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Abstract

In this dissertation we present new methods for designing efficient Raptor codes in

finite and practical block lengths. First we propose an extension of Raptor codes

which keeps all the desirable properties, including the linear complexity of encod-

ing and decoding per information bit, and improves the performance in terms of

the reception rate. Our simulations show a10% reduction in the required overhead

at the benchmark block length of 64,520 bits, and with the same complexity per

information bit. Second, we consider the practical settingwith short block lengths

of 103 < k < 104. Based on a new vision of the inactivation decoding process,we

set a new degree distribution design criterion for the Luby transform (LT) part of

Raptor codes. A family of degree distributions that satisfythe new design criterion

is analytically derived. The finite length performance of this family is investigated

by using computer simulations and is shown to outperform theconventional design.
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Chapter 1

Introduction

1.1 Motivation

Communication networks such as the Internet and cellular networks have tremen-

dously improved every aspect of our lives. Our modern life benefits from this tech-

nology to the extent that it cannot function without communication networks any

more. The demand for this technology is ever increasing. According to the Cisco,

the projected Internet traffic is in a hockey stick-like upward curve to reach 50 bil-

lion connected devices by 2020. This projected growth demands increased speed,

bandwidth, and throughput, which have pressed network designers into a constraint-

bound corner. Cisco Visual Networking Index (VNI) anticipates the annual global

IP traffic will reach two-thirds of a Zettabyte (Trillion Gigabytes) by 2013 [1]. This

number represents more than a fivefold increase over today’sIP traffic.

Failure to fulfil this demand affects the development and expansion of on-line

services where, lowering the costs and saving time and energy is crucial for the

stability and improvement of economy, especially in developed counties such as

Canada. Moreover, such a failure will harm all related industries such as communi-

cation device manufacturing and all emerging on-line services such as Internet TV,

on-line education, sensor networks, and the revolutionarycloud technology just to

name a few.

Satisfying this demand based on the current methods of data transmission re-

quires significant increase in the infrastructure at a tremendous cost. However,
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thanks to the novel ideas in the coding theory, such as rateless coding, data transmis-

sion at much higher rates on the available hardware settingscan be made possible.

This is an accepted fact by the community of experts and new versions of inter-

national standards for communication over networks have already been revised to

include the possibility of using rateless coding.

The main problem in communication networks is to achieve high throughput

while facing noise, packet loss, interference, and fading all of which vary with

time, sometimes even at time-scales shorter than a single packet transmission time.

In such situations, achieving high data transmission rateswith conventional trans-

mission schemes requires perfect tracking of channel parameters and well adapta-

tion to the instantaneous conditions. An ideal solution is arateless coding scheme,

in which the scheme of encoding in the transmitter does not need any explicit es-

timation or adaptation of the channel quality. However, thetransmission rate will

implicitly adapt to the channel’s level of quality.

As an example, a packet broadcasting communication system is one which han-

dles the communication of data from one source to several receivers in packets of

usually very large number of bits. An important instance of such a system is the

Internet. In particular, for multimedia files, a server broadcasts the same informa-

tion packets to multiple clients. Communication in such systems, however, faces

challenges and necessitates new specialized solutions to leave behind current lim-

itations. One development that has recently attracted a great deal of interest is the

idea of Fountain codes which was first mentioned without an explicit construction

in [2, 3]. In particular, a family of Fountain codes, called Raptor codes [4, 5] has

already been incorporated in several 3rd generation wireless (3GPP) and digital

video broadcasting (DVB) standards, including but not limited to, 3GPP MBMS,

DVB IPTV AL-FEC, and DVB RSC [6]. Thus, Fountain codes are currently the

subject of extensive research both in academia and industry(e.g., Digital Fountain

Inc.) for practical technologies.

Before the invention of Fountain codes, when broadcasting to receivers with

different channel quality, the data rate had to be chosen according to the worst
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receiver. That is, a high-speed receiver had to suffer because of the presence of a

low-speed receiver. Fountain codes resolved this problem by transmitting different

mixtures (i.e., different XOR combinations) of original data packets. Receivers use

the received packets to decode the original data by solving aset of liner (XOR)

equations. Theoretically, broadcasting continues until all the receivers are able to

decode the data successfully. In practice, however, this process terminates earlier

because of various limitations. The high-speed receiver isable to decode the data

as soon as sufficient number of packets (enough linear equations) is received in a

relatively short period of time. The low-speed receiver canalso decode all the data,

but compared to the high-speed receiver, it takes a longer time to receive enough

packets, i.e., it has to listen longer to the channel. Hence,interestingly, each receiver

pays for channel access according to its own channel quality.

In this dissertation we will address some of the imperfections rising in the ap-

plication of Raptor codes in practical settings. The two main categories of these

imperfections include the effect of finite length and the computational complexity.

Regarding the first one, it worth to mention that all the analysis and design of Raptor

codes are conventionally based on the assumption of an infinite information block

length. However, in practice we always deal with finite blocklengths. This fact in-

validates some of the assumptions in the conventional analysis and causes some gap

between the maximum achievable rates and the channel capacity. There has been

some attempts to consider these effects and some modifications has been made to

reduce this gap specially in very short block lengths, but most of these attempts

lead to computationally complex solutions. Here, we will reconsider the design of

Raptor codes long with the effect of these imperfections andintroduce some modi-

fications in the design of these codes to keep the complexity affordable and reduce

the gap between the achievable transmission rates and the channel capacity.

1.2 Contribution and Outline of Thesis

The next chapter of this thesis will briefly review the the overall system and channel

models used throughout the thesis. The conventional schemeof data transmission
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over such channel is discussed and the classical fixed rate coding solutions for the

channel model are reviewed. Moreover the basic idea of Fountain coding is in-

troduced and finally LT codes and Raptor codes are presented as the two practical

instances of Fountain codes.

In Chapter 3, we propose some modification in the original design of Raptor

codes based on a technique referred to as the “Annotation”. Annotation provides

the possibility of turning a portion of useless transmissions in the original design

of Raptor codes into innovative transmissions providing new information to the

receiver. The Annotation scheme is introduced in details and the performance of

annotated Raptor codes are compared with the original design of Raptor codes, us-

ing computer simulation. As confirmed by the simulations theannotated scheme

is capable of reducing the number of useless transmissions by 10% in the bench-

mark example, while keeping the complexity unchanged. Yet the main advantage

of the annotation technique is to provide a framework for having different levels

of protection to the information symbols in the transmission. This property can be

easily used in other directions. As an example, one can use annotation for unequal

error protection rather than reducing the number of uselessreceived symbols and

increasing the reception rate. This work was presented in the IEEE Information

Theory Workshop (ITW) conference in October 2011, in Paraty, Brazil [7].

Design of Raptor codes specified for small block lengths are discussed in Chap-

ter 4. Current practical settings suggest using information blocks as short as a

few thousands. In this case a computationally more expensive decoding algorithm,

named“inactivation decoding,”introduced in [8], is preferred due to its better per-

formance in terms of overhead. The effect of using inactivation decoding is consid-

ered .Accordingly a new design criterion has is introduced.The new design based

on this criterion is performed and the performance of new design is compared to that

of conventional Raptor codes already adopted in the 3GPP by the means of com-

puter simulations. The results show notable improvements in the computational

costs of this practical method. The new design reduces the number of computa-

tionally expensive inactivation operations significantly. This work is accepted for
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publication in the IEEE Transactions on Communications andis currently sched-

uled for the upcoming issue [9].

Finally, Chapter 5 presents our conclusions and suggests some potential future

research initiatives resulting from this work.
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Chapter 2

Background

The goal of this chapter is to briefly review some major concepts which have been

used in this thesis. The following section introduces the erasure channel which is

considered as the model of the channel under study in this thesis. Retransmission

as a practical solution which has been widely used in data transmission over erasure

networks is reviewed in section 2.2, and the“universality property” is introduced.

Next, we review the properties of“Reed-Solomon”codes as the most successful

fixed rate erasure correcting codes in section 2.3. The“MDS property is also dis-

cussed in the same section. Sections 2.4 to 2.6 review the idea of rateless coding and

the two famous practical instances of rateless codes namelyLT codes and Raptor

codes. Their encoding and decoding schemes along with theircomplexity proper-

ties are explained.

2.1 Erasure Channels

An, erasure channelis a mathematical model for channels which introduce corrup-

tion to the transmitted data in an extremist manner. The output of such a channel is

either the perfectly transmitted input, or a report of failure without any partial infor-

mation about the transmitted symbol (i.e.soft information). Although this model

was more of an extreme theoretical case when it was introduced by Elias [10] first

in 1955, it is a perfect model in many existing and emerging communication sys-

tems nowadays. Probably the most famous example of a practical erasure channel

is a link in a packet network such as the Internet. The packetstransmitted on these
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s1s1

s2s2

s3s3

1− pǫ

1− pǫ

1− pǫ

1− pǫ

pǫ

pǫ

pǫ

pǫ

Figure 2.1: Aq-ary erasure channel with an input alphabet of sizeq, and an output
alphabet of sizeq + 1.

links are either received without error or not received. In amore general view, any

noisy channel protected with an error-correcting code behaves like an erasure chan-

nel since the received symbol is either decodable or completely useless. In the first

case, the error correcting code recovers the transmitted symbol perfectly, and the

transmission can be supposed to be performed noiseless. Otherwise, the received

symbol is very poor and not decodable which then can be taken as an erasure.

In a more accurate way, the mathematical model of aq-ary erasure channel

could be described as depicted in Fig. 2.1. The set of input alphabet for such chan-

nel is {s1, s2, . . . , sq}, while the output alphabet set consists of all the possible

inputs, and an erasure reportǫ. Each input symbol is then assumed to have a1− pǫ

probability of successful transmission, and will be erasedby the channel with prob-

ability pǫ. The capacity of this channel can be easily calculated as [11]

C = (1− pǫ) log2(q)
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2.2 Retransmission Scheme and Universality

Conventionally, communication over an erasure channel hasbeen performed by

retransmission based on feedback. Under this approach, anyreceiver is supposed to

inform the transmitter about the packets or segments of the data which are received

by sending a small amount of information on the feedback channel. The transmitter

will then be able to track the reception process, identifies the erased transmissions,

and keeps transmitting them again until all the data is received successfully [12].

Besides simplicity, this scheme has a very interesting property which made

it, conventionally, the widely accepted practical solution for transmission over an

erasure channel. This important property is the independence of the transmission

scheme from the channel state. In other words, no matter whatthe probability of

erasure in the channel is, the transmission scheme always works the same way. As

we will discuss later this transmission scheme is not even optimal, however, the sim-

plification coming from its independence from the channel state, has been of such

a great benefit in practice to compensate its lack of optimality. This universality

property gives a single design of transmitter and receiver for any erasure channel.

Hence, no channel parameter estimation is required and no changes will be required

in the systems for the adaptation of transmission scheme to the channel state. How-

ever, yet this scheme provides a higher rate of data transmission in a channel with

higher quality and vice versa. We will refer to this propertyas “universality”.

In most of the real world applications there is no perfect feedback channel pro-

vided. In many applications, such as internet based communications, the feedback

channel is exactly the same as the forward channel. Therefore, the feedback is also

subject to erasure at the same rate. Moreover, in most cases feedback traffic also

uses the same resources as of the data transmission, and hence reduces the portion

of capacity achieved by data transmission rate.

The wastefulness of the feedback based retransmission scheme turns out to be

even worse in a broadcast scenario to multiple receivers with different channel qual-

ities. The common situation in an intermediate stage of thisscenario is to have each

receiver received a random fraction of the transmitted datawhich is independent of

8



the fraction received by other receivers. Therefore, transmitter has to keep broad-

casting many packets while some of the receivers have already received them but

others have not. Now assume there is a receiver with a very poor channel quality.

This receiver will keep requesting many packets while most of the other receivers

have already received them. However, the transmitter has toeither drop the weakest

receiver and do not answer its request any more, or to keep retransmitting the re-

quested packets. This translates in either failure of weak receivers at any given time,

or many redundant receptions for most of the receivers all over the transmission pe-

riod. Adding the fact that for many applications such as wireless or internet based

communications, the quality of channel changes over time, and thus many receivers

will experience a period of time when their channel is in a very poor quality, shows

that the strategy of giving up over weak receivers will fail many receivers. Hence,

huge redundant reception looks inevitable under the feedback based retransmission

for broadcast.

The important lesson learned from Shannon is that the capacity of the erasure

channel does not depend on the existence of feedback channel[11]. This means that

there should be an erasure correcting coding scheme which does not use feedback,

or just use the feedback for a limited constant amount of datatransmission, and yet

is able to transmit data at rates arbitrarily close to the capacity.

2.3 Conventional Forward Erasure Correction Scheme

The study of forward erasure correcting codes has a long history. The most powerful

code for erasure correction is widely accepted to be the Reed-Solomon (RS) code

[13–16]. The power of these codes is in the sense that they arecapable of correcting

the highest number of erasures compared to all the other erasure correcting codes of

the same block length. In other words, if we have a block ofk information symbols

of a q-ary alphabet, (whereq = 2I for some integerI), and encode them, using a

RS code, to a block ofn encoded symbols of the same alphabet, for somen such

9



that

k < n ≤ 2q − 1.

Then the decoder is capable of fixing up ton− k erasures on any transmitted code-

word, and obviously no other coding scheme will be able to do better than this. This

property is referred to as the “maximum distance separable” (MDS), and any code

having this optimal property is called an MDS code. As a result receiving anyk

packet from ann-packet length encoded block suffices for the successful decoding.

Reed-Solomon codes have received much attention after their introduction in

late 60’s. They have been used in many application includingthe digital data stor-

age devices such as Compact Discs, DVDs, Blue-ray Discs, as well as in digital

communication applications such as digital subscriber line (DSL), worldwide in-

teroperability for microwave access (WiMAX), and in broadcasting applications

such as the digital video broadcasting (DVB) standard DVB-S, and advanced tele-

vision systems committee (ATSC) standards. Albeit, they are now being replaced

by modern alternatives such as low density parity check (LDPC) codes used in the

new version of DVB-S, named DVB-S2.

Despite all the desirable properties of RS codes, like any other linear block code,

they have a fixed predefined rateR = k/n. If the number of erasures occurred in

the channel during the transmission of an-packet long encoded block is less than

or equal ton− k, then as described before the decoder is able to recover the whole

k-packet long data. However, if the number of erasures exceeds this limit, then the

decoder fails. This means that in order to guarantee the successful decoding the

transmitter needs to know the maximum number of erasures in aperiod ofn trans-

mission. Therefore, tracking channel quality is required.Moreover, the encoding

and decoding scheme needs to be customized. In another sense, the RS code does

not have the desirable universality property. This will degrade the performance in

fast dynamically changing channels even more since in that case the rate of the

code needs to be set according to the worst possible channel quality to keep the

transmission active in all the instances, or the transmitter and the receiver need to

keep changing the encoding and decoding scheme constantly over the period of data
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transmission.

Now, considering the scenario of broadcasting to multiple receivers with differ-

ent channel qualities again, will reveal even more problems. In this case even if

the channel quality of all the receivers is known and does notchange rapidly, yet

the RS code rate has to be set according to the worst channel quality among all to

make sure that even the weakest one will be able to decode successfully. This again

translates to a lot of rate loss for all the strong receivers.

Furthermore, RS codes also suffer from their high computational complexity.

According to [12], these codes are practical only for smallk, n, andq, since the

standard implementation of encoding an decoding has a computational cost of the

orderO(k(n − k) log2(n)) packet operations. Then the idea of setting the coding

rate according to the worst channel quality will be penalized by a super linear com-

plexity increment. In simple words, the strong receivers will have to pay extra not

only for reception delay while unnecessary extra redundantpackets are transmitted

but also in terms of computational complexity for decoding which they will not

really benefit from.

According to the discussion above, we seek a coding scheme which has the

universality property along with the forward erasure correction simultaneously. In

the next section we will introduce the idea of “Fountain codes”, first presented

in [2,3], and the two most well known practical coding schemes designed based on

this idea: LT codes [17] introduced by Luby, and Raptor codes[4,5] introduced by

Shokrollahi which all show the required properties very well.

2.4 Fountain Codes and Rateless Property

The idea of Fountain codes, called the “digital Fountain,” is to design a coding

scheme in which the transmitter provides a theoretically endless stream of output

symbols. Each symbol provides a partial information about the k original infor-

mation symbols, and any subset ofk (or slightly larger) received symbols provides

enough information for the decoder to decode the wholek information symbols.

When the receiver finally collects enough symbols to be able to perform the decod-
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ing successfully, it will send a single bit feedback messageto the transmitter, and

announces the termination of its demand. Therefore, Fountain codes do not have a

predefined fixed coding rate and hence they are also called “rateless” codes.

As a result of such properties, the transmission process will have the universal-

ity property since the erasure probability of the channel will just affect the average

number of transmissions required to guarantee the reception of a subset ofk re-

ceived symbols. The encoding and decoding scheme as well as the average required

number of receptions will remain the same for all the different channel qualities.

In addition to the universality property, Fountain codes will also provide a nearly

MDS property as well. As described in the previous section, an MDS code has this

property that any subset ofk encoded symbols in ann-symbol long encoded block

suffices for the successful decoding, and then the code is capable of fixing any

number of erasures less than or equal ton − k. In Fountain codes although there

is no fix predefined lengthn for the encoded block, the MDS property holds in the

sense that any subset of sizek or slightly larger thank of received symbols will

enable the decoder for recovering the originalk information symbols.

One simple idea to generate such a Fountain code is to simply let every out-

put symbol be a random linear combination of the originalk message symbols in

which any information symbol appears with a uniformly randomly chosen coeffi-

cient. Since we assume the information symbols belong to an alphabet of sizeq,

and we need to define multiplication and addition over the setof information pack-

ets, a natural choice for the symbol’s alphabet is then a Galois field of sizeq which

will be referred to asGF (q). Obviously then the coefficients for the random linear

combinations will also be selected from the same alphabet.

There are a lot of approaches to inform the receiver about thecoefficients of

each linear combination. One solution is to use a common random generator whose

state is known by the transmitter as well as every receiver. Another solution which

is more practical in the packet networks is to include the information about the

coefficients of linear combination in the header of each output packet. Note that

in the latter case, each output packet will be a random linearcombination of the
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originalk information packets, while each packet itself consists of alarge number,

sayd, of symbols fromGF (q). Therefore, when the number of symbols in each

packet is much larger than the total number of packets, (i.e.k << d), then the

header which containsk coefficients ofGF (q) will be negligible compared to the

size of output packet.

Now lets check how the simple idea of random linear combinations will provide

the properties of a Fountain code. As a Fountain code, each output symbols of this

coding scheme will provide a partial information about the original k information

symbols which is the corresponding random linear combination of them. Moreover,

the number of transmissions required for successful recovery is not determined by

the coding scheme and depends on the probability of erasure in the channel. In

other words, this scheme is a rateless coding scheme. The number of output sym-

bols required by the receiver to be able to decode the original k information symbols

is equivalent to the number of random linear combinations required for successful

decoding. Obviously, successful decoding in this scheme means solving a system

of linear equations in terms of thek information symbol. Hence, the necessary

condition for successful decoding translates to having a set of linear combinations

received, which forms a full rank linear equation system. Inother words, the re-

ceiver needs to receive enough symbols to have at leastk linearly independent lin-

ear combinations. Restating the Theorem 3.1 in [6] in the context of our discussion,

we have the following result. Assuming the receiver has received (1 + ε)k output

symbols of such coding scheme, the probability of successful decoding is lower

bounded as

Pr[successful decoding] = Pr[rk(A) = k] > 1− 1

(q − 1)qεk
.

where,A is the coefficient matrix of the linear equation system corresponding to

the set of received symbols, and rk(A), is the rank of matrixA. Moreover, through

this theses we will use the notion of “reception overhead” torepresent the value of

the quantityε as described above.

As a result, for any arbitrarily small reception overheadε, an appropriate choice

of the code alphabet sizeq decreases the probability of failure in decoding to any
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desirable value. Furthermore, as the number of informationpacketsk tends to infin-

ity, with a small non-zero overhead, even for a small alphabet sizeq the probability

of decoding failure tends to zero.

This means that all the properties of a Fountain code is satisfied with this sim-

ple scheme. However, this scheme is not a practical solutiondue to the complexity

of the decoding algorithm in this scheme. As mentioned above, decoding of this

scheme is indeed a matrix inversion over the coefficient matrix of the linear equa-

tion system corresponding to the received symbols. The complexity of this decod-

ing algorithm hence is known to be of the order ofO(k3) operations inGF (q).

Knowing that this code operates well (i.e. with small overhead), whenq, andk are

large, this complexity makes the introduced scheme impractical.

The importance of the simple random linear Fountain coding scheme mentioned

above is to prove the possibility of designing Fountain codes representing all the

properties in their definition. The next two sections will briefly explain the structure

of LT and Raptor codes as the most well-known instances of Fountain codes with

practically tractable computational complexity.

The set of good Fountain codes with desirable properties is not limited to the

LT and Raptor codes. Following the principals of digital Fountain design many

other researchers have studied the design of Fountain codesboth for basic practical

settings [18,19], as well as for specific applications such as unequal error protection

or streaming [20–22].

2.5 LT Codes

Luby transform codes, or LT codes, are the first practical Fountain codes. Similar

to the random linear Fountain codes introduced in the previous section, an LT code

also works by transmitting a theoretically unlimited number of linear combinations

in the form of output symbols. Based on the same discussion, all the properties of

a Fountain code are achieved by the LT codes as well.

Let us define the degree of a linear combination of a set of variablesx1, . . . , xk

as the number variables contributing in the linear combination with non-zero coef-
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ficients. The heart of LT code design is in the distribution ofdegrees of its random

linear combinations. We will also interchangeably use the expression “degree of

output symbol,” to refer to the degree of the linear combination corresponding to

that output symbol. As we will discuss later in this section,this specific random

structure will enable an alternative version of decoding with a computational com-

plexity of the orderO(k ln(k)). Hence, comparing to the much more complex

Gaussian elimination decoding used in the random linear Fountain codes, which

was suffering from itsO(k3) complexity, LT codes are practical for a much larger

information block lengthk.

2.5.1 Encoding

The goal of the LT encoder is to produce a stream of output symbols, where, similar

to the random linear Fountain codes, each output symbol provides the information

equivalent to a linear equation in terms of a subset of the original k information

symbols. Moreover, to enable a more efficient decoding in LT codes, the degrees

of the linear combinations corresponding to the received symbols need to follow

a specific distribution. This distribution is called the “robust Soliton” distribution,

and we will discuss it in more details in subsection 2.5.3. Since the set of received

symbols will be a random subset of all the transmitted symbols, to implement the

required statistic in the set of received symbols we just need to implement it in the

set of all transmitted symbols.

In order to achieve the goals of encoding, LT encoders perform a two step pro-

cess for producing each output symbol as follows. In the firststep the encoder

samples a random variabled with the robust Soliton distribution. The outcome of

this sampling will then obviously inherit the distributionand will be used as the

selected degree for the output symbol.

The second step consists of selectingd information packets,xi1 , . . . , xid , and a

vectora = [a1, . . . , ad] ∈ GF (q)d both uniformly at random. Finally the output
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symboly will be produced as follows:

y =
d
∑

j=1

ajxij ,

where all the summations and multiplications are done in theGF (q). This pro-

cess is then iteratively repeated by the transmitter to produce and transmit as many

output symbol as needed until it receives an acknowledgement from the receiver(s)

confirming the successful recovery of the whole message, or the data to be trans-

mitted is outdated.

In order to calculate the complexity of this encoding schemewe need to know

the total number of output symbols required for successful transmission. This quan-

tity obviously depends on the average probability of erasure over the transmission

period. It is then easy to see than the total number of transmissions required for

having a(1 + ε)k received symbols converges to

(1 + ε)k

E[pǫ]
, (2.1)

for largek. In the above equation,E[·], denotes the statistical average operator, and

as shown in [17], for the LT codes, the overheadε scales withk as

O
(

ln2
(

k
δ

)

√
k

)

, (2.2)

whereδ is the probability of failure. Moreover, as we will show in subsection 2.5.3,

the average degree of an output symbol in LT codes is ofO(ln(k)). Hence, the

average number of operations inGF (q) required for each output symbol, which we

will refer to as the complexity per output symbol, is of the orderO(ln(k)). Now

from (2.1) and (2.2) we derive the total average complexity of encoding for an LT

code is of the order

O





(√
k + ln2

(

k
δ

)

)√
k ln(k)

E[pǫ]



 = O (k ln(k)) . (2.3)

2.5.2 Decoding

The decoding process in LT codes, is equivalent to solving a linear system of equa-

tions in an efficient way with a complexity as low asO(k ln(k)). The basis of this
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decoding algorithm is to iteratively reduce the linear equation system through back

substituting values of the recovered information symbols in the equations corre-

sponding to the received symbols, and recover the value of new information sym-

bols from the equations which will reduce to trivial degree-one form.

Description of this process could be put in several different ways including the

graph theory representation, or in the context of matrix form representation as done

in the next chapter. In this subsection we will describe it using the graph theory

literature since this will help for the analysis behind the design of the degree distri-

bution which will be briefly explained in the following subsection. In this regard,

we first need to go through some notations.

The main concept in this context is the “decoding graph”. Assume, we have

received a set of(1+ ε)k symbolsr1, . . . , r(1+ε)k. The decoding graph is a bipartite

graph with two vertex sets called “input nodes”, and “output nodes”. Input nodes

consists ofk vertices, corresponding to thek information symbols, and similarly,

the other vertex set, output nodes, consists of(1 + ε)k vertices, corresponding to

the received symbols. Each output node is connected to an input node if and only if

the information symbol corresponding to that input node hasa non-zero coefficient

in the corresponding linear combination. With this connectivity rule, the degree of

each output node is equivalent to that of its corresponding received symbol.

The other notation used in the graph representation of LT code’s decoding algo-

rithm is the set of (reduced) degree-one output nodes calledthe “ripple”.

At the beginning, we first initiate the ripple with all the degree-one received

symbols. As one can infer from this method of initiation, thedegree distribution

used at the transmitter for producing the output symbols needs to provide a non-

zero probability for degree one since otherwise this decoding algorithm will not be

initiated. Consequently, as long as the ripple in not empty,the decoder iteratively

performs the following steps.

First note that each degree-one output noderi in the ripple has a singlexj neigh-

bour among the input nodes. Besides, sinceri is of degree one, its value (upon a

known coefficient) reveals the value of its neighbourxj . Hence, in the first step the
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value of any input node adjacent to a degree-one output node in the ripple will be

recovered. In the second step, since the degree-one output nodes do not provide any

further information about the value of any other input node,and hence they are not

useful for the rest of decoding, we simply delete them from the decoding graph af-

ter recovering the value of their neighbours. Having the value of some of the input

nodes recovered, in the third step we substitute their values in the linear equations

of the remaining output nodes and reduce their degrees. To keep the decoding graph

updated with this process, we simply delete them along with all of their edges from

the graph. This in turn will reduce the degree of the remaining output nodes. The

reduction of degrees in the remaining output nodes providesa positive probability

of achieving new reduced degree-one output nodes to refill the ripple, which forms

the fourth step in a single iteration of this decoding.

A careful selection of the output node degree distribution,as shown in [17], will

guarantee that with a reception overhead of orderO
(

ln2
(

k
δ

)√
k
)

, the ripple will

always remain non-empty through the iterations of decoding. While the ripple is not

empty, the decoder repeats the iterations and recovers moreinformation symbols.

When the ripple gets empty, if the decoding is not accomplished yet, the receiver

should receive more symbols from the channel. The linear equations corresponding

to each new received symbol will first be reduced by substituting the already recov-

ered information symbols. Then, the reduced equation will be added to the graph as

a new output node with the corresponding reduced set of inputnodes neighbours.

As soon as a new (reduced) degree-one output node is added to the decoding graph,

the decoder refills the ripple and resumes the decoding. Otherwise, if for any reason

the transmission is terminated before the decoding is finished, then the decoder will

report a failure.

The operations of the decoder as described above are modelled by deletions

of the edges of decoding graph. This decoder is hence named the edge deletion

decoder. One can however think of the same decoder working bytracking messages

over the edges of the same original decoding graph. In this alternative view we may

assume that in each iteration edges first transmit zero/one messages from output
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nodes to the input nodes and then vice versa with the following rules. Initially

all the messages are zero except for the messages from degree-one output nodes

transmitted to their input node neighbours. The messages will be updated in each

iteration according to the following rules. An edge will take a message one from its

output node end to its input node end if and only if the output node end has received

a one from any other adjacent edge in the previous iteration.Otherwise it will take

a zero message. Consequently, an edge will take a message onefrom its input node

end to its output node end if and only if the input node end has received a one in

the first step of this iteration. Otherwise it will take a zeromessage. It is now easy

to see that this decoding algorithm is a version of the so called message passing

decoder [23].

One can conclude that sending a message one from an output node to an input

node represents that the value of that input node can be deduced by the information

available at that output node at the previous iteration, andis equivalent to deleting

that edge in the edge deletion version. Similarly, sending amessage one from an

input node over all of its edges represents that the value of this input node has been

deduced and now can be substituted in all the output node. Obviously, now comple-

tion of decoding happens when all the input nodes receive at least a one message on

some edge or equivalently, messages transmitted over edgesin the decoding graph

are all one.

Calculating the order of complexity for this decoding algorithm is easier using

the edge deletion version. The total number of operations inGF (q) required is

equivalent to the number of edges in the graph upon a constantcoefficient. As-

suming the total number of received symbols is(1 + ε)k, whereε scales withk

according to (2.2), the complexity of decoding is of order

O
((√

k + ln2

(

k

δ

))√
k ln(k)

)

= O (k ln(k)) .

In the next subsection we will briefly review some of the intuition behind the

design of Soliton distribution, and some of its properties.
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2.5.3 Degree Distribution Design

In this subsection we will review some of the properties of the degree distribution

used in the encoding of LT codes. Through these properties, abrief intuition about

the design of a good degree distribution could be derived. Wewill not go into much

details since this will be discussed in more details in the next chapters, where we

basically propose our modifications and contributions as well. There has been a

large amount of research done on the design of good degree distributions for Foun-

tain codes with different properties over the last years. For a detailed discussion on

the design of Soliton degree distribution, one can see [4,6,17].

Assume the receiver has received(1 + ε)k symbols. For a randomly chosen

information symbol, the necessary condition to be recoverable by the decoder is

that it should have been participated with a non-zero coefficient in at least one of

the received symbols. In other words, the receiver will not be able to recover the

value of an information symbol if its value has not appeared in any of the linear

equations corresponding to the received symbols. To put it in the graph theory

context used in the description of the decoding process, anyinput node needs to be

connected to at least one of the output nodes in the decoding graph. Now, knowing

that the neighbours of any output node are selected uniformly at random at the

transmitter, we will derive a necessary condition on the average degree of a good

degree distribution. The total number of edges in the decoding graph is equivalent

to

(1 + ε)kd̄,

where d̄ denotes the average degree in the degree distribution. For arandomly

chosen input node, according to the uniformly random selection of information

symbols at the transmitter, the probability of being connected to an output node of

degreed is (1 − d
k
). Now assuming the independence of connection to any of the

edges we can derive a good lower bound on the probability of having degree zero

(i.e. not connected to any of these edges). This probabilitycan be lower bounded
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as

(1− 1

k
)(1+ε)kd̄,

which can be well approximated as

e−d̄(1+ε). (2.4)

Therefore, its a reasonable goal in the design of degree distribution to keep this

probability bounded by a function ofk, converging fast enough to zero as the num-

ber of information symbolsk grows, e.g., as1
k
. Now to do so, the average degreed̄

needs to be of the orderO(ln(k)).

Rather than the average degree, obviously the ratio betweendifferent degrees in

the degree distribution used for encoding will affect the dynamics of the decoded

portion of information symbols over the iterations of decoding process. The dy-

namics of decoding process along with its dependency on the degree distribution

structure was well studied in the context of “AND-OR tree analysis” [24] and also

in the context of “hyper-graph collapse process” in [25]. The relations between

these two approaches have been noted by several researcher such as in [26]. Here

we will briefly explain this using the first approach. To do so it is beneficial to

represent the degree distribution using a polynomial namedthe “generating poly-

nomial,” Ω(x) =
∑D

i=1Ωix
i. In this representation,Ωi will denote the probability

of generating (or equivalently receiving) an output symbolof degreei. Hence, one

can easily see thatΩi ≥ 0, ∀i, and
∑D

i=1Ωi = 1.

Similarly, the degree distribution of the input nodes can also been represented

by a generating polynomial. As shown in [4], the degree distribution of the input

nodes in the decoding graph can be derived as

ι(x) =

(

1− d̄(1− x)

k

)(1+ε)k

. (2.5)

Now assume that at an arbitrary iterationi of the decoding process, the portion

of recovered information symbols isxi for some1 ≥ xi ≥ 0. According to the

message update rules described in the previous subsection,one can easily deduce
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that the average portion of recovered information symbols in the next iteration will

be derived as

xi+1 = ι

(

1− Ω′(1− xi)

Ω′(1)

)

, (2.6)

whereΩ′(x) denotes the derivative ofΩ(x). Now from (2.5), we have

ι

(

1− Ω′(1− xi)

Ω′(1)

)

≤ e(1+ε)Ω′(1−x).

As a result of (2.6) and (2.5), a sufficient condition for the decoding to start with

a non-zero portion of degree-one output nodesx0 and accomplish the decoding

successfully could be derived as follows:

e(1+ε)Ω′(1−x) ≤ x, x ∈ [x0, 1].

This is in turn equivalent to

− ln(1− x) ≤ Ω′(x), x ∈ [0, 1− x0].

Now integrating both sides, and using the Taylor series expansion of the right side

at the equality, results in

Ω(x) =

∞
∑

i=2

1

i(i− 1)
xi.

This is called the “ideal Soliton” distribution. It has been first shown by Luby in [17]

that this distribution will theoretically represent all the required properties for the LT

codes. However, it has some practical drawbacks. First, it is an unbounded degree

distribution, while for any finite number of information symbols,k, the maximum

possible degree for output nodes will bek. Moreover, it has been shown that the

good property of ideal Soliton in refilling the ripple is verysensitive to the variance.

In other words, a small variation in the behaviour of the decoder from the theoretical

average case can lead to an empty ripple. And finally, the ideal Soliton does not

produce any degree-one output symbol, and hence the decoding will never start.

To cure the drawbacks of ideal Soliton, Luby proposes to perform the following

modifications:
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i) Truncate the distribution at some specific point so that itwill be practical for

finite number of information symbols.

ii) Add some more weight to the probability of smaller degrees so that it will

provide more reduced degree-one output nodes as the decoding starts and produce

a larger ripple.

iii) Add a relatively notable weight to some high degree to keep the average

degree and the coverage at the required point.

iv) Add a non-zero probability to the choice of producing degree-one output

symbols to provide a non-empty initial ripple.

The result makes the decoding process more robust to small variations from the

average behaviour. This new degree distribution is then called the “robust Soliton”

distribution. Putting it in the mathematical language, therobust Soliton distribution

is formulated as follows:

For two parametersc, andδ, take

s = c ln(
k

δ
)
√
k,

wherec, andδ are chosen such thatk
s

is an integer.

Then the robust Soliton degree distribution is given by

Ωi =
Θi

∑k

i=1Θi

, i = 1, . . . , k ,

whereΘi is given by

Θi =



















1+s
k

i = 1
1

i(i−1)
+ s

ik
i = 2, . . . , k

s
− 1

1
i(i−1)

+ s
k
ln( s

δ
) i = k

s
1

i(i−1)
i = k

s
+ 1, . . . , k

.

In the next section we will briefly review the main idea behindthe design of

Raptor codes. We will also look through the basic advantagesof Raptor codes over

LT codes, but we leave the details of their design to the laterchapters where we also

present some new contributions to their design.
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2.6 Raptor Codes

LT codes, already reviewed in the previous section, providea lot of interesting

properties. The main advantage of LT codes over the dense random Fountain codes

introduced in section 2.4 is to achieve almost all the good properties of Fountain

codes (except for the fact that they need a slightly larger overhead) while keeping

the encoding and decoding complexity as efficient as ofO(k ln(k)). However, the

complexity-overhead trade-off achieved by the LT codes is not the best possible. To

make it more clear, lets take a look at a typical average intermediate performance

of LT codes. Figures 2.2 and 2.3 show the progress in the number of recovered

information symbols versus the number of received symbols for an LT code with

k = 65536.

These figures, as a typical examples, reveal a fact about the decoding of LT

codes. Although a significant portion of input symbols become recoverable with

a very small overhead, but, there are always a few rare input nodes which remain

disjoint from all the received symbols and will hence remainunrecoverable un-

til a significant overhead is received. In order to avoid thissignificant overhead,

Shokrollahi introduced the brilliant idea of using an outercode [4, 5]. A similar

idea was also independently introduced by Maymounkov in [18].

Based on the design proposed in Raptor codes, the transmitter first uses a linear-

complexity erasure correcting outer-code of rateR to encode thek information

symbols tok′ = kR−1 “ intermediate symbols”. It is assumed that both the encoder

and decoder share the complete information about the structure of the outer-code

in use. As a result, decoder will be able to use the redundancyimplemented by the

outer-code to help the recovery of rare information symbols, which do not show up

in the linear equations corresponding to the received symbols.

The choice of outer-code could vary and will not affect the design, but the origi-

nal design proposes the use of capacity approaching erasurecorrecting LDPC codes

such as those introduced in [27–29].

After performing the outer-encoding in the transmitter, the rest of transmission

process will be totally equivalent to performing an LT coding over thek′ interme-
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Figure 2.2: Samples of decoding progress in terms of the number of decoded sym-
bols with respect to the number of received symbols for LT codes fork = 65536
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Figure 2.3: Average decoding progress in terms of the numberof decoded symbols
with respect to the number of received symbols for LT codes for k = 65536. The
dashed red line shows the total number of input symbols.
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diate symbols. The only difference is in the choice of degreedistribution. As we

will discuss later in this section, the degree distributionused for the Raptor codes

can benefit from having a finite average degree not depending on the number of

symbols to be encoded (i.e.k or k′). This will result in a finite average number of

operations inGF (q) per output symbol for encoding. In other words the total com-

plexity of encoding for Raptor codes then will be of the orderO((1+ε)k), which is

linear in the information block sizek, rather than the super linear total complexity

of encoding for LT codes derived as (2.3).

In the receiver, the decoding will not have any changes compared to that of LT

codes except for the fact that as soon as a portion of size(1+σ)k = (1+σ)Rk′ of the

intermediate symbols are recovered, the receiver will not need to continue receiv-

ing new symbols. At this point, using the decoder of the outer-code, the receiver

will be able to recover the few last missing intermediate symbols exploiting the

dependences implemented among the intermediate symbols through outer-coding.

Recovering thek original information symbols will be easy at this point using the

bijective mapping of the outer-coding rule.

The complexity of this decoding scheme is easy to evaluate following a discus-

sion similar to that of Subsection 2.5.2. Again the complexity of the first phase

is scaled by the number of edges in the decoding graph. Due to the finite aver-

age degree of the degree distribution in use, this complexity is of orderO(1 + ε)k.

Moreover, the complexity of the remaining phases are linearin k as the outer-code

in use has a linear complexity of decoding. Hence, the total decoding complexity

remains linear in the information block sizek.

Finally we briefly review how does a finite average degree suffices in the case

of Raptor codes. Assume we have(1+ε)k received symbols. Using (2.4), it is easy

to find the probability of leaving a randomly chosen intermediate symbol isolated

in the decoding graph. Therefore, the expected value of the number of isolated

intermediate symbols can be easily derived as

k′e−(1+ε)d̄.

Hence, in order to have an average coverage rate of(1 + σ)R over the intermediate
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symbols in the decoding graph, it is enough to setd̄ as follows

d̄ =
− ln(1− (1 + σ)R)

1 + ε
. (2.7)

As one can see from (2.7), the required average degree in Raptor codes then is a

finite value which does not scale with the information block sizek.
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Chapter 3

Annotated Raptor Codes

In this chapter, we introduce a variation of Raptor codes called the annotated Raptor

codes which reduce the overhead of conventional Raptor codes while keeping the

encoding and decoding complexity linear. Although design of these codes is out

of the scope of this chapter, numerical examples are provided to demonstrate their

lower overhead even without a fine optimization.

After a quick review of conventional Raptor codes and introducing our notations

in Section 3.2, in Section 3.3 we provide our main idea for reducing the overhead

while keeping the complexity unchanged. In Section 3.4, we describe the encod-

ing and decoding of the proposed annotated Raptor codes which is continued by

some general comments on the design of code parameters in Section 3.5. Finally in

Section 3.6, a numerical example on a benchmark block lengthis presented. The

chapter is summarized and concluded in Section 3.7.

3.1 Introduction

Fountain codes such as LT code [17] and Raptor codes [4] were originally designed

to achieve the capacity on any binary erasure channel (BEC) with no channel in-

formation and at very low complexity. The decoding complexity of Raptor codes

under edge deletion (ED) decoding [4, 17] is linear with the block length. There-

fore, these codes are the natural choice for data transmission over channels with un-

known or very fast changing properties. Raptor codes preserve many of their inter-

esting properties over other channels such as the binary symmetric channel, additive
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white Gaussian noise and fading channels [30–33]. These codes have been already

adapted as the forward error correction code for multimediabroadcast/multicast

services (MBMS) by the 3rd Generation Partnership Project (3GPP) [34].

In practice, it is well known that ED needs a small overhead for successful

decoding. Specifically, to decodek information bits,k(1 + ε) received bits are

needed at the decoder, whereε is referred to as the overhead. More specifically,

even with the highly optimized designs a non-zero overhead is needed if using the

low complexity ED decoding. In order to avoid this overhead or reduce it to a

negligible amount, a more complex decoding algorithm is introduced for Raptor

codes called the inactivation decoding [8], but this algorithm is practical only for

small block lengths due to its non-linear complexity.

3.2 Background and Notations

In this section, we briefly review the encoding and decoding of conventional Raptor

codes. Unlike what is most common in the literature of rateless codes, we use the

matrix form rather than the graph representation. The matrix form is more suitable

for explaining annotated Raptor codes later. In this section, we also introduce the

notations and definitions that will be used later.

3.2.1 Encoding

The encoding starts with a fixed rate outer code of rateR and a parity check ma-

trix H(n−k)×n which encodes an information block ofk input bits into a block of

n = k
R

encoded bitsb1, . . . , bn, called the intermediate bits. To produce an out-

put bit, first, the encoder randomly samples an integerm ∈ {1, . . . , D}, D ≤ n

from a probability distribution. This distribution is characterized by a generating

polynomial

Ω(x) =

D
∑

i=1

Ωix
i,

whereΩi is the probability thatm = i. The encoder then uniformly at random

chooses a set ofm intermediate bits and produces an output bit by XORing them.
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Output bits are produced and transmitted until enough bits are received by the de-

coder to recover the information bits successfully.

Each output bit can be viewed as a parity check equation on a subset of inter-

mediate bits, where the parity value is transmitted on the channel. The outer code

can also be viewed as a set of parity check equations on intermediate bits. Unlike

before, these parity values are always zero, thus they need not be transmitted on the

channel. The decoder can use all the outer code equations andany received output

bit equation to form an equation system from which all the intermediate bits are

recovered. The information bits are then obtained through alinear mapping from

intermediate bits according to the outer code.

3.2.2 Edge Deletion Decoding

The decoder starts with a linear equation system consistingof the parity check

equations of the outer code

HX = O(n−k)×1,

whereOℓ1×ℓ2 represents anℓ1 × ℓ2 all zero matrix. At this point the set of recov-

ered intermediate bits is still empty. Assuming the BEC witherasure rateδ, with

probability1− δ an output bit is received. Receiving each output bitbi enables the

decoder to usebi’s corresponding parity check equation.

Upon receiving an equation, the decoder will substitutes any recovered interme-

diate bits, and then adds the reduced equation to its equation system. Whenever a

reduced equation is of weight one, the equation is put in a setcalled the ripple. For

any equation in the ripple, the value of the intermediate bitis immediately known

and can be substituted in every other equation. This procedure is called the elimi-

nation process. It is easy to check that the order of using ripple elements have no

effect on the performance of the decoder. Note that during the elimination process,

the weight of some of the rows of the coefficient matrix is reduced which could in

turn result in achieving new equations of weight one, and refilling the ripple. If the

ripple gets empty before all the intermediate bits are recovered, receiver will listen

to the channel to receive more equations to refill the ripple.
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After receiving enough bits for a successful ED decoding, wehave the following

linear equation system.
[

H(n−k)×n

C(1+ε)k×n

]

X =

[

O(n−k)×1

R(1+ε)k×1

]

, (3.1)

where,C is the coefficient matrix of the parity check equations corresponding to the

received bits,ε is the overhead,R is the vector containing the value of the received

bits andX is the set of unknown intermediate variables. After successfully finishing

ED decoding, upon reordering the rows, we obtain the following matrix equation.
[

In

Oεk×n

]

X =

[

Bn×1

Oεk×1

]

. (3.2)

Here,B = [b1, . . . , bn]
T is a vector, containing the recovered values of the interme-

diate bits. Note that the reordering is just required for simplifying the representa-

tion. In the real implementation, this reordering is not needed.

3.3 Main Idea

According to [4], even using highly optimized Raptor codes with very large block

lengths, the overhead is nonzero. This means that some of thereceived bits will

be useless. These received bits are represented as all zero rows at the end of ED

decoding (see Eq. (3.2)). In other words, these rows containno new information

about the intermediate bits given the rest of equations, thus we call them the “over-

head rows”. Although, it is not possible to avoid the overhead rows, interestingly,

we will see that it is still possible to embed new informationbits in them.

To embed new information bits in overhead rows, we first add anauxiliary set of

variablesa1, . . . , ana
to the binary equation system and extend the columns of the

coefficients matrix. We refer to these auxiliary columns of the coefficient matrix and

their corresponding set of variables as “A-columns” and “A-variables” respectively.

Clearly, the A-columns are not all zeros. Thus, some of the output bits are now

XORed with bits from the A-variables. We refer to this operation as “annotation”.

The details of this operation is presented in Section 3.4.1.As we will explain later,

the A-variables themselves must be protected by a low-rate outer code. Let us
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denote the(na − ka) × na parity check matrix of this outer code byH(a) and the

encoded block byA = [a1, . . . , ana
]T .

As a result, in the decoding process the initial matrix form represented in Eq.

(3.1) changes to







H(n−k)×n O(n−k)×na

O(na−ka)×n H
(a)
(na−ka)×na

C(1+ε′)(k+ka)×n C
(a)
(1+ε′)(k+ka)×na















Xn×1

X
(a)
na×1









=

[

O(n+na−(k+ka))×1

R(1+ε′)(k+ka)×1

]

.

In the above equations[C|C(a)] is the coefficient matrix of the parity check equa-

tions corresponding to the received bits where,C part represents the coefficients

of the intermediate bits andC(a) represents the coefficients of the annotation bits.

Notice thatna extra intermediate bits, which carryka new information bits, are now

added to the system. Thus,ε′ represents the new overhead. Finally upon reordering

of rows the final form after successful ED decoding is





In On×na

Ona×n Ina

Oε′(k+ka)×(n+na)













Xn×1

X
(a)
na×1









=





Bn×1

Ana×1

Oε′(k+ka)×1



 .

The details of ED decoding for an annotated equation system is provided in

Section 3.4.2. Here, to make the main idea more clear, we present a toy example.

Assume that we have a block of three bitsx1, x2, x3, and we produce output sym-

bols of degrees 1 to 3 with equal probabilities. Now, if for example the receiver

receivesr1 = x1 ⊕ x2, r2 = x1 ⊕ x2 ⊕ x3, r3 = x2 ⊕ x3, andr4 = x1, then

the ED decoding of intermediate bits will not perform any elimination process be-

fore receivingr4. Whenr4 is received, it goes to the ripple and ED decoding starts

recovering the values of intermediate bits. The received equation system before

performing elimination is








1 1 0
1 1 1
0 1 1
1 0 0













x1

x2

x3



 =









r1
r2
r3
r4









.
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It is easy to check that ED decoding will recover all the intermediate bits with

this equation system and after ED decoding we have








0 1 0
0 0 1
0 0 0
1 0 0













x1

x2

x3



 =









r1 ⊕ r4
r1 ⊕ r2

r2 ⊕ r3 ⊕ r4
r4









.

In the above, obviously, the third row is an overhead row and contains no new

information about the intermediate bits given all the otherrows. But if we annotate

some of the transmitted bits (sayr2, r3 andr4) with a single A-variablea, then the

representation of equation system after receivingr4 is








1 1 0 1
1 1 1 1
0 1 1 1
1 0 0 1

















x1

x2

x3

a









=









r1
r2
r3
r4









.

The ED decoding can start the elimination and recovery procedure at this point,

if we perform the decoding only based on the intermediate bits and in terms of

the annotated variablea. As a result, when the ED decoding of intermediate bits

finishes, the resulting equation system has the following form








0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1

















x1

x2

x3

a









=









r1 ⊕ r4
r1 ⊕ r2

r2 ⊕ r3 ⊕ r4
r4









.

Notice that still the third equation does not play any role inthe recovery of the

intermediate bits, but this row can be used to recover the value of the A-variablea

asa = r2 ⊕ r3⊕ r4. The A-variable can in turn be used to recover any intermediate

bit which was computed in terms of the A-variable (in this case x1 in the fourth

row). This example shows that with the same number of received bits, it is possible

to recover more intermediate bits using annotation. Of course this was a highly

fabricated example, in which the overhead was reduced to zero. Clearly, we do not

expect zero overhead in a practical setup. However, as will be seen, the annotation

idea retrieves a portion of the overhead at no extra cost. In fact, in order to keep the

decoding complexity unchanged per information bit, we willsee that the decoding

procedure used in this toy example is not desirable. In Section 3.4.2 we propose a

revised version of ED decoding for annotated Raptor codes.
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3.4 Annotated Raptor Codes

Ideally we prefer to perform the annotation such that it willnot affect any of the de-

sirable properties of the original Raptor codes. More specifically, we do not want to

increase the complexity per bit (neither at the encoder nor at the decoder). Achiev-

ing this goal, however, requires careful annotation and decoding. To see why the

trivial approach (similar to the one in the toy example above) may fail, note that

when the ED decoder uses annotated rows as pivots in row operations, extra com-

plexity is resulted from the 1’s in the corresponding rows ofthe A-columns. Thus

a high-density of 1’s in the A-columns is against the goal of alow-complexity de-

sign. Unfortunately, even starting with sparse A-columns,the density of 1’s in the

A-columns gradually increases as ED decoding progresses. Our numerical simula-

tion shows that the complexity will grow super linear with anapproximate exponent

of 1.3. In the following, we briefly outline an annotation method that achieves linear

complexity.

Let us assume that we could know beforehand which transmissions end up as

overhead rows. If this knowledge existed, we could annotateonly these transmis-

sions. Although such a knowledge cannot exist in a real setup, we can annotate a

small portion of rows and pretend that they will end up being the overhead rows.

Thus, the decoding will start from the non-annotated rows. Our interesting observa-

tion is that if annotated rows are selected carefully, ED decoding of non-annotated

rows will recover a large portion of intermediate bits. In other words, assume in a

conventional Raptor code, we carefully select and mark aσ0 portion of the trans-

missions for annotation. Then, in the receiver, we first exclude the marked received

bits and perform ED decoding on the unmarked received equations and the parity

check equations of the outer code. When the total number of received bits is close

to the number of input bits, we observe that the decoder recovers a(1− δ0) portion

of the intermediate bits. Typically forσ0 = 0.05, we haveδ0 = 0.3.

After recovery of(1 − δ0) portion of the intermediate bits, it is easy to see

that with probability(1 − δ0)
i, an annotated equation which originally containsi

intermediate bits, is reduced to an equation based only on the A-variables. We
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call these reduced equations the “A-equations”. From theseA-equations a fixed

portion of A-variables will be recoverable. Now, if the rateof the outer code of the

A-variables is selected properly, it will be possible to decode all the A-variables.

Consequently, it will be possible to de-annotate all the annotated rows in linear

complexity. In fact to keep the complexity of this de-annotation at its absolute

minimum, in this work, each annotated row has a single A-variable in it. This also

keeps the encoding complexity linear.

Finally, after de-annotation, the rest of the intermediatebits will be recovered

using ED decoding. In terms of ED decoding of the intermediate bits, the only

difference between an annotated Raptor code and a conventional one is that here

we have changed the order of using the received equations. Weuse some of the

equations at first and postpone using the others (the annotated ones) for a while.

Between these two phases, we recover some information bits that are embedded in

the annotation.

In the next section we will go through more details of the encoding and decoding

algorithms for the annotated Raptor codes.

3.4.1 Encoding

The encoding process in annotated Raptor codes has two separate steps. In the first

step, two information blocks of lengthk andka are coded into two encoded blocks

(i.e., the intermediate variables and the A-variables), using fixed rate outer codes

with parity check matricesH(n−k)×n, andH(a)
(na−ka)×na

.

The second step, which contains two phases, will generate anoutput bit. First an

integerm ∈ {1, . . . , D}, D ≤ n will be sampled based on a probability distribution

represented by its generating polynomial

Θ(x) =

D
∑

i=1

(Φi +Ψi)x
i.

Herem = i happens with probability(Φi+Ψi). Consequently, based on the selected

value ofm, encoder samples another random variableb ∼ B
(

Ψm

Φm+Ψm

)

, where

B (p) represents the Bernoulli distribution with probability ofsuccess equal top.
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The encoder then choosesm intermediate bits uniformly at random. If the Bernoulli

outcome is success, a single A-variable bit is also selecteduniformly at random.

Finally, the XOR of all the selected bits forms an output bit for transmission. Output

bits are generated and transmitted iteratively, until successful transmission of the

whole data block.

3.4.2 Decoding

The decoding procedure has already been described earlier in this section. Here we

summarize the procedure. Two separate edge deletion decoders are used. The first

one decodes the intermediate bits, using the non-annotatedequations and the rows

of matrixH. The second one decodes the A-variables using any row whose firstn

elements are all zeros including the rows of matrixH
(a). Obviously, as the decoders

recover some of the intermediate bits and A-variables they remove them from all the

equations and hence each decoder may provide the other with some new equations

to be used in the rest of the decoding process. When both the decoders run out of

ripple, receiver listens to the channel to receive new equations and refill at least one

of the ripples again.

3.5 Some Comments on Design

Assume that the decoder has already receivedn = (1+ ε)k bits. Moreover, assume

that through numerical search we have obtained the probability distributionΘ(x)

for which, excluding the annotated received bits, ED decoding is able to recover a

δ0 portion of the intermediate bits. Based on the discussions in the previous section,

the probability that a randomly selected row be reduced to anA-equation is

P ∗ =

D
∑

i=1

Ψi(δ0)
i.

Therefore, the average number of A-equations released by EDdecoding of interme-

diate bits excluding annotated equations, is(1+ ε)kP ∗. According to the single-bit

annotation strategy taken in this thesis, the probability that a randomly selected
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A-variable is not covered in the released A-equations is

(1− 1

na

)((1+ε)kP ∗) ≃ e(
−(1+ε)kP∗

na
).

Hence, the average number of A-variables which are now recovered is approxi-

mately

ma = na

(

1− e
−(1+ε)kP∗

na

)

. (3.3)

It is seen from (3.3) thatma is an increasing function ofna and thatma <

(1 + ε)kP ∗. Therefore, the new overheadε′ can be found as

ε′ =
εk −ma

k +ma

. (3.4)

It is easily seen thatε′ < ε as long asma > 0 (i.e., na > 0). Moreover,ε′ is

a strictly decreasing function ofna. It means that as the number of A-variables

increases, more information bits can be transmitted using annotation, and thus, a

larger portion of the overhead can be retrieved. As a result the lower the rate of the

outer code for A-variables, the smaller the overhead will be. The improvement in

the overhead, however, is bounded becausema saturates as a function ofna (see

Eq. (3.3)).

A very low rate outer code, however, introduces a significantsource of com-

plexity. Although there exist very good low rate codes with linear complexity such

as LDPC codes designed for erasure channels [27–29], when the rate of these codes

tend to zero, the coefficient of the linear complexity tends to infinity. Figure 3.1

depicts complexity per information bit, measured as the number of XORs needed

for encoding/decoding of LDPC codes designed in [27]. This figure is based on

codes that achieve 95% of the channel capacity.

To keep the complexity of annotated Raptor codes equal to that of conventional

Raptor codes, we must use an outer code for the A-variables whose complexity

per information bit is the same as conventional Raptor codes. The complexity per

information bit of a conventional Raptor code is equal to theaverage weight of

its output bits which is typically at least eight (considering the complexity of the
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high-rate outer code). Thus, Fig. 3.1 suggests that the A-variables must be encoded

using an outer code of rate around 0.25. Obviously, lower rate codes can be used

to retrieve a higher portion of the overhead, but at the cost of a higher complexity

per information bit. This extra complexity, however, is quite small since it affects

only the parity check equations of the A-variables, which represent a small fraction

of all equations (typically less than 4%). Nonetheless, forany fixed rate outer code,

the complexity remains linear.

Now assume we have selected an outer code of rateRa for A-variables which

guarantees successful decoding of A-variables for erasurerates less than1 − Ra

with high probability. According to the above discussions,we can now select the

number of information bitska to be encoded tona A-variables aska = naRa, where

na must satisfy

Ra < 1− e(
−(1+ε)kP∗

na
).

Thus we have

ka < Ra

−(1 + ε)kP ∗

ln(1−Ra)
. (3.5)

This equation can be used to choose the number of informationbits to be encoded

by the rateRa outer code and be used as A-variables for annotations.

3.6 Example Code and Numerical Results

This section provides a numerical example of an annotated Raptor code. As the op-

timization of the code is out of the scope of this thesis, our example here does not

represent an optimal design. Indeed, in order to better justify the benefits of anno-

tated Raptor codes, we focus on the impact of annotation on anexisting probability

distribution optimized for conventional Raptor code. Clearly, we expect even better

results through optimizing a probability distribution forannotated Raptor codes.

Our focus in this example is on the highly optimized probability distribution

Ω(x) presented in [4] for a Raptor code with an information block of k =64,520 bits

and an outer code of rateR = 0.9845 to produce a block ofn =65,536 intermediate
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Figure 3.1: Complexity per information bit vs. rate for capacity approaching se-
quences of LDPC codes designed for the BEC.
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i Φi Ψi Ωi = Φi +Ψi

1 0.007969 0 0.007969

2 0.478570 0.015 0.493570

3 0.161220 0.005 0.166220

4 0.072646 0 0.072646

5 0.082558 0 0.082558

8 0.056058 0 0.056058

9 0.037229 0 0.037229

19 0.055590 0 0.055590

65 0.025023 0 0.025023

66 0.003135 0 0.003135

Table 3.1: Example Code withk = 64520 andka = 800.

bits. As mentioned before, we use a single bit annotation forthe output bits that are

selected to be annotated. This represents the simplest formof annotation. One

may consider a degree distribution for the A-variables and optimize it for improved

performance. Such optimizations, however, are out of the capacity of this chapter.

Based on a set of numerical experiments we selected the probability distribu-

tion presented in Table 3.1 for this example. Please notice that the third column

represents the probability distribution of the Raptor codepresented in [4]. The rate

of the outer code of the A-variable is selected to be 0.25 to encodeka = 800 in-

formation bits intona = 3200 A-variables. These A-variables are annotated to the

65,536 intermediate bits of the above mentioned Raptor code. Simulations show

that the average overhead based on the annotation method introduced in this chap-

ter is 3.4%. This amounts to 10% overhead reduction comparedto the average 3.8%

overhead of the original Raptor code. We emphasize that the complexity per infor-

mation bit is exactly the same for both codes. It is worthwhile to mention that by

using conventional Raptor codes, an overhead of 3.4% could not be achieved for

block lengths less than 80,000 bits [4], which would involvea much more memory

complexity.
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3.7 Summery

Since Raptor codes need a reception overhead to be able to recover the information

bits, some of the received bits are indeed never used in the process of decoding. In

this chapter, we presented an extension of the well known Raptor codes showing

that extra information bits can be embedded through carefulannotation of a sub-

set of transmissions. We then detailed the encoding and the decoding process of

the proposed codes based on the changes made in the design of the original Raptor

codes. Finally, we provided a numerical example verifying the improved perfor-

mance even without optimization a probability distribution for the annotated Raptor

codes. Finding the optimal probability distribution for the new encoding/decoding

structure will reveal its full potentials.
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Chapter 4

On Raptor Code Design for
Inactivation Decoding

In this chapter, we study the design of Raptor codes for the BEC when inactivation

decoding (ID) [8] is used. An ID decoder is essentially a maximum likelihood

decoder with controlled complexity, which can accomplish the decoding with a

smaller number of received symbols than any other decoder requires. Hence, ID is

incorporated in 3GPP as a practical decoder [34]. Despite the rich literature on code

design for the conventional edge deletion decoding (e.g., [4, 39, 40]), code design

for ID has not yet received much attention.

In the remainder of this chapter, we first briefly review the encoding and decod-

ing of Raptor codes, focusing on ID. In Section III, we introduce our code design,

by proposing a new design criterion, and then we use this criterion for an analytical

design. The numerical comparisons between the code used by the 3GPP and our

proposed code are presented in Section IV.

4.1 Introduction

LT codes were originally introduced as the first practical Fountain codes in [17]. As

such, LT codes are designed to transmit a theoretically endless stream of symbols

until the receiver has enough symbols to decode all the information bits. Raptor

codes [4], an extension of LT codes, employ an outer code to enable the receiver

to recover the whole information stream from any sufficiently large subset of re-
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covered intermediate symbols. This idea significantly improves the performance of

LT codes, as the recovery of the last few percentages of the information bits, which

could be very slow, is now done by using the outer code.

Raptor codes are able to asymptotically achieve the channelcapacity on any

binary erasure channel (BEC) without any channel state information at the trans-

mitter or the receiver. This universal capacity-achievingproperty enables optimal

performance even in time-varying channels. Accordingly, these codes are the nat-

ural choice for broadcasting/multicasting to a group of receivers with different and

even unknown channel qualities. As a result Raptor codes have been adopted by the

3rd Generation Group Partnership Project (3GPP) to be used in multimedia broad-

cast/multicast services (MBMS) for forward error correction [34] and digital video

broadcast-handheld (DVB-H) [35]. The desirable properties of Raptor codes have

motivated many researchers to study their performance and design for other chan-

nels [30–32,36]. Decoder design for Raptor codes has also been an active research

area [8,37,38].

4.2 Encoding and Decoding of Raptor Codes

Encoding and decoding of Raptor codes have been discussed inthe previous chap-

ter in Subsections 3.2.1 and 3.2.2. Accordingly, we will notgo through the details

of the encoding process here, while we will use the same set ofnotations and defi-

nitions in this chapter. However, it worth to review the decoding process again here

This time we will look at this process in the context of graph theory rather using the

matrix form representation.

Decoding of the Raptor codes is performed in two separate steps. First the LT

code is decoded, and then the outer code is decoded in the second step. Assuming

that the outer code can recover the whole information block from any subset of

n(R + σ), σ > 0 recovered intermediate bits, we focus our discussion on theLT

decoder.

For LT decoding, a decoding graph [4] is formed based on the set of received

symbols. The decoding graph is a bipartite graph with one vertex set corresponding
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to the set of all intermediate bits, and the other set corresponding to the output bits

(output nodes). Initially, each output node is adjacent to the group of intermediate

nodes forming the corresponding received bits.

Various decoding solutions can be used. Gaussian elimination, although opti-

mal, is typically too complex. A modified version of the belief propagation algo-

rithm, called edge deletion decoding (EDD) [17], is an efficient alternative when

an appropriate design ofΩ(x) is performed. EDD requires a small overhead in

the number of received symbols for successful decoding [41]. This algorithm uses

degree one output nodes in the decoding graph to deduce the value of their neigh-

bouring intermediate nodes, and then removes the recoveredintermediate nodes to

achieve new degree-one output nodes iteratively.

Inactivation Decoding

For moderate block lengths (1024 to 8192 bits), which are of interest in applications

supported by the 3GPP standard, a modified version of EDD, called inactivation

decoding (ID), was introduced in [8]. The main difference between ID and EDD

occurs when the set of degree one output nodes, called the ripple, becomes empty.

In this case, the EDD stops until the ripple is refilled by receiving more symbols

from the channel. ID, however, instead of waiting for more symbols, selects some

unrecovered intermediate nodes in the remaining decoding graph and temporarily

excludes them from the graph. This process is called inactivation. By inactivat-

ing some of the intermediate nodes, their edges will also be excluded temporarily,

reducing the degree of some of the remaining output nodes. Thus, the decoder ex-

tracts somereduceddegree-one output nodes, whose values can be found in terms

of the inactivated bits. The decoder can now recover more intermediate bits (al-

beit, in terms of the inactivated bits) until the ripple is empty again, and another

inactivation can be performed. Finally, the decoder uses Gaussian elimination for

the inactivated bits and finishes the decoding by using a backfilling process, which

evaluates all the intermediate bits which have been recovered in terms of the inacti-

vated bits.
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In order to solve the subsystem of linear equations formed bythe inactivated

bits, this subsystem should be full rank. The subsystem has ahigh probability of

being full rank because it is dense. However, if it is not fullrank, the receiver

receives more symbols to obtain more equations and remove the rank deficiency.

This process results in a very small average reception overhead, which has been

shown to be less than one percent in practice [6,38].

For selecting a node to be inactivated, many different strategies can be used [8].

One trivial choice is to randomly select an unrecovered intermediate node con-

nected to a reduced degree two output node. We will refer to this strategy as “Ran-

dom ID”. Another strategy, introduced in [8], is to inactivate one of the nodes in

the maximum connected component ofG, whereG is thedegree-two induced sub-

graph [6, 42] of the remaining decoding graph (see Fig. 1). Inactivating any of the

bits in a connected component ofG causes the immediate recovery of all the other

bits in that component. Hence, the second strategy, which werefer to as “Maximum

Component ID,” performs better than Random ID. SinceG is subject to change dur-

ing the decoding process, the search for the largest connected component must be

repeated during each inactivation step. Thus, Max-Component ID is considerably

more complex than Random ID.

Degree distribution design for ID is considered in [6,42], where Max-Component

ID is assumed, and the design criterion is to statistically guarantee the existence of a

giant connected component inG at each inactivation step. Having a giant connected

component guarantees the recovery of a large portion of nodes at each inactivation

step.

Accordingly, [6, 42] introduced a procedure that takes anΩ(x) and determines

on average for how many inactivations a giant component willalmost surely be

present inG. The design problem is then to find a generating polynomialΩ(x),

which will guarantee the existence of a giant connected component until the desired

portion of the intermediate bits is recovered. This design criterion, in addition to

a mixture of optimization methods, has been used to design a degree distribution

which the 3GPP has adopted [34].
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Figure 4.1: (a) The decoding graph with output nodesc1 to c7 and intermediate bits
b1 to b6. The ripple is initiated withc1, which recoversb1 and then becomes empty.
(b) The reduced degree two induced subgraphG based on the remaining effective
decoding graph. InG, every reduced degree two output node will represent an
edge. Here,G contains two connected components. The maximum component
contains four nodes. Max-Component ID may, for example, chooseb4 as a node
in the maximum component ofG for inactivation. This choice will refill the ripple
with c3, c5, which, in turn, recoverb3 andb5 in terms ofb4.
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4.3 Degree Distribution Design

In this section, a new design criterion is proposed from which a more efficientΩ(x)

for ID is designed. The basic difference between our design and that of [6, 42] is

that [6, 42] aims to increase the portion of bits that areguaranteedto be recovered

after each inactivation, whereas our design aims to increase theaverageportion of

recovered bits after each inactivation. Notice that the actual number of recovered

bits is usually more than theguaranteedportion. Thus, it appears reasonable to aim

at increasing the average recovery.

From the discussion in Section 4.2, it is obvious that for a fixed decoder structure

and with a constant performance for the outer code, all the properties of a Raptor

code are characterized by the generating polynomialΩ(x). Similar to the case of

design for the EDD, an infinite block length assumption is made for the analytical

design ofΩ(x). However, the performance of the finite length case is evaluated

through simulations.

For a Raptor code under EDD, the main performance measure is the overhead.

Under ID, however, the overhead may not be as meaningful because ID performs

an inactivation instead of receiving extra symbols. As a result, a good measure of

performance appears to be the number of required inactivations [38] and [6], which

directly affects the decoding complexity. Therefore, our design goal is to reduce

the number of required inactivations.

4.3.1 Evolution of Ω(x) During ID

In ID, after each inactivation, the remaining degree distribution changes. As a re-

sult, to study the average performance analytically, we need the remaining degree

distribution, based on the originalΩ(x) and the portion of the recovered intermedi-

ate bitsδ. Denoting the new degree distribution asΩδ(x), we haveΩ0(x) = Ω(x),

andΩ1(x) = 1. Also, since the selection of the intermediate bits in the encoding

is uniformly random, recovering aδ portion of intermediate bits is equivalent to

deleting a randomly chosenδ portion of intermediate nodes in the decoding graph.

Hence, we can assume that a randomδ portion of the edges of the decoding graph
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is also deleted. Therefore, for randomly chosen output nodeof initial degreej, will

be of degreei = 1, · · · , j with probability
(

j

i

)

(1−δ)iδj−i. Then, the average degree

distribution of the output symbols in the remaining graph will be

Ωδ(x) =

D
∑

i=1

Ωδ,ix
i =

D
∑

i=1

(

D−i
∑

j=0

Ωi+j

(

i+ j

j

)

(1− δ)iδj

)

xi

= Ω((1− δ)x+ δ).

As a result,

Ωδ,i =
D−i
∑

j=0

Ωi+j

(

i+ j

j

)

(1− δ)iδj . (4.1)

4.3.2 Previous Results

Degree distribution design for ID is considered in [6, 42], where Max-Component

ID is assumed and the goal of design is to statistically guarantee the existence of a

giant connected component in the degree-two induced subgraph G at each inacti-

vation step. Having a giant connected component could guarantee the recovery of

a large portion of nodes in each inactivation step. Obviously recovering one bit of

any connected component inG results in the recovery of the whole component.

Accordingly, [6, 42] introduces a procedure that takes anΩ(x) and determines

on average for how many inactivations, almost surely there will be a giant compo-

nent inG. Then the design problem is to find a generating polynomialΩ(x), which

guarantees the existence of a giant connected component until the desired portion

of the intermediate bits are recovered. This design criterion in addition to a mixture

of optimization methods have been used to design a degree distribution which has

also been adopted by 3GPP [34]. Assume that the initial generating polynomial is

Ω(x), the receiver has received(1 + ε)k symbols, and an arbitraryδ portion of the

intermediate bits have been recovered. Using a similar argument as in the previous

subsection, the probability of having a reduced degree-twooutput node is

D
∑

i=2

Ωi

i(i− 1)

2
(1− δ)2δi−2 =

(1− δ)2

2
Ω′′(δ).
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Therefore, because every output symbol of reduced degree two results in one

edge inG, the average sum of degrees inG is (1 + ε)(1 − δ)2Ω′′(δ). Then the

average degree ofG is

d̄Ω(x)(δ, ε) =
(1 + ε)k(1− δ)2Ω′′(δ)

(1− δ)k
= (1 + ε)(1− δ)Ω′′(δ). (4.2)

It has been shown in [43] that in order to almost surely have a unique giant

connected component in a random graph, it is necessary that its average degree is

strictly greater than one. In addition, when the expected degree of all the vertices

are equal, the size of this unique giant connected componentis concentrated around

the unique solution of the equation1 − x − e−d̄x = 0, whered̄ is the expected

average degree [44,45].

Accordingly, [6, 42] introduces a procedure that takes anΩ(x) and determines

on average for how many inactivations, almost surely there will be a giant com-

ponent inG. The procedure is as follows: start withδ0 = 0, and iteratively for

i > 0 setδ(i) = 1 −∏i−1
j=0 (1− δj), then whiled̄Ω(x)(δ

(i), ε) > 1 setδi the root of

1 − x − e−d̄Ω(x)(δ
(i),ε)x = 0, whered̄Ω(x)(δ

(i), ε) is introduced in (4.2). Therefore,

whend̄Ω(x)(δ
(i), ε) ≤ 1, ID cannot guarantee recovering a significant portion of the

remaining bits.

Then the design problem is to find a generating polynomialΩ(x), which is able

to keep the procedure running until the desired portion of the intermediate bits are

recovered. This design criterion in addition to a mixture ofoptimization methods

have been used to design a degree distribution which has alsobeen adopted by

3GPP [34].

4.3.3 A New Design Criterion

The new design is based on a new insight into the ID process. Asmentioned in

Section 4.2, ID starts with an EDD phase and works until the ripple is empty. At

this point, inactivation is performed, and another phase ofEDD is started. Thus, one

can think of ID as a series of EDDs, each applied to a portion ofthe unrecovered

bits. According to this view, we need a degree distribution that will perform well
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b1 b2 bℓ bℓ+1 bk−2 bk−1 bk

c1 c2 cℓ cℓ+1 cℓ+2 ck′−2 ck′−1 ck′

Figure 4.2: The decoding graph at some intermediate step of decoding. The receiver
started the decoding after receivingk′ = (1+ ε)k output symbols, whereε is a very
small positive number. Up to this point, aδ = ℓ

k
of the intermediate bits have

been recovered. The left part shows the non-effective part of the decoding graph at
this moment, which could not participate in the decoding of the remaining bits. The
right part is still effective and contains(1−δ)k intermediate bits and approximately
(1− δ)k′ output nodes as well.

under a series of EDDs despite the recovery of any portion of bits. Designing such

a distribution is a challenging task because the degree distribution for each EDD

step may be different. Thus, the performance may differ in each step. A degree

distribution which remains close to optimal in all EDD stepsis, therefore, desired.

Accordingly, we first investigate another effect of recovering a δ portion of the

intermediate bits on the degree distribution of the output nodes.

An intermediate bitbi is recovered when the degree of an output nodeci′, con-

nected tobi, is reduced to one. In fact, the last edge ofci′ connects it tobi. After

recoveringbi, the output nodeci′ can no longer be effective in the decoding pro-

cess. Now, assume that the receiver has originally received(1 + ε)k symbols for

a very smallε > 0 (in practiceε < 0.01). Therefore, after recovering aδ portion

of intermediate bits, aδ portion of the output nodes will not be effective for the

rest of the decoding process (see Fig. 2). In other words, decoding continues by

performing EDD on the remaining decoding subgraph containing(1−δ) portion of

output nodes and the unrecovered intermediate nodes.

Now, recall thatΩδ,j represents the fraction of reduced-degreej, j ≥ 2 output

nodes after recovering aδ portion of intermediate nodes. Accordingly, starting with
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a close-to-optimalΩ(x), if for any 0 < δ < 1, Ω(x) satisfies

∀j ≥ 2, Ωδ,j = (1− δ)Ωj , (4.3)

then the close-to-optimal performance for the next EDD stepis preserved. This

way, the code recovers a large portion of bits in each EDD step. Thus, we use (4.3)

as a design criterion.

4.3.4 The Proposed Code Design

According to (4.1),

Ωδ,i =
(1− δ)i

i!

D−i
∑

j=0

Ωi+j(i+ j)!δj

j!
.

Now, let us define

fδ,i ,
D−i
∑

j=0

Ωi+j(i+ j)!(δ)j

j!
. (4.4)

Then we obtainΩδ,i =
(1−δ)i

i!
fδ,i. In addition, according to (4.3), for alli ≥ 2 it is

desired to haveΩδ,i = (1−δ)Ωi. Thus, we can formulate part of the design criterion

asfδ,i = i!(1− δ)−(i−1)Ωi, or equivalently,

∀i ≥ 2,
D−i
∑

j=0

Ωi+j(i+ j)!δj

j!
= i!(1− δ)−(i−1)Ωi

= i(i− 1)Ωi

∞
∑

j=0

(i+ j − 2)!δj

j!
. (4.5)

In (4.5), the summation on the right-hand side is derived by evaluating the Taylor

series expansion of the function(i − 2)!x−(i−1) centred atx0 = 1 for x = 1 − δ.

Assuming the maximum degreeD could be infinite, equation (4.5) suggests the

following solution:

Ω(x) =

∞
∑

i=2

1

i(i− 1)
xi. (4.6)

Surprisingly, this solution is the well known ideal Solitondistribution [17]. This,

however, is an infinite degree distribution which cannot be used in a practical setup.
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With a finite allowed maximum degreeD, (4.6) must be modified. In the next

subsection, we provide a finite approximation of (4.6) that remains close to optimal

throughout the decoding process by satisfying (4.3) with a good approximation.

4.3.5 Finite Maximum Degree Design

Recall that for the outer code to finish the decoding successfully, the LT code re-

quires a recovery rate greater thanR+σ. Also, for a finite maximum degree design,

to satisfy (4.3) and motivated by (4.6), we seek anΩ(x) approximately in the form

of

Ω(x) =
D
∑

i=2

c

i(i− 1)
xi.

As was first mentioned in [26], the hypergraph collapse process studied in [25]

is identical to the EDD process. Now, letr be a positive real number less than

or equal to the smallest positive root of(1 + ε)Ω′(x) + ln(1 − x) = 0. Then, as

k → ∞, under EDD,rk intermediate bits are recoverable with a high probability

from any set of(1+ε)k received bits [25]. Similar results were also obtained in [4],

based on the And-Or tree analysis [24]. This result was used in [40] to study the

performance of EDD for recovery of a less-than-one portion of the message bits as

needed in Raptor codes. The average recoverable portion of bits for a given degree

distribution, therefore, is equal to the smallest positiveroot of(1+ε)Ω′(x)+ln(1−
x) = 0.

Thus, to achieve a recovery rate ofR + σ, we needΩ′(x) > − ln(1−x)
(1+ε)

for all

x ∈ (0, R + σ). By using the Taylor series expansion− ln(1 − x) =
∑

∞

i=1
xi

i
, a

necessary condition for allx ∈ (0, R + σ) can be derived as

Ω(x) =

∫ x

0

Ω′(t)dt ≥
∫ x

0

− ln(1− t)

(1 + ε)dt

=
x(1 − ln(1− x)) + ln(1− x)

(1 + ε)

=
∞
∑

i=2

xi

(1 + ε)i(i− 1)
.
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Among all the terms of the formωi(x) ,
xi

i(i−1)
, the termωj(x) has the maxi-

mum derivative in the intervalIj , ( j−1
j
, j

j+1
). Also,∀i > j ≥ ℓ ≥ 2, d

dx
ωj(x) >

d
dx
ωi(x) for anyx ∈ Iℓ. Therefore, to have

∀x ∈ (0, R + σ) Ω(x) >
1

(1 + ε)

∞
∑

i=2

ωi(x), (4.7)

for a givenε, it is enough to set

Ω(x) =

m
∑

i=2

c

i(i− 1)
xi +

(

1− c(m− 1)

m

)

xm+1, (4.8)

wherem is an integer such thatm ≥ m∗ andm∗
−1

m∗
≤ (R+σ) ≤ m∗

m∗+1
, andc ≥ 1

1+ε
.

Clearly, choosing a largerm results in a better approximation to (4.6).

Using (4.7) and (4.8), we obtain

∀x ∈ (0, (R+ σ)),

c ≥ x(1− ln(1− x)) + ln(1− x)− xm+1(1 + ε)

(1 + ε)(
∑m

i=2
xi

i(i−1)
− (m−1)

m
xm+1)

. (4.9)

The right-hand side of (4.9) is a strictly increasing function of x. Thus, we can

finish the design by choosingc equal to the value of the right-hand side evaluated

atx = R + σ.

In order for the decoding to start and recover a portion of intermediate bits

before the first inactivation, we provide a very small positiveΩ1, as do the existing

approach.

Settingm = m∗ provides the lowest computational complexity since doing so

obtains the smallest average degree of the distribution. However, settingm = m∗

also reduces the probability of covering a randomly selected intermediate bit in an

output symbol and therefore slightly increases the reception overhead. This slight

increase is a side-effect of a decreasing outer code rate in the 3GPP for a smaller

block length. Atℓ = 1024, the outer code rate is reduced toR = 0.9381, and set-

tingm = m∗ = 16 makes the average degree of ourΩ(x) slightly smaller than that

of the 3GPP. Moreover, the probability of leaving an intermediate bit uncovered

(not involved in any of the equations corresponding to the received bits) is approx-

imatelye−Ω′(1)(1+ε) [2], whereΩ′(1) represents the average degree. Therefore, for
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successful decoding, a slightly higher overhead will be needed. As reported in Table

I, this increase is around 0.33% forℓ = 1024 and only 0.04% forℓ = 8192.

The choice of the outer code rateR in the 3GPP is based on the performance of

the adoptedΩ(x). Appropriate outer code selection for our proposedΩ(x) can be

considered. Among other solutions for this slight increasein the overhead, one can

either allowm to be larger thanm∗ or add a term of higher order to prevent the loss

of coverage. In Section 4.4, we will compare our design numerically with that of

the 3GPP.

4.4 Numerical Results

In order to verify the performance of our proposed codes, we compare the perfor-

mance of the degree distribution adopted in 3GPP with the proposed degree dis-

tribution introduced in (4.8), wherem is chosen to be equal tom∗. In each case,

similar to [6,38,42] we assume that the receiver receives enough overhead to form

a full rank equation system in terms of the intermediate variables. As ID is a ver-

sion of ML decoding, having a full rank equation system is sufficient for successful

decoding. Hence, the decoding success rate is always one.

Figures 4.3 and 4.4 depict the average performance of both degree distributions

for different block lengthsℓ, and the different strategies used for selecting a node

for inactivation. As discussed in Section 4.3, the basis of our comparison is the

number of required inactivations. Thus, figures 4.3 and 4.4 provide the cumula-

tive distribution function (CDF) for a normalized number ofinactivations (i.e., the

number of inactivated nodes required for successful decoding divided by the block

length). Figure 4.3 compares the performance of our proposed degree distribution

with that of the 3GPP codes under two different selection strategies for a block

length ofℓ = 1024. figure 4.4 repeats the same comparison forℓ = 8192. In both

figures, the rate of the outer code is chosen according to 3GPPguidelines. This rate

for ℓ = 8192 is equal toR = 0.9834 and forℓ = 1024 isR = 0.9381. As figures 4.3

and 4.4 reveal, for all cases, the performance of our proposed degree distribution is

superior to the degree distribution of the 3GPP.
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Figure 4.3: CDF of the normalized number of inactivations required for success-
ful decoding,ℓ = 1024. Simulations are performed based for104 iterations. In
each iteration a complete block of information is transmitted and its overhead is
calculated.

56



0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# of Inactivations / Block Length

C
D

F
 o

f t
he

 #
 o

f I
na

ct
iv

at
io

ns

ℓ = 8192

 

 

New Design, Max−Comp ID
3GPP, Max−Comp ID
New Design, Random ID
3GPP, Random ID

Figure 4.4: CDF of the normalized number of inactivations required for success-
ful decoding,ℓ = 8192. Simulations are performed based for104 iterations. In
each iteration a complete block of information is transmitted and its overhead is
calculated.
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Table 4.4 shows the average performance measures for our simulations, which

are again based onm = m∗. In this table,d̄ = Ω′(1) is the average degree of the

distributions,ε̄ represents the average reception overhead. Also,ĪMax−Comp, and

ĪRand denote the average normalized number of inactivations whenthe selection of

nodes for inactivation has been performed based on using theMax-Component ID

and Random ID strategies, respectively. Table 4.4 indicates that our codes signifi-

cantly reduced the number of inactivations at the cost of a slightly higher overhead.

4.5 Summary

A new criterion for the design of degree distributions for inactivation decoding was

presented. Based on this criterion, a family of degree distributions was found an-

alytically. The suggested family was modified for the practical case of finite max-

imum degree. The simulation results confirmed the superiority of the proposed

codes over existing designs.
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Table 4.1: Average performance measures for the 3GPP code and the proposed
design withm = m∗.

Code ℓ d̄ = Ω′(1) ε̄ ĪMax−Comp ĪRand

3GPP
1024 4.6184 0.38% 4.49% 9.40%

8192 4.6184 0.44% 1.54% 4.03%

New Design
1024 3.9739 0.66% 3.20% 7.04%

8192 5.0854 0.48% 1.13% 2.59%
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Chapter 5

Conclusions

This thesis focused mainly on rateless codes for erasure channel. The purpose of

this research was to study the new techniques for improving the performance of

Raptor codes in practical settings. The results presented in this work are used to

combat the imperfections rising from the finite length of information block.

In Chapter 3 a new technique for rateless code design, named annotation, was

introduced. Annotation provides the possibility of retrieving a portion of overhead

in the original design of Raptor codes. Based on this technique, a generalized ver-

sion of Raptor codes, called annotated Raptor codes, were introduced. We evaluated

the performance of the new design for information block length of k = 64520, and

compared the results with that of the original Raptor codes.The comparison shows

that annotated Raptor codes are capable of achieving highertransmission rates in

finite lengths compared to the original design of Raptor codes. The reduction in the

overhead is shown to be more than10%.

The design of Raptor codes for short block lengths are studied in Chapter 4. In

current practical settings the information block is usually around several thousands.

In this case a computationally more expensive decoding algorithm, named inactiva-

tion decoding, is preferred due to its better performance interms of overhead. We

proposed a new design criterion for Raptor code design underthis setting. Based on

this criterion an analytical framework for the Raptor code design is presented and

the codes designed using this approach are compared with theconventional design.

The results show notable improvements in the computationalcosts of this practical
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method. The new design reduces the number of computationally expensive inac-

tivation operations significantly. The amount of required overhead is shown to be

decreased in different block lengths. However, for very short block length (e.g.,

k = 1000), a slight increase in the overhead is observed.

5.1 Future Research Directions

This thesis work provides a foundation for further researchon several interesting

topics. The annotation technique presented in Chapter 3 opens a new way of rate-

less code design. The main advantage of this method is to provide different levels

of protection to different sets of information symbols in the coding. The goal in

our design was to retrieve a portion of overhead and convert some of the useless

received symbols into innovative receptions which transmit new information to the

receiver. This potential however can be used in other directions such as non-equal

error protection over different sets of information symbols. Setting an analytical

framework for the analysis of performance in the new design will help the investi-

gation of the advantages in this generalized design, and optimizing it for different

applications.

Among other methods to provide a higher level of protection in annotated Rap-

tor codes is to use the more powerful inactivation decoding algorithm for decoding

the annotated part of the message in the receiver. Design of such codes can benefit

the analysis provided in Chapter 4 of this thesis. Our initial experiments shows that

such codes can reduce the reception overhead around20% compared to the original

Raptor code. However, the optimal design needs more analysis and experiments.

The close connection between rateless codes and network coding promises a

significant gain in using the rich analytical background of rateless codes for network

coding. This connection has been first noticed and used in [46]. Although the

original design of LT codes and Raptor codes do not allow their use in a distributed

fashion required for network coding, some notable efforts has already been made to

design decomposable versions of these codes [47]. Investigating the capabilities of

new design approaches presented in this thesis for extensions to distributed versions
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can open a new direction for research in future.
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