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Abstract

A wireless sensor network (WSN) consists of spatially distributed sensor nodes

which are deployed to monitor some process of interest. Although WSNs are very

promising, the distributed nature, attributes of wireless networks, and availabil-

ity of limited resources in WSNs introduce significant theoretical and practical

challenges. First, the cooperative control of sensor nodes requires to consider sub-

systems instead of a single system. Second, the communication capabilities and

connectivity of the sensor nodes are limited. Third, the information exchange

in the wireless sensor network may be unreliable and suffer transmission delays.

Fourth, the availability of limited resources imposes constraints on the sampling

rates and time synchronization of sensor nodes. Motivated by these challenges,

this thesis studies the design of distributing filtering and sampling techniques in

resource constrained WSNs.

For distributed filtering, one of the most promising techniques are the linear

consensus protocols. A motivating example for studying the application of con-

sensus protocols is to investigate the distributed time synchronization problem

in WSNs. In this thesis, we study and propose distributed time synchronization

protocols which consider an asynchronous framework where the sensor nodes can

have different time-periods, starting times and input update times. The clocks in

a WSN are modeled by a time-varying system with time-delay terms. By employ-

ing tools from nonnegative matrix and graph theories, the convergence analysis is

presented.



Most of the standard control and monitoring techniques rely on uniform and

synchronized sampling. A sensor node has limited battery resources and their

efficient utilization imposes constraints on the time synchronization of the sensor

nodes which introduces sampling jitters. In this thesis, we model WSNs employing

distributed sampling using filter banks and present the design of synthesis filters

to minimize the effects of sampling jitters. We consider two cases for the design of

synthesis filters. In the first case, we consider a hybrid filter bank and assume that

the sampling jitter is known for each sensor. We employ tools from sampled-data

control theory and present a procedure to design optimal H2 synthesis filter bank

to handle sampling jitters and reconstruct uniformly sampled measurements. In

the second case, we consider a discrete-time filter bank and allow the sampling

jitters to be time-varying. Using polytopic matrices to encompass all possible rep-

resentations of the system matrices, the problem is reduced to an H∞ optimization

problem and the design of pre-processing filters is presented. All the theoretical

development and the proposed techniques in this thesis are validated using simu-

lation examples.
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Chapter 1

Introduction

1.1 Motivation

With the rapid technological merging of communication systems, control engineer-

ing, and computing science, researchers and scientists in various fields are attracted

to the exciting developments and technological challenges in the field of wireless

sensor networks (WSNs). A wireless sensor network (WSN) consists of spatially

distributed sensor nodes which are deployed to monitor some process of interest. A

fundamental design for a sensor node in a WSN includes sensors, a microcontroller,

wireless communication hardware, and battery resources as shown in Fig. 1.1. Each

unit in a sensor node consumes battery power which must be efficiently utilized.

Although each sensor node has limited battery resources and computation capa-

bilities, when suitably deployed in large scale, potentially powerful networks can

be constructed to accomplish tasks which can not be achieved with a single sen-

sor. WSNs are widely used in many fields of engineering such as environment

monitoring [7, 102, 66, 3], industrial and machine health monitoring [84, 48, 64],

transportation systems [16, 79, 49] and biomedical engineering [25, 59].

Spatially distributed components for control systems have been used for many

years in chemical process plants, oil and gas refineries, nuclear power plants and air

traffic control [34, 67, 60]. Traditionally, these control systems had a centralized or

a hierarchical architecture which offered advantages in the control design process.

However, these systems tend to grow large and complex with the expansion in

business units, requiring more computation capabilities, consuming more space

and often requiring wiring over long distances. The recent trend to avoid these

problems is to deploy WSNs that can reduce the wiring costs and compensate for

the computation limitations [93, 103, 44, 36]. Although WSNs are very promising,

the distributed nature, attributes of wireless networks, and availability of limited
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Figure 1.1: Schematic of a sensor node in a WSN.

resources in WSNs introduce significant theoretical and practical challenges to

deploy WSNs. First, the cooperative control of sensor nodes requires to consider

subsystems instead of a single system. Second, the communication capabilities

and connectivity of the sensor nodes are limited. Third, the information exchange

in the wireless sensor network may be unreliable and suffer transmission delays.

Fourth, the availability of limited resources imposes constraints on the sampling

rates and time synchronization of sensor nodes.

It is important to mention that research in the field of WSNs is mainly at the

crossroads of three research areas: control sciences and signal processing, wireless

communication and information theory, and computing science. Though many

useful results have been obtained separately in each field, merging them would be

very beneficial to the WSN community. Generally, traditional control theory as-

sumes periodic and synchronized sampling, whereas communication theory focuses

on the transmission of information over unreliable channels, and computing science

focuses on the implementation of distributed computing algorithms and services in

WSNs. Since a WSN consists of distributed sensor nodes, having limited resources,

which communicate with each other using a shared network to monitor a process,

combining these frameworks is essential to study WSNs.

A sensor node has limited computation and information processing capabilities.

In many applications such as distributed estimation [62, 83], formation control

[81, 73], exploration and surveillance [105], attitude control of satellite clusters and

time synchronization [88, 24, 85], sensor nodes need to coordinate by exchanging

information and processing the received information. Distributed filtering refers to

the local processing of information, received from other sensor nodes as well as self

2



information, by a senor node. The objective of distributed filtering is to ensure that

all the sensor nodes reach agreement on some quantity of interest. Recent years

have witnessed significant interest and research activity in the areas of distributed

filtering and coordinated control of WSNs (see, e.g., [55, 22, 77, 50, 109] and the

survey paper [18]).

Most of distributed filtering techniques presented in the literature require all

the sensor nodes to periodically exchange and process information at the same

time instants. This is based on the assumption that all the sensor nodes are time

synchronized. The operating environment conditions as well as the unavoidable

manufacturing flaws in the sensor nodes cause different sensor nodes to have differ-

ent clock readings. Moreover, a WSN typically consists of a large number of sensor

nodes and it is not easy to ensure that all sensor nodes start at the same time;

this could lead to non-synchronization of sensor nodes. Therefore, it is important

to design distributed time synchronization techniques for WSNs. In this thesis, we

study and design distributed time synchronization techniques for WSNs.

The availability of limited computation, communication and battery resources

imposes constraints on the sampling periods of the sensor nodes. For example, the

MICA2 Berkeley motes [97] use an 8-bit microcontroller running at 4 MHz, which

can transmit up to 39.32 kilobits per second (kbps) and are battery powered by a

pair of AA batteries. In [1], the MICA2 Berkeley motes were used to conduct an

experiment and the effective sampling rate (from control perspective) was found

to be between 90 to 100 samples per second. For several real-time industrial mon-

itoring applications, such as gas leakage and fire detection, the sampling period

requirements are much higher. Therefore, we need a technique to obtain fast sam-

pling period by employing sensor nodes having slow sampling periods. Distributed

sampling was proposed in [53, 39], which utilizes a combination of sensor nodes,

having slow sampling periods, to produce sampled measurements of a signal which

are the same as the sampled measurements of the signal by a fictitious sensor node

having fast sampling period.

Distributed sampling employs time-interleaved sampling to share the sampling

load among the sensor nodes. Each sensor node samples a common input signal

at a slower rate. The output measurements of these sensor nodes are multiplexed

to produce a fast sampled signal. The advantage of distributed sampling is that

slow sampling sensor nodes can be added in parallel to act like a fast sampling

sensor node. The implementation of distributed sampling requires precise time

synchronization among the sensor nodes.

3



A sensor node has limited battery resources which must be efficiently uti-

lized. The efficient utilization of battery resources imposes constraints on the

time synchronization of sensor nodes at every sampling instant [2, 76]. The non-

synchronization of sensor nodes introduces sampling jitters, which is the difference

between the ideal and physical sampling instants. Fig. 1.2 shows an example of

the distributed sampling pattern in a WSN having 4 sensors which are labeled as

s1, s2, s3 and s4. The measurements of these 4 sensors are denoted by si(j) where

i denotes a sensor and j denotes a measurement by the sensor i. Thus s1(1) means

measurement 1 from sensor 1, and so on. Fig. 1.2 also highlights the effect of sam-

pling jitters. The dashed lines show the time instants and corresponding signal

values if there are no sampling jitters. The solid lines show the time instants and

corresponding signal values in presence of sampling jitters.

s1(1) s2(1) s3(1)

s4(1) s1(2) s2(2)

t

Figure 1.2: Distributed sampling with 4 sensors labeled as s1, s2, s3 and s4. The
dashed lines represent the uniformly sampled measurements and the solid lines
represent the sampled measurements in the presence of sampling jitters.

The presence of sampling jitters gives rise to non-uniform sampling. Most of

the standard control and monitoring techniques rely on uniform and synchronized

sampling. Therefore, to apply the standard techniques we need to recover the

uniformly sampled measurements from the non-uniformly sampled measurements.

This motivates the development of new techniques to compensate the effects of

sampling jitters. In this thesis, we study WSNs employing distributed sampling

and present the design of techniques to minimize the effects of sampling jitters. In

the next section, we present a brief overview of the recent progress in the fields of

distributed filtering and sampling in WSNs.

4



1.2 Literature Review

In this section, we present an overview of the existing approaches related to the

modeling and design of distributed filtering, time synchronization and distributed

sampling techniques in WSNs.

1.2.1 Distributed filtering and time synchronization

The design of distributed filtering techniques has been a popular subject in signal

processing and control theory over the last couple of years. One of the most

promising distributed filtering design tools are the linear consensus protocols [77],

which require limited sensor network knowledge, and minimal computation and

communication capabilities to achieve agreement among the sensor nodes.

The earlier work related to the development of consensus techniques can be

traced back to the work presented in [32] and [43], where the authors applied

consensus techniques in the fields of management science and statistics. In the

control community, the seminal work was presented by Borkar and Varaiya [14],

and Tsitsiklis and Athans [98]; they considered the application of consensus tech-

niques in distributed decision making systems. More recently, consensus protocols

were applied by researchers in the control and multi-agent communities for coop-

erative control and coordination of multi-agent systems [77, 81]. In this thesis,

we study and apply consensus algorithms to design distributed time synchroniza-

tion protocols for WSNs. However, most of the consensus protocols presented

in the literature require time synchronization and periodic communication among

the sensor nodes. Therefore, we need to extend the current results and investiga-

tions to asynchronous systems. Some of the other existing approaches to design

distributed time synchronization protocols are summarized below.

A common approach to design time synchronization protocols in WSNs is to

create a hierarchical structure. The most prominent examples are the Reference

Broadcast Synchronization (RBS) [33], Timing-sync Protocol for Sensor Networks

(TPSN) [37], and Flooding Time Synchronization Protocol (FTSP) [68]. A limi-

tation of the hierarchy-based protocols is that they are not robust to changes in

the communication topology. Distributed time synchronization protocols which do

not require any hierarchical structure have been proposed in [95, 91, 86, 20, 65]. In

[95], the authors proposed a distributed time synchronization protocol using the

coordinate descent optimization algorithm; the protocol takes into consideration

the natural network constraint that the sum of relative clock offsets in a network

5



loop should be zero. In [91, 86] and [20], the authors presented consensus-based

time synchronization protocols which ensure that the clocks in a WSN achieve time

synchronization with reference to a virtual clock. However, the design of the proto-

cols presented in [95, 91, 86, 20] assumes that the sensor nodes should periodically

exchange and update their clock states at the same time instants; this assumption

is unrealistic since it requires synchronization of the clocks, which is the goal of

the protocol. This assumption is partially relaxed in [85] and [21], where the au-

thors assume that all the sensor nodes should update their clock states at the same

time instants but the information exchange among neighbor nodes may occur at

non-regular time instants. In [65], a consensus-based time synchronization pro-

tocol is presented which compensates for initial time offsets and skew deviations.

The protocol assumes synchronous clocks update and information exchange. To

our best knowledge, the design of consensus-based time synchronization protocol

using asynchronous time updates and unreliable communication links has not been

studied in WSNs.

1.2.2 Distributed sampling

The interest to develop techniques to overcome the limitation of slow sampling rates

of sensing devices can be traced back to the earlier works by Black and Hodges in

1980 [58], where it was proposed to employ an array of time-interleaved analog-

to-digital converters to increase the sampling rate. More recently, this technique

was rediscovered and applied by researchers in the field of WSNs to increase the

sampling rate [53, 39, 40].

A popular approach to model a WSN employing distributed sampling sensors

is to use filter banks [57, 30, 101]. Filter banks have been widely studied in the

signal processing literature; Vaidyanathan’s book [100] gives a comprehensive his-

torical survey of the literature till 1992. The design of multi-rate filters using

H∞ optimization was originally proposed in [89]. This design was extended to

discrete-time filter banks in [26] where the authors assumed time synchronization

in the sampling process. The design of synthesis filters using hybrid filter banks

was presented in [90], where the authors used the continuous-time lifting technique

to obtain an equivalent discrete-time filter bank problem. In [56], the authors con-

sidered time-delays, which are integer multiples of the sampling periods, for the

design of filter bank. In [75], the authors considered fractional delays for the de-

sign of synthesis filter banks using H∞ optimization. It should be noted that the

presence of sampling jitters make the sampling pattern non-uniform and results in

6



a time-varying and uncertain system; therefore the design of synthesis filter banks

should take this observation into consideration.

The design of filters for uncertain systems has been extensively studied in

the fields of control theory and signal processing (see, e.g., [41, 9, 70]). Some

of the earlier design approaches employed a common Lyapunov function (see, e.g.,

[41, 99]). However, such filter design techniques result in conservative results due

to a single common Lyapunov function. The conservatism can be reduced by using

parameter-dependant Lyapunov functions [29, 9, 42]. The main difficulty in de-

signing filters using parameter-dependant Lyapunov functions is to find a change

of coordinates to separate the Lyapunov stability matrix from the system matri-

ces to obtain linear matrix inequalities (LMIs). A robust filter design technique

using a parameter-dependant Lyapunov function was proposed in [13]. However,

the filter design conditions were expressed in terms of bilinear matrix inequalities

(BMIs), which are non-convex, and the computation complexity is high compared

to linear matrix inequalities (LMIs). In this thesis, we study and present the design

of pre-processing filters in terms of LMIs by extending the techniques presented in

[13, 31].

1.3 Summary of Contributions

The main contributions of this thesis are summarized as follows:

1. Presented the design of a consensus-based time synchronization protocol in

WSNs which does not require periodic communication and control input

updates.

2. Extended the design of above-mentioned protocol to consider information

exchange over unreliable communication channels and time-varying commu-

nication topologies in a WSN.

3. Modeled a WSN employing distributed sampling sensors with sampling jit-

ters using a hybrid filter bank and proposed a novel technique to reconstruct

the uniformly sampled measurements by designing synthesis filters based on

the minimization of the H2 norm of the estimation error system.

4. Using an approximation of the above-mentioned model, proposed another

filter design technique in terms of LMIs to recover the uniformly sampled

measurements by minimizing the H∞ norm of the estimation error system.
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1.4 Applications

1.4.1 Distributed filtering

Distributed filtering in WSNs has received considerable attention in the control and

signal processing communities because of its extensive applications such as coordi-

nated motion and formation control of multi-agent systems [55, 81, 73], distributed

estimation and path planning of mobile robots [77]. In [82, 81], the authors stud-

ied and implemented distributed filtering techniques to cooperatively control and

coordinate multiple robot systems. In [12], the authors presented a distributed

filtering algorithm to estimate a parameter using WSN and implemented it on an

experimental testbed.

1.4.2 Distributed sampling

Distributed sampling has a rich history of applications. Initially, it was used to

increase the sampling rate of analog-to-digital convertors. In the WSN community,

this technique was rediscovered by the authors in [53] to increase the sampling

rate. In [56], the authors experimentally implemented the distributed sampling

technique using microphone arrays to obtain a high resolution signal. In [46], the

authors considered the implementation of a WSN for healthcare monitoring and

employed 16 wireless sensor nodes employing distributed sampling to achieve a

sampling rate of 20 GHz.

1.5 Thesis Outline

The remaining of this thesis is organized as follows:

In Chapter 2, we study and present the design of a novel distributed time syn-

chronization protocol using consensus algorithms. The proposed protocol does not

require all the sensor nodes to have the same time-periods or starting times. Fur-

thermore, the communication topology of the WSN is not assumed to be static.

The WSN is modeled by a time-varying discrete-time system. The objective is

to design local control inputs to achieve relative time synchronization by using

the information of neighboring sensor nodes. By employing tools from nonnega-

tive matrix and graph theories, the convergence analysis is presented. Numerical

examples are presented to demonstrate the effectiveness of the proposed time syn-

chronization protocol.
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In Chapter 3, we extend the distributed time synchronization protocol pre-

sented in Chapter 2 to asynchronous frameworks. We consider unreliable com-

munication links. We model the clocks in a WSN by a time-varying system with

time-delay terms and present the convergence analysis of the proposed protocol.

Numerical examples are given to demonstrate the effectiveness of the proposed

time synchronization protocol.

In Chapter 4, we study WSNs employing distributed sampling sensors. We

model such systems by hybrid filter banks. By utilizing the properties of continuous-

time lifting operator and discretizing a fractional time-delay system, we obtain a

norm-invariant discretized system. Next, by using the polyphase representation

along with the lifting technique, we convert the system into a standard model-

matching form for H2 optimal filter design. A numerical example is presented to

show the effectiveness of the proposed filter design approach.

In Chapter 5, we present the design of H∞ pre-processing filters to compensate

the effects of time-varying sampling jitters. The presence of sampling jitters causes

uncertainty in the system matrices. Using polytopic matrices, we encompass all

possible representations of the system matrices and then reduce the problem to an

H∞ optimization problem. We present sufficient conditions for the design of filters

in terms of linear matrix inequalities. A numerical example is also presented to

show the effectiveness of the proposed filter design approach.

Chapter 6 gives a conclusion of the PhD work and presents a number of im-

portant research directions for future studies.
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Chapter 2

Distributed Time Synchronization
in WSNs*

2.1 Introduction

Distributed filtering in WSNs refers to the local processing of information received

at some sensor nodes. The objective of distributed filtering is to ensure that

all the sensor nodes reach agreement on some quantity of interest. Examples of

distributed filtering can be found in many areas such as distributed estimation

[62, 83], coordinated motion and formation control [55, 81, 73], force allocation in

paper moving devices [35], control of directional sensitivity of smart antennas [51],

and attitude control of satellite clusters [77].

The design of distributed filtering techniques in WSNs has to consider some

important constraints. First, each sensor node has access to limited information

about the global goal of the sensor network. Second, the global goal can not be

computed by a single sensor node due to several reasons such as the network is too

large to transmit information to one point, or the topology of the network is chang-

ing and centralized decision making is not efficient. Third, each sensor node has

limited memory and computation resources – even if a sensor node acquires all the

information to compute the global goal, the computation load would be too high.

Fourth, each sensor node communicates only with a limited number of nearby sen-

sor nodes which are termed as its neighbors. Although these constraints introduce

limits on the distributed filtering design techniques, the motivation comes from

the fact that the simple control laws can be used by sensor nodes to achieve the

global goal. One of the most promising distributed filtering design techniques are

the linear consensus protocols (see, e.g., [77]), which require limited sensor network

*A version of this chapter has been published in [6].
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knowledge, and minimal computation and communication capabilities to achieve

agreement among the sensor nodes. A motivating example for studying the appli-

cation of consensus protocols is to consider the distributed time synchronization

problem in WSNs. In this chapter, we study the design of consensus protocols to

achieve distributed time synchronization in WSNs.

Distributed time synchronization in wireless sensor networks (WSNs) has been

an important topic of research in the control community ([20], [85], [88]). A popular

approach to design time synchronization protocols is to create a hierarchical struc-

ture within the WSN. The most prominent examples are the Reference Broadcast

Synchronization (RBS) [33], Timing-sync Protocol for Sensor Networks (TPSN)

[37], and Flooding Time Synchronization Protocol (FTSP) [68]. The implementa-

tion of RBS requires that the WSN should be divided into distinct clusters and

each cluster should have a leader or reference node; all the leader nodes synchronize

themselves with respect to each other, and sensor nodes within the same cluster

synchronize themselves with respect to their leader node. The implementation of

TPSN and FTSP requires that a spanning tree rooted at a reference node should

be built in the WSN and the time difference of any sensor node can be obtained

with respect to the reference node. Although the hierarchy-based protocols have

been experimentally tested in [68] and their performance is remarkable, they re-

quire substantial overhead to rebuild the spanning trees or clusters if a sensor node

dies or a new sensor node is added.

Distributed time synchronization protocols which do not require a hierarchical

structure have been proposed in [88, 95, 86], where the authors have considered a

continuous-time system to represent the clock of a sensor node. It is assumed that

the clock of a sensor node has the same continuity property as the physical time

and it can measure in any time interval. In actual implementation, the clock of a

sensor node has some frequency or time-period. A clock cannot measure a time

interval which is shorter than its time-period. Hence, it is more reasonable to use

a discrete-time system to model a clock.

Discrete-time systems to model clocks in a WSN have been used in [20, 92, 11].

For the design of time synchronization protocol, the authors have assumed that all

the sensor nodes should periodically exchange and update their clock states at the

same time instants. This assumption is unrealistic since it requires synchronization

of all clocks, which is the goal of the protocol. In this chapter, we propose a time

synchronization protocol which relaxes the three main assumptions used in the

literature. First, the proposed protocol does not require all the sensor nodes to
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have the same time-periods or starting times. Second, all the sensor nodes are

not restricted to exchange and update their clock states at the same time instants.

Third, the communication topology of the WSN is not assumed to be static. We

use the discrete-time clock model presented in [20]. We assume that each sensor

node knows its time-period but does not know its exact starting time. Each sensor

node exchanges its clock readings with its neighbors. The objective of the time

synchronization protocol is to synchronize the clocks in a WSN with respect to a

virtual clock, which is not physically present or accessible to any sensor node. The

virtual clock is only used to demonstrate the concept of time synchronization in a

WSN as the time-periods and starting times of sensor nodes can be different.

The remainder of this chapter is structured as follows: Section 2.2 presents

some basic definitions and results from graph and matrix theories. The problem

is formulated in Section 2.3. The main results and analysis are given in Sections

2.4 and 2.5, respectively. Numerical examples to demonstrate the effectiveness of

the proposed protocol are presented in Section 2.6. Finally, concluding remarks

are given in Section 2.7.

2.2 Preliminaries

Graphs provide a natural abstraction for information exchange within a WSN. In

this section, we present some useful definitions and results from graph and matrix

theories which will be used in this thesis.

Let 1 = [1, ..., 1]T ∈ Rn, I ∈ Rn×n denotes an identity matrix, and the symbol

N denotes the set of nonnegative integers. A matrix S is nonnegative if all its

elements are non-negative [47]. A non-negative, finite and square matrix S is

called stochastic if the sum of each row is 1. A stochastic matrix S is called

indecomposable and aperiodic (SIA) if there exists a column vector w such that

limk→∞ S
k = 1wT [104]. Let

∏k
i=1 Si = SkSk−1...S1 denote the left product of the

matrices Sk, Sk−1, ..., S1. For any matrix S, we write spq to represent the element

which lies in the pth row and qth column of S.

Consider an undirected (directed) graph G which consists of a vertex set,

V(G) = {v1, ..., vn}, and an edge set, E(G) ⊂ {(vi, vj) : vi, vj ∈ V(G)} where an edge

is an unordered (ordered) pair of vertices [69]. If (vi, vj) is an edge in a directed

graph, G, then vi and vj are defined as the parent and child vertices, respectively.

The index set of neighbors of vertex vi is denoted by Ni = {j : (vj, vi) ∈ E(G), j 6=
i} and its cardinality by |Ni|. A path from vi1 to vik is a sequence, vi1 , . . . , vik of
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distinct vertices such that (vij , vij+1
) ∈ E(G) for any j = 1, ..., k−1. An undirected

(directed) graph G is connected (strongly connected) if there is a path between any

two distinct vertices. A directed tree is a directed graph where every vertex except

the root vertex has exactly one parent vertex and the root vertex can be connected

to any other vertices via paths. A spanning tree of directed graph G is a directed

tree whose edge set belong to E(G) and vertex set is the same as V(G). The union

of a group of undirected (directed) graphs G1, G2, . . . , Gk having common vertex

set V is an undirected (directed) graph with vertex set V and edge set given by

the union of the edge sets E(Gi), where i = 1, ..., k. The Laplacian matrix of G is

denoted by L = [lpq] ∈ Rn×n and is defined as follows:

lpq =


−1 if p 6= q and q ∈ Np,
|Np| if p = q,

0 otherwise.

Let S = [spq] ∈ Rn×n be a nonnegative matrix. Then G(S) is defined as a directed

graph having vertex set V(G(S)) = {v1, ..., vn}, and edges from vq to vp if and only

if spq > 0. We present some lemmas which will be used later.

Lemma 2.1. [106] Let S be a stochastic matrix. If G(S) contains at least one

spanning tree such that the root vertex of that spanning tree has a self-loop in

G(S), then S is SIA.

Lemma 2.2. [80] Let S1, S2, . . . , Sm be stochastic matrices. If the graph obtained

by the union of graphs G(S1),G(S2), . . . ,G(Sm) has a spanning tree, then the matrix

product SmSm−1...S1 is SIA.

Lemma 2.3. [104] Let Γ = {S1, S2, ..., Sk} be a finite set of SIA matrices with the

property that for each sequence Si1 , Si2 , ..., Sij of positive length, the matrix product

SijSij−1
...Si1 is SIA. Then, for each infinite sequence Si1 , Si2 , ..., there exists a

column vector w such that

lim
j→∞

SijSij−1
...Si1 = 1wT .

2.3 Problem Formulation

We consider a WSN having n sensor nodes. Each sensor node has a local clock

which consists of a software program and a hardware oscillator. The oscillator peri-

odically generates time interrupts using its time-period and the software computes

the local time of the sensor node at those time instants when the interrupts are
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generated [20]. Let τi, xi and ti0 denote the time-period, clock value and starting

time of sensor node i, respectively, where i = 1, ..., n. Each sensor node knows

its time-period but does not exactly know its starting time. Rather, its estimate,

denoted by t̂i0 for sensor node i, is known. Let Ti = {t̃ik : k = 0, 1, ...., } represent

the sequence of time instants when the clock of sensor node i updates its state,

where t̃ik := kτi + ti0. The time computed locally by sensor node i can be expressed

as follows:

xi(t̃
i
k+1) = xi(t̃

i
k) + τi, xi(t̃

i
0) = t̂i0, i = 1, ..., n.

If each sensor node does not know its starting time exactly, then the clocks in the

WSN would not be synchronized. To achieve time synchronization, we apply a

control input to adjust the clock readings of sensor nodes. The control input is

applied periodically at a certain known integer multiple of the local clock time-

period. Let tis := t̃i0+szi be the time instants when the control input is applied to

the clock of sensor node i, where zi is a known integer, s ∈ N and i = 1, ..., n. We

can write the following:

xi(t
i
s+1) = xi(t

i
s) + ziτi + ui(t

i
s), xi(t

i
0) = xi(t̃

i
0), (2.1)

where ui(t
i
s) denotes the control input or protocol which is to be designed. A

virtual continuous-time clock can be expressed as follows:

v(t) = at+ b, (2.2)

where t represents the time of WSN, v represents the clock readings, a and b

represent the skew and initial offset of the virtual clock, respectively. The virtual

clock is not available to any sensor node. It is only used to demonstrate the

concept of distributed time synchronization. The clocks in a WSN are said to be

synchronized if there exists a common virtual clock in the form of (2.2) such that

the following holds:

lim
t̃ik→∞

(xi(t̃
i
k)− (t̃ik + b)) = 0, ∀i = 1, ...n.

As each clock knows its own time-period, we use a = 1 for the common virtual

clock. The sensor nodes communicate with their neighbors and exchange clock

readings. The communication topology of the WSN can be modeled by a time-

varying undirected graph, G(tis), where i = 1, ..., n and s ∈ N. The neighbors of

sensor node j at tis consist of those sensor nodes which are able to communicate

with node j at tis, where i, j = 1, ..., n and s ∈ N. Let Ni(tis) denotes the index set
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of sensor node i neighbors and L(tis) represents the Laplacian matrix associated

with G(tis). The following assumptions are required to ensure that the clocks can

be synchronized:

(A1) There exists a known integer κ such that each sensor node i can obtain

information at least once from any possible neighbor during [tis, t
i
s+κ], where

i = 1, ..., n and s ∈ N.

(A2) There exists an integer p ≥ 0 such that the union of graphs G(tis), G(tis+1),...,

G(tis+p), is connected, for all i = 1, ..., n, and s ∈ N.

(A3) For any two sensor nodes i and j, the following holds:

tis ∈ Tj, ∀s.

It should be noted that (A1) is made to ensure that each senor node can receive

information from its possible neighbors in a finite interval of time. Assumption

(A2) is made to ensure that union of communication topologies during a specific

time interval remains connected, although at some particular time instants the

communication topology may not be connected. Assumption (A3) is made so that

by using the proposed protocol the relative time synchronization error in the WSN

can be driven to zero. In actual implementation, if (A3) can not be ensured to

hold for all sensor nodes, then it can be relaxed to consider neighboring nodes

only. If (A3) is not ensured for neighboring nodes, then a small approximation

error may exists due to the fact that the starting times and time-periods of the

sensor nodes may be different. In the next section, we present the main results to

achieve distributed time synchronization.

2.4 Main Results

We present the following protocol for achieving time synchronization:

ui(t
i
s) = αi(t

i
s)

∑
j∈Ni(tis)

(
xj(t

i
s)− xi(tis)

)
, i = 1, ..., n, (2.3)

where αi(t
i
s) denotes a gain which needs to be designed. For synchronized dis-

tributed control systems, a protocol similar to (2.3) has been presented in [77]. In

this chapter, we study protocol (2.3) for asynchronous distributed control systems.

The following theorem presents the main results.
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Theorem 2.1. Consider a WSN which satisfies assumptions (A2) and (A3). Then

the clocks of the sensor nodes achieve distributed time synchronization using pro-

tocol (2.3) if αi(t
i
s) ∈

(
0, 1
|Ni(tis)|

)
, ∀i = 1, ..., n and s ∈ N.

Remark. If the communication topology of the WSN is static, then we can allow

αi(t
i
s) ∈

(
0, 1

d

)
, ∀i = 1, ..., n and s ∈ N, where d denotes the maximum of the

diagonal entries of L.

The proof of Theorem 2.1 consists of three main steps. In the first step, we

combine the local clock models and define a new time-sequence to represent the

local clock models by a single time-varying system. In the second step, we use the

new time-sequence to compute an upper bound on the time interval in which each

sensor node obtains information at least once from all its neighbors. Finally, we

complete the proof by utilizing the properties of connected graphs and product of

SIA matrices. Before proceeding, we define a new state as follows:

yi(t
j
s) = xi(t

j
s)− (tjs − t0), i, j = 1, ..., n.

We re-write the model expressed by (2.1) and control protocol (2.3) as follows:

yi(t
i
s+1) = yi(t

i
s) + ui(t

i
s), yi(t

i
0) = xi(t

i
0).

ui(t
i
s) = αi(t

i
s)

∑
j∈Ni(tis)

(
yj(t

i
s)− yi(tis)

)
, i = 1, . . . , n.

Let th = max{t̃i0, i = 1, ..., n}, and we define a new time-sequence T := {tr},
where r ∈ N, which is the union of the distinct values of the sequences {tis ≥
th, i = 1, ..., n, s ∈ N}. We order the values of T such that tr < tr+1. We mention

here that the distances between consecutive elements of T are non-uniform. The

time-synchronization objective can be re-written as follows:

lim
tr→∞

(yi(tr)− b) = 0, i = 1, ...n,

for some b. Let y(tr) = [y1(tr), . . . , yn(tr)]
T denote the group state vector. The

dynamics of the overall system can be written as follows:

y(tr+1) = (I − A(tr)L(tr))y(tr), (2.4)

where A(tr) = [apq], L(tr) = [lpq],

apq =

{
αp(tr) if p = q and ∃s s.t. tr = tps,

0 otherwise.
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and

lpq =


−1 if q ∈ Np(tr) and ∃s s.t. tr = tps,

|Np(tr)| if p = q and ∃s s.t. tr = tps,
0 otherwise.

It should be noted that L(tr) is a time-varying Laplacian matrix which can be

un-symmetric and the graph associated with L(tr) may not be strongly connected.

Let Φ(tr) = I − A(tr)L(tr), the solution of (2.4) can be written as follows:

y(tr) = Φ(tr)Φ(tr−1)...Φ(t0)y(t0), r = 0, 1, . . . .

If αi(t
i
s) ∈

(
0, 1
|Ni(tis)|

)
∀i, s, then Φ(tr) are always stochastic matrices with positive

diagonal entries. The product Φ(tr)Φ(tr−1)Φ(tr−2)...Φ(t0), is also a stochastic ma-

trix with positive diagonal entries. With this preparation, we present the following

lemma, which is quite useful in the computation of an upper bound on the time

interval in which each sensor node can obtain information at least once from its

neighbors.

Lemma 2.4. Let g = max{ziτi}
min{ziτi} where i = 1, ..., n. For any sensor node i = 1, ..., n

and s = 1, 2, ..., the number of elements in the set {tp : tp ∈ [tis, t
i
s+1)} is not greater

than h, where h = (dge) (n− 1) + 1, and dge denotes the smallest integer not less

than g.

Proof. Let j be the sensor node such that zjτj ≥ ziτi where i = 1, ..., n, i 6= j.

When sensor node j updates its control input at tjs, the maximum number of times

any sensor node i can update its control input before the time instant tjs+1 can

not exceed dge, where i = 1, ..., n, i 6= j. Since there are n − 1 possible values

of sensor node i (excluding i = j), we conclude that the number of elements in

{tp : tp ∈ [tjs, t
j
s+1)} is not greater than h.

Using Lemma 2.4 and assumption (A1), we can state that each sensor node obtains

information from all its neighbors at least once during the time interval [tm−κh, tm],

where m = κh, κh+ 1, . . . .

2.5 Convergence Analysis

Let Ḡ(tm) be the graph obtained by the union of G(Φ(tm)), ..., G(Φ(tm−κh)). Using

(A2), we conclude that Ḡ(tm) is strongly connected. If Ḡ(tm) is strongly connected,

then by using Lemma 2.1 together with Lemma 2.2, we establish that the product

of Φ(tm)...Φ(tm−κh) is SIA.
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Let F0 =
∏κh−1

l=0 Φ(tl), F1 =
∏2κh−1

l=κh Φ(tl), F2 =
∏3κh−1

l=2κh Φ(tl) and so on. Then

it can be easily shown that all possible unique Fj’s are finite where j = 0, 1, . . . .

Any product which involves a finite combination of the unique Fj’s is SIA. So, we

can apply Lemma 2.3 to get the following conclusion:

lim
k→∞

k∏
j=0

Fj = 1wT .

The vector w depends on the order in which the matrices Φ(tl) are multiplied,

where l = 0, 1, . . . , and it can not be computed in advance. We can further write

the following:

lim
tr→∞

y(tr) = 1wTy(t0) =

w
Ty(t0)

...
wTy(t0)

 .

Hence we complete the proof of time synchronization protocol by taking b =

wTy(t0).

2.6 Numerical Examples

In this section, we present two examples to demonstrate the effectiveness of the

proposed time synchronization protocol.

Example 1: Static topology, small-size WSN

We consider a WSN having 10 sensor nodes and label them as 1, ..., 10. We assume

the communication topology of the WSN is not changing with respect to time and

is shown in Fig. 2.1. Using Theorem 2.1, we choose αi = 0.3, ∀i. The values for

different parameters satisfying (A2) and (A3) are listed in Table 2.1. By applying

protocol 2.3, the WSN was simulated for 50 seconds. Fig. 2.2 shows a plot of the

clock readings for 50 seconds. Fig. 2.3 illustrates a plot of the local control inputs

applied to the sensor nodes. Based on the plots, it can be concluded that this

WSN achieves distributed time synchronization using the proposed protocol.

Example 2: Switching topology, medium-size WSN

We consider a WSN having 45 sensor nodes and label them with 1, ..., 45. We

consider the communication links in the WSN are changing randomly with respect

to time. Fig. 2.4 shows the union of possible communication topologies of the

WSN. We randomly select the parameter values for different sensor nodes from
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Figure 2.1: Communication topology of a WSN considered in Example 1 having
10 sensor nodes.

Table 2.1: Parameter values used to simulate the WSN as shown in Fig. 2.1
Sensor Time-period Actual starting Estimated starting Value of
Node (sec) time (sec) time (sec) z

1 0.01 0.1 1.5 80
2 0.02 0 -12.5 100
3 0.01 1.3 3.19 100
4 0.05 1.01 -25.19 100
5 0.04 1 10.04 80
6 0.02 0.04 -7.34 100
7 0.1 0.12 2.19 80
8 0.01 0.4 3.25 10
9 0.2 0.16 0 10
10 0.4 0 14.58 10

Table 2.1 and choose κ = 3. For simulation purposes, we compute the relative

time synchronization error of sensor node i with respect to its neighbor nodes,

denoted by ei(tr), as follows:

ei(tr) =
∑

j∈N (Gi(tr))

|(xi(tr)− xj(tr))|, i = 1, ..., 45.

Applying Theorem 2.1, we simulate the WSN for 80 seconds and select the values
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Figure 2.2: Plot of the local clock readings of a WSN considered in Example 1.
The topology of the WSN is shown in Fig. 2.1.
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Figure 2.3: Plot of the local control inputs applied to the WSN considered in
Example 1. The topology of the WSN is shown in Fig. 2.1.
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for αi at run-time based on the communication topology. Fig. 2.5 shows a plot of

the sum of time synchronization errors. Based on the plots, it can be concluded

that by using protocol (2.3) and applying Theorem 2.1, this WSN also achieves

distributed time synchronization.

1 2 3
4

5
6

7

8

9

10

11

12

13

14

15

16

17

18
19

20
212223242526

27
28

29

30

31

32

33

34

35

36

37

38

39

40
41

42
43

44 45

Figure 2.4: The graph of union of communication topologies of a WSN considered
in Example 2 having 45 sensor nodes labeled as 1, ..., 45. The lines indicate the
presence of communication channels.

2.7 Concluding Remarks

In this chapter, we presented a distributed time synchronization protocol for WSNs.

The time-periods and starting times of all the sensor nodes were not restricted to be

the same. By employing tools from stochastic matrix and algebraic graph theories,

we presented the convergence analysis. In this chapter, we considered that a sensor

node could access the clock readings of its available neighbors without any delays.

In the next chapter, we relax this assumption by modifying the protocol to handle

time-delayed measurements from neighbors.
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Figure 2.5: Plot of the sum of the relative time synchronization errors in the WSN
considered in Example 2. The graph of the union of communication topologies of
the WSN is shown in Fig. 2.4.
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Chapter 3

Time Synchronization using
Unreliable Communication
Channels*

In the previous chapter, we studied distributed time synchronization protocols for

WSNs and assumed that a sensor node could access the clock readings of its avail-

able neighbors without any delays. In this chapter, we relax this assumption and

study distributed time synchronization protocols which can handle time delayed

clock readings from the neighbor nodes. We assume that each sensor node trans-

mits its clock readings to its neighbor nodes at the time instants when it applies

the control input. We consider the communication channels to be unreliable and

propose a consensus-based protocol to achieve time synchronization.

Consensus-based time synchronization protocols for WSNs have been studied

in [91], [86] and [20]. However, the design of the protocols presented in [91], [86]

and [20] assumes that the sensor nodes should periodically exchange and update

their clock states at the same time instants; this assumption is unrealistic since

it requires synchronization of the clocks, which is the goal of the protocol. This

assumption is partially relaxed in [85] and [21], where the authors assume that all

the sensor nodes should update their clock states at the same time instants but

the information exchange among neighbor nodes may occur at irregular time in-

stants. In [65], a consensus-based time synchronization protocol is presented which

compensates for initial time offsets and skew deviations. The protocol assumes

synchronous clocks update and information exchange. To our best knowledge,

the design of consensus-based time synchronization protocol using asynchronous

time updates and unreliable communication links has not been studied in WSNs.

*A version of this chapter has been submitted for publication in [5].
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In this chapter, we investigate this problem and present a distributed time syn-

chronization protocol which can work in the presence of unreliable communication

channels. It may happen that a communication link is available between two nodes

at a given time instant and it may not be available at some other time instants.(**)

We assume that each sensor node knows its time-period but does not know its

exact starting time. The objective of the proposed distributed time synchroniza-

tion protocol is to ensure that the clocks of the sensor nodes are synchronized to

a virtual clock, which is not physically present or accessible to any sensor node.

The remainder of this chapter is structured as follows: In Section 3.1, some

basic definitions and results from graph and matrix theories are presented. We

formulate the problem in Section 3.2 and then present the main results in Section

3.3. The analysis and proof are presented in Section 3.4. Numerical examples

to illustrate the effectiveness of the proposed protocol are given in Section 3.5.

Finally, concluding remarks are stated in Section 3.6.

3.1 Preliminaries

We refer the interested reader to Section 2.2 for some basic and useful definitions

from graph and non-negative matrix theories. For any stochastic matrix M =

[mpq], the coefficient of ergodicity is defined as follows [87, 52]:

λ(M) := 1−min
p1,p2

∑
q

min(mp1q,mp2q).

M is said to be scrambling if λ(M) < 1. We present a useful lemma here which

will be used later.

Lemma 3.1 ([108]). Let Γ be a finite set of r × r SIA matrices with the property

that for each sequence S1, S2, ..., Sk ∈ Γ of positive length,
∏k

i=1 Si is SIA. Then

if k > 2r
2
,
∏k

i=1 Si is scrambling; and for any infinite sequence of S1, S2, ...., of

matrices from Γ, there exists a column vector w such that liml→∞
∏l

i=1 Si = 1wT .

3.2 Problem Formulation

In this section, we formulate the time synchronization problem by presenting a

model of each clock in the WSN and the communication strategy for exchanging

information.

(**)Note that this also covers the case of half-duplex communication in a WSN.
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3.2.1 System model

We consider a WSN having n sensor nodes. Let xi, τi, t
i
0 and t̂i0 denote the clock

value, time-period, actual starting time and estimate of the starting time of sensor

node i, respectively, where i = 1, ..., n. Let Ti = {t̃ik : k = 0, 1, ...., } represents the

sequence of time instants when the clock of sensor node i updates its state, where

t̃ik := kτi + ti0. Then the time computed locally by sensor node i is expressed as

follows:

xi(t̃
i
k+1) = xi(t̃

i
k) + τi, xi(t̃

i
0) = t̂i0, i = 1, ..., n.

To achieve time synchronization, we need to design local control inputs to adjust

the clock readings of each sensor node. Let tis := t̃i0+szi be the time instants when

the control input is applied to the clock of sensor node i, where zi is a known

integer, i = 1, ..., n and s ∈ N. We can write the following:

xi(t
i
s+1) = xi(t

i
s) + ziτi + ui(t

i
s), xi(t

i
0) = t̂i0, i = 1, ..., n, (3.1)

where ui(t
i
s) denotes the control input or protocol which is to be designed. The

clocks in a WSN are said to be synchronized if there exists a common virtual clock

in the form of (2.2) such that the following holds:

lim
k→∞

(xi(t̃
i
k)− (t̃ik + b)) = 0, i = 1, ..., n. (3.2)

To compute the local control input, each sensor node communicates with its neigh-

bor nodes. In the next subsection, we present the communication strategy.

3.2.2 Communication strategy

Each sensor node interacts with its available neighbors by transmitting its clock

values at those time instants when it updates its control input. As we mentioned

earlier, the communication links are unreliable. We consider bidirectional com-

munication links but it may happen that at some particular time instants the

communication links are either unidirectional or not available. We make the fol-

lowing assumption:

(B1) There exists a positive integer c such that sensor node i transmits its in-

formation at least once to any possible neighbors during [tis, t
i
s+c−1] for any

i = 1, ..., n and s ∈ N with tis > max{t̃j0 : j = 1, ..., n}.

Assumption (B1) provides an upper bound on the time interval in which each sen-

sor node can successfully transmit its information at least once to any possible
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neighbors. In literature, this assumption is also known as bounded intercommu-

nication interval (see e.g. [10, 74]). As the control input update and transmission

time instants are asynchronous, we introduce three interaction topologies. The

first one describes the transmission of information in the WSN and is modeled by

a time-varying graph, denoted by Gf (tis) where i = 1, ..., n and s ∈ N, with vertex

set V(Gf (tis)) = {vi : i = 1, ..., n} and edge set E(Gf (tis)). Vertex vi represents

sensor node i. If sensor node i transmits its state information to node j at tis, then

we write (vj, vi) ∈ E(Gf (tis)). Let N (Gf (tis), i) denote the index set of available

neighbors of sensor node i at tis.

The second interaction topology represents the union of the transmission topolo-

gies, Gf (tis), where i = 1, .., n and s ∈ N, and is modeled by an undirected graph

denoted by Gn with vertex set V(Gn) = {vi : i = 1, ..., n} and edge set E(Gn).

If a communication link between sensor node i and j exists at some time instant

during the execution of the WSN, then (vj, vi) ∈ E(Gn). Let N (Gn, i) denote the

index set of neighbors of sensor node i, where i = 1, ..., n. It should be noted that

the edges of topology Gn correspond to the existence of communication channels

only and they do not guarantee if at some particular time instant, any informa-

tion has been transmitted on the communication channels. It can be seen that

N (Gf (tis), i) ⊂ N (Gn, i) ∀i, s.
The third interaction topology characterizes the utilization of transmitted in-

formation in the WSN and is modeled by another time-varying graph, denoted by

Gu(tis) where i = 1, ..., n and s ∈ N, with vertex set V(Gu(tis)) = V(Gn) and edge

set E(Gu(tis)). If the state information from senor node i is used at tjs to compute

ui(t
j
s), then we write (vi, vj) ∈ E(Gu(tjs)). Let N (Gu(tjs), j) denote the index set

of the neighbors of sensor node j. We mention here that if sensor node i does

not receive any information from its neighbor j during [tis, t
i
s+1], then it considers

the last transmitted (most recent one) information from j to compute its input.

We note here that if any sensor node i transmits to j at time instant tis, then we

write (vj, vi) ∈ E(Gf (tis)), but tis may not be the update time of j. Hence, the

information transmitted by node i may be used by node j either at the present

time instant or some future time instants to compute its input. To ensure that

clocks in a WSN can be synchronized, we assume the following:

(B2) The graph, Gn, is connected.

(B3) For any two sensor nodes i and j, the following holds:

tis ∈ Tj, ∀s.
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Fig. 3.1 portrays an example of a WSN having three sensor nodes which are

labeled with i, j and h. The starting times and time-periods of the sensor nodes

are different and we let c = 4. The dashed lines represent the time instants when

the control update is applied to some sensor node(s). From Fig. 3.1, it can be

seen that at time instant t1, the communication link between node j and i is

not available, and node j transmits to node h only. At time instant t2, sensor

node h utilizes the delayed state information transmitted by senor node j at t1,

but transmits its own state information to sensor node i only. We write that

N (Gf (t1), j) = {h}, N (Gu(t2), h) = {j} and N (Gf (t2), h) = {i}. At time instants

t3 and t4, no communication occurs in the WSN. We can also see that during the

time interval [tj1, t
j
4], sensor node j successfully transmit information at least once

to its neighbors.

Node i

Node j

Node h

ti0

tj0

th0

tj1

th1

ti1

tj2 tj3 tj4

th2

ti2

tj5

0 t1 t2 t3 t4 t5 t6 t7

i j

h

i j h i h j

i h j i j h

j i h i j h

The union of transmission topologies, Gn, in a WSN

Transmission topology Gf (t1) Transmission topology Gf (t2)

Topologies Gf (t3) and Gf (t4) Transmission topology Gf (t5)

Transmission topology Gf (t6) Transmission topology Gf (t7)

Figure 3.1: Control input update and transmission timings of a WSN having 3
sensor nodes labeled as i, j, and h. The union of transmission topologies in the
WSN and the transmission topologies at some particular time instants are also
shown.

3.3 Main Results

Before presenting the main results, we define a new time-sequence T := {tr},
where r = 0, 1, 2, ..., which is the union of the distinct values of the sequences

{tis ≥ max{t̃j0, j = 1, ..., n}, i = 1, ..., n, s ∈ N}. We order the elements of T such

that tr < tr+1. We redefine the interaction topology Gf in terms of the new time-

sequence, T . We write (vj, vi) ∈ E(Gf (tr)) if sensor node i transmits information
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to j at tr. If there exists s such that tis = tr and j ∈ N (Gn, i), and only the most-

recent transmitted data is considered, then there exists a time instant, denoted by

tr−dij(tr), where dij(tr) ∈ N, such that state information from sensor node j was

transmitted to i and we can write i ∈ N (Gf (tr−dij(tr)), j) and j ∈ N (Gu(tr), i). We

let dii(tr) = 0,∀i, r and define the following:

αi(tr) =
1∑

j∈{i}
⋃
N (Gu(tr),i)

αij(tr)
,

where αij(tr) are time-varying weighting factors. We present the following protocol

for achieving time synchronization:

ui(tr) = αi(tr)

 ∑
j∈{i}

⋃
N (Gu(tr),i)

αij(tr)
(
xj(tr−dij(tr))− xi(tr−dij(tr))

) , (3.3)

where αij(tr) are chosen from a known non-negative and finite set Λ, αii(tr) > 0,

and αij(tr) satisfy the following:

0 <

d1∑
q=d2

(ᾱi(tq)αij(tq)) < 1 , j 6= i , (3.4)

where td1 is the most recent time instant when node j transmitted to node i and

td2 is the second most recent time instant when node j transmitted to node i.

Remark. It should be noted that a sensor node i updates its control input at tis,

where i = 1, ..., n and s ∈ N. From the definition of time-sequence T , it can be

observed that ui(tr) = 0 when tr ∈ (tis, t
i
s+1), no matter what values αii(tr) takes.

In the literature, a protocol similar to (3.3) has been presented for synchronized

distributed systems in various papers (see e.g. [77], [108], [19], [63]). For asyn-

chronous continuous-time systems, a protocol similar to (3.3) has been presented

in [107], [17], [38]. For asynchronous discrete-time systems, a protocol similar to

(3.3) has been presented in [91] without time-delays and using reliable communi-

cation links. In this chapter, we study protocol (3.3) for asynchronous distributed

systems where the transmission links are unreliable, the communication topology

is changing (and may not be connected at some time instants), and the protocol

has to consider time-delayed state information from neighbors. We now present

the following theorem.

Theorem 3.1. If the WSN satisfies assumptions (B1), (B2) and (B3), and the

weighting factors belong to Λ and satisfy (3.4), then the clocks of the sensor nodes

achieves time synchronization using protocol (3.3).
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To analyze the correctness of Theorem 3.1, we need to substitute protocol (3.3) in

the local clock models of the sensor nodes and represent them by a single system.

The resulting augmented system is a time-varying system with time-delay terms

and has a special structure which will be explored in the next section and the proof

will be presented there. We define a new state as follows:

yi(tr) = xi(tr)− (tr − t0), i, j = 1, ..., n. (3.5)

We re-write the model expressed in (3.1) as follows:

yi(tr+1) = yi(tr) + ui(tr), yi(t0) = xi(t0). (3.6)

It should be noted that the value of yi(tp) during the time interval tp ∈ [tis, t
i
s+1) does

not change, where i = 1, ..., n and s ∈ N. The time-synchronization objective (3.2)

can also be expressed as follows:

lim
r→∞

(yi(tr)− b) = 0, i = 1, ..., n, (3.7)

for some b. We re-write the control protocol expressed in (3.3) as follows:

ui(tr) = αi(tr)

 ∑
j∈{i}

⋃
N (Gu(tr),i)

αij(tr)
(
yj(tr−dij(tr))− yi(tr)

) . (3.8)

The control protocols expressed in (3.8) and (3.3) are the same using the state

transformation defined by (3.5). The following lemma states the equivalence be-

tween the system models expressed in (3.6) and (3.1).

Lemma 3.2. If system (3.6) using protocol (3.8) achieves the time-synchronization

objective as expressed by (3.7), then system (3.1) using protocol (3.3) achieves time

synchronization described by (3.2).

Proof. Let us consider any initial values of system (3.6). For any sensor node i at

time tr, if there exists s such that tr = tis, then we compute and apply ui(tr) to

sensor node i. Furthermore, for any node i if tr 6= tis for any value of s, then we write

yi(tr+1) = yi(tr). Therefore, the value of yi(tp) during the interval tp ∈ [tis, t
i
s+1)

remains the same, where i = 1, ..., n and s ∈ N. By applying protocol (3.8), if

system (3.6) achieves the time synchronization objective as expressed by (3.7),

then limr→∞ ui(tr) = 0 and we can write the following:

lim
r→∞

(xi(tr)− (tr − t0)) = b, i = 1, ..., n,
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for some b. Let mx = maxi{ziτi}. For any t̃ik > t0 and i = 1, ..., n, we state that

there exists r ∈ N such that tr(k) ≤ t̃ik < tr(k)+1 and |t̃ik − tr(k)|< mx. We can

further state that if k → ∞, then r(k) → ∞. As limr(k)→∞ ui(tr(k)) = 0, under

assumption (B2) we conclude the following:

lim
k→∞

(xi(t̃
i
k)− (t̃ik − t0 + b)) = 0, i = 1, ..., n.

The following lemma computes an upper bound on the time interval in which each

sensor node can utilize the information transmitted by its neighbor.

Lemma 3.3. Let g = maxi{ziτi}
mini{ziτi} where i = 1, ..., n. For any sensor node i = 1, ..., n

and s ∈ N, the number of elements in the set {tp : tp ∈ [tis, t
i
s+1)} is not greater

than m, where m = (dge) (n− 1) + 1, and dge denotes the smallest integer not less

than g. For any two neighboring nodes i and j, if node i transmits to node j at tr,

then node j utilizes the information, transmitted by node i at tr, no longer than

tr+m(c−1)+1.

Proof. Let j be the sensor node such that zjτj ≥ ziτi where i = 1, ..., n, i 6= j,.

When sensor node j updates its control input at tjs, the maximum number of times

any sensor node i can update its control input before the time instant tjs+1 can

not exceed dge, where i = 1, ..., n, i 6= j. Since there are n − 1 possible values

of sensor node i (excluding i = j), we conclude that the number of elements in

{tp : tp ∈ [tjs, t
j
s+1)} is not greater than m. Furthermore, using assumption (B1),

we can state that the number of elements in {tp : tp ∈ [tjs, t
j
s+c−1)} is not greater

than m(c− 1).

Let e = 1, . . . ,m(c− 1) where m is computed using Lemma 3.3 and c is a known

integer as defined in assumption (B1). Let us define the matrices Ae(tr) = [aepq(tr)]

as follows:

aepq(tr) =

{
αp(tr)× αpq(tr) if p ∈ N (Gf (tr−e), q) and e = min{e′ : tr−e′ = tqs, ∃s},

0 otherwise.

We define another matrix A0(tr) = [a0pq(tr)] as follows:

a0pq(tr) =


αp(tr)× αpq(tr) if p ∈ N (Gf (tr), q) and ∃s s.t. tr = tqs,

1−
m(c−1)∑
d=0

n∑
l=1,l 6=p

adpl(tr) if p = q ,

0 otherwise.
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Let y(tr) = [y1(tr), . . . , yn(tr)]
T denote the augmented state vector. The dynamics

of the augmented system can be written as follows:

y(tr+1) =

m(c−1)∑
d=0

Ad(tr)y(tr−d). (3.9)

It should be noted that augmented system expressed in (3.9) is a time-varying

system having time-delay terms. With this preparation, we present the proof in

the next section.

3.4 Technical Analysis

To proceed with the proof, let Φ(tr) = [y(tr)
T , y(tr−1)

T , y(tr−2)
T , ..., y(tr−m(c−1))

T ]T ,

where r > m( c − 1 ) + 1; then we can write the following:

Φ(tr+1) = Ψ(tr)Φ(tr),

where

Ψ(tr) =


A0(tr) A1(tr) . . . Am(c−1)(tr) Am(c−1)(tr)
I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0

 . (3.10)

The following lemma states some useful properties of Ψ(tr).

Lemma 3.4. Let αmin and αmax denote the minimum and maximum elements of

Λ. Given the matrix Ψ(tr) as expressed in (3.10), the following statements hold:

(a) All non-zero elements of Ψ(tr) are not less than η, where η = αmin

nαmax
, and not

greater than 1.

(b) Ψ(tr)1 = 1.

(c) The possible numerical values of Ψ(tr) are finite.

Proof. By the definition of the matrices Ah(tr), h = 1, ...,m(c−1), we can see that

each non-zero element of Ah(tr) is less than 1. A sensor node can have maximum

n− 1 neighbors. Let us consider a WSN where sensor node k has n− 1 neighbors,

where k = 1, ..., n. At a given time instant tr, we consider three extreme possible

values of the weighting factors as follows:

(i) We choose αki(tr) = αmin, where i, k = 1, ..., n, and obtain ᾱk(tr) = 1
nαmin

.
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(ii) We choose αkj(tr) = αmin for some neighbor node j, where k = 1, ..., n and

αki(tr) = αmax, where i = 1, ..., n, i 6= j, and obtain ᾱk(tr) = 1
αmin+(n−1)αmax

.

(iii) We choose αki(tr) = αmax, where i, k = 1, ..., n, and obtain ᾱk(tr) = 1
nαmax

.

Using the definition of matrices Ad(tr), where d = 1, ....,m(c− 1), and considering

(i), (ii) and (iii), we can observe that all non-zero elements ofAd(tr) are greater than

η for any values of the weighting factors. Using similar arguments, we can state

that all off-diagonal elements of A0(tr) are also greater than η. Let k = 1, ..., n; we

use the definition of diagonal elements of A0(tr) to state the following:

a0kk(tr) = 1−

n∑
l=1,l 6=k

αkl(tr)

αkk(tr) +
n∑

l=1,l 6=k

αkl(tr)

,

=
αkk(tr)

αkk(tr) +
n∑

l=1,l 6=k

αkl(tr)

,

>
αmin

nαmax

.

Thus, the diagonal elements of A0(tr) are greater than η for any values of the

weighting factors. The sum of each row in Ψ(tr) is 1. Hence, statements (a) and

(b) are correct. We know the number of sensor nodes is finite, the elements of Λ are

finite, and all possible communication topologies of the WSN are finite. Therefore,

all possible values of Ψ(tr) where r = 0, 1, 2, ...., are finite. Hence, statement (c)

holds.

The following lemma presents useful results which are required to complete the

proof.

Lemma 3.5 ([107]). Let S1, S2, ..., Sm be n× n nonnegative matrices and let

P =


S1 S2 S3 . . . Sm−1 Sm
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0

 ,
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Q =



I 0 0 . . . 0 0
I 0 0 . . . 0 0
0 I 0 . . . 0 0
0 0 I . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . I 0


,

and Rk = P +Qk for any k ∈ {1, 2, ...,m− 1}. If G(
∑m

i=1 Si) has a spanning tree,

then G(Rk) contains a spanning tree such that the root vertex of that spanning tree

has a self-loop in G(Rk).

Proof. Let S = S1+S2+....+Sm, the vertex set of G(S) be V(G(S)) = {s1, s2, ..., sn}
and edge set E(G(S)). Let the vertex sets of G(P ) and G(Q) be V(G(P )) =

{p1, p2, ..., pmn} and V(G(Q)) = {q1, q2, ..., qmn}, respectively, and edge sets of

G(P ) and G(Q) be E(G(P )) and E(G(Q)), respectively. Let the vertex set for

the graphs G(Rk), where k = 1, 2, . . . ,m − 1, be the same and expressed as

V(G(Rk)) = {r1, r2, ..., rmn}. Let the edge set of G(Rk) be denoted by E(G(Rk)),

where E(G(Rk)) = E(G(P ))∪E(G(Qk)). It can be observed that for any i = 1, ..., n,

we have (qi, qi) ∈ E(G(Q)). Furthermore, for any i = 1, ..., n, we have (qi, qi+n),

(qi+n, qi+2n), (qi+2n, qi+3n), . . . , (qi+(m−2)n, qi+(m−1)n) ∈ E(G(Q)). Investigating the

elements in E(G(Qk)), we observe the following:{
(qi, qi), (qi, qi+n), (qi, qi+2n), . . . , (qi, qi+kn), (qi+n, qi+n(k+1)), (qi+2n, qi+n(k+2)), . . . ,

(qi+n(m−k−1), qi+n(m−1))
}
∈ E(G(Qk)), ∀i = 1, ..., n.

If (si, sj) ∈ E(G(S)), then we can always find p′ ∈ [0,mn−1] such that (ri+p′ , rj) ∈
E(G(R)). Therefore if G(S) has a spanning tree and si is its root vertex, then we

can claim that G(Rk) also has spanning tree and ri is its root vertex. Furthermore,

if S1 ≥ µI and G(S) has a spanning tree, then the root vertex of the spanning tree

in G(Rk) has a self-loop.

Using Lemma 3.4, we observe that Ψ(tr) is a stochastic matrix, ∀r such that

r > m(c− 1). We further obtain that during the time interval [tr, tr−m(c−1)], every

sensor node receives information at least once from its neighbors. Under assump-

tion (B2), we then conclude that the graph obtained by the union of topologies

Gu(tr),Gu(tr−1), ...,Gu(tr−m(c−1)) contains a spanning tree for any value of r such

that r > m ( c − 1 ). Applying Lemmas 3.5 and 2.1, we can establish that Ψ(tr)

is SIA.

Using Lemma 3.4(c), we know that all possible Ψ(tr) are finite. Any product

which involves a finite combination of Ψ(tr), where r > m ( c − 1 ), is SIA. So,

33



we can apply Lemma 3.1 to get the following conclusion:

lim
l→∞

l∏
r=c(m−1)

Ψ(tr) = 1wT .

The vector w depends on the order in which the matrices Ψ(tr) are multiplied,

where r = m(c− 1),m(c− 1) + 1,m(c− 1) + 2, . . . , and it can not be computed in

advance. We can further write the following:

lim
r→∞

y(tr) = 1wTy(t0) =

w
Ty(t0)

...
wTy(t0)

 .

Hence we complete the proof by taking b = wTy(t0).

3.5 Numerical Examples

In this section, we present two examples to illustrate the effectiveness of the pro-

posed protocol.

Example 1: Small-size WSN

We consider a WSN having 8 sensor nodes. We assume the communication links are

unreliable and choose c = 5, Λ = {1, 2, 3}. The union of possible communication

topologies in the WSN is shown in Fig. 3.2. The values of different parameters

are listed in Table 3.1. For simulation purposes, we compute the relative time

synchronization error of sensor node i with respect to its neighbor nodes, denoted

by ei(tr), as follows:

ei(tr) =
∑

j∈N (Gu(tr),i)

|(xi(tr)− xj(tr))|, i = 1, ..., 8.

By applying the proposed protocol in 3.3, the WSN was simulated for 70 seconds.

Fig. 3.3 illustrates a plot of the local clock readings in the WSN. The magnitudes

of the local control inputs are plotted in Fig. 3.4. The sum of relative time syn-

chronization errors is shown in Fig. 3.5. Based on the plots, we can conclude that

this WSN achieves time synchronization using the proposed protocol.

Example 2: Medium-size WSN

We consider a medium-size WSN having 60 sensor nodes. We assume the commu-

nication links are unreliable and choose c = 7, Λ = {0.1, 0.2, 0.3, 0.4, ..., 3}. Fig. 3.6
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Figure 3.2: The union of possible communication topologies of a WSN considered
in Example 1 having 8 sensor nodes. The lines indicate the presence of possible
communication channels for transmitting information.

Table 3.1: Parameter values used to simulate the WSN as shown in Fig. 3.2
Sensor Time-period Actual starting Estimated starting Value of
Node (sec) time (sec) time (sec) z

1 0.05 1.4 -3.5 100
2 0.01 0.3 4.69 100
3 0.1 2 0 10
4 0.04 2.01 -12.5 10
5 0.02 1 13.25 100
6 0.01 0.04 -15.19 10
7 0.1 0.12 20.04 10
8 0.2 0 -7.34 10

shows the union of possible communication topologies of the WSN. We randomly

select the parameter values for different sensor nodes from Table 3.1. For simula-

tion purposes, we compute the relative time synchronization error of sensor node

i with respect to its neighbor nodes, denoted by ei(tr), as follows:

ei(tr) =
∑

j∈N (Gu(tr),i)

|(xi(tr)− xj(tr))|, i = 1, ..., 60.

We simulate the WSN for 35 seconds by applying the proposed protocol. Fig. 3.7

shows a plot of the sum of relative time synchronization errors. Based on the

simulation examples, it can be concluded that by using protocol (3.3), this WSN
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Figure 3.3: Plot of the local clock readings of a WSN considered in Example 1.
The plot demonstrates the effectiveness of the proposed protocol to achieve time
synchronization. The union of possible communication topologies of the WSN is
shown in Fig. 3.2.
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Figure 3.4: Plot of the local control inputs applied to the WSN considered in
Example 1. The union of possible communication topologies of the WSN is shown
in Fig. 3.2.

also achieves relative time synchronization.
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Figure 3.5: Plot of the sum of the relative time synchronization errors in the WSN
considered in Example 1. The graph of the union of communication topologies of
the WSN is shown in Fig. 3.2.
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Figure 3.6: The graph of union of communication topologies of a WSN considered
in Example 2 having 60 sensor nodes. The lines indicate the presence of commu-
nication channels only and do not indicate if at any particular time instant any
information is exchanged on the communication link.
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Figure 3.7: Plot of the sum of the relative time synchronization errors in the WSN
considered in Example 2. The graph of the union of communication topologies of
the WSN is shown in Fig. 3.6.

3.6 Concluding Remarks

Time synchronization is a basic assumption in most distributed control and mon-

itoring applications. In this chapter, we investigated the design of a distributed

time synchronization protocol for WSNs by borrowing tools from linear control

theory and consensus algorithms. The protocol design considers asynchronous

framework where the interaction graphs are not connected at some time instants,

the communication channels are unreliable and time-delayed information is utilized

to compute local control inputs. By employing tools from stochastic matrix and

algebraic graph theories, we presented the convergence analysis of the proposed

algorithm. Simulation results were provided to illustrate the effectiveness of the

proposed protocol.
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Chapter 4

Optimal H2 Filtering in WSNs*

4.1 Introduction

A wireless sensor network (WSN) consists of sensor nodes which are spatially dis-

tributed to monitor some process of interest. Each sensor node has limited com-

putation, communication and battery resources, which must be efficiently utilized.

The efficient utilization of battery resources introduces constraints on the time syn-

chronization and the sampling rates of the sensor nodes. The non-synchronization

of sensor nodes introduces sampling jitters. The presence of sampling jitters gives

rise to non-uniform sampling. Most of the standard control and monitoring tech-

niques rely on uniform and synchronized sampling. Therefore, to apply the stan-

dard techniques we need to design an algorithm to minimize the effect of unsyn-

chronized sampling. In this chapter, we propose a method to handle sampling

jitters and reconstruct uniformly sampled measurements obtained using a WSN.

We assume that the sampling jitter is known and fixed for each sensor, therefore,

it can be modeled by a continuous-time drift (delay/advance) transfer function.

To increase the sampling rate of a WSN, distributed sampling can be employed

[53, 39]. As illustrated in Chapter 1, distributed sampling uses a combination

of M sensors to sample a common input signal. Each sensor samples at a rate

of 1/M samples/sec. The outputs of these sensors are multiplexed to produce

a fast sampled signal. Therefore, multiple sensors can be used to distribute the

sampling load across the sensors. The advantage of distributed sampling is that

slow sampling sensors can be added in parallel to act like a fast sampling sensor.

A popular approach to model distributed sampling sensors is to use filter banks

[57, 30, 101]. Digital multi-rate filter banks have been widely studied in signal

processing; Vaidyanathan’s book [100] gives a comprehensive historical survey of

*A version of this chapter has been published in [4].
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the literature till 1992. The design of multi-rate filters using H∞ optimization was

originally proposed in [89]. This design was later extended to discrete-time filter

banks in [26] and hybrid filter banks in [90]. However, in both cases the authors

considered rational transfer functions whereas in this chapter fractional delays are

considered which are not rational transfer functions in continuous-time. In [56],

the authors considered delays which are integer multiples of the sampling period,

for the design of filter bank. In [75], the authors considered fractional delays for the

design of filter bank usingH∞ optimization. To our best knowledge, the filter bank

design for fractional delays using H2 optimization has not been studied in WSNs.

The main contribution of this chapter is to propose a technique for discretization

of fractional delays and reconstruction of uniformly sampled measurements by

designing synthesis filters based on the minimization of the H2 norm of the error

system.

The H2 norm of a stable system has a meaningful interpretation for determin-

istic as well as stochastic inputs (see, e.g., [27]). If we consider the input to be a

unit impulse, then the average of the output energy equals the square of the H2

norm of the system. Furthermore, if we consider the input to be white noise having

zero mean and unit variance, then the root-mean-square of the output equals the

H2 norm of the system. Therefore, the design objective was chosen based on the

H2 norm optimization, which results in the optimal and stable synthesis filters.

The design procedure is implemented in a control room where computing power is

abundant.

The remainder of this chapter is structured as follows: In Section 4.2, the

methods of discretization of a sampled-data and a fractional delay system are

presented. The problem formulation and system modeling using multi-rate hybrid

filter bank are discussed in Section 4.3. The optimal H2 filter design procedure for

obtaining infinite impulse response (IIR) and finite impulse response (FIR) filters

is presented in Section 4.4. An example to demonstrate the effectiveness of the

proposed design procedure is given in Section 4.5.

4.2 Preliminaries

Let us consider a linear time-invariant system, G, in continuous (discrete) time.

The impulse response of G is denoted by the lower case g and its state-space

realization by a 2× 2 packed notation. Thus in continuous-time[
A B
C D

]
:= D + C(sI − A)−1B,
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and in discrete-time [
A B
C D

]
:= D + C(zI − A)−1B.

There are different methods to discretize a continuous-time system such as step-

invariant, impulse-invariant, bilinear and norm-invariant discretization. In this

thesis, the step-invariant and norm-invariant discretizations are considered, which

are briefly explained below.

4.2.1 Step-invariant discretization

Let us consider a continuous-time system denoted by G and having the following

representation:

G(s) =

[
A B
C 0

]
, (4.1)

where A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n. The step-invariant discretization of

G is defined as Gd = SGH, where H is the zero-order hold and S is the sampler,

both operating with period h. The discrete-time system, Gd, is given as follows

(see, e.g., [27]):

Gd(z) =

[
ehA

∫ h
0
eτAdτB

C 0

]
. (4.2)

4.2.2 Norm-invariant discretization

The norm-invariant discretization of a continuous-time system as in (4.1) is given

as

Gj(z) =

[
Aj Bj

C 0

]
, (4.3)

where Aj = ehA and Bj is a matrix satisfying BjB
T
j =

∫ h
0
eτABBT eA

T τdτ . The

mathematical details for computation of Bj are given in [27].

4.2.3 Norm of sampled systems

A sampled system, SG : L2(R)→ `2(Z), maps continuous-time signals to discrete-

time signals. The H2 norm of SG is defined as the average of total energy of

outputs when impulses are applied in one period to the input channels. The H2

norm of SG can be expressed as follows [27]:

‖SG‖2=

(
1

h

∫ h

0

(
p∑
i=1

‖SGcδ(t− τ)ei‖22

)
dτ

)1/2

,
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where δ(t) represents a continuous-time unit impulse function and ei represent the

standard basis vectors in Rp. The following lemma is quite useful to relate the H2

norm of SG to the norm a discrete-time system.

Lemma 4.1. [54] The H2 norm of SG is related to the norm of a certain discrete-

time system as expressed below:

‖SG‖2=
1√
h
‖Gj‖2,

where Gj is defined as in 4.3.

Proof. The impulse response, g(t), of G can be written as follows:

Gδ(t) = g(t) = CeAtB1(t).

where 1(t) is the continuous-time unit step function. Then, we can write the

following:

Gδ(t− τ) = CeA(t−τ)B1(t− τ),

SGδ(t− τ) =
{

0, CeA(h−τ)B,CeA(2h−τ)B, ..., CeA(kh−τ)B, ...
}
,

SGδ(t− τ) =
∞∑
k=1

(
CeA(kh−τ)B

)
.

For multi-input system, we can write the following:

p∑
i=1

‖SGδ(t− τ)ei‖22 = trace

(
∞∑
k=1

(
CeA(kh−τ)BBT eA

T (kh−τ)CT
))

,

1

h

∫ h

0

(
p∑
i=1

‖SGδ(t− τ)ei‖22

)
dτ =

1

h
trace

(
∞∑
k=1

(
CeAkh

∫ h

0

(
e−AτBBT e−A

T τdτ
)
eA

T khCT

))
.

A change of variables from (k − 1)→ k and (h− τ)→ τ yields the following:

‖SG‖22 =
1

h
trace

(
∞∑
k=0

CeAkhBjB
T
j e

AT khCT

)
,

‖SG‖22 =
1

h
trace

(
∞∑
k=0

CAkjBjB
T
j A

T
j

k
CT

)
,

‖SG‖22 =
1

h
‖Gj‖22.
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4.2.4 Discretizing a time-delay transfer matrix

Let us consider a linear, time-invariant (LTI) time-delay system with transfer ma-

trix given as

Gtd(s) = e−τsG(s),

where G(s) is a real rational and strictly-proper transfer matrix. We note here that

the delay transfer matrix is not rational. If τ is an integer multiple of the sampling

period h, then it can be discretized by using a discrete-time delay. However, if τ

is not an integer multiple of h, then we need a method to discretize the time-delay

system. In this section, we derive a finite-dimensional discrete-time transfer matrix

for a time-delay system where the delay is not an integer multiple of h. For such

a system, the delay can be decomposed as

τ = lh− τ0,

where l ∈ Z and τ0 is a fractional delay. The time-delay transfer matrix can also

be described by equations as follows:

Gtd(s) =

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t− τ).
(4.4)

where x(t) ∈ Rn, u(t) ∈ Rr and y(t) ∈ Rm are the state, input and output

vectors, respectively; A, B and C are constant matrices of appropriate dimensions.

Using the step-invariant discretization, let the discrete-time system be denoted by

Gd = SGtdH. Let the discrete-time state and input vectors be denoted by xd and

ud, respectively. The discrete-time state equation can be written as follows:

xd(k + 1) = ehAxd(k) +

∫ h

0

etAdtBud(k).

The output equation can be written as

yd(k) = Cx[(k − l)h+ τ0]. (4.5)

Using the state equation, we can also write

x[(k − l)h+ τ0] = eτ0Axd(k − l) +

∫ τ0

0

etAdtBud(k − l).

Substituting this into (4.5), the following is obtained:

yd(k) = Ceτ0Axd(k − l) + C

∫ τ0

0

etAdtBud(k − l).
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The discrete-time transfer matrix for the LTI time-delay system, expressed by (4.4),

can be written as

Gd(z) = z−l
[
Ad Bd

Cd Dd

]
, (4.6)

where Ad = ehA, Bd =
∫ h
0
etAdtB, Cd = Ceτ0A and Dd = C

∫ τ0
0
etAdtB. Using a

similar derivation for the norm-invariant discretization, the discrete-time transfer

matrix can be written in a similar way as (4.6), where Ad and Cd remain the same

and Bd and Dd are redefined. Bd is a matrix satisfying

BdB
T
d =

∫ h

0

eτABBT eA
T τdτ.

Dd is defined as Dd = CBdd, where Bdd is a matrix satisfying

BddB
T
dd =

∫ τ0

0

eτABBT eA
T τdτ.

4.2.5 Multi-rate components

Let us consider an up-sampler, denoted by E, whose function is to increase the

sampling rate by inserting zeros between the input measurements [100]. Let the

discrete-time input signal to E be denoted by u[n]. If we consider the up-sampling

rate to be 3, then we can write the following:

E : {u[0], u[1], u[2], . . .} 7→ {u[0], 0, 0, u[1], 0, 0, u[2], 0, 0, . . .}.

A down-sampler decreases the sampling rate. Let a down-sampler be denoted by

W and the input to W by f [n]. If we consider the down-sampling rate to be 3,

then we can write the following:

W : {f [0], f [1], f [2], f [3], f [4], . . .} 7→ {f [0], f [3], . . .}.

With these definitions, we proceed to the next section and formulate the problem.

4.3 Problem Formulation

A WSN employing distributed sampling can be modeled by a filter bank having

analysis and synthesis filter banks [56]. The analysis filter bank represents the

slow sampling sensor nodes. Each slow sampling sensor node samples the input

signal and transmits it over a communication channel. Due to sampling jitters, the

sampling pattern is non-uniform and the objective is to design a synthesis filter
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bank to minimize the effects of sampling jitters. In order to optimally design the

synthesis filters, we consider an error system, denoted by K. The schematic of K

is shown in Fig. 4.1, where f(t), ŷo[n] and e[n] denote the continuous-time input

signal, discrete-time reconstructed output and reconstruction error, respectively.

The fast sampling sensor node represents a fictitious senor which does not have

sampling jitters; it is considered for design purposes only and is not present in the

actual implementation. The slow sampling sensor nodes have sampling jitters.

-
f(t)

Fast Sampling Sensor Node
y[n]

- Filter bank
tolerance delay

-
f(t) Slow Sampling

Sensor Nodes

-
-

...
-

Synthesis

Filter Bank

ŷo[n]

?

6

h+
−

-
e[n]

Figure 4.1: Schematic of the error system, K.

The error system, K, is modeled by a hybrid filter bank as illustrated in Fig. 4.2.

The anti-aliasing filter, Φ0(s), along with the sampler, Sh, in the top channel

of the error system model the fast sampling sensor node having period h and

without any sampling jitters. The remaining channels model slow sampling sensors

having anti-aliasing filters, Φi(s), and samplers, SMh, where i = 1, ...,M and M

is the total number of sensors. The synthesis filters, which are needed to be

designed, are denoted by Fi(z), i = 1, ...,M . The delay transfer matrices are

denoted by e−Tis, i = 1, ...,M ; whereas the filter bank tolerance delay is denoted

by Um with transfer function z−m. The up-samplers are denoted by E and they

increase the sampling rate by a factor of M . It should be noted that for ideal

distributed sampling (without sampling jitters), the delay transfer function is e−Tis

with Ti = ih, 1 ≤ i ≤ M . In the case of sampling jitters, Ti = ih ± di, where

di are the sampling jitters. We assume that the sampling jitters are bounded and

can be expressed as −h/2 < di < h/2. Therefore, if sampling jitters are positive

or negative, the time delay transfer function, e−Tis, can be treated as a fractional

delay transfer function.

The hybrid system, K, is a time-varying but Mh-periodic system. Hence, there
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Figure 4.2: The hybrid error system, K, modeling a WSN employing distributed
sampling. The solid lines show continuous-time signals and the dashed lines depict
discrete-time signals.

is no transfer function whoseH2 norm can be defined. TheH2 norm of K is defined

as the average of the output energy when impulses are applied in one period at

the inputs. The H2 norm of K can be expressed as follows:

‖K‖2=
(

1

Mh

∫ Mh

0

‖Kδ(t− τ)‖22 dτ
)1/2

,

where δ(t) denotes the unit impulse function. The objective of the hybrid filter

bank is to design the synthesis filters to minimize ‖K‖2.

4.4 H2 Filter Design

In this section, we convert the hybrid filter bank problem into a discrete-time

model-matching problem. This is achieved in two steps. First, the continuous-time

part of the hybrid filter bank is discretized to obtain a time-varying discrete-time

system, Kd. Next, by using the polyphase representation along with the lifting

technique, the system is converted into a standard model-matching form for H2

filter design.

4.4.1 Reduction to a model-matching problem

The hybrid error system involves samplers Sh and SMh, with different periods. Let

W be a down-sampler by a factor of M . It can be easily verified that

SMh = WSh.
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Thus, with the introduction of down-samplers, all the samplers in the hybrid multi-

rate system are having the same period, h. The continuous-time part of the hybrid

error system can be discretized using the norm-invariant discretization as expressed

by (4.6). Let the discrete-time transfer functions for the continuous-time part of

each channel be denoted by Hi(z), i = 0, ..,M . The hybrid system after discretiza-

tion is denoted by Kd, which can be expressed as follows:

Kd = UmH0 − (F1EWH1 + ...+ FMEWHM).

It should be noted that Kd is time-varying due to the presence of up- and down-

samplers. For ease of derivation, we consider the case for 2 channels which can be

extended to any finite number of channels. Hence, M = 2 and we can write the

following equation:

Kd = UmH0 −
[
F1 F2

] [E 0
0 E

] [
W 0
0 W

] [
H1

H2

]
.

Next, the polyphase matrices are introduced for the analysis and synthesis filters.

For the analysis filters, the type I polyphase decomposition is used as follows [100]:[
H1(z)
H2(z)

]
= Q(z2)

[
I

z−1I

]
.

For the synthesis filters, the type II decomposition is used:[
F1(z) F2(z)

]
=
[
z−1 I

]
R(z2). (4.7)

Using the polyphase decompositions and the noble identities (see [100], Fig. 5.5-3),

we obtain the following:

Kd = UmH0 −
[
U I

] [E 0
0 E

]
RQ

[
W 0
0 W

] [
I
UI

]
,

= UmH0 −
[
UE E

]
RQ

[
W
WU

]
.

As the blocking/lifting operator preserves the `2 norm [26], so the norm of Kd

remains unchanged if we pre-multiply and post-multiply Kd correspondingly by[
W
WU

]
U−1,

[
E U−1E

]
.

Hence, it can be written as

‖Kd‖ =

∥∥∥∥[ WWU

]
U−1

{
UmH0 −

[
UE E

]
RQ

[
W
WU

]} [
E U−1E

]∥∥∥∥ ,
= ‖P −RQ‖ .
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Figure 4.3: Equivalent discrete-time LTI error system, Kd.

Finally, we obtain the equivalent discrete-time system as shown in Fig. 4.3. Hence,

minimizing ‖P −RQ‖2 is equivalent to minimizing the norm of the corresponding

transfer matrix, namely, ‖P (z)−R(z)Q(z)‖2.
Let the discrete-time representation for the continuous-time part in each chan-

nel be given as follows:

Hi(z) =

[
AHi

BHi

CHi
DHi

]
, i = 0, 1, 2.

It should be noted that the top channel of the filter bank does not have any

fractional delay, hence DH0 = 0. The following lemma is quite useful to obtain the

state-space representation of Q.

Lemma 4.2. Let N be a causal, LTI discrete-time system having the following

representation:

N(z) =

[
AN BN

CN DN

]
.

Let the polyphase components of N(z) be N0(z
2) and N1(z

2), which can also be

written as follows:

N(z) = N0(z
2) + z−1N1(z

2). (4.8)

Then, N0(z) and N1(z) are representations of WNE and WU−1NE, respectively,

and given as follows:

N0(z) =

[
A2
N BN

CNAN DN

]
=

[
A2
N ANBN

CN DN

]
,

N1(z) =

[
A2
N ANBN

CNAN CNBN

]
=

[
A2
N A2

NBN

CN CNBN

]
.

(4.9)
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Proof. Using the polyphase decomposition, we can easily obtain Eq. (4.8). To

prove that WNE has the transfer matrix N0(z), we can write the following:

WNE = W (N0(z
2) + z−1N1(z

2))E.

Using the identities WE = I, WUE = 0, and the noble identities, we can write

the following:

WNE = N0,

which completes the proof for N0. Similarly, we can write the following:

WU−1NE = WU−1(N0(z
2) + z−1N1(z

2))E.

Using the noble identities, we can write the following:

WU−1NE = WU−1EN0 +WU−1UEN1,

= WU−1EN0 +WEN1,

= N1.

To obtain state-space representations of N0(z) and N1(z), we write the following:[
AN BN

CN DN

]
=
[
DN + z−1CNBN + z−2CNANBN + z−3CNA

2
NBN + . . .

]
,

=
[
DN + z−2CNANBN + . . .

]
+
[
z−1CNBN + z−3CNA

2
NBN + . . .

]
=
[
DN + z−2CNANBN + . . .

]
+ z−1

[
CNBN + z−2CNA

2
NBN + . . .

]
=N0(z

2) + z−1N1(z
2).

We can further write the following:

N0(z
2) =

[
DN + z−2CNANBN + . . .

]
,

N0(z) =
[
DN + z−1CNANBN + . . .

]
,

=

[
A2
N BN

CNAN DN

]
=

[
A2
N ANBN

CN DN

]
.

Similarly, we obtain the following:

N1(z
2) = z−1

[
CNBN + z−2CNA

2
NBN + . . .

]
,

N1(z) =
[
CNBN + z−1CNA

2
NBN + . . .

]
,

=

[
A2
N ANBN

CNAN CNBN

]
=

[
A2
N A2

NBN

CN CNBN

]
.
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Using Lemma 4.2, the representation for Q can be written as follows:

Q(z) =


A2
H1

0 AH1BH1 A2
H1
BH1

0 A2
H2

AH2BH2 A2
H2
BH2

CH1 0 DH1 CH1BH1

0 CH2 DH2 CH2BH2

 . (4.10)

The representation for P takes different forms depending on the filter bank

tolerance delay, m. Let us assume m is even, so that m = 2d for some d ≥ 0.

Then, the representation for P can be written as follows:

P (z) = z−d

 A2
H0

AH0BH0 A2
H0
BH0

CH0AH0 CH0BH0 CH0AH0BH0

CH0 0 CH0BH0

 . (4.11)

If m is odd, m = 2d+ 1, the representation of P can be written as follows:

P (z) = z−d

 A2
H0

BH0 AH0BH0

CH0AH0 0 CH0BH0

CH0 0 0

 . (4.12)

4.4.2 Design of IIR filters

Having the representations of P and Q, we need to convert the model-matching

problem into a standard form as shown in Fig. 4.4. In order to make Fig. 4.3 and

Fig. 4.4 equivalent, we can write the following:

G =

[
P −I
Q 0

]
.

This has the following realization:

G =

[
AG BG

CG DG

]
=


AP 0 BP 0
0 AQ BQ 0
CP 0 DP −I
0 CQ DQ 0

 . (4.13)

This is now a standard H2 optimization problem, which can be solved using tech-

niques available in the literature (see, e.g., [27, 78]).

4.4.3 Design of FIR filters

In this section, we present the design of FIR synthesis filters. We first derive a

state-space representation for the polyphase matrix R(z). Assuming that the FIR

filter order is n, the transfer function for R(z) can be written as follows:

R(z) = a0 + a1z
−1 + a1z

−1 + · · ·+ anz
−n

50



- -

-

G(z)

R(z) �

Figure 4.4: Standard H2 optimization problem.

The state-space realization for R(z) can be expressed as follows:

AR =


0 0 · · · 0

1
. . .

...
...

. . . . . .
...

0 · · · 1 0

 , BR =


1
0
...
0

 ,
CR =

[
an an−1 · · · a1

]
, DR = a0,

where AR ∈ Rn×n and BR ∈ Rn. Hence, designing FIR filters is equivalent to

finding the matrices CR and DR to minimize ‖Kd‖2. Let Kclp denote the close-

loop transfer matrix for the system shown in Fig. 4.4. The realization for Kclp can

be expressed as follows:

Kclp =

[
AK BK

CK DK

]

=

 AG +B2GDRC2G B2GCR B1G +B2GDRD21G

BRC2G AR BRD21G

C1G +D12GC2G D12GCR D11G +D12GDRD21G



=


AP 0 0 BP

0 AQ 0 BQ

0 BRCQ AR BRDQ

CP −DRCQ −CR DP −DRDQ

 .
(4.14)

We observe that the state-space matrices for Kclp depend on CR and DR in a linear

fashion. Hence, linear matrix inequality (LMI) techniques can be used to solve for

the matrices CR and DR [15]. The following lemma is presented for the design of

FIR H2 filters.

Lemma 4.3. [45, 94] For a given β, the close-loop system Kclp satisfies ‖Kclp‖22 <
β2 if and only if there exists a positive definite symmetric matrix X such that the
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following LMIs in X and S are feasible:

[
A′KXAK −X ∗
B′KXAK B′KXBK − I

]
< 0 ,

 X ∗ ∗
0 I ∗
CK DK S

 > 0,

Trace(S)− β2 < 0. (4.15)

Finally, the steps of this filter design procedure are summarized below:

• Inputs: Strictly proper transfer functions, {Φi(s)}2i=0, sampling jitters, d1, d2,

the system tolerance delay, m, the sampling period h.

• Outputs: Synthesis filters, F1(z) and F2(z).

Step 1. Compute H0(z), the discrete-time state-space realization of Φ0(s), using

(4.3).

Step 2. Compute H1(z) and H2(z), the discrete-time state-space realizations of

Φ1(s) and Φ2(s), respectively, by using the norm-invariant discretization

and (4.6).

Step 3. Compute Q(z) and P (z) as expressed by (4.10) and (4.11) or (4.12), re-

spectively.

Step 4. Compute the representation for G as expressed by (4.13).

Step 5. For designing IIR filters, solve the correspondingH2 optimal model-matching

problem, given as

min
R(z)
‖P (z)−R(z)Q(z)‖2.

Step 6. For designing FIR filters, compute Kclp using (4.14) and obtain R using

(4.15) for H2 FIR synthesis filters.

Step 7. Obtain the synthesis filters, F1(z) and F2(z), as expressed by (4.7).

4.5 Numerical Example

In this section, we present an example to demonstrate the effectiveness of the

proposed technique. We consider white noise with zero mean and unit variance

as an input. The number of sensors considered is 2, hence M = 2. The filter

bank tolerance delay considered is m = 11. The anti-aliasing filters are chosen as
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Φi(s) = ω2
c/(s + ωc)

2 for ωc = 0.80 and i = 0, 1, 2. The sampling jitters are taken

as d1 = 0.18 and d2 = −0.23. The sampling period chosen is h = 1. The synthesis

filters were designed using the proposed IIR and FIR filter design technique and

filter design technique based on rounding the fractional delays to the nearest integer

multiple of h [56]. For FIR filter design, we used the Yalmip toolbox and Sedumi

solver in MATLAB [61, 96]. The system of Fig. 4.2 was simulated for 5000 sec.

Table 4.1 summarizes the system norm using the proposed and rounded delay

design techniques. As white noise cannot be generated perfectly with computer

simulations, therefore the system was simulated for 1000 times and the results were

averaged. Fig. 4.5 shows a plot of the average error between the actual output and

desired output for 250 sec. Based on the simulation results, it can be concluded

that the effect of sampling jitters in WSNs can be minimized by the proposed

technique.

Table 4.1: Performance comparison using different design techniques.
Filter design technique System norm

Proposed IIR filter design method 0.0443
Proposed FIR filter design method 0.0485

Design based on rounding delay 0.3245

4.6 Concluding Remarks

This chapter presented the design of discrete-time synthesis filters to minimize the

effect of sampling jitters in WSNs. The WSN was modeled using a hybrid filter

bank. We showed that the hybrid system is H2 norm-equivalent to a discrete-time

system. It was assumed that sampling jitters are fixed and known. In the next

chapter, we relax this assumption and consider time-varying jitters.
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of the filter bank.
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Chapter 5

H∞ Filtering in WSNs

5.1 Introduction

In the pervious chapter, we modeled a wireless sensor network (WSN) using hybrid

filter bank and designed optimal H2 synthesis filters to minimize the effects of sam-

pling jitters. We assumed that the sampling jitters were know. In this chapter, we

study the design of H∞ filters to compensate the effects of time-varying sampling

jitters.

As stated in Chapter 4, the design of multi-rate filters using H∞ norm optimi-

zation was originally proposed in [89]. This design procedure was extended to

discrete-time filter banks in [26] and hybrid filter banks in [90]. However, in both

cases the authors considered uniformly sampled measurements whereas in this

chapter non-uniformly sampled measurements are considered. To our best knowl-

edge, the filter bank design problem using time-varying sampling rates has not

been studied in WSNs. The main contribution of this chapter is to propose a

technique for the design of pre-processing filters to reconstruct uniformly sampled

measurements based on the minimization of the H∞ norm of the error system.

The design of optimal filters has received considerable attention in the fields of

signal processing and control theory (see, e.g., [8, 27]). The filter design problem

becomes complex when the sampling rate is varying and unknown due to the

presence of sampling jitters. The variable sampling rates introduces uncertainty

in the system matrices. In this chapter, we use polytopic matrices to encompass

all possible representations of the uncertain system matrices and design robust

filters to compensate the effects of sampling jitters. Some of the earlier approaches

to design robust filters employed a common Lyapunov function (see, e.g., [41,

99]). However, such design techniques result in conservative results due to a single

common Lyapunov function. The conservatism can be reduced by using parameter-
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dependant Lyapunov functions [29, 9, 42]. The main difficulty in designing filters

using parameter-dependant Lyapunov functions is to find a change of coordinates

to separate the Lyapunov stability matrix from the system matrices to obtain linear

matrix inequalities (LMIs). A robust filter design technique using parameter-

dependant Lyapunov function was proposed in [13]. However, the filter design

conditions were expressed in terms of bilinear matrix inequalities (BMIs), which

are nonconvex, and the computation complexity is high compared to LMIs. This

chapter extends the results presented in [31] to design filters to handle time-varying

sampling rates.

The remainder of this chapter is structured as follows: In Section 5.2, the

problem formulation is presented. The main results are discussed in Section 5.3.

Section 5.4 presents a numerical example which demonstrates the effectiveness of

the proposed technique. Finally, conclusions and future work are summarized in

section 5.5.

5.2 Problem Formulation

A WSN employing distributed sampling can be modeled by a hybrid filter bank as

shown in Fig. 4.2. In this chapter, we focus on the design of filters to handle time-

varying sampling jitters. To make the problem tractable, we assume the input to

slow sampling sensor nodes is in discrete-time as shown in Fig. 5.1. The input to

the WSN is denoted by fk. Let the period of a fast sampling sensor be denoted by

h. When the sampling load is distributed between N sensors, the ideal period of

each slow sampling sensor is Nh. To avoid clutter in notation, let T = Nh. When

sampling jitters are present, the sensors operate at period Ti, where Ti satisfies the

following:

Ti = T + ∆i where ∆min ≤ ∆i ≤ ∆max and i = 1, ..., N. (5.1)

The sampling jitters in each sensor are represented by ∆i. The values of sampling

jitters are unknown and time-varying. It is assumed that the lower bound, ∆min,

and upper bound, ∆max, of the sampling jitters are known. The analysis filters in

Fig. 5.1 are denoted by Φi(s) and the pre-processing filters by Fi(z) where i =

1, ..., N . STi and HTi represent Sample and Hold devices, respectively, operating

at period Ti, where Ti satisfies 5.1 and i = 1, ..., N . The objective of the pre-

processing filters is to minimize the effects of sampling jitters and reconstruct

uniformly sampled measurements which are given to the synthesis filter bank. The
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synthesis filter bank consists of up-samplers and synthesis filters, which reconstruct

the input signal, denoted by f̂k.

-

-

-

fk
HT1

HT2

HTN

-

-

-

Φ1(s)

Φ2(s)

ΦN(s)

-

-

-

ST1

ST2

STN

-

-

-

F1(z)

F2(z)

FN(z)

-

-

-

Synthesis
Filter Bank

-
f̂k

. . . . . . . . . . . .

Figure 5.1: A filter bank showing a WSN employing distributed sampling.

The design of optimal pre-processing and synthesis filter bank simultaneously

is a nonlinear optimization problem. In this chapter, we focus on the design of

pre-processing filters only. The pre-processing filters are designed separately for

each channel. Therefore, we present the design procedure for a given channel,

which should be repeated for each channel. To design a pre-processing filter for a

channel, we construct an error system, K, as shown in Fig. 5.2. The top channel

of the error system is considered for design and simulation purposes only and it

represents an ideal slow sampling sensor operating at time-period T . The bottom

channel represents an actual sensor operating at time-period Ti, where Ti satisfies

(5.1). The input to the anti-aliasing filter is denoted by f(t) and the output by

y(t). For ease of notations, we have denoted the anti-aliasing filter by Φ(s) and

pre-processing filter by F (z). The output of the error system is denoted by ek,

which is the difference between the output of an ideal sensor, yk, and output of

the pre-processing filter, ŷk. We consider F having the following representation:

x̂k+1 = AF x̂k +BF ỹk,

ŷk = CF x̂k +DF ỹk.

The H∞ norm of K can be expressed as follows (see, e.g., [27]):

‖K‖∞ = sup
‖e‖2
‖f‖2

. (5.2)

The objective is to design the filter parameters AF , BF , CF , DF to minimize (5.2).
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Figure 5.2: The error system, K, considered for designing pre-processing filter for
each channel.

5.3 Main Results

In this section, first we represent the error system by a discrete-time, time-varying

system. For the lower channel of the error system, we can not have a discrete-time

representation which can be computed numerically because the actual values of

the sampling periods are unknown. Next, we present a technique of constructing

a polytopic system which encompasses all possible representations of the system

matrices that can be generated due to the presence of sampling jitters. Finally, we

present a filter design technique for uncertain systems.

5.3.1 Discrete-time representation of the error system

Let the representation of Φ(s) be given as follows:

ẋ(t) = Ax(t) +Bf(t),

y(t) = Cx(t).

where A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n. Applying the step-invariant dis-

cretization technique (see e.g., [27]), the discrete-time representation of STΦ(s)HT ,

denoted by Φ(z), can be expressed as follows:

xk+1 = Adxk +Bdfk,

yk = Cxk.

where Ad = eTA and Bd =
∫ T
0
eτAdτB. For the lower channel of the error system,

K, we can not numerically compute the discrete-time representation of STiΦ(s)HTi ,

because the values of Ti are unknown and changing. The variation of Ti causes

uncertainty in the system matrices. Let Ãd(Ti) = eTiA, B̃d(Ti) =
∫ Ti
0
eτAdτB be

the uncertain system matrices, and P̃ (Ti) represent the corresponding uncertain

system. In the next section, we present a technique to construct polytopic system

to encompass all possible representations of Ãd(Ti) and B̃d(Ti).
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5.3.2 Polytopic representation of uncertain system matri-
ces

The actual values of Ti are unknown and the extreme values are only known, which

can be obtained using (5.1). Therefore, Ãd(Ti) and B̃d(Ti) can take values from an

infinite set of system representations. This infinite set can be overapproximated

using a polytopic representation. The advantage of polytopic representation is that

the filter design conditions can be easily derived in terms of LMIs. The main diffi-

culty lies in defining the vertices of the polytopic system due to uncertainty in the

exponential terms of the system matrices. One approach is to use Cayley-Hamilton

theorem (see, e.g., [23, 13]) to compute the matrix exponential and then find the

vertices of the polytope. In the following, we apply Cayley-Hamilton theorem and

present a technique to embed Ãd(Ti) and B̃d(Ti) into polytopic matrices.

Let us denote the eigenvalues of A by λj where j = 1, ..., n. Using Cayley-

Hamilton theorem, we can write the following:

eTiA =
n∑
j=1

βj(Ti)A
j−1,

=
n∑
j=1

θj(Ti)Ωj,

(5.3)

where βj can be determined by solving a set of linear equations defined in terms

of λj, θj are Ti−varying coefficients and Ωj are constant known matrices which

are obtained by collecting the known terms. If we evaluate θj(Ti) at the extreme

values of Ti, then we can write the following:

θ j ≤ θj(Ti) ≤ θ̄j.

Let Ap, p = 1, ..., 2n, represent all combinations obtained by substituting θj and θ̄j

in (5.3), then all possible outcomes of Ãd(Ti) belong to the following polytope:

A =

{
A(α) =

2n∑
p=1

αpAp

}
, (5.4)

where
∑2n

p=1 αp = 1, αp ≥ 0 and α is a time-varying vector containing αp. Similarly,

we can write the following:

B̃d(Ti) =

∫ Ti

0

eτAdτB =

∫ Ti

0

n∑
j=1

βj(τ)Aj−1dτB

=
n∑
j=1

∫ Ti

0

βj(τ)dτAj−1B =
n∑
j=1

ϑj(Ti)Ψj,

(5.5)
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where ϑj(Ti) =
∫ Ti
0
βj(τ) and Ψj = Aj−1B. If we evaluate ϑj(Ti) at the extreme

values of Ti, then we can write the following:

ϑ j ≤ ϑj(Ti) ≤ ϑ̄j.

Let Bp, p = 1, ..., 2n, represent all combinations obtained by substituting ϑj and

ϑ̄j in (5.5), then all possible outcomes of B̃d(Ti) belong to the following polytope:

B =

{
B(α) =

2n∑
p=1

αpBp

}
. (5.6)

There are two main advantages of using Cayley-Hamilton theorem to generate a

polytopic representation of the matrix exponential. The first one is that there is

no approximation involved. Although, the polytope may contain matrices which

cannot be generated by the matrix exponential, but this is the price to be paid

in order to avoid approximating the matrix exponential. The second advantage

is that the uncertain matrix exponential is given as a linear convex combination

of known vertices and αi. For an uncertain time-varying system, if the system

matrices are modeled using polytopic representation, then it is easier to derive

LMI conditions for filter design. In the next section, we present the design of an

H∞ filter for polytopic systems.

5.3.3 Design of an H∞ filter for polytopic systems

Let us define x̄k = [xk x̂k]
T and uk = [fk 0]T , then the estimation error dynamics

can be written as follows:

x̄k+1 = Ā(α)xk + B̄(α)uk,

ek = C̄x̄k,
(5.7)

where

Ā(α) =
2n∑
p=1

αpĀp =
2n∑
p=1

αp

[
Ap 0
BFC AF

]
, B̄(α) =

2n∑
p=1

αpB̄p =
2n∑
p=1

αp

[
Bp

0

]
and

C̄ =
[
C −DFC −CF

]
.

To analyze the H∞ performance of the error system, we present the following

lemma.

Lemma 5.1. The error system (5.7) is asymptotically stable with an H∞ per-

formance given by γ > 0 if there exists matrices G,Q and a symmetric positive
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definite matrix P such that the following matrix inequality holds:
G+G′ − P 0 GĀ−Q′ GB̄

∗ I C̄ 0
∗ ∗ P −QĀ− Ā′Q′ −QB̄
∗ ∗ ∗ γ2I

 > 0.

Proof. It is an extension of discrete-time bounded real lemma to uncertain systems

[28, 31].

Lemma 5.1 can be used for analyzing H∞ performance, however it cannot be used

for designing the filter parameters. The following lemma presents the design of

filter parameters.

Lemma 5.2. Assume there exists matrices G11, G21, G2, Q11, Q21, S1, S2, S3,

S4, Jpp, Kpp, Lpp, and scalars λ1, λ2, where p = 1, ..., 2n such that the following

LMIs hold: 
T11 T12 0 T14 S1 −Q′21 G11Bp

∗ T22 0 T24 S1 − λ2G′2 G21Bp

∗ ∗ I C − S4C −S3 0
∗ ∗ ∗ T44 T45 −Q11Bp

∗ ∗ ∗ ∗ T55 −Q21B
′
p

∗ ∗ ∗ ∗ ∗ γ2I

 > 0,

where

T11 =G11 +G′11 − Jpp,

T12 =G2 +G′21 −Kpp,

T14 =G11Ap + S2C −Q11,

T22 =G2 +G′2 − Lpp,

T24 =G21Ap + S2C − λ1G′2,

T44 =Jpp −Q11Ap − λ1S2C − A′pF ′11 − λ1C ′S ′2,

T45 =Kpp − λ1S1 − A′pQ′21 − λ2C ′S ′2,

T55 =Lpp − λ2S1 − λ2S ′1,

p =1, ..., 2n,

then AF = G−12 S1, BF = G−12 S2, CF = S3 and DF = S4 are the matrices of the

H∞ filter with cost γ.

Proof. The proof follows a similar derivation as in [31].
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5.4 Numerical Example

In this section, we present an example to demonstrate the effectiveness of the

proposed filter design procedure. We consider two sensors, hence N = 2. The

analysis filters are taken from [90] and expressed as follows:

Φ1(s) =
0.145s2 + 0.0677

s3 + 0.3776s2 + 0.2893s+ 0.0677
,

Φ2(s) =
0.0066s5 + 0.0507s3 + 0.0016

s6 + 0.3754s5 + 1.7368s4 + 0.4121s3 + 0.851s2 + 0.0901s+ 0.1176
.

The fast sampling period is chosen as h = 0.5. The bounds of the sampling

jitters are chosen as ∆min = −0.15 and ∆max = 0.20. The pre-processing filters

were designed using the proposed design procedure. The LMIs of Lemma 5.2

were implemented in MATLAB using YALMIP [61] and Sedumi [96]. For the first

sensor, the value of γ using the proposed design procedure is 0.1329, while for the

second it is 0.3998. For simulation purposes, the following test input signal was

considered:

fk = 3e(−0.01k) sin(−0.9k).

The WSN model was simulated for 2000 sec. Fig. 5.3 shows a plot of the error

between the actual output and desired output for 80 sec for both sensors. From

the simulation example, it can be found that using the proposed technique, the

H∞ norm ratio between the error and input for sensor 1 is 0.01345 and for sensor

2 is 0.2633. Based on the simulation results, it can be seen that the proposed

filter design procedure minimizes the effects of sampling jitters. Hence, it can be

concluded that the effects of sampling jitters in WSNs can be minimized by the

proposed design procedure.

5.5 Concluding Remarks

This chapter presented the design of discrete-time pre-processing filters to compen-

sate the effects of sampling jitters in WSNs. A WSN was modeled using filter bank.

It was assumed that the sampling jitters were unknown but bounded. LMI con-

ditions were presented for the design of H∞ filters. The LMI conditions involved

some scalar parameters. For future work, the optimum values of those scalar pa-

rameters can be investigated. Similarly, for future research work the design of

synthesis filters using non-uniform sampling can be considered.
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Figure 5.3: Plot of estimation error using using the proposed H∞ filter design
technique.
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Chapter 6

Summary and Future Work

The rapid technological merging of communication systems, control engineering,

and computing sciences has led to exciting developments in the fields of wireless

sensor networks. Traditionally, control systems had a centralized or a hierarchi-

cal architecture which offered many design advantages. However, these control

systems tend to become complex with the expansion in business units, requiring

more computation capabilities, consuming more space and often requiring wiring

over long distances. The recent trend to avoid these problems is to deploy WSNs.

Although WSNs are very promising, the distributed nature, attributes of wire-

less networks, and availability of limited resources in WSNs introduce significant

theoretical and practical challenges. Motivated by these challenges, this thesis

presented the design of distributed filtering and sampling techniques in resource

constrained WSNs.

In this thesis, we studied the design of distributed time synchronization pro-

tocols which are motivating examples for studying the applications of distributed

filtering techniques. We investigated the design of consensus-based protocols to

achieve distributed time synchronization in Chapter 2. Compared to the popu-

lar distributed time synchronization protocols presented in the literature which

require a hierarchical structure, our proposed protocols are fully distributed and

robust to topology changes in WSNs. We presented the concept of a virtual clock

to illustrate the phenomenon of time synchronization in sensor nodes.

In Chapter 3, we extended the distributed time synchronization protocol pre-

sented in Chapter 2 to an asynchronous framework. We considered unreliable

communication links. We modeled the clocks in a WSN by a time-varying sys-

tem with time-delay terms and presented the convergence analysis by employing

tools from graph and nonnegative matrix theories. The effectiveness of the time

synchronization protocols presented in Chapters 2 and 3 were demonstrated using
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numerical examples.

In Chapter 4, we studied WSNs employing distributed sampling sensors. We

modeled such systems by filter banks. By utilizing the properties of continuous-

time lifting operator and discretizing a fractional time-delay system, we obtained a

norm-invariant discretized system. Next, by employing the polyphase representa-

tion and using the discrete-time lifting technique, we converted the system into a

standard model-matching H2 optimization problem. We also presented the design

of finite impulse response H2 optimal filters. A numerical example was presented

to illustrate the effectiveness of the proposed H2 filter design technique.

In Chapter 5, we presented the design of H∞ pre-processing filters to mitigate

the effects of time-varying sampling jitters. The presence of sampling jitters in-

troduces uncertainty in the exponential terms of the system matrices. We used

polytopic matrices to encompass all possible representations of the system matri-

ces and then reduced the problem to an H∞ optimization problem. We presented

sufficient conditions for the design of pre-processing filters in terms of linear ma-

trix inequalities. All the theoretical developments and proposed techniques in this

thesis were validated using simulation examples.

6.1 Major Thesis Contributions

This thesis is concerned with design of distributed filtering, synchronization and

sampling techniques in WSNs and the main contributions of this thesis are sum-

marized below:

• Chapter 2 presented the design of a consensus-based time synchronization

protocol in WSNs which does not require periodic communication and control

input updates.

• Chapter 3 extended the design of the above-mentioned protocol to include in-

formation exchange over unreliable communication channels and time-varying

communication topologies in WSNs.

• Chapter 4 presented the model of a WSN employing distributed sampling

sensors with sampling jitters using a hybrid filter bank and proposed a novel

technique to reconstruct the uniformly sampled measurements by designing

synthesis filters based on the minimization of the H2 norm of the estimation

error system.
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• Chapter 5 extended the design of distributed sampling models and proposed

another filter design technique in terms of LMIs to recover the uniformly

sampled measurements by minimizing the H∞ norm of the estimation error

system.

6.2 Directions for Future Research Studies

We mention here that WSNs are mainly at the crossroads of three research fields:

control sciences and signal processing, wireless communication and information

theory, and computing science. There are a lot of opportunities to advance this

study and some of the suggested areas for future research studies are listed below:

• Extension of distributed filtering techniques to high order systems

In this thesis, we studied the time synchronization problem which is an appli-

cation of the distributed filtering techniques. We investigated discrete-time,

first order, integrator systems. An interesting extension of the proposed

study is to consider high order systems and investigate distributed filtering

techniques in asynchronous frameworks. In a recent study [38], the authors

investigated the design of consensus-based techniques for second order sys-

tems using an asynchronous framework and presented sufficient conditions in

terms of LMIs to ensure consensus. The authors in [81] applied contraction-

based stability theory to present the convergence analysis for achieving con-

sensus for first order systems. The application of contraction theory to study

distributed filtering techniques for high order systems is still an open prob-

lem.

• Time synchronization using noisy links

The consensus-based time synchronization protocols presented in this thesis

assume the absence of noise in the communication channels. For first order

systems, the presence of noise generates extra terms when expressing the

group dynamics for all the sensor nodes. In [72], the authors considered such

a situation and termed the Laplacian matrix as a deformed Laplacian ma-

trix and presented a deformed consensus protocol. The deformed consensus

protocol worked for the synchronous framework, and future research studies

may include the extension of such protocols to asynchronous frameworks.

• Sampled-data design to handle time-varying jitters

In this thesis, we considered a discrete-time filter bank and introduced a
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zero-order hold at the input of the filter bank to make the problem tractable.

A disadvantage of this approach is that it ignores the inter-sample behavior

of the input signal. The presence of time-varying jitters makes the sampling

pattern non-uniform and introduces uncertainty in the system matrices. For

non-uniform sampling, the idea of non-uniform continuous-time lifting can be

used [71]; however the resulting problem is much harder due to time-varying

operators and discretizing the hybrid system. It requires more research efforts

to have a better understanding and make such problems tractable.
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