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Abstract—Count queries in wireless sensor networks report the num-
ber of sensor nodes for which the measured values satisfy a given
query predicate. However, measurements in wireless sensor networks
are typically imprecise due to limited accuracy of the sensor hardware
or fluctuations in the observed environment. Consequently, queries
performed on these imprecise information implicate imprecise answers.
In this paper, we study the problem of computing continuous probabilistic
count queries in a distributed system, i.e., given a query Q we compute
a probability distribution over the number of sensors satisfying Q’s
predicate. Such queries enables us to compute the probability that
exactly, at most or at least k nodes satisfy Q. We investigate four algo-
rithms that efficiently compute probabilistic count queries in a centralized
manner as well as in-network and/or incrementally. In our performance
evaluation we investigate all proposed algorithms in terms of the number
of sent messages and show that our incremental approach is able to
produce up to 80% less message transfers compared to the centralized
algorithm.

1 INTRODUCTION

A wireless sensor network (WSN) is usually defined as
a set of spatially distributed autonomous sensors that
cooperatively monitor physical or environmental condi-
tions in an area of interest, e.g., [1], [2]. A single sensor
node consists of one (or more) sensors, a microprocessor,
a small amount of memory, a radio transceiver and a
battery [3]. However, measurements by nodes in WSNs
are typically imprecise, be it because of the sensor’s
hardware or because of fluctuations in the environment
itself [4]. Processing uncertain data sets leads to a variety
of novel problems and demands more complex query al-
gorithms. Typically, queries on uncertain data known as
probabilistic queries involve computation of probability
distributions over possible answers. In addition, if we
want to process probabilistic queries in wireless sensor
networks we have to consider the general characteristics
and limitations of such networks. Even if sensors are
gaining in computing ability they remain constrained by
limited batteries. With communication being the primary
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TABLE 1
Example of probabilistic sensor readings

SID Location Timestamp Temperature Probability
s1 Room 101 11:40 50 0.2
s2 Room 102 11:40 35 0.8
s3 Room 103 11:40 38 0.7
s4 Room 203 11:40 40 0.4
s1 Room 101 11:50 – 0.0
s2 Room 102 11:50 35 0.8
s3 Room 103 11:50 38 1.0
s4 Room 203 11:50 40 0.4

drain on power it is crucial that we reduce transmissions
to extend the lifetime of the network [3].

This paper addresses count queries in WSNs. Count
queries in sensor networks are very useful for many
applications, for example, if we want to control the
climate of a building complex using a number of sensors
monitoring the current temperature at different locations
within the building. Count queries can be used to adjust
the settings of the air conditioning system or automatic
shutters for specific conditions. We could for example
turn on the heating if exactly k, at most k or least k sen-
sors measure a temperature below (or above) a specific
threshold temperature. Traditional count queries simply
count the number of sensors that satisfy the given query
predicate and return the value of the counter. In fact, in-
network aggregation can be applied easily to optimize
the query’s energy cost [5]. However, adding uncertainty
raises new issues for the processing of the query itself as
well as for the aggregation strategies that can be applied.
Instead of simply counting sensors fulfilling the query
predicate, now, for each sensor we have to consider the
probability that it satisfies the query predicate. Thus,
instead of returning the number of sensors that satisfy
the query, we now have a probability value that a specific
number of sensors satisfies the query. It can intuitively be
understood that the result of such a probabilistic count
query is in fact a probability distribution.

Consider the example in Table 1. Let S = {s1, s2, s3, s4}
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be a WSN with four sensors monitoring a building.
Sensors s1, s2 and s3 are installed on the first floor and
s4 is placed on the second floor. They measure the tem-
perature and send their data periodically (for example
every 10 min.). Every sensor reading contains a location,
a temperature value, a specific time point as well as a
probability of satisfying a query, e.g. ”Temperature equal
to exactly 35◦”. Table 1 shows example readings of the
four sensors in such application. Examples for proba-
bilistic count queries on this table could be ”What is the
probability that exactly 2 sensors satisfy the query?” or
”What is the probability that at least (at most) 2 sensors
satisfy the query?” As our main contribution in this
paper we investigate four algorithms to answer these
types of queries within WSNs with the ultimate goal of
minimizing the energy cost of processing such queries.

The remainder of this paper is organized as follows.
In Section Section 2 we briefly discuss related work.
A formal description of our data model and query
computation is given in Section 3. In Section 4 we present
four algorithms for solving the problem in a centralized
manner as well as in-network and/or incrementally. We
experimentally evaluate the efficiency of the proposed
algorithms in Section 5 and conclude the paper in Section
6. The notations that we use in this paper are summa-
rized in Table 3.

2 RELATED WORK

2.1 Probabilistic Data and Query Answering
Due to the steady increase in the number of application
domains where uncertain data arises naturally, such
as data integration, information extraction, sensor net-
works, persuasive computing etc., modelling and query-
ing probabilistic, uncertain, incomplete, and/or fuzzy
data in database systems is a fast growing research
direction [6], [7], [8], [9]. Previous work has spanned
a range of issues from theoretical development of data
models and data languages [9], to practical implemen-
tation issues such as indexing techniques, e.g. [7], [10]
and probabilistic similarity query techniques [11]. Un-
certainty is either modelled as tuple level uncertainty,
where ”existence” probabilities are attached to each tu-
ple, or as attribute-level uncertainty, where (discrete or
continuous) probability distributions are attached to the
attributes. In this paper we adopt the uncertainty model
proposed in [8]. The proposed approaches differ further
based on whether they consider correlations or not.
Most work in probabilistic databases has either assumed
independence [9] or has restricted correlations that can
be modelled [8] and more recently, arbitrary correlations
[12].

Cheng et al. [6] provided a general classification of
probabilistic queries and evaluation algorithms over un-
certain data sets. In [13] Ross et. al. addressed the prob-
lem of answering probabilistic count queries. However,
they proposed a solution that requires the individual
consideration of each possible world. This implies a

computational cost that is exponential in the number of
sensor nodes.

The problem of answering probabilistic count queries
is related to the problem of answering probabilistic top-k
queries, which was recently studied with great interest
[11], [12], [14]–[16]. In order to determine the rank of
an uncertain tuple t, the number of tuples which have
a score higher than t needs to be counted. In this
work, we will generalize efficient techniques used to
solve the probabilistic ranking of uncertain objects in the
context of databases in order to apply these techniques
to answer probabilistic count queries on sensor networks
where usually completely different parameters need to
be optimized.

2.2 Wireless Sensor Networks
Wireless sensor networks are studied in their various
aspects with work ranging from optimization [17], over
practical implementation issues [18], to experimental
analyzation [19]. In [2] Akyildiz et. al. summarize the
characteristics of WSN. However previous work consid-
ers data to be certain. To the best of our knowledge Wang
et al. are the only ones who studied the field of proba-
bilistic queries in a distributed system such as a wireless
sensor network. In [20], they address the problem of
answering probabilistic top-k queries in wireless sensor
networks. In this paper we address the related problem
of answering probabilistic count queries in a wireless
sensor network. In addition to previous approaches, we
introduce update strategies to handle the continuous
stream of data that is produced by the sensor network.

3 BACKGROUND

3.1 Probabilistic Data Model
Given a WSN (S = {s1, s2, . . . , sn}) composing a set of
n sensors yielding n sensor values1 at a given time t.
For a given query Q, each sensor si has a probability
PQ

si,t
of satisfying Q’s predicate at time t. Consider the

temperature monitoring application of our first example.
Each tuple in Table 1 consists of a sensor id, a loca-
tion reading, a time stamp t, a temperature value and
a probability value PQ

si,t
indicating the likelihood that

sensor si satisfies the predicate of a given query Q at
time point t2. Thereby we assume data vectors of two
sensors sx 6= sy to be mutually independent, i.e. each
of the probability values assigned to the sensors is an
independent Bernoulli random variable with P (Xi =
1) = 1− P (Xi = 0) = PQ

si,t
.

For solving probabilistic queries on our uncertain
sensor network model, we apply the possible worlds
semantics model which was originally proposed by
Kripke [21] for modal logics and is commonly used for

1. In the remainder we use the term sensor to refer to the corre-
sponding sensor value

2. The predicate of Q is irrelevant for our observations. In the
following we assume a given Q as a base query on top of which we
can later build our actual probabilistic count queries.
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TABLE 2
Possible Worlds of Table 1

Possible World Wk,j Probability P (Wk,j)

W4,1 = {s1, s2, s3, s4} 0.2*0.8*0.7*0.4 = 0.0448
W3,1 = {s1, s2, s3} 0.2*0.8*0.7*(1-0.4) = 0.0672
W3,2 = {s1, s2, s4} 0.2*0.8*(1-0.7)*0.4 = 0.0192
W3,3 = {s1, s3, s4} 0.2*(1-0.8)*0.7*0.4 = 0.0112
W3,4 = {s2, s3, s4} (1-0.2)*0.8*0.7*0.4 = 0.1792
W2,1 = {s1, s2} 0.2*0.8*(1-0.7)*(1-0.4) = 0.0288
W2,2 = {s1, s3, } 0.2*(1-0.8)*0.7*(1-0.4) = 0.0168
W2,3 = {s1, s4} 0.2*(1-0.8)*(1-0.7)*0.4 = 0.0048
W2,4 = {s2, s3} (1-0.2)*0.8*0.7*(1-0.4) = 0.2688
W2,5 = {s2, s4} (1-0.2)*0.8*(1-0.7)*0.4 = 0.0768
W2,6 = {s3, s4} (1-0.2)*(1-0.8)*0.7*0.4 = 0.0448
W1,1 = {s1} 0.2*(1-0.8)*(1-0.7)*(1-0.4) = 0.0072
W1,2 = {s2} (1-0.2)*0.8*(1-0.7)*(1-0.4) = 0.1152
W1,3 = {s3} (1-0.2)*(1-0.8)*0.7*(1-0.4) = 0.0672
W1,4 = {s4} (1-0.2)*(1-0.8)*(1-0.7)*0.4 = 0.0192
W0,1 = ∅ (1-0.2)*(1-0.8)*(1-0.7)*(1-0.4) = 0.0288

representing knowledge with uncertainties. However,
there have been different adaptations of the model for
probabilistic databases [22], [9], [8]. Here, we use the
model as proposed in [8], specifically, a possible world
is a set of sensors satisfying Q associated with the
probability that this world is true at a certain time t.
In particular, we define Wk,j as the jth world where
exactly k sensors satisfy Q at time t. The probability
P (Wk,j) of a possible world Wk,j at time t is computed
by multiplying PQ

si,t
for each sensor si ∈ Wk,j . For our

four entries in the Table 1 there are 24 = 16 possible
worlds in total. Table 2 displays those possible worlds
and their respective probabilities.

3.2 Probabilistic Count Query
Given the WSN with the set of uncertain sensors S and
any query Q as described above and a count parameter
k. The problem to be solved for a probabilistic count
query is to compute the probability P t(k, S,Q) that
exactly k sensors in the network S satisfy Q at time
point t. We call P (k, S,Q) probabilistic count. Instead of
a single probabilistic count, a probabilistic count query
returns the probability distribution of P t(k, S,Q) over
k (0 ≤ k ≤ |S|) called count histogram. To lighten the
notation, we use Psj equivalent for PQ

sj,t
and P (k, S,Q)

equivalent for P t(k, S,Q), i.e., all probabilities and data
are considered with respect to the same point in time.

The distribution of the count probabilities depends
on the probability values Psi . However, as we shall see
in the discussion that follows the computation of the
distribution does not depend on the actual probability
values.

A naive method to answer a probabilistic count query
is to first enumerate all possible worlds of S and then
sum up the probabilities of those worlds where exactly
k tuples appear, that is:
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Fig. 1. Probability Count Histogram for Example 1

TABLE 3
Description of the notations

Symbol Description of Symbol
Q Query
k Count
t Time Point
S Set of Sensors
sj Sensor
Sj Subset of sensors Sj = S \ sj

PQ
sj,t

Probability of sj

P t(k, S,Q) Probability that k (0 ≤ k ≤ |S|)
sensors in S satisfy Q

P t(k, Sj , Q) Probability that k (0 ≤ k ≤ |S|)
sensors in a subset Sj = S \ sj fulfill Q

P (k, S,Q) =
∑

j

P (Wk,j) (1)

Considering Table 1 and a query Q at t = 11:40, we
can intuitively compute the probabilities of all possible
worlds and then sum up the possible worlds that contain
the same amount of sensors by using Equation 1. Figure
1 shows the resulting count histogram. Since the number
of possible worlds is exponential in the number of
sensors this naive method is not very efficient.

In the following, we show how to efficiently compute
a probabilistic count query in general, before we address
the problem of answering continuous probabilistic count
queries in wireless sensor networks in Section 4. In [4],
Hua et al. have proposed an efficient algorithm based
on the Poisson Binomial Recurrence to avoid searching
all possible worlds in a different setting, however, the
problem description and definition given there can be
adjusted to fit our problem.

3.3 Poisson Binomial Recurrence
Let S be a set of sensors and the order of the sensors
sj ∈ S is irrelevant. Every sensor sj satisfies Q with a
probability Psj

. The probabilistic count P (k, S,Q) is the
probability that k (0 ≤ k ≤ |S|) sensors in S satisfy Q’s
predicate. Moreover, the subset probability P (k, Sj , Q) is
the probability that k sensors in the subset Sj = S \ sj

fulfill Q. Then, the probabilistic count P (k, S,Q) depends
only on the (k−1) other tuples in the subset Sj . That is, k
sensors in S satisfy Q only when sj satisfies Q and at the
same time k− 1 sensors in Sj satisfy Q or when sj does
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not satisfy Q and at the same time k sensors in Sj satisfy
Q. Defining base cases P (0, ∅, Q) = 1, P (j, ∅, Q) = 0 for
(0 ≤ j ≤ |S|) and P (−1, S,Q) = 0 for any set of sensors.
Then,

P (j, S,Q) = P (j − 1, Sj , Q)Psj

+ P (j, Sj , Q)(1− Psj )
(2)

Equation 2 can be iteratively applied to compute the
result of a probabilistic count query. In fact, in [23] (Sec.
1.7) this is called the Poisson Binomial Recurrence, and it
is shown that:

P (0, S,Q) = P (0, Sj , Q)(1− Psj
) =

k∏
j=1

(1− Psj
), and

P (j, S,Q) = P (j − 1, Sj , Q)Psj + P (j, Sj , Q)(1− Psj )

for 0 < j ≤ |S|.
In each iteration we can omit the computation of any

P (j, S,Q) where j ≥ k, since we are not interested in
any counts other than k and do not need them to process
the query. In total, for each 0 ≤ j < k and each of the n
sensors si ∈ S, P (j, S,Q) has to be computed resulting
in O(k · n) time complexity.

Example 1. Consider the sensor readings of our example
application in Section 1 with a query Q at time t = 11 : 40
and k = 2. Assuming that all tuples satisfy Q’s predicate
with the probabilities listed in Table 1, we have Ps1 = 0.2,
Ps2 = 0.8, Ps3 = 0.7 and Ps4 = 0.4. Note ,that the order
in which we process the sensor readings is irrelevant. For the
sake of simplicity, we process the table line by line starting at
the top. Using Equation 2 we have S = {s1}, S1 = ∅ and

P (0, S,Q) = P (−1, S1, Q)Ps1 + P (0, S1, Q)(1− Ps1) = 0.8
P (1, S,Q) = P (0, S1, Q)Ps1 + P (1, S1, Q)(1− Ps1) = 0.2

Next we process s2 by adding another iteration of Equation
(2). With S = {s1, s2} and S2 = {s1} we obtain the
following:

P (0, S,Q) = P (−1, S2, Q)Ps2 + P (0, S2, Q)(1− Ps2)
= 0.16,

P (1, S,Q) = P (0, S2, Q)Ps2 + P (1, S2, Q)(1− Ps2)
= 0.68,

P (2, S,Q) = P (1, S2, Q)Ps2 + P (2, S2, Q)(1− Ps2)
= 0.16.

With s3 and S = {s1, s2, s3} we have:

P (0, S,Q) = 0.048, P (1, S,Q) = 0.316, P (2, S,Q) = 0.524.

Since k = 2 we can stop at that point and do not need to
compute P (3, S,Q). Finally, we add s4 (S = {s1, s2, s3, s4}):

P (0, S,Q) = 0.0288, P (1, S,Q) = 0.2088,
P (2, S,Q) = 0.4408

and can return the result of our query P (2, S,Q) = 0.4408.

As illustrated in Example 1, Equation 2 can be used
to efficiently compute the probabilistic count P (k, S,Q)

that k sensors satisfy a query Q. Hence, we can easily
compute the probability, that at most or at least k sensors
satisfy Q’s predicate. To compute the probability that at
most k sensors satisfy a query Q, we intuitively sum up
all probabilistic counts P (j, S,Q) with 0 ≤ j ≤ k.

P−(k, S,Q) =
k∑

j=0

P (j, S,Q) (3)

To compute the probability that at least k sensors
satisfy Q it is useful to know that the values of a
complete count histogram sum up to 1. Hence, we can
compute the probability of at least k sensors satisfying Q
by using Equation 3 as follows:

P+(k, S,Q) = 1−
k−1∑
j=0

P (j, S,Q) (4)

3.4 Allowing Certainty
Until now, we assumed all sensors to be uncertain at
all times (0 < Psj < 1). But certain circumstances or
queries call for the existence of certain values. On one
hand, sensors can die or wake up from one round to
another, messages can get lost or there can be restrictions
to the query, i.e. we only want to query sensors in a
bounded area. Thus, particular sensors do not participate
in a query at all, and we can safely set their probability
Psj to zero. On the other hand there could be reasons to
set the probability Psj

to one, e.g., if a sensor’s samplings
are very stable over a sufficient period of time. In the
following, we explore the effects of Psj

= 0 and Psj
= 1.

3.4.1 Effect of Psj
= 0

Reconsider Example 1. We now add a fifth sensor s5
with Ps5 = 0 and observe the effect of a zero proba-
bility. After processing the four sensors in Example 1
we had P (0, S4, Q) = 0.048, P (1, S4, Q) = 0.316 and
P (2, S4, Q) = 0.524. We now incorporate Ps5 and com-
pute the probability that exactly two sensors satisfy the
query predicate (c.f. Equation 2).

P (2, S,Q) = P (1, S4, Q)Ps4 + P (2, S4, Q)(1− Ps4)
= 0.316 · 0 + 0.524 · 1 = 0.524
= P (2, S4, Q).

Apparently, the incorporation of a value Psj
= 0 does

not affect P (j, S,Q) (0 ≤ j ≤ k) at all. The following
lemma formalizes this observation.

Lemma 1. Let 0 ≤ k ≤ n, Psj = 0. It holds that

∀k : P (k, S,Q) = P (k, S \ sj , Q).

Proof: Using Equation 2 we obtain:

P (k, S,Q) = P (k − 1, S \ sj , Q) · 0
+ P (k, S \ sj , Q)(1− 0)
= P (k, S \ sj , Q).
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Thus, Lemma 1 allows us to ignore any sensor sj with
Psj

= 0 in the computation of the Poisson binomial
recurrence.

3.4.2 Effect of Psj = 1
Again, we use the example of the previous section, but
now assuming Ps5 = 1. The probability that exactly two
sensors satisfy the query predicate is derived by using
Equation 2:

P (2, S,Q) = P (1, S4, Q)Ps4 + P (2, S4, Q)(1− Ps4)
= 0.316 · 1 + 0.524 · 0 = 0.316
= P (1, S4, Q).

The incorporation of of a value Psj
= 1 shifts all

values in the Poisson Binomial Recurrence to the right,
formalized by the following lemma:

Lemma 2. Let 0 ≤ k ≤ n, Psj = 1. It holds that

∀k : P (k, S,Q) = P (k − 1, S \ sj , Q).

Proof: Using Equation 2 we obtain:

P (k, S,Q) = P (k − 1, S \ sj , Q) · 1
+ P (k, S \ sj , Q)(1− 1)
= P (k − 1, S \ sj , Q).

Lemma 2 allows us to avoid iterations of the Poisson
binomial recurrence for each sensor sj with Psj = 1.
Instead we can use a counter which is incremented
by one for each such sj , thus counting the number of
positions that the Poisson Binomial Recurrence has to
be shifted to the right.

In summary, Lemma 1 and Lemma 2 allow us to
handle zero and one values in a very efficient way.

4 PROBABILISTIC COUNT QUERIES IN WIRE-
LESS SENSOR NETWORKS
In the previous section there was no concern as to
the fact that probabilities are to be calculated within
a wireless sensor network. As mentioned in Section 1
it is crucial for applications on WSNs to reduce en-
ergy cost, and this mainly achieved through reducing
communication. Therefore, we must consider the typical
underlying characteristics of WSNs such as network
topology, routing and scheduling. In the following we
propose four algorithms which solve the problem of
answering continuous count queries in a WSN. Thus,
we now take the local distribution of data as well as
the temporal dimension into consideration and reinstate
the notation P t(k, S,Q). We assume that the nodes in S
are connected together via a logical tree where the sink
node (or base-station) is the tree’s root. The choice of the
tree’s topology does matter, but is outside the scope of
this paper. For the sake of simplicity, we assume it to be
a hop-based shortest path tree commonly used in other
works, e.g., [5].

s0

s1 s2

m4m3

s3 s4

m2m1

Fig. 2. Example Network Structure

4.1 A Centralized Algorithm

In the centralized approach all probability values are
sent to the root node at every round without previous
processing. Thus, the sink node can be seen as a central
database that receives and temporarily stores the read-
ings of all sensor nodes within the network and that
centrally processes queries on the WSN. The probabilistic
count histogram can then be easily computed by using
Equation 2.

While leaf nodes send only one value to their parent
node, intermediate nodes send their own value plus
all values received from their child nodes. Thus, the
payload size of the packages that are sent within the
network increases as we get closer to the root node. With
0 < Psj < 1 for all sensors and unlimited payload size
for any message sent within the network, n−1 messages
are sent to the root in every round. However, in reality,
the number of messages is likely to be much larger,
depending on the topology and the fixed payload size.

With the knowledge that we gained in Section 3.4,
aggregation strategies can be applied whenever a sensor
has a zero probability or a one probability. According to
Lemma 1, all sensors sj with Psj = 0 can safely be
ignored in the computation. For sensors sj with Psj = 1,
Lemma 2 applies and we use a counter variable Ct

1 that
denotes the number of such tuples. Thus, Equation 2 is
only required for sensors sj for which 0 < Psj

< 1, al-
lowing us to have shorter messages, thus saving energy
in packet transmission.

Example 2. Consider Example 1 and Figure 2. Sensors si are
depicted as circles, mi denotes a message sent from one node
to the other with i indicating the ordering among messages. In
the first round (t = 11:40) all sensors report uncertain values.
At time t = 11:50, s1 has zero probability and therefore no
message is sent at all. Whereas sensor s3 is certain to satisfy
Q with probability Ps3 = 1. Instead of sending a value, s3
increments its counter (Ct

1 = 1) and sends the counter only.
Sensor s4 sends its value as usual and sensor s2 forwards the
two probability values as well as the counter of to the sink.
With two iterations of Equation 2 we obtain for t =11:50:

P t(0, S,Q) = 0.12, P t(1, S,Q) = 0.56, P t(2, S,Q) = 0.32
and Ct

1 = 1.
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4.2 A Centralized Incremental Algorithm

The naive solution works well if the probability values
Psj

change often from one round t to the next round
t + 1. However, this is expensive in terms of messages
sent when only a few values change. In some cases it is
more efficient to send all probability values and process
the query as proposed in Section 4.1 only in the initial
computation. In all subsequent rounds, only sensors that
have changed their probability will send an update.The
sink node will then compute the new count probability
incrementally as described next.

We can update P t(k, S,Q) using the results of previous
iterations. Let sx be a sensor and let PQ

sx,t
and PQ

sx,t+1

denote the previous and new probability that sx satisfies
Q, respectively. Our update algorithm has two phases,
summarized next:

- Phase 1: First we remove the effect that PQ
sx,t

had on the previous probabilistic counts P t(j, S,Q),
0 ≤ j ≤ k. This yields an intermediate result of the
probabilistic counts P̂ t(j, S,Q), 0 ≤ j ≤ k.

- Phase 2: Next we incorporate the new probability
PQ

sx,t+1
by adding it to the temporary probabilistic

counts P̂ t(j, S,Q), 0 ≤ j ≤ k using Equation (2).

Phase 1. The following cases have to be considered:
Case 1: PQ

sx,t
= 0. In this case, nothing has to be

done to remove the effect of PQ
sx,t

= 0 and P̂ t(j, S,Q) =
P t(j, S,Q).

Case 2: PQ
sx,t

= 1. When PQ
sx,t

= 1 we must decrement
the counter Ct

1 by one. Thus, P̂ t(j, S,Q) = P t(j, S,Q)
and Ĉt

1 = Ct
1 − 1.

Case 3: 0 < PQ
sx,t

< 1. To remove the effect of any
probability PQ

sx,t
from all P t(j, S,Q), (0 ≤ j ≤ k) we look

at its incorporation via Equation 2:

P t(j, S,Q) = P̂ t(j−1, Sx, Q)PQ
sx,t

+ P̂ t(j, Sx, Q)(1−PQ
sx,t

)

We can remove the effect of PQ
sx,t

by resolving Equa-
tion 2 as follows:

P̂ t(j, S,Q) =
P t(j, S,Q)− P̂ t(j − 1, S,Q) · PQ

sx,t

1− PQ
sx,t

(5)

Since any P t(−1, S,Q) = 0 we have:

P̂ t(0, S,Q) =
P t(0, S,Q)

1− PQ
sx,t

(6)

for j = 0 and can step by step compute P̂ t(j, S,Q) by
using P̂ t(j− 1, S,Q) and Equation (5) for any 0 < j ≤ k.
Phase 2. In Phase 2 we have to consider the same cases
as in Phase 1:

Case 1: PQ
sx,t+1

= 0 has no influece on the result at time
t+ 1 and P t+1(j, S,Q) = P̂ t(j, S,Q).

Case 2: PQ
sx,t+1

= 1. When PQ
sx,t

= 1 we must increment
the counter Ct

1 by one. Thus, P̂ t(j, S,Q) = P t(j, S,Q)
and Ĉt

1 = Ct
1 + 1.

Case 3: 0 < PQ
sx,t+1

< 1. We can incorporate the new
probability PQ

sx,t+1
by an additional iteration of Equation

(2).

P t+1(j, S,Q) = P̂ t(j−1, S,Q)PQ
sx,t+1

+P̂ t(j, S,Q)(1−PQ
sx,t+1

)

This means that, whenever a sensor sends an update,
it has to send both its previous probability and its new
probability. Thus, in the worst case we send twice the
number of values compared to the centralized algorithm.
On the other hand, the less updates are sent, the better
the results for the incremental approach.

Regarding the computational complexity, the follow-
ing holds for both, Phase 1 and Phase 2: Case 1 and 2
have a cost of O(1) since either nothing has to be done,
or Ct

1 has to be incremented or decremented. Case 3 has
a total cost of O(k) leading to a total execution time of
O(k) per old-new value pair in the root node.

Example 3. Reconsider Example 1 where at time t = 11:40
PQ

s1,t
= 0.2, PQ

s2,t
= 0.8, PQ

s3,t
= 0.7 andPQ

s4,t
= 0.4. At time

t+1 =11:50 only s1 and s3 change their values: PQ
s1,t+1

= 0.0
and PQ

s3,t+1
= 1.0.

We start with P t(0, S,Q) = 0.0288, P t(1, S,Q) = 0.2088,
P t(2, S,Q) = 0.4408 and Ct

1 = 0. First, we remove the effect
of PQ

s1,t
by using Equations 5 and 6:

P̂ t(0, S,Q) =
P t(0, S,Q)

1− PQ
s1,t

= 0.036

P̂ t(1, S,Q) =
P t(1, S,Q)− P̂ t(0, S,Q) · PQ

s1,t

1− PQ
s1,t

= 0.252

P̂ t(2, S,Q) =
P t(2, S,Q)− P̂ t(0, S,Q) · PQ

s1,t

1− PQ
s1,t

= 0.488

Next we incorporate the new probability of s1 but notice that
PQ

s1,t+1
= 0, so Phase 2 can be skipped. We go on with

removing the effect of PQ
s3,t

and obtain:

P̂ t(0, S,Q) =
P t(0, S,Q)

1− PQ
s1,t

= 0.12

P̂ t(1, S,Q) =
P t(1, S,Q)− P̂ t(0, S,Q) · PQ

s1,t

1− PQ
s1,t

= 0.56

P̂ t(2, S,Q) =
P t(2, S,Q)− P̂ t(0, S,Q) · PQ

s1,t

1− PQ
s1,t

= 0.32

Since the new probability of s3 is PQ
s3,t+1

= 1 we only need
to increment the counter Ct

1 = 1.
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s0

s1 s2

s3 s4

S1,0 S1,1

Pt(0,SS1,Q) Pt(1,SS1,Q)
0.8 0.2

k = 1
S2,0 S2,1 S2,2 S2,3

Pt(0,SS2Q) Pt(1,SS2,Q) Pt(2,SS2,Q) Pt(3,SS2,Q)
0.036 0.252 0.488 0.224

k = 1
S0,0 S0,1 S0,2 S0,3 S0,4

Pt(0,SS0,Q) Pt(1,SS0,Q) Pt(2,SS0,Q) Pt(3,SS0,Q) Pt(4,SS0,Q)
0.0288 0.2088 0.4408 0.2768 0.0448

Fig. 3. Multiplication of two Count Histograms

4.3 An In-Network Algorithm

In both previous algorithms the sink computes the his-
togram in a centralized manner. Despite the counter,
there is no aggregation strategy applied. But we can
profit by computing the histogram at intermediate nodes
as we send the values up to the root node. On the
one hand we can decrease the number of messages
sent. On the other hand, intermediate count histograms
could be used to query subtrees or apply early stopping
conditions if a subtree satisfies the query [4].

Like in the centralized algorithm every sensor sends its
value in every round. The idea is that every intermediate
node sj computes the probability histogram of its subtree
by pairwise multiplying the probability histograms of its
child nodes and its own probability PQ

sj
on the fly. Zero

probabilities and one probabilities are processed as usual.
As we only need the first k count probabilities to answer
a query, it is sufficient to compute only the first k count
probabilities and then forward them. Hence, a maximum
number of k + 1 values per message is sent at every
hop up to the sink and we can gain compared to the
centralized approach as the maximum payload size gets
smaller.

Each probability Psi
can be modelled as a minimal

probabilistic count histogram with P t(0, S,Q) = 1− Psi

and P t(1, S,Q) = Psi . To obtain the count histogram in
an intermediate sensor node, we can use Equation 2 as
long as all child nodes are leaf nodes. The more general
task of merging two count histograms where k > 1 can
be solved by multiplying them component-wise.

Consider Figure 3 where s1, s2 are intermediate nodes
and send their count histograms to root node s0. We
can model their probabilistic distribution (shown in the
tables besides the nodes) as polynomials, e.g., for node s1
we would have S1(x) = S1,0+S1,1x+S1,2x

2+· · ·+S1,nx
n,

where each S1,j = P t(j, S,Q) and a similarly defined
polynomial S2(x) for node s2. Merging the probabilistic
counts of those two nodes into the root node s0 becomes
a matter of simply computing:

S0(x) = S1(x)× S2(x)

= S0,0 + S0,1x+ S0,2x
2 + · · ·+ S0,n+mx

2n+m,

from where we can obtain each probabilistic count at
node s0, i.e., P t(j, S,Q) = S0,j

In every node, we can stop the computation at k,
because we only need the first k probabilistic counts
to answer our queries. Thus, it suffices to implement
a simple (component-wise) polynomial multiplication
algorithm taking O(k2) time.

Example 4. Consider the wireless sensor network in Table 1
at time t = 11:40 and the topology of Figure 2. Let k = 1.
Sensors s1, s3 and s4 are leaf nodes and send their values
to their parent node. s2 is intermediate node and therefore
computes the intermediate probabilistic counts for k = 0 and
k = 1. This means s2 needs to merge S3(x) = 0.3 + 0.7x
and S4(x) = 0.6 + 0.4x by multiplying them pairwise and
then incorporate its own probability value Ps2 = 0.8. Again
the order is irrelevant. Here we only have two polynomials
S3(x) and S4(x) resulting in S3(x)×S4(x) = 0.18 + 0.54x.
Next, we incorporate Ps2 and get our final intermediate
histogram with S2(x) = 0.036 + 0.252x. Sensor s2 forwards
the probabilistic counts to the root. The sink finally multiplies
S1(x) = 0.8 + 0.2x and S2(x) = 0.036 + 0.252x to compute
the probabilistic counts (= coefficients of resulting polynomial)
of the whole tree S0(x) = 0.0288 + 0.2088x.

4.4 An Incremental In-Network Algorithm
Next we present an algorithm that brings together both,
the in-network aggregation of Section 4.3 and the incre-
mental update strategy of Section 4.2. To enable updates
of intermediate count probabilities, every intermediate
node has to save its current count histogram as well as
the count histograms of its child nodes along with their
associated id as unique key. In the first round t = 0
we process the query as proposed in Section 4.3 but
store all required values in intermediate sensors. In all
subsequent rounds t = t + 1, only updates are reported
and processed as described in the following. We start
with the updating process for child count histograms.

There are two types of updates: either a number
of old-new value pairs, or a whole updated function.
Whenever an intermediate node receives an update,
it either updates the child polynomial as described in
Section 4.2 or it replaces the whole function with the new
function. When P̂ t(0, S,Q) = 1 and P̂ t(j, S,Q) = 0 for
all (0 ≤ j ≤ k) after removing an old probability value
and at the same time no new probability value is sent
(sensor either changed its probability to zero or one), we
remove the whole count histogram3. After processing
the updates of the child nodes the intermediate node
needs to update its own polynomial. Again we need
to consider two cases: We can either merge all updated
child polynomials analog to Section 4.2 or use the old-
new value pairs of all child nodes to compute the
new probabilistic count function. Obviously, we have to
multiply all child polynomials as soon as the histogram
of a child node was replaced by a new one.

For the number of messages the following applies:
If we start with sending updates in the manner of the

3. This usually happens only when leaf nodes are updated.
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F = 0.0288 + 0.2088x

Probabilistic Count Histogram of child nodes:
i 

(key)
Function Fi

c0 = P t (0, S, Q) c1 = P t (1, S, Q)

1 0.8 0.2
2 0.036 0.252

F2 = 0.036 + 0.252x 

Probabilistic Count Histogram of child nodes:
i 

(key)
Function Fi

c0 = P t (0, S, Q) c1 = P t (1, S, Q)

3 0.3 0.7
4 0.6 0.4
2* 0.2 0.8

s0

s1 s2

m4m3

s3 s4

m2m1

(a) t = 11:40

F = 0.12 + 0.56x and C1
t=1

Probabilistic Count Histogram of child nodes:
i 

(key)
Function Fi

c0 = P t (0, S, Q) c1 = P t (1, S, Q)

2 0.12 0.56

F2 = 0.12 + 0.56x and C1
t=1

Probabilistic Count Histogram of child nodes:
i 

(key)
Function Fi

c0 = P t (0, S, Q) c1 = P t (1, S, Q)

4 0.6 0.4
2* 0.2 0.8

s0

s1 s2

m4

s3 s4

m2m1

(b) t = 11:50

Fig. 4. In-network Example

incremental centralized algorithm and continue sending
only old-new value pairs, the number of messages equals
the number of messages sent in approach 4.2. Thus, the
number of values increases as we come closer to the root
note. However, we want to make sure that analog to the
in-network approach, the maximum number of values
per message is fixed to k + 1. This means we send the
whole polynomial as soon as the number of old-new
value pairs exceeds k

2 .
With this, on one hand, we reduce the number of mes-

sages if only few sensors report an update, on the other
hand we make sure, that in the worst case (all sensors
update) the number of messages does not surpass the
number of messages sent in the in-network approach.

Example 5. We process the initialization analog to Example 4
but store all relevant data structures. Figure 4a is a snapshot,
illustrating the memory structure at time t = 11:40. At time
t+1 =11:50 only s1 and s3 change their values: PQ

s1,t+1
= 0.0

and PQ
s3,t+1

= 1.0. Sensor s3 sends an update message with
its unique key, old value and in this case no new value but
its incremented counter Ct

1 = 1 to sensor s2. Sensor s2 uses
the key to find the matching count histogram and updates it
by using Equations 5 and 6:

P̂ t(0, S,Q) =
P t(0, S,Q)

1− PQ
s1,t

= 1

P̂ t(1, S,Q) =
P t(1, S,Q)− P̂ t(0, S,Q) · PQ

s1,t

1− PQ
s1,t

= 0

Since all values but the first one of s3’s count histogram
are 0 and the P̂ t(1, S,Q) is 1, we delete its entry in s2 and
increment the counter of s2 by the value of the sent counter.
With s4 and s2 keeping their values we only need to update
the resulting count histogram in s2 to complete the update.
As no other child node sent an update with a completely new
count histogram, we also use Equations 5 and 6 to update the
resulting probabilistic counts:

P̂ t(0, S,Q) =
P t(0, S,Q)

1− PQ
s1,t

= 0.12

P̂ t(1, S,Q) =
P t(1, S,Q)− P̂ t(0, S,Q) · PQ

s1,t

1− PQ
s1,t

= 0.56

As the number of updated values exceeds the threshold value
(1 > 1

2 ), we forward the whole polynomial to the intermediate
node. The update of sensor s1 is processed analog to the update
of s3 in s2 and the entry of s1 is deleted in s0. Now, sensor
s2 sends its update with the whole count histogram. Sensor
s0 replaces the whole histogram and increments its counter.
To update the histogram in s0, we now need to merge the
child polynomials as described in Section 4.3. But as there
is only one entry, we do not need to perform a polynomial
multiplication and have our final result. Figure 4b shows the
tree after the update was performed.

5 PERFORMANCE EVALUATION

We performed our experiments by varying five param-
eters: the number of sensors within the network (n), the
percentage of uncertain sensors (γ), the probability that
a sensors probability value changes from one round to
the next round (δ), the probabilistic count (k), and the
message size measured in bytes (m). Table 4 shows the
values used for those parameters.

The positions of the sensors were randomly chosen
within a 100m × 100m area and each sensor node
was assumed to have a fixed wireless radio range of
30m. As mentioned in Section 3, the actual distribution
of the probability values is not relevant for the query
computation in terms of messages sent – hence not
a relevant parameter for our performance evaluation.
But for the sake of completeness the probability values
follow a normal distribution N(0.5,0.5). Results are based
on an average of 10 simulation runs whereas each run
consists of 100 time stamps. All generated instances of
the WSNs used a hop-wise shortest-path tree as the
routing topology. We assume in all experiments that



9

TABLE 4
Parameter Values Used in the Performance Evaluation

(Default Values Printed in Bold Type)

Parameter Values
n (Number of Sensors) 100, 500, 1000, 2500

γ (Ratio of Uncertain Sensors) 25%, 50%, 100%
δ (Probability of Change) 25%, 50%, 75%, 100%
k (Number of Coefficients) 1, 5, 10, 25
m (Message Size in bytes) 64, 128, 256
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Fig. 5. Simulation Results for n

messages are delivered using a multi-hop setup. Since
the query is only sent once from the root to all child
nodes and will be amortized over time, we only measure
nodes-to-root messages.

Every coefficient was taken into account with a 8 bytes,
counters as well as ids were taken into account with 4
bytes each. For the sake of simplicity, we assumed data
packages with a header size of 0 bytes.

In the following figures the arithmetic mean is plot-
ted with upper (lower) error bar denoting the overall
best (worst) performance. We abbreviate the centralized
algorithm with ”Central”, the centralized incremental
algorithm with ”IncCentral”, the in-network algorithm
with ”InNet” and the incremental in-network algorithm
with ”IncInNet”.

5.1 Experiments and Results
The results of our experiments are summarized in Fig-
ures 5 to 9. In each experiment all parameters but the
one in focus are fixed to their default value.

5.1.1 Varying the Number of Sensors n
The foremost trend that we can see in Figure 5 is
that IncInNet consistently sends less messages than all
others. Both in-network algorithms further improve as
the network grows bigger. Particularly in the case of
IncInNet the improvement is significant. The reason for
this is that the number of values sent per message is
restricted to k + 1 which is 11 with k set to a default of
10. Thus, with a default maximum payload size of 128
bytes there is no need to send more than one message per
sensor. This also explains, why for the InNet approach
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Fig. 6. Simulation Results for γ
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Fig. 7. Simulation Results for δ

best case and worst case coincide with the arithmetic
mean (no error bars). Since for the InNet algorithm every
sensor sends exactly one message per round to its parent
node, independent of their respective topology, always
n−1 messages are sent4. As expected, when n increases,
the costs for all algorithms rise as well, however, both
in-network algorithms grow slower than the centralized
algorithms. Overall, InNet and IncInNet offers better
scalability with IncInNet being the overall best solution
saving up to 80% of the communication cost compared
to Central.

5.1.2 Varying the Ratio of Uncertain Sensors

Figure 6 illustrates how a counter as introduced in
Section 4.1 affects the performance of the algorithms.
Note that for our experiments, the number of certain
sensors was equally split into one and zero probabilities.
A counter is taken into account with constantly 4 bytes
per message. The larger the number of uncertain sensors
the better perform the in-network algorithms. Since in
every round different nodes have zero probabilities the
error bars become wider.
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Fig. 8. Simulation Results for k

5.1.3 Varying the Probability of Change
Varying δ creates a scenario that allows observing how
the dynamics of the observed probabilities affect the
algorithms’ performance. Since Central and InNet do
not mind updates but always compute the count prob-
abilities from scratch, varying δ does not affect them
at all. For IncCentral and IncInNet however naturally
applies that the more dynamic the observed values, the
more updates will be required. In essence, increasing
δ creates more communication traffic in the tree. It is
interesting to note that Central outperforms IncCentral
for high values (δ ≥ 75%) while IncInNet and InNets
performance results even up.

5.1.4 Varying the Count
Figure 8 shows the results of the experiments conducted
with varying k. As expected, k only has an influence
on InNet and IncInNet. As k increases, the performance
of both algorithms slowly decreases. Since we chose k
relatively small, varying k does not seem to have a sig-
nificant effect on the performance at all. Nonetheless, in
the extreme case the centralized algorithms outperform
the in-network algorithms for k = n. This is because
InNet as well as IncInNet send k+ 1 values resulting in
n+1 values (IncInNet additionally also sends a value to
identify the sender).

5.1.5 Message Size m
Following [19] we chose (payload) message size of 128
bytes. For the following experiment, m varies within a
range of 64 bytes and 256 bytes. Obviously, the smaller
the size of a single message, the more messages need to
be sent. Figure 9 illustrates the result of our experiments.
For Central and IncCentral we therefore observe a steady
decreasing number of sent messages. InNet and IncInNet
also record a higher number of messages for m =64
bytes. However, the number of messages is constant for
m =128 bytes and m =256 bytes, indicating that the total
number of total number of bytes never exceeds 128 bytes.
Thus, InNet sends n−1 messages in total. As mentioned

4. This explanation also applies to the plots that follows.
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Fig. 9. Simulation Results for m

TABLE 5
Evaluation of Extreme Scenarios

Good Case (m = 64, δ = 25%, n = 2500, γ = 100%, k = 1)
Central InNet IncCentral IncInNet
4366 2499 1585 835
Bad Case (m = 256, δ = 100%, n = 100, γ = 25%, k = 25)
Central InNet IncCentral IncInNet
74 74 97 99

in Section 4.1 with unlimited payload size this also
applies to Central. In general, with increasing payload
size Central draws near to InNet and IncCentral draws
near to IncInNet until they finally concide (m =∞).

5.1.6 Relation between n and k

Using our previous observations we estimate that In-
cInNet performs particularly well in a set up where
we choose a small message size, a small probability of
change, a high number of nodes, a high ratio of uncertain
nodes and a small count. We therefore chose m = 64
bytes, δ = 25%, n = 2500, γ = 100% and k = 1. In
contrast, for the scenario of a bad case we choose a
large message size, a high probability of change, a small
number of nodes, a small ratio of uncertain sensors and
a high count, thus m = 256 bytes, δ = 100%, n = 100,
γ = 25% and k = 25. Table 5 show the results for these
scenarios.

As expected, for the optimistic case both incremental
algorithms achieve very good results. They reduce the
number of messages sent by over 50% compared to the
respective non-incremental algorithm. IncInNet is the
overall best solution and saves up to 80% to the Central
algorithm.

For the pessimistic case the number of uncertain
sensors (δ · n) equals k and therefore the in-network
algorithms send one more value per message than the
centralized algorithms. However, all values can be sent
in one message for the non-incremental algorithms. In
contrast, the incremental algorithms send a pair of val-
ues for every update. Since all values update in each
round, they are outperformed by the non-incremental
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algorithms. IncInNet performs worst since it also needs
to send the id with every message.

Generally, we observe that if n is small and k is
relatively large the centralized algorithms perform as
good as the in-network algorithms whereas the in-
network algorithms perform better for a large number
of uncertain sensors.

6 CONCLUSIONS

In this paper, we studied the problem of answering
continuous probabilistic count queries in wireless sensor
networks. After formalizing a problem definition we
proposed four different algorithms. All algorithms were
examined empirically in a performance evaluation. The
results show that the incremental in-network algorithm
is the overall best solution.

To the best of our knowledge, this paper is the first one
that addresses continuous probabilistic count queries in
wireless sensor networks. Due to this fact, we opened up
new possibilities regarding further studies in different
research fields. In this paper we assumed probabilities
of two sensors to be mutually independent. One future
goal should be finding solutions to cope with more com-
plex uncertainty models where readings of two different
sensors can be correlated. Another interesting project
would be the transfer of our algorithms to different
topologies. By simulating our algorithm on different
tree structures we could gain further insight into the
strengths and weaknesses of the algorithms. Finally,
intermediate count histograms could be used to query
subtrees or apply early stopping conditions if a subtree
satisfies the query. Future work could address those
topics and thereby further reduce transmission costs.
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