
University of Alberta

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

The Enterprise Model for Developing
Distributed Applications

by

Greg Lobe
Paul Lu

Stan Melax
Ian Parsons

Jonathan Schaeffer
Carol Smith

Duane Szafron

Technical Report TR 92-20
November 1992

- 1 - Enterprise Technical Report TR92-20

The Enterprise Model for Developing
Distributed Applications

Greg Lobe
Paul Lu

Stan Melax
Ian Parsons

Jonathan Schaeffer
Carol Smith

Duane Szafron

Department of Computing Science,
University of Alberta,
Edmonton, Alberta,
CANADA T6G 2H1

{duane, jonathan}@cs.ualberta.ca

ABSTRACT

Workstations have been in use for more than a decade now. Although a network of

workstations represents a large amount of aggregate computing power, there is a need for software

that can harness this power for single, distributed applications. Enterprise is an interactive

graphical programming environment for designing, coding, debugging, testing, monitoring,

profiling and executing programs in a distributed hardware environment. Enterprise code looks

like familiar sequential code because the parallelism is expressed graphically and independently of

the code. The system automatically inserts the code necessary to handle communication and

synchronization, allowing the rapid construction of correct distributed programs. The system

supports load balancing, limited process migration, and dynamic distribution of work in

environments with changing resource utilization. Enterprise utilizes the combined power of a

cluster of workstations by providing a high-level programming model and environment that

eliminates the perceived complexity in writing parallel software.

KEY WORDS: Distributed computing, parallel programming, programming environments,

message passing, software engineering.

- 2 - Enterprise Technical Report TR92-20

1. Introduction

Workstations have been in use for more than a decade now. Although a network of

workstations together represents a large amount of computing power ("the network is the

supercomputer"), the software advances necessary to exploit this power has lagged behind the

hardware advances. In contrast to familiar sequential software, distributed software allows user

applications to execute on many computers at once. Distributed software offers many advantages.

Not only do programs potentially run faster, but a cluster of low-cost workstations can be a cost-

effective approach to solving compute-intensive applications.

However, writing distributed software is often perceived as a complicated endeavor. The

design, implementation and testing of parallel software is considerably more difficult than

comparable sequential software. Although research has been done to develop efficient parallel

algorithms for a large class of problems, finding a good parallel solution to a problem may only be

a small fraction of the cost of implementing it. Writing distributed software is expensive because

of problems not found in the sequential environment, such as synchronization, deadlock,

communication, heterogeneous computers and operating systems, and the complexity of

debugging and testing programs that may be non-deterministic due to concurrent execution.

 Further, harnessing the computing power of a network of machines poses some interesting

problems. First, the processors available to an application and their capabilities may vary from one

execution to another; the execution environment is dynamic. Second, communication costs may be

high in such an environment, restricting the types of parallelism that can be efficiently

implemented. Third, users do not want to become experts in networking or low-level

communication protocols to utilize the potential parallelism. There are few systems that are aimed

at providing shared processing power in a workstation environment, while taking into account the

constraints of the environment and the user. There is a need for a system that is capable of

producing parallel and distributed software quickly, economically and reliably. This system must

bridge the perceived complexity gap between distributed and sequential software, without forcing

the user to undergo extensive re-training.

Enterprise is a programming environment for designing, coding, debugging, testing,

monitoring, profiling and executing programs in a distributed hardware environment. Enterprise

code looks like familiar sequential code since the parallelism is expressed graphically and is

independent of the code. The system automatically inserts the code necessary to handle

communication and synchronization, allowing the rapid construction of correct distributed

programs. This bridges the complexity gap between distributed and sequential software. The

- 3 - Enterprise Technical Report TR92-20

system supports load balancing, limited process migration, and dynamic distribution of work in

environments with changing resource utilization. Enterprise offers a cost-effective method for

increasing the productivity of programmers and the throughput of existing resources.

The Enterprise system is built with four objectives in mind:

1) to provide a simple high-level mechanism for specifying parallelism that is independent of

low-level synchronization and communication protocols,

2) to provide transparent access to heterogeneous computers, compilers, languages, networks

and operating systems,

3) to support the parallelization of existing programs to take advantage of the investment in the

existing software legacy, and

4) to be a complete programming environment, to eliminate the overhead that arises from

switching between it and other programming environments.

Enterprise has a number of features that distinguish it from other parallel and distributed

program development tools:

1) Programs are written in a sequential programming language that is augmented by new

semantics for procedure calls that allows them to be executed in parallel. Users do not deal

with implementation details such as communication and synchronization. Instead, Enterprise

inserts all of the necessary communication protocols automatically into the user's code.

2) Enterprise can generate these protocols automatically because most large-grained parallel

programs make use of a small number of regular techniques, such as pipelines, master/slave

processes, divide and conquer, etc. In Enterprise, the user specifies the desired technique at

a high level by manipulating icons using the graphical user interface. The user-written code

that implements the parallel procedure is independent of the parallelization technique selected

(although the code generated by Enterprise certainly is not). The decoupling of the procedure

that is to be parallelized and the parallelization technique allows applications to be easily

adapted to a varying number and type of available processors without changing user-written

code. It also provides a simple mechanism for experimentation and evaluation of how the

various techniques fare on the user's particular application.

3) To simplify the way in which parallelism is expressed, Enterprise uses an analogy between

the structure of a parallel program and the structure of an organization. The analogy

eliminates inconsistent terminology (pipelines, master, slave, etc.) and replaces it with a

- 4 - Enterprise Technical Report TR92-20

consistent terminology based on assets (individuals, departments, receptionists, etc.).

Organizations are inherently parallel and, often, have efficient parallelism. This analogy

provides the programmer with a different (but familiar) model for designing parallel

programs. Although the use of analogies in computing science has both advocates (Booth,

Schaeffer and Gentleman, 1982) and detractors (Dijkstra, 1982), we believe they will prove

quite useful, as they have in object-oriented programming.

4) Enterprise supports the dynamic distribution of work in environments with changing

resources. For example, assets can be replicated a variable number of times. During the life

of a program, the amount of resources committed to it can vary depending on the resources

available.

5) In most parallel/distributed computing tools, the user is required to draw communication

graphs. The user usually draws a diagram connecting nodes (processes) by arcs

(communication paths). In Enterprise, a similar diagram is created, but the user is spared the

tedium of drawing the details. Instead, the user constructs correct diagrams in a top-down

manner by re-classifying and expanding nodes. Re-classification allows the user to express

how a structure (asset) communicates with its neighbors; expanding a node allows the user to

explore the hierarchical structuring of the application.

6) The user can exercise a desired amount of control over the mapping of processes to

processors. Hiding hardware realities of the environment can result in major performance

degradation of distributed systems (Jones and Schwartz, 1980). However, Enterprise is

quite flexible in this regard. Using a high-level notation, the user can specify the processor

assignments completely, partially, or leave it entirely up to the environment.

7) Enterprise provides global system monitoring to achieve load balancing, detecting when

workstations fall idle or become heavily loaded, and monitors the system performance for the

user.

A more detailed discussion of other parallel programming tools and environments and how they

compare to Enterprise can be found in (Chan et al., 1991).

Using the graphical user interface, the user draws a diagram of the parallel computation and

writes sequential code that is devoid of any parallel constructs. Based on the user's diagram,

Enterprise automatically inserts all the necessary code for controlling the parallelism,

communication, synchronization and fault tolerance. It then compiles the routines, assigns

processes to processors and establishes the necessary connections.

- 5 - Enterprise Technical Report TR92-20

The Enterprise model described in this document is an evolution of an earlier design (Chan et

al., 1991; Szafron et al., 1992) and our successful Frameworks system (Singh, Schaeffer and

Green, 1989a, 1989b, 1991; Singh, 1991). Compared to the earlier draft of the model, this

version represents several important advances:

1) The asset collection has been simplified.

2) The semantics of divisions have been defined.

3) Contracts have been replaced by user-defined minimum and maximum limits on the number

of replicated assets.

4) The graphical user interface has been fully defined, simplified and is functional.

5) The programming model has been expanded to include the passing of arrays and dynamic

pointers, and the returning of values using side-effects.

Some of these changes were motivated by feedback generated by our small user community.

Section 2 contains a walk-through of a typical Enterprise session, illustrating the

computational model and the graphical user interface. Section 3 describes the two key components

of the Enterprise model: the semantics of the sequential code that the user writes, and the types of

parallelism (assets) supported. Section 4 describes the user interface. A brief description of the

implementation is given in Section 5. Section 6 discusses some experience programming in

Enterprise. Section 6 describes the current status of the project.

2. Program Design in Enterprise

This section presents a simple example of how Enterprise can be used to construct a

distributed program. Consider an animation program that displays a group of fish swimming

across a display screen. There are three fundamental operations in the program (Model, PolyConv

and Split) with the following functionality and pseudo-code. A more detailed description of the

code can be found in Appendix A.

• The main procedure, Model, computes the location and motion of each object in a frame,

stores the results in a file, calls PolyConv to process the frame and goes to the next frame.

Model()
{

for each frame
{

- 6 - Enterprise Technical Report TR92-20

/* compute location and motion of objects */
PolyConv(frame);

}
}

• PolyConv reads a frame from the disk file, performs some data format transformations,

viewing transformations, projections, sorts, back-face removal and calls Split, passing it a

transformed frame and a sequence number.

PolyConv(frame)
{

/* perform transformations and projections */
Split(frame, polygons);

}

• Split: performs hidden surface removal, anti-aliasing and stores the rendered image in a file.

Split(frame, polygons)
{

/* hidden surface removal and anti-aliasing */
}

This problem was contributed by a research group in our Department and is obviously more

complex than portrayed by our brief description. Examining the structure of the program shows

that Model consists of a loop that, for each frame in the animation, performs some work on the

frame and calls PolyConv with the results. PolyConv manipulates the image received from Model

and calls Split. Split does the final polishing of the frame and writes the final image to disk.

An Enterprise user manipulates icons that represent high-level program components called

assets (defined in the next section). For this example, assume that an asset represents a single C-

language procedure/function, called an entry procedure, together with a collection of support

procedures used by the entry procedure, all contained in a single file. A program will consist of

several assets. In this example, there will be three assets: Model, PolyConv and Split.

When Enterprise is started, the Enterprise window contains a single pane called the Program

Pane. It contains the icon for a single Program asset that represents the new program. Associated

with each asset is a context sensitive pop-up menu. For example, if the user selects Name from the

asset menu of the Program asset and types the word Animation into the dialog box that appears, the

program would be named Animation and appear as in Figure 1. Note that Enterprise uses the host

windowing system. The figures in this report were generated on the Macintosh implementation of

the Enterprise user interface and look slightly different in X-windows or Sun Open Windows.

- 7 - Enterprise Technical Report TR92-20

Figure 1: A new program called Animation.

If the user then selects Expand from the asset menu, the Program asset icon will expand to

reveal the single Individual asset that it contains. If the user selects Name from the asset menu of

the Individual asset and types the word Model into the dialog box that appears, then the program

would appear as shown in Figure 2.

Figure 2: A sequential program that contains a single Individual asset called Model.

The user could enter all of the code for Model, PolyConv and Split into this single Individual

asset and run the program sequentially. However, there is no reason why Model should wait until

PolyConv completes the first animation frame to start processing the second frame. Similarly,

PolyConv does not need to wait for Split. In other words, these three routines could act as a

pipeline. Therefore, if the user selects Line from the asset menu of Model, it is re-classified as a

Line asset. Before the re-classification, a dialog box asks the user for the number of subordinate

assets that the Line should contain. In this case, the user should answer with 2, one each for

PolyConv and Split. After the re-classification, the Enterprise window looks like Figure 3.

- 8 - Enterprise Technical Report TR92-20

Figure 3: A program consisting of a Line asset called Model.

 If the user selects Expand from the asset menu of Model, it is expanded so that the

Enterprise window appears as shown in Figure 4.

Figure 4: A program containing an expanded Line with two subordinates.

- 9 - Enterprise Technical Report TR92-20

The outer rectangle represents the Program. The inner rectangle represents the Line and the

three icons inside of the Line represent its components. The first component is a Receptionist asset

that shares the name, Model, with the Line asset that contains it. The other two assets are

subordinate Individuals.

The user can select Name from the menu of each Individual asset in turn and name them

PolyConv and Split. The user can then select Code from the menu of each asset in turn and enter

the their C-language source code into the text editor window that appears as shown in Figure 5.

Figure 5: Editing the C-language code for PolyConv.

The code for the entry procedures Model, PolyConv and Split are shown in Appendix A. If

the user selects Compile from the Program pane menu then Enterprise automatically inserts the

code to handle the distributed computation, compiles the program and reports any errors in a

window. Appendix B shows the code that Enterprise inserts into the application to handle the

communication and synchronization (using the code in Appendix A with the diagram in Figure 5).

Once the program is compiled, the user selects Execute from the Program pane menu and

Enterprise finds as many processors as are necessary to start the program, initiates processes on

- 10 - Enterprise Technical Report TR92-20

the processors and monitors the load on the machines. For this animation example, a speed-up of

1.7 was obtained by using a line running on three processors instead of a single individual asset (a

sequential program). Note that all timings are subject to large variations, depending on the number

of available processors and the amount of traffic on the network. The timings were done on a quiet

network without other compute-bound jobs competing for resources.

One of the strengths of the Enterprise model is that it is easy to take a program and

experiment with alternate parallelization techniques without changing the C-language source code.

Each asset represents at least one process. If a call is made to the individual Split, it is executed by

a process and if a subsequent call is made to Split before the first call is complete, the second call

must wait for the first call to finish. However, if the Split asset is replicated then multiple

processes can be used to execute multiple calls concurrently. For example, if the user selects

Replicate from the asset menu of Split, and when a dialog box appears, enters 1 and 5 as minimum

and maximum replication factors, then the Animation program appears as in Figure 6.

Figure 6: A replicated asset.

- 11 - Enterprise Technical Report TR92-20

When PolyConv calls Split, a process is initiated and if a subsequent call is made to Split

before the first call is done then a second process is initiated (if there is an available machine).

Replication can be dynamic in Enterprise so that as many processors as are available on the

network may be used, subject to a lower and upper bound supplied by the user.

Replicating Split results in as much as a 5.7-fold speed-up compared to the sequential

animation program, depending on when the program is run. Of course, there is no reason why the

user cannot replicate PolyConv as well. However, this only resulted in a speedup of 6.0. This

implies that the Split procedure is the real bottleneck in the animation program. That is, an

individual PolyConv can almost keep up with its calls by Model but an individual Split cannot keep

up with its calls by PolyConv.

Enterprise can be used to further experiment with this application. For example, if the C

code for the Split contained a sequence of procedure calls, it could be re-classified as a Line where

each of the assets in the Line represented one of the procedure calls. Figure 7 shows the result of

this operation.

Figure 7: A line asset that contains a replicated line asset.

- 12 - Enterprise Technical Report TR92-20

Note that the asset named Model has partially scrolled off the display. Split contained two

procedure calls, HiddenSurface and AntiAlias. The former remains a local procedure call in Split,

but the latter has been converted to an asset. Its code must be copied from the Split asset and

pasted into the AntiAlias asset but need not be edited.

Several other asset kinds are supported by Enterprise and they can be combined in arbitrary

hierarchies. The next section contains a description of all of the asset kinds that are available.

3. The Enterprise Model

The overall organization of a parallel or distributed program in Enterprise is similar to the

organization of a sequential program. The structure of an application program is, in fact,

unaffected whether it is intended for sequential or distributed execution. The user views an

Enterprise program as a collection of modules. Each module consists of a single entry procedure

that can be called by other modules and a (possibly empty) collection of internal procedures that are

callable only by other procedures in that module. No common variables among modules are

allowed. In many ways, this is analogous to programming with abstract data types, which provide

well-defined means for manipulating data structures while hiding all the underlying implementation

details from the user.

Within any module, the code is executed sequentially. For example, a sequential program

simply consists of a single module whose entry procedure is the main program. Enterprise

introduces parallelism by allowing the user to specify the way in which the modules interact.

Module interaction is specified by two factors: the role of a module and the invoking call to a

module. The role of a module defines which one of a fixed set of parallelization techniques (asset

kinds) the module will use when it is invoked. The call to a module defines the identity of the

called module, the information passed and the information returned. The role of a module is

specified graphically while the call is specified in the code.

3.1 Module Calls

In a sequential program, procedures communicate using procedure calls. The calling

procedure, say A, contains a procedure call to a procedure, say B, that includes a list of arguments.

When the call is made, procedure A is suspended and procedure B is activated. Procedure B can

make use of the information passed as arguments. When procedure B has finished execution, it

can communicate results to procedure A via side-effects to the arguments and/or by returning a

value if the procedure is in fact a function.

Enterprise module calls are similar to sequential procedure calls. As with procedure and

function calls, it is useful to differentiate between module calls that return a result and those that do

- 13 - Enterprise Technical Report TR92-20

not. Module calls that return a result are called f-calls (function calls) and module calls that do not

return a result are called p-calls (procedure calls). Conceptually, there is no difference between a

sequential function call and an Enterprise module call except for the parallelism. When module A

calls module B, A is not suspended. Instead, module A continues to execute. However, if the call

to module B was an f-call, then module A would suspend itself when it tried to use the function

result, if module B had not yet finished execution.

In Enterprise, an f-call is not necessarily blocking. Instead, the caller blocks only if the result

is needed and the called module has not yet returned. Consider the following example:

result = B(data);
/* some other code */
value = result + 1;

When this code is executed, the arguments of B (data) would be packaged into a message and

sent to B. A would continue executing in parallel with B. However, when the calling module, A,

tries to access the result of the call to B (value = result + 1), it blocks until B has

returned a message containing its result. This concept is similar to the work on futures in

object-oriented programming (Chatterjee, 1989). If B is defined as a function, but used as a

procedure (i.e. the return value is not used), the result is thrown away. We call this deferred

synchronization a lazy synchronous call.

 The p-call in the statement:

B(data);
/* some other code */

is non-blocking, so that A continues to execute concurrently with B. Of course in this case, B

does not return a result to A. We call this form of parallelism purely asynchronous.

There is no syntactic difference between procedure calls and module calls. This makes it

easier to transform sequential programs to parallel ones and makes it trivial to change parallelization

techniques using the graphical user interface, without making changes to the code.

Enterprise modules can accept a variable number of parameters of varying types. Arrays and

pointers are valid as parameters but they must be immediately followed by an additional size

parameter that specifies the number of elements to be passed (unnecessary in sequential C).

Unfortunately, this restriction is needed because it is not always possible to statically determine the

size of the array to be passed. This feature allows users to pass dynamic storage as well as parts of

arrays. The data being passed cannot itself contain pointers (which would be meaningless because

of the distributed memory).

- 14 - Enterprise Technical Report TR92-20

Enterprise-defines three macros for parameter passing. The IN() macro specifies that a

pointer should have its values sent from the caller A to the callee B, but not returned. The macro

OUT() specifies a parameter with no initial value, but one that gets set by B and returned to A. The

macro INOUT() copies the parameter from A to B on the call, and copies its value back from B to

A on the return. Note that it is the caller's responsibility to allocate storage for all returned results.

For example, the code

int data[100], result;
. . .
result = B(&data[60], INOUT(10));
/* some other code */
value = result + 1;

would send the elements 60..69 of data to B. When B is finished execution, it will copy back to

A 10 elements, over-writing locations 60..69 of data. If IN, INOUT, or OUT is not specified,

IN is assumed.

OUT and INOUT data implement parameter side-effects. Thus, in some sense, they can also

be considered part of the return value of the function. In the above example, if A accessed

data[65] before it accessed result, it would have to block until B returned, just as it would

for the result of the call. Consequently, only p-calls without OUT and INOUT parameters are

purely asynchronous; all other p-calls and all f-calls are lazy synchronous.

Although lazy synchronous calls provide greater opportunities for concurrency than

synchronous calls, it is often useful possible to gain more concurrency by further relaxing the

synchronization of f-calls (and p-calls that have side-effects). This can be done in those situations

where the order in which results are returned by an asset is irrelevant. For example, consider the

code:

int data[100], result[100], sum;
. . .
for(i = 0; i < 100; i++)
{

result[i] = B(data[i]);
}
sum = 0;
for(i = 0; i < 100; i++)
{

sum = sum + result[i];
}

Assume that ordinary lazy synchronous calls are used. When the statement in the second loop is

executed, the asset may have to block and wait for result[0]. However, it may be the case that

other results have been returned, say result[1] and result[4]. Since the value of sum is independent

of the order of summation of the results in the second loop, more concurrency could be obtained

- 15 - Enterprise Technical Report TR92-20

by using result[1] or result[4] in place of result[0] and using result[0] later in place of another

result.

To increase concurrency, Enterprise allows the programmer to specify whether an asset is

ordered or unordered. If an asset is unordered, then the return values of the asset are consumed in

the order that the asset values are returned, independently of the order in which they are referenced.

For example, if the B asset was unordered then the reference to result[0] in the second loop would

refer to the first value returned by B, even though it may not be result[0]. Eventually all results

would be added and the value of sum would be the same as if the second loop had blocked,

waiting for the results in order. A user can specify the order attribute (ordered or unordered) of an

asset using the graphical user interface so it is independent of the asset code.

There are a few implementation points that may not be obvious from the above discussion:

1) When an Enterprise function returns, the results of all outstanding Enterprise calls will be

ignored. For example, consider asset A() making several calls to asset B(). Perhaps one of

the results returned by B means that A has now completed its task and it returns. If there are

any calls that have been made to B that have not yet returned, they are flagged so that they are

ignored when they return. Note that in the current Enterprise implementation, outstanding

calls are not cancelled - they are allowed to run to completion.

2) Two lazy synchronous calls that modify the same memory locations are not allowed to be

active at the same time. For example, the following code would be executed sequentially:

int data[100], result[10];
. . .
for(i = 0; i < 5; i++)
{

result[i] = B(&data[i*10], INOUT(20));
}

Each iteration through the loop has the side-effect of modifying overlapping regions of data.

Since the sequential semantics of this loop impose the ordering constraints that the second

call to B would use the copy of data returned from the first call, Enterprise cannot execute the

calls in parallel.

3) Note that the previous point implies that if a member of an array is returned by a function, or

is an OUT/INOUT parameter, Enterprise must generate code for all subsequent references to

that array to see if they are accessing a returned result. Consider the following example:

int data[100], result[10];
. . .
for(i = 0; i < 10; i += 2)

- 16 - Enterprise Technical Report TR92-20

result[i] = B(&data[i*10], IN(10));
. . .
a = result[j];

The reference to result[j] might refer to the result of any one of the calls to B, depending

on the run-time value of j. Enterprise must keep track of all addresses that a call to an asset

can modify.

4) Enterprise does not recognize aliasing. Consider the following code fragment:

int data[100], result, *r;
. . .
r = &result;
. . .
result = B(&data[50], IN(10));
. . .
b = *r;

In this example, *r is an alias for result. When *r is referenced, the program should

stop and wait for B to return. To do this properly would require checking all pointer

references to see if they are the object of an Enterprise call (or an OUT/INOUT parameter).

The cost of correctly handling this is too high, both at the implementation level and, more

importantly, at the performance level.

5) Divisions are a combination of sequential and parallel recursive calls. In the following

example, assume QuickSort is defined as a division asset (divisions are discussed in the next

section). Divisions allow assets to call themselves recursively and are ideal for divide-and-

conquer algorithms.

QuickSort(a, size)
int * a, size;
{

int pivot;
if(size >= threshold)
{

pivot = Partition(a, size);
if(pivot > 0)
{

QuickSort(&a[0], INOUT(pivot - 1));
}
if(pivot < size)
{

QuickSort(&a[pivot+1], INOUT(size - pivot));
}

}
else InsertionSort(a, size);

}

- 17 - Enterprise Technical Report TR92-20

For this program, the division should be defined with a breadth of two and we will assume a

user-defined depth of two. The first call to QuickSort will divide the list and send each part

independently to two other processes. These processes have no division children, which

means the recursive calls will be done sequentially. In a division, Enterprise inserts code that

allows both the parallel and sequential recursive calls to be made. Thus the user can change

the breadth and depth of the division and without changing the asset code.

Appendix B gives an example of the modifications that Enterprise makes to user code.

3.2 Module Roles and Assets

The role of a module is based solely on a parallelization technique and is independent of its

call. There are a fixed number of pre-defined roles corresponding to asset kinds. For example, in

the previous section, the role of the Split module was changed from an individual to a line without

changing the call.

We have created an analogy between Enterprise programs and the structure of an organization

to help describe module roles. In general, an organization has various assets available to perform

its tasks. For example, a large task could be divided into sub-tasks where various sub-tasks are

given to different parts of the organization (individuals, departments, lines or divisions) to perform

in parallel. In addition, an organization usually provides many standard services (like time

keeping, information storage and retrieval, etc.) that are available on demand to improve its

functionality.

Currently, Enterprise supports the roles corresponding to six different asset kinds: enterprise,

individual, department, line, division and service. In addition, two other specialized individual

assets are defined: receptionist and representative.

3.2.1 Enterprise

An enterprise is a single program. It is analogous to one organization or enterprise.

3.2.2 Individual

- 18 - Enterprise Technical Report TR92-20

An individual contains no other assets. An individual is analogous to an individual person in

an organization. For example, a clerk in a grocery store is an individual. When called, an

individual executes its sequential code to completion. Therefore, any subsequent call to the same

individual must wait until the previous call is finished. An individual may be called by any external

asset using its name. Individuals can be viewed as a process executing a sequential program. In

general, an individual can be replaced by a line, department or division at any time. However,

there are two special kinds of individuals. One is called a receptionist and the other is called a

representative. Receptionists serve as the first element of any composite asset. They cannot be

replaced by any other asset nor can they be replicated. Representatives can be replicated but they

can only be replaced by divisions. Receptionists provide the name by which an asset can be called.

The reasons for these restrictions will become apparent as the other asset kinds are described.

Each individual (including receptionists and representatives) has code associated with it.

3.2.3 Line

A line contains a fixed number of heterogeneous assets in a fixed order. Each asset contains

a call to the next asset in the line. A line is analogous to a construction, manufacturing or assembly

line in an organization where at each point in the line, the work of the previous asset is refined.

For example, a line might consist of an individual who takes an order, a department that fills it and

an individual that addresses the package and mails it. A subsequent call to the line waits only until

the first asset has finished its sub-task for the previous call, not until the entire line is finished. The

first asset in a line is a receptionist that shares its name with the line. It is the only asset that is

externally visible. That is, the first asset of a line is the only asset that may be called from an

external asset. Lines are more often referred to as pipelines in the literature.

3.2.4 Department

A department contains a fixed number of heterogeneous assets. A single receptionist asset

shares its name with the department so that it can be called by external assets. However, unlike a

line, the other assets in a department do not call each other in a fixed sequential order. Instead, all

- 19 - Enterprise Technical Report TR92-20

other assets are called directly by the receptionist. A department is analogous to a department in an

organization where a receptionist is responsible for directing all incoming communications to the

appropriate place. Note that in our analogy, a department consists of a collection of assets of any

kind: individuals, departments, lines and divisions. A department has no analogous term in the

literature.

3.2.5 Division

A division contains a hierarchical collection of identical assets where work is divided and

distributed at each level. They can be used to parallelize divide-and-conquer computations. When

a division is created, it has a single receptionist asset that shares its name with the division so that it

can be called by external assets. In addition it has a single representative asset that represents the

recursive call made by the receptionist to the division itself. The user may change the breadth of

the division's first level by replicating the representative. The user may add a level to the depth of

the recursion by replacing the representative by a division. The new division contains a

receptionist and a representative. The breadth of the tree at any level is determined by the

replication factor of the representative or division it contains. This approach is capable of

specifying arbitrary fan-out at each level of the division. For example, Figure 8 shows a typical

divide-and-conquer process communication graph and Figure 9 shows the Enterprise division asset

that achieves that effect. Divisions are the only recursive assets in Enterprise.

Figure 8: The run-time structure of a simple division asset.

- 20 - Enterprise Technical Report TR92-20

Figure 9: The representation of a simple division asset.

The QuickSort program is as described in the previous section. Note that although the user

has the freedom to chose the fan-out at each level of the tree, there are cases where some fan-out

may be wasted. For example, in the QuickSort program, only two recursive calls are made to

QuickSort at each level, so the fan-out of 3 at the second level of Figure 8 is legal but not useful

since the third processor will remain idle.

3.2.6 Service

A service contains no other assets. However, unlike an individual that can only answer a

single call at any one time, a service may be used by more than one asset at the same time. A

- 21 - Enterprise Technical Report TR92-20

service is analogous to any asset in an organization that is not consumed by use and whose order

of use is not significant. For example, a clock on the wall and a counter that records the total

number of vehicles that have passed through several service lanes can be considered services. A

service may be called by any other asset using its name.

3.2.7 Replication and Order

Assets may be replicated so that when an Enterprise program is run, more than one process

can simultaneously execute the code for the asset. The user specifies a minimum and maximum

replication factor and Enterprise dynamically allocates as many processors as are available (one per

process) up to the maximum. All assets except receptionists can be explicitly replicated. A

receptionist cannot be explicitly replicated since it serves as the entry point for the asset. However,

since an asset that contains a receptionist can be replicated, receptionists can be implicitly

replicated.

Replicated assets may be ordered (default) or unordered. If an asset is unordered any

reference to the return value of the asset will receive the first value returned from a copy of that

asset. See section 3.1 for an example of the utility of unordered assets.

3.2.8 Hierarchical Assets

Enterprise assets can be built from any combination of assets. For example, one can

construct a department, where one subordinate asset is itself a line of individuals and another is a

division. The model allows the user to replace an asset by another without any changes to the

user's source code. The only change that might occur is the gathering or separation of functions

from one file to another. For example, in the animation program, the line of three individuals

(Model, PolyConv and Split) each has its code in a separate file. If the line is re-classified as an

individual, the code would have to be gathered together into the single individual asset's file.

There are ways that Enterprise could do this management automatically, but there are some issues

we have yet to resolve.

4. The User Interface

Enterprise's user interface was designed to allow a user to express parallelism in a simple

graphical manner. Although other parallel programming environments support graphical views,

these views are either non-editable or are edited by drawing nodes and arcs that represent processes

and communication paths. In Enterprise, the application graph is an asset graph and it is

constructed in a novel way. The user starts with an enterprise asset and constructs the graph by

- 22 - Enterprise Technical Report TR92-20

replacing and expanding individual icons as illustrated in Section 2. This approach has several

advantages over an arbitrary graph structure:

1) Enterprise assets represent high-level parallelization techniques, not individual processes.

For example, lines, departments and divisions each represent multiple processes. This

allows the user to design at a higher level of abstraction.

2) Assets themselves are not drawn and connected by the user in an arbitrary manner. Instead,

assets are replaced and expanded to create a program. This reduces the drawing errors that

result from indiscriminately connecting and disconnecting nodes using arcs.

3) The structure of an Enterprise program clearly indicates the type and degree of parallelism.

The flow of information is from top to bottom while the degree of parallelism is from left to

right (departments) and front to back (replication). In other words, the length of the graph

represents the critical path of an application, and the width and depth reflect the degree of the

parallelism.

4) Enterprise manages program complexity by allowing assets to be expanded and collapsed so

that the program can be viewed at different levels of abstraction.

 5) Experimentation is encouraged because the parallelization technique is specified graphically

and is independent of the code.

The main Enterprise window contains one or two canvases. The program canvas is used to

display and edit the graphical representation of the program. The service canvas (which can be

displayed or hidden) contains the service assets that the program uses. Section 3 describes the

asset kinds that are currently supported. When Enterprise is started a single enterprise asset is

displayed on the program canvas.

Each asset has a context-sensitive menu. If the user presses the middle mouse button when

the cursor is over an asset, then a pop-up menu appears containing all of the operations that are

valid for that asset. If the button is pressed when the cursor is over the canvas itself then a pop-up

menu appears containing all of the operations that can be performed on the program as a whole.

The user does no drawing or moving of assets. Only the operations in the menus are required to

modify the program graph.

The following operations can be performed on assets, although not all are valid for all assets.

For example, only individual assets have code, receptionist assets may not be replicated and line

assets may not be replaced by line assets.

- 23 - Enterprise Technical Report TR92-20

1) Name or re-name an asset.

2) Open an edit window on the Code of an asset.

3) Replicate an asset by providing minimum and maximum replication factors and set the

order attribute.

4) Replace an asset by a Department asset.

5) Replace an asset by a Division asset.

6) Replace an asset by an Individual asset.

7) Replace an asset by a Line asset.

8) Set the compilation and execution Options for an asset.

9) Compile an asset.

10) Expand an asset so its component assets are displayed.

11) Collapse an asset so that its component assets are hidden.

12) Delete a subordinate asset in a line or department.

13) Add a subordinate asset to a line or department.

- 24 - Enterprise Technical Report TR92-20

The following operations can be performed on the program canvas.

1) Create a New Program consisting of a single enterprise asset and display it on the canvas.

2) Save the current Program to disk.

3) Edit an existing Program by prompting the user for the program name and displaying its

graph on the canvas.

4) Compile the current Program.

5) Run the current Program.

6) Set Program Options.

The following operation can be performed on service assets, as well as Name, Code, Options and

Compile that are described above.

1) Delete a Service from the program.

The following operation can be performed on the service canvas:

1) Add a new Service that the program can use.

5. Implementation

The architecture of Enterprise is described elsewhere (Chan et al., 1991). Briefly, it consists

of a graphical user interface, a code librarian and an execution manager. The interface allows the

program to create Enterprise graphs and enter source code. The code librarian manages all the

source and object code for an application. From the application's asset graph, the code librarian

determines where to insert the communication and synchronization system calls into the user's

code and compiles the asset(s). The execution manager spawns the processes at run-time and

monitors the system detecting idle and busy machines. This section provides a brief description of

the implementation of these components of Enterprise. Implicit in the discussion is a computing

environment of homogeneous Unix workstations. Heterogeneity is supported but is not yet

complete.

- 25 - Enterprise Technical Report TR92-20

5.1 Graphical User Interface

The Enterprise user interface is implemented in Smalltalk-80 and runs as a Unix process on

Sun workstations. The interface produces a text file representation of the Enterprise graph that is

used by the code librarian and execution manager. The code librarian and execution manager are

started as Unix processes from within the user interface when the Compile and Run operations are

selected.

5.2 Code Librarian

The code librarian manages the user's source and object code (Chan, 1992). Several

directories are created and maintained including Src (source code), Obj (object code, organized by

target architecture), Inc (include files), Lib (user-defined libraries), and Ent (containing the

makefiles, graph files and temporary files).

The Enterprise pre-compiler is based on the Gnu C compiler gcc. Compilation consists of

three passes: two by the pre-compiler (one to mark where to insert code and the other to do the

insertion) and then one by any conventional C compiler to do the compilation.

5.3 Execution

When an Enterprise application is executed, a process is created for each asset and the

communication links between processes are established. Replicated assets are allocated one

process for each replica as well as one additional process, called an asset manager, to manage all

calls to that asset. The asset manager routes calls to replicas that are idle and queues calls when all

replicas are busy. The asset manager maintains contact with the execution manager to take

advantage of new processors as they become available.

Enterprise uses the ISIS package to do all the low-level communications (Wong, 1992).

ISIS provides a high-level set of function calls to handle process creation and termination,

communication, synchronization and fault tolerance for a heterogeneous collection of machines

(Birman et al., 1991a, 1991b).

Unfortunately, although ISIS appears on paper to provide all the facilities needed in an

execution manager, the implementation has serious problems. Our group has uncovered a series of

major errors in ISIS which dramatically affect the performance of our programs. We have been

working with ISIS for two years now and although most of our bug reports have been addressed

by the ISIS developers, problems continue to crop up on a regular basis. Considerable resources

have been devoted to tracking down ISIS-related problems. In the next section some of the ISIS

performance issues are addressed.

- 26 - Enterprise Technical Report TR92-20

6. Programming in Enterprise

Several applications have been implemented using Enterprise (Parsons, 1992). This section

highlights a few of the applications to give some insight into the model, its current state of

implementation, and system performance.

Gauss-Seidel is an iterative algorithm for solving families of linear equations (Golub and Van

Loan, 1989). Given the equation Ax = x, with A an N X N matrix and x a N X 1 vector, this

algorithm solves for x. The algorithm starts with an initial value for x and then iterates, continually

refining it until it converges. A parallel algorithm for finding x can operate asynchronously, with

each processor being responsible for a portion of the x vector, assuming shared memory to

simplify the sharing of results (Baudet, 1978). Unfortunately, while this algorithm benefits from

the lack of processor synchronization, it results in a non-deterministic solution, with respect to the

machine precision.

The parallel Gauss-Seidel algorithm was implemented as a line of two with the last member

replicated. The shared memory needed for Baudet's algorithm was simulated using a service.

Messages sent between Enterprise processes ranged from 2k to 16k bytes depending on the

problem size. Speedups of 5.4 on 10 processors for a 1500 X 1500 matrix were observed. This

particular application is completely asynchronous, so linear speedups are to be expected.

To better understand the reasons for the poor performance, the Enterprise-generated ISIS

communication code was manually replaced with calls to the NMP communications package, a

"friendly" interface to UNIX sockets (Marsland, Breitkreutz and Sutphen, 1991). The NMP

version of Gauss-Seidel achieved speedups that were almost twice that achieved with ISIS. This

experiment clearly showed that the poor Enterprise results were due to bottlenecks in ISIS

communication and that Enterprise applications suffer a large performance penalty from using

ISIS. Note also that it took several days of programming time to implement and debug the NMP

version. Creating the Enterprise program from the sequential code took only 20 minutes.

Several experiments were done with the ISIS code generated by Enterprise in an attempt to

isolate the performance problem(s). They revealed that there is an increasing delay in message

delivery due to the failure of ISIS to de-allocate forwarded messages. This delay amounts to more

that forty times the cost of messages that did not need to be forwarded. The failure to de-allocate

messages created the additional problem of the ISIS system processes accumulating these

messages in the processor's swap space, sharply reducing the potential problem size solvable

before paging costs swamped the execution time. This problem was exacerbated when data-

intensive algorithms were used.

- 27 - Enterprise Technical Report TR92-20

Another algorithm implemented was block matrix multiplication. This data-intensive

algorithm contrasted two different parallel constructs. The first construct was a line of three assets:

create-work, a replicated multiplier, and an assimilator. The second construct was a department

with one subordinate. The receptionist of the department generated work for a replicated multiplier

asset, and assimilated the results. Both implementations generated frequent and large messages

(160k bytes). The best results produced a 2-fold speedup for 2 through 8 processors. Again,

because of the problems with ISIS, performance was limited.

An alpha-beta tree-search algorithm has also been implemented in Enterprise. The algorithm

builds the search tree in a recursive, depth-first manner to a prescribed depth. Leaf nodes were

assigned random values according to a user-defined distribution (Marsland, Reinefeld and

Schaeffer, 1987). The parallel version used the Principal Variation Splitting Algorithm, which

recursively descends the left-most branch of the tree, searching the siblings in parallel during the

backing up of the result (Marsland and Campbell, 1982). The implementation had a line of two

assets, with the last asset replicated. This algorithm has synchronization points which limits the

potential speedup. It has been theoretically shown that with this algorithm, one can expect a

speedup that is proportional to the square root of the number of processors (Fishburn, 1981).

This computationally-intensive algorithm generates few messages in relation to the CPU costs and

is not adversely affected by ISIS. The theoretical speedups were achieved.

Although the number of Enterprise applications implemented is small, several points are

worth noting:

1) The effort to convert a sequential program to an Enterprise program has, in some cases, been

almost trivial. The user concentrates on the parallelism in the application, and not the means

of implementing the parallelism.

2) Understanding what Enterprise does to a program is essential to achieving good

performance. Many procedures/functions that could be done in parallel should not be,

because the benefits of the parallelism do not out-weigh the cost of communication (ISIS

problems aside).

3) ISIS is a serious performance liability. Unless this problem is resolved soon, we may have

to consider designing our own communications package.

- 28 - Enterprise Technical Report TR92-20

7. Project Status

Enterprise is a functional system. The current status (November, 1992) is:

1) The graphical user interface is complete.

2) The code librarian manages the source and object correctly for a heterogeneous network of

machines. The insertion of Enterprise code into a user's code is correctly working for a

subset of the Enterprise features. Currently, the passing and return of arrays/pointers is not

supported.

3) The execution manager is complete and implemented in ISIS. For reasons explained in the

previous section, this component may be rewritten in the near future.

4) No effort has been made to implement any performance monitoring and debugging features.

The system is currently used by a small user community. We expect to have the missing features

working within the next 6 months.

In recent years, there has been an enormous increase in the number and quality of parallel

programming tools described in the literature. The authors of these tools have diverse opinions as

to where in the software development cycle and how these tools can increase a programmer's

productivity. The Enterprise project aims for a complete, integrated programming environment that

is suitable for the complete software development life cycle. By capturing an application's

parallelism through the use of diagrams that are simple to edit, it is not difficult for the user to make

the leap from sequential to parallel programming. Especially since the diagrams are constructed

top-down and are constrained to be semantically correct so that the user can not make a drawing

error! Although the complexity of parallel systems, as portrayed in the literature, has been a

powerful deterrent to growth in this area, we believe that with a simple model, all of the complexity

of parallel programming can be hidden from the user. The analogical model used in Enterprise

represents a different way of viewing an old problem.

Acknowledgements

This research was supported in part by research grants from the Central Research Fund,

University of Alberta, and the Natural Sciences and Engineering Research Council of Canada,

grants OGP-8173 and infrastructure grant 107880.

- 29 - Enterprise Technical Report TR92-20

References

G.M. Baudet. The Design and Analysis of Algorithms for Asynchronous Multiprocessors,
Ph.D. thesis, Carnegie-Mellon University, 1978.

K. Birman, R.Cooper and B.Gleeson. Programming with Process Groups: Group and
Multicast Semantics, 1991, Technical Report TR-91-1185, Computer Science
Department, Cornell University.

K. Birman, R. Cooper, T. Joseph, K. Marzullo, M. Makpangou, K. Kane, F. Schmuck
and M. Wood. The ISIS System Manual, Version 2.1, 1991, ISIS Project, Computer
Science Department, Cornell University.

K.S. Booth, J. Schaeffer and W.M. Gentleman. Anthropomorphic Programming, 1984,
Technical Report CS-82-47, Department. of Computer Science, University of
Waterloo.

E. Chan. The Enterprise Code Librarian, 1992, M.Sc. thesis, Department of Computing
Science, University of Alberta.

E. Chan, P. Lu, J. Mohsin, J. Schaeffer, C. Smith, D. Szafron and P.S. Wong.
Enterprise: An Interactive Graphical Programming Environment for Distributed
Software Development, 1991, Technical report TR 91-17, Department of Computing
Science, University of Alberta.

A. Chatterjee. Futures: A Mechanism for Concurrency Among Objects, in Proceedings of
Supercomputing '89, 1989, pp. 562-567.

E.E. Dijkstra, Selected Writings on Computing: A Personal Perspective, 1982, Springer-
Verlag, New York.

G.H. Golub and C.F. Van Loan. Matrix Computations, 2nd edition, John Hopkins
University Press, Baltimore, Maryland, 1989.

J. Fishburn. Analysis of Speedup in Distributed Algorithms, Ph.D. thesis, Computer
Sciences Department, University of Wisconsin-Madison, 1981. University of
Wisconsin-Madison, 1981.

A. Jones and A. Schwarz, Experience Using Multiprocessor Systems - A Status Report,
Computing Surveys, 1980, vol. 12, no, 3, pp. 121-166.

T.A. Marsland, T. Breitkreutz and S. Sutphen. A Network Multi-processor for
Experiments in Parallelism, Concurrency: Practice and Experience, 1991, vol. 3, no.
1, pp. 203-219.

T.A. Marsland, A. Reinefeld and J. Schaeffer. Low Overhead Alternatives to SSS*,
Artificial Intelligence, 1987, vol. 31, no. 1, pp. 185-199.

T.A. Marsland and M.S. Campbell. Parallel Search of Strongly Ordered Game Trees,
Computing Surveys, 1982, vol. 14, no. 4, pp. 533-551.

- 30 - Enterprise Technical Report TR92-20

I. Parsons. An Appraisal of the Enterprise Model, 1992, M.Sc. thesis, Department of
Computing Science, University of Alberta, Edmonton.

A. Singh. A Template-Based Approach to Structuring Distributed Algorithms Using a
Network of Workstations, 1991, Ph.D. Thesis, Department of Computing Science,
University of Alberta.

A. Singh, J. Schaeffer and M. Green. Structuring Distributed Algorithms in a Workstation
Environment: The FrameWorks Approach, in Proceedings of the International
Conference on Parallel Processing, 1989, pp. 89-97.

A. Singh, J. Schaeffer and M. Green. A Template-Based Tool for Building Applications in
a Multicomputer Network Environment, in Parallel Computing, 1989, D. Evans, G.
Joubert and F. Peters (editors), North-Holland, pp. 461-466.

A. Singh, J. Schaeffer and M. Green. A Template-Based Approach to the Generation of
Distributed Applications Using a Network of Workstations, IEEE Transactions on
Parallel and Distributed Systems, 1991, vol. 2, no. 1, pp. 52-67.

D. Szafron, J. Schaeffer, P.S. Wong, E. Chan, P. Lu, C. Smith. The Enterprise
Distributed Programming Model, Programming Environments for Parallel
Computing, 1992, N. Topham, R. Ibbett and T. Bemmerl, editors, Elsevier Science
Publishers, pp. 67-76.

P.S. Wong. The Enterprise Executive, 1992, M.Sc. thesis, Department of Computing
Science, University of Alberta.

- 31 - Enterprise Technical Report TR92-20

Appendix A.

C Code for the Entry Procedures of the Animation Example

This appendix gives pseudo code for the Animation example. For brevity, only the main

procedure calls of Model, PolyConv and Split are shown.

Asset Code: Model

/* Model asset */

#define NUMBER_STEPS 4
#define NUMBER_FISH 10
#define NUMBER_FRAMES 20

Model(argc, argv)
int argc;
char ** argv;
{

float timeperframe;
int NumberFish, NumberSteps, NumberFrames, frame;

/* Extract from program parameters (argc, argv) values for NumberFish, */
/* NumberSteps and NumberFrames. */

/* Generate the school of fish */
MakeFish(NumberFish, 0);

/* Loop through each frame */
timeperframe = 1.0 / NumberSteps;
for(frame = 0; frame < NumberFrames; frame++)
{

/* Do model computations */
InitModel(NumberFish);
MoveFish(NumberFish, timeperframe);
DrawFish(NumberFish, timeperframe * frame);
WriteModel(frame);

/* Done! Send work to PolyConv process */
PolyConv(frame);

}
}

Asset Code: PolyConv

/* PolyConv asset */

#define MAX_POLYGONS 1000

PolyConv(frame)
int frame;
{

polygon polygontable[MAX_POLYGONS];
int npoly;

- 32 - Enterprise Technical Report TR92-20

/* Convert polygons */
DoConversion(frame);
npoly = ComputePolygons(&polygontable);

/* Done! Send the work to the Split process. This code appeared in */
/* the sequential program: */
/* Split(frame, npoly, polygontable); */
/* To pass arrays in Enterprise, we need the pointer and the number of */
/* elements. Hence this is the correct Enterprise code: */
Split(frame, npoly, polygontable, npoly);

}

Asset Code: Split

/* Split asset */

#define MAX_POLYGONS 1000

Split(frame, npoly, polygontable)
int frame, npoly;
polygon polygontable;
{

HiddenSurface(frame, npoly, &work.polygontable);
AntiAlias(frame, npoly, &work.polygontable);

}

- 33 - Enterprise Technical Report TR92-20

Appendix B.

Enterprise Code for the Entry Procedures of the Animation Example

enterprise.h

#define ENTERPRISE 0
#define ENT_MODEL 1
#define ENT_POLYCONV 2
#define ENT_SPLIT 3
#define ENT_MAX_FUNCTIONS 4

#define ENT_MAINLINE 1

enterprise.c

void _Ent_Functions[ENT_MAX_FUNCTIONS] = {
_Enterprise(), _Ent_Model(), _Ent_PolyConv(), _Ent_Split()

};

main(argc, argv)
int argc;
char ** argv;
{

/* Strip off Enterprise parameters (profiling, debugging, monitoring) */
/* and a flag which indicates whether this is the mainline of the pro- */
/* gram. Adjust arc and argv to be passed on to the programs mainline. */
if(mainline)

_Ent_Functions[ENT_MAINLINE](argc, argv);
else _Ent_Main();

}

_Ent_Main()
{

int function;

/* Loop receiving messages. Read the first 4 bytes, telling us which */
/* function is being called. */
for(; ;)
{

function = _Ent_Receive();
_Ent_Functions[function]();

}
}

Model.c

/* Model asset */

#define NUMBER_STEPS 4
#define NUMBER_FISH 10

- 34 - Enterprise Technical Report TR92-20

#define NUMBER_FRAMES 20

Model(argc, argv)
int argc;
char ** argv;
{

float timeperframe;
int NumberFish, NumberSteps, NumberFrames, frame;
char * msg;

/* Extract from program parameters (argc, argv) values for NumberFish, */
/* NumberSteps and NumberFrames. */

/* Generate the school of fish */
MakeFish(NumberFish, 0);

/* Loop through each frame */
timeperframe = 1.0 / NumberSteps;
for(frame = 0; frame < NumberFrames; frame++)
{

/* Do model computations */
InitModel(NumberFish);
MoveFish(NumberFish, timeperframe);
DrawFish(NumberFish, timeperframe * frame);
WriteModel(frame);

/* Done! Send work to PolyConv process */
msg = _Ent_PackMessage("%d", frame);
_Ent_SendMessage(ENT_POLYCONV, msg);

}
}

PolyConv.c

/* PolyConv asset */

#define MAX_POLYGONS 1000

_Ent_PolyConv()
{

polygon polygontable[MAX_POLYGONS];
int npoly;
char * msg;

/* Get the parameters to the function from a message */
int frame;
_Ent_UnPackMessage("%d", &frame);

/* Convert polygons. */
DoConversion(frame);
npoly = ComputePolygons(&polygontable);

/* Done! Send the work to the Split process. Note that %A is a special */
/* Enterprise format character (array). It takes 3 parameters: a */
/* pointer to the array, the size of each element in the array and */
/* the number of elements of the array to pass. Note here that we do */
/* pass the entire array; only the portion that the user wants. */
msg = _Ent_PackMessage("%d%d%A", frame, npoly,

- 35 - Enterprise Technical Report TR92-20

&polygontable, sizeof(polygon), npoly);
_Ent_SendMessage(ENT_SPLIT, msg);

}

Asset Code: Split

/* Split asset */

#define MAX_POLYGONS 1000

_Ent_Split()
{

/* Get the parameters to the function from a message */
int frame, npoly, numb;
polygon polygontable;
_Ent_UnPackMessage("%d%d%A", &frame, &npoly, &polygontable, &numb);

HiddenSurface(frame, npoly, &polygontable);
AntiAlias(frame, npoly, &polygontable);

}

