classifier.

Historically, this approach has not worked very well. Any errors the system makes after
the first round of training are just compounded by re-training on those errors. Perhaps it
works better in parsing (and especially with a parse reranker) where the constraints of the
grammar give some extra guidance to the initial output of theparser. More work is needed
in this area.

2.5.3 Bootstrapping

Bootstrapping has a long and rich history in NLP. Bootstrapping is like self-training, but
where we avoid the compounding of errors by exploiting different views of the problem.
We first describe the overall idea in the context of algorithms for multi-view learning. We
then consider how related work in bootstrapping from seeds also fits into the multi-view
framework.

Bootstrapping with Multiple Views

Consider, once again, classifying documents. However, let’s assume that these are online
documents. In addition to the words in the documents themselves, we might also classify
documents using the text in hyperlinks pointing to the documents, taken from other websites
(so-calledanchor text). In the standard supervised learning framework, we would just use
this additional text as additional features, and train on our labeled set. In a bootstrapping
approach (specifically, theco-training algorithm[Blum and Mitchell, 1998]), we instead
train two classifiers: one with features from the document, and one with features from the
anchor text in hyperlinks. We use one classifier to label additional examples for the other to
learn from, and iterate training and classification with oneclassifier then the other until all
the documents are labeled. Since the classifiers haveorthogonal viewsof the problem, the
mistakes made by one classifier should not be too detrimentalto the learning of the other
classifier. That is, the errors should not compound as they doin self-training. Blum and
Mitchell [1998] give a PAC Learning-style framework for this approach, and give empirical
results on the web-page classification task.

The notion of a problem having orthogonal views or representations is an extremely
powerful concept. Many language problems can be viewed in this way, and many algo-
rithms that exploit a dual representation have been proposed. Yarowsky[1995] first imple-
mented this style of algorithm in NLP (and it is now sometimesreferred to as theYarowsky

27

algorithm). Yarowsky used it for word-sense disambiguation. He essentially showed that
a bootstrapping approach can achieve performance comparable to full supervised learning.
An example from word-sense disambiguation will help illustrate: To disambiguate whether
the nounbassis used in thefish sense or in themusicsense, we can rely on a just a few
key contexts to identify unambiguous instances of the noun in text. Suppose we know that
caught a bassmeans the fish sense ofbass. Now, whenever we seecaught a bass, we label
that noun for thefishsense. This is the context-based view of the problem. The other view
is a document-based view. It has been shown experimentally that all instances of a unique
word type in a single document tend to share the same sense[Galeet al., 1992]. Once we
have one instance ofbasslabeled, we can extend this classification to the other instances
of bassin the same document using this second view. We can then re-learn our context-
based classifier from these new examples and repeat the process in new documents and new
contexts, until all the instances are labeled.

Multi-view bootstrapping is also used in information extraction [Etzioni et al., 2005].
Collins and Singer[1999] and Cucerzan and Yarowsky[1999] apply bootstrapping to the
task of named-entity recognition. Klementiev and Roth[2006] used bootstrapping to ex-
tract interlingual named entities. Our research has also been influenced by co-training-style
weakly supervisedalgorithms used in coreference resolution[Geet al., 1998; Harabagiu
et al., 2001; Mülleret al., 2002; Ng and Cardie, 2003b; 2003a; Bean and Riloff, 2004] and
grammatical gender determination[Cucerzan and Yarowsky, 2003].

Bootstrapping from Seeds

A distinct line of bootstrapping research has also evolved in NLP, which we callBootstrap-
ping from Seeds. These approaches all involve starting with a small number of examples,
building predictors from these examples, labeling more examples with the new predictors,
and then repeating the process to build a large collection ofinformation. While this research
generally does not explicitly cast the tasks as exploiting orthogonal views of the data, it is
instructive to describe these techniques from the multi-view perspective.

An early example is described by Hearst[1992]. Suppose we wish to find hypernyms in
text. A hypernym is a relation between two things such that one thing is a sub-class of the
other. It is sometimes known as theis-a relation. For example awound is-atype of injury,
Ottawa is-a city, aCadillac is-a car, etc. Suppose we see the words in text, “Cadillacs and
other cars...” There are two separate sources of information in this example:

1. The string pair itself:Cadillac, car

2. The context:Xs and otherYs

We can perform bootstrapping in this framework as follows: First, we obtain a list of seed
pairs of words, e.g.Cadillac/car, Ottawa/city, wound/injury, etc. Now, we create a predic-
tor that will label examples as being hypernyms based purelyon whether they occur in this
seed set. We are thus only using the first view of the problem: the actual string pairs. We
use this predictor to label a number of examples in actual text, e.g. “Cadillacsand other
cars, cars such asCadillacs, cars including Cadillacs, etc.” We then train a predictor for
the other view of the problem: From all the labeled examples,we extract predictive con-
texts: “Xs and otherYs, Ys such asXs, Ys includingXs, etc.” The contexts extracted in
this view can now be used to extract more seeds, and the seeds can then be used to extract
more contexts, etc., in an iterative fashion. Hearst described an early form of this algorithm,

28

which used some manual intervention, but later approaches have essentially differed quite
little from her original proposal.

Google co-founder Sergei Brin[1998] used a similar technique to extract relations such
as (author, title) from the web. Similar work was also presented in[Riloff and Jones, 1999]
and [Agichtein and Gravano, 2000]. Pantel and Pennacchiotti[2006] used this approach
to extract general semantic relations (such aspart-of, succession, production, etc.), while
Paşca et al.[2006] present extraction results on a web-scale corpus. Another famous varia-
tion of this method is Ravichandran and Hovy’s system for finding patterns for answering
questions[Ravichandran and Hovy, 2002]. They begin with seeds such as (Mozart, 1756)
and use these to find patterns that contain the answers to questions such asWhen was X
born?

Note the contrast with the traditional supervised machine-learning framework, where
we would have annotators mark up text with examples of hypernyms, relations, or question-
answer pairs, etc., and then learn a predictor from these labeled examples using supervised
learning. In bootstrapping from seeds, we do not label segments of text, but rather pairs
of words (labeling only one view of the problem). When we find instances of these pairs
in text, we essentially label more data automatically, and then infer a context-based pre-
dictor from this labeled set. This context-based predictorcan then be used to find more
examples of the relation of interest (hypernyms, authors ofbooks, question-answer pairs,
etc.). Notice, however, that in contrast to standard supervised learning, we do not label any
negativeexamples, only positive instances. Thus, when building a context-based predictor,
there is no obvious way to exploit our powerful machinery forfeature-based discriminative
learning and classification. Very simple methods are instead used to keep track of the best
context-based patterns for identifying new examples in text.

In iterative bootstrapping, although the first round of training often produces reasonable
results, things often go wrong in later iterations. The firstround will inevitably produce
some noise, some wrong pairs extracted by the predictor. Thecontexts extracted from these
false predictions will lead to more false pairs being extracted, and so on. In all published
research on this topic that we are aware of, the precision of the extractions decreases in each
stage.

2.5.4 Learning with Heuristically-Labeled Examples

In the above discussion of bootstrapping, we outlined a number of approaches that extend
an existing set of classifications (or seeds) by iterativelyclassifying and learning from new
examples. Another interesting, non-iterative scenario isthe situation where, rather than
having a few seed examples, we begin with many positive examples of a class or relation,
and attempt to classify new relations in this context. With arelatively comprehensive set
of seeds, there is little value in iterating to obtain more.6 Also, having a lot of seeds can
also provide a way to generate the negative examples we need for discriminative learning.
In this section we look at two flavours: special cases where the examples can be created
automatically, and cases where we have only positive seeds,and so create pseudo-negative
examples through some heuristic means.

6There are also non-iterative approaches that also start with limited seed data. Haghighi and Klein[2006]
create a generative, unsupervised sequence prediction model, but add features to indicate if a word to be classi-
fied is distributionally-similar to a seed word. Like the approaches presented in our discussion of bootstrapping
with seeds, this system achieves impressive results starting with very little manually-provided information.

29

Learning with Natural Automatic Examples

Some of the lowest-hanging fruit in the history of NLP arose when researchers realized that
some important problems in NLP could be solved by generatinglabeled training examples
automatically from raw text.

Consider the task of diacritic or accent restoration. In languages such as French or
Spanish, accents are often omitted in informal correspondence, in all-capitalized text such
as headlines, and in lower-bit text encodings. Missing accents adversely affect both syn-
tactic and semantic analysis. It would be nice to train a discriminative classifier to restore
these accents, but do we need someone to label the accents in unaccented text to provide
us with labeled data? Yarowsky[1994] showed that we can simply take (readily-available)
accentedtext, take the accents off and use them as labels, and then train predictors using
features for everythingexceptfor the accents. We can essentially generate as many labeled
examples as we like this way. The true accent and the text provide the positive example.
The unaccented or alternatively-accented text provides negative examples.

We call theseNatural Automatic Examplessince they naturally provide the positive and
negative examples needed to solve the problem. We contrast these with problems in the
following section where, although one may have plentiful positive examples, one must use
some creativity to produce the negative examples.

This approach also works for context-sensitive spelling correction. Here we try to de-
termine, for example, whether someone who typedwhetheractually meantweather. We
take well-edited text and, each time one of the words is used,we create a training exam-
ple, with the word-actually-used as the label. We then see ifwe can predict these words
from their confusable alternatives, using the surroundingcontext for features[Golding and
Roth, 1999]. So the word-actually-used is the positive example (e.g. “whetheror not”),
while the alternative, unused words provide the negatives (e.g. “weatheror not”). Banko
and Brill [2001] generate a lot of training data this way to produce their famous results on
the relative importance of the learning algorithm versus the amount of training data (the
amount of training data is much much more important). In Chapter 3, we use this approach
to generate data for both preposition selection and context-sensitive spelling correction.

A similar approach could be used for training systems to segment text into paragraphs,
to restore capitalization or punctuation, to do sentence-boundary detection (one must find an
assiduous typist, like me, who consistently puts two spacesafter periods, but only one after
abbreviations...), to convert curse word symbols like %*#@back into the original curse,
etc. (of course, some of these examples may benefit from a channel model rather than
exclusively a source/language model). The only limitationis the amount of training data
your algorithm can handle. In fact, by summarizing the training examples with N-gram-
based features as in Section 2.5.5 (rather than learning from each instance separately), there
really is no limitation on the amount of data you might learn from.

There are a fairly limited number of problems in NLP where we can just create examples
automatically this way. This is because in NLP, we are usually interested in generating
structures over the data that are not surface apparent in naturally-occurring text. We return
to this when we discuss analysis and generation problems in Chapter 3. Natural automatic
examples abound in many other fields. You can build a discriminative classifier for whether
a stock goes up or for whether someone defaults on their loan purely based on previous
examples. A search engine can easily predict whether someone will click on a search result
using the history of clicks from other users for the same query [Joachims, 2002]. However,
despite not having natural automatic examples for some problems, we can sometimes create

30

automatic examples heuristically. We turn to this in the following subsection.

Learning with Pseudo-Negative Examples

While the previous section described problems where there were natural positive and nega-
tive examples (e.g., the correct accent marker is positive,while others, including no accent,
are negative), there is a large class of problems in NLP wherewe only have positive exam-
ples and thus it’s not clear how to use a discriminative classifier to evaluate new potential
examples. This is the situation with seed data: you are presented with a list of only positive
seeds, and there’s nothing obvious to discriminate these from.

In these situations, researchers have devised various waysto automatically create nega-
tive examples. For example, let us return to the example of hypernyms. Although Hearst[1992]
started her algorithm with only a few examples, this was an unnecessary handicap. Thou-
sands of examples of hypernym pairs can be extracted automatically from the lexical database
WordNet[Miller et al., 1990]. Furthermore, WordNet has good coverage of the relations
involving nouns that are actually in WordNet (as opposed to,obviously, no coverage of
relations involving words that aren’t mentioned in WordNetat all). Thus, pairs of words
in WordNet that arenot linked in a hypernym structure can potentially be taken as reli-
able examples of words that arenot hypernyms (since both words are in WordNet, if they
were hypernyms, the relation would generally be labeled). These could form our negative
examples for discrimination.

Recognizing this, Snow et al.[2005] use WordNet to generate a huge set of both pos-
itive and negative hypernym pairs: exactly what we need as training data for a large-scale
discriminative classifier. With this resource, we need not iteratively discover contexts that
are useful for hypernymy: Snow et al. simply include, as features in the classifier, all the
syntactic paths connecting the pair of words in a large parsed corpus. That is, they have
features for how often a pair of words occurs in constructions like,“Xs and otherYs, Ys
such asXs, Ys includingXs, etc.” Discriminative training, not heuristic weighting,will
decide the importance of these patterns in hypernymy. To classify any new example pair
(i.e., for nouns that arenot in WordNet), we can simply construct their feature vector of
syntactic paths and apply the classifier. Snow et al.[2005] achieve very good performance
using this approach.

This approach could scale to make use of features derived from web-scale data. For any
pair of words, we can efficiently extract all the N-grams in which both words occur. This
is exactly what we proposed for discriminating object and subject relations forBears won
andtrophy wonin our example in Chapter 1, Section 1.3. We can create features from these
N-grams, and apply training and classification.

We recently used a similar technique for classifying the natural gender of English nouns
[Bergsmaet al., 2009a]. Rather than using WordNet to label examples, however, we used
co-occurrence statistics in a large corpus to reliably identify the most likely gender of thou-
sands of noun phrases. We then used this list to automatically label examples in raw text,
and then proceeded to learn from these automatically-labeled examples. This paper could
have served as another chapter in this dissertation, but thedissertation already seemed suf-
ficiently long without it.

Several other recent uses of this approach are also worth mentioning. Okanohara and
Tsujii [2007] created examples automatically in order to train a discriminative whole-
sentence language model. Language models are designed to tell us whether a sequence
of words is valid language (or likely, fluent,goodEnglish). We can automatically gather

31

positive examples from any collection of well-formed sentences: they are all valid sentences
by definition. But how do we create negative examples? The innovation of Okanohara and
Tsujii is to create negative examples fromsentences generated by an N-gram language
model. N-grams are the standard Markovized approximation to English, and their success
in language modeling is one of the reasons for the statistical revolution in NLP discussed in
Section 2.1 above. However, they often produce ill-formed sentences, and a classifier that
can distinguish between valid English sentences and N-gram-model-generated sentences
could help us select better output sentences from our speechrecognizers, machine transla-
tors, curse-word restoration systems, etc.

The results of Okanohara and Tsujii’s classifier was promising: about 74% of sentences
could be classified correctly. However, they report that a native English speaker was able
to achieve 99% accuracy on a 100-sentence sample, indicating that there is much room
to improve. It is rare that humans can outperform computers on a task where we have
essentially unlimited amounts of training data. Indeed, learning curves in this work indicate
that performance is continuously improving up to 500,000 training examples. The main
limitation seems to only be computational complexity.

Smith and Eisner[2005] also automatically generate negative examples. They perturb
their input sequence (e.g. the sentence word order) to create a neighborhood ofimplicit
negative evidence. Structures over the observed sentence should have higher likelihood
than structures over the perturbed sequences.

Chapter 6 describes an approach that creates both positive and negative examples of
selectional preference from corpus-wide statistics of predicate-argument pairs (rather than
only using a local sentence to generate negatives, as in[Smith and Eisner, 2005]). Since
the individual training instances encapsulate information from potentially thousands or mil-
lions of sentences, this approach can scale better than someof the other semi-supervised
approaches described in this chapter. In Chapter 7, we create examples by computing statis-
tics over an aligned bitext, and generate negative examplesto be those that have a high string
overlap with the positives, but which are not likely to be translations. We use automatically-
created examples to mine richer features and demonstrate better models than previous work.

However, note that there is a danger in solving problems on automatically-labeled ex-
amples: it is not always clear that the classifier you learn will transfer well to actual tasks,
since you’re no longer learning a discriminator on manually-labeled examples. In the fol-
lowing section, we describe semi-supervised approaches that train over manually-labeled
data, and discuss how perhaps we can have the best of both worlds by including the output
of our pseudo-discriminators as features in a supervised model.

2.5.5 Creating Features from Unlabeled Data

We have saved perhaps the simplest form of semi-supervised learning for last: an approach
where we simply create features from our unlabeled data and use these features in our
supervised learners. Simplicity is good.7

The main problem with essentially all of the above approaches is that at some point,

7In the words of Mann and McCallum[2007]: “Research in semi-supervised learning has yielded many
publications over the past ten years, but there are surprisingly fewer cases of its use in application-oriented
research, where the emphasis is on solving a task, not on exploring a new semi-supervised method. This
may be partially due to the natural time it takes for new machine learning ideas to propagate to practitioners.
We believe it is also due in large part to the complexity and unreliability of many existing semi-supervised
methods.”

32

automatically-labeled examples are used to train the classifier. Unfortunately, automatically-
labeled examples are often incorrect. The classifier works hard to classify these examples
correctly, and subsequently gets similar examples wrong that it encounters at testing. If we
have enough manually-labeled examples, it seems that we want the ultimate mediator of
the value of our features to be performance on these labeled examples, not performance on
any pseudo-examples. This mediation is, of course, exactlywhat supervised learning does.
If we instead createfeaturesfrom unlabeled data, rather than using unlabeled data to create
newexamples, standard supervised learning can be used.

How can we include information from unlabeled data as new features in a supervised
learner? Section 2.2 described a typical feature representation: each feature is a binary
indicator of whether a word is present or not in a document to be classified. When we extract
features from unlabeled data, we add new dimensions to the feature representation. These
new dimensions are for features that represent what we mightcall second-orderinteractions
– co-occurrences of words with each other in unlabeled text.

In very recent papers, both Huang and Yates[2009] and Turian et al.[2010] provide
comparisons of different ways to extract new features from unlabeled data; they both eval-
uate performance on a range of tasks.

Features Directly From a Word’s Distribution in Unlabeled Text

Returning to our sports example, we could have a feature for whether a word in a given
document occurselsewhere, in unlabeled data, with the wordscore. A classifier could learn
that this feature is associated with thesportsclass, because words likehockey, baseball,
inning, win, etc. tend to occur withscore, and some of these likely occur in the training set.
So, although we may never see the wordcurling during training, it does occur in unlabeled
text with many of the same words that occur with othersportsterms, like the wordscore. So
a document that containscurling will have the second-orderscorefeature, and thuscurling,
through features created from its distribution, is still anindicator ofsports. Directly having
a feature for each item that co-occurs in a word’s distribution is perhaps the simplest way to
leverage unlabeled data in the feature representation. Huang and Yates[2009] essentially
use this as their multinomial representation. They find it performs worse on sequence-
labeling tasks than distributional representations basedon HMMs and latent-semantic anal-
ysis (two other effective approaches for creating featuresfrom unlabeled data). One issue
with using the distribution directly is that although sparsity is potentially alleviated at the
word level (we can handle words even if we haven’t seen them intraining data), we increase
sparsity at the feature level: there are more features to train but the same amount of train-
ing data. This might explain why[Huang and Yates, 2009] see improved performance on
rare words but similar performance overall. We return to this issue in Chapter 5 when we
present a distributional representation for verb part-of-speech tag disambiguation that may
also suffer from these drawbacks (Section 5.6).

Features from Similar Words or Distributional Clusters

There are many other ways to create features from unlabeled data. One popular approach
is to summarize the distribution of words (in unlabeled data) using similar words.[Wang
et al., 2005] use similar words to help generalization in dependency parsing. [Marton et
al., 2009] use similar phrases to help improve the handling of out-of-vocabulary terms in a
machine translation system. Another recent trend is to create features from automatically-

33

generated word clusters. Several researchers have used thehierarchical Brown et al.[1992]
clustering algorithm, and then created features for cluster membership at different levels of
the hierarchy[Miller et al., 2004; Kooet al., 2008]. Rather than clustering single words,
Lin and Wu[2009] use phrasal clusters, and provide features for cluster membership when
different numbers of clusters are used in the clustering.

Features for the Output of Auxiliary Classifiers

Another way to create features from unlabeled data is to create features for the output of
predictions on auxiliary problems that can be trained solely with unlabeled data[Ando and
Zhang, 2005]. For example, we could create a prediction for whether the word arenaoccurs
in a document. We can take all the documents wherearenadoes and does not occur, and
build a classifier using all the other words in the document. This classifier may predict
thatarenadoes occur if the wordshockey, curling, fans, etc. occur. When the predictions
are used as features, if they are useful, they will receive high weight at training time. At
test time, if we see a word likecurling, for example, even though it was never seen in our
labeled set, it may cause the predictor forarenato return a high score, and thus also cause
the document to be recognized assports.

Note that since these examples can be created automatically, this problem (and other
auxiliary problems in the Ando and Zhang approach) fall intothe category of those with
Natural Automatic Examplesas discussed above. One possible direction for future work is
to construct auxiliary problems with pseudo-negative examples. For example, we could
include the predictions of various configurations of our selectional-preference classifier
(Chapter 6) as a feature in a discriminatively-trained language model. We took a simi-
lar approach in our work on gender[Bergsmaet al., 2009a]. We trained a classifier on
automatically-created examples, but used the output of this classifier as another feature in
a classifier trained on a small amount of supervised data. This resulted in a substantial gain
in performance over using the original prediction on its own: 95.5% versus 92.6% (but note
other features were combined with the prediction of the auxiliary classifier).

Features used in this Dissertation

In this dissertation, we create features from unsuperviseddata in several chapters and in
several different ways. In Chapter 6, to assess whether a noun is compatible with a verb,
we create features for the noun’s distribution only withother verbs. Thus we character-
ize a noun by its verb contexts, rather than its full distribution, using less features than a
naive representation using the noun’s full distributionalprofile. Chapters 3 and 5 alsoselec-
tively use features from parts of the total distribution of a word, phrase, or pair of words (to
characterize the relation between words, for noun compoundbracketing and verb tag dis-
ambiguation in Chapter 5). In Chapter 3, we characterize contexts by using selected types
from the distribution of other words that occur in the context. For the adjective-ordering
work in Chapter 5, we choose an order based on the distribution of the adjectives individ-
ually and combined in a phrase. Our approaches are simple, but effective. Perhaps most
importantly, by leveraging the counts in a web-scale N-gramcorpus, they scale to make
use of all the text data on the web. On the other hand, scaling most other semi-supervised
techniques to even moderately-large collections of unlabeled text remains “future work” for
a large number of published approaches in the machine learning and NLP literature.

34

Chapter 3

Learning with Web-Scale N-gram
Models

XKCD comic: Dangers,http://xkcd.com/369/

3.1 Introduction

Many problems in Natural Language Processing (NLP) can be viewed as assigning labels to
particular words in text, given the word’s context. If the decision process requires choosing
a label from a predefined set of possible choices, called acandidate setor confusion set, the
process is often referred to asdisambiguation[Roth, 1998]. Part-of-speech tagging, spelling
correction, and word sense disambiguation are all lexical disambiguation processes.

0A version of this chapter has been published as[Bergsmaet al., 2008b; 2009b]

35

One common disambiguation task is the identification of word-choice errors in text. A
language checker can flag an error if a confusable alternative better fits a given context:

(1) The system tried to decide{among, between} the two confusable words.

Most NLP systems resolve such ambiguity with the help of a large corpus of text. The
corpus indicates which candidate is more frequent in similar contexts. The larger the corpus,
the more accurate the disambiguation[Banko and Brill, 2001]. Since few corpora are as
large as the world wide web,1 many systems incorporate web counts into their selection
process.

For the above example, a typical web-based system would query a search engine with
the sequences “decideamongthe” and “decidebetweenthe” and select the candidate that
returns the most pages[Lapata and Keller, 2005]. Clearly, this approach fails when more
context is needed for disambiguation.

We propose a unified view of using web-scale data for lexical disambiguation. Rather
than using a single context sequence, we use contexts of various lengths and positions.
There are five 5-grams, four 4-grams, three trigrams and two bigrams spanning the target
word in Example (1). We gather counts for each of these sequences, with each candidate
in the target position. We first show how the counts can be usedas features in a supervised
classifier, with a count’s contribution weighted by its context’s size and position. We also
propose a novel unsupervised system that simply sums a subset of the (log) counts for each
candidate. Surprisingly, this system achieves most of the gains of the supervised approach
without requiring any training data.

Since we make use of features derived from the distribution of patterns in large amounts
of unlabeled data, this work is an instance of a semi-supervised approach in the category,
“Using Features from Unlabeled Data,” discussed in Chapter2, Section 2.5.5.

In Section 3.2, we discuss the range of problems that fit the lexical disambiguation
framework, and also discuss previous work using the web as a corpus. In Section 3.3 we
discuss our general disambiguation methodology. While alldisambiguation problems can
be tackled in a common framework, most approaches are developed for a specific task.
Like Roth [1998] and Cucerzan and Yarowsky[2002], we take a unified view of disam-
biguation, and apply our systems to preposition selection (Section 3.5), spelling correction
(Section 3.6), and non-referential pronoun detection (Section 3.7). In particular we spend
a fair amount of time on non-referential pronoun detection.On each of these applications,
our systems outperform traditional web-scale approaches.

3.2 Related Work

3.2.1 Lexical Disambiguation

Yarowsky [1994] defines lexical disambiguation as a task where a system must “disam-
biguate two or more semantically distinct word-forms whichhave been conflated into the
same representation in some medium.” Lapata and Keller[2005] divide disambiguation
problems into two groups: generation and analysis. In generation, the confusable candi-
dates are actual words, likeamongandbetween. Generation problems permit learning with

1Google recently announced they are now indexing over 1 trillion unique URLs (http://googleblog.

blogspot.com/2008/07/we-knew-web-was-big.html). This figure represents a staggering amount of
textual data.

36

“Natural Automatic Examples,” as described in Chapter 2, Section 2.5.4. In analysis, we
disambiguate semantic labels, such as part-of-speech tags, representing abstract properties
of surface words. For these problems, we have historically needed manually-labeled data.

For generation tasks, a model of each candidate’s distribution in text is created. The
models indicate which usage best fits each context, enablingcandidate disambiguation in
tasks such as spelling correction[Golding and Roth, 1999], preposition selection[Chodorow
et al., 2007; Felice and Pulman, 2007], and diacritic restoration[Yarowsky, 1994]. The
models can be large-scale classifiers or standard N-gram language models (LMs).

An N-gram is a sequence of words. A unigram is one word, a bigram is two words, a
trigram is three words, and so on. An N-gram language model isa model that computes
the probability of a sentence as the product of the probabilities of the N-grams in the sen-
tence. The (maximum likelihood) probability of an N-gram issimply its count divided by
the number of times it occurs in the corpus. Higher probability sentences will thus be com-
posed of N-grams that are more frequent. For resolving confusable words, we could select
the candidate that results in a higher whole-sentence probability, effectively combining the
counts of N-grams at different positions.

The power of an N-gram language model crucially depends on the data from which
the counts are taken: the more data, the better. Trigram LMs have long been used for
spelling correction, an approach sometimes referred to as the Mays, Damerau, and Mercer
model [Wilcox-O’Hearn et al., 2008]. Gamon et al.[2008] use a Gigaword 5-gram LM
for preposition selection. While web-scale LMs have proveduseful for machine translation
[Brantset al., 2007], most web-scale disambiguation approaches compare specific sequence
counts rather than full-sentence probabilities. Counts are usually gathered using an Internet
search engine[Lapata and Keller, 2005; Yiet al., 2008].

In analysis problems such as part-of-speech tagging, it is not as obvious how a LM can
be used to score the candidates, since LMs do not contain the candidates themselves, only
surface words. However, large LMs can also benefit these applications, provided there are
surface words that correlate with the semantic labels. Essentially, we devise some surro-
gates for each label, and determine the likelihood of these surrogates occurring with the
given context. For example, Mihalcea and Moldovan[1999] perform sense disambiguation
by creating label surrogates from similar-word lists for each sense. To choose the sense of
bassin the phrase “caught a huge bass,” we might considertenor, alto, andpitch for sense
one andsnapper, mackerel, andtuna for sense two. The sense whose group has the higher
web-frequency count inbass’s context is chosen.[Yu et al., 2007] use a similar approach to
verify the near-synonymy of the words in thesense poolsof the OntoNotes project[Hovy
et al., 2006]. They check whether a word can be substituted into the place of another ele-
ment in its sense pool, using a few sentences where the sense pool of the original element
has been annotated. The substitution likelihood is computed using the counts of N-grams
of various orders from the Google web-scale N-gram corpus (discussed in the following
subsection).

We build on similar ideas in our unified view of analysis and generation disambigua-
tion problems (Section 3.3). For generation problems, we gather counts for each surface
candidate filling our 2-to-5-gram patterns. For analysis problems, we use surrogates as the
fillers. We collect our pattern counts from a web-scale corpus.

37

3.2.2 Web-Scale Statistics in NLP

Exploiting the vast amount of data on the web is part of a growing trend in natural language
processing[Keller and Lapata, 2003]. In this section, we focus on some research that has
had a particular influence on our own work. We begin by discussing approaches that extract
information using Internet search-engines, before discussing recent approaches that have
made use of the Google web-scale N-gram corpus.

There were initially three main avenues of research that used the web as a corpus; all
were based on the use of Internet search engines.

In the first line of research, search-engine page counts are used as substitutes for counts
of a phrase in a corpus[Grefenstette, 1999; Keller and Lapata, 2003; Chklovski andPantel,
2004; Lapata and Keller, 2005]. That is, a phrase is issued to a search engine as a query,
and the count, given by the search engine, of how many pages contain that query is taken
as a substitute for the number of times that phrase occurs on the web. Quotation marks are
placed around the phrase so that the words are only matched when they occur in their exact
phrasal order. By using Internet-derived statistics, these approaches automatically benefit
from the growing size and variety of documents on the world wide web. We previously
used this approach to collect pattern counts that indicate the gender of noun phrases; this
provided very useful information for an anaphora resolution system[Bergsma, 2005]. We
also previously showed how a variety of search-engine counts can be used to improve the
performance of search-engine query segmentation[Bergsma and Wang, 2007] (a problem
closely related to Noun-Compound Bracketing, which we explore in Chapter 5).

In another line of work, search engines are use to assess how often a pair of words
occur on the same page (or how often they occur close to each other), irrespective of their
order. Thus the page counts returned by a search engine are taken at face value as document
co-occurrence counts. Applications in this area include determining the phrasal semantic
orientation (good or bad) for sentiment analysis[Turney, 2002] and assessing the coherence
of key phrases[Turney, 2003].

A third line of research involves issuing queries to a searchengine and then making
use of the returned documents. Resnik[1999] shows how the web can be used to gather
bilingual text for machine translation, while Jones and Ghani [2000] use the web to build
corpora for minority languages. Ravichandran and Hovy[2002] process returned web pages
to identify answer patterns for question answering. In an answer-typing system, Pinchak
and Bergsma[2007] use the web to find documents that provide information on unittypes
for how-questions. Many other question-answering systemsuse the web to assist in finding
a correct answer to a question[Brill et al., 2001; Cucerzan and Agichtein, 2005; Radevet
al., 2001]. Nakov and Hearst[2005a; 2005b] use search engines both to return counts for
N-grams, and also to process the returned results to extractinformation not available from
a search-engine directly, such as punctuation and capitalization.

While a lot of progress has been made using search engines to extract web-scale statis-
tics, there are many fundamental issues with this approach.First of all, since the web
changes every day, the results using a search engine are not exactly reproducible. Sec-
ondly, some have questioned the reliability of search engine page counts[Kilgarriff, 2007].
Most importantly, using search engines to extract count information is terribly inefficient,
and thus search engines restrict the number of queries one can issue to gather web-scale
information. With limited queries, we can only use limited information in our systems.

A solution to these issues was enabled by Thorsten Brants andAlex Franz at Google
when they released the Google Web 1T 5-gram Corpus Version 1.1 in 2006[Brants and

38

Franz, 2006]. This corpus simply lists, for sequences of words from length two to length
five, how often the sequence occurs in their web corpus. The web corpus was generated
from approximately 1 trillion tokens of online text. In thisdata, tokens appearing less than
200 times have been mapped to the〈UNK〉 symbol. Also, only N-grams appearing more
than 40 times are included. A number of researchers have begun using this N-gram corpus,
rather than search engines, to collect their web-scale statistics [Vadas and Curran, 2007a;
Felice and Pulman, 2007; Yuret, 2007; Kummerfeld and Curran, 2008; Carlsonet al., 2008;
Bergsmaet al., 2008b; Tratz and Hovy, 2010]. Although this N-gram data is much smaller
than the source text from which it was taken, it is still a verylarge resource, occupying
approximately 24 GB compressed, and containing billions ofN-grams in hundreds of files.
Special strategies are needed to effectively query large numbers of counts. Some of these
strategies include pre-sorting queries to reduce passes through the data, hashing[Hawker
et al., 2007], storing the data in a database[Carlsonet al., 2008], and using a trie struc-
ture[Sekine, 2008]. Our work in this area led to our recent participation in the 2009 Johns
Hopkins University, Center for Speech and Language Processing, Workshop onUnsuper-
vised Acquisition of Lexical Knowledge from N-Grams, led by Dekang Lin.2 A number of
ongoing projects using web-scale N-gram counts have arisenfrom this workshop, and we
discuss some of these in Chapter 5. Lin et al.[2010] provides an overview of our work at
the workshop, including the construction of a new web-scaleN-gram corpus.

In this chapter, all N-gram counts are taken from the standard Google N-gram data.
One thing that N-gram data does not provide is thedocumentco-occurrence counts that

have proven useful in some applications discussed above. Itcould therefore be beneficial
to the community to have a resource along the lines of the Google N-gram corpus, but
where the corpus simply states how often pairs of words (or phrases) co-occur within a
fixed window on the web. I am putting this on my to-do list.

3.3 Disambiguation with N-gram Counts

Section 3.2.1 described how lexical disambiguation, for both generation and analysis tasks,
can be performed by scoring various context sequences usinga statistical model. We for-
malize the context used by web-scale systems and then discuss various statistical models
that use this information.

For a word in text,v0, we wish to assign an output,ci, from a fixed set of candidates,
C = {c1, c2 ..., cK}. Assume that our target wordv0 occurs in a sequence of context to-
kens: V={v−4, v−3, v−2, v−1,v0, v1, v2, v3, v4}. The key to improved web-scale models
is that they make use of a variety of context segments, of different sizes and positions,
that span the target wordv0. We call these segmentscontext patterns. The words that re-
place the target word are calledpattern fillers. Let the set of pattern fillers be denoted by
F = {f1, f2, ..., f|F |}. Recall that for generation tasks, the filler set will usually be identical
to the set of output candidates (e.g., for word selection tasks,F=C={among,between}). For
analysis tasks, we must use other fillers, chosen as surrogates for one of the semantic labels
(e.g. for WSD ofbass, C={Sense1, Sense2},F={tenor,alto,pitch,snapper,mackerel,tuna}).

Each length-N context pattern, with a filler in place ofv0, is an N-gram, for which
we can retrieve a count from an auxiliary corpus. We retrievecounts from the web-scale
Google Web 5-gram Corpus, which includes N-grams of length one to five (Section 3.2.2).

2http://www.clsp.jhu.edu/workshops/ws09/groups/ualkn /

39

For each target wordv0, there are five 5-gram context patterns that may span it. For Exam-
ple (1) in Section 3.1, we can extract the following 5-gram patterns:

system tried to decidev0

tried to decidev0 the
to decidev0 the two

decidev0 the two confusable
v0 the two confusable words

Similarly, there are four 4-gram patterns, three 3-gram patterns and two 2-gram patterns
spanning the target. With|F | fillers, there are14|F | filled patterns with relevant N-gram
counts. For example, forF={among, between}, there are two filled 5-gram patterns that
begin with the worddecide: “decideamongthe two confusable” and “decidebetweenthe
two confusable.” We collect counts for each of these, along with all the other filled pat-
terns for this example. WhenF={among, between}, there are 28 relevant counts for each
example.

We now describe various systems that use these counts.

3.3.1 SUPERLM

We use supervised learning to map a target word and its context to an output. There are
two steps in this mapping: a) converting the word and its context into a feature vector, and
b) applying a classifier to determine the output class.

In order to use the standardx, y notation for classifiers, we write things as follows:
Let x̄ = Φ(V) be a mapping of the input to a feature representation,x̄. We might also
think of the feature function as being parameterized by the set of fillers,F and the N-gram
corpus,R, so thatx̄ = Φ(F,R)(V). The feature functionΦ(F,R)(·) outputs the count (in
logarithmic form) of the different context patterns with the different fillers. Each of these
has a corresponding dimension in the feature representation. If N = 14|F | counts are used,
then each̄x is anN -dimensional feature vector.

Now, the classifier outputs the index of the highest-scoringcandidate in the set of can-
didate outputs,C = {c1, c2 ..., cK}. That is, we lety ∈ {1, ...,K} be the set of classes
that can be produced by the classifier. The classifier,H, is therefore aK-class classifier,
mapping an attribute vector,̄x, to a class,y. Using the standard[Crammer and Singer,
2001]-style multi-class formulation,H is parameterized by aK-by-N matrix of weights,
W:

HW(x̄) =
K

argmax
r=1

{W̄r · x̄} (3.1)

whereW̄r is therth row ofW. That is, the predicted class is the index of the row ofW

that has the highest inner-product with the attributes,x̄. The weights are optimized using a
set ofM training examples,{(x̄1, y1), ..., (x̄M , yM)}.

This differs a little from the linear classifier that we presented in Section 2.2. Here we
actually haveK linear classifiers. Although there is only one set ofN features, there is
a different linear combination for each row ofW. Therefore, the weight on a particular
count depends on the class we are scoring (corresponding to the row ofW, r), as well as
the filler, the context position, and the context size, all ofwhich select one of the14|F |
base features. There are therefore a total of14|F |K count-weight parameters. Chapter 4
formally describes how these parameters are learned using amulti-class SVM. Chapter 4
also discusses enhancements to this model that can enable better performance with fewer
training examples.

40

Here, we simply provide some intuitions on what kinds of weights will be learned. To
be clear, note that̄Wr, therth row of the weight-matrixW, corresponds to the weights for
predicting candidatecr. Recall that in generation tasks, the setC and the setF may be
identical. So some of the weights in̄Wr will therefore correspond to features for patterns
filled with filler fr. Intuitively, these weights will be positive. That is, we will predict
the classamongwhen there are high counts for the patterns filled with the filler among
(cr=fr=among). On the other hand, we will choose not to pickamongif the counts on
patterns filled withbetweenare high. These tendencies are all learned by the learning
algorithm. The learning algorithm can also place higher absolute weights on the more
predictive context positions and sizes. For example, for many tasks, the patterns that begin
with a filler are more predictive than patterns that end with afiller. The learning algorithm
attends to these differences in predictive power as it maximizes prediction accuracy on the
training data.

We now note some special features used by our classifier. If a pattern spans outside the
current sentence (whenv0 is close to the start or end), we use zero for the corresponding
feature value, but fire an indicator feature to flag that the pattern crosses a boundary. This
feature provides a kind of smoothing. Other features are possible: for generation tasks,
we could also include synonyms of the output candidates as fillers. Features could also be
created for counts of patterns processed in some way (e.g. converting one or more context
tokens to wildcards, POS-tags, lower-case, etc.), provided the same processing can be done
to the N-gram corpus (we do such processing for the non-referential pronoun detection
features described in Section 3.7).

We call this approach SUPERLM because it isSUPERvised, and because, like an inter-
polated language model (LM), it mixes N-gram statistics of different orders to produce an
overall score for each filled context sequence. SUPERLM’s features differ from previous
lexical disambiguation feature sets. In previous systems,attribute-value features flag the
presence or absence of a particular word, part-of-speech, or N-gram in the vicinity of the
target [Roth, 1998]. Hundreds of thousands of features are used, and pruning andscal-
ing can be key issues[Carlsonet al., 2001]. Performance scales logarithmically with the
number of examples, even up to one billion training examples[Banko and Brill, 2001]. In
contrast, SUPERLM’s features are all aggregate counts of events in an external (web) cor-
pus, not specific attributes of the current example. It has only 14|F |K parameters, for the
weights assigned to the different counts. Much less training data is needed to achieve peak
performance. Chapter 5 contrasts the performance of classifiers with N-gram features and
traditional features on a range of tasks.

3.3.2 SUM LM

We create an unsupervised version of SUPERLM. We produce a score for eachfiller by
summing the (unweighted) log-counts of all context patterns filled with that filler. For
example, the score foramongcould be the sum of all 14 context patterns filled withamong.
For generation tasks, the filler with the highest score is taken as the label. For analysis tasks,
we compare the scores of different fillers to arrive at a decision; Section 3.7.2 explains how
this is done for non-referential pronoun detection.

We refer to this approach in our experiments as SUMLM.
For generation problems whereF=C, SUMLM is similar to a naive bayes classifier,

41

but without counts for the class prior.3 Naive bayes has a long history in disambiguation
problems[Manning and Schütze, 1999], so it is not entirely surprising that our SUMLM
system, with a similar form to naive bayes, is also effective.

3.3.3 TRIGRAM

Previous web-scale approaches are also unsupervised. Mostuse one context pattern for
each filler: the trigram with the filler in the middle:{v−1, f, v1}. |F | counts are needed for
each example, and the filler with the most counts is taken as the label[Lapata and Keller,
2005; Liu and Curran, 2006; Felice and Pulman, 2007]. Using only one count for each
label is usually all that is feasible when the counts are gathered using an Internet search
engine, which limits the number of queries that can be retrieved. With limited context, and
somewhat arbitrary search engine page counts, performanceis limited. Web-based systems
are regarded as “baselines” compared to standard approaches [Lapata and Keller, 2005], or,
worse, as scientifically unsound[Kilgarriff, 2007]. Rather than using search engines, higher
accuracy and reliability can be obtained using a large corpus of automatically downloaded
web documents[Liu and Curran, 2006]. We evaluate the trigram pattern approach, with
counts from the Google 5-gram corpus, and refer to it as TRIGRAM in our experiments.

3.3.4 RATIO LM

Carlson et al.[2008] proposed an unsupervised method for spelling correction that also
uses counts for various pattern fillers from the Google 5-gram Corpus. For every context
pattern spanning the target word, the algorithm calculatesthe ratio between the highest
and second-highest filler counts. The position with the highest ratio is taken as the “most
discriminating,” and the filler with the higher count in thisposition is chosen as the la-
bel. The algorithm starts with 5-grams and backs off to lowerorders if no 5-gram counts

3In this case, we can think of the features,xi, as being the context patterns, and the classesy as being the
fillers. In a naive bayes classifier, we select the class, y, that has the highest score under:

H(x̄) =
K

argmax
r=1

Pr(yr|x̄)

=
K

argmax
r=1

Pr(yr)Pr(x̄|yr) Bayes decision rule

=
K

argmax
r=1

Pr(yr)
∏

i

Pr(xi|yr) naive bayes assumption

=
K

argmax
r=1

log(Pr(yr)) +
∑

i

log(Pr(xi|yr))

=
K

argmax
r=1

log(Pr(yr)) +
∑

i

logcnt(xi, yr)− logcnt(yr)

=
K

argmax
r=1

g(yr) +
∑

i

logcnt(xi, fr) yr = fr

where we collect all the terms that depend solely on the classinto g(yr). Our SUMLM system is exactly
the same as this naive bayes classifier if we drop theg(yr) term. We tried various ways to model the class
priors using N-gram counts and incorporating them into our equations, but nothing performed as well as simply
dropping them altogether. Another option we haven’t explored is simply having a single class bias parameter
for each class,λr = g(yr), to be added to the filler counts. We would tune theλr ’s by hand for each task
where SUMLM is applied. However, this would make the model require some labeled data to tune, whereas
our current SUMLM is parameter-free and entirely unsupervised.

42

are available. This position-weighting (viz. feature-weighting) technique is similar to the
decision-list weighting in[Yarowsky, 1994]. We refer to this approach as RATIOLM in our
experiments.

3.4 Evaluation Methodology

We compare our supervised and unsupervised systems on threeexperimental tasks: preposi-
tion selection, context-sensitive spelling correction, and non-referential pronoun detection.
We evaluate usingaccuracy: the percentage of correctly-selected labels. As a baseline
(BASE), we state the accuracy of always choosing the most-frequent class. For spelling
correction, we average accuracies across the five confusionsets. We also provide learning
curves by varying the number of labeled training examples. It is worth reiterating that this
data is used solely to weight the contribution of the different filler counts; the filler counts
themselves do not change, as they are always extracted from the full Google 5-gram Corpus.

For training SUPERLM, we use a support vector machine (SVM). SVMs achieve good
performance on a range of tasks (Chapter 2, Section 2.3.4). We use a linear-kernel mul-
ticlass SVM (the efficient SVMmulticlass instance of SVMstruct [Tsochantaridiset al.,
2004]). It slightly outperformed one-versus-all SVMs in preliminary experiments (and a
later, more extensive study in Chapter 4 confirmed that thesepreliminary intuitions were
justified). We tune the SVM’s regularization parameter on the development sets. We ap-
ply add-one smoothing to the counts used in SUMLM and SUPERLM, while we add 39 to
the counts in RATIOLM, following the approach of Carlson et al.[2008] (40 is the count
cut-off used in the Google Corpus). For all unsupervised systems, we choose the most fre-
quent class if no counts are available. For SUMLM, we use the development sets to decide
which orders of N-grams to combine, finding orders 3-5 optimal for preposition selection,
2-5 optimal for spelling correction, and 4-5 optimal for non-referential pronoun detection.
Development experiments also showed RATIOLM works better starting from 4-grams, not
the 5-grams originally used in[Carlsonet al., 2008].

3.5 Preposition Selection

3.5.1 The Task of Preposition Selection

Choosing the correct preposition is one of the most difficulttasks for a second-language
learner to master, and errors involving prepositions constitute a significant proportion of
errors made by learners of English[Chodorowet al., 2007]. Several automatic approaches
to preposition selection have recently been developed[Felice and Pulman, 2007; Gamon
et al., 2008]. We follow the experiments of Chodorow et al.[2007], who train a classi-
fier to choose the correct preposition among 34 candidates.4 In [Chodorowet al., 2007],
feature vectors indicate words and part-of-speech tags near the preposition, similar to the
features used in most disambiguation systems, and unlike the aggregate counts we use in
our supervised preposition-selection N-gram model (Section 3.3.1).

4Chodorow et al. do not identify the 34 prepositions they use.We use the 34 from the SemEval-07 prepo-
sition sense-disambiguation task[Litkowski and Hargraves, 2007]: about, across, above, after, against, along,
among, around, as, at, before, behind, beneath, beside, between, by, down, during, for, from, in, inside, into,
like, of, off, on, onto, over, round, through, to, towards, with

43

 50

 60

 70

 80

 90

 100

 100 1000 10000 100000 1e+06

A
cc

ur
ac

y
(%

)

Number of training examples

SUPERLM
SUMLM

RATIOLM
TRIGRAM

Figure 3.1: Preposition selection learning curve

For preposition selection, like all generation disambiguation tasks, labeled data is es-
sentially free to create (i.e, the problem hasnatural automatic examplesas explained in
Chapter 2, Section 2.5.4). Each preposition in edited text is assumed to be correct, automat-
ically providing an example of that preposition’s class. Weextract examples from the New
York Times (NYT) section of the Gigaword corpus[Graff, 2003]. We take the first 1 million
prepositions in NYT as a training set, 10K from the middle as adevelopment set and 10K
from the end as a final unseen test set. We tokenize the corpus and identify prepositions by
string-match. Our system uses no parsing or part-of-speechtagging to extract the examples
or create the features.

3.5.2 Preposition Selection Results

Preposition selection is a difficult task with a low baseline: choosing the most-common
preposition (of) in our test set achieves 20.3%. Training on 7 million examples, Chodorow
et al. [2007] achieved 69% on the full 34-way selection. Tetreault and Chodorow [2008]
obtained a human upper bound by removing prepositions from text and asking annotators
to fill in the blank with the best preposition (using the current sentence as context). Two
annotators achieved only 75% agreement with each other and with the original text.

In light of these numbers, the accuracy of the N-gram models are especially impressive.
SUPERLM reaches 75.4% accuracy, equal to the human agreement (buton different data).
Performance continually improves with more training examples, but only by 0.25% from
300K to 1M examples (Figure 3.1). SUMLM (73.7%) significantly outperforms RATIOLM
(69.7%), and nearly matches the performance of SUPERLM. T RIGRAM performs worst
(58.8%), but note it is the only previous web-scale approachapplied to preposition selection
[Felice and Pulman, 2007]. All differences are statistically significant (McNemar’stest,
p<0.01).

The order of N-grams used in the SUMLM system strongly affects performance. Us-
ing only trigrams achieves 66.8% accuracy, while using only5-grams achieves just 57.8%
(Table 3.1). Note that the performance with only trigrams (66.8%) is not equal to the per-

44

Max
Min 2 3 4 5
2 50.2 63.8 70.4 72.6
3 66.8 72.1 73.7
4 69.3 70.6
5 57.8

Table 3.1: SUMLM accuracy (%) combining N-grams from orderMin to Max

 50

 60

 70

 80

 90

 100

 50 60 70 80 90 100

A
cc

ur
ac

y
(%

)

Coverage (%)

SUPERLM-FR
SUPERLM-DE

SUPERLM
TRIGRAM-FR
TRIGRAM-DE

TRIGRAM

Figure 3.2: Preposition selection over high-confidence subsets, with and without language
constraints (-FR,-DE)

formance of the standard TRIGRAM approach (58.8%), because the standard TRIGRAM

approach only uses a single trigram (the one centered on the preposition) whereas SUMLM
always uses the three trigrams that span the confusable word.

Coverage is the main issue affecting the 5-gram model: only 70.1% of the test examples
had a 5-gram count foranyof the 34 fillers. 93.4% of test examples had at least one 4-gram
count and 99.7% of examples had at least one trigram count.

Summing counts from 3-5 results in the best performance on the development and test
sets.

We compare our use of the Google Corpus to extracting page counts from a search
engine, via the Google API (no longer in operation as of August 2009, but similar services
exist). Since the number of queries allowed to the API is restricted, we test on only the
first 1000 test examples. Using the Google Corpus, TRIGRAM achieves 61.1%, dropping to
58.5% with search engine page counts. Although this is a small difference, the real issue is
the restricted number of queries allowed. For each example,SUMLM would need 14 counts
for each of the 34 fillers instead of just one. For training SUPERLM, which has 1 million
training examples, we need counts for 267 millionuniqueN-grams. Using the Google API
with a 1000-query-per-day quota, it would take over 732 years to collect all the counts for
training. This is clearly why some web-scale systems use such limited context.

45

We also follow Carlson et al.[2001] and Chodorow et al.[2007] in extracting a subset of
decisions where our system has higher confidence. We only propose a label if the ratio be-
tween the highest and second-highest score from our classifier is above a certain threshold,
and then vary this threshold to produce accuracy at different coverage levels (Figure 3.2).
The SUPERLM system can obtain close to 90% accuracy when deciding on 70% of ex-
amples, and above 95% accuracy when deciding on half the examples. The TRIGRAM

performance rises more slowly as coverage drops, reaching 80% accuracy when deciding
on only 57% of examples.

Many of SUPERLM’s errors involve choosing between prepositions that areunlikely to
be confused in practice, e.g.with/without. Chodorow et al.[2007] wrote post-processor
rules to prohibit corrections in the case of antonyms. Note that the errors made by an En-
glish learner also depend on their native language. A Frenchspeaker looking to translate
au-dessus dehas one option in some dictionaries:above. A German speaker looking to
translateüber has, along withabove, many more options. When making corrections, we
could combine SUPERLM (a sourcemodel) with the likelihood of each confusion depend-
ing on the writer’s native language (achannelmodel). The channel model could be trained
on text written by second-language learners who speak, as a first language, the particular
language of interest.

In the absence of such data, we only allow our system to make corrections in English
if the proposed replacement shares a foreign-language translation in a particular Freelang
online bilingual dictionary (www.freelang.net/dictionary/). Put another way,
we reduce the size of the preposition confusion set dynamically depending on the preposi-
tion that was used and the native language of the speaker. A particular preposition is only
suggested as a correction if both the correction and the original preposition could have been
confused by a foreign-language speaker translating a particular foreign-language preposi-
tion without regard to context.

To simulate the use of this module, we randomly flip 20% of our test-set prepositions to
confusable ones, and then apply our classifier with the aforementioned confusability (and
confidence) constraints. We experimented with French and German lexicons (Figure 3.2).
These constraints strongly benefit both SUPERLM and TRIGRAM, with French constraints
(−FR) helping slightly more than German (−DE) for higher coverage levels. There are
fewer confusable prepositions in the French lexicon compared to German. As a baseline,
if we assign our labels random scores, adding the French and German constraints results
in 20% and 14% accuracy, respectively (compared to1

34 = 2.9% unconstrained). At 50%
coverage, both constrained SUPERLM systems achieve close to 98% accuracy, a level that
could provide very reliable feedback in second-language learning software.

3.6 Context-Sensitive Spelling Correction

3.6.1 The Task of Context-Sensitive Spelling Correction

Context-sensitive spelling correction, or real-word error/malapropism detection[Golding
and Roth, 1999; Hirst and Budanitsky, 2005], is the task of identifying errors when a mis-
spelling results in a real word in the lexicon, e.g., usingsitewhensightor citewas intended.
Contextual spell checkers are among the most widely-used NLP technology, as they are in-
cluded in commercial word processing software[Churchet al., 2007].

For every occurrence of a word in a pre-defined confusion set (like {among, between}),

46

 88

 90

 92

 94

 96

 98

 100

 100 1000 10000 100000

A
cc

ur
ac

y
(%

)

Number of training examples

SUPERLM
SUMLM

RATIOLM
TRIGRAM

Figure 3.3: Context-sensitive spelling correction learning curve

we select the most likely word from the set. The importance ofusing large volumes of
data has previously been noted[Banko and Brill, 2001; Liu and Curran, 2006]. Impressive
levels of accuracy have been achieved on the standard confusion sets, for example, 100% on
disambiguating both{affect, effect} and{weather, whether} by Golding and Roth[1999].
We thus restricted our experiments to the five confusion sets(of twenty-one in total) where
the reported performance in[Golding and Roth, 1999] is below 90% (an average of 87%):
{among, between}, {amount, number}, {cite, sight, site}, {peace, piece}, and{raise, rise}.
We again create labeled data automatically from the NYT portion of Gigaword. For each
confusion set, we extract 100K examples for training, 10K for development, and 10K for a
final test set.

3.6.2 Context-sensitive Spelling Correction Results

Figure 3.3 provides the spelling correction learning curve, while Table 3.2 gives results
on the five confusion sets. Choosing the most frequent label averages 66.9% on this task
(BASE). TRIGRAM scores 88.4%, comparable to the trigram (page count) results reported
in [Lapata and Keller, 2005]. SUPERLM again achieves the highest performance (95.7%),
and it reaches this performance using many fewer training examples than with preposition
selection. This is because the number of parameters grows with the number of fillerstimes
the number of labels (recall, there are14|F |K count-weight parameters), and there are
34 prepositions but only two-to-three confusable spellings. Note that we also include the
performance reported in[Golding and Roth, 1999], although these results are reported on a
different corpus.

SUPERLM achieves a 24% relative reduction in error over RATIOLM (94.4%), which
was the previous state-of-the-art[Carlsonet al., 2008]. SUMLM (94.8%) also improves
on RATIOLM, although results are generally similar on the differentconfusion sets. On
{raise,rise}, SUPERLM’s supervised weighting of the counts by position and sizedoes not
improve over SUMLM (Table 3.2). On all the other sets the performance is higher; for
example, on{among,between}, the accuracy improves by 2.3%. On this set, counts for

47

Set BASE [Golding and Roth, 1999] TRIGRAM SUMLM SUPERLM

among/between 60.3 86.0 80.8 90.5 92.8
amount/number 75.6 86.2 83.9 93.2 93.7
cite/sight/site 87.1 85.3 94.3 96.3 97.6
peace/piece 60.8 88.0 92.3 97.7 98.0
raise/rise 51.0 89.7 90.7 96.6 96.6
Average 66.9 87.0 88.4 94.8 95.7

Table 3.2: Context-sensitive spelling correction accuracy (%) on different confusion sets

fillers near the beginning of the context pattern are more important, as the object of the
preposition is crucial for distinguishing these two classes (“betweenthe two” but “among
the three”). SUPERLM can exploit the relative importance of the different positions and
thereby achieve higher performance.

3.7 Non-referential Pronoun Detection

We now present an application of our approach to a difficult analysis problem: detecting
non-referential pronouns. In fact, SUPERLM was originally devised for this task, and then
subsequently evaluated as a general solution to all lexicaldisambiguation problems. More
details on this particular application are available in ourACL 2008 paper[Bergsmaet al.,
2008b].

3.7.1 The Task of Non-referential Pronoun Detection

Coreference resolution determines which noun phrases in a document refer to the same
real-world entity. As part of this task, coreference resolution systems must decide which
pronouns refer to preceding noun phrases (called antecedents) and which do not. In par-
ticular, a long-standing challenge has been to correctly classify instances of the English
pronounit. Consider the sentences:

(1) You can make it in advance.

(2) You can make it in Hollywood.

In Example (1),it is an anaphoric pronoun referring to some previous noun phrase, like
“the sauce” or “an appointment.” In Example (2),it is part of the idiomatic expression
“make it” meaning “succeed.” A coreference resolution system should find an antecedent
for the firstit but not the second. Pronouns that do not refer to preceding noun phrases are
callednon-anaphoricor non-referentialpronouns.

The wordit is one of the most frequent words in the English language, accounting for
about 1% of tokens in text and over a quarter of all third-person pronouns.5 Usually between
a quarter and a half ofit instances are non-referential. As with other pronouns, thepreceding
discourse can affectit’s interpretation. For example, Example (2) can be interpreted as
referential if the preceding sentence is “You want to make a movie?” We show, however,

5e.g.http://ucrel.lancs.ac.uk/bncfreq/flists.html

48

Pattern Filler Type String

#1: 3rd-person pron. sing. it/its
#2: 3rd-person pron. plur. they/them/their
#3: any other pronoun he/him/his/,

I/me/my, etc.
#4: infrequent word token 〈UNK〉
#5: any other token *

Table 3.3: Pattern filler types

that we can reliably classify a pronoun as being referentialor non-referential based solely
on the local context surrounding the pronoun, using the techniques described in Section 3.3.

The difficulty of non-referential pronouns has been acknowledged since the beginning
of computational resolution of anaphora. Hobbs[1978] notes his algorithm does not handle
pronominal references to sentences nor cases whereit occurs in time or weather expres-
sions. Hirst[1981, page 17] emphasizes the importance of detecting non-referential pro-
nouns, “lest precious hours be lost in bootless searches fortextual referents.” Mueller[2006]
summarizes the evolution of computational approaches to non-referentialit detection. In
particular, note the pioneering work of Paice and Husk[1987], the inclusion of non-referential
it detection in a full anaphora resolution system by Lappin andLeass[1994], and the ma-
chine learning approach of Evans[2001].

3.7.2 Our Approach to Non-referential Pronoun Detection

We apply our web-scale disambiguation systems to this task.Like in the above approaches,
we turn the context into patterns, withit as the word to be labeled. Since the output classes
are not explicit words, we devise some surrogate fillers. To illustrate for Example (1), note
we can extract the context pattern “make * in advance” and forExample (2) “make * in
Hollywood,” where “*” represents the filler in the position of it. Non-referential instances
tend to have the wordit filling this position in the pattern’s distribution. This isbecause non-
referential patterns are fairly unique to non-referentialpronouns. Referential distributions
occur with many other noun phrase fillers. For example, in theGoogle N-gram corpus,
“make it in advance” and “make them in advance” occur roughlythe same number of times
(442 vs. 449), indicating a referential pattern. In contrast, “make it in Hollywood” occurs
3421 times while “make them in Hollywood” does not occur at all. This indicates that some
useful statistics are counts for patterns filled with the words it andthem.

These simple counts strongly indicate whether another nouncan replace the pronoun.
Thus we can computationally distinguish between a) pronouns that refer to nouns, and b)
all other instances: including those that have no antecedent, like Example (2), and those
that refer to sentences, clauses, or implied topics of discourse.

We now discuss our full set of pattern fillers. For identifying non-referentialit in En-
glish, we are interested in how oftenit occurs as a pattern filler versus othernouns. As
surrogates for nouns, we gather counts for five different classes of words that fill the wild-
card position, determined by string match (Table 3.3).6 The third-person pluralthey (#2)
reliably occurs in patterns where referentialit also resides. The occurrence ofany other

6Note, this work was done before the availability of the POS-tagged Google V2 corpus (Chapter 5). We
could directly count noun-fillers using that corpus.

49

pronoun(#3) guarantees that at the very least the pattern filler is a noun. A match with the
infrequent word token〈UNK〉 (#4) (explained in Section 3.2.2) will likely be a noun be-
cause nouns account for a large proportion of rare words in a corpus. Gatheringany other
token(#5) also mostly finds nouns; inserting another part-of-speech usually results in an
unlikely-to-be-observed, ungrammatical pattern.

Unlike our work in preposition selection and spelling correction above, we process our
input examples and our N-gram corpus in various way to improve generality. We change
the patterns to lower-case, convert sequences of digits to the# symbol, and run the Porter
stemmer[Porter, 1980].7 Our method also works without the stemmer; we simply truncate
the words in the pattern at a given maximum length. With simple truncation, all the pattern
processing can be easily applied to other languages. To generalize rare names, we convert
capitalized words longer than five characters to a specialNE (named entity) tag. We also
added a few simple rules to stem the irregular verbsbe, have, do, andsaid, and convert the
common contractions’nt, ’s, ’m, ’re, ’ve, ’d, and ’ll to their most likely stem. When we
extract counts for a processed pattern, we sum all the countsfor matching N-grams in the
identically-processed Google corpus.

We run SUPERLM using the above fillers and their processed-pattern counts as de-
scribed in Section 3.3.1. For SUMLM, we decideNonRef if the difference between the
SUMLM scores forit andthey is above a threshold. For TRIGRAM, we also threshold the
ratio betweenit-counts andthey-counts. For RATIOLM, we compare the frequencies ofit
andall, and decideNonRef if the count ofit is higher. These thresholds and comparison
choices were optimized on the development set.

3.7.3 Non-referential Pronoun Detection Data

We need labeled data for training and evaluation of our system. This data indicates, for
every occurrence of the pronounit, whether it refers to a preceding noun phrase or not.
Standard coreference resolution data sets annotate all noun phrases that have an antecedent
noun phrase in the text. Therefore, we can extract labeled instances ofit from these sets.
We do this for the dry-run and formal sets from MUC-7[1997], and merge them into a
single data set.

Of course, full coreference-annotated data is a precious resource, with the pronounit
making up only a small portion of the marked-up noun phrases.We thus created annotated
data specifically for the pronounit. We annotated 1020 instances in a collection of Science
News articles (from 1995-2000), downloaded from the Science News website. We also
annotated 709 instances in the WSJ portion of the DARPA TIPSTER Project[Harman,
1992], and 279 instances in the English portion of the Europarl Corpus[Koehn, 2005]. We
take the first half of each of the subsets for training, the next quarter for development and
the final quarter for testing, creating an aggregate set with1070 training, 533 development
and 534 test examples.

A single annotator (A1) labeled all three data sets, while two additional annotators not
connected with the project (A2 andA3) were asked to separately re-annotate a portion of
each, so that inter-annotator agreement could be calculated. A1 andA2 agreed on 96%
of annotation decisions, whileA1-A3, andA2-A3, agreed on 91% and 93% of decisions,
respectively. TheKappastatistic[Jurafsky and Martin, 2000, page 315], with Pr(E) com-
puted from the confusion matrices, was a high 0.90 forA1-A2, and 0.79 and 0.81 for the

7Adapted from the Bow-toolkit[McCallum, 1996].

50

 60

 65

 70

 75

 80

 85

 90

 95

 100

 100 1000

A
cc

ur
ac

y
(%

)

Number of training examples

SUPERLM
SUMLM

RATIOLM
TRIGRAM

Figure 3.4: Non-referential detection learning curve

other pairs, around the 0.80 considered to be good reliability. These are, perhaps surpris-
ingly, the only it-annotation agreement statistics available for written text. They contrast
favourably with the low agreement for categorizingit in spoken dialog[Müller, 2006].

3.7.4 Non-referential Pronoun Detection Results

Main Results

For non-referential pronoun detection, BASE (always choosing referential) achieves 59.4%,
while SUPERLM reaches 82.4%. RATIOLM, with no tuned thresholds, performs worst
(67.4%), while TRIGRAM (74.3%) and SUMLM (79.8%) achieve reasonable performance
by comparing scores forit andthey. All differences are statistically significant (McNemar’s
test, p<0.05), except between SUPERLM and SUMLM.

In very similar results from[Bergsmaet al., 2008b] (but under slightly different exper-
imental conditions; Section 3.7.5), the SUPERLM classifier was shown to strongly outper-
form rule-based systems for non-referential detection, across a range of text genres.

Learning Curves

As this is our only task for which substantial effort was needed to create training data, we are
particularly interested in the learning rate of SUPERLM (Figure 3.4). After 1070 examples,
it does not yet show signs of plateauing. Here, SUPERLM uses double the number of
fillers (hence double the parameters) that were used in spelling correction, and spelling
performance did not level-off until after 10K training examples. Thus labeling an order of
magnitude more data will likely also yield further improvements in SUPERLM.

3.7.5 Further Analysis and Discussion

We now describe some work from[Bergsmaet al., 2008b] that further analyzes the perfor-
mance of the non-referential classifier. The performance figures quoted in this section are

51

 68

 70

 72

 74

 76

 78

 80

 1 2 3 4 5 6 7 8 9 10

F
-S

co
re

Truncated word length

Stemmed patterns
Truncated patterns
Unaltered patterns

Figure 3.5: Effect of pattern-word truncation on non-referential it detection.

not directly comparable to the above work because they used adifferent split of training
and testing data, and because experiments were conducted with a maximum entropy classi-
fier rather than an SVM. However, this previous work nevertheless provides useful insights
into the performance of SUPERLM on this task. Full details are available in[Bergsmaet
al., 2008b]. To analyze the output of our system in greater detail, we nowalso report on the
precision, recall, and F-score of the classifier (defined in Section 2.3.2).

Stemming vs. Simple Truncation

Since applying an English stemmer to the context words (Section 3.7.2) reduces the porta-
bility of the distributional technique, we investigated the use of more portable pattern ab-
straction. Figure 3.5 compares the use of the stemmer to simply truncating the words in the
patterns at a certain maximum length. Using no truncation (Unaltered) drops the F-Score
by 4.3%, while truncating the patterns to a length of four only drops the F-Score by 1.4%,
a difference which is not statistically significant. Simpletruncation may be a good option
for other languages where stemmers are not readily available. The optimum truncation size
will likely depend on the length of the base forms of words in that language. For real-world
application of our approach, truncation also reduces the table sizes (and thus storage and
look-up costs) of any pre-compiledit-pattern database.

A Human Study

We also wondered, what is the effect of making a classification based solely on, in aggre-
gate, four words of context on either side ofit. Another way to view the limited context is
to ask, given the amount of context we have, are we making optimum use of it? We answer
this by seeing how well humans can do with the same information. Our system uses 5-gram
context patterns that together span from four-to-the-leftto four-to-the-right of the pronoun.
We thus provide these same nine-token windows to our human subjects, and ask them to
decide whether the pronouns refer to previous noun phrases or not, based on these contexts.

52

System P R F Acc

SUPERLM 80.0 73.3 76.5 86.5
Human-1 92.7 63.3 75.2 87.5
Human-2 84.0 70.0 76.4 87.0
Human-3 72.2 86.7 78.8 86.0

Table 3.4: Human vs. computer non-referentialit detection (%).

Subjects first performed a dry-run experiment on separate development data. They were
shown their errors and sources of confusion were clarified. They then made the judgments
unassisted on a final set of 200 test examples. Three humans performed the experiment.
Their results show a range of preferences for precision versus recall, with F-Score and Ac-
curacy broadly similar to SUPERLM (Table 3.4). These results show that our distributional
approach is already getting good leverage from the limited context information, around that
achieved by our best human.

Error Analysis

It is instructive to inspect the twenty-five test instances that our system classified incorrectly,
given human performance on this same set. Seventeen of the twenty-five system errors
were also made by one or more human subjects, suggesting system errors are also mostly
due to limited context. For example, one of these errors was for the context: “it takes
an astounding amount...” Here, the non-referential natureof the instance is not apparent
without the infinitive clause that ends the sentence: “... oftime to compare very long DNA
sequences with each other.”

Six of the eight errors unique to the system were cases where the system falsely said
the pronoun was non-referential. Four of these could have referred to entire sentences or
clauses rather than nouns. These confusing cases, for both humans and our system, result
from our definition of a referential pronoun: pronouns with verbal or clause antecedents are
considered non-referential. If an antecedent verb or clause is replaced by a nominalization
(Smith researched...to Smith’s research), then a neutral pronoun, in the same context, be-
comes referential. When we inspect the probabilities produced by the maximum entropy
classifier, we see only a weak bias for the non-referential class on these examples, reflect-
ing our classifier’s uncertainty. It would likely be possible to improve accuracy on these
cases by encoding the presence or absence of preceding nominalizations as a feature of our
classifier.

Another false non-referential decision is for the phrase “... machine he had installed
it on.” The it is actually referential, but the extracted patterns (e.g. “he had install * on”)
are nevertheless usually filled withit (this example also suggests using filler counts for
the word “the” as a feature whenit is the last word in the pattern). Again, it might be
possible to fix such examples by leveraging the preceding discourse. Notably, the first noun-
phrase before the context is the word “software.” There is strong compatibility between the
pronoun-parent “install” and the candidate antecedent “software.” In a full coreference
resolution system, when the anaphora resolution module hasa strong preference to linkit
to an antecedent (which it should when the pronoun is indeed referential), we can override a
weak non-referential probability. Non-referentialit detection should not be a pre-processing
step, but rather part of a globally-optimal configuration, as was done for general noun phrase

53

anaphoricity by[Denis and Baldridge, 2007].
The suitability of this kind of approach to correcting some of our system’s errors is es-

pecially obvious when we inspect the probabilities of the maximum entropy model’s output
decisions on the test set. Where the maximum entropy classifier makes mistakes, it does so
with less confidence than when it classifies correct examples. The average predicted prob-
ability of the incorrect classifications is 76.0% while the average probability of the correct
classifications is 90.3%. Many incorrect decisions are ready to switch sides; our next step
will be to use features based on the preceding discourse and the candidate antecedents to
help give the incorrect classifications a helpful push.

3.8 Conclusion

We proposed a unified view of using web-scale N-gram models for lexical disambiguation.
State-of-the-art results by our supervised and unsupervised systems demonstrate that it is
not only important to use the largest corpus, but to get maximum information from this
corpus. Using the Google 5-gram data not only provides better accuracy than using page
counts from a search engine, but facilitates the use of more context of various sizes and
positions. The TRIGRAM approach, popularized by Lapata and Keller[2005], clearly under-
performs the unsupervised SUMLM system on all three applications.

In each of our tasks, the candidate set was pre-defined, and training data was available
to train the supervised system. While SUPERLM achieves the highest performance, the
simpler SUMLM, which uses uniform weights, performs nearly as well as SUPERLM, and
exceeds it for less training data. Unlike SUPERLM, SUMLM could easily be used in cases
where the candidate sets are generated dynamically; for example, to assess the contextual
compatibility of preceding-noun candidates for anaphora resolution.

54

Chapter 4

Improved Natural Language
Learning via
Variance-Regularization Support
Vector Machines

XKCD comic: Ninja Turtleshttp://xkcd.com/197/ . The beauty of
this comic is that it was also constructed using co-occurrence counts from the
Google search engine. That is, the artist counted the numberof pages for
Leonardoandturtle vs. the number of pages forLeonardoandartist.

The previous chapter presented SUPERLM, a supervised classifier that uses web-scale
N-gram counts as features. The classifier was trained as a multi-class SVM. In this chap-

0A version of this chapter has been published as[Bergsmaet al., 2010b]

55

ter, we present a simple technique for learning better SVMs using fewer training exam-
ples. Rather than using the standard SVM regularization, weregularize toward low weight-
variance. Our new SVM objective remains a convex quadratic function of the weights, and
is therefore computationally no harder to optimize than a standard SVM. Variance regu-
larization is shown to enable improvements in the learning rates of the SVMs on the three
lexical disambiguation tasks studied in the previous chapter.

4.1 Introduction

Discriminative training is commonly used in NLP and speech to scale the contribution of
different models or systems in a combined predictor. For example, discriminative train-
ing can be used to scale the contribution of the language model and translation model in
machine translation[Och and Ney, 2002]. Without training data, it is often reasonable to
weight the different models equally. We propose a simple technique that exploits this intu-
ition for better learning with fewer training examples. We regularize the feature weights in
a support vector machine[Cortes and Vapnik, 1995] toward a low-variance solution. Since
the new SVM quadratic program is convex, it is no harder to optimize than the standard
SVM objective.

When training data is generated through human effort, faster learning saves time and
money. When examples are labeled automatically, through user feedback[Joachims, 2002]
or from textual pseudo-examples[Smith and Eisner, 2005; Okanohara and Tsujii, 2007],
faster learning can reduce the lag before a new system is useful.

We demonstrate faster learning on the same lexical disambiguation tasks evaluated in
the previous chapter. Recall that in a lexical disambiguation task, a system predicts a label
for a word in text, based on the word’s context. Possible labels include part-of-speech
tags, named-entity types, and word senses. A number of disambiguation systems make
predictions with the help of N-gram counts from a web-scale auxiliary corpus, typically
acquiring these counts via a search-engine or N-gram corpus(Section 3.2.1).

Ultimately, when discriminative training is used to set weights on various counts in
order to make good classifications, many of the learned feature weights have similar values.
Good weights have low variance.

For example, consider the task of preposition selection. A system selects the most likely
preposition given the context, and flags a possible error if it disagrees with the user’s choice:

• I worked in Russiafrom 1997 to 2001.
• I worked in Russia *during 1997 to 2001.

Chapter 3 presented SUPERLM, which uses a variety of web counts to predict the cor-
rect preposition. SUPERLM has features forCOUNT(in Russiafrom), COUNT(Russiafrom
1997), COUNT(from 1997 to), etc. If these are high,from is predicted. Similarly, there are
features forCOUNT(in Russiaduring), COUNT(Russiaduring 1997), COUNT(during 1997
to). These features predictduring . All counts are in the log domain. The task has thirty-
four different prepositions to choose from. A 34-way classifier is trained on examples of
correct preposition usage; it learns which context positions and sizes are most reliable and
assigns feature weights accordingly.

In Chapter 3, we saw that a very strong unsupervised baseline, however, is to simply
weight all the count features equally. In fact, the supervised approach required over 30,000
training examples before it outperformed this baseline. Incontrast, we show here that

56

by regularizing a classifier toward equal weights, a supervised predictor outperforms the
unsupervised approach after only ten examples, and does as well with 1000 examples as the
standard classifier does with 100,000.

Section 4.2 first describes a general multi-class SVM. We call the base vector of infor-
mation used by the SVM theattributes. A standard multi-class SVM creates features for
the cross-product of attributes and classes. E.g., the attributeCOUNT(Russiaduring1997) is
not only a feature for predicting the prepositionduring , but also for predicting the 33 other
prepositions. The SVM must therefore learn to disregard many irrelevant features. We ob-
serve that this is not necessary, and develop an SVM that onlyuses the relevant attributes
in the score for each class. Building on this efficient framework, we incorporate variance
regularization into the SVM’s quadratic program.

We apply our algorithms to the three tasks studied in Chapter3: preposition selection,
context-sensitive spelling correction, and non-referential pronoun detection. We reproduce
the Chapter 3 results using a multi-class SVM. Our new modelsachieve much better accu-
racy with fewer training examples. We also exceed the accuracy of a reasonable alternative
technique for increasing the learning rate: including the output of the unsupervised system
as a feature in the classifier.

Variance regularization is an elegant addition to the suiteof methods in NLP that im-
prove performance when access to labeled data is limited. Section 4.5 discusses some
related approaches. While we motivate our algorithm as a wayto learn better weights
when the features are counts from an auxiliary corpus, thereare other potential uses of
our method. We outline some of these in Section 4.6, and note other directions for future
research.

4.2 Three Multi-Class SVM Models

We describe three max-margin multi-class classifiers and their corresponding quadratic pro-
grams. Although we describe linear SVMs, they can be extended to nonlinear cases in the
standard way by writing the optimal function as a linear combination of kernel functions
over the input examples.

In each case, after providing the general technique, we relate the approach to our
motivating application: learning weights for count features in a discriminative web-scale
N-gram model.

4.2.1 Standard Multi-Class SVM

We define aK-class SVM following[Crammer and Singer, 2001]. This is a generalization
of binary SVMs[Cortes and Vapnik, 1995]. We have a set{(x̄1, y1), ..., (x̄M , yM)} of M
training examples. Each̄x is anN -dimensional attribute vector, andy ∈ {1, ...,K} are
classes. A classifier,H, maps an attribute vector,̄x, to a class,y. H is parameterized by a
K-by-N matrix of weights,W:

HW(x̄) =
K

argmax
r=1

{W̄r · x̄} (4.1)

whereW̄r is therth row ofW. That is, the predicted label is the index of the row ofW

that has the highest inner-product with the attributes,x̄.

57

We seek weights such that the classifier makes few errors on training data and general-
izes well to unseen data. There areKN weights to learn, for the cross-product of attributes
and classes. The most common approach is to trainK separate one-versus-all binary SVMs,
one for each class. The weights learned for therth SVM provide the weights̄Wr in (4.1).
We call this approachOvA-SVM . Note in some settings various one-versus-one strategies
may be more effective than one-versus-all[Hsu and Lin, 2002].

The weights can also be found using a single constrained optimization[Vapnik, 1998;
Weston and Watkins, 1998]. Following the soft-margin version in[Crammer and Singer,
2001]:

min
W,ξ1,...,ξM

1

2

K∑

i=1

||W̄i||
2 + C

m∑

i=1

ξi

subject to : ∀i ξi ≥0

∀r 6= yi, W̄yi · x̄
i − W̄r · x̄

i ≥1− ξi (4.2)

The constraints require the correct class to be scored higher than other classes by a certain
margin, with slack for non-separable cases. Minimizing theweights is a form of regular-
ization. Tuning theC-parameter controls the emphasis on regularization versusseparation
of training examples.

We call this theK -SVM . The K-SVM outperformed theOvA-SVM in [Crammer and
Singer, 2001], but see[Rifkin and Klautau, 2004]. The popularity ofK-SVM is partly due to
convenience; it is included in popular SVM software likeSVM-multiclass1 andLIBLINEAR

[Fanet al., 2008].
Note that with two classes,K-SVM is less efficient than a standard binary SVM. A

binary classifier outputs class 1 if (w̄ · x̄ > 0) and class 2 otherwise. TheK-SVM encodes
a binary classifier usinḡW1 = w̄ andW̄2 = −w̄, therefore requiring twice the memory
of a binary SVM. However, both binary and 2-class formulations have the same solution
[Weston and Watkins, 1998].

Web-Scale N-gramK -SVM

K-SVM was used to combine the N-gram counts in Chapter 3. This was the SUPERLM
model. Recall that for preposition selection, attributes were web counts of patterns filled
with 34 prepositions, corresponding to the 34 classes. Eachpreposition serves as thefiller
of eachcontext pattern. Fourteen patterns were used for each filler: all five 5-grams, four
4-grams, three 3-grams, and two 2-grams spanning the position to be predicted. There are
N = 14 ∗ 34 = 476 total attributes, and thereforeKN = 476 ∗ 34 = 16184 weights in theW
matrix.

Figure 4.1 depicts the optimization problem for the preposition selection classifier. For
theith training example, the optimizer must set the weights suchthat the score for the true
class (from) is higher than the scores of all the other classes by a marginof 1. Otherwise, it
must use the slack parameter,ξi. The score is the linear product of the preposition-specific
weights,W̄r and all the features,̄xi. For illustration, seven of the thirty-four total classes are
depicted. Note these constraints must be collectively satisfied across all training examples.

A K-SVM classifier can potentially exploit very subtle informationfor this task. Let
W̄in andW̄before be weights for the classesin andbefore. Notice some of the attributes

1http://svmlight.joachims.org/svm_multiclass.html

58

Figure 4.1: Multi-class classification for web-scale N-gram models

weighted in the inner products̄Wbefore · x̄ andW̄in · x̄ will be for counts of the preposition
after. Relatively high counts for a context withafter should deter us from choosingin
more than from choosingbefore. These correlations can be encoded in the classifier via
the corresponding weights onafter-counts inW̄in andW̄before. Our experiments address
how useful these correlations are and how much training datais needed before they can be
learned and exploited effectively.

4.2.2 SVM with Class-Specific Attributes

Suppose we can partition our attribute vectors into sub-vectors that only include attributes
that we declare as relevant to the corresponding class:x̄ = (x̄1, ..., x̄K). We develop
a classifier that only uses the class-specific attributes in the score for each class. The
classifier uses anN -dimensional weight vector,̄w, which follows the attribute partition,
w̄ = (w̄1, ..., w̄K). The classifier is:

Hw̄(x̄) =
K

argmax
r=1

{w̄r · x̄r} (4.3)

We call this classifier theCS-SVM (an SVM withClass-Specific attributes).
The weights can be determined using the follow (soft-margin) optimization:

min
w̄,ξ1,...,ξm

1

2
w̄T w̄ + C

m∑

i=1

ξi

subject to : ∀i ξi ≥0

∀r 6= yi, w̄yi · x̄
i
yi − w̄r · x̄

i
r ≥1− ξi (4.4)

There are several advantages to this formulation. Foremost, rather than havingKN

weights, it can have onlyN . For linear classifiers, the number of examples needed to

59

reach optimum performance is at most linear in the number of weights [Vapnik, 1998;
Ng and Jordan, 2002]. In fact, both the total number and number ofactive features per
example decrease byK. Thus this reduction saves far more memory than what could be
obtained by an equal reduction in dimensionality via pruning infrequent attributes.

Also, note that unlike theK-SVM (Section 4.2.1), in the binary case theCS-SVM is
completely equivalent (thus equally efficient) to a standard SVM.

We will not alwaysa priori know the class associated with each attribute. Also, some
attributes may be predictive of multiple classes. In such cases, we can include ambiguous
attributes in every sub-vector (needingN+D(K-1) total weights ifD attributes are dupli-
cated). In the degenerate case where every attribute is duplicated,CS-SVM is equivalent to
K-SVM; both haveKN weights.

Optimization as a Binary SVM

We could solve the optimization problem in (4.4) directly using a quadratic programming
solver. However, through an equivalent transformation into a binary SVM, we can take
advantage of efficient, custom SVM optimization algorithms.

We follow [Har-Peledet al., 2003] in transforming a multi-class example into a set of
binary examples, each specifying a constraint from (4.4). We extend the attribute sub-vector
corresponding to each class to beN -dimensional. We do this by substituting zero-vectors
for all the other sub-vectors in the partition. The attribute vector for therth class is then
z̄r = (0̄, ..., 0̄, x̄r, 0̄, ..., 0̄). This is known as Kesler’s Construction and has a long history
in classification[Duda and Hart, 1973; Crammer and Singer, 2003]. We then create binary
rank constraints for a ranking SVM[Joachims, 2002] (ranking SVMs reduce to standard
binary SVMs). We createK instances for each multi-class example (x̄i, yi), with the trans-
formed vector of the true class,z̄yi , assigned a higher-rank than all the other, equally-ranked
classes,̄z{r 6=yi}. Training a ranking SVM using these constraints gives the same weights
as solving (4.4), but allows us to use efficient, custom SVM software.2 Note theK-SVM

can also be trained this way, by including every attribute inevery sub-vector, as described
earlier.

Web-Scale N-gramCS-SVM

Returning to our preposition selection example, an obviousattribute partition for theCS-SVM

is to include as attributes for predicting prepositionr only those counts for patterns filled
with prepositionr. Thusx̄in will only include counts for context patterns filled within and
x̄before will only include counts for context patterns filled withbefore. With 34 sub-vectors
and 14 attributes in each, there are only14∗34 = 476 total weights. In contrast,K-SVM had
16184 weights to learn.

It is instructive to compare theCS-SVM in (4.3) to the unsupervised SUMLM approach
in Chapter 3. That approach can be written as:

H(x̄) =
K

argmax
r=1

{1̄ · x̄r} (4.5)

2One subtlety is whether to use a single slack,ξi, for all K-1 constraints per examplei [Crammer and Singer,
2001], or a different slack for each constraint[Joachims, 2002]. Using the former may be better as it results in
a tighter bound on empirical risk[Tsochantaridiset al., 2005].

60

where1̄ is anN -dimensional vector of ones. This isCS-SVM with all weights set to unity.
The counts for each preposition are simply summed, and whichever one scores the highest
is taken as the output (actually only a subset of the counts are used, see Section 4.4.1). As
mentioned earlier, this system performs remarkably well onseveral tasks.

4.2.3 Variance Regularization SVMs

Suppose we choose our attribute partition well and train theCS-SVM on a sufficient number
of examples to achieve good performance. It is a reasonable hypothesis that the learned
weights will be predominantly positive. This is because each sub-vectorx̄r was chosen
to only include attributes that are predictive of classr. Unlike the classifier in (4.1) which
weighs positive and negative evidence together for each class, inCS-SVM, negative evidence
only plays a roll as it contributes to the score of competing classes.

If all the attributes are equally important, the weights should be equal, as in the unsu-
pervised approach in (4.5). If some are more important than others, the training examples
should reflect this and the learner can adjust the weights accordingly.3 In the absence of
this training evidence, it is reasonable to bias the classifier toward an equal-weight solution.

Rather than the standard SVM regularization that minimizesthe norm of the weights as
in (4.4), we therefore regularize toward weights that have low variance. More formally, we
can regard the set of weights,w1, ..., wN , as the distribution of a discrete random variable,
W . We can calculate the mean and variance of this variable fromits distribution. We seek
a variable that has low variance.

We begin with a more general objective and then explain how a specific choice of co-
variance matrix,C, minimizes the variance of the weights. We propose the regularizer:

min
w̄,ξ1,...,ξm

1

2
w̄T

Cw̄ + C

m∑

i=1

ξi

subject to : ∀i ξi ≥0

∀r 6= yi, w̄yi · x̄
i
yi − w̄r · x̄

i
r ≥1− ξi (4.6)

whereC is a normalized covariance matrix such that
∑

i,j Ci,j = 0. This ensures uniform
weight vectors receive zero regularization penalty. Sinceall covariance matrices are posi-
tive semi-definite, the quadratic program (QP) remains convex in w̄, and thus amenable to
general purpose QP-solvers.

Since the unsupervised system in (4.5) has zero weight variance, the SVM learned in
(4.6) should do as least as well as (4.5) as we tune theC-parameter on development data.
That is, asC approaches zero, variance minimization becomes the sole objective of (4.6),
and uniform weights are produced.

We use covariance matrices of the form:

C = diag(p̄)− p̄p̄T (4.7)

wherediag(p̄) is the matrix constructed by puttinḡp on the main diagonal. Here,̄p is an
arbitraryN -dimensional weighting vector, such thatp ≥ 0 and

∑
i pi = 1. The vectorp̄

dictates the contribution of eachwi to the mean and variance of the weights inw̄. It is easy
to see that

∑
i,j Ci,j =

∑
i pi −

∑
i

∑
j pipj = 0.

3E.g., recall from Chapter 3 that the true preposition might be better predicted by the counts of patterns that
tend to include the preposition’s grammatical object, i.e., patterns that include more right-context.

61

We now show that̄wT (diag(p̄) − p̄p̄T)w̄ expresses the variance of the weights inw̄

with respect to the probability weightinḡp. The variance of a random variable with mean
E[W] = µ is:

Var[W] = E[(W − µ)2] = E[W 2]− E[W]2

The mean of the weights using probability weightingp̄ is E[W] = w̄T p̄ = p̄w̄. Also,
E[W 2] = w̄T diag(p̄)w̄. Thus:

Var[W] = w̄T diag(p̄)w̄ − (w̄T p̄)(p̄w̄)

= w̄T (diag(p̄)− p̄p̄)w̄

In our experiments, we deem each weight to be equally important to the variance cal-
culation, and setpi = 1

N
,∀i = 1, . . . , N .

The goal of the regularization in (4.6) usingC from (4.7) can be regarded as directing
the SVM toward a good unsupervised system, regardless of theconstraints (training exam-
ples). In some unsupervised systems, however, only a subsetof the attributes are used. In
other cases, distinct subsets of weights should have low variance, rather than minimizing
the variance across all weights. There are examples of thesesituations in Section 4.4.

We can account for these cases in our QP. We provide separate terms in our quadratic
function for the subsets of̄w that should have low variance. Suppose we createL subsets
of w̄: ω̃1, ...ω̃L, whereω̃j is w̄ with elements set to zero that are not in subsetj. We then
minimize 1

2(ω̃
T
1 C1ω̃1 + ... + ω̃T

LCLω̃L). If the terms in subsetj have low variance,Cj

= C from (4.7) is used. If the subset corresponds to attributes that are nota priori known
to be useful, an identity matrix can instead be used,Cj = I, and these weights will be
regularized toward zero as in a standard SVM.4

Variance regularization therefore exploits extra knowledge by the system designer. The
designer decides which weights should have similar values,and the SVM is biased to prefer
this solution.

One consequence of being able to regularize different subsets of weights is that we can
also apply variance regularization to the standard multi-class SVM (Section 4.2.1). We can
use an identityCi matrix for all irrelevant weights, i.e., weights that correspond to class-
attribute pairs where the attribute is not directly relevant to the class. In our experiments,
however, we apply variance regularization to the more efficientCS-SVM.

We refer to aCS-SVM trained using the variance minimization quadratic programas the
VAR-SVM .

Web-Scale N-gram VAR-SVM

If variance regularization is applied to all weights, attributesCOUNT(in Russiaduring),
COUNT(Russiaduring1997), andCOUNT(during1997 to) will be encouraged to have simi-
lar weights in the score for classduring . Furthermore, these will be weighted similarly to
other patterns, filled with other prepositions, used in the scores for other classes.

Alternatively, we could minimize the variance separately over all 5-gram patterns, then
over all 4-gram patterns, etc., or over all patterns with a filler in the same position. In our

4Weights must appear in≥1 subsets (possibly only in theCj = I subset). Each occurs in at most one in
our experiments. Note it is straightforward to express thisas a single covariance matrix regularizer overw̄; we
omit the details.

62

experiments, we took a very simple approach: we minimized the variance of all attributes
that are weighted equally in the unsupervised baselines. Ifa feature is not included in an
unsupervised baseline, it is regularized toward zero.

4.3 Experimental Details

We use the data sets from Chapter 3. Recall that in each case a classifier makes a decision for
a particular word based on the word’s surrounding context. The attributes of the classifier
are the log counts of different fillers occurring in the context patterns. We retrieve counts
from the web-scale Google Web 5-gram Corpus[Brants and Franz, 2006], which includes
N-grams of length one to five. We apply add-one smoothing to all counts. Every classifier
also has bias features (for every class). We simply include,where appropriate, attributes
that are always unity.

We useLIBLINEAR [Fanet al., 2008] to train K-SVM and OvA-SVM, and SVMrank

[Joachims, 2006] to trainCS-SVM. For VAR-SVM, we solve the primal form of the quadratic
program directly in[CPLEX, 2005], a general optimization package.

We vary the number of training examples for each classifier. TheC-parameters of all
SVMs are tuned on development data. We evaluate usingaccuracy: the percentage of test
examples that are classified correctly. We also provide the accuracy of the majority-class
baseline and best unsupervised system, as defined in Chapter3.

As an alternative way to increase the learning rate, we augment a classifier’s features
using the output of the unsupervised system: For each class,we include one feature for
the sum of all counts (in the unsupervised system) that predict that class. We denote these
augmented systems with a+ as inK-SVM+ andCS-SVM+.

4.4 Applications

4.4.1 Preposition Selection

Following the set-up in Chapter 3, a classifier selects a preposition from 34 candidates,
using counts for filled 2-to-5-gram patterns. We again use the same 100K training, 10K
development, and 10K test examples. The unsupervised approach sums the counts of all 3-
to-5-gram patterns for each preposition. We therefore regularize the variance of the 3-to-5-
gram weights in VAR-SVM, and simultaneously minimize the norm of the 2-gram weights.

Results

The majority-class is the prepositionof; it occurs in 20.3% of test examples. The unsuper-
vised system scores 73.7%. For further perspective on theseresults, recall that[Chodorow
et al., 2007] achieved 69% with 7M training examples, while[Tetreault and Chodorow,
2008] found the human performance was around 75%. However, these results are not di-
rectly comparable as they are on different data.

Table 4.1 gives the accuracy for different amounts of training data. Here, as in the other
tasks,K-SVM mirrors the learning rate from Chapter 3. There are several distinct phases
among the relative ranking of the systems. For smaller amounts of training data (≤1000 ex-
amples)K-SVM performs worst, while VAR-SVM is statistically significantly better than all

63

Training Examples
System 10 100 1K 10K 100K
OvA-SVM 16.0 50.6 66.1 71.1 73.5
K-SVM 13.7 50.0 65.8 72.0 74.7
K-SVM+ 22.2 56.8 70.5 73.7 75.2
CS-SVM 27.1 58.8 69.0 73.5 74.2
CS-SVM+ 39.6 64.8 71.5 74.0 74.4
VAR-SVM 73.8 74.2 74.7 74.9 74.9

Table 4.1: Accuracy (%) of preposition-selection SVMs. Unsupervised (SUMLM) accuracy
is 73.7%.

Training Examples
System 10 100 1K 10K 100K
CS-SVM 86.0 93.5 95.1 95.7 95.7
CS-SVM+ 91.0 94.9 95.3 95.7 95.7
VAR-SVM 94.9 95.3 95.6 95.7 95.8

Table 4.2: Accuracy (%) of spell-correction SVMs. Unsupervised (SUMLM) accuracy is
94.8%.

other systems, and always exceeds the performance of the unsupervised approach.5 Aug-
menting the attributes with sum counts (the+ systems) strongly helps with fewer examples,
especially in conjunction with the more efficientCS-SVM. However, VAR-SVM clearly
helps more. We noted earlier that VAR-SVM is guaranteed to do as well as the unsupervised
system on the development data, but here we confirm that it canalso exploit even small
amounts of training data to further improve accuracy.

CS-SVM outperformsK-SVM except with 100K examples, whileOvA-SVM is better
thanK-SVM for small amounts of data.6 K-SVM performs best with all the data; it uses the
most expressive representation, but needs 100K examples tomake use of it. On the other
hand, feature augmentation and variance regularization provide diminishing returns as the
amount of training data increases.

4.4.2 Context-Sensitive Spelling Correction

Recall that in context-sensitive spelling correction, forevery occurrence of a word in a pre-
defined confusion set (e.g.{cite, sight, cite}), the classifier selects the most likely word
from the set. We use the five confusion sets from Chapter 3; four are binary and one is
a 3-way classification. We use 100K training, 10K development, and 10K test examples
for each, and average accuracy across the sets. All 2-to-5 gram counts are used in the
unsupervised system, so the variance of all weights is regularized in VAR-SVM.

5Significance is calculated using aχ2 test over the test set correct/incorrect contingency table.
6[Rifkin and Klautau, 2004] argueOvA-SVM is as good asK-SVM, but this is “predicated on the assumption

that the classes are ‘independent’,” i.e., that examples from class 0 are no closer to class 1 than to class 2. This
is not true of this task (e.g.̄xbefore is closer tōxafter thanx̄in, etc.).

64

Training Examples
System 10 100 1K
CS-SVM 59.0 71.0 84.3
CS-SVM+ 59.4 74.9 84.5
VAR-SVM 70.2 76.2 84.5
VAR-SVM+FreeB 64.2 80.3 84.5

Table 4.3: Accuracy (%) of non-referential detection SVMs.Unsupervised (SUMLM) ac-
curacy is 79.8%.

Results

On this task, the majority-class baseline is much higher, 66.9%, and so is the accuracy of
the top unsupervised system: 94.8%. Since four of the five sets are binary classifications,
whereK-SVM and CS-SVM are equivalent, we only give the accuracy of theCS-SVM (it
does perform better thanK-SVM on the one 3-way set). VAR-SVM again exceeds the un-
supervised accuracy for all training sizes, and generally performs as well as the augmented
CS-SVM+ using an order of magnitude less training data (Table 4.2). Differences from≤1K
are significant.

4.4.3 Non-Referential Pronoun Detection

We use the same data and fillers as Chapter 3, and preprocess the N-gram corpus in the
same way.

Recall that the unsupervised system picks non-referentialif the difference between the
summed count ofit fillers and the summed count oftheyfillers is above a threshold (note
this no longer fits Equation (4.5), with consequences discussed below). We thus separately
minimize the variance of theit pattern weights and thetheypattern weights. We use 1K
training, 533 development, and 534 test examples.

Results

The most common class isreferential, occurring in 59.4% of test examples. The unsuper-
vised system again does much better, at 79.8%.

Annotated training examples are much harder to obtain for this task and we experiment
with a smaller range of training sizes (Table 4.3). The performance of VAR-SVM exceeds the
performance ofK-SVM across all training sizes (bold accuracies are significantly better than
eitherCS-SVM for ≤100 examples). However, the gains were not as large as we had hoped,
and accuracy remains worse than the unsupervised system when not using all the training
data. When using all the data, a fairly large C-parameter performs best on development
data, so regularization plays less of a role.

After development experiments, we speculated that the poorperformance relative to the
unsupervised approach was related to class bias. In the other tasks, the unsupervised system
chooses the highest summed score. Here, the difference init andtheycounts is compared to
a threshold. Since the bias feature is regularized toward zero, then, unlike the other tasks,
using a lowC-parameter does not produce the unsupervised system, so performance can
begin below the unsupervised level.

65

Since we wanted the system to learn this threshold, even whenhighly regularized, we re-
moved the regularization penalty from the bias weight, letting the optimization freely set the
weight to minimize training error. With more freedom, the new classifier (VAR-SVM+FreeB)
performs worse with 10 examples, but exceeds the unsupervised approach with 100 train-
ing points. Although this was somewhat successful, developing better strategies for bias
remains useful future work.

4.5 Related Work

There is a large body of work on regularization in machine learning, including work that
uses positive semi-definite matrices in the SVM quadratic program. The graph Laplacian
has been used to encourage geometrically-similar feature vectors to be classified similarly
[Belkin et al., 2006]. An appealing property of these approaches is that they incorporate
information from unlabeled examples.[Wang et al., 2006] use Laplacian regularization
for the task of dependency parsing. They regularize such that features for distributionally-
similar words have similar weights. Rather than penalize pairwise differences proportional
to a similarity function as they do, we simply penalize weight variance.

In the field of computer vision,[Tefaset al., 2001] (binary) and[Kotsia et al., 2009]
(multi-class) also regularize weights with respect to a covariance matrix. They use labeled
data to find the sum of the sample covariance matrices from each class, similar to linear
discriminant analysis. We propose the idea in general, and instantiate with a differentC
matrix: a variance regularizer over̄w. Most importantly, our instantiated covariance matrix
does not require labeled data to generate.

In a Bayesian setting,[Rainaet al., 2006] model feature correlations in a logistic regres-
sion classifier. They propose a method to construct a covariance matrix for a multivariate
Gaussian prior on the classifier’s weights. Labeled data forother, related tasks is used to
infer potentially correlated features on the target task. Like in our results, they found that
the gains from modeling dependencies diminish as more training data is available.

We also mention two related online learning approaches. Similar to our goal of regu-
larizing toward a good unsupervised system,[Crammeret al., 2006] regularizew̄ toward
a (different) target vector at each update, rather than strictly minimizing ||w̄||2. The tar-
get vector is the vector learned from the cumulative effect of previous updates.[Dredzeet
al., 2008] maintain the variance of each weight and use this to guide theonline updates.
However, covariance between weights is not considered.

We believe new SVM regularizations in general, and varianceregularization in partic-
ular, will increasingly be used in combination with relatedNLP strategies that learn better
when labeled data is scarce. These may include: using more-general features, e.g. ones
generated from raw text[Miller et al., 2004; Kooet al., 2008], leveraging out-of-domain
examples to improve in-domain classification[Blitzer et al., 2007; Daumé III, 2007], active
learning[Cohnet al., 1994; Tong and Koller, 2002], and approaches that treat unlabeled
data as labeled, such as bootstrapping[Yarowsky, 1995], co-training[Blum and Mitchell,
1998], and self-training[McCloskyet al., 2006a].

4.6 Future Work

The primary direction of future research will be to apply theVAR-SVM to new problems
and tasks. There are many situations where a system designerhas an intuition about the

66

role a feature will play in prediction; the feature was perhaps added with this role in mind.
By biasing the SVM to use features as intended, VAR-SVM may learn better with fewer
training examples. The relationship between attributes and classes may be explicit when,
e.g., a rule-based system is optimized via discriminative learning, or annotators justify their
decisions by indicating the relevant attributes[Zaidanet al., 2007]. Also, if features area
priori thought to have different predictive worth, the attributevaluescould be scaled such
that variance regularization, as we formulated it, has the desired effect.

Other avenues of future work will be to extend the VAR-SVM in three directions: effi-
ciency, representational power, and problem domain.

While we optimized the VAR-SVM objective in CPLEX, general purpose QP-solvers
“do not exploit the special structure of [the SVM optimization] problem,” and consequently
often train in time super-linear with the number of trainingexamples[Joachimset al., 2009].
It would be useful to fit our optimization problem to efficientSVM training methods, espe-
cially for linear classifiers.

VAR-SVM’s representational power could be extended by using non-linear SVMs. Ker-
nels can be used with a covariance regularizer[Kotsia et al., 2009]. SinceC is positive
semi-definite, the square root of its inverse is defined. We can therefore map the input exam-
ples using(C− 1

2 x̄), and write an equivalent objective function in terms of kernel functions
over the transformed examples.

Also, since structured-prediction SVMs build on the multi-class framework[Tsochan-
taridiset al., 2005], variance regularization can be incorporated naturally into more-complex
prediction systems, such as parsers, taggers, and aligners.

VAR-SVM may also help in new domains where annotated data is lacking.VAR-SVM

should be stronger cross-domain thanK-SVM; regularization with domain-neutral prior-
knowledge can offset domain-specific biases. Learned weight vectors from other domains
may also provide cross-domain regularization guidance. Wediscuss the connection between
domain adaptation and regularization further in Section 5.7.

4.7 Conclusion

We presented variance-regularization SVMs, an approach tolearning that creates better
classifiers using fewer training examples. Variance regularization incorporates a bias for
known good weights into the SVM’s quadratic program. The VAR-SVM can therefore
exploit extra knowledge by the system designer. Since the objective remains a convex
quadratic function of the weights, the program is computationally no harder to optimize
than a standard SVM. We also demonstrated how to design multi-class SVMs using only
class-specific attributes, and compared the performance ofthis approach to standard multi-
class SVMs on the task of preposition selection.

While variance regularization is most helpful on tasks withmany classes and features,
like preposition selection, it achieved gains on all our tasks when training with smaller
sample sizes. It should be useful on a variety of other NLP problems.

67

Chapter 5

Creating Robust Supervised
Classifiers via Web-Scale N-gram
Data

“It is said Hugo was on vacation when Les Misérables (which is over 1200
pages) was published. He telegraphed the single-charactermessage ‘?’ to his
publisher, who replied with a single ‘!’[citation needed]”
http://en.wikipedia.org/wiki/Victor_hugo

In this chapter, we systematically assess the value of usingweb-scale N-gram data in
state-of-the-art supervised NLP classifiers, i.e., classifiers using conventional, non-count-
based features. We compare classifiers that also include or exclude features for the counts
of various N-grams, where the counts are obtained from a new web-scale auxiliary corpus.
We show that including N-gram count features can advance thestate-of-the-art accuracy on
standard data sets for adjective ordering, spelling correction, noun compound bracketing,
and verb part-of-speech disambiguation. More importantly, when operating on new do-
mains, or when labeled training data is not plentiful, we show that using web-scale N-gram
features is essential for achieving robust performance.

5.1 Introduction

As noted in Chapter 3, many NLP systems use web-scale N-gram counts[Keller and Lapata,
2003; Nakov and Hearst, 2005a; Brantset al., 2007]. [Lapata and Keller, 2005] demonstrate
good performance on eight tasks using unsupervised web-based models. They show web
counts are superior to counts from a large corpus. In Chapter3, we proposed unsupervised
and supervised systems that use counts from Google’s N-gramcorpus[Brants and Franz,
2006]. In general, past research has shown that web-based models perform particularly well
on generationtasks, where systems choose between competing sequences ofoutput text
(such as different spellings), as opposed toanalysistasks, where systems choose between
abstract labels (such as part-of-speech tags, parse trees,or whether a pronoun is referential
or not).

In this chapter, we address two natural and related questions which these previous stud-
ies leave open:

0A version of this chapter has been published as[Bergsmaet al., 2010c]

68

1. Is there a benefit in combining web-scale counts with the standard features used in
state-of-the-art supervised approaches?

2. How well do web-based models perform on new domains or whenlabeled data is
scarce?

We address these questions on two generation and two analysis tasks, using both ex-
isting N-gram data and a novel web-scale N-gram corpus that includes part-of-speech in-
formation (Section 5.2). While previous work has combined web-scale features with other
features in specific classification problems[Modjeskaet al., 2003; Yanget al., 2005; Vadas
and Curran, 2007b; Tratz and Hovy, 2010], we provide a multi-task, multi-domain compar-
ison.

Some may question why supervised learning with standard features is needed at all for
generation problems. Why not solely rely on direct evidencefrom a giant corpus? For
example, for the task of prenominal adjective ordering (Section 5.3), a system that needs to
describe a ball that is both big and red can simply check thatbig red is more common on
the web thanred big, and order the adjectives accordingly.

It is, however, suboptimal to only use simple counts from N-gram data. For example,
ordering adjectives by direct web evidence performs 7% worse than our best supervised
system (Section 5.3.2). No matter how large the web becomes,there will always be plau-
sible constructions that never occur. For example, there are currently no pages indexed
by Google with the preferred adjective ordering forbedraggled 56-year-old [professor].
Also, in a particular domain, words may have a non-standard usage. Systems trained on
labeled data can learn the domain usage and leverage other regularities, such as suffixes and
transitivity for adjective ordering.

With these benefits, systems trained on labeled data have become the dominant tech-
nology in academic NLP. There is a growing recognition, however, that these systems are
highly domain dependent. For example, parsers trained on annotated newspaper text per-
form poorly on other genres[Gildea, 2001]. While many approaches have adapted NLP
systems to specific domains[Tsuruokaet al., 2005; McCloskyet al., 2006b; Blitzeret al.,
2007; Daumé III, 2007; Rimell and Clark, 2008], these techniques assume the system knows
on which domain it is being used, and that it has access to representative data in that do-
main. These assumptions are unrealistic in many real-worldsituations; for example, when
automatically processing a heterogeneous collection of web pages. How well do supervised
and unsupervised NLP systems perform when used uncustomized, out-of-the-boxon new
domains, and how can we best design our systems for robustopen-domainperformance?

Our results show that using web-scale N-gram data in supervised systems advances
the state-of-the-art performance on standard analysis andgeneration tasks. More impor-
tantly, when operating out-of-domain, or when labeled datais not plentiful, using web-scale
N-gram data not only helps achieve good performance – it is essential.

5.2 Experiments and Data

5.2.1 Experimental Design

We again evaluate the benefit of N-gram data on multi-class classification problems. For
each task, we have some labeled data indicating the correct output for each example. We
evaluate withaccuracy: the percentage of examples correctly classified in test data. We

69

§ In-Domain (IN) Out-of-Domain #1 (O1) Out-of-Domain #2 (O2)
5.3 BNC [Malouf, 2000] Gutenberg (new) Medline (new)
5.4 NYT [Bergsmaet al., 2009b] Gutenberg (new) Medline (new)
5.5 WSJ[Vadas and Curran, 2007a] Grolier [Lauer, 1995a] Medline[Nakov, 2007]
5.6 WSJ[Marcuset al., 1993] Brown [Marcuset al., 1993] Medline[Kulick et al., 2004]

Table 5.1: Data, with references, for tasks in§ 5.3: Prenominal Adjective Ordering,§ 5.4:
Context-Sensitive Spelling Correction,§ 5.5: Noun Compound Bracketing, and§ 5.6: Verb
Part-of-Speech Disambiguation.

§ IN-Train IN-Dev IN-Test O1 O2
5.3 237K 13K 13K 13K 9.1K
5.4 100K 50K 50K 7.8K 56K
5.5 2.0K 72 95 244 429
5.6 23K 1.1K 1.1K 21K 6.3K

Table 5.2: Number of labeled examples in in-domain training, development and test sets,
and out-of-domain test sets, for tasks in Sections 5.3-5.6.

use onein-domainand twoout-of-domaintest sets for each task. Statistical significance is
assessed with McNemar’s test, p<0.01.

We provide results for various unsupervised approaches andalso the majority-class
baseline for each task.

For our supervised approaches, we represent the examples asfeature vectors, and learn
a classifier on the training vectors. There are two feature classes: features that use N-grams
(N-GM) and those that do not (LEX). N-GM features are real-valued features giving the log-
count of a particular N-gram in the auxiliary web corpus. These are just like the features we
used for the disambiguation problems in the previous two chapters. LEX features are binary
features that indicate the presence or absence of a particular string at a given position in the
input. The name LEX emphasizes that they identify specific lexical items. The instantiations
of both types of features depend on the task and are describedin the corresponding sections.

Each classifier is a linear Support Vector Machine (SVM), trained usingLIBLINEAR

[Fanet al., 2008] on the standard domain. We use the one-vs-all strategy when there are
more than two classes (in Section 5.4). We plot learning curves to measure the accuracy of
the classifier when the number of labeled training examples varies. The size of the N-gram
data and its counts remain constant. We always optimize the SVM’s (L2) regularization
parameter on the in-domain development set. We present results with L2-SVM, but achieve
similar results with L1-SVM and logistic regression.

5.2.2 Tasks and Labeled Data

We study two generation tasks: prenominal adjective ordering (Section 5.3) and context-
sensitive spelling correction (Section 5.4), followed by two analysis tasks: noun compound
bracketing (Section 5.5) and verb part-of-speech disambiguation (Section 5.6). Tables 5.1
and 5.2 summarize the sources and sizes of data used in the experiments. For the out-of-
domain Gutenberg and Medline data used in Sections 5.3 and 5.4, we generate examples

70

ourselves.1 We chose Gutenberg and Medline in order to provide challenging, distinct do-
mains from our training corpora. Our Gutenberg corpus consists of out-of-copyright books,
automatically downloaded from the Project Gutenberg website.2 The Medline data consists
of a large collection of online biomedical abstracts. We describe how labeled adjective and
spelling examples are created from these corpora in the corresponding sections.

5.2.3 Web-Scale Auxiliary Data

The most widely-used N-gram corpus is the Google 5-gram Corpus [Brants and Franz,
2006].

For our tasks, we also useGoogle V2: a new N-gram corpus (also with N-grams of
length one-to-five) that we created from the same one-trillion-word snapshot of the web
as the Google 5-gram Corpus, but with several enhancements.These include: 1) Reduc-
ing noise by removing duplicate sentences and sentences with a high proportion of non-
alphanumeric characters (together filtering about 80% of the source data), 2) pre-converting
all digits to the0 character to reduce sparsity for numeric expressions, and 3) including the
part-of-speech (POS) tag distribution for each N-gram. Thesource data was automati-
cally tagged with TnT[Brants, 2000], using the Penn Treebank tag set.[Lin et al., 2010]
provide more details on the N-gram data and N-gram search tools. Other recent projects
that have made use of this new data include[Ji and Lin, 2009; Bergsmaet al., 2010a;
Pitler et al., 2010].

The third enhancement is especially relevant here, as we canuse the POS distribution
to collect counts for N-grams of mixed words and tags. For example, we have developed
an N-gram search engine that can count how often the adjective unprecedentedprecedes
another adjective in our web corpus (113K times) and how often it follows one (11K times).
Thus, even if we haven’t seen a particular adjective pair directly, we can use the positional
preferences of each adjective in order to order them.

Early web-based models used search engines to collect N-gram counts, and thus could
not use capitalization, punctuation, and annotations suchas part-of-speech[Kilgarriff and
Grefenstette, 2003]. For example, recall that we had to develop fillers to serve as“surrogates
for nouns” for the non-referential pronoun detection system presented in Chapter 3, as
nouns were not labeled in the data directly. If we had a POS-tagged web corpus, we could
have looked up noun counts directly. Using a POS-tagged web corpus goes a long way to
addressing earlier criticisms of web-based NLP.

5.3 Prenominal Adjective Ordering

Prenominal adjective ordering strongly affects text readability. For example, whilethe un-
precedented statistical revolutionis fluent,the statistical unprecedented revolutionis not.
Many NLP systems need to handle adjective ordering robustly. In machine translation, if
a noun has two adjective modifiers, they must be ordered correctly in the target language.

1http://webdocs.cs.ualberta.ca/ ˜ bergsma/Robust/ provides our Gutenberg corpus, a link to
Medline, and also the generated examples for both Gutenbergand Medline.

2www.gutenberg.org . All books just released in 2009 and thus unlikely to occur inthe source data for
our N-gram corpus (from 2006). Of course, with removal of sentence duplicates and also N-gram thresholding,
the possible presence of a test sentence in the massive source data is unlikely to affect results.[Carlsonet al.,
2008] reach a similar conclusion and provide some further justification.

71

Adjective ordering is also needed in Natural Language Generation systems that produce in-
formation from databases; for example, to convey information (in sentences) about medical
patients[Shaw and Hatzivassiloglou, 1999].

We focus on the task of ordering a pair of adjectives independently of the noun they
modify and achieve good performance in this setting. Following the set-up of[Malouf,
2000], we experiment on the 263K adjective pairs Malouf extractedfrom the British Na-
tional Corpus (BNC). We use 90% of pairs for training, 5% for testing, and 5% for devel-
opment. This forms our in-domain data.3

We create out-of-domain examples by tokenizing Medline andGutenberg (Section 5.2.2),
then POS-tagging them with CRFTagger[Phan, 2006]. We create examples from all se-
quences of two adjectives followed by a noun. Like[Malouf, 2000], we assume that edited
text has adjectives ordered fluently. As was the case for preposition selection and spelling
correction, adjective ordering also permits the extraction of natural automatic examplesas
explained in Chapter 2, Section 2.5.4. We extract 13K and 9.1K out-of-domain pairs from
Gutenberg and Medline, respectively.4

The input to the system is a pair of adjectives,(a1, a2), ordered alphabetically. The task
is to classify this order as correct (the positive class) or incorrect (the negative class). Since
both classes are equally likely, the majority-classbaselineis around 50% on each of the
three test sets.

5.3.1 Supervised Adjective Ordering

L EX features

Our adjective ordering model with LEX features is a novel contribution of this work.
We begin with two features for each pair: an indicator feature for a1, which gets a

feature value of+1, and an indicator feature fora2, which gets a feature value of−1. The
parameters of the model are therefore weights on specific adjectives. The higher the weight
on an adjective, the more it is preferred in the first positionof a pair. If the alphabetic
ordering is correct, the weight ona1 should be higher than the weight ona2, so that the
classifier returns a positive score. If the reverse orderingis preferred,a2 should receive
a higher weight. Training the model in this setting is a matter of assigning weights to all
the observed adjectives such that the training pairs are maximally ordered correctly. The
feature weights thus implicitly produce a linear ordering of all observed adjectives. The
examples can also be regarded as rank constraints in a discriminative ranker[Joachims,
2002]. Transitivity is achieved naturally in that if we correctlyorder pairsa ≺ b andb ≺ c

in the training set, thena ≺ c by virtue of the weights ona andc.
While exploiting transitivity has been shown to improve adjective ordering, there are

many conflicting pairs that make a strict linear ordering of adjectives impossible[Malouf,
2000]. We therefore provide an indicator feature for the paira1a2, so the classifier can
memorize exceptions to the linear ordering, breaking strict order transitivity. Our classifier
thus operates along the lines of rankers in thepreference-based setting[Ailon and Mohri,
2008].

3BNC is not a domainper se(rather a balanced corpus), but has a style and vocabulary distinct from our
OOD data.

4Like [Malouf, 2000], we convert our pairs to lower-case. Since the N-gram data includes case, we merge
counts from the upper and lower case combinations.

72

System IN O1 O2
[Malouf, 2000] 91.5 65.6 71.6
webc(a1, a2) vs. c(a2, a1) 87.1 83.7 86.0
SVM with N-GM features 90.0 85.8 88.5
SVM with LEX features 93.0 70.0 73.9
SVM with N-GM + LEX 93.7 83.6 85.4

Table 5.3: Adjective ordering accuracy (%). SVM and [Malouf, 2000] trained on BNC,
tested on BNC (IN), Gutenberg (O1), and Medline (O2).

Finally, we also have features for all suffixes of length 1-to-4 letters, as these encode
useful information about adjective class[Malouf, 2000]. Like the adjective features, the
suffix features receive a value of+1 for adjectives in the first position and−1 for those in
the second.

N-GM features

[Lapata and Keller, 2005] propose a web-based approach to adjective ordering: take the
most-frequent order of the words on the web,c(a1, a2) vs. c(a2, a1). We adopt this as our
unsupervised approach. We merge the counts for the adjectives occurring contiguously and
separated by a comma.

These are the most useful N-GM features; we include them but also other, tag-based
counts from Google V2. Raw counts include cases where one of the adjectives is not
used as a modifier: “thespecial presentwas” vs. “thepresent specialissue.” We in-
clude log-counts for the following, more-targeted patterns:5 c(a1 a2 N.*), c(a2 a1 N.*),
c(DT a1 a2 N.*), c(DT a2 a1 N.*). We also include features for the log-counts of each
adjective preceded or followed by a word matching an adjective-tag: c(a1 J.*), c(J.* a1),
c(a2 J.*), c(J.* a2). These assess the positional preferences of each adjective. Finally, we
include the log-frequency of each adjective. The more frequent adjective occurs first in
57% of pairs.

As in all tasks, the counts are features in a classifier, so theimportance of the different
patterns is weighted discriminatively during training.

5.3.2 Adjective Ordering Results

In-domain, with both feature classes, we set a strong new standard on this data: 93.7%
accuracy for the N-GM+LEX system (Table 5.3). We trained and tested[Malouf, 2000]’s
program on our data; our LEX classifier, which also uses no auxiliary corpus, makes 18%
fewer errors than Malouf’s system. Our web-based N-GM model is also superior to the
direct evidence web-based approach of[Lapata and Keller, 2005], scoring 90.0% vs. 87.1%
accuracy. These results show the benefit of both our new lexicalized and our new web-based
features.

Figure 5.1 gives the in-domain learning curve. With fewer training examples, the sys-
tems with N-GM features strongly outperform the LEX-only system. Note that with tens of
thousands of test examples, all differences are highly significant.

Out-of-domain, LEX’s accuracy drops a shocking 23% on Gutenberg and 19% on Med-
line (Table 5.3).[Malouf, 2000]’s system fares even worse. The overlap between training

5In this notation, capital letters (and reg-exps) are matched against tags whilea1 anda2 match words.

73

 60

 65

 70

 75

 80

 85

 90

 95

 100

1e51e41e3100
A

cc
ur

ac
y

(%
)

Number of training examples

N-GM+LEX
N-GM

LEX

Figure 5.1: In-domain learning curve of adjective orderingclassifiers on BNC.

 60

 65

 70

 75

 80

 85

 90

 95

 100

1e51e41e3100

A
cc

ur
ac

y
(%

)

Number of training examples

N-GM+LEX
N-GM

LEX

Figure 5.2: Out-of-domain learning curve of adjective ordering classifiers on Gutenberg.

and test pairs helps explain. While 59% of the BNC test pairs were seen in the training
corpus, only 25% of Gutenberg and 18% of Medline pairs were seen in training.

While other ordering models have also achieved “very poor results” out-of-domain
[Mitchell, 2009], we expected our expanded set of LEX features to provide good gener-
alization on new data. Instead, LEX is very unreliable on new domains.

N-GM features do not rely on specific pairs in training data, and thus remain fairly robust
cross-domain. Across the three test sets, 84-89% of examples had the correct ordering
appear at least once on the web. On new domains, the learned N-GM system maintains an
advantage over the unsupervisedc(a1, a2) vs. c(a2, a1), but the difference is reduced. Note
that training with 10-fold cross validation, the N-GM system can achieve up to 87.5% on
Gutenberg (90.0% for N-GM + LEX).

The learning curves showing performance on Gutenberg and Medline (but still training
on BNC) is particularly instructive (Figures 5.2 and 5.3). The LEX system performs much
worse than the web-based models across all training sizes. For our top in-domain system,
N-GM + LEX, as you add more labeled examples, performance beginsdecreasingout-of-
domain. The system disregards the robust N-gram counts as itis more and more confident
in the LEX features, and it suffers the consequences.

74

 60

 65

 70

 75

 80

 85

 90

 95

 100

1e51e41e3100
A

cc
ur

ac
y

(%
)

Number of training examples

N-GM+LEX
N-GM

LEX

Figure 5.3: Out-of-domain learning curve of adjective ordering classifiers on Medline.

5.4 Context-Sensitive Spelling Correction

We now turn to the generation problem of context-sensitive spelling correction. For those
who have read the previous two chapters, you’re obviously familiar with the task: For every
occurrence of a word in a pre-defined set of confusable words (like peaceandpiece), the
system must select the most likely word from the set, flaggingpossible usage errors when
the predicted word disagrees with the original.

Our in-domain examples are again from the New York Times (NYT) portion of Giga-
word, as described in Chapter 3. Recall that these comprise the 5 confusion sets where
accuracy was below 90% in[Golding and Roth, 1999]. There are 100K training, 10K de-
velopment, and 10K test examples for each confusion set. Ourresults are averages across
confusion sets.

Out-of-domain examples are again drawn from Gutenberg and Medline. We extract all
instances of words that are in one of our confusion sets, along with surrounding context.
By assuming the extracted instances represent correct usage, we label 7.8K and 56K out-
of-domain test examples for Gutenberg and Medline, respectively.

We test three unsupervised systems: 1) TRIGRAM (Chapter 3): use one token of context
on the left and one on the right, and output the candidate fromthe confusion set that occurs
most frequently in this pattern[Lapata and Keller, 2005]. 2) SUMLM (Chapter 3), where
we measure the frequency of the candidates in all the 3-to-5-gram patterns that span the
confusable word. For each candidate, we sum the log-counts of all patterns filled with the
candidate, and output the candidate with the highest total.3) Thebaselinepredicts the most
frequent member of each confusion set, based on frequenciesin the NYT training data.

5.4.1 Supervised Spelling Correction

Our LEX features are typical disambiguation features that flag specific aspects of the con-
text. We have features for the words at all positions in a 9-word window (called collocation
features by[Golding and Roth, 1999]), plus indicators for a particular word preceding or
following the confusable word. We also include indicators for all N-grams, and their posi-
tion, in a 9-word window.

For N-GM count features, we follow Chapter 3. We include the log-counts of all

75

System IN O1 O2
Baseline 66.9 44.6 60.6
TRIGRAM 88.4 78.0 87.4
SUMLM 94.8 87.7 94.2
SVM with N-GM features 95.7 92.1 93.9
SVM with LEX features 95.2 85.8 91.0
SVM with N-GM + LEX 96.5 91.9 94.8

Table 5.4: Spelling correction accuracy (%). SVM trained onNYT, tested on NYT (IN)
and out-of-domain Gutenberg (O1) and Medline (O2).

 70

 75

 80

 85

 90

 95

 100

1e51e41e3100

A
cc

ur
ac

y
(%

)

Number of training examples

N-GM+LEX
N-GM

LEX

Figure 5.4: In-domain learning curve of spelling correction classifiers on NYT.

N-grams that span the confusable word, with each word in the confusion set filling the
N-gram pattern. These features do not use part-of-speech. Following our previous work,
we get N-gram counts using the original Google N-gram Corpus.

While neither our LEX nor N-GM features are novel on their own, they have, perhaps
surprisingly, not yet been evaluated in a single model.

5.4.2 Spelling Correction Results

The N-GM features outperform the LEX features, 95.7% vs. 95.2% (Table 5.4). Together,
they achieve a very strong 96.5% in-domain accuracy. This is2% higher than the best
unsupervised approach, SUMLM. Web-based models again perform well across a range of
training data sizes (Figure 5.4).

The error rate of LEX nearly triples on Gutenberg and almost doubles on Medline (Ta-
ble 5.4). Removing N-GM features from the N-GM + LEX system, errors increase around
75% on both Gutenberg and Medline. The LEX features provide no help to the combined
system on Gutenberg, while they do help significantly on Medline. Note the learning
curves for N-GM+LEX on Gutenberg and Medline (Figures 5.5, and 5.6) do not display the
decrease that we observed in adjective ordering (Figure 5.2).

Both the baseline and LEX perform poorly on Gutenberg. The baseline predicts the
majority class from NYT, but it’s not always the majority class in Gutenberg. For example,
while in NYT siteoccurs 87% of the time for the(cite, sight, site)confusion set,sightoccurs

76

 70

 75

 80

 85

 90

 95

 100

1e51e41e3100

A
cc

ur
ac

y
(%

)

Number of training examples

N-GM+LEX
N-GM

LEX

Figure 5.5: Out-of-domain learning curve of spelling correction classifiers on Gutenberg.

 70

 75

 80

 85

 90

 95

 100

1e51e41e3100

A
cc

ur
ac

y
(%

)

Number of training examples

N-GM+LEX
N-GM

LEX

Figure 5.6: Out-of-domain learning curve of spelling correction classifiers on Medline.

77

90% of the time in Gutenberg. The LEX classifier exploits this bias as it is regularized
toward a more economical model, but the bias does not transfer to the new domain.

5.5 Noun Compound Bracketing

About 70% of web queries are noun phrases[Barret al., 2008] and methods that can reliably
parse these phrases are of great interest in NLP. For example, a web query forzebra hair
straightenershould be bracketed as(zebra (hair straightener)), a stylish hair straightener
with zebra print, rather than((zebra hair) straightener), a useless product since the fur of
zebras is already quite straight.

The noun compound (NC) bracketing task is usually cast as a decision whether a 3-
word NC has a left or right bracketing. Most approaches are unsupervised, using a large
corpus to compare the statistical association between wordpairs in the NC. The adjacency
model[Marcus, 1980] proposes a left bracketing if the association between wordsone and
two is higher than between two and three. The dependency model [Lauer, 1995a] compares
one-two vs.one-three. We include dependency model results using PMI as the association
measure; results were lower with the adjacency model.

As in-domain data, we use[Vadas and Curran, 2007a]’s Wall-Street Journal (WSJ)
data, an extension of the Treebank (which originally left NPs flat). We extract all sequences
of three consecutive common nouns, generating 1983 examples from sections 0-22 of the
Treebank as training, 72 from section 24 for development and95 from section 23 as a test
set. As out-of-domain data, we use 244 NCs from Grolier Encyclopedia[Lauer, 1995a] and
429 NCs from Medline[Nakov, 2007].

The majority classbaselineis left-bracketing.

5.5.1 Supervised Noun Bracketing

Our LEX features indicate the specific noun at each position in the compound, plus the three
pairs of nouns and the full noun triple. We also add features for the capitalization pattern of
the sequence.

N-GM features give the log-count of all subsets of nouns in the compound: (N1), (N2),
(N3), (N1 N2), (N1 N3), (N2 N3), and (N1 N2 N3). Counts are fromGoogle V2. Following
[Nakov and Hearst, 2005a], we also include counts of noun pairs collapsed into a single
token; if a pair occurs often on the web as a single unit, it strongly indicates the pair is a
constituent.

[Vadas and Curran, 2007a] use simpler features, e.g. they do not use collapsed pair
counts. They achieve 89.9% in-domain on WSJ and 80.7% on Grolier. [Vadas and Curran,
2007b] use comparable features to ours, but do not test out-of-domain.

5.5.2 Noun Compound Bracketing Results

N-GM systems perform much better on this task (Table 5.5). N-GM+LEX is statistically sig-
nificantly better than LEX on all sets. In-domain, errors more than double without N-GM

features. LEX performs poorly here because there are far fewer training examples. The
learning curve (Figure 5.7) looks much like earlier in-domain curves (Figures 5.1 and 5.4),
but truncated before LEX becomes competitive. The absence of a sufficient amount of la-
beled data explains why NC-bracketing is generally regarded as a task where corpus counts
are crucial.

78

System IN O1 O2
Baseline 70.5 66.8 84.1
Dependency model 74.7 82.8 84.4
SVM with N-GM features 89.5 81.6 86.2
SVM with LEX features 81.1 70.9 79.0
SVM with N-GM + LEX 91.6 81.6 87.4

Table 5.5: NC-bracketing accuracy (%). SVM trained on WSJ, tested on WSJ (IN) and
out-of-domain Grolier (O1) and Medline (O2).

 60

 65

 70

 75

 80

 85

 90

 95

 100

1e310010

A
cc

ur
ac

y
(%

)

Number of labeled examples

N-GM+LEX
N-GM

LEX

Figure 5.7: In-domain NC-bracketer learning curve

All web-based models (including the dependency model) exceed 81.5% on Grolier,
which is the level of human agreement[Lauer, 1995b]. N-GM + LEX is highest on Medline,
and close to the 88% human agreement[Nakov and Hearst, 2005a]. Out-of-domain, the
LEX approach performs very poorly, close to or below the baseline accuracy. With little
training data and cross-domain usage, N-gram features are essential.

5.6 Verb Part-of-Speech Disambiguation

Our final task is POS-tagging. We focus on one frequent and difficult tagging decision: the
distinction between a past-tense verb (VBD) and a past participle (VBN). For example, in
the troops stationed in Iraq, the verbstationedis a VBN; troops is the head of the (noun)
phrase. On the other hand, forthe troops vacationed in Iraq, the verbvacationedis a VBD

and also the head. Some verbs make the distinction explicit (eathasVBD ate, VBN eaten),
but most require context for resolution. This is exactly thetask we presented in Section 1.3
as an example of where unlabeled data can be useful. Recall that the verb inBears wonis a
VBD while the verb introphy wonis aVBN.

ConflatingVBN/VBD is damaging because it affects downstream parsers and semantic
role labelers. The task is difficult because nearby POS tags can be identical in both cases.
When the verb follows a noun, tag assignment can hinge on world-knowledge, i.e., the
global lexical relation between the noun and verb (E.g.,troops tends to be the object of
stationedbut the subject ofvacationed).6 Web-scale N-gram data might help improve the

6HMM-style taggers, like the fast TnT tagger used on our web corpus, do not use bilexical features, and so

79

VBN/VBD distinction by providing relational evidence, even if the verb, noun, or verb-noun
pair were not observed in training data. This is what we showed in Section 1.3.

We extract nouns followed by aVBN/VBD in the WSJ portion of the Treebank[Marcus
et al., 1993], getting 23K training, 1091 development and 1130 test examples from sections
2-22, 24, and 23, respectively. For out-of-domain data, we get 21K examples from the
Brown portion of the Treebank and 6296 examples from tagged Medline abstracts in the
PennBioIE corpus[Kulick et al., 2004].

The majority classbaselineis to chooseVBD.

5.6.1 Supervised Verb Disambiguation

There are two orthogonal sources of information for predicting VBN/VBD: 1) the noun-verb
pair, and 2) the context around the pair. Both N-GM and LEX features encode both these
sources.

L EX features

For 1), we use indicators for the noun and verb, the noun-verbpair, whether the verb is on
an in-house list ofsaid-verb (likewarned, announced, etc.), whether the noun is capitalized
and whether it’s upper-case. Note that in training data, 97.3% of capitalized nouns are
followed by aVBD and 98.5% ofsaid-verbs areVBDs. For 2), we provide indicator features
for the words before the noun and after the verb.

N-GM features

For 1), we characterize a noun-verb relation via features for the pair’s distribution in Google
V2. Characterizing a word by its distribution has a long history in NLP; we apply similar
techniques torelations, like [Turney, 2006], but with a larger corpus and richer annotations.
We extract the 20 most-frequent N-grams that contain both the noun and the verb in the
pair. For each of these, we convert the tokens to POS-tags, except for tokens that are among
the 100 most frequent unigrams in our corpus, which we include in word form. We mask
the noun of interest asN and the verb of interest asV. This converted N-gram is the feature
label. The value is the pattern’s log-count. A high count forpatterns like(N that V), (N
have V)suggests the relation is aVBD, while patterns(N that were V), (N V by), (V some N)
indicate aVBN. (Again, refer to Section 1.3 for some more example patterns). As always,
the classifier learns the association between patterns and classes.

For 2), we use counts for the verb’s context co-occurring with aVBD or VBN tag in our
web corpus (again exploiting the fact our web corpus contains tags). E.g., we see whether
VBD cases liketroops ateor VBN cases liketroops eatenare more frequent. Although our
corpus contains manyVBN/VBD errors, we hope the errors are random enough for aggregate
counts to be useful. The context is an N-gram spanning theVBN/VBD. We have log-count
features for all five such N-grams in the (previous-word, noun, verb, next-word) quadruple.
The log-count is indexed by the position and length of the N-gram. We include separate
count features for contexts matching the specific noun and for when the noun token can
match any word tagged as a noun.

perform especially poorly on these cases. One motivation for our work was to develop a fast post-processor to
fix VBN/VBD errors.

80

System IN O1 O2
Baseline 89.2 85.2 79.6
ContextSum 92.5 91.1 90.4
SVM with N-GM features 96.1 93.4 93.8
SVM with LEX features 95.8 93.4 93.0
SVM with N-GM + LEX 96.4 93.5 94.0

Table 5.6: Verb-POS-disambiguation accuracy (%) trained on WSJ, tested on WSJ (IN) and
out-of-domain Brown (O1) and Medline (O2).

 80

 85

 90

 95

 100

1e41e3100

A
cc

ur
ac

y
(%

)

Number of training examples

N-GM (N,V+context)
LEX (N,V+context)

N-GM (N,V)
LEX (N,V)

Figure 5.8: Out-of-domain learning curve of verb disambiguation classifiers on Medline.

ContextSum: We also use these context counts in an unsupervised system,ContextSum.
Analogously to the SUMLM system from Chapter 3, we separately sum the log-counts for
all contexts filled withVBD and thenVBN, outputting the tag with the higher total.

5.6.2 Verb POS Disambiguation Results

As in all tasks, N-GM+LEX has the best in-domain accuracy (96.4%, Table 5.6). Out-of-
domain, when N-grams are excluded, errors only increase around 14% on Medline and 2%
on Brown (the differences are not statistically significant). Why? Figure 5.8, the learning
curve for performance on Medline, suggests some reasons. Weomit N-GM+LEX from
Figure 5.8 as it closely follows N-GM.

Recall that we grouped the features into two views: 1) noun-verb (N,V) and 2) context.
If we use just (N,V) features, we do see a large drop out-of-domain: LEX (N,V) lags N-GM

(N,V) even using all the training examples. The same is true using only context features
(not shown). Using both views, the results are closer: 93.8%for N-GM and 93.0% for LEX.
With two views of an example, LEX is more likely to have domain-neutral features to draw
on. The effects of data sparsity are reduced.

Also, the Treebank provides an atypical number of labeled examples for analysis tasks.
In a more typical situation with less labeled examples, N-GM strongly dominates LEX, even
when two views are used. E.g., with 2285 training examples, N-GM+LEX is statistically
significantly better than LEX on both out-of-domain sets.

All systems, however, perform log-linearly with training size. This differs especially
from our generation tasks where the N-GM performance had levelled off much earlier. In

81

other tasks we only had a handful of N-GM features; here there are 21K features for the
distributional patterns of N,V pairs. With more features, we need more labeled data to
make the N-GM features work properly. A similar issue with such high-dimensional global
features is explored in[Huang and Yates, 2009]. Reducing this feature space by pruning or
performing transformations may improve accuracy in and out-of-domain.

5.7 Discussion and Future Work

Of all classifiers, LEX performs worst on all cross-domain tasks. Clearly, many of the
regularities that a typical classifier exploits in one domain do not transfer to new genres.
N-GM features, however, do not depend directly on training examples, and thus work better
cross-domain. Of course, using web-scale N-grams is not theonly way to create robust
classifiers. Counts from any large auxiliary corpus may alsohelp, but web counts should
help more[Lapata and Keller, 2005]. Section 5.6.2 suggests that another way to mitigate
domain-dependence is to have multiple feature views.

[Banko and Brill, 2001] argue “a logical next step for the research community would be
to direct efforts towards increasing the size of annotated training collections.” Assuming we
really do want systems that operate beyond the specific domains on which they are trained,
the community also needs to identify which systems behave asin Figure 5.2, where the
accuracy of the best in-domain system actually decreases with more training examples. Our
results suggest better features, such as web pattern counts, may help more than expanding
training data. Also, systems using web-scale unlabeled data will improve automatically as
the web expands, without annotation effort.

In some sense, using web counts as features is a form of domainadaptation: adapt-
ing a web model to the training domain. How do we ensure these features are adapted
well and not used in domain-specific ways (especially with many features to adapt, as in
Section 5.6)? One option may be to regularize the classifier specifically for out-of-domain
accuracy. We found that adjusting the SVM misclassificationpenalty (for more regulariza-
tion) can help or hurt out-of-domain. Other regularizations are possible. In fact, one good
option might be to extend the results of Chapter 4 to cross-domain usage. In this chapter,
each task had a domain-neutral unsupervised approach. We could encode these systems
as linear classifiers with corresponding weights. Rather than a typical SVM that minimizes
the weight-norm||w|| (plus the slacks), we could regularize toward domain-neutral weights,
and otherwise minimize weight variance so that it prefers this system in the absence of other
information. This regularization could be optimized on creative splits of the training data,
in an effort to simulate the lexical overlap we can expect with a particular test domain.

5.8 Conclusion

We presented results on tasks spanning a range of NLP research: generation, disambigua-
tion, parsing and tagging. Using web-scale N-gram data improves accuracy on each task.
When less training data is used, or when the system is used on adifferent domain, N-gram
features greatly improve performance. Since most supervised NLP systems do not use
web-scale counts, further cross-domain evaluation may reveal some very brittle systems.
Continued effort in new domains should be a priority for the community going forward.

This concludes the part of the dissertation that explored using web-scale N-gram data
as features within a supervised classifier. I hope you enjoyed it.

82

Chapter 6

Discriminative Learning of
Selectional Preference from
Unlabeled Text

“Saying ‘I’m sorry’ is the same as saying ‘I apologize.’ Except at a funeral.”
- Demetri Martin

6.1 Introduction

Selectional preferences (SPs) tell us which arguments are plausible for a particular predi-
cate. For example, aletter, areportor ane-mailare all plausible direct-object arguments for
the verb predicatewrite. On the other hand, azebra, intransigenceor nihilism are unlikely
arguments for this predicate. People tend toexude confidencebut they don’t tend toexude
pencils. Table 6.2 (Section 6.4.4) gives further examples. SPs can help resolve syntactic,
word sense, and reference ambiguity[Clark and Weir, 2002], and so gathering them has
received a lot of attention in the NLP community.

One way to determine SPs is from co-occurrences of predicates and arguments in text.
Unfortunately, no matter how much text we use (even if, as in the previous chapters, we’re
using Google N-grams, which come from all the text on the web), many acceptable pairs
will be missing. Bikel[2004] found that only 1.49% of the bilexical dependencies con-
sidered by Collins’ parser during decoding were observed during training. In our parsed
corpus (Section 6.4.1), for example, we findeat with nachos, burritos, andtacos, but not
with the equally tastyquesadillas, chimichangas, or tostadas. Rather than solely relying on
co-occurrence counts, we would like to use them to generalize to unseen pairs.

In particular, we would like to exploit a number of arbitraryand potentially overlapping
properties of predicates and arguments when we assign SPs. We propose to do this by
representing these properties as features in a linear classifier, and training the weights using
discriminative learning. Positive examples are taken fromobserved predicate-argument
pairs, while pseudo-negatives are constructed from unobserved combinations. We train a
support vector machine (SVM) classifier to distinguish the positives from the negatives.
We refer to our model’s scores as Discriminative Selectional Preference (DSP). By creating
training vectors automatically, DSP enjoys all the advantages of supervised learning, but

0A version of this chapter has been published as[Bergsmaet al., 2008a]

83

without the need for manual annotation of examples. Our proposed work here is therefore
an example of a semi-supervised system that uses “Learning with Heuristically-Labeled
Examples,” as described in Chapter 2, Section 2.5.4.

We evaluate DSPon the task of assigning verb-object selectional preference. We encode
a noun’s textual distribution as feature information. The learned feature weights are linguis-
tically interesting, yielding high-quality similar-wordlists as latent information. With these
features, DSP is also an example of a semi-supervised system that creates features from
unlabeled data (Section 2.5.5). It thus encapsulates the two main thrusts of this dissertation.

Despite its representational power, DSP scales to real-world data sizes: examples are
partitioned by predicate, and a separate SVM is trained for each partition. This allows us to
efficiently learn with over 57 thousand features and 6.5 million examples. DSPoutperforms
recently proposed alternatives in a range of experiments, and better correlates with human
plausibility judgments. It also shows strong gains over a Mutual Information-based co-
occurrence model on two tasks: identifying objects of verbsin an unseen corpus and finding
pronominal antecedents in coreference data.

6.2 Related Work

Most approaches to SPs generalize from observed predicate-argument pairs to semantically
similar ones by modeling the semantic class of the argument,following Resnik[1996]. For
example, we might have a classMexican Foodand learn that the entire class is suitable for
eating. Usually, the classes are from WordNet[Miller et al., 1990], although they can also
be inferred from clustering[Roothet al., 1999]. Brockmann and Lapata[2003] compare
a number of WordNet-based approaches, including Resnik[1996], Li and Abe[1998], and
Clark and Weir[2002], and found that more sophisticated class-based approachesdo not
always outperform frequency-based models.

Another line of research generalizes using similar words. Suppose we are calculating
the probability of a particular noun,n, occurring as the object argument of a given verbal
predicate,v. Let Pr(n|v) be the empirical maximum-likelihood estimate from observed
text. Dagan et al.[1999] define the similarity-weighted probability, PrSIM, to be:

PrSIM(n|v) =
∑

v′∈SIMS(v)

Sim(v′, v)Pr(n|v′) (6.1)

whereSim(v′, v) returns a real-valued similarity between two verbsv′ andv (normalized
over all pair similarities in the sum). In contrast, Erk[2007] generalizes by substituting
similar arguments, while Wang et al.[2005] use the cross-product of similar pairs. One key
issue is how to define the set of similar words, SIMS(w). Erk [2007] compared a number
of techniques for creating similar-word sets and found thatboth the Jaccard coefficient
and Lin [1998a]’s information-theoretic metric work best. Similarity-smoothed models
are simple to compute, potentially adaptable to new domains, and require no manually-
compiled resources such as WordNet.

Selectional preferences have also been a recent focus of researchers investigating the
learning of paraphrases and inference rules[Pantelet al., 2007; Robertoet al., 2007]. In-
ferences such as “[X wins Y] ⇒ [X playsY]” are only valid for certain argumentsX and
Y. We follow Pantel et al.[2007] in using automatically-extracted semantic classes to help
characterize plausible arguments.

84

As described in Chapter 2, discriminative techniques are widely used in NLP. They
have been applied to the related tasks of word prediction andlanguage modeling. Even-
Zohar and Roth[2000] use a classifier to predict the most likely word to fill a position in a
sentence (in their experiments: a verb) from a set of candidates (sets of verbs), by inspecting
the context of the target token (e.g., the presence or absence of a particular nearby word in
the sentence). This approach can therefore learn which specific arguments occur with a
particular predicate. In comparison, our features are second-order: we learn whatkinds
of arguments occur with a predicate by encoding features of the arguments. The work
of van den Bosch[2006] extends the work of Even-Zohar and Roth[2000] to all-word
prediction. Recent distributed and latent-variable models also represent words with feature
vectors[Bengioet al., 2003; Blitzeret al., 2005]. Many of these approaches learn both the
feature weights and the feature representation. Vectors must be kept low-dimensional for
tractability, while learning and inference on larger scales is impractical. By partitioning our
examples by predicate, we can efficiently use high-dimensional, sparse vectors.

6.3 Methodology

6.3.1 Creating Examples

To learn a discriminative model of selectional preference,we create positive and negative
training examples automatically from raw text. To create the positives, we automatically
parse a large corpus, and then extract the predicate-argument pairs that have a statistical
association in this data. We measure this association usingpoint-wise Mutual Informa-
tion (MI) [Church and Hanks, 1990]. The MI between a verb predicate,v, and its object
argument,n, is:

MI (v, n) = log
Pr(v, n)

Pr(v)Pr(n)
= log

Pr(n|v)
Pr(n)

(6.2)

If MI >0, the probabilityv andn occur together is greater than if they were independently
distributed.

We create sets of positive and negative examples separatelyfor each predicate,v. First,
we extract all pairs where MI(v, n)>τ as positives. For each positive, we create pseudo-
negative examples,(v, n′), by pairingv with a new argument,n′, that either has MI below
the threshold or did not occur withv in the corpus. We require each negativen′ to have
a similar frequency to its correspondingn. This prevents our learning algorithm from fo-
cusing on any accidental frequency-based bias. We mix inK negatives for each positive,
sampling without replacement to create all the negatives for a particular predicate. For each
v, 1

K+1 of its examples will be positive. The thresholdτ represents a trade-off between
capturing a large number of positive pairs and ensuring these pairs have good association.
Similarly, K is a trade-off between the number of examples and the computational effi-
ciency. Ultimately, these parameters should be optimized for task performance.

Of course, some negatives will actually be plausible arguments that were unobserved
due to sparseness. Fortunately, discriminative methods like soft-margin SVMs can learn in
the face of label error by allowing slack, subject to a tunable regularization penalty (Chap-
ter 2, Section 2.3.4).

If MI is a sparse and imperfect model of SP, what can DSP gain by training on MI’s
scores? We can regard DSP as learning a view of SP that is orthogonal to MI, in a co-
training sense[Blum and Mitchell, 1998]. MI labels the data based solely on co-occurrence;

85

DSP uses these labels to identify other regularities – ones thatextend beyond co-occurring
words. For example, many instances ofn where MI(eat, n)>τ also have MI(buy, n)>τ

and MI(cook, n)>τ . Also, compared to other nouns, a disproportionate number of eat-
nouns are lower-case, single-token words, and they rarely contain digits, hyphens, or begin
with a human first name likeBob. DSPencodes these interdependent properties as features
in a linear classifier. This classifier can score any noun as a plausible argument ofeat if
indicative features are present; MI can only assign high plausibility to observed (eat,n)
pairs. Similarity-smoothed models can make use of the regularities across similar verbs,
but not the finer-grained string- and token-based features.

Our training examples are similar to the data created forpseudodisambiguation, the
usual evaluation task for SP models[Erk, 2007; Keller and Lapata, 2003; Roothet al.,
1999]. This data consists of triples(v, n, n′) wherev, n is a predicate-argument pair ob-
served in the corpus andv, n′ has not been observed. The models score correctly if they
rank observed (thus plausible) arguments above corresponding unobserved (thus implausi-
ble) ones. We refer to this asPairwise Disambiguation. Unlike this task, we classify each
predicate-argument pair independently as plausible/implausible. We also use MI rather than
frequency to define the positive pairs, ensuring that the positive pairs truly have a statistical
association, and are not simply the result of parser error ornoise.1

6.3.2 Partitioning for Efficient Training

After creating our positive and negative training pairs, wemust select a feature represen-
tation for our examples. LetΦ be a mapping from a predicate-argument pair(v, n) to
a feature vector,Φ : (v, n) → 〈φ1...φk〉. Predictions are made using a linear classifier,
h(v, n) = w̄ ·Φ(v, n), wherew̄ is our learned weight vector.

We can make training significantly more efficient by using a special form of attribute-
value features. Let every featureφi be of the formφi(v, n) = 〈v = v̂ ∧ f(n)〉. That
is, every feature is an intersection of the occurrence of a particular predicate,̂v, and some
feature of the argumentf(n). For example, a feature for a verb-object pair might be, “the
verb iseat and the object is lower-case.” In this representation, features for one predicate
will be completely independent from those for every other predicate. Thus rather than a
single training procedure, we can actually partition the examples by predicate, and train a
classifier for each predicate independently. The prediction becomeshv(n) = w̄v · Φv(n),
wherew̄v are the learned weights corresponding to predicatev and all featuresΦv(n)=f(n)
depend on the argument only.2

Some predicate partitions may have insufficient examples for training. Also, a pred-
icate may occur in test data that was unseen during training.To handle these cases, we
cluster low-frequency predicates. For assigning SP to verb-object pairs, we cluster all verbs
that have less than 250 positive examples, using clusters generated by the CBC algorithm
[Pantel and Lin, 2002]. For example, the low-frequency verbsincarcerate, parole, and

1For a fixed verb, MI is proportional to Keller and Lapata[2003]’s conditional probability scores for pseu-
dodisambiguation of(v, n, n′) triples: Pr(v|n) = Pr(v, n)/Pr(n), which was shown to be a better measure
of association than co-occurrence frequencyf(v, n). Normalizing by Pr(v) (yielding MI) allows us to use a
constant threshold across all verbs. MI was also recently used for inference-rule SPs by Pantel et al.[2007].

2hv(n) should not be confused with the multi-class classifiers presented in previous chapters. There, ther
in W̄r · x̄ indexed a class and̄Wr · x̄ gave the score for each class. All the class scores needed to be computed
for each example at test time. Here, for a givenv, there is only one linear combination to compute:w̄v · f(n).
A single binary plausible/implausible decision is made on the basis of this verb-specific decision function.

86

court-martialare all mapped to the same partition, while frequent verbs like arrestandex-
ecuteeach have their own partition. About 5.5% of examples are clustered, corresponding
to 30% of the 7367 total verbs. 40% of verbs (but only 0.6% of examples) were not in any
CBC cluster; these were mapped to a single backoff partition.

The parameters for each partition,̄wv , can be trained with any supervised learning
technique. We use SVM (Section 6.4.1) because it is effective in similar high-dimensional,
sparse-vector settings (Chapter 2, Section 2.3.4), and hasan efficient implementation[Joachims,
1999a]. In an SVM, the sign ofhv(n) gives the classification. We can also use the scalar
hv(n) as our DSP score (i.e. the positive distance of a point from the separating SVM
hyperplane).

6.3.3 Features

This section details our argument features,f(n), for assigning verb-object selectional pref-
erence. For a verb predicate (or partition)v and object argumentn, the form of our classifier
is hv(n) = w̄v · f(n) =

∑
iw

v
i fi(n).

Verb co-occurrence

We provide features for the empirical probability of the noun occurring as the object argu-
ment of other verbs, Pr(n|v′). If we were to only use these features (indexing the feature
weights by each verbv′), the form of our classifier would be:

hv(n) =
∑

v′

wv
v′Pr(n|v′) (6.3)

Note the similarity between Equation (6.3) and Equation (6.1). Now the feature weights,
wv
v′ , take the role of the similarity function,Sim(v′, v). Unlike Equation (6.1), however,

these weights are not set by an external similarity algorithm, but are optimized to discrim-
inate the positive and negative training examples. We need not restrict ourselves to a short
list of similar verbs; we include Probj(n|v′) features for every verb that occurs more than 10
times in our corpus.wv

v′ may be positive or negative, depending on the relation betweenv′

andv. We also include features for the probability of the noun occurring as thesubjectof
other verbs, Prsubj(n|v′). For example, nouns that can be the object ofeatwill also occur as
the subject oftasteandcontain. Other contexts, such as adjectival and nominal predicates,
could also aid the prediction, but have not been investigated.

The advantage of tuning similarity to the application of interest has been shown previ-
ously by Weeds and Weir[2005]. They optimize a few meta-parameters separately for the
tasks of thesaurus generation and pseudodisambiguation. Our approach discriminatively
sets millions of individual similarity values. Like Weeds and Weir [2005], our similarity
values are asymmetric.

String-based

We include several simple character-based features of the noun string: the number of tokens,
the capitalization, and whether the string contains digits, hyphens, an apostrophe, or other
punctuation. We also include a feature for the first and last token, and fire indicator features
if any token in the noun occurs on in-house lists of given names, family names, cities,
provinces, countries, corporations, languages, etc. We also fire a feature if a token is a
corporate designation (likeinc. or ltd.) or a human one (likeMr. or Sheik).

87

Semantic classes

Motivated by previous SP models that make use of semantic classes, we generate word
clusters using CBC[Pantel and Lin, 2002] on a 10 GB corpus, giving 3620 clusters. If a
noun belongs in a cluster, a corresponding feature fires. If anoun is in none of the clusters,
ano-classfeature fires.

As an example, CBC cluster 1891 contains:

sidewalk, driveway, roadway, footpath, bridge, highway, road, runway, street, alley,
path, Interstate, . . .

In our training data, we have examples likewiden highway, widen roadandwiden motor-
way. If we see that we can widen a highway, we learn that we can also widen a sidewalk,
bridge, runway, etc.

We also made use of the person-name/instance pairs automatically extracted by Fleis-
chman et al.[2003].3 This data provides counts for pairs such as “Edwin Moses,hurdler”
and “William Farley,industrialist.” We have features for allconceptsand therefore learn
their association with each verb.

6.4 Experiments and Results

6.4.1 Set up

We parsed the 3 GB AQUAINT corpus[Vorhees, 2002] using Minipar[Lin, 1998b], and
collected verb-object and verb-subject frequencies, building an empirical MI model from
this data. Verbs and nouns were converted to their (possiblymulti-token) root, and string
case was preserved. Passive subjects (the car was bought) were converted to objects (bought
car). We set the MI-threshold,τ , to be 0, and the negative-to-positive ratio,K, to be 2.

Numerous previous pseudodisambiguation evaluations onlyinclude arguments that oc-
cur between 30 and 3000 times[Erk, 2007; Keller and Lapata, 2003; Roothet al., 1999].
Presumably the lower bound is to help ensure the negative argument is unobserved because
it is unsuitable, not because of data sparseness. We wish to use our model on arguments
of any frequency, including those that never occurred in thetraining corpus (and there-
fore have empty co-occurrence features (Section 6.3.3)). We proceed as follows: first, we
exclude pairs whenever thenounoccurs less than 3 times in our corpus, removing many
misspellings and other noise. Next, we omit verb co-occurrence features for nouns that oc-
cur less than 10 times, and instead fire a low-count feature. When we move to a new corpus,
previously-unseen nouns are treated like these low-count training nouns. Note there are no
specific restrictions on the frequency ofpairs.

This processing results in a set of 6.8 million pairs, divided into 2318 partitions (192 of
which are verb clusters (Section 6.3.2)). For each partition, we take 95% of the examples for
training, 2.5% for development and 2.5% for a final unseen test set. We provide full results
for two models: DSPcooc which only uses the verb co-occurrence features, and DSPall which
uses all the features mentioned in Section 6.3.3. Feature values are normalized within each
feature type. We train our (linear kernel) discriminative models using SVMlight [Joachims,
1999a] on each partition, but set meta-parametersC (regularization) andj (cost of posi-
tive vs. negative misclassifications: max atj=2) on the macro-averaged score across all

3Available athttp://www.mit.edu/ ˜ mbf/instances.txt.gz

88

System
MacroAvg MicroAvg Pairwise

P R F P R F Acc Cov

[Daganet al., 1999] 0.36 0.90 0.51 0.68 0.92 0.78 0.58 0.98
[Erk, 2007] 0.49 0.66 0.56 0.70 0.82 0.76 0.72 0.83
[Keller and Lapata, 2003] 0.72 0.34 0.46 0.80 0.50 0.62 0.80 0.57
DSPcooc 0.53 0.72 0.61 0.73 0.94 0.82 0.77 1.00
DSPall 0.60 0.71 0.65 0.77 0.90 0.83 0.81 1.00

Table 6.1: Pseudodisambiguation results averaged across each example (MacroAvg),
weighted by word frequency (MicroAvg), plus coverage and accuracy of pairwise com-
petition (Pairwise).

development partitions. Note that we can not use the development set to optimizeτ andK
because the development examples are obtainedafter setting these values.

6.4.2 Feature weights

It is interesting to inspect the feature weights returned byour system. In particular, the
weights on the verb co-occurrence features (Section 6.3.3)provide a high-quality, argument-
specific similarity-ranking of other verb contexts. The DSP parameters foreat, for ex-
ample, place high weight on features like Pr(n|braise), Pr(n|ration), and Pr(n|garnish).
Lin [1998a]’s similar word list foreat misses these but includessleep(ranked 6) andsit
(ranked 14), because these have similarsubjectsto eat. Discriminative, context-specific
training seems to yield a better set of similar predicates, e.g. the highest-ranked contexts
for DSPcooc on the verbjoin,4

lead 1.42, rejoin 1.39, form 1.34, belong to 1.31, found 1.31, quit 1.29, guide 1.19,
induct 1.19, launch (subj) 1.18, work at 1.14

give a better SIMS(join) for Equation (6.1) than the top similarities returned by[Lin, 1998a]:

participate 0.164, lead 0.150, return to 0.148, say 0.143, rejoin 0.142, sign 0.142, meet
0.142, include 0.141, leave 0.140, work 0.137

Other features are also weighted intuitively. Note that capitalization is a strong indicator
for some arguments, for example the weight on being lower-case is high forbecome(0.972)
andeat (0.505), but highly negative foraccuse(-0.675) andembroil (-0.573) which often
take names of people and organizations.

6.4.3 Pseudodisambiguation

We first evaluate DSP on disambiguating positives from pseudo-negatives, comparing to
recently-proposed systems that also require no manually-compiled resources like WordNet.
We convert Dagan et al.[1999]’s similarity-smoothed probability to MI by replacing the

4Which all correspond to nouns occurring in the object position of the verb (e.g. Probj(n|lead)), except
“launch (subj)” which corresponds to Prsubj(n|launch).

89

empirical Pr(n|v) in Equation (6.2) with the smoothed PrSIM from Equation (6.1). We also
test an MI model inspired by Erk[2007]:

MI SIM(n, v) = log
∑

n′∈SIMS(n)

Sim(n′, n)
Pr(v, n′)

Pr(v)Pr(n′)

We gather similar words using[Lin, 1998a], mining similar verbs from a comparable-sized
parsed corpus, and collecting similar nouns from a broader 10 GB corpus of English text.5

We also use Keller and Lapata[2003]’s approach to obtaining predicate-argument counts
from the web. Rather than mining parse trees, this techniqueretrieves counts for the pattern
“V Det N” in raw online text, whereV is any inflection of the verb,Det is the, a, or the
empty string, andN is the singular or plural form of the noun. We compute a web-based MI
by collecting Pr(n, v), Pr(n), and Pr(v) using all inflections, except we only use the root
form of the noun. Rather than using a search engine, we obtaincounts from the Google
Web 5-gram Corpus (Chapter 3, Section 3.2.2).

All systems are thresholded at zero to make a classification.Unlike DSP, the compar-
ison systems may not be able to score each example. The similarity-smoothed examples
will be undefined if SIMS(w) is empty. Also, the Keller and Lapata[2003] approach will
be undefined if the pair is unobserved on the web. As a reasonable default for these cases,
we assign them a negative decision.

We evaluate disambiguation using precision (P), recall (R), and their harmonic mean,
F-Score (F). Table 6.1 gives the results of our comparison. In theMacroAvgresults, we
weight each example equally. ForMicroAvg, we weight each example by the frequency of
the noun. To more directly compare with previous work, we also reproducedPairwise Dis-
ambiguationby randomly pairing each positive with one of the negatives and then evaluat-
ing each system by the percentage it ranks correctly (Acc). For the comparison approaches,
if one score is undefined, we choose the other one. If both are undefined, we abstain from a
decision. Coverage (Cov) is the percent of pairs where a decision was made.6

Our simple system with only verb co-occurrence features, DSPcooc, outperforms all
comparison approaches. Using the richer feature set in DSPall results in a statistically sig-
nificant gain in performance, up to an F-Score of 0.65 and a pairwise disambiguation ac-
curacy of 0.81.7 DSPall has both broader coverage and better accuracy than all competing
approaches. In the remainder of the experiments, we use DSPall and refer to it simply as
DSP.

Some errors are because of plausible but unseen arguments being used as test-set pseudo-
negatives. For example, for the verbdamage, DSP’s three most high-scoring false positives
are the nounsjetliner, carpet, andgear. While none occur withdamagein our corpus, all
intuitively satisfy the verb’s selectional preferences.

MacroAvgperformance is worse thanMicroAvgbecause all systems perform better on
frequent nouns. When we plot F-Score by noun frequency (Figure 6.1), we see that DSP

outperforms comparison approaches across all frequencies, but achieves its biggest gains

5For both the similar-noun and similar-verb smoothing, we only smooth over similar pairsthat occurred in
the corpus. While averaging over all similar pairs tends to underestimate the probability, averaging over only
the observed pairs tends to overestimate it. We tested both and adopt the latter because it resulted in better
performance on our development set.

6I.e. we use the “half coverage” condition from Erk[2007].
7The differences between DSPall and all comparison systems are statistically significant (McNemar’s test,

p<0.01).

90

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 100 1000 10000 100000 1e+06

F
-S

co
re

Noun Frequency

DSPall
Erk (2007)

Keller and Lapata (2003)

Figure 6.1: Disambiguation results by noun frequency.

on the low-frequency nouns. A richer feature set allows DSP to make correct inferences on
examples that provide minimal co-occurrence data. These are also the examples for which
we would expect co-occurrence models like MI to fail.

As a further experiment, we re-trained DSP but with only the string-based features
removed. Overall macro-averaged F-score dropped from 0.65to 0.64 (a statistically sig-
nificant reduction in performance). The system scored nearly identically to DSP on the
high-frequency nouns, but performed roughly 15% worse on the nouns that occurred less
than ten times. This shows that the string-based features are important for selectional pref-
erence, and particularly helpful for low-frequency nouns.

Finally, we note that some suggestions for improving pseudo-word evaluations have
been proposed in a very recent paper by Chambers and Jurafsky[Chambers and Jurafsky,
2010]. For example, our evaluation in this section only considersunseenpairs in the sense
that our training and testing pairs are distinct. It may be more realistic to evaluate on all
pairs extracted from a corpus, in which case we can directly compare to co-occurrence (or
conditional probability, or MI), as in the following sections.

6.4.4 Human Plausibility

Table 6.2 compares some of our systems on data used by Resnik[1996] (also Appendix 2 in
Holmes et al.[1989]). The plausibility of these pairs was initially judged based on the ex-
perimenters’ intuitions, and later confirmed in a human experiment. We include the scores
of Resnik’s system, and note that its errors were attributedto sense ambiguity and other
limitations of class-based approaches[Resnik, 1996].8 The other comparison approaches
also make a number of mistakes, which can often be traced to a misguided choice of similar
word to smooth with.

We also compare to our empirical MI model, trained on our parsed corpus. Although

8For example,warn-enginescores highly because engines are in the classentity, and physical entities (e.g.
people) are often objects ofwarn. Unlike DSP, Resnik’s approach cannot learn that forwarn, “the property of
being a person is more important than the property of being anentity” [Resnik, 1996].

91

Verb Plaus./Implaus. Resnik Dagan et al Erk MI DSP

see friend/method 5.79/-0.01 0.20/1.40* 0.46/-0.07 1.11/-0.57 0.98/0.02
read article/fashion 6.80/-0.20 3.00/0.11 3.80/1.90 4.00/— 2.12/-0.65
find label/fever 1.10/0.22 1.50/2.20* 0.59/0.01 0.42/0.07 1.61/0.81
hear story/issue 1.89/1.89* 0.66/1.50* 2.00/2.60* 2.99/-1.03 1.66/0.67
write letter/market 7.26/0.00 2.50/-0.43 3.60/-0.24 5.06/-4.12 3.08/-1.31
urge daughter/contrast 1.14/1.86* 0.14/1.60* 1.10/3.60* -0.95/— -0.34/-0.62
warn driver/engine 4.73/3.61 1.20/0.05 2.30/0.62 2.87/— 2.00/-0.99
judge contest/climate 1.30/0.28 1.50/1.90* 1.70/1.70* 3.90/— 1.00/0.51
teach language/distance 1.87/1.86 2.50/1.30 3.60/2.70 3.53/— 1.86/0.19
show sample/travel 1.44/0.41 1.60/0.14 0.40/-0.82 0.53/-0.49 1.00/-0.83
expect visit/mouth 0.59/5.93* 1.40/1.50* 1.40/0.37 1.05/-0.65 1.44/-0.15
answer request/tragedy 4.49/3.88 2.70/1.50 3.10/-0.64 2.93/— 1.00/0.01
recognize author/pocket 0.50/0.50* 0.03/0.37* 0.77/1.30* 0.48/— 1.00/0.00
repeat comment/journal 1.23/1.23* 2.30/1.40 2.90/— 2.59/— 1.00/-0.48
understand concept/session 1.52/1.51 2.70/0.25 2.00/-0.28 3.96/— 2.23/-0.46
remember reply/smoke 1.31/0.20 2.10/1.20 0.54/2.60* 1.13/-0.06 1.00/-0.42

Table 6.2: Selectional ratings for plausible/implausibledirect objects (Holmes, 1989). Mis-
takes are marked with an asterisk (*), undefined scores are marked with a dash (—). Only
DSP is completely defined and completely correct.

Seen Criteria
Unseen Verb-Object Freq.

All = 1 = 2 = 3 > 3

MI > 0 0.44 0.33 0.57 0.70 0.82
Freq.> 0 0.57 0.45 0.76 0.89 0.96
DSP> 0 0.73 0.69 0.80 0.85 0.88

Table 6.3: Recall on identification of Verb-Object pairs from an unseen corpus (divided by
pair frequency).

Resnik[1996] reported that 10 of the 16 plausible pairs did not occur in histraining corpus,
all of them occurred in ours and hence MI gives very reasonable scores on the plausible
objects. It has no statistics, however, for many of the implausible ones. DSPcan make finer
decisions than MI, recognizing that “warning an engine” is more absurd than “judging a
climate.”

6.4.5 Unseen Verb-Object Identification

We next compare MI and DSP on a much larger set of plausible examples, and also test
how well the models generalize across data sets. We took the MI and DSP systems trained
on AQUAINT and asked them to rate observed (and thus likely plausible) verb-object pairs
taken from an unseen corpus. We extracted the pairs by parsing the San Jose Mercury News
(SJM) section of the TIPSTER corpus[Harman, 1992]. Each unique verb-object pair is a
single instance in this evaluation.

Table 6.3 gives recall across all pairs(All) and grouped by pair-frequency in the unseen
corpus (1, 2, 3,>3). DSP accepts far more pairs than MI (73% vs. 44%), even far more
than a system that accepts any previously observed verb-object combination as plausible
(57%). Recall is higher on more frequent verb-object pairs,but 70% of the pairs occurred

92

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1

In
te

rp
ol

at
ed

 P
re

ci
si

on

Recall

DSP>T
MI>T

DSP>0
MI>0

Figure 6.2: Pronoun resolution precision-recall on MUC.

only once in the corpus. Even if we smooth MI by smoothing Pr(n|v) in Equation 6.2
using modified KN-smoothing[Chen and Goodman, 1998], the recall of MI>0 on SJM
only increases from 44.1% to 44.9%, still far below DSP. Frequency-based models have
fundamentally low coverage. As further evidence, if we build a model of MI on the SJM
corpus and use it in our pseudodisambiguation experiment (Section 6.4.3), MI>0 gets a
MacroAvgprecision of 86% but aMacroAvgrecall of only 12%.9

6.4.6 Pronoun Resolution

Finally, we evaluate DSPon a common application of selectional preferences: choosing the
correct antecedent for pronouns in text[Dagan and Itai, 1990; Kehleret al., 2004]. We study
the cases where a pronoun is the direct object of a verb predicate,v. A pronoun’s antecedent
must obeyv’s selectional preferences. If we have a better model of SP, we should be able
to better select pronoun antecedents.10

We parsed the MUC-7[1997] coreference corpus and extracted all pronouns in a direct
object relation. For each pronoun,p, modified by a verb,v, we extracted all preceding nouns
within the current or previous sentence. Thirty-nine anaphoric pronouns had an antecedent
in this window and are used in the evaluation. For eachp, letN(p)+ by the set of preceding
nouns coreferent withp, and letN(p)− be the remaining non-coreferent nouns. We take
all (v, n+) wheren+ ∈ N(p)+ as positive, and all other pairs(v, n−), n− ∈ N(p)− as
negative.

We compare MI and DSP on this set, classifying every(v, n) with MI>T (or DSP>T)
as positive. By varyingT , we get a precision-recall curve (Figure 6.2). Precision islow

9Recall that even the Keller and Lapata[2003] system, built on the world’s largest corpus, achieves only
34% recall (Table 6.1) (with only 48% of positives and 27% of all pairs previously observed, but note, on
the other hand, that low-count N-grams have been filtered from the N-gram corpus, and therefore perhaps this
effect is overstated).

10Note we’re not trying to answer the question of whether selectional preferences are useful[Yang et al.,
2005] or not[Kehleret al., 2004] for resolving pronouns when combined with features for recency, frequency,
gender, syntactic role of the candidate, etc. We are only using this task as another evaluation for our models of
selectional preference.

93

System Acc

Most-Recent Noun 17.9%
Maximum MI 28.2%
Maximum DSP 38.5%

Table 6.4: Pronoun resolution accuracy on nouns in current or previous sentence in MUC.

because, of course, there are many nouns that satisfy the predicate’s SPs that are not coref-
erent. DSP>0 has both a higher recall and higher precision than acceptingevery pair pre-
viously seen in text (the right-most point on MI>T). The DSP>T system achieves higher
precision than MI>T for points where recall is greater than 60% (where MI<0). Interest-
ingly, the recall of MI>0 is higher here than it is for general verb-objects (Section 6.4.5).
On the subset of pairs with strong empirical association (MI>0), MI generally outperforms
DSPat equivalent recall values.

We next compare MI and DSP as stand-alone pronoun resolution systems (Table 6.4).
As a standard baseline, for each pronoun, we choose the most recent noun in text as the pro-
noun’s antecedent, achieving 17.9% resolution accuracy. This baseline is low because many
of the most-recent nouns are subjects of the pronoun’s verb phrase, and therefore resolution
would violate syntactic coreference constraints. If we choose the previous noun with the
highest MI as antecedent, we get an accuracy of 28.2%, while choosing the previous noun
with the highest DSPachieves 38.5%. DSPresolves 37% more pronouns correctly than MI.

6.5 Conclusions and Future Work

We have proposed a simple, effective model of selectional preference based on discrimina-
tive training. Supervised techniques typically achieve better performance than unsupervised
models, and we duplicate these gains with DSP. Here, however, these gains come at no ad-
ditional labeling cost, as training examples are generatedautomatically from unlabeled text.

DSPallows an arbitrary combination of features, including verb co-occurrence features
that yield high-quality similar-word lists as latent output. These lists not only indicate
which verbs are associated with a common set of nouns; they provide insight into a chain of
narrative events in which a particular noun may participate(e.g., a particular noun may be
bought, thencooked, thengarnished, and then likelyeaten). DSP therefore learns similar
information to previous approaches that seek such narrative events directly and explicitly
[Bean and Riloff, 2004; Chambers and Jurafsky, 2008]. However, note that we learn the
association of events across a corpus rather than only in a particular segment of discourse,
like a document or paragraph. One option for future work is tomodel the local and global
distribution of nouns separately, allowing for finer-grained (and potentially sense-specific)
plausibility predictions.

The features used in DSP only scratch the surface of possible feature mining; informa-
tion from WordNet relations, Wikipedia categories, or parallel corpora could also provide
valuable clues for selectional preference. Also, if any other system were to exceed DSP’s
performance, it could also be included as one of DSP’s features.

It would be interesting to expand our co-occurrence features, including co-occurrence
counts across more grammatical relations and using counts from external, unparsed corpora

94

like the world wide web. We could also reverse the role of nounand verb in our training,
having verb-specific features and discriminating separately for each argument noun. The
latent information would then be lists of similar nouns.

Finally, one potentially very exciting direction for future work would be to automati-
cally collect and create features for onlineimagesreturned for the noun query. It would
be amazing to be able to predict noun-verb plausibility purely on the basis of a system’s
learned visual recognition of compatible features (e.g., this collection of images seems to
depict something that can be eaten, etc.).

DSP provides an excellent framework for such explorations because it generates many
training examples and can therefore incorporate fine-grained, overlapping and potentially
interdependent features. We look at another system that hasthese properties in the following
chapter.

95

Chapter 7

Alignment-Based Discriminative
String Similarity

“Kimono... kimono... kimono... Ha! Of course! Kimono is come from the
Greek word himona, is mean winter. So, what do you wear in the wintertime
to stay warm? A robe. You see: robe, kimono. There you go!”
- Gus Portokalos,My Big Fat Greek Wedding

This chapter proposes a new model of string similarity that exploits a character-based
alignment of the two strings. We again adopt a discriminative approach. Positive pairs are
generated automatically from word pairs with a high association in an aligned bitext, or
else mined from dictionary translations. Negatives are constructed from pairs with a high
amount of character overlap, but which are not translations. So in this work, there are three
types of information that allow us to generate examples automatically: statistics from a
bitext, entries in a dictionary, and characters in the strings. This information is unlabeled
in the sense that no human annotator has specifically labeledcognates in the data. It is
useful because once a definition is adopted, examples can be generated automatically, and
different methods can be empirically evaluated on a level playing field.

7.1 Introduction

String similarity is often used as a means of quantifying thelikelihood that two pairs of
strings have the same underlying meaning, based purely on the character composition of
the two words.[Strubeet al., 2002] use edit distance[Levenshtein, 1966] as a feature for
determining if two words are coreferent.[Taskaret al., 2005] use French-English common
letter sequences as a feature for discriminative word alignment in bilingual texts.[Brill
and Moore, 2000] learn misspelled-word to correctly-spelled-word similarities for spelling
correction. In each of these examples, a similarity measurecan make use of the recurrent
substring pairings that reliably occur between words having the same meaning.

Across natural languages, these recurrent substring correspondences are found in word
pairs known as cognates: words with a common form and meaningacross languages. Cog-
nates arise either from words in a common ancestor language (e.g. light/Licht, night/Nacht
in English/German) or from foreign word borrowings (e.g.trampoline/toranporinin En-
glish/Japanese). Knowledge of cognates is useful for a number of applications, including

0A version of this chapter has been published as[Bergsma and Kondrak, 2007a]

96

word alignment[Kondraket al., 2003], sentence alignment[Simardet al., 1992; Church,
1993; McEnery and Oakes, 1996; Melamed, 1999] and learning translation lexicons[Mann
and Yarowsky, 2001; Koehn and Knight, 2002]. The related task of identifyingtransliter-
ationshas also received much recent attention[Klementiev and Roth, 2006; Zelenko and
Aone, 2006; Yoonet al., 2007; Jiampojamarnet al., 2010]. Extending dictionaries with
automatically-acquired knowledge of cognates and transliterations can improve machine
translation systems[Knight et al., 1995].

Also, cognates have been used to help assess the readabilityof a foreign language text
by new language learners[Uitdenbogerd, 2005]. Developing automatic ways to identify
these cognates is thus a prerequisite for a robust automaticreadability assessment.

We propose an alignment-based, discriminative approach tostring similarity and we
evaluate this approach on the task of cognate identification. Section 7.2 describes previous
approaches and their limitations. In Section 7.3, we explain our technique for automatically
creating a cognate-identification training set. A novel aspect of this set is the inclusion of
competitive counter-examplesfor learning. Section 7.4 shows how discriminative features
are created from a character-based, minimum-edit-distance alignment of a pair of strings.
In Section 7.5, we describe our bitext and dictionary-basedexperiments on six language
pairs, including three based on non-Roman alphabets. In Section 7.6, we show significant
improvements over traditional approaches, as well as significant gains over more recent
techniques by[Ristad and Yianilos, 1998], [Tiedemann, 1999], [Kondrak, 2005], and[Kle-
mentiev and Roth, 2006].

7.2 Related Work

String similarity is a fundamental concept in a variety of fields and hence a range of tech-
niques have been developed. We focus on approaches that havebeen applied to words, i.e.,
uninterrupted sequences of characters found in natural language text. The most well-known
measure of the similarity of two strings is the edit distanceor Levenshtein distance[Lev-
enshtein, 1966]: the number of insertions, deletions and substitutions required to transform
one string into another. In our experiments, we usenormalizededit distance (NED): edit
distance divided by the length of the longer word. Other popular measures include Dice’s
Coefficient (DICE)[Adamson and Boreham, 1974], and the length-normalized measures
longest common subsequence ratio (LCSR)[Melamed, 1999], the length of the longest
common subsequence divided by the length of the longer word (used by[Melamed, 1998]),
and longest common prefix ratio (PREFIX)[Kondrak, 2005], the length of the longest
common prefix divided by the longer word length (four-letterprefix match was used by
[Simardet al., 1992]). These baseline approaches have the important advantage of not re-
quiring training data. We can also include in the non-learning category[Kondrak, 2005]’s
longest common subsequence formula (LCSF), a probabilistic measure designed to mitigate
LCSR’s preference for shorter words.

Although simple to use, the untrained measures cannot adaptto the specific spelling
differences between a pair of languages. Researchers have therefore investigated adaptive
measures that are learned from a set of known cognate pairs.[Ristad and Yianilos, 1998]
developed a stochastic transducer version of edit distancelearned from unaligned string
pairs. [Mann and Yarowsky, 2001] saw little improvement over edit distance when ap-
plying this transducer to cognates, even when filtering the transducer’s probabilities into
different weight classes to better approximate edit distance. [Tiedemann, 1999] used var-

97

ious measures to learn the recurrent spelling changes between English and Swedish, and
used these changes to re-weight LCSR to identify more cognates, with modest performance
improvements.[Mulloni and Pekar, 2006] developed a similar technique to improve NED
for English/German.

Essentially, all these techniques improve on the baseline approaches by using a set of
positive (true) cognate pairs to re-weight the costs of editoperations or the score of se-
quence matches. Ideally, we would prefer a more flexible approach that can learn positive
or negative weights onsubstringpairings in order to better identify related strings. One sys-
tem that can potentially provide this flexibility is a discriminative string-similarity approach
to named-entity transliteration by[Klementiev and Roth, 2006]. Although not compared to
other similarity measures in the original paper, we show that this discriminative technique
can strongly outperform traditional methods on cognate identification.

Unlike many recent generative systems, the Klementiev and Roth approach does not
exploit the known positions in the strings where the characters match. For example,[Brill
and Moore, 2000] combine a character-based alignment with the expectation maximization
(EM) algorithm to develop an improved probabilistic error model for spelling correction.
[Rappoport and Levent-Levi, 2006] apply this approach to learn substring correspondences
for cognates.[Zelenko and Aone, 2006] recently showed a[Klementiev and Roth, 2006]-
style discriminative approach to be superior to alignment-based generative techniques for
name transliteration. Our work successfully uses the alignment-based methodology of the
generative approaches to enhance the feature set for discriminative string similarity. In work
concurrent to our original contribution in[Bergsma and Kondrak, 2007a], Yoon et al.[2007]
apply a discriminative approach to recognizing transliterations at the phoneme level. They
include binary features over aligned phoneme pairs, but do not use features over phoneme
subsequencesas would be the analog of our work.

Finally, [Munteanu and Marcu, 2005] propose a similar approach to detectsentences
that are translations in non-parallel corpora. The heart oftheir algorithm is a classifier that
inspects a pair of sentences and decides if they are translations. Like us, they also align
the sentences and compute features based on the alignment, but they use more general fea-
tures (e.g., number of words in a row that are aligned, etc.) rather than, say, phrase pairs
that are consistent with the alignment, which would be the direct analogue of our method.
Although we originally developed our approach unaware of the connection to this work,
the two approaches ultimately face many similar issues and developed similar solutions. In
particular, they also automatically generate training pairs from both true sentence transla-
tions (positives) andcompetitivecounter examples (negatives). Since they can also generate
many examples using this technique, it is surprising they did not also explore much richer,
finer-grained features like those explored in this chapter.

7.3 The Cognate Identification Task

Given two string lists,E andF , the task of cognate identification is to find all pairs of
strings(e, f) that are cognate. In other similarity-driven applications, E andF could be
misspelled and correctly spelled words, or the orthographic and the phonetic representation
of words, etc. The task remains to link strings with common meaning inE andF using
only the string similarity measure.

We can facilitate the application of string similarity to cognates by using a definition
of cognation not dependent on etymological analysis. For example,[Mann and Yarowsky,

98

Foreign LanguageF Wordsf ∈ F CognatesEf+ False FriendsEf−

Japanese (Rômaji) napukin napkin nanking, pumpkin, snacking, sneaking
French abondamment abundantly abandonment, abatement, ... wonderment
German prozyklische procyclical polished, prophylactic,prophylaxis
Spanish viudos widows avoids, idiots, video, videos, virtuous

Table 7.1: Foreign-English cognates and false friend training examples.

2001] define a word pair(e, f) to be cognate if they are a translation pair (same mean-
ing) and their edit distance is less than three (same form). We adopt an improved defini-
tion (suggested by[Melamed, 1999] for the French-English Canadian Hansards) that does
not over-propose shorter word pairs:(e, f) are cognate if they are translations and their
LCSR≥ 0.58. Note that this cutoff is somewhat conservative: the English/German cog-
nateslight/Licht (LCSR=0.8) are included, but not the cognateseight/acht(LCSR=0.4).

If two words must have LCSR≥ 0.58 to be cognate, then for a given wordf ∈ F , we
need only consider as possible cognates the subset of words in E having an LCSR withf
larger than 0.58, a set we callEf . The portion ofEf with the same meaning asf , Ef+, are
cognates, while the part with different meanings,Ef−, are not cognates. The wordsEf−

with similar spelling but different meaning are sometimes called false friends. The cognate
identification task is, for every wordf ∈ F , and a list of similarly spelled wordsEf , to
distinguish the cognate subsetEf+ from the false friend setEf−.

To create training data for our learning approaches, and to generate a high-quality la-
beled test set, we need to annotate some of the(f, ef ∈ Ef) word pairs for whether or
not the words share a common meaning. In Section 7.5, we explain our two high-precision
automatic annotation methods: checking if each pair of words (a) were aligned in a word-
aligned bitext, or (b) were listed as translation pairs in a bilingual dictionary.

Table 7.1 provides some labeled examples with non-empty cognate and false friend
lists. Note that despite what it may appear from these examples, this is not a ranking task:
even in highly related languages, most words inF have emptyEf+ lists, and many have
emptyEf− as well. Thus one natural formulation for cognate identification is a pairwise
(and symmetric) cognation classification that looks at eachpair (f, ef) separately and indi-
vidually makes a decision:

+(napukin,napkin)
– (napukin,nanking)
– (napukin,pumpkin)
In this formulation, the benefits of a discriminative approach are clear: it must find sub-

strings that distinguish cognate pairs from word pairs withotherwise similar form.[Kle-
mentiev and Roth, 2006], although using a discriminative approach, do not provide their
infinite-attribute perceptron with competitive counter-examples. They instead use translit-
erations as positives and randomly-paired English and Russian words as negative exam-
ples. In the following section, we also improve on[Klementiev and Roth, 2006] by using a
character-based string alignment to focus the features fordiscrimination.

7.4 Features for Discriminative String Similarity

As Chapter 2 explained, discriminative training learns a classifier from a set of labeled
training examples, each represented as a set of features. Inthe previous section we showed

99

how labeled word pairs can be collected. We now address methods of representing these
word pairs as sets of features useful for determining cognation.

Consider the Rômaji Japanese/English cognates:(sutoresu,stress). The LCSR is 0.625.
Note that the LCSR ofsutoresuwith the English false friendstoriesis higher: 0.75. LCSR
alone is too weak a feature to pick out cognates. We need to look at the actual character
substrings.

[Klementiev and Roth, 2006] generate features for a pair of words by splitting both
words into all possible substrings of up to size two:
sutoresu⇒ { s, u, t, o, r, e, s, u, su, ut, to, ... su}
stress ⇒ { s, t, r, e, s, s, st, tr, re, es, ss}
Then, a feature vector is built from all substring pairs fromthe two words such that the
difference in positions of the substrings is within one:
{s-s, s-t, s-st, su-s, su-t, su-st, su-tr... r-s, r-s, r-es...}
This feature vector provides the feature representation used in supervised machine learning.

This example also highlights the limitations of the Klementiev and Roth approach. The
learner can provide weight to features likes-s or s-st at the beginning of the word, but
because of the gradual accumulation of positional differences, the learner never sees the
tor-tr andes-escorrespondences that really help indicate the words are cognate.

Our solution is to use the minimum-edit-distance alignmentof the two strings as the
basis for feature extraction, rather than the positional correspondences. We also include
beginning-of-word (ˆ) and end-of-word ($) markers (referred to asboundary markers) to
highlight correspondences at those positions. The pair(sutoresu, stress) can be aligned:

For the feature representation, we only extract substring pairs that are consistent with this
alignment.1 That is, the letters in our pairs can only be aligned to each other and not to
letters outside the pairing:
{ ˆ-ˆ,ˆs-ˆs, s-s, su-s, ut-t, t-t,... es-es, s-s, su-ss...}

We definephrasepairs to be the pairs of substrings consistent with the alignment. A similar
use of the term “phrase” exists in machine translation, where phrases are often pairs of word
sequences consistent with word-based alignments[Koehnet al., 2003].

By limiting the substrings to only those pairs that are consistent with the alignment, we
generate fewer, more-informative features. Computationally, using more-precise features
allows a larger maximum substring sizeL than is feasible with the positional approach.
Larger substrings allow us to capture important recurring deletions like the “u” in the pair
sut-stobserved in Japanese-English.

[Tiedemann, 1999] and others have shown the importance of using the mismatching
portions of cognate pairs to learn the recurrent spelling changes between two languages.
In order to capture mismatching segments longer than our maximum substring size will
allow, we include special features in our representation called mismatches. Mismatches
are phrases that span the entire sequence of unaligned characters between two pairs of

1If the words are from different writing systems, we can get the alignment by mapping the foreign letters
to their closest Roman equivalent, or by using the EM algorithm to learn the edits[Ristad and Yianilos, 1998].
In recent work in recognizing transliterations between different writing systems[Jiampojamarnet al., 2010],
we used the output of a many-to-many alignment model[Jiampojamarnet al., 2007] to directly extract the
substring-alignment features.

100

aligned end characters (similar to the “rules” extracted by[Mulloni and Pekar, 2006]). In
the above example,su$-ss$ is a mismatch with “s” and “$” as the aligned end characters.
Two sets of features are taken from each mismatch, one that includes the beginning/ending
aligned characters as context and one that does not. For example, for the endings of the
French/English pair(économique,economic), we include both the substring pairsique$:ic$
andque:cas features.

One consideration is whether substring features should be binary presence/absence, or
the count of the feature in the pair normalized by the length of the longer word. We investi-
gate both of these approaches in our experiments. Also, there is no reason not to include the
scores of baseline approaches like NED, LCSR, PREFIX or DICEas features in the repre-
sentation as well. Features like the lengths of the two wordsand the difference in lengths
of the words have also proved to be useful in preliminary experiments. Semantic features
like frequency similarity or contextual similarity might also be included to help determine
cognation between words that are not present in a translation lexicon or bitext.

7.5 Experiments

Section 7.3 introduced two high-precision methods for generating labeled cognate pairs:
using the word alignments from a bilingual corpus or using the entries in a translation lex-
icon. We investigate both of these methods in our experiments. In each case, we generate
sets of labeled word pairs for training, testing, and development. The proportion of posi-
tive examples in the bitext-labeled test sets range between1.4% and 1.8%, while ranging
between 1.0% and 1.6% for the dictionary data.2

For the discriminative methods, we use a popular support vector machine (SVM) learn-
ing package called SVMlight [Joachims, 1999a]. As Chapter 2 describes, SVMs are maximum-
margin classifiers that achieve good performance on a range of tasks. In each case, we learn
a linear kernel on the training set pairs and tune the parameter that trades-off training error
and margin on the development set. We apply our classifier to the test set and score the pairs
by their positive distance from the SVM classification hyperplane (also done by[Bilenko
and Mooney, 2003] with their token-based SVM similarity measure).

We also score the test sets using traditional orthographic similarity measures PREFIX,
DICE, LCSR, and NED, an average of these four, and[Kondrak, 2005]’s LCSF. We also
use the log of the edit probability from the stochastic decoder of [Ristad and Yianilos, 1998]
(normalized by the length of the longer word) and[Tiedemann, 1999]’s highest performing
system (Approach #3). Both use only the positive examples inour training set. Our evalu-
ation metric is 11-pt average precision on the score-sortedpair lists (also used by[Kondrak
and Sherif, 2006]).

7.5.1 Bitext Experiments

For the bitext-based annotation, we use publicly-available word alignments from the Eu-
roparl corpus, automatically generated by GIZA++ for French-English (Fr), Spanish-English
(Es) and German-English (De)[Koehn, 2005; Koehn and Monz, 2006]. Initial cleaning of
these noisy word pairs is necessary. We thus remove all pairswith numbers, punctuation,
a capitalized English word, and all words that occur fewer than ten times. We also remove

2The cognate data sets used in our experiments are available at http://www.cs.ualberta.ca/

˜ bergsma/Cognates/

101

Figure 7.1: LCSR histogram and polynomial trendline of French-English dictionary pairs.

many incorrectly aligned words by filtering pairs where the pointwise Mutual Information
between the words is less than 7.5. This processing leaves vocabulary sizes of 39K for
French, 31K for Spanish, and 60K for German.

Our labeled set is then generated from pairs with LCSR≥ 0.58 (using the cutoff from
[Melamed, 1999]). Each labeled set entry is a triple of a) the foreign wordf , b) the cognates
Ef+ and c) the false friendsEf−. For each language pair, we randomly take 20K triples
for training, 5K for development and 5K for testing. Each triple is converted to a set of
pairwise examples for learning and classification.

7.5.2 Dictionary Experiments

For the dictionary-based cognate identification, we use French, Spanish, German, Greek
(Gr), Japanese (Jp), and Russian (Rs) to English translation pairs from the Freelang pro-
gram.3 The latter three pairs were chosen so that we can evaluate on more distant languages
that use non-Roman alphabets (although the Rômaji Japanese is Romanized by definition).
We take 10K labeled-set triples for training, 2K for testingand 2K for development.

The baseline approaches and our definition of cognation require comparison in a com-
mon alphabet. Thus we use a simple context-free mapping to convert every Russian and
Greek character in the word pairs to their nearest Roman equivalent. We then label a trans-
lation pair as cognate if the LCSR between the words’ Romanized representations is greater
than 0.58. We also operate all of our comparison systems on these Romanized pairs.

7.6 Results

We were interested in whether our working definition of cognation (translations and LCSR
≥ 0.58) reflects true etymological relatedness. We looked at the LCSR histogram for trans-
lation pairs in one of our translation dictionaries (Figure7.1). The trendline suggests a
bimodal distribution, with two distinct distributions of translation pairs making up the dic-
tionary: incidental letter agreement gives low LCSR for thelarger, non-cognate portion
and high LCSR characterizes the likely cognates. A threshold of 0.58 captures most of the
cognate distribution while excluding non-cognate pairs. This hypothesis was confirmed by
checking the LCSR values of a list of known French-English cognates (randomly collected

3http://www.freelang.net/dictionary/

102

System Prec
Klementiev-Roth (KR) L≤2 58.6
KR L≤2 (normalized, boundary markers)62.9
phrasesL≤2 61.0
phrasesL≤3 65.1
phrasesL≤3 + mismatches 65.6
phrasesL≤3 + mismatches+ NED 65.8

Table 7.2: Bitext French-Englishdevelopment setcognate identification 11-pt average pre-
cision (%).

Bitext Dictionary
System Fr Es De Fr Es De Gr Jp Rs
PREFIX 34.7 27.3 36.3 45.5 34.7 25.5 28.5 16.1 29.8
DICE 33.7 28.2 33.5 44.3 33.7 21.3 30.6 20.1 33.6
LCSR 34.0 28.7 28.5 48.3 36.5 18.4 30.2 24.2 36.6
NED 36.5 31.9 32.3 50.1 40.3 23.3 33.9 28.2 41.4
PREFIX+DICE+LCSR+NED 38.7 31.8 39.3 51.6 40.1 28.6 33.7 22.9 37.9
[Kondrak, 2005]: LCSF 29.8 28.9 29.1 39.9 36.6 25.0 30.5 33.4 45.5
[Ristad and Yianilos, 1998] 37.7 32.5 34.6 56.1 46.9 36.9 38.0 52.7 51.8
[Tiedemann, 1999] 38.8 33.0 34.7 55.3 49.0 24.9 37.6 33.9 45.8
[Klementiev and Roth, 2006] 61.1 55.5 53.2 73.4 62.3 48.3 51.4 62.0 64.4
Alignm-Based Discrim. 66.5 63.2 64.1 77.7 72.1 65.6 65.7 82.0 76.9

Table 7.3: Bitext, Dictionary Foreign-to-English cognateidentification 11-pt average pre-
cision (%).

from a dictionary for another project): 87.4% were above 0.58. We also checked cognation
on 100 randomly-sampled, positively-labeled French-English pairs from both the dictionary
and bitext data (i.e. translated or aligned and having LCSR≥ 0.58). 100% of the dictionary
pairs and 93% of the bitext pairs were cognate.

Next, we investigate various configurations of the discriminative systems on one of our
cognate identification development sets (Table 7.2). The original [Klementiev and Roth,
2006] (KR) system can be improved by normalizing the feature countby the longer string
length and including the boundary markers. This is therefore done with all the alignment-
based approaches. Also, because of the way its features are constructed, the KR system is
limited to a maximum substring length of two (L≤2). A maximum length of three (L≤3) in
the KR framework produces millions of features and prohibitive training times, while L≤3
is computationally feasible in the phrasal case, and increases precision by 4.1% over the
phrases L≤2 system.4 Includingmismatchesresults in another small boost in performance
(0.5%), while using an edit distance feature again increases performance by a slight margin
(0.2%). This ranking of configurations is consistent acrossall the bitext-based development
sets; we therefore take the configuration of the highest scoring system as our Alignment-
Based Discriminative system for the remainder of this paper.

4At the time of this research, preliminary experiments usingeven longer phrases (beyond L≤3) produced
a computationally prohibitive number of features for SVM learning. Deploying feature selection techniques
might enable the use of even more expressive and powerful feature sets with longer phrase lengths.

103

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1000 10000 100000 1e+06

11
-p

t A
ve

ra
ge

 P
re

ci
si

on

Number of training pairs

NED
Tiedemann

Ristad-Yanilos
Klementiev-Roth

Alignment-Based Discrim.

Figure 7.2: Bitext French-English cognate identification learning curve.

We next compare the Alignment-Based Discriminative scorerto the various other im-
plemented approaches across the three bitext and six dictionary-based cognate identification
test sets (Table 7.3). The table highlights the top system among both the non-adaptive and
adaptive similarity scorers.5 In each language pair, the alignment-based discriminativeap-
proach outperforms all other approaches, but the KR system also shows strong gains over
non-adaptive techniques and their re-weighted extensions. This is in contrast to previous
comparisons which have only demonstrated minor improvements with adaptive over tradi-
tional similarity measures[Kondrak and Sherif, 2006].

We consistently found that the original KR performance could be surpassed by a system
that normalizes the KR feature count and adds boundary markers. Across all the test sets,
this modification results in a 6% average gain in performanceover baseline KR, but is still
on average 5% below the Alignment-Based Discriminative technique, with a statistically
significantly difference on each of the nine sets.6

Figure 7.2 shows the relationship between training data size and performance in our
bitext-based French-English data. Note again that the Tiedemann and Ristad & Yanilos
systems only use the positive examples in the training data.Our alignment-based simi-
larity function outperforms all the other systems across nearly the entire range of training
data. Note also that the discriminative learning curves show no signs of slowing down:
performance grows logarithmically from 1K to 846K word pairs.

For insight into the power of our discriminative approach, we provide some of our
classifiers’ highest and lowest-weighted features (Table 7.4). Note the expected corre-
spondences between foreign spellings and English (k-c, f-ph), but also features that lever-

5Using the training data and the SVM to weight the components of the PREFIX+DICE+LCSR+NED scorer
resulted in negligible improvements over the simple average on our development data.

6Following [Evert, 2004], significance was computed using Fisher’s exact test (atp = 0.05) to compare the
n-best word pairs from the scored test sets, wheren was taken as the number of positive pairs in the set.

104

Lang. Feat. Wt. Example
Fr (Bitext) ées- ed +8.0 vérifiées:verified
Jp (Dict.) ru - l +5.9 penaruti:penalty
De (Bitext) k - c +5.5 kreativ:creative
De Btxt eren$- e$ +5.2 ignorieren:ignore
Fr Btxt lement$- ly$ +5.2 admirablement admirably
Es (Bitext) ar - ating +5.0 acelerar:accelerating
Rs (Dict.) irov - +4.9 motivirovat:motivate
Gr (Dict.) f - ph +4.1 symfonia:symphony
Gr (Dict.) kos- c +3.3 anarchikos:anarchic
Gr (Dict.) os$- y$ -2.5 anarchikos:anarchy
Jp (Dict.) ou - ou -2.6 handoutai:handout
Es (Dict.) - un -3.1 balance:unbalance
Fr (Bitext) s$- ly$ -4.2 fervents:fervently
Fr (Dict.) er$- er$ -5.0 former:former
Es (Bitext) mos- s -5.1 toleramos:tolerates

Table 7.4: Example features and weights for various Alignment-Based Discriminative clas-
sifiers (Foreign-English, negative pairs initalics).

age derivational and inflectional morphology. For example,Greek-English pairs with the
adjective-ending correspondencekos-c, e.g. anarchikos:anarchic, are favoured, but pairs
with the adjective ending in Greek and noun ending in English, os$-y$, are penalized; in-
deed, by our definition,anarchikos:anarchyis not cognate. In a bitext, the featureées-ed
captures that feminine-plural inflection of past tense verbs in French corresponds to regular
past tense in English. On the other hand, words ending in the Spanish first person plural
verb suffix-amosare rarely translated to English words ending with the suffix-s, causing
mos-sto be penalized. The ability to leverage negative features,learned from appropriate
counter examples, is a key innovation of our discriminativeframework.

Table 7.5 gives the top pairs scored by our system on the threebitext and three of the
dictionary test sets. Notice that unlike traditional similarity measures that always score
identical words higher than all other pairs, by virtue of ourfeature weighting, our discrimi-
native classifier prefers some pairs with very characteristic spelling changes.

We performed error analysis by looking at all the pairs our system scored quite con-
fidently (highly positive or highly negative similarity), but which were labeled oppositely.
Highly-scored false positives arose equally from 1) actualcognates not linked as transla-
tions in the data, 2) related words with diverged meanings, e.g. the only error in Table 7.5:
makaroniin Greek actually meansspaghettiin English (makaronadais macaroni), and 3)
the same word stem, a different part of speech (e.g. the Greek/English adjective/nounsyn-
onymos:synonym). Meanwhile, inspection of the highly-confident false negatives revealed
some (often erroneously-aligned in the bitext) positive pairs with incidental letter match
(e.g. the French/Englishrecettes:proceeds) that we would not actually deem to be cognate.
Thus the errors that our system makes are often either linguistically interesting or point out
mistakes in our automatically-labeled bitext and (to a lesser extent) dictionary data.

105

Fr-En Bitext Es-En Bitext De-En Bitext
film:film agenda:agenda akt:act

ambassadeur:ambassador natural:natural asthma:asthma
bio:bio márgenes:margins lobby:lobby

radios:radios hormonal:hormonal homosexuell:homosexual
abusif:abusive radón:radon brutale:brutal

irréfutable:irrefutable higiénico:hygienic inzidenz:incidence

Gr-En Dict. Jp-En Dict. Rs-En Dict.
alkali:alkali baiohoronikusu:bioholonics aerozol:aerosol

makaroni:macaroni mafia:mafia gondola:gondola
adrenalini:adrenaline manierisumu:manierisme rubidiy:rubidium
flamingko:flamingo ebonaito:ebonite panteon:pantheon

spasmodikos:spasmodic oratorio:oratorio antonim:antonym
amvrosia:ambrosia mineraru:mineral gladiator:gladiator

Table 7.5: Highest scored pairs by Alignment-Based Discriminative classifier (negative pair
in italics).

7.7 Conclusion and Future Work

This is the first research to apply discriminative string similarity to the task of cognate
identification. We have introduced and successfully applied an alignment-based framework
for discriminative similarity that consistently demonstrates improved performance in both
bitext and dictionary-based cognate identification on six language pairs. Our improved
approach can be applied in any of the diverse applications where traditional similarity mea-
sures like edit distance and LCSR are prevalent. We have alsomade available our cognate
identification data sets, which will be of interest to general string similarity researchers.

Furthermore, we have provided a natural framework for future cognate identification
research. Phonetic, semantic, or syntactic features couldbe included within our discrimi-
native infrastructure to aid in the identification of cognates in text. In particular, we could
investigate approaches that do not require the bilingual dictionaries or bitexts to gener-
ate training data. For example, researchers have automatically developed translation lexi-
cons by seeing if words from each language have similar frequencies, contexts[Koehn and
Knight, 2002], burstiness, inverse document frequencies, and date distributions [Schafer
and Yarowsky, 2002]. Semantic and string similarity might be learned jointly with a co-
training or bootstrapping approach[Klementiev and Roth, 2006]. We may also compare
alignment-based discriminative string similarity with a more complex discriminative model
that learns the alignments as latent structure[McCallumet al., 2005].

Since the original publication of this work, we have also applied the alignment-based
string similarity model to the task of transliteration identification [Jiampojamarnet al.,
2010] with good results. In that work, we also proposed a new model of string similar-
ity that uses a string kernel to implicitly represent substring pairs of arbitrary length, lifting
one of the computational limitations of the model in this chapter.

In addition, we also looked specifically at the cognate identification problem from a
multilingual perspective[Bergsma and Kondrak, 2007b]. While the current chapter looks
to detect cognates in pairs of languages, we provided a methodology that directly forms

106

setsof cognates across groups of languages. We showed improvements over simple clus-
tering techniques that do not inherently consider the transitivity of cognate relations. We
developed our multi-lingual approach via the global inference framework of integer linear
programming. We followed Roth and Yih[2004] in using binary-{0, 1} ILP variables to
represent the decisions made by our system (cognate or not a cognate), and we optimized as
our objective function the sum of the costs/scores of the decisions, with constraints for tran-
sitivity and one-to-one mappings across languages. Our formulation was partly based on
similar solutions for other tasks by[Barzilay and Lapata, 2006; Denis and Baldridge, 2007].
Application of these techniques should improve the detection of translatedsentencesas well
[Munteanu and Marcu, 2005], since transitivity across languages also applies, of course, at
the sentence level.

107

Chapter 8

Conclusions and Future Work

8.1 Summary

This dissertation outlined two simple, scalable, effective methods for large-scale semi-
supervised learning: constructing features from web-scale N-gram data, and using unla-
beled data to automatically generate training examples.

The availability of web-scale N-gram data was crucial for our improved web-scale
feature-based approaches. While the Google N-gram data wasoriginally created to sup-
port the language model of an MT system, we confirmed that thisdata can be useful for
a range of tasks, including both analysis and generation problems. Unlike previous work
using search engines, it is possible to extract millions of web-scale counts efficiently from
N-gram data. We can thus freely exploit numerous overlapping and interdependent contexts
for each example, for both training and test instances. Chapter 3 presented a unified frame-
work for integrating such N-gram information for various lexical disambiguation tasks.
Excellent results were achieved on three tasks. In particular, we proposed a novel and suc-
cessful method of using web-scale counts for the identification of non-referential pronouns,
a long-standing challenge in the anaphora resolution community.

In Chapter 4, we introduced a new form of SVM training to mitigate the dependence of
the discriminative web-N-gram systems on large amounts of training data. Since the unsu-
pervised system was known to achieve good performance with equal weights, we changed
the SVM’s regularization to prefer low-weight-variance solutions, biasing it toward the un-
supervised solution. The optimization problem remained a convex function of the feature
weights, and was thus theoretically no harder to optimize than a standard SVM. On smaller
amounts of training data, the variance-regularization SVMperformed dramatically better
than the standard multi-class SVM.

Chapter 5 addressed a pair of open questions on the use of web-scale data in NLP. First,
we showed there was indeed a significant benefit in combining web-scale counts with the
traditional features used in state-of-the-art supervisedapproaches. For example, we pro-
posed a novel system for adjective ordering that exceeds thestate-of-the-art performance,
without using any N-gram data, and then we further improved the performance of this sys-
tem by adding N-gram features. Secondly, and perhaps much more importantly, models
with web-based features were shown to perform much better than traditional supervised
systems when moving to new domains or when labeled training data was scarce (realistic
situations for the practical application of NLP technology).

In the second part of the dissertation, we showed how to automatically create labeled ex-

108

amples from unlabeled data in order to train better models ofselectional preference (Chap-
ter 6) and string similarity (Chapter 7). The discriminative classifiers trained from this data
exploited several novel sources of information, includingcharacter-level (string and capi-
talization) features for selectional preferences, and features derived from a character-based
sequence alignment for discriminative string similarity.While automatic example genera-
tion was not applied to web-scale unlabeled data in this work, it promises to scale easily
to web-scale text. For example, after summarizing web-scale data with N-gram statistics,
we can create examples using only several gigabytes of compressed, N-gram-text, rather
than using the petabytes of raw web text directly. So automatic example generation from
aggregate statistics promises both better scaling and cleaner data (since aggregate statistics
naturally exclude phenomena that occur purely due to chance).

The key methods of parts one and two are, of course, compatible in another way: it
would be straightforward to use the output of the pseudo-trained models as features in
supervised systems. This is similar to the approach of Ando and Zhang[2005], and, in fact,
was pursued in some of our concurrent work[Bergsmaet al., 2009a] (with good results).

8.2 The Impact of this Work

We hope the straightforward but effective techniques presented in this dissertation will help
promote simple, scalable semi-supervised learning as a future paradigm for NLP research.
We advocate such a direction for several reasons.

First, only via machine learning can we combine the millionsof parameters that inter-
act in natural language processing. Second, only by leveraging unlabeled data can we go
beyond the limited models that can be learned from small, hand-annotated training sets.

Furthermore, it is highly advantageous to have an NLP systemthat both benefits from
unlabeled data and that can readily take advantage of even more unlabeled data when it be-
comes available. Both the volume of text on the web and the power of computer architecture
continue to grow exponentially over time. Systems that use unlabeled data will therefore
improveautomaticallyover time, without any special annotation, research, or engineering
effort. For example, in[Pitler et al., 2010], we presented a parser whose performance im-
proves logarithmically with the number of unique N-grams ina web-scale N-gram corpus.
A useful direction for future work would be to identify otherproblems that can benefit from
the use of web-scale volumes of unlabeled data. We could hopefully thereby enable an even
greater proportion of NLP systems to achieve automatic improvements in performance.

The following section describes some specific directions for future work, and notes
some tasks where web-scale data might be productively exploited.

Once we find out, for a range of tasks, just how far we can get with big data and ML
alone, we will have a better handle on what other sources of linguistic knowledge might
be needed. For example, we can now get to around 75% accuracy on preposition selection
using N-grams alone (Section 3.5). To correct preposition errors with even higher accu-
racy, we needed to exploit knowledge of the speaker’s nativelanguage (and thus their likely
preposition confusions), getting above 95% accuracy in this manner (but also sacrificing a
small but perhaps reasonable amount of coverage). It’s unlikely N-gram data alone would
ever allow us to select the correct preposition in phrases like, “I like to swim before/after
school.” Similarly, we argued that to perform even better onnon-referential pronoun detec-
tion (Section 3.7), we will need to pay attention to wider segments of discourse.

109

8.3 Future Work

This section outlines some specific ways to extend or apply insights from this thesis.

8.3.1 Improved Learning with Automatically-Generated Examples

In part two of this thesis, we achieved good results by automatically generating training
examples, but we left open some natural questions arising from this work. For example,
how many negatives should be generated for each positive? How do we ensure that training
with pseudo-examples transfers well to testing on real examples? While the size of the
learning problem prevented extensive experiments at the time the research was originally
conducted, recent advances in large-scale machine learning enable much faster training.
This allows us to perform large-scale empirical studies to address the above questions. In
combination with the usual advances in computer speed and memory, large-scale empirical
studies will become even easier. In fact, some have even suggested that large-scale learning
of linear classifiers is now essentially asolved problem[Yu et al., 2010]. This provides even
greater impetus to test and exploit large-scale linear pseudo-classifiers in NLP.

8.3.2 Exploiting New ML Techniques

Another interesting direction for future research will be the development of learning al-
gorithms that exploit correlations between local and global features (see Chapter 1 for an
example of local and global features forVBN/VBD disambiguation). Often the local and
global patterns represent the same linguistic construction, and their weights should thus be
similar. For example, suppose at test time we encounter the phrase, “it was the Bears who
won.” Even if we haven’t seen the pattern, “nounwhoverb” as local context in the training
set, we may have seen it in theglobalcontext of aVBD training instance. Laplacian regular-
ization (previously used to exploit the distributional similarity of words for syntactic parsing
[Wanget al., 2006]) provides a principled way to force global and local features to have
similar weights, although simpler feature-based techniques also exist[Daumé III, 2007]. In
particular, combining Laplacian regularization with the scaling of featurevalues(to allow
the more predictive, local features to have higher weight) is a promising direction to ex-
plore. In any case, identifying an effective solution here could have implications on other,
related problems, such as multi-task learning[Rainaet al., 2006], domain adaptation[Mc-
Closkyet al., 2010] and sharing feature knowledge across languages[Berg-Kirkpatrick and
Klein, 2010].

8.3.3 New NLP Problems

There are a number of other important, but largely unexplored, NLP problems where web-
scale solutions could have an impact. One such problem is thedetection of functional
relations for information extraction. A functional relation is a binary relation where each
element of the domain is related to a unique element in the codomain. For example, each
person has a unique birthplace and date of birth, but may havemultiple children, residences,
and alma maters. There are a number of novel contextual cluesthat could flag these rela-
tions. For example, the indefinite articlesa/an tend not to occur with functional relations;
we frequently observea cousin of in text, but we rarely seea birthplace of. The latter is
functional. Based on our results in Chapter 5, a classifier combining such simple statistics

110

with standard lexical features could possibly allow robustfunctional relation identification
across different domains and genres.

8.3.4 Improving Core NLP Technologies

I also plan to apply the web-scale semi-supervised framework to core NLP technologies
that are in great demand in the NLP community.

I have previously explored a range of enhancements to pronoun resolution systems
[Cherry and Bergsma, 2005; Bergsma, 2005; Bergsma and Lin, 2006; Bergsmaet al.,
2008b; 2008a; 2009a]. My next step will be to develop and distribute an efficient, state-
of-the-art, N-gram-enabled pronoun resolution system foracademic and industrial applica-
tions. In conversation with colleagues at conferences, I have found that many researchers
shy away from machine-learned pronoun resolution systems because of a fear they would
not work well on new domains (i.e., the specific domain on which the research is being
conducted). By incorporating web-scale statistics into pronoun resolvers, I plan to produce
a robust system that people can confidently apply wherever needed.

I will also use web-scale resources to make advances in parsing, the cornerstone tech-
nology of NLP. A parser gives the structure of a sentence, identifying who is doing what
to whom. Parsing digs deeper into text than typical information retrieval technology, ex-
tracting richer levels of knowledge. Companies like Googleand Microsoft have recognized
the need to access these deeper linguistic structures and are making parsing a focus for
their next generation of search engines. I will create an accurate open-domain parser: a
domain-independent parser that can reliably analyze any genre of text. A few approaches
have successfully adapted a parser to a specific domain, suchas general non-fiction[Mc-
Closkyet al., 2006b] or biomedical text[Rimell and Clark, 2008], but these systems make
assumptions that would be unrealistic when parsing text in aheterogeneous collection of
web pages, for example. A parser that could reliably processa variety of genres, without
manual involvement, would be of great practical and scientific value.

I will create an open-domain parser by essentially adaptingto all the text on the web,
again building on the robust classifiers presented in Chapter 5. Parsing decisions will be
based on observations in web-scale N-gram data, rather thanobserved (and potentially
overly-specific) constructions in a particular domain. Custom algorithms could also be
used to extract web-scale knowledge for difficult parsing decisions in coordination, noun
compounding, and prepositional phrase attachment. Work inopen domain parsing will also
require the development of new, cross-domain, task-based evaluations; these could facilitate
comparison of parsers based on different formalisms.

I have recently explored methods to both improve the speed ofhighly-accurate graph-
based parsers[Bergsma and Cherry, 2010] (thus allowing the incorporation of new features
with less overhead) and ways to incorporate web-scale statistics into the subtask of noun
phrase parsing[Pitler et al., 2010]. In preliminary experiments, I have identified a number
of other simple N-gram-derived features that improve full-sentence parsing accuracy.

I also plan to investigate whether open-domain parsing could be improved by manu-
ally annotating parses of the most frequent N-grams in our new web-scale N-gram corpus
(Chapter 5). Recall that the new N-gram corpus includes part-of-speech tags. These tags
might help identify N-grams that are likely to be both syntactic constituents and syntacti-
cally ambiguous (e.g. noun compounds). The annotation could be done either by experts,
or by crowdsourcing annotation via Amazon’s Mechanical Turk. A similar technique was
recently successfully demonstrated for MT[Bloodgood and Callison-Burch, 2010].

111

My focus is thus on enabling robust, open-domain systems through better features and
new kinds of labeled data. These improvements should combine constructively with recent,
orthogonal advances in domain detection and adaptation[McCloskyet al., 2010].

8.3.5 Mining New Data Sources

While web-scale N-gram data is very effective, future NLP technology will combine in-
formation from a variety of other structured and unstructured data sources to make bet-
ter natural language inferences. Query logs, parallel bilingual corpora, and collaborative
projects like Wikipedia will provide crucial knowledge forsyntactic and semantic analysis.
For example, there is a tremendous amount of untapped information in the Wikipedia edit
histories, which record all the changes made to Wikipedia pages. As a first step in har-
vesting this information, we could extract a database of real spelling corrections made to
Wikipedia pages. This data could be used to train and test NLPspelling correction systems
at an unprecedented scale.

Furthermore, it also seems likely that information from themassive volume of online
images and video will be used to inform automatic language processing. Many simple
statistics can also be computed from visual sources and stored, just like N-gram counts, in
precompiled databases. For example, we might extract visual descriptors using algorithms
like the popular and efficient SIFT algorithm[Lowe, 1999], convert these descriptors to
image codewords (i.e., the bag-of-words representation ofimages), and then store the code-
word co-occurrence counts in a large database.

In fact, services like the Google Image Search and Flickr Photo Sharing websites effec-
tively already link caption words to images in a database. This service could be exploited
for building special language models, for example, for selectional preference. When cre-
ating features for nouns occurring with particular verbs, for example (as in Chapter 6), we
might query the image search service using the noun string asthe keyword, and then create
SIFT-style features for the retrieved images. Could we build a model, for example, of things
that can be eaten, purely based on visual images of edible substances?

In general, I envision some breakthroughs once NLP moves beyond solving text pro-
cessing in isolation and instead adopts an approach that integrates advances in large-scale
processing across a variety of disciplines.

– Thanks for reading the dissertation!

112

Bibliography

[Adamson and Boreham, 1974] George W. Adamson and Jillian Boreham. The use of an
association measure based on character structure to identify semantically related pairs of
words and document titles.Information Storage and Retrieval, 10, 1974.

[Agichtein and Gravano, 2000] Eugene Agichtein and Luis Gravano. Snowball: Extracting
relations from large plain-text collections. InProceedings of the Fifth ACM International
Conference on Digital Libraries, 2000.

[Ailon and Mohri, 2008] Nir Ailon and Mehryar Mohri. An efficient reduction of ranking
to classification. InCOLT, 2008.

[Ando and Zhang, 2005] Rie Kubota Ando and Tong Zhang. A framework for learning
predictive structures from multiple tasks and unlabeled data. Journal of Machine Learn-
ing Research, 6, 2005.

[Bahl et al., 1983] Lalit R. Bahl, Frederick Jelinek, and Robert L. Mercer. A maximum
likelihood approach to continuous speech recognition.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 5(2), 1983.

[Baker, 1975] James K. Baker. The DRAGON system - an overview.IEEE Transactions
on Acoustics, Speech, and Signal Processing, 23(1), 1975.

[Banko and Brill, 2001] Michele Banko and Eric Brill. Scaling to very very large corpora
for natural language disambiguation. InACL, 2001.

[Barr et al., 2008] Cory Barr, Rosie Jones, and Moira Regelson. The linguistic structure of
English web-search queries. InEMNLP, 2008.

[Barzilay and Lapata, 2006] Regina Barzilay and Mirella Lapata. Aggregation via set par-
titioning for natural language generation. InHLT-NAACL, 2006.

[Bean and Riloff, 2004] David L. Bean and Ellen Riloff. Unsupervised learning of contex-
tual role knowledge for coreference resolution. InHLT-NAACL, 2004.

[Belkin et al., 2006] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold reg-
ularization: A geometric framework for learning from labeled and unlabeled examples.
JMLR, 7:2399–2434, 2006.

[Bengioet al., 2003] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian
Janvin. A neural probabilistic language model.Journal of Machine Learning Research,
3, 2003.

[Berg-Kirkpatrick and Klein, 2010] Taylor Berg-Kirkpatrick and Dan Klein. Phylogenetic
grammar induction. InACL, 2010.

[Bergeret al., 1996] Adam L. Berger, Stephen A. Della Pietra, and Vincent J. DellaPietra.
A maximum entropy approach to natural language processing.Computational Linguis-
tics, 22(1), 1996.

113

[Bergsma and Cherry, 2010] Shane Bergsma and Colin Cherry. Fast and accurate arc fil-
tering for dependency parsing. InCOLING, 2010.

[Bergsma and Kondrak, 2007a] Shane Bergsma and Grzegorz Kondrak. Alignment-based
discriminative string similarity. InACL, 2007.

[Bergsma and Kondrak, 2007b] Shane Bergsma and Grzegorz Kondrak. Multilingual cog-
nate identification using integer linear programming. InRANLP Workshop on Acquisi-
tion and Management of Multilingual Lexicons, 2007.

[Bergsma and Lin, 2006] Shane Bergsma and Dekang Lin. Bootstrapping path-based pro-
noun resolution. InCOLING-ACL, 2006.

[Bergsma and Wang, 2007] Shane Bergsma and Qin Iris Wang. Learning noun phrase
query segmentation. InEMNLP-CoNLL, 2007.

[Bergsmaet al., 2008a] Shane Bergsma, Dekang Lin, and Randy Goebel. Discriminative
learning of selectional preference from unlabeled text. InEMNLP, 2008.

[Bergsmaet al., 2008b] Shane Bergsma, Dekang Lin, and Randy Goebel. Distributional
identification of non-referential pronouns. InACL-08: HLT, 2008.

[Bergsmaet al., 2009a] Shane Bergsma, Dekang Lin, and Randy Goebel. Glen, Glenda
or Glendale: Unsupervised and semi-supervised learning ofEnglish noun gender. In
CoNLL, 2009.

[Bergsmaet al., 2009b] Shane Bergsma, Dekang Lin, and Randy Goebel. Web-scale N-
gram models for lexical disambiguation. InIJCAI, 2009.

[Bergsmaet al., 2010a] Shane Bergsma, Aditya Bhargava, Hua He, and Grzegorz Kon-
drak. Predicting the semantic compositionality of prefix verbs. InEMNLP, 2010.

[Bergsmaet al., 2010b] Shane Bergsma, Dekang Lin, and Dale Schuurmans. Improved
natural language learning via variance-regularization support vector machines. In
CoNLL, 2010.

[Bergsmaet al., 2010c] Shane Bergsma, Emily Pitler, and Dekang Lin. Creating robust
supervised classifiers via web-scale n-gram data. InACL, 2010.

[Bergsma, 2005] Shane Bergsma. Automatic acquisition of gender information for
anaphora resolution. InProceedings of the 18th Conference of the Canadian Society
for Computational Studies of Intelligence (Canadian AI’2005), 2005.

[Bikel, 2004] Daniel M. Bikel. Intricacies of Collins’ parsing model.Computational Lin-
guistics, 30(4), 2004.

[Bilenko and Mooney, 2003] Mikhail Bilenko and Raymond J. Mooney. Adaptive dupli-
cate detection using learnable string similarity measures. In KDD, 2003.

[Blitzer et al., 2005] John Blitzer, Amir Globerson, and Fernando Pereira. Distributed la-
tent variable models of lexical co-occurrences. InAISTATS, 2005.

[Blitzer et al., 2007] John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, bol-
lywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In
ACL, 2007.

[Bloodgood and Callison-Burch, 2010] Michael Bloodgood and Chris Callison-Burch.
Bucking the trend: Large-scale cost-focused active learning for statistical machine trans-
lation. InACL, 2010.

[Blum and Mitchell, 1998] Avrim Blum and Tom Mitchell. Combining labeled and unla-
beled data with co-training. InCOLT, 1998.

114

[Brants and Franz, 2006] Thorsten Brants and Alex Franz. The Google Web 1T 5-gram
Corpus Version 1.1. LDC2006T13, 2006.

[Brantset al., 2007] Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, and Jeffrey
Dean. Large language models in machine translation. InEMNLP, 2007.

[Brants, 2000] Thorsten Brants. TnT – a statistical part-of-speech tagger. In ANLP, 2000.

[Brill and Moore, 2000] Eric Brill and Robert Moore. An improved error model for noisy
channel spelling correction. InACL, 2000.

[Brill et al., 2001] Eric Brill, Jimmy Lin, Michele Banko, Susan Dumais, and Andrew Ng.
Data-Intensive Question Answering. InTREC, 2001.

[Brin, 1998] Sergey Brin. Extracting patterns and relations from the world wide web. In
WebDB Workshop at 6th International Conference on Extending Database Technology,
1998.

[Brockmann and Lapata, 2003] Carsten Brockmann and Mirella Lapata. Evaluating and
combining approaches to selectional preference acquisition. InEACL, 2003.

[Brownet al., 1992] Peter F. Brown, Vincent J. Della Pietra, Peter V. de Souza, Jennifer C.
Lai, and Robert L. Mercer. Class-based n-gram models of natural language.Computa-
tional Linguistics, 18(4), 1992.

[Brownet al., 1993] Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and
Robert L. Mercer. The mathematics of statistical machine translation: Parameter estima-
tion. Computational Linguistics, 19(2), 1993.

[Carlsonet al., 2001] Andrew J. Carlson, Jeffrey Rosen, and Dan Roth. Scaling up context-
sensitive text correction. InAAAI/IAAI, 2001.

[Carlsonet al., 2008] Andrew Carlson, Tom M. Mitchell, and Ian Fette. Data analysis
project: Leveraging massive textual corpora using n-gram statistics. Technial Report
CMU-ML-08-107, 2008.

[Chambers and Jurafsky, 2008] Nathanael Chambers and Dan Jurafsky. Unsupervised
learning of narrative event chains. InACL, 2008.

[Chambers and Jurafsky, 2010] Nathanael Chambers and Dan Jurafsky. Improving the use
of pseudo-words for evaluating selectional preferences. In ACL, 2010.

[Charniak and Elsner, 2009] Eugene Charniak and Micha Elsner. EM works for pronoun
anaphora resolution. InEACL, 2009.

[Chen and Goodman, 1998] Stanley F. Chen and Joshua Goodman. An empirical study of
smoothing techniques for language modeling. TR-10-98, Harvard University, 1998.

[Cherry and Bergsma, 2005] Colin Cherry and Shane Bergsma. An Expectation Maxi-
mization approach to pronoun resolution. InCoNLL, 2005.

[Chklovski and Pantel, 2004] Timothy Chklovski and Patrick Pantel. Verbocean: Mining
the web for fine-grained semantic verb relations. InEMNLP, pages 33–40, 2004.

[Chodorowet al., 2007] Martin Chodorow, Joel R. Tetreault, and Na-Rae Han. Detection
of grammatical errors involving prepositions. InACL-SIGSEM Workshop on Preposi-
tions, 2007.

[Chomsky, 1956] Noam Chomsky. Three models for the description of language.IRI
Transactions on Information Theory, 2(3), 1956.

[Church and Hanks, 1990] Kenneth W. Church and Patrick Hanks. Word association
norms, mutual information, and lexicography.Computational Linguistics, 16(1), 1990.

115

[Church and Mercer, 1993] Kenneth W. Church and Rorbert L. Mercer. Introduction to the
special issue on computational linguistics using large corpora. Computational Linguis-
tics, 19(1), 1993.

[Church and Patil, 1982] Kenneth Church and Ramesh Patil. Coping with syntactic am-
biguity or how to put the block in the box on the table.Computational Linguistics,
8(3-4):139–149, 1982.

[Churchet al., 2007] Kenneth Church, Ted Hart, and Jianfeng Gao. Compressing trigram
language models with Golomb coding. InEMNLP-CoNLL, 2007.

[Church, 1993] Kenneth W. Church. Charalign: A program for aligning parallel texts at
the character level. InProceedings of ACL 1993, 1993.

[Clark and Weir, 2002] Stephen Clark and David Weir. Class-based probability estimation
using a semantic hierarchy.Computational Linguistics, 28(2), 2002.

[Cohnet al., 1994] David Cohn, Les Atlas, and Richard Ladner. Improving generalization
with active learning.Mach. Learn., 15(2):201–221, 1994.

[Collins and Koo, 2005] Michael Collins and Terry Koo. Discriminative reranking for nat-
ural language parsing.Computational Linguistics, 31(1), 2005.

[Collins and Singer, 1999] Michael Collins and Yoram Singer. Unsupervised models for
named entity classification. InEMNLP-VLC, 1999.

[Collins, 2002] Michael Collins. Discriminative training methods for hidden markov mod-
els: Theory and experiments with perceptron algorithms. InEMNLP, 2002.

[Cortes and Vapnik, 1995] Corinna Cortes and Vladimir Vapnik. Support-vector networks.
Mach. Learn., 20(3):273–297, 1995.

[CPLEX, 2005] CPLEX. IBM ILOG CPLEX 9.1. www.ilog.com/products/
cplex/ , 2005.

[Crammer and Singer, 2001] Koby Crammer and Yoram Singer. On the algorithmic imple-
mentation of multiclass kernel-based vector machines.JMLR, 2:265–292, 2001.

[Crammer and Singer, 2003] Koby Crammer and Yoram Singer. Ultraconservative online
algorithms for multiclass problems.JMLR, 3:951–991, 2003.

[Crammeret al., 2006] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz,
and Yoram Singer. Online passive-aggressive algorithms.JMLR, 7:551–585, 2006.

[Cucerzan and Agichtein, 2005] Silviu Cucerzan and Eugene Agichtein. Factoid Question
Answering over Unstructured and Structured Web Content. InTREC, 2005.

[Cucerzan and Yarowsky, 1999] Silviu Cucerzan and David Yarowsky. Language inde-
pendent named entity recognition combining morphologicaland contextual evidence. In
EMNLP-VLC, 1999.

[Cucerzan and Yarowsky, 2002] Silviu Cucerzan and David Yarowsky. Augmented mix-
ture models for lexical disambiguation. InEMNLP, 2002.

[Cucerzan and Yarowsky, 2003] Silviu Cucerzan and David Yarowsky. Minimally super-
vised induction of grammatical gender. InNAACL, 2003.

[Dagan and Itai, 1990] Ido Dagan and Alan Itai. Automatic processing of large corpora for
the resolution of anaphora references. InCOLING, volume 3, 1990.

[Daganet al., 1999] Ido Dagan, Lillian Lee, and Fernando C. N. Pereira. Similarity-based
models of word cooccurrence probabilities.Mach. Learn., 34(1-3), 1999.

116

[Daumé III, 2007] Hal Daumé III. Frustratingly easy domain adaptation. InACL, 2007.

[Denis and Baldridge, 2007] Pascal Denis and Jason Baldridge. Joint determination of
anaphoricity and coreference using integer programming. In NAACL-HLT, 2007.

[Dou et al., 2009] Qing Dou, Shane Bergsma, Sittichai Jiampojamarn, and Grzegorz Kon-
drak. A ranking approach to stress prediction for letter-to-phoneme conversion. InACL-
IJCNLP, 2009.

[Dredzeet al., 2008] Mark Dredze, Koby Crammer, and Fernando Pereira. Confidence-
weighted linear classification. InICML, 2008.

[Duda and Hart, 1973] Richard O. Duda and Peter E. Hart.Pattern Classification and
Scene Analysis. John Wiley & Sons, 1973.

[Erk, 2007] Katrin Erk. A simple, similarity-based model for selectional preference. In
ACL, 2007.

[Etzioni et al., 2005] Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu,
Tal Shaked, Stephen Soderland, Daniel S. Weld, and Alexander Yates. Unsupervised
named-entity extraction from the web: an experimental study. Artif. Intell., 165(1),
2005.

[Evans, 2001] Richard Evans. Applying machine learning toward an automatic classifica-
tion of it. Literary and Linguistic Computing, 16(1), 2001.

[Even-Zohar and Roth, 2000] Yair Even-Zohar and Dan Roth. A classification approach to
word prediction. InNAACL, 2000.

[Evert, 2004] Stefan Evert. Significance tests for the evaluation of ranking methods. In
COLING, 2004.

[Fanet al., 2008] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang,and
Chih-Jen Lin. LIBLINEAR: A library for large linear classification. JMLR, 9:1871–
1874, 2008.

[Felice and Pulman, 2007] Rachele De Felice and Stephen G. Pulman. Automatically ac-
quiring models of preposition use. InACL-SIGSEM Workshop on Prepositions, 2007.

[Fleischmanet al., 2003] Michael Fleischman, Eduard Hovy, and Abdessamad Echihabi.
Offline strategies for online question answering: answering questions before they are
asked. InACL, 2003.

[Fung and Roth, 2005] Pascale Fung and Dan Roth. Guest editors introduction: Machine
learning in speech and language technologies.Machine Learning, 60(1-3):5–9, 2005.

[Galeet al., 1992] William A. Gale, Kenneth W. Church, and David Yarowsky. One sense
per discourse. InDARPA Speech and Natural Language Workshop, 1992.

[Gamonet al., 2008] Michael Gamon, Jianfeng Gao, Chris Brockett, Alexandre Klemen-
tiev, William B. Dolan, Dmitriy Belenko, and Lucy Vanderwende. Using contextual
speller techniques and language modeling for ESL error correction. InIJCNLP, 2008.

[Geet al., 1998] Niyu Ge, John Hale, and Eugene Charniak. A statistical approach to
anaphora resolution. InProceedings of the Sixth Workshop on Very Large Corpora,
1998.

[Gildea, 2001] Dan Gildea. Corpus variation and parser performance. InEMNLP, 2001.

[Golding and Roth, 1999] Andrew R. Golding and Dan Roth. A Winnow-based approach
to context-sensitive spelling correction.Mach. Learn., 34(1-3):107–130, 1999.

[Graff, 2003] David Graff. English gigaword. LDC2003T05, 2003.

117

[Grefenstette, 1999] Gregory Grefenstette. The World Wide Web as a resource for
example-based machine translation tasks. InASLIB Conference on Translating and the
Computer, 1999.

[Haghighi and Klein, 2006] Aria Haghighi and Dan Klein. Prototype-driven learning for
sequence models. InHLT-NAACL, 2006.

[Haghighi and Klein, 2010] Aria Haghighi and Dan Klein. Coreference resolution in a
modular, entity-centered model. InHLT-NAACL, 2010.

[Hajič and Hajičová, 2007] Jan Hajič and Eva Hajičová. Some of our best friends are statis-
ticians. InTSD, 2007.

[Har-Peledet al., 2003] Sariel Har-Peled, Dan Roth, and Dav Zimak. Constraint classifi-
cation for multiclass classification and ranking. InNIPS, 2003.

[Harabagiuet al., 2001] Sanda Harabagiu, Razvan Bunescu, and Steven Maiorano. Text
and knowledge mining for coreference resolution. InNAACL, 2001.

[Harman, 1992] Donna Harman. The DARPA TIPSTER project.ACM SIGIR Forum,
26(2), 1992.

[Hawkeret al., 2007] Tobias Hawker, Mary Gardiner, and Andrew Bennetts. Practical
queries of a massive n-gram database. InProc. Australasian Language Technology As-
sociation Workshop, 2007.

[Hearst, 1992] Marti A. Hearst. Automatic acquisition of hyponyms from large text cor-
pora. InCOLING, 1992.

[Hirst and Budanitsky, 2005] Graeme Hirst and Alexander Budanitsky. Correcting real-
word spelling errors by restoring lexical cohesion.Nat. Lang. Eng., 11(1):87–111, 2005.

[Hirst, 1981] Graeme Hirst. Anaphora in Natural Language Understanding: A Survey.
Springer Verlag, 1981.

[Hobbs, 1978] Jerry Hobbs. Resolving pronoun references.Lingua, 44(311), 1978.

[Holmeset al., 1989] Virginia M. Holmes, Laurie Stowe, and Linda Cupples. Lexical ex-
pectations in parsing complement-verb sentences.Journal of Memory and Language,
28, 1989.

[Hovy et al., 2006] Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance Ramshaw, and
Ralph Weischedel. OntoNotes: the 90% solution. InHLT-NAACL, 2006.

[Hsu and Lin, 2002] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for mul-
ticlass support vector machines.IEEE Trans. Neur. Networks, 13(2):415–425, 2002.

[Huang and Yates, 2009] Fei Huang and Alexander Yates. Distributional representations
for handling sparsity in supervised sequence-labeling. InACL-IJCNLP, 2009.

[Jelinek, 1976] Fred Jelinek. Continuous speech recognition by statistical methods.Pro-
ceedings of the IEEE, 64(4), 1976.

[Jelinek, 2005] Frederick Jelinek. Some of my best friends are linguists.Language Re-
sources and Evaluation, 39, 2005.

[Jelinek, 2009] Frederick Jelinek. The dawn of statistical ASR and MT.Comput. Linguist.,
35(4):483–494, 2009.

[Ji and Lin, 2009] Heng Ji and Dekang Lin. Gender and animacy knowledge discovery
from web-scale N-grams for unsupervised person mention detection. InPACLIC, 2009.

118

[Jiampojamarnet al., 2007] Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek Sherif.
Applying many-to-many alignments and hidden Markov modelsto letter-to-phoneme
conversion. InNAACL-HLT, 2007.

[Jiampojamarnet al., 2010] Sittichai Jiampojamarn, Ken Dwyer, Shane Bergsma, Aditya
Bhargava, Qing Dou, Mi-Young Kim, and Grzegorz Kondrak. Transliteration generation
and mining with limited training resources.Named Entities Workshop (NEWS), 2010.

[Joachimset al., 2009] Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu.
Cutting-plane training of structural SVMs.Mach. Learn., 77(1):27–59, 2009.

[Joachims, 1999a] Thorsten Joachims. Making large-scale Support Vector Machine learn-
ing practical. In B. Schölkopf and C. Burges, editors,Advances in Kernel Methods:
Support Vector Machines. MIT-Press, 1999.

[Joachims, 1999b] Thorsten Joachims. Transductive inference for text classification using
support vector machines. InInternational Conference on Machine Learning (ICML),
1999.

[Joachims, 2002] Thorsten Joachims. Optimizing search engines using clickthrough data.
In KDD, 2002.

[Joachims, 2006] Thorsten Joachims. Training linear SVMs in linear time. InKDD, 2006.

[Jones and Ghani, 2000] Rosie Jones and Rayid Ghani. Automatically building a corpus
for a minority language from the web. InProceedings of the Student Research Workshop
at the 38th AnnualMeeting of the Association for Computational Linguistics, 2000.

[Jurafsky and Martin, 2000] Daniel Jurafsky and James H. Martin.Speech and language
processing. Prentice Hall, 2000.

[Kehleret al., 2004] Andrew Kehler, Douglas Appelt, Lara Taylor, and Aleksandr Simma.
The (non)utility of predicate-argument frequencies for pronoun interpretation. InHLT-
NAACL, 2004.

[Keller and Lapata, 2003] Frank Keller and Mirella Lapata. Using the web to obtain fre-
quencies for unseen bigrams.Computational Linguistics, 29(3):459–484, 2003.

[Kilgarriff and Grefenstette, 2003] Adam Kilgarriff and Gregory Grefenstette. Introduc-
tion to the special issue on the Web as corpus.Computational Linguistics, 29(3):333–
347, 2003.

[Kilgarriff, 2007] Adam Kilgarriff. Googleology is bad science.Computational Linguis-
tics, 33(1), 2007.

[Klementiev and Roth, 2006] Alexandre Klementiev and Dan Roth. Named entity translit-
eration and discovery from multilingual comparable corpora. InHLT-NAACL, 2006.

[Knight et al., 1995] Kevin Knight, Ishwar Chander, Matthew Haines, Vasileios Hatzivas-
siloglou, Eduard Hovy, Masayo Iida, Steve K. Luk, Richard Whitney, and Kenji Yamada.
Filling knowledge gaps in a broad coverage machine translation system. InIJCAI, 1995.

[Koehn and Knight, 2002] Philipp Koehn and Kevin Knight. Learning a translation lexicon
from monolingual corpora. InACL Workshop on Unsupervised Lexical Acquistion, 2002.

[Koehn and Monz, 2006] Philipp Koehn and Christof Monz. Manual and automatic eval-
uation of machine translation between European languages.In NAACL Workshop on
Statistical Machine Translation, 2006.

[Koehnet al., 2003] Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical phrase-
based translation. InHLT-NAACL, 2003.

119

[Koehn, 2005] Philipp Koehn. Europarl: A parallel corpus for statisticalmachine transla-
tion. In MT Summit X, 2005.

[Kondrak and Sherif, 2006] Grzegorz Kondrak and Tarek Sherif. Evaluation of several
phonetic similarity algorithms on the task of cognate identification. In COLING-ACL
Workshop on Linguistic Distances, 2006.

[Kondraket al., 2003] Grzegorz Kondrak, Daniel Marcu, and Kevin Knight. Cognatescan
improve statistical translation models. InHLT-NAACL, 2003.

[Kondrak, 2005] Grzegorz Kondrak. Cognates and word alignment in bitexts. In MT Sum-
mit X, 2005.

[Koo et al., 2008] Terry Koo, Xavier Carreras, and Michael Collins. Simple semi-
supervised dependency parsing. InACL-08: HLT, 2008.

[Kotsiaet al., 2009] Irene Kotsia, Stefanos Zafeiriou, and Ioannis Pitas. Novelmulticlass
classifiers based on the minimization of the within-class variance. IEEE Trans. Neur.
Networks, 20(1):14–34, 2009.

[Kulick et al., 2004] Seth Kulick, Ann Bies, Mark Liberman, Mark Mandel, Ryan Mc-
Donald, Martha Palmer, Andrew Schein, Lyle Ungar, Scott Winters, and Pete White.
Integrated annotation for biomedical information extraction. In BioLINK 2004: Linking
Biological Literature, Ontologies and Databases, 2004.

[Kummerfeld and Curran, 2008] Jonathan K. Kummerfeld and James R. Curran. Classi-
fication of verb particle constructions with the google web1t corpus. InAustralasian
Language Technology Association Workshop, 2008.

[Lafferty et al., 2001] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira.
Conditional Random Fields: Probabilistic models for segmenting and labeling sequence
data. InICML, 2001.

[Lapata and Keller, 2005] Mirella Lapata and Frank Keller. Web-based models for natural
language processing.ACM Trans. Speech and Language Processing, 2(1):1–31, 2005.

[Lappin and Leass, 1994] Shalom Lappin and Herbert J. Leass. An algorithm for pronom-
inal anaphora resolution.Computational Linguistics, 20(4), 1994.

[Lauer, 1995a] Mark Lauer. Corpus statistics meet the noun compound: Some empirical
results. InACL, 1995.

[Lauer, 1995b] Mark Lauer. Designing Statistical Language Learners: Experiments on
Compound Nouns. PhD thesis, Macquarie University, 1995.

[Levenshtein, 1966] Vladimir I. Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals.Soviet Physics Doklady, 10(8), 1966.

[Li and Abe, 1998] Hang Li and Naoki Abe. Generalizing case frames using a thesaurus
and the MDL principle.Computational Linguistics, 24(2), 1998.

[Lin and Wu, 2009] Dekang Lin and Xiaoyun Wu. Phrase clustering for discriminative
learning. InACL-IJCNLP, 2009.

[Lin et al., 2010] Dekang Lin, Kenneth Church, Heng Ji, Satoshi Sekine, David Yarowsky,
Shane Bergsma, Kailash Patil, Emily Pitler, Rachel Lathbury, Vikram Rao, Kapil Dal-
wani, and Sushant Narsale. New tools for web-scale N-grams.In LREC, 2010.

[Lin, 1998a] Dekang Lin. Automatic retrieval and clustering of similar words. InCOLING-
ACL, 1998.

[Lin, 1998b] Dekang Lin. Dependency-based evaluation of MINIPAR. InLREC Workshop
on the Evaluation of Parsing Systems, 1998.

120

[Litkowski and Hargraves, 2007] Ken Litkowski and Orin Hargraves. SemEval-2007 Task
06: Word-sense disambiguation of prepositions. InSemEval, 2007.

[Liu and Curran, 2006] Vinci Liu and James R. Curran. Web text corpus for natural lan-
guage processing. InEACL, 2006.

[Lodhi et al., 2002] Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini,
and Chris Watkins. Text classification using string kernels. JMLR, 2:419–444, 2002.

[Lowe, 1999] David G. Lowe. Object recognition from local scale-invariant features. In
ICCV, 1999.

[Malouf, 2000] Robert Malouf. The order of prenominal adjectives in natural language
generation. InACL, 2000.

[Mann and McCallum, 2007] Gideon S. Mann and Andrew McCallum. Simple, robust,
scalable semi-supervised learning via expectation regularization. InICML, 2007.

[Mann and Yarowsky, 2001] Gideon S. Mann and David Yarowsky. Multipath translation
lexicon induction via bridge languages. InNAACL, 2001.

[Manning and Schütze, 1999] Christopher D. Manning and Hinrich Schütze.Foundations
of Statistical Natural Language Processing. MIT Press, 1999.

[Marcuset al., 1993] Mitchell P. Marcus, Beatrice Santorini, and Mary Marcinkiewicz.
Building a large annotated corpus of English: The Penn Treebank. Computational Lin-
guistics, 19(2):313–330, 1993.

[Marcus, 1980] Mitchell P. Marcus. Theory of Syntactic Recognition for Natural Lan-
guages. MIT Press, Cambridge, MA, USA, 1980.

[Martonet al., 2009] Yuval Marton, Chris Callison-Burch, and Philip Resnik. Improved
statistical machine translation using monolingually-derived paraphrases. InACL-
IJCNLP, 2009.

[McCallumet al., 2005] Andrew McCallum, Kedar Bellare, and Fernando Pereira. A con-
ditional random field for discriminatively-trained finite-state string edit distance. InUAI,
2005.

[McCallum, 1996] Andrew Kachites McCallum. Bow: A toolkit for sta-
tistical language modeling, text retrieval, classification and clustering.
http://www.cs.cmu.edu/˜mccallum/bow, 1996.

[McCloskyet al., 2006a] David McClosky, Eugene Charniak, and Mark Johnson. Effec-
tive self-training for parsing. InHLT-NAACL, 2006.

[McCloskyet al., 2006b] David McClosky, Eugene Charniak, and Mark Johnson. Rerank-
ing and self-training for parser adaptation. InCOLING-ACL, 2006.

[McCloskyet al., 2010] David McClosky, Eugene Charniak, and Mark Johnson. Auto-
matic domain adaptation for parsing. InNAACL HLT, 2010.

[McEnery and Oakes, 1996] Tony McEnery and Michael P. Oakes. Sentence and word
alignment in the CRATER project. InUsing Corpora for Language Research. Longman,
1996.

[Melamed, 1998] I. Dan Melamed. Manual annotation of translational equivalence. Tech-
nical Report IRCS #98-07, University of Pennsylvania, 1998.

[Melamed, 1999] I. Dan Melamed. Bitext maps and alignment via pattern recognition.
Computational Linguistics, 25(1), 1999.

121

[Mihalcea and Moldovan, 1999] Rada Mihalcea and Dan I. Moldovan. A method for word
sense disambiguation of unrestricted text. InACL, 1999.

[Miller et al., 1990] George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek
Gross, and Katherine J. Miller. Introduction to WordNet: anon-line lexical database.
International Journal of Lexicography, 3(4), 1990.

[Miller et al., 2004] Scott Miller, Jethran Guinness, and Alex Zamanian. Name tagging
with word clusters and discriminative training. InHLT-NAACL, 2004.

[Mitchell, 2009] Margaret Mitchell. Class-based ordering of prenominal modifiers. In12th
European Workshop on Natural Language Generation, 2009.

[Modjeskaet al., 2003] Natalia N. Modjeska, Katja Markert, and Malvina Nissim. Using
the Web in machine learning forother-anaphora resolution. InEMNLP, 2003.

[MUC-7, 1997] MUC-7. Coreference task definition (v3.0, 13 Jul 97). InProceedings of
the Seventh Message Understanding Conference (MUC-7), 1997.

[Müller et al., 2002] Christoph Müller, Stefan Rapp, and Michael Strube. Applying co-
training to reference resolution. InProceedings of the 40th Annual Meeting of the Asso-
ciation for Computational Linguistics, 2002.

[Müller, 2006] Christoph Müller. Automatic detection of nonreferentialIt in spoken multi-
party dialog. InEACL, 2006.

[Mulloni and Pekar, 2006] Andrea Mulloni and Viktor Pekar. Automatic detection of or-
thographic cues for cognate recognition. InLREC, 2006.

[Munteanu and Marcu, 2005] Dragos S. Munteanu and Daniel Marcu. Improving machine
translation performance by exploiting non-parallel corpora. Computational Linguistics,
31(4):477–504, 2005.

[Nakov and Hearst, 2005a] Preslav Nakov and Marti Hearst. Search engine statistics be-
yond the n-gram: Application to noun compound bracketing. In CoNLL, 2005.

[Nakov and Hearst, 2005b] Preslav Nakov and Marti Hearst. Using the web as an implicit
training set: application to structural ambiguity resolution. In HLT/EMNLP, 2005.

[Nakov, 2007] Preslav Ivanov Nakov.Using the Web as an Implicit Training Set: Appli-
cation to Noun Compound Syntax and Semantics. PhD thesis, University of California,
Berkeley, 2007.

[Ng and Cardie, 2003a] Vincent Ng and Claire Cardie. Bootstrapping coreference classi-
fiers with multiple machine learning algorithms. InProceedings of the 2003 Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2003.

[Ng and Cardie, 2003b] Vincent Ng and Claire Cardie. Weakly supervised natural lan-
guage learning without redundant views. InProceedings of the HLT-NAACL, 2003.

[Ng and Jordan, 2002] Andrew Y. Ng and Michael I. Jordan. Discriminative vs. generative
classifiers: A comparison of logistic regression and naive bayes. InNIPS, 2002.

[Och and Ney, 2002] Franz J. Och and Hermann Ney. Discriminative training and maxi-
mum entropy models for statistical machine translation. InACL, 2002.

[Okanohara and Tsujii, 2007] Daisuke Okanohara and Jun’ichi Tsujii. A discriminative
language model with pseudo-negative samples. InACL, 2007.

[Paice and Husk, 1987] Chris D. Paice and Gareth D. Husk. Towards the automatic recog-
nition of anaphoric features in English text: the impersonal pronoun “it”. Computer
Speech and Language, 2:109–132, 1987.

122

[Pantel and Lin, 2002] Patrick Pantel and Dekang Lin. Discovering word senses fromtext.
In KDD, 2002.

[Pantel and Pennacchiotti, 2006] Patrick Pantel and Marco Pennacchiotti. Espresso: lever-
aging generic patterns for automatically harvesting semantic relations. InACL ’06: Pro-
ceedings of the 21st International Conference on Computational Linguistics and the 44th
annual meeting of the ACL, 2006.

[Pantelet al., 2007] Patrick Pantel, Rahul Bhagat, Bonaventura Coppola, Timothy
Chklovski, and Eduard Hovy. ISP: Learning inferential selectional preferences. In
NAACL-HLT, 2007.

[Pantel, 2003] Patrick Pantel.Clustering by committee. PhD thesis, University of Alberta,
2003.

[Paşcaet al., 2006] Marius Paşca, Dekang Lin, Jeffrey Bigham, Andrei Lifchits, and Alpa
Jain. Names and similarities on the Web: Fact extraction in the fast lane. InProceed-
ings of the 21st International Conference on ComputationalLinguistics and 44th Annual
Meeting of the ACL, 2006.

[Phan, 2006] Xuan-Hieu Phan. CRFTagger: CRF English POS Tagger.crftagger.
sourceforge.net , 2006.

[Pinchak and Bergsma, 2007] Christopher Pinchak and Shane Bergsma. Automatic answer
typing for how-questions. InHLT-NAACL, 2007.

[Pitler et al., 2010] Emily Pitler, Shane Bergsma, Dekang Lin, and Kenneth Church. Using
web-scale N-grams to improve base NP parsing performance. In COLING, 2010.

[Porter, 1980] Martin F. Porter. An algorithm for suffix stripping.Program, 14(3), 1980.

[Radevet al., 2001] Dragomir R. Radev, Hong Qi, Zhiping Zheng, Sasha Blair-
Goldensohn, Zhu Zhang, Weiguo Fan, and John Prager. Mining the Web for Answers to
Natural Language Questions. InCIKM, 2001.

[Rainaet al., 2006] Rajat Raina, Andrew Y. Ng, and Daphne Koller. Constructing infor-
mative priors using transfer learning. InICML, 2006.

[Rappoport and Levent-Levi, 2006] Ari Rappoport and Tsahi Levent-Levi. Induction of
cross-language affix and letter sequence correspondence. In EACL Workshop on Cross-
Language Knowledge Induction, 2006.

[Ravichandran and Hovy, 2002] Deepak Ravichandran and Eduard Hovy. Learning surface
text patterns for a question answering system. InACL ’02: Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics, 2002.

[Resnik, 1996] Philip Resnik. Selectional constraints: An information-theoretic model and
its computational realization.Cognition, 61, 1996.

[Resnik, 1999] Philip Resnik. Mining the web for bilingual text. InProceedings of the
37th Annual Meeting of the Association for Computational Linguistics, 1999.

[Rifkin and Klautau, 2004] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all
classification.JMLR, 5:101–141, 2004.

[Riloff and Jones, 1999] Ellen Riloff and Rosie Jones. Learning dictionaries for informa-
tion extraction by multi-level bootstrapping. InProceedings of the Sixteenth National
Conference on Artificial Intelligence (AAAI-99), 1999.

[Rimell and Clark, 2008] Laura Rimell and Stephen Clark. Adapting a lexicalized-
grammar parser to contrasting domains. InEMNLP, 2008.

123

[Ristad and Yianilos, 1998] Eric Sven Ristad and Peter N. Yianilos. Learning string-edit
distance.IEEE Trans. Pattern Anal. Machine Intell., 20(5), 1998.

[Robertoet al., 2007] Basili Roberto, Diego De Cao, Paolo Marocco, and Marco Pennac-
chiotti. Learning selectional preferences for entailmentor paraphrasing rules. InRANLP,
2007.

[Roothet al., 1999] Mats Rooth, Stefan Riezler, Detlef Prescher, Glenn Carroll, and Franz
Beil. Inducing a semantically annotated lexicon via EM-based clustering. InACL, 1999.

[Roth and Yih, 2004] Dan Roth and Wen-Tau Yih. A linear programming formulation for
global inference in natural language tasks. InCoNLL, 2004.

[Roth, 1998] Dan Roth. Learning to resolve natural language ambiguities: A unified ap-
proach. InAAAI/IAAI, 1998.

[Russell and Norvig, 2003] Stuart J. Russell and Peter Norvig.Artificial Intelligence: a
modern approach, chapter 20: Statistical Learning Methods. Prentice Hall,Upper Saddle
River, N.J., 2nd edition edition, 2003.

[Schafer and Yarowsky, 2002] Charles Schafer and David Yarowsky. Inducing translation
lexicons via diverse similarity measures and bridge languages. InCoNLL, 2002.

[Sekine, 2008] Satoshi Sekine. A linguistic knowledge discovery tool: Very large ngram
database search with arbitrary wildcards. InCOLING: Companion volume: Demonstra-
tions, 2008.

[Shannon, 1948] Claude E. Shannon. A mathematical theory of communication.Bell Sys-
tem Technical Journal, 27(3), 1948.

[Shaw and Hatzivassiloglou, 1999] James Shaw and Vasileios Hatzivassiloglou. Ordering
among premodifiers. InACL, 1999.

[Simardet al., 1992] Michel Simard, George F. Foster, and Pierre Isabelle. Usingcognates
to align sentences in bilingual corpora. InFourth International Conference on Theoreti-
cal and Methodological Issues in Machine Translation, 1992.

[Smith and Eisner, 2005] Noah A. Smith and Jason Eisner. Contrastive estimation: training
log-linear models on unlabeled data. InACL, 2005.

[Snowet al., 2005] Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. Learning syntactic
patterns for automatic hypernym discovery. InNIPS, 2005.

[Snowet al., 2008] Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Y.Ng.
Cheap and fast - but is it good? evaluating non-expert annotations for natural language
tasks. InEMNLP, 2008.

[Steedman, 2008] Mark Steedman. On becoming a discipline.Comput. Linguist.,
34(1):137–144, 2008.

[Strubeet al., 2002] Michael Strube, Stefan Rapp, and Christoph Müller. The influence of
minimum edit distance on reference resolution. InEMNLP, 2002.

[Suzuki and Isozaki, 2008] Jun Suzuki and Hideki Isozaki. Semi-supervised sequential
labeling and segmentation using giga-word scale unlabeleddata. InProceedings of ACL-
08: HLT, 2008.

[Taskaret al., 2005] Ben Taskar, Simon Lacoste-Julien, and Dan Klein. A discriminative
matching approach to word alignment. InHLT-EMNLP, 2005.

[Tefaset al., 2001] Anastasios Tefas, Constantine Kotropoulos, and Ioannis Pitas. Using
support vector machines to enhance the performance of elastic graph matching for frontal
face authentication.IEEE Trans. Pattern Anal. Machine Intell., 23:735–746, 2001.

124

[Tetreault and Chodorow, 2008] Joel R. Tetreault and Martin Chodorow. The ups and
downs of preposition error detection in ESL writing. InCOLING, 2008.

[Tiedemann, 1999] Jörg Tiedemann. Automatic construction of weighted string similarity
measures. InEMNLP-VLC, 1999.

[Tong and Koller, 2002] Simon Tong and Daphne Koller. Support vector machine active
learning with applications to text classification.JMLR, 2:45–66, 2002.

[Tratz and Hovy, 2010] Stephen Tratz and Eduard Hovy. A taxonomy, dataset, and classi-
fier for automatic noun compound interpretation. InACL, 2010.

[Tsochantaridiset al., 2004] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, and Yasemin Altun. Support vector machine learning for interdependent and
structured output spaces. InICML, 2004.

[Tsochantaridiset al., 2005] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hof-
mann, and Yasemin Altun. Large margin methods for structured and interdependent
output variables.JMLR, 6:1453–1484, 2005.

[Tsuruokaet al., 2005] Yoshimasa Tsuruoka, Yuka Tateishi, Jin-Dong Kim, Tomoko Ohta,
John McNaught, Sophia Ananiadou, and Jun’ichi Tsujii. Developing a robust part-of-
speech tagger for biomedical text. InAdvances in Informatics, 2005.

[Turianet al., 2010] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representa-
tions: A simple and general method for semi-supervised learning. InACL, 2010.

[Turney, 2002] Peter D. Turney. Thumbs up or thumbs down? semantic orientation applied
to unsupervised classification of reviews. InACL, 2002.

[Turney, 2003] Peter D. Turney. Coherent keyphrase extraction via web mining. In
Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence
(IJCAI-03), (2003), Acapulco, Mexico, 2003.

[Turney, 2006] Peter D. Turney. Similarity of semantic relations.Computational Linguis-
tics, 32(3):379–416, 2006.

[Uitdenbogerd, 2005] Sandra Uitdenbogerd. Readability of French as a foreign language
and its uses. InProceedings of the Australian Document Computing Symposium, 2005.

[Vadas and Curran, 2007a] David Vadas and James R. Curran. Adding noun phrase struc-
ture to the Penn Treebank. InACL, 2007.

[Vadas and Curran, 2007b] David Vadas and James R. Curran. Large-scale supervised
models for noun phrase bracketing. InPACLING, 2007.

[van den Bosch, 2006] Antal van den Bosch. All-word prediction as the ultimate confus-
able disambiguation. InWorkshop on Computationally Hard Problems and Joint Infer-
ence in Speech and Language Processing, 2006.

[Vapnik, 1998] Vladimir N. Vapnik. Statistical Learning Theory. John Wiley & Sons,
1998.

[Vorhees, 2002] Ellen Vorhees. Overview of the TREC 2002 question answeringtrack. In
Proceedings of the Eleventh Text REtrieval Conference (TREC), 2002.

[Wanget al., 2005] Qin Iris Wang, Dale Schuurmans, and Dekang Lin. Strictly lexical
dependency parsing. InInternational Workshop on Parsing Technologies, 2005.

[Wanget al., 2006] Qin Iris Wang, Colin Cherry, Dan Lizotte, and Dale Schuurmans. Im-
proved large margin dependency parsing via local constraints and Laplacian regulariza-
tion. In CoNLL, 2006.

125

[Wanget al., 2008] Qin Iris Wang, Dale Schuurmans, and Dekang Lin. Semi-supervised
convex training for dependency parsing. InACL-08: HLT, 2008.

[Weeds and Weir, 2005] Julie Weeds and David Weir. Co-occurrence retrieval: a flexible
framework for lexical distributional similarity.Computational Linguistics, 31(4), 2005.

[Weston and Watkins, 1998] Jason Weston and Chris Watkins. Multi-class support vector
machines. Technical Report CSD-TR-98-04, Department of Computer Science, Royal
Holloway, University of London, 1998.

[Wilcox-O’Hearnet al., 2008] Amber Wilcox-O’Hearn, Graeme Hirst, and Alexander Bu-
danitsky. Real-word spelling correction with trigrams: A reconsideration of the Mays,
Damerau, and Mercer model. InCICLing, 2008.

[Witten and Frank, 2005] Ian H. Witten and Eibe Frank.Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, second edition, 2005.

[Xu et al., 2009] Peng Xu, Jaeho Kang, Michael Ringgaard, and Franz Josef Och.Using a
dependency parser to improve SMT for subject-object-verb languages. InHLT-NAACL,
2009.

[Yanget al., 2005] Xiaofeng Yang, Jian Su, and Chew Lim Tan. Improving pronoun reso-
lution using statistics-based semantic compatibility information. InACL, 2005.

[Yarowsky, 1994] David Yarowsky. Decision lists for lexical ambiguity resolution: appli-
cation to accent restoration in Spanish and French. InACL, 1994.

[Yarowsky, 1995] David Yarowsky. Unsupervised word sense disambiguation rivaling su-
pervised methods. InACL, 1995.

[Yi et al., 2008] Xing Yi, Jianfeng Gao, and William B. Dolan. A web-based English
proofing system for English as a second language users. InIJCNLP, 2008.

[Yoon et al., 2007] Su-Youn Yoon, Kyoung-Young Kim, and Richard Sproat. Multilingual
transliteration using feature based phonetic method. InACL, pages 112–119, 2007.

[Yu et al., 2007] Liang-Chih Yu, Chung-Hsien Wu, Andrew Philpot, and Eduard Hovy.
OntoNotes: Sense pool verification using Google N-gram and statistical tests. InOn-
toLex Workshop at the 6th International Semantic Web Conference (ISWC’07), 2007.

[Yu et al., 2010] Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang, and Chih-Jen Lin. Large
linear classification when data cannot fit in memory. InKDD, 2010.

[Yuret, 2007] Deniz Yuret. KU: Word sense disambiguation by substitution. In SemEval-
2007: 4th International Workshop on Semantic Evaluations, June 2007.

[Zaidanet al., 2007] Omar Zaidan, Jason Eisner, and Christine Piatko. Using “annotator
rationales” to improve machine learning for text categorization. InNAACL-HLT, 2007.

[Zelenko and Aone, 2006] Dmitry Zelenko and Chinatsu Aone. Discriminative methods
for transliteration. InEMNLP, 2006.

[Zhu, 2005] Xiaojin Zhu. Semi-supervised learning literature survey.Technical Report
1530, Computer Sciences, University of Wisconsin-Madison, 2005.

126

Appendix A

Penn Treebank Tag Set

Tag Description Examples
$ dollar $ -$ –$ A$ C$ HK$ M$ NZ$ S$ U.S.$ US$
“ opening quotation mark ‘ “
” closing quotation mark ’ ”
(opening parenthesis ([{
) closing parenthesis)] }
, comma ,
– dash –
. sentence terminator . ! ?
: colon or ellipsis : ; ...

CC conjunction, coordinat-
ing

’n and both but either et for less minus neither nor or plus so therefore
times v. versus vs. whether yet

CD numeral, cardinal mid-1890 nine-thirty forty-two one-tenth ten million 0.5 one forty-
seven 1987 twenty ’79 zero two 78-degrees eighty-four IX ’60s .025
fifteen 271,124 dozen quintillion DM2,000 ...

DT determiner all an another any both del each either every half la many muchnary
neither no some such that the them these this those

EX existential there there
FW foreign word gemeinschaft hund ich jeux habeas Haementeria Herr K’ang-si vous

lutihaw alai je jour objets salutaris fille quibusdam pas trop Monte
terram fiche oui corporis ...

IN preposition or conjunc-
tion, subordinating

astride among uppon whether out inside pro despite on by throughout
below within for towards near behind atop around if like until below
next into if beside ...

JJ adjective or numeral, or-
dinal

third ill-mannered pre-war regrettable oiled calamitous first separable
ectoplasmic battery-powered participatory fourth still-to-be-named
multilingual multi-disciplinary ...

JJR adjective, comparative bleaker braver breezier briefer brighter brisker broader bumper bus-
ier calmer cheaper choosier cleaner clearer closer colder commoner
costlier cozier creamier crunchier cuter ...

JJS adjective, superlative calmest cheapest choicest classiest cleanest clearest closest common-
est corniest costliest crassest creepiest crudest cutest darkest deadliest
dearest deepest densest dinkiest ...

LS list item marker A A. B B. C C. D E F First G H I J K One SP-44001 SP-44002 SP-
44005 SP-44007 Second Third Three Two a b c d first five four one
six three two

MD modal auxiliary can cannot could couldn’t dare may might must need ought shall
should shouldn’t will would

NN noun, common, singular
or mass

common-carrier cabbage knuckle-duster Casino afghan shedthermo-
stat investment slide humour falloff slick wind hyena override subhu-
manity machinist ...

From: http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.ht ml

127

NNP noun, proper, singular Motown Venneboerger Czestochwa Ranzer Conchita Trumplane
Christos Oceanside Escobar Kreisler Sawyer Cougar Yvette Ervin
ODI Darryl CTCA Shannon A.K.C. Meltex Liverpool ...

NNPS noun, proper, plural Americans Americas Amharas Amityvilles Amusements Anarcho-
Syndicalists Andalusians Andes Andruses Angels Animals Anthony
Antilles Antiques Apache Apaches Apocrypha ...

NNS noun, common, plural undergraduates scotches bric-a-brac products bodyguardsfacets
coasts divestitures storehouses designs clubs fragrancesaverages sub-
jectivists apprehensions muses factory-jobs ...

PDT pre-determiner all both half many quite such sure this
POS genitive marker ’ ’s
PRP pronoun, personal hers herself him himself hisself it itself me myself one oneself ours

ourselves ownself self she thee theirs them themselves theythou thy
us

PRP$ pronoun, possessive her his mine my our ours their thy your
RB adverb occasionally unabatingly maddeningly adventurously professedly

stirringly prominently technologically magisterially predominately
swiftly fiscally pitilessly ...

RBR adverb, comparative further gloomier grander graver greater grimmer harder harsher
healthier heavier higher however larger later leaner lengthier less-
perfectly lesser lonelier longer louder lower more ...

RBS adverb, superlative best biggest bluntest earliest farthest first furthest hardest heartiest
highest largest least less most nearest second tightest worst

RP particle aboard about across along apart around aside at away back before
behind by crop down ever fast for forth from go high i.e. in into just
later low more off on open out over per pie raising start teeththat
through under unto up up-pp upon whole with you

SYM symbol % & ’ ” ”.)). * + ,. ¡ = ¿ A[fj] U.S U.S.S.R
TO “to” as preposition or in-

finitive marker
to

UH interjection Goodbye Goody Gosh Wow Jeepers Jee-sus Hubba Hey Kee-reist
Oops amen huh howdy uh dammit whammo shucks heck anyways
whodunnit honey golly man baby diddle hush sonuvabitch ...

VB verb, base form ask assemble assess assign assume atone attention avoid bake balka-
nize bank begin behold believe bend benefit bevel beware bless boil
bomb boost brace break bring broil brush build ...

VBD verb, past tense dipped pleaded swiped regummed soaked tidied convened halted reg-
istered cushioned exacted snubbed strode aimed adopted belied fig-
gered speculated wore appreciated contemplated ...

VBG verb, present participle or
gerund

telegraphing stirring focusing angering judging stallinglactating han-
kerin’ alleging veering capping approaching traveling besieging en-
crypting interrupting erasing wincing ...

VBN verb, past participle multihulled dilapidated aerosolized chaired languished panelized
used experimented flourished imitated reunifed factored condensed
sheared unsettled primed dubbed desired ...

VBP verb, present tense, not
3rd person singular

predominate wrap resort sue twist spill cure lengthen brushterminate
appear tend stray glisten obtain comprise detest tease attract empha-
size mold postpone sever return wag ...

VBZ verb, present tense, 3rd
person singular

bases reconstructs marks mixes displeases seals carps weaves
snatches slumps stretches authorizes smolders pictures emerges
stockpiles seduces fizzes uses bolsters slaps speaks pleads...

WDT WH-determiner that what whatever which whichever
WP WH-pronoun that what whatever whatsoever which who whom whosoever
WP$ WH-pronoun, possessive whose
WRB Wh-adverb how however whence whenever where whereby whereever wherein

whereof why

128

