
And of knowledge, you (mankind) have been given only a little.

– Quran, chapter 17, verse 85

University of Alberta

HISTOGRAM AND MEDIAN QUERIES IN
WIRELESS SENSOR NETWORKS

by

Khaled A. Ammar

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Khaled A. Ammar
Fall 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only. Where the thesis is converted to, or otherwise made available in
digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever

without the author’s prior written permission.

Examining Committee

Mario A. Nascimento, Computing Science

Benoit Rivard, Earth and Atmospheric Sciences

Janelle Harms, Computing Science

To my Father, Mother and my wife Doaa...

To my angels Hamza and Razan...

For making me a better me.

Abstract

Recently, Wireless Sensor Networks (WSNs) have been used in many monitoring

applications, e.g., environment monitoring. A WSN consists of a set of nodes, each

having one or more sensors to measure a phenomena. Nodes are connected to each

other using wireless radio communications. Typically, there is at least one base

station that functions as an interface between the monitored area and the end user.

In many applications, users are interested in statistical summaries of the ob-

served data, e.g., histograms reflecting the distribution of the collected values. In

this thesis we propose two main contributions: (1) an efficient algorithm for an-

swering Histogram queries in a WSN, and (2) efficient algorithms for answering

snapshot and continuous Median queries in a WSN.

While designing applications for the WSN, the main challenge is the battery

life time. For WSN nodes, sending a message consumes a significantly higher

amount of energy than processing information inside the node. Therefore, we de-

sign our proposed algorithms in order to minimize the energy consumption and/or

transmission cost, i.e. number of sent bytes, and consequently extend its lifespan.

Our experimental results, using synthetic and real datasets, show that our proposed

solutions are indeed able to substantially extend the lifespan of the WSN when

compared to previously proposed solutions.

Acknowledgements

I thank Allah, the only true god and the most merciful, for his non-countable bless-

ings in my life. I praise him for giving me the energy and enthusiasm to complete

this piece of work and I hope he allowed me to be a better person and a better

researcher by helping my community and the whole population in this world.

”Whosoever does not thank people,has not thanked Allah”, Prophet Mohammed

PBUH. I would like to thank my wife, Doaa, for her great continuous support during

my master degree. She did every thing possible to empower me and inspire me to

finish this thesis. My mother and father are the most important people to me in this

life. I owe them every single success or happiness moment I live. Finally, I thank

my sisters, my brother, my son and my daughter. You all made me a happy and

strong person because I know you are there to save my back.

I’m grateful for the support Prof. Mario A. Nascimento offered me. I deeply

appreciate his patient on developing my research, writing, and presentation skills.

Mario, you are the best supervisor ever. You did not just support my thesis, you

actually supported my life here in the University of Alberta, Thank you.

While being in the beautiful Edmonton, I was pleased by many friends who

supported myself and my family. I spent long times with Mohamed Shazly dis-

cussing ideas during very early stages of my research. Mohammed Saber helped

me taking care of my son Hamza allowing me to spend longer times working on my

thesis. Ehab Hamza was very kind and supportive during the last few days before

my defense. I would use many pages to mention all my friends. Thank you all for

allowing me to experience the best community ever.

Finally, I would like to thank my committee; Prof. Rivard and Prof. Harms for

their positive feedback and helpful comments.

Table of Contents

List of Abbreviations x

List of Symbols 1

1 Introduction 1
1.1 Introduction to WSNs . 1
1.2 Motivation . 2

1.2.1 Histogram Queries . 3
1.2.2 Median Queries . 4

1.3 Contribution . 4
1.4 Thesis Structure . 6

2 Histogram Queries in WSNs 7
2.1 Introduction . 7

2.1.1 Histogram Incremental Updates (HIU) Algorithm 10
2.2 Answering Other Aggregate Queries 13
2.3 Performance Evaluation . 16

2.3.1 Performance Evaluation for Histogram and Approximate
Aggregate Queries . 19

2.3.2 Performance Evaluation for Exact answers 22
2.4 Conclusion . 26

3 Median Queries in WSNs 27
3.1 Introduction . 27
3.2 Related Work . 27

3.2.1 Approximate Algorithm 28
3.2.2 Exact Algorithms . 29

3.3 Snapshot Median Query Algorithm 30
3.3.1 How many Refinement Queries? 30
3.3.2 What structure for the refinement (histogram) queries? . . . 34

3.4 Continuous Median Query Algorithms 36
3.4.1 HIU-Median Algorithm 37
3.4.2 Continuous RBM Algorithm (CRBM) 39

3.5 Performance Evaluation . 44
3.5.1 Snapshot Median Query 47
3.5.2 Continuous Median Query 50

3.6 Conclusion . 63

4 Conclusion and Future Work 65

Bibliography 69

List of Tables

2.1 A summary for supported aggregate queries 14
2.2 Studied parameters for HIU analysis and their values (default values

in bold) . 18

3.1 Determining a good value for B 35
3.2 Determining the best strategy for the first Histogram query in each

round . 41
3.3 Studied parameters for RBM and CRBM analysis (default values in

bold) . 47

List of Figures

2.1 HIU example showing round i and i+ 1 13
2.2 Network Lifetime analysis using the Synthetic dataset 20
2.3 Network Lifetime analysis using the Intel Berkeley dataset 22
2.4 Cost of running exact-Max query 23

3.1 Processing a median query. 31
3.2 Empirical study for effect of B . 36
3.3 Comparison between using a median bin in different refinements in

the first Histogram query of each round 42
3.4 Example for constructing the first refinement in the CRBM algorithm 42
3.5 Performance of RBM using average number of bytes sent per a sen-

sor node (Synthetic dataset) . 48
3.6 Performance of RBM using average number of bytes sent per node

(Realistic Dataset) . 50
3.7 Influence of the continuous parameters on the cost of running HIU-

Median in terms of number of sent bytes (X-axis is number of rounds) 52
3.8 Influence of the setup parameters on the cost of running HIU-Median

in terms of number of sent bytes (X-axis is number of rounds) . . . 53
3.9 Studying the HIU-Median using the realistic dataset in terms of

number of sent bytes (X-axis is number of rounds) 55
3.10 Influence of the continuous parameters on the cost of running CRBM

in terms of number of sent bytes (X-axis is number of rounds) . . . 56
3.11 Influence of the setup parameters on the cost of running CRBM in

terms of number of sent bytes (X-axis is number of rounds) 58
3.12 Per-round cost vs. Amortized average for the CRBM algorithm . . . 60
3.13 Studying the CRBM using the realistic dataset in terms of number

of sent bytes (X-axis is number of rounds) 61
3.14 Comparison between HIU-Median and CRBM using the default

values . 62
3.15 Comparison between HIU-Median and CRBM using the best case

scenario for HIU-Median . 63

List of Abbreviations

WSNs Wireless Sensor Networks
HIU Histogram Incremental Updates algorithm
RBM Refinement Based Median algorithm
CRBM Continuous Refinement Based Median algorithm
CPU Central Processing Unit
SPT Shortest Path Tree
RBM* Using the RBM several times to answer a Continuous Me-

dian query
DST Dominating Set Tree
BISPT BIased Shortest Path Tree

x

List of Symbols

S A set of all nodes in the WSN
N Number of nodes in the WSN S
si A node in the WSN S
vi The value for a node si
ṽi The cached value for a node si from the previous round
Q An aggregate query
epoch The frequency of running a continuous query.
H A histogram
B Number of bins in a histogram
bi A bin number i in a histogram
hi Number of values in bin number i in the histogram
Lb The lower bound for a histogram
Lbi The lower bound for bin bi in the histogram
Ub The upper bound for a histogram
Ubi The upper bound for bin bi in the histogram
Ii The initial state of a node si. (It is represented by pi = (i, hi))
Pj The partial state, also known as the local histogram, for a node

sj . (It is represented by an array of pis)
M An array of all messages received by the children of a node sj
Uj An update message sent from node sj to its parent
Ej Extra information attached with the node sj’s message to its par-

ent to represent an answer for an aggregate query
K The index of the value answering a quantile query, assuming all

values are sorted
R The radio range in meters for all nodes in the WSN
δ The average amount of change in a sensor’s value in each round.

It is represented as a percentage of the maximum possible value
measured by a sensor in the WSN

ρ The probability that a sensor’s value change in each round
σ Assuming initial values for all nodes are following the normal

distribution, the is the standard deviation for that distribution.
Hs The header size in each message sent by a node in the WSN.
Et The energy consumed by sending a message.
Er The energy consumed by receiving a message.
s The setup cost, in terms of energy, to send a message.
t The cost of sending one bit for 1 meter. It is measured in Joule.
r The lower bound for a histogram.
d The distance a message can reach, in meters.
b The message size in bits.

1

Chapter 1

Introduction

1.1 Introduction to WSNs

A typical Wireless Sensor Network (WSN) consists of sensor nodes distributed in

an area and connected, via a tree-like topology, to a base station. In the context of

this thesis we will refer to sensor nodes simply as nodes. The fact that a node may

contain more than one sensor and then produce more than one value is irrelevant

for our purpose. We assume that the base station is a full-fledged computer system

with light limitations on memory, CPU, or bandwidth. Nodes are typically used

to observe some phenomena about a monitored area and are becoming common in

many applications. Examples include smart nursing, security monitoring, structural

health monitoring, and environment monitoring [3, 11, 27]. Users are connected to

the WSN through the base station where they can submit their queries. The base

station forwards a query to the WSN, collects its result, and then sends the answer

back to the user. Typically, WSN nodes have limited resources in terms of energy,

CPU, memory and the battery is considered the most important resource in a WSN

node. The required energy for transmission is significantly higher than the required

energy for data processing in a WSN node. For example, sending one bit using the

Berkeley Mica motes needs as much energy as processing 1000 CPU instructions

[18]. For this reason, it is very important that all algorithms executed on top of a

WSN minimize transmissions.

For the purpose of our discussions in this thesis, we assume that the WSN has

N nodes and it can be modeled as a graph G = (S,E), where S is the set of

1

vertexes that represents all N nodes; E is the set of edges that represents existing

communication links between any two nodes in the network. We assume that all

nodes have the same radio model, thus the same radio range, denoted as R, and thus,

if d(si, sj) denotes the Euclidean distance between two nodes si and sj in S, we

have E = {〈si, sj〉 | d(si, sj) ≤ R, and si, sj ∈ S, and si 6= sj}. Each node si ∈ S,

except the base station, periodically measures a value vi. In fact, every value has an

associated timestamp, however in order to lighten the notation, and considering that

we process snapshot queries, we do not explicitly denote it unless necessary. We

assume all nodes are connected to the base station, likely through a multi-edge path.

In the remainder of our discussion we assume the distance between two nodes is the

minimum number of hops, i.e. edges, between them. The graph G represents the

physical network. We assume the existence of a routing tree T = (S,E ′) | E ′ ⊂ E,

connecting all nodes in S and where the base station is T ’s root. Typically, this tree

is constructed to minimize the number of hops between a node and the base station.

Finally, we assume that the connection between nodes is reliable (i.e, there is no

link failure), and concentrate on the query processing aspect of the problem.

1.2 Motivation

Simple aggregate queries such as Max, Average and Sum are sufficient for a large

number of applications where a high-level (summary) view of the data suffices, e.g.,

when looking for abnormal behavior. Complex aggregates, where the answer size

is not fixed and depends on number/distribution of all values, for instance Quantile

and Histogram provide more insight about the data and are mandatory for many

applications. For example, in the Electronic Nose project [1], any single value is not

important by itself, but, the distribution of the sensor values is used as a chemical

signature to classify the material as being safe or unsafe. In engineering, many

applications use Histogram queries on WSN for different purposes. A civil engineer

that needs to measure the pressure along a bridge can obtain a histogram that finds

pressure distribution in all bridge’s areas [11]. Petrochemical engineers can use the

Histogram function to understand the fluid directions inside a tube (Fluid direction

2

gives an intuition about fluid pressure in the pumps and pumps network design).

Quantile queries, as known as order statistics queries, can provide a better char-

acterization of the values’ distribution than simple aggregate queries such as Max,

Min, or Average. Additionally, they are more robust to outliers, which are com-

mon in sensor networks due to failures, poor calibration, or interference from the

environment. For example, a single reading from a faulty sensor can significantly

change the average reading value, but order statistics such as the median, 95th per-

centile and 5th percentile are resilient to these failures [6].

The database community classifies aggregation functions into four main cate-

gories: distributive (Max, Min, Sum, Count), algebraic (Average), content sensitive

(Histogram), and holistic (Quantile) [13, 17]. Computing distributive and algebraic

functions on a set of distributed nodes on WSN can be easily achieved using the

in-network aggregation concept proposed in [17]. Although the authors in [17]

proposed an algorithm that uses an in-network algorithm to reduce number of re-

quired transmissions to compute a Histogram query, this query has not received

much attention in the related literature since then. Also, it is known that holistic

functions need all the candidate values to be centralized at one node [13, 17]. Kuhn

et al. [13] shows that distributive and algebraic functions could be calculated for

a general network of N nodes and diameter D in O(D) time while holistic has a

lower bound of ω(D × logDN). Part of our work is to propose efficient distributed

algorithms to answer a Quantile query, but focusing on Median without loss of

generality, using Histogram answers.

1.2.1 Histogram Queries

The Histogram query is an aggregate query, which provides a statistical summary

of the available values. It consists of a set of bins representing numerical ranges

and the answer is the count of how many values belong to each bin. These bins are

adjacent, consecutive, non-overlapping and often are chosen to be of the same size.

The Histogram query is also useful for estimating the values distribution and then

for computing approximate answers for other aggregate queries. We discuss this in

detail in Chapter 2.

3

A Histogram query is denoted as Q(Lb, Ub, b1, b2, b3, ...bB, epoch), where: epoch

is the time lapse between any two consecutive Histogram answers, the lower and

upper bound values of the measured phenomena are Lb and Ub, each bi is a bin in

the Histogram query and it is defined as an interval between where:

• bi = [Lbi, Ubi[where 1 ≤ i < B and bB = [LbB, UbB]

• Ubi ≤ Lbj ∀i < j and
⋃

1≤i≤B{bi} = [Lb, Ub]

• Lb1 = Lb and UbB = Ub

The answer for a Histogram query is denoted as H = (h1, h2, ..., hB), where hi =

| {(sj, vj) | Lbi ≤ vj < Ubi, sj ∈ S} |. Naturally, a sensor’s value vj may change

every epoch and so does the query answer.

1.2.2 Median Queries

The Median query is a special case of the quantile query. Although we will use

Median as an example in this thesis, the same algorithms can be easily extended for

any quantile query. A quantile query looks for the Kth value in a list of N values.

In case of the Median query, K = dN
2
e. Because any value in the WSN is a candi-

date to be the median query answer, collecting all candidates at the base station is

a straightforward approach to answer such a Median query. However, earlier pro-

posals in the literature suggested decreasing the number of candidates through the

use of histograms. If nodes’ values follow a uniform distribution then a Histogram

query of B bins will cluster them in B clusters and the size of each cluster is about
N
B

. The correct answer for a median query cannot be in two clusters in the same

time. The number of candidates will drop from N to N/B. We can repeat such a

query to refine the list of candidate values until the number of candidates is very

small and could be retrieved easily to the base station.

1.3 Contribution

We present the following contributions in this thesis. First, we propose an effi-

cient distributed algorithm to answer Histogram queries. This algorithm requires

4

less than half the amount of energy used by the classical TAG algorithm [17] to

construct a histogram thus, it can at least double the network lifetime. This al-

gorithm outperforms the TAG algorithm (current state-of-the-art to answer a His-

togram query) multiplying the network lifetime, on average, about three times.

Our second contribution is a set of algorithms to find an approximate and exact

answers for other aggregate queries. The Approximate answers can be obtained

with no overhead and with a bounded accuracy directly related to the Histogram

query’s structure, e.g., number of bins and their ranges. Exact answers for some

aggregate queries could be computed with a very small overhead.

Then, we explore how to use a histogram in the base station to compute a Me-

dian query. We proposed three ways to do that: (1) Compute an approximate an-

swer with no overhead, (2) Use a Histogram query once to reduce the number of

candidate values while computing an exact answer, and (3) Use multiple Histogram

queries to significantly reduce the cost of a Median query. In particular, we explore

how to minimize the cost of all Histogram queries that refine the list of candidate

values and then minimize the cost of the Median query. To do that we address two

questions: (1) How many refinements are required before retrieving all candidates

to the base station? (2) What is the histogram structure of each refinement query?

To answer the first question we show that a central algorithm is required but

not practical for the WSN context, thus we use a heuristic distributed algorithm.

Answering the second question is more challenging because it includes three di-

mensions: using a single histogram size in all refinements vs. multiple histogram

sizes, determining the size of each Histogram, and using equal size bins or using

bins with different sizes. We propose two approaches to answer the second question

with all of its dimensions. Using the average amount of bytes sent as our perfor-

mance indicator, our experiments show that adapting each Histogram query based

on available information in the base station minimizes the number of bytes sent, on

average. Because the energy consumption per-node depends mainly on the amount

of bytes each sensor sends, minimizing the number of bytes sent also minimizes the

power consumption and then increases the network life span.

Finally, we extend the median algorithm to process the Continuous Median

5

queries.

1.4 Thesis Structure

This thesis is organized as follows: Chapter 2 reviews the classical TAG approach

that answers a Histogram query and explains in detail our proposed algorithm, HIU.

The same chapter discusses the computation of approximate as well as exact an-

swers for other aggregate queries using a Histogram as a starting point. In Chap-

ter 3, we present algorithms to answer snapshot and continuous Median queries

in the WSNs context using a Histogram query. Finally, Chapter 4 summarize our

contributions and proposes directions for future research.

6

Chapter 2

Histogram Queries in WSNs

2.1 Introduction

A straightforward technique to answer a continuous Histogram query in the WSN

context is to periodically gather all values from all nodes at the base station and then

build a histogram. The classical TAG algorithm decreases the number of required

messages extensively compared to the straightforward technique [17]. There has

been not much work done in the literature to construct a histogram of WSN values

since Madden et. al. proposed TAG algorithm in 2002 [17]. Chow et.al. pro-

posed an algorithm to construct a spatio-temporal histogram [2]. The main idea

is to construct an approximate spatio-histogram that is updated every time a sensor

reading reaches the base station. This approximate histogram is used for location

monitoring. The authors proposed a basic and adaptive approach to construct an ap-

proximate histogram in the base station. The algorithm collects values at the base

station and then constructs the histogram. The energy saving comes from efficiently

constructing approximate histogram instead of an exact one.

In [17], the authors define the TAG model to answer aggregate queries using an

in-network algorithm in the WSN context. Each node has initial and partial states,

to be defined later. Nodes send their partial states to their parents1. Received partial

states are merged together to construct the parents’ partial states. The process can

be visualized as a routing tree where the base station is the root and nodes send

their partial states as messages up the tree towards the root. This process continues

1In case of leaf nodes, the partial state is identical to the initial state

7

until constructing a partial state in the base station. Finally, the base station runs an

evaluation function to compute the aggregate result from its partial state.

The authors classify aggregate queries based on their properties. One of these

properties is the partial state size. Since the formats of the initial and partial states

in this case are not discussed in details in [17], we assume they have the following

format:

• Ij is the initial state in a node sj with a value vj , represented by a pair pi =

(i, hi) where vj ∈ bi and hi is number of values in bin bi.

• Pj is the partial state in a node sj , and is an array of pairs pi. It is constructed

by merging partial states received from the children of sj along with its own

initial state.

Using the above assumptions, a TAG-base algorithm takes the Histogram query

Q, the tree-like topology T , and starts a bottom-up merging of partial states. The

pseudo-code for this algorithm is illustrated in Algorithm 1 where M is an array of

all received messages from node sj’s children. In general, as we will see later in

Section 2.1.1, a message in M can be a single value or a partial state and occasion-

ally include other information, but in the TAG-Histogram algorithm all messages in

M have partial states only.

Algorithm 1 TAG-Histogram(Histogram Query Q, Logical Routing Tree T)
1: l← L {L is number of levels in tree T}
2: while l ≥ 0 do {Iterate on all T ’s levels}
3: for each sensor sj with a value vj in level l do
4: Ij ← (i, 1) | i← arg{bi | vj ∈ bi} {Initial state for sj}
5: Pj ← MERGE(M ,Ij) {The sensor sj’s partial state is based on Ij and all

messages M from its children}
6: Send Pj to sj’s parent
7: l← l − 1 {move to the upper level}
8: return Pj in T ’s root

The MERGE function (illustrated in Algorithm 2) receives an array M of all

received messages and an initial state Ij and returns a partial state. If M is empty

then the sensor sj is a leaf node and its partial state Pj = Ij . Otherwise, the MERGE

8

function sums up all his relative to the same bin bi from different messages, and

adds a new pair pi to the result array R.

Algorithm 2 MERGE(Array of Messages M , Current Sensor’s initial state I)
1: if M is empty then
2: return I
3: else
4: R = { } {R will contain a set of pairs pi = (i, hi)}
5: R← I
6: for each message m in M do
7: Pm = { } {Partial state Pm will contain a set of pairs pi = (i, hi)}
8: if the message m is a value vm then
9: Pm = (i, 1) | i← arg{bi | vm ∈ bi}

10: else {the message m is a set of pairs}
11: Pm ← all pairs in the message m
12: for each pair pi = (i, hi) ∈ Pm do
13: if ∃ pk = (k, hk) ∈ R | k = i then
14: hk ← hk + hi

15: else
16: Copy pi from Pm to R
17: return R

When the collected partial states are merged together in the base station, level

l = 0, the evaluation function computes the query result, H . The proposed evalua-

tion function finds hi in the final partial state Pj and copy it into the query answer

H . If a count hi (1 ≤ i ≤ B) is not present in Pj , then its value is zero.

In this approach, each sensor should send exactly one message on every epoch

but the message sizes (in bits) are different depending on the node type. The size

(in bits) of a message from a leaf node is size(Pj) = size(pi) = log2 N + log2 B,

whereas the size of a message from a non-leaf node is size(Pj) = size(pi) × B.

If the distribution of sensor values is wide and covers most of the histogram bins,

then the message format is not efficient because it includes the bin id (i) with each

pair. In that case, if an array of all his, including the zero’ed ones, is sent without

any bin id, the message size will be smaller (log2 |S| ×N).

TAG [17] is the current state-of-the-art approach to build a histogram based on

WSN nodes’ values. In the next section we propose an algorithm that requires less

and smaller messages sent in the network. The main idea is to use in-node caching

9

and send incremental updates instead of actual values.

2.1.1 Histogram Incremental Updates (HIU) Algorithm

A node does not change a Histogram answer if its value changes within its cur-

rent bin’s lower and upper bounds. This histogram property motivates us to look

into more details of the histogram construction process. Instead of sending its par-

tial state every epoch, a node can build an update message based on the previous

round’s partial state. This idea was used in several algorithms in the database’s

literature. For example, in [9] the authors proposed algorithms to maintain materi-

alized views incrementally. In our algorithm, nodes receive incremental histogram

updates, merge them together and then forward to their parents, and so forth. The

process continues until the histogram in the base station is updated. Note that in

the TAG algorithms, all nodes send their partial states to their parents regardless of

how these partial states differ from ones in the previous round.

In-node caching is an essential component in the HIU algorithm. Each node sj

caches its value and its partial state from the previous round in ṽj and P̃j , respec-

tively. In the first round, ṽj is undefined and we assume P̃j = {0, 0, 0, ..., 0}.

The HIU algorithm works as follows (Pseudo-code is shown in Algorithm 3).

The initial and the partial states in HIU are both equivalent to the partial state in

TAG. The initial state has two pairs if the current value vj belongs to a different bin

than the previous cached value ṽj , and has one pair only if ṽj is undefined.

Nodes do not always send their partial states to their parents. A leaf node

sends its partial state only if the new value, generated in the current round, leads

to a change of its bin. A non-leaf node may receive multiple values and update-

messages from its children (array M). Update-messages have the same format as a

partial state. If a message in M is a single value, MERGE converts it to the partial

state format and continues. Merging all received messages in a sensor sj with its

initial state Ij yields its update-message Uj . The update-message Uj is applied to

the cached partial state P̃j to keep it up-to-date. This step adds each hi in Uj to hk

in P̃j iff i = k. Note that hi values in Uj could be negative values. In fact, for all

update-messages Uj , ΣB
i=1hi = 0.

10

Algorithm 3 HIU(Histogram Query Q, Logical Routing Tree T , Aggregate Query
Agg)

1: l← L {L is number of levels in tree T}
2: while l ≥ 0 do {Iterate on all levels using bottom-up }
3: for each sensor sj in level l do
4: b← arg{bi | vj ∈ bi} {b is the bin id for the current value vj}
5: if the cached value ṽj of sensor sj is undefined then
6: b̃← −1 {-1 is an alias for an undefined bin}
7: else
8: b̃← arg{bi | ṽj ∈ bi}

{b̃ is the bin id for the cached value ṽj}
9: if a sensor sj is a leaf-node then

10: if b 6= b̃ OR Agg 6= NULL then
11: Send vj to sj’s parent

{No data sent if current and cached bins are equal}
12: else
13: {Construct Initial state (Ij)}
14: if b̃ is undefined then
15: Ij ← (b, 1)
16: else
17: Ij ←[(b,1), (b̃,-1)] {increase the counter of the current bin by 1 and

decrease the cached by 1}
18: Uj ← MERGE (M , Ij) {Build sensor’s update message Uj using sen-

sor’s Ij and messages in M}
19: if Agg 6= NULL then
20: E ← ExtraInformation (sj, Agg) {It returns the necessary value to

allow computing the exact answer for an aggregate query Agg.}
21: Send Encode(Uj ,E) to sj’s parent
22: else
23: Send Encode(Uj) to sj’s parent
24: {Update the cached partial state P̃j from the previous round}
25: for each pair pi = (i, hi) ∈ Uj do
26: if ∃ pk = (k, hk) ∈ P̃j | k = i then
27: hk ← hk + hi {Recall that in Uj , hi could be positive or negative}
28: else
29: Copy pi from Uj to P̃j

30: ṽj ← vj
31: l← l − 1 {Go to the upper level}
32: return P̃j in T ’s root

11

Received update-messages in any non-leaf node may cancel each other in which

case nothing is sent forward. For example, consider non-leaf node C that has two

subtrees, A and B. Subtree A has x nodes where their value moved from bin bk to

bl. On the other hand, the subtree B has x−1 nodes where their values moved from

bin bl to bk. If these two updates are merged together, then subtree C has only one

value moved from bk to bl. Moreover, if node C’s value moved from bl to bk, then

C should not send any update to its parent at all.

As discussed earlier, the Encoding function (in line 21) decides whether to send

Uj as a set of pairs (i, hi) or send all his without the need to identify them with bin

ids i then attach E,if an exact answer is required, with the message. The smaller rep-

resentation, based on the number of bits, is chosen. A more complex compression

can be implemented for this function, e.g., [24, 32]. However, a detailed discussion

about compression algorithms in WSN is beyond the scope of this thesis.

In figure 2.1, we show an example for the HIU algorithm. The Histogram query

is Q(0,100,4). In the Round i + 1, only leaf nodes who change their bins send a

message to their parents. Node D receives a value update from one of its children

but its own value was changed also. However, the partial state, local histogram of

its subtree, did not change and then it does not need to send any message to its

parent. Node C receives one update from one of its children. Although its own

value changed, its histogram bin did not. Node C should send a message to its

parent to describe the change happens in its partial state. Instead of sending the

whole histogram again, it only sends two pairs of (bin id, change in the count). The

whole histogram would cost 8 bytes but the two pairs costs only 6 bytes.

Node A, received an update message from Node C but the bins of its own value

and one of its leaf node children were changed as well but on the opposite side. So

that, the partial state did not change and then it does not have to send any message.

Node B, received only one update from its children. Its value did not change the

histogram bin so that the change of its children was the only influence on its partial

state. It communicates this change to its parent as a pair of updates because it is

cheaper than sending the whole histogram.

Once the histogram receives the update message from Node B, it applies it to

12

19
B
H = {5,1,0,0}

81 92

87

89

C
H = {0,0,0,4}

Base Station

23

22 26

24
D
H = {3,1,0,0}

76

H = {5,1,2,5}

23

74

Round i

A
H = {0,0,2,5}68

(a) Round i

26

C
H = {0,0,0,4}

Base Station

22

D
H = {3,1,0,0}

23

B
H = {5,1,0,0}A

H = {0,0,2,5}

19

24

2724

2326

22

U = {(1, −1), (2, +1)}

H = {4,2,0,0}

H = {0,0,1,3}

81 89 92

87

7674

7268

7876

80

8774 85

U = {(3, +1), (4, −1)}

H = {5,1,2,5}
H = {4,2,2,5}

Round i+1

(b) Round i+ 1

Figure 2.1: HIU example showing round i and i+ 1

its partial state by decrease the count in the first bin by 1 and increase the count of

the second bin by 1. The partial state of the base station node is the query answer.

In the next section we show how a histogram could be used to compute ap-

proximate answers for aggregate queries. We also show how the ExtraInformation

function (in line 20) works to collect necessary values and send them through in-

network to facilitate computing exact answers for some other aggregate queries in

the base station.

2.2 Answering Other Aggregate Queries

A histogram provides a broad picture for values in the WSN and may be used as a

starting point for more statistical analysis. Occasionally, a user might like to know

13

Query Approximate Answer Equation Error Margin
Max Ubm+Lbm

2
| hm 6= 0, ∀i > m, hi = 0 Ubm−Lbm

2Min Ubm+Lbm
2

| hm 6= 0, ∀i < m, hi = 0
Count ΣB

i=1{hi} 0

Sum ΣB
i=1{hi × Ubi+Lbi

2
} ΣB

i=1{Ubi−Lbi
2
× hi}

Average Sum
Count

1
Count

ΣB
i=1{Ubi−Lbi

2
× hi}

Table 2.1: A summary for supported aggregate queries

more specific information (e.g. Max or Average) about those values represented by

the histogram. In this section, we present algorithms to compute approximate and

exact answers for several aggregate queries using a previously obtained histogram

in the base station. The approximate solutions have bounded accuracy levels and

the exact solutions can be computed with very low extra overhead on the WSN.

Since the main target of this thesis is the Median queries, we discuss it in details

separately in Chapter 3.

Recall from Section 1.2.1 that a Histogram query is defined as:

Q(Lb, Ub, b1, b2, b3, ...bB, epoch) and its answer is: H = (h1, h2, h3, ...hB), where

hi is the count of values within the range of Lbi and Ubi. Table 2.1 shows how to

compute approximate answers for some aggregate queries in the base station using

a Histogram query’s result. Because, all computations are made at the base station,

there is absolutely no overhead on the WSN.

Table 2.1 also shows the error margin limit for each approximate aggregate

answer. A Histogram query can provide an exact answer for Count aggregate query.

All error bounds depends on the bin size (Ubi − Lbi). Decreasing the bin size in

the Histogram query will lead to answers with higher accuracy. However, this will

increase the overall cost of the Histogram query’s result because it increases the

number of bytes sent.

Next we propose algorithms to compute exact answers for different types of

aggregate queries. We can obtain exact answers by adding some overhead to the

HIU messages but not extra messages.

14

Exact answers using per Message overhead

Communication devices in some WSN mandate the sensor to send messages of

fixed size only [23]. In this case, sending less information will not decrease the

energy consumption because all buckets should have the same size. For example,

a communication device that sends a packet of fixed size, 128 bytes, will send the

same packet even if the algorithm requires it to send 10 bytes only. The remaining

118 bytes are considered idle and not useful. These idle bytes can be used to send

the extra information, at no extra cost, to facilitate computing the exact answer. We

use this strategy to compute exact answers for Max, Min, Sum, and Average queries.

While obtaining a histogram, the ExtraInformation function (called at line 20

in Algorithm 3) collects required information and aggregate them to facilitate com-

puting the exact answer in the base station. Note that, if an exact answer is required,

then leaf nodes values should be sent every round.

The behavior of the ExtraInformation function (Algorithm 4) depends on the

required aggregate query. Max and Min queries are handled from line 2 to line 12,

while Sum and Average are starting on line 14 to line 22. For simplicity, Algorithm 4

handles only one aggregate function at a time, but it can be easily extended to

support multiple aggregate queries simultaneously.

In order to find the exact answer for Max (or Min) queries, all intermediate

nodes who construct a partial status should report information about the maximum

(or minimum). The code between lines 2- 12 in Algorithm 4 will compute the

maximum for each subtree. The pseudo code assumes that each message sent from

an intermediate node sj to its parent includes Ej , that includes the maximum value

over the node’s subtree.

Because the base station (and all intermediate nodes) already has an exact an-

swer for Count, they can compute the exact result for Average if the exact Sum is

available. The exact answer for Sum can be computed if each intermediate node

sends the total sum of its subtree while leaf nodes send their own values. The code

between lines 14 - 22 in Algorithm 4 computes the sum of all values in a subtree

rooted by each intermediate node.

If the used communication device allows variable message size, then every bit

15

is counted when calculating the energy consumption. We can decrease the size of

the Max(Min) and Sum(Average) overheads using extracted information from the

histogram because each intermediate node will send an update for its partial state

(histogram) to its parent.

Instead of reporting the real value of the Maximum (Minimum), nodes select a

bin id (m) that includes the maximum value and send the difference between bin’s

lower bound (LBm) and this value (MAX −Lbm). In the worst case, the overhead

will be number of bits required to represent the bin size (Ubm − Lbm) which is

log2(Ubm − Lbm) bits per node, every epoch.

Following the same idea, instead of sending the real summation of all values in a

node’s subtree which might need large space, each the node will send the difference

defined as SUM−ΣB
i=1

Ubi+Lbi
2
× hi. Here, the maximum possible value of SUM in

any node is ΣB
i=1Ubi × hi, if all values in all bins equal the upper bound of this bin.

The maximum possible overhead per node per round is log2(ΣB
i=1

Ubi−Lbi
2
× hi).

2.3 Performance Evaluation

In our simulation we implemented TAG and HIU assuming both of them are using a

Shortest Path (logical) Tree (SPT) for the underlying tree T . We make the following

assumptions about the required storage: (1) A node value consumes 2 bytes, (2) a

complete histogram size depends on the number of bins, i.e., it requires 2×B bytes,

where B is the number of the bins in the histogram, and (3) updating a histogram

bin requires 3 bytes, 1 for the bin id and 2 for the bin count.

We investigate our algorithms with respect to two datasets (a synthetic dataset

and a real dataset) and five parameters (Radio range R, Histogram size in terms of

number of bins B, average amount of change in a sensor’s value δ, the probability

that a sensor’s value change ρ, and number of nodes in the WSN N).

The radio range controls the logical network topology and may increase/decrease

maximum depth of the logical tree. Varying the Histogram size shows that our al-

gorithm does not have any limitation on the histogram size and can efficiently work

regardless of this parameter. Studying δ and ρ shows the sensitivity of our algo-

16

Algorithm 4 ExtraInformation(Sensor Node sj , Aggregate Query Agg)
1: E = 0 {E is the returned value to allow computing the exact answer for an

aggregate query Agg}
2: if Agg = Max then
3: MAX = vj {vj is the current value of sensor sj}
4: for each message m sent to a sensor sj do
5: if m is a value vm then {m was sent by a leaf node}
6: temp← vm
7: else {m was sent by an intermediate node}
8: temp← Em

9: {Em is a value in m represents the max of sender’s sub tree.}
10: if MAX < temp then
11: MAX ← temp
12: E ←MAX
13: {The code for Min is very similar to Max and omitted from this code}
14: if Agg =Sum or Agg =Average then
15: SUM = vj
16: for each message m sent to a sensor sj do
17: if m is a value vm then {m was sent by a leaf node}
18: SUM ← SUM + vm
19: else {m was sent by an intermediate node}
20: SUM ← SUM + Em

21: {Em is a value in m represents the sum of sender’s sub tree.}
22: E ← SUM {This is also sufficient for Average because Count is known}
23: return E

17

Parameter Used Values
R (WSN node’s radio range) 20, 30, 40, 50, 60
B (Histogram size in terms of number of bins) 5, 10, 20, 40, 60
δ (Average amount of change) 1%, 25%, 50%, 75%, 100%
ρ (Probability of change) 1%, 25%, 50%, 75%, 100%
N (Number of nodes) 1000, 2000, 3000, 4000, 5000

Table 2.2: Studied parameters for HIU analysis and their values (default values in
bold)

rithm against the behavior of the values in the WSN monitored area. It is important

to show the influence of these two parameters because our algorithm depends on

incremental updates which might be very large if many changes happen. Finally,

increasing the number of nodes N , shows the algorithm scalability from the point

of view of the WSN density.

Table 2.2 has a list of all tested values for all parameters. While testing one

parameter, we use the default value (denoted in bold) of all other parameters. The

figures show the average values obtained over 15 runs. During each run, the sensor

locations are randomly distributed and the base station is randomly selected among

one of the nodes. In order to ensure a fair comparison, both TAG and HIU use the

same setup.

Our synthetic dataset consists of N nodes uniformly distributed in an area of

200m×200m. The values of all nodes use 2 bytes only and are initialized uniformly

between 1 and 216. In each round, a sensor’s value could change with a probability

ρ. In case of change, a sensor value is increased by an exponential random variable

(equally likely to be negative or positive). The exponential random variable was

chosen to allow mostly small and eventually very large changes. The average of

the exponential random variable is δ% of 216. We assume that all nodes capable

of sensing values between 0 and 216 only. If a value exceeds that range in either

direction, it is assumed to be either 0 or 216, respectively.

The real dataset was generated by the Intel Berkeley Research Lab [10]. It has

54 WSN nodes deployed in a 50m × 50m area. The dataset has values for about

65, 000 rounds. Missing values from the original dataset were placed using simple

interpolation. In this dataset, we only studied two parameters: the radio range

18

(R) and the Histogram size (B), because the number of nodes (N), the change

probability (ρ) and the average amount of change (δ) are not changeable at any real

dataset.

Since the main typical goal within the realm of WSN research is the minimize

energy consumption we use network lifetime as the performance indicator. Network

lifetime is counted in number of rounds until the first node dies. In all our experi-

ments we assume that each battery’s initial budget is 30mJ . Energy consumption

is calculated after [4] :

Et = S + t× b× d2 (2.1)

Er = r × b (2.2)

where S = 50 nJ is the setup cost to send any message, t = 10 pJ and r =

50 nJ are the required amount of energy to send or receive one bit for one meter,

respectively. The message size in bits is b, while the Euclidean distance (in meters)

between the sender and the receiver is d.

2.3.1 Performance Evaluation for Histogram and Approximate
Aggregate Queries

Figure 2.2 shows the HIU and TAG performance when changing each of the studied

parameters using the Synthetic dataset. Because the TAG performance does not de-

pend on changes in nodes’ values, a network using TAG algorithm died after about

2700 rounds regardless of the change probability (ρ) or amount of change per round

(δ). Figures 2.2(a) and 2.2(b) show that HIU performs better when the changes of

nodes’ values happen less frequently because it caches the result of the previous

round and send updates only, if required. In case of a higher update frequency (ρ)

or update with large changes (δ), the HIU performance becomes stable. The reason

for that is two fold. First, HIU selects whether to send updates only (update pairs)

or send the full histogram. This arbitration saves HIU from sending non useful data

if all bins are required. Second, because the partial state (local histogram) is con-

structed in network, many of these changes are not communicated as they cancel

each other in the early stages of the routing tree.

19

 0

 5000

 10000

 15000

 20000

 0 20 40 60 80 100

A
v
g
.
N

et
w

o
rk

 L
if

et
im

e
(#

 R
o
u
n
d
s)

% of sensors change (ρ)

TAG
HIU

(a) Probability a value changes (ρ)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100

A
v
g
.
N

et
w

o
rk

 L
if

et
im

e
(#

 R
o
u
n
d
s)

% of change amount in each value (δ)

TAG
HIU

(b) Average amount of change per value (δ)

 0

 2000

 4000

 6000

 8000

 10000

 20 40 60 80 100 120

A
v

g
.

N
et

w
o

rk
 L

if
et

im
e

(#
 R

o
u

n
d

s)

Sensor radio range

TAG
HIU

(c) Radio range (R)

 0

 5000

 10000

 15000

 20000

 0 10 20 30 40 50 60

A
v
g
.
N

et
w

o
rk

 L
if

et
im

e
(#

 R
o
u
n
d
s)

Histogram size (# bins)

TAG
HIU

(d) Histogram size (B)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
v

g
.

N
et

w
o

rk
 L

if
et

im
e

(#
 R

o
u

n
d

s)

Sensors

TAG
HIU

(e) Number of Nodes (N)

Figure 2.2: Network Lifetime analysis using the Synthetic dataset

20

Figure 2.2(c) shows that both TAG and HIU perform better when the radio range

is small. This seems to contradict the following intuition: the smaller the radio

range the more hops are required from leaf nodes to reach the base station, the

more messages and then the shorter network lifetime. In reality, each node sends a

message to reach all the other nodes within its range regardless of the real distance

between the sender and the receiver. The larger the radio range the larger the en-

ergy consumed, because energy consumption in Equation 2.1 is based on how far a

message can reach and is not based on the Euclidean distance between the sender

and receiver. The figure shows that even though the performance of both HIU and

TAG are better when the radio range is smaller, HIU multiplies the network lifetime

three or four times compared to TAG.

Figure 2.2(d) is evidence that HIU can still multiply the network lifetime by at

least a factor of two as number of bins increases. A larger number of bins means

a higher probability that the number of changed bins gets higher and then HIU

performs worse. However, TAG requires all intermediate nodes to send their partial

state regardless of number of nodes, i.e., TAG also performs worse, though not as

noticeably when increasing number of bins.

Figure 2.2(e) shows that HIU can scale efficiently and handle WSNs with large

numbers of WSN nodes better than TAG. HIU has the same performance regardless

of the number of nodes in the field. We basically increase the network density in

the field by increasing number of nodes while using exactly the same area. TAG’s

performance decreased because the more nodes in the field the higher probability

of occupying all Histogram bins. Recall that TAG sends the bin’s count if the bin is

occupied by one or more values. On the other hand, because of our encoding, the

values distribution does not influence the HIU performance. The key factor is how

the frequency of change in values.

The performance of TAG and HIU on the Intel Berkeley dataset is better than

their performance on a synthetic dataset because the number of nodes (54) is signif-

icantly smaller and so is the amount of communication. However, the performance

of HIU on the Intel Berkeley dataset is much better because nodes’ values in a real

dataset do not usually change with a high probability or high amount. Figure 2.3

21

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 10 20 30 40 50 60

A
v
g
.
N

et
w

o
rk

 L
if

et
im

e
(#

 R
o
u
n
d
s)

Histogram size (# bins)

TAG
HIU

(a) Histogram size (B)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 20 40 60 80 100 120

A
v
g
.
N

et
w

o
rk

 L
if

et
im

e
(#

 R
o
u
n
d
s)

Sensor radio range

TAG
HIU

(b) Radio range (R)

Figure 2.3: Network Lifetime analysis using the Intel Berkeley dataset

shows that HIU allows the network to last significantly longer than TAG (some-

times by a factor of 10). In the real dataset, there is a limitation on the number of

rounds because the dataset has about 65,000 rounds only. HIU curves in Figure 2.3

reach the upper limit for number of rounds but none of the network’s nodes dies.

2.3.2 Performance Evaluation for Exact answers

Regardless of the algorithm used to construct a histogram in the base station, a his-

togram allows the computation of approximate answers for several other aggregate

queries without any overhead as discussed in Section 2.2. The base station can

also compute the exact answer for an aggregate query by using the HIU algorithm

with some overhead, i.e., larger messages. In the following discussion, we will use

the Max query as an example. However, the same discussion applies to Max, Min,

Average, and SUM queries.

Because the main aim of our experiment is to study the HIU overhead cost for

computing an exact answer, we use the amortized average amount of bytes sent per

sensor per round as our performance indicator. Every round, the total number of

sent bytes from all nodes during all previous rounds are calculated and then divided

by number of nodes and by number of rounds so far.

22

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50

A
v
g
.
#
B

y
te

s/
S

en
so

r

Round #

ρ = 100%
ρ = 50%
ρ = 25%

TAG

(a) Probability a value changes (ρ)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50

A
v
g
.
#
B

y
te

s/
S

en
so

r

Round #

δ = 100%
δ = 50%
δ = 1%

TAG

(b) Average amount of change per value (δ)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50

A
v

g
.

#
B

y
te

s/
S

en
so

r

Round #

B = 60
B = 20
B = 10

TAG

(c) Histogram Size (B)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50

A
v
g
.
#
B

y
te

s/
S

en
so

r

Round #

N = 1000
N = 3000
N = 5000

TAG

(d) Number of Nodes (N)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50

A
v

g
.

#
B

y
te

s/
S

en
so

r

Round #

R = 50
R = 30
R = 20

TAG

(e) Radio Range (R)

Figure 2.4: Cost of running exact-Max query

23

Based on [17], every sensor should send exactly 2 bytes to collect the maxi-

mum value using TAG. HIU collects the Max information while constructing the

histogram. Recall that the first round in HIU consumes a large amount of energy

due to sending the largest amount of bytes compared to other rounds because there

is no cached information. HIU’s performance depends on the amount of changes in

the network because it uses in-network caching and send data to update this cache.

Initially HIU requires more bytes to be sent, but as time goes, the average amortized

number of sent bytes per round is decreased and eventually reaches a steady state.

Figure 2.4 shows the amortization analysis for the TAG and HIU algorithms

in computing the exact Max using five parameters: ρ, δ, B, N , and R. While

testing one parameter, other parameters are assumed to have their default values

(Table 2.2). The main goal is to show that HIU can outperform TAG in terms of

the average cost in the long run. We use the synthetic dataset only to have more

control on the experiment. Figure 2.3 also shows that HIU performs better for the

real dataset.

Figure 2.4(a) shows the influence of the change probability on HIU. If the prob-

ability is 100% then HIU needs one extra byte from each sensor (on average) per

round. As the probability gets smaller, the overhead decreases. The figure shows

that lower values of ρ lead to a smaller HIU cost but TAG’s performance stays

the same. If the probability is 1% only, HIU outperforms TAG by about 1.8 bytes

which means 90% less bytes than TAG. It is worth mentioning that HIU’s cost in-

cludes, also, constructing an accurate histogram in the base station while TAG (in

this experiment) computes the maximum value only. The histogram in the base sta-

tion offers computing approximate answers for many other aggregate queries. This

means, if the target is computing the Max query only, then HIU is better in the long

term only if nodes change their values infrequently (ρ ≤ 40%).

In Figure 2.4(b) we assume that ρ = 50% and investigate the influence of the

amount of change (δ). If δ is very small (1%) HIU will outperform TAG. If δ is very

large (100%), HIU ties with and slightly outperforms TAG. Recall that a sensor can

sense a specific range of values. If the value is bigger than the maximum value, a

sensor will report its maximum limit. If the average amount of change is 100% then

24

there is a high probability that all nodes end up detecting only the maximum and

minimum limits because the change could be positive or negative. It is clear that the

amount of change does not have a significant influence on the results. In fact, the

influence of changing ρ has more influence on changing δ. The same figure shows

that changing δ does not have a large impact on the performance curves. The only

exception is the δ = 1% curve because changing a sensor value by 1% on average

will unlikely change its bin in the histogram, if the bin’s width is reasonably large,

and then is unlikely to cause a sensor to send any data.

The HIU performance depends on the bin size (number of bins) because the

number of values in smaller bins is more likely to change every epoch. Although the

error bound of all approximate answers gets worse with an increase in the bin size,

the HIU algorithm performs better while computing exact Max. Figure 2.4(c) shows

that decreasing number of bins can make HIU outperform TAG very early even if

the probability of change and amount of change are both 50%. Recall that TAG out-

performs HIU in Figures 2.4(a) and 2.4(b) when δ or ρ equals 50%. The major frac-

tion of the HIU cost is paid to construct the histogram. Decreasing Histogram size

decreases the Histogram overhead but increases the Max overhead (log(Ubi−Lbi)),

if the maximum value changes. This overhead is already very small comparing to

Histogram cost.

The Network density depends on the number of nodes (N) that reside in the

same fixed area. Network density has no influence on the TAG algorithm to com-

pute Max. In all cases, each sensor should report its value. In the case of HIU,

the more nodes available in the area the more opportunities to save and decrease

the amount of sent messages. Figure 2.4(d) shows that increasing the network den-

sity more than 3000 nodes in 200 × 200 area (0.075 sensor/m2), makes the HIU

outperform TAG.

The sensor’s radio range influences the logical tree structure. A short radio

range requires the WSN to build a logical tree with larger depth than a long radio

range. Increasing the average number of hops for nodes to reach the base station

does not have any influence on TAG because every sensor will send a single mes-

sage of fixed size (2 bytes). The shorter the radio range, the more hops which

25

requires HIU to send more bytes but at a smaller cost as discussed earlier. Fig-

ure 2.4(e) shows that increasing the radio range makes HIU’s total cost less than

TAG’s total cost after 3 rounds only.

2.4 Conclusion

In this chapter we proposed a new histogram algorithm (HIU) that uses in-network

aggregation and in-node caching to reduce the energy consumption to answer a

Histogram query. Obtaining a histogram in the base station helps in computing

bounded approximate answers for other aggregate queries. Moreover, we proposed

algorithms that use HIU to compute exact answers for these aggregate queries.

HIU outperforms the TAG algorithm in the synthetic and real datasets. On aver-

age, HIU multiplies the network lifetime about three times. HIU also outperforms

TAG’s algorithm to answer the Max query if the amount and/or probability of value

changes are small. Figures show that a small Histogram size can compute an exact

answer for a Max query cheaper than TAG.

Despite the importance of the Histogram query, we find a potential for his-

tograms to help compute an exact answer for Median queries. In the next chapter

we discuss that in detail.

26

Chapter 3

Median Queries in WSNs

3.1 Introduction

A number of papers concerning algorithms for processing typical aggregate queries,

e.g., Max and Top-k, within a wireless sensor network have been published in recent

years [19, 28]. However, relatively few have addressed Median queries. In this

chapter we propose algorithms to process snapshot and continuous Median queries

and to compute an accurate median answer. These algorithms are based on a series

of refinement queries. Each refinement query is a Histogram query, with the aim of

continuously refining the range where the actual median value resides. Because the

cost of a Histogram query depends mostly on the structure of the histogram itself,

we aim at optimizing each Histogram query, hence optimizing the overall cost of

the Median query.

3.2 Related Work

There are several algorithms for finding quantiles in databases, data streams and

distributed data systems. In this section we cover only approaches that are appli-

cable to WSNs. Algorithms for quantile queries, of which the median is a special

case, can be partitioned into three categories: exact, approximate and probabilis-

tic. Approximate algorithms return a quantile estimate within a user-defined error

bounds. The error bound can be defined in terms of a given rank-distance to the

actual quantile’s rank or in terms of an error in the actual returned value. Proba-

bilistic algorithms provides approximate answers with a given probability. Those

27

algorithms return a value whose rank is within a given error bound with a given

probability. Last but not least several exact quantile finding algorithms for WSNs

have been suggested. In the following we will briefly discuss approximate and exact

algorithms because they are more relevant to our work.

3.2.1 Approximate Algorithm

Shrivastava et al. [26] introduced a quantile summary structure, q-digest, that allows

answering quantile queries with an error bound of O(log(r)/sp) where r is the car-

dinality of the set of possible values and sp the maximum packet size in the WSN.

By increasing sp the maximum error can be reduced at the cost of a higher energy

cost. Since the actual error is often lower than the worst-case error, q-digest also

provides a confidence factor that gives a more precise overview over actual errors.

Considine et al. [5] extended q-digest for the case of fault-tolerant multi-path rout-

ing where duplicate values are inevitable. The Greenwald-Khanna Quantile Algo-

rithm (GK) [8] is another solution for computing quantile summaries in a distributed

environment. The number of transmitted values is bounded by O(log2(N)/ε) where

ε ∈]0, 1] bounds the allowed rank error to N × ε, where, again N is the number of

values observed in the network.

In Chapter 2, we proposed the HIU algorithm to compute the answer of a

Histogram query defined as: Q(Lb, Ub, b1, b2, b3, ...bB, epoch) and its answer is:

H = (h1, h2, h3, ...hB), where hi = | {(sj, vj) | Lbi ≤ vj < Ubi, sj ∈ S} |. Using

a histogram of B bins, the median value can be computed with an error bounded

by r/(2 × B), where r is the cardinality of the set of all possible values. First

a median bin, bm, is selected; it is the bin where the total number of values in all

preceding and all following bins in the Histogram are both less than half the number

of values in the whole histogram, i.e.: Σm
i=1{hi} ≥ Count

2
∧ ΣB

i=m{hi} ≥ Count
2

.

Once bm is selected, the median value can be approximated to be Ubm−Lbm
2

. A better

approximation is Lbm + Ubm−Lbm
hm

× (N
2
− Σm−1

i=1 (hi)). The latter approximation is

more accurate because it takes into consideration the rank of the median value inside

the bin. However, it is still an approximation and it assumes that the distribution of

all values in the median bin, bm, is uniform.

28

The main difference between a median value computed by q-digest, GK Quan-

tile algorithms and the HIU algorithm is that the two former algorithms have an

error bound on the median’s rank while the latter has an error bound on the median

value. When considering of a sorted list with length n, the approximate quantile

calculated by q-digest or GK is allowed to be ranked with a distance of at most

ε × n of the real quantile while the approximate quantile value computed by HIU

is, in the worst case, off by Ubm−Lbm
2

of the real quantile value.

3.2.2 Exact Algorithms

Madden et al. introduced the TAG approach [17] to compute several exact aggre-

gate queries using an in-network aggregation. However, for a Median query all

values are transmitted and the median computation is performed centrally at the

base station. Prakash et al. [25] suggested a specialized routing tree that is built

according to the value distribution in the network in order to improve the perfor-

mance of the queries. Greenwald et al. [8] extended his approximate approach to

answer exact quantiles. The quantile is found in multiple passes by transmitting

O(log3(N)) values.

Shamir [22] suggested to perform a binary search on the range of possible values

to find exact quantiles. The POS algorithm [6] extends that approach to a continu-

ous setting and applied additional improvements. Liu et al. [16] extended the binary

search into a B-ary search by splitting the range into B sub-intervals in order to re-

duce the number of refinements. Like POS, it is also designed for a continuous

setting. Kuhn et al. [13] used a B-ary search but the boundaries of the sub-intervals

are based on random sampling. Li et al. [14] investigated the complexity of me-

dian queries in terms of time, message and energy complexity, by employing the

algorithms by Kuhn et al.

Our proposed algorithms are exact but do not require a specialized routing tree-

like [25]. Similar to [8] it depends on a quantile structure, a histogram, that can

find an approximate answer. A Histogram of B bins is a B-ary search by definition.

However, we do not use a fixed size histogram as [16] nor do we enforce a sam-

pling technique to find the boundaries for the sub-interval as in [13]. Instead, our

29

approach uses a well-defined rule to decrease the number of bins, B, as the number

of candidate answers decreases.

3.3 Snapshot Median Query Algorithm

In this section we denote a Histogram query as Q(Lb, Ub,B), where Lb and Ub are

the lower and upper bounds on the observed values within the WSN, respectively,

and B is the number of bins in the histogram. Unless noted otherwise we assume

that all bin ranges have the same length, and each Lbi and Ubi denotes the upper

and lower bounds of bin i, (i = 1, 2, . . . , B). The Histogram answer is a vector

H = (h1, h2, . . . , hB), where hi = | {〈sj, vj〉 | Lbi ≤ vj < Ubi, sj ∈ S} |.

In order to find the optimum structure of all Histogram queries to compute the

exact median answer, the base station should be aware of the whole network and

each sensor’s value. Such a centralized optimal solution is not feasible in the WSN

context because we cannot assume that the base station is aware of the whole net-

work and/or all values. If all values are known to the base station then it can find

the median and there is no need for any queries.

In the remainder of this section we address two questions raised in Section 1.3,

namely: (1) how to minimize the number of refinement Histogram queries, and (2)

how to optimize the structure of the refining histograms?

3.3.1 How many Refinement Queries?

One of the main points in our algorithm is that, when participating in a Histogram

query, nodes are autonomous to decide whether to forward the histogram or the

values they have locally (both relative to their subtree). This decision is based on

the cost and usefulness of the data to be forwarded and follows a simple rule. Let

us assume that a local histogram H consumes size(H) bits, while a sensed value v

consumes size(v) bits, hence all n values stored in a node’s local storage consume

n × size(v) bits. If n × size(v) ≤ size(H), and all locally available values are

sufficient to represent the current local histogram, then this node should send n

values, otherwise it should send the histogram. If the cost is the same, it is more

30

beneficial to forward values instead of a histogram, because having values may help

avoiding refinement queries (we discuss this in more detail shortly).

We use our previously proposed HIU algorithm 2 to answer each histogram

refinement query. HIU assumes a continuous query and caches the calculated his-

togram in each node to be used in the next round. Although this chapter discusses

snapshot queries only, the refinement queries in our algorithm can use the cached

answer of the previous refinement query to prune network branches, namely those

with no candidates to the Median query. For the time being we postpone the dis-

cussion about the Histogram query’s structure to explain our RBM algorithm first.

V= {}

72

A

V= {72,76,81,87,89,92}
H = {0,0,1,5}

19
B

V= {19,22,23,24,26}
H = {4,1,0,0}

81 92

87

89

C
H = {0,0,0,4}
V= {81,87,89,92}

H = {4,1,1,5}

Base Station

76

23

22 26

24
D

V= {22,24,26}
H = {2,1,0,0}

Figure 3.1: Processing a median query.

Figure 3.1 shows an example demonstrating how our algorithm works. We as-

sume the number of bins in each Histogram query is fixed, i.e., B = 4, and all have

ranges of equal length. All observed values reside in a range between 0 and 100.

For simplicity, let us assume that each bin in the histogram consumes 1 byte and

so does each sensor value. Each intermediate node has two objects, H and V . H

represents the local histogram for the node’s sub-tree, while V is a list of collected

values so far in the node.

In the first refinement the initial (and first refinement) query is Q(0, 100, 4), and

all leaf nodes send their values to their parents. Node C decides to send the values

because size(H) = size(V) = 4 and with the values in V one can reconstruct H .

Node D also decides to send the values because size(H) > size(V). Node A and

31

B both send H because size(H) < size(V).

At the end of the first refinement, the base station reduces the number of candi-

date values to only 1. According to the histogram in the base station, the value in

the third bin (values between 50 and 74) is the median answer because the number

of values in [0, 50[is 5 and the number of values between [75, 100] is 5, as well.

However, at this point only an approximate answer could be given, i.e., the actual

median value unknown, thus another refinement query is required.

In the second refinement, the base station sends another Histogram query for

the range between 50 and 74, i.e., it broadcasts the query Q(50, 74, 4). Node B’s

subtree is pruned because the cached histogram in B shows no value in the third

bin. Node A does not need to forward the query to node C because it already

collected all values in its subtree. (In general, any node that already sent all values

in its subtree should not participate in the next refinement queries.) At this point

node A can use its cached values to answer the new refinement query producing

H = {0, 0, 0, 1} and V = {72}. Since size(V) < size(H) only V is forwarded.

When the base station receives this single value from B it can return the query’s

answer to the user.

We note that in the example above we always assumed the full histogram to be

sent in order for simplification. In reality a node should send the full histogram

or the set of pairs 〈bin-id, count〉 for the bins with non-zero count, whichever is

smaller.

This processing of a Median query is materialized in Algorithm 5, which works

in the base station. The algorithm keeps sending refinement queries to the WSN

until the base station acquires all values in the median bin. Once the base station

acquires enough candidates, it computes the median and the algorithm stops.

The RBM algorithm uses three functions: FlexibleHIU, GetValuesInBin,

and SelectHistogramStructure. FlexibleHIU is very similar to the

HIU algorithm (Chapter 2) where each node decides, as discussed earlier, to ei-

ther send a histogram result or send all values in the histogram range to its parent.

The GetValuesInBin function returns a list of values, from the base station’s

local memory, that reside in a specific bin. RBM uses GetValuesInBin to check

32

Algorithm 5 RBM(Logical Routing Tree T , Number of nodes N)
1: Count← zero {number of values in bins with ranges smaller than the median

bin}
2: k = dN

2
e {k is the rank of the median in a list of N values –note that this makes

answering a generic Quantile query trivial}
3: Lb← Smallest possible value in the WSN
4: Ub← Largest possible value in the WSN
5: B ← SelectHistogramStructure (N)
6: while true do
7: H ← FlexibleHIU (T,Q(Lb, Ub,B)) {H is a histogram containing the

answer to the Histogram query Q}
8: m← arg{bm | Count+Σm

i=1{hi} ≥ k and Count+ΣB
i=m{hi} ≥ k} {m is

the index of the bin containing the median}
9: Count← Count+ Σm−1

i=1 {hi}
10: BinV alues← GetValuesInBin(m)
11: if cardinality of BinV alues = hm then
12: Sort (BinV alues)
13: Median← (k − Count)th value in BinV alues
14: return Median
15: else
16: Lb← Lbm
17: Ub← Ubm
18: B ← SelectHistogramStructure (H)

33

whether all median candidates in the median bin are already available, and so we

can compute the median, or whether a new refinement query is required. The third

function, SelectHistogramStructure, is related to the next Section, where

we address the second of our two main questions: what is the optimum Histogram

query structure in each refinement?

The number of refining queries is bounded by O(logB(N)) if the values distribu-

tion is uniform or close to uniform. Even though we believe this is not a typical case,

we note that when all observed values are equal, this algorithm will not terminate

because sending values will always be more expensive than sending a histogram.

Fortunately this can be easily remedied by adding another stopping condition of the

base station: if the range of the histogram is only 1, e.i. Ub−Lb = 1, the algorithm

terminates and report Lb as the exact median. This stopping condition assumes that

all values are integers.

3.3.2 What structure for the refinement (histogram) queries?

We answer this question by investigating what is the optimum (or a good) number

of bins for a Histogram query and whether to use the same or different sizes for

each subsequent refinement query.

On the one hand, the more bins in a Histogram query, the more expensive its

answer, but the fewer the average number of values in each bin and, subsequently,

the fewer the number of necessary refinement queries. Conversely, using fewer bins

requires more refinement queries before the base station can acquire all the needed

values, hence the larger the overall cost. Our target is to minimize the number of

bins in each query and minimize the number of candidates in the median bin.

Typically, a histogram is used to reflect the probability density function that

represents the available values. Using different number of bins can reveal different

features of the explored data, but, in general, there is no optimum number of bins

for a Histogram query. Several guidelines and rules of thumb have been proposed to

select the number of bins in a histogram. Some of these rules depend on the number

of values. For instance, Sturges’ rule suggests that B = dlog2(N)+1e or B =
√
N .

This rule, or one of its variations, is often used in statistical packages as the default

34

strategy [30]. This rule, and many others, were proposed to minimize the error

between the true density function of all values and the density function represented

by the histogram. None of them really meets our final goal of minimizing the

number of values in the median bin.

We note, however, that using a rule such as Sturges’ suggests that a variable

histogram size for each refinement query may be a good solution. To check on that

hypothesis we ran a small experiment, whose results are illustrated in Figure 3.2.

We created three different WSNs with different number of nodes, each holding uni-

formly distributed values, and located within an area of 200 × 200 m. Then we

measured the performance as the average number of bytes/node generated using

our algorithm. First, our intuition above is confirmed, i.e., using a small number of

bins is not useful because it requires many refinements, but using a very large B is

not good either because it increases the cost of each Histogram query. Interestingly,

all curves have a value of B that yields the better performance and this performance

is very close to the one obtained using Sturges’ rule, as detailed in Table 3.1. This

supports the idea that using Sturges’ rule for determining the histogram’s size is in-

deed a good choice. Moreover, this leads to using a variable histogram sizes across

consecutive refinement queries. Because each refinement query reduces the num-

ber of values in the median bin, i.e., the “universe” of values for the next refinement

query. Thus, keeping the histogram size constant does not seem to make much

sense. Sturges’ rule addresses this observation automatically since it smoothly de-

creases the histogram size, hence the cost of processing a Histogram query, as the

number of values in the median bin decreases. As a final note, Sturges’ rule is

known to be inaccurate if the number of values is fewer than 31, and the number of

bins is fewer than 5. Accordingly, in our algorithm, we enforce a minimum number

of bins of 5.

Number of Performance using Best Performance
values N Sturges’ rule in Figure 3.2

1000 4.82 4.09
3000 3.66 3.49
5000 3.32 3.29

Table 3.1: Determining a good value for B

35

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2 5 8 10 15 20 30 40

A
v
g
.
#
B

y
te

s/
S

en
so

r

Histogram Size (B)

1000 sensors
3000 sensors
5000 sensors

Figure 3.2: Empirical study for effect of B

When we ran the algorithm to obtain Figure 3.2 we were conservative about the

choice for the length of the histogram bins, i.e., we assumed that all bin ranges had

the same length. This conservative approach ensures that the number of refinement

queries is O(logB(N)) on average. One idea to be investigated is the use of variable

size histogram bins. Recall that, by design, our algorithm may push some values

to a node’s parent if sending values is cheaper than sending a histogram answer.

Although this is not a truly random selection for the values in the WSN, we can

use the acquired values in the base station as a sample thereof. We envision some

potential gain in using such sample in order to further fine tune the refinement

Histogram queries. For instance, one could use histograms with each bin holding

ranges of different lengths, in particular, using a finer granularity for bin where

the median values is believed to reside. This idea however, may lead to worse

performance if such a belief is incorrect. We leave a detailed study of this heuristic

for future work.

3.4 Continuous Median Query Algorithms

In the previous section, we discussed how to use refinement Histogram queries

to decrease the possible candidates for a median query. In many scenarios in the

WSN context, a user wants to monitor an area periodically and then the same query

36

should return an answer every epoch. A straight forward extension for an algorithm

is to re-run the same algorithm, every epoch. However, if the same query is going

to be answered every epoch, we believe there is a possible opportunity to use the

information collected during an epoch to decrease the amount of sent bytes in the

next epoch. In fact, the HIU histogram algorithm has a potential to decrease the

amount of sent bytes in the case of a Histogram continuous query as explained in

Section 2.1.1.

In the following, we propose two new algorithms: HIU-Median and Continu-

ous Refinement Based Median (CRBM). HIU-Median uses the histogram efficient

algorithm 2.1.1 to find the range of the median bin then get all values in this bin.

CRBM algorithm combines the benefit of both HIU and RBM algorithms. It will

use cached histogram queries, from HIU, in each sensor to avoid sending non-useful

messages between nodes. At the same time, it will use several refinement queries,

as RBM, to compute the accurate median value efficiently regardless of the values

distribution.

3.4.1 HIU-Median Algorithm

The classical TAG algorithm to answer a median query collects all values from all

nodes to the base station, sorts the list and then select the correct value [17]. Instead

of retrieving all values to compute the median, we can use the HIU algorithm to

compute the answer of a Histogram query. The available histogram result in the

base station is being used to narrow the requirements from collecting all values in

the WSN to collecting all values in the median bin only. A bin that contains the

median value can be identified using the Histogram answer in the base station. The

algorithm to compute the median in the base station using a histogram answer is

presented in Algorithm 6. It has two parameters: the WSN logical routing tree (T)

and the Histogram answer (H) in the base station and it returns the exact median.

Function GetVALUES returns all values in the median bin as an array. After

sorting the returned values and using the number of total values in the WSN, the

HIU-Median algorithm computes and returns the exact Median. The algorithm for

function GetVALUES is presented in Algorithm 7. It collects all values between

37

Algorithm 6 HIU-Median(Logical Routing Tree T , Histogram Answer H)
1: Count← ΣB

i=1{hi},∀hi ∈ H {Histogram query Q has B bins}
2: bm ← A bin in query Q of index m | Σm

i=1{hi} ≥ Count
2

and ΣB
i=m{hi} ≥ Count

2

,∀hi ∈ H {Find the median bin to use its boundaries}
3: V = GetVALUES(T, Lbm, Ubm) {V is an array of all values in T within bm

boundaries (Lbm and Ubm)}
4: V = SORT (V) {Sort V values in ascending order}
5: C ← Count

2
− Σm−1

i=1 {hi}
6: return Median← Cth value in V.

Algorithm 7 GetVALUES(Tree T , Lower bound L, Upper bound U)
1: {This function uses the partial state Pj in each node sj to collect required values

efficiently.}
2: V = { } {It will contain a set of collected values}
3: sj ← The root of tree T
4: if vj ∈ [L,U] then
5: Insert vj in V {vj is the value of sensor sj}
6: if ΣB

i=1{hi} = 1 | bi ∩ [L,U] > 0, ∀hi ∈ the local histogram and ∀bi ∈
Histogram query Q then

7: return V {The single value in the tree is already found}
8: if ΣB

i=1{hi} > 0 | bi ∩ [L,U] 6= φ, ∀hi ∈ the local histogram and ∀bi ∈
Histogram query Q then

9: for each children c of sj do
10: Insert GetV ALUES(c’s Tree, L, U) to V {Insert returned values to the

array of values V }
11: return V

38

values L and U in the given tree T . Instead of sending the request to all nodes in the

tree, it uses the cached histogram in each node to prune branches leading to subtrees

that have no values within the requested boundaries. In the worst case, all values

would be in leaf nodes in the maximum tree’s level L. The maximum possible cost

is the number of bits to retrieve these values which is hm × L × log2(max(vj))

where 1 ≤ j ≤ N , m is the bin id that contains the median value, and L is the

maximum depth in the routing tree.

Clearly, the number of retrieved candidate values can be significantly reduced

by using a single histogram. If all values in the WSN follow a uniform distribution,

using a single histogram refinement query will reduce the number of retrieved val-

ues from N to N
B

. However, if the variance is very small then a single histogram

will not significantly reduce the number of retrieved values. In the worst case, the

total cost for using a refinement query could be higher than TAG.1 Next we show

a heuristic efficient algorithm that uses multiple Histogram answers to reduce the

number of candidate answers regardless of the values’ distribution.

3.4.2 Continuous RBM Algorithm (CRBM)

The Continuous RBM (CRBM) algorithm will run the RBM algorithm in the first

round. After computing the first median value, the next rounds should benefit from

the existing cached values/histograms in the base station and in each sensor node.

In the consecutive rounds, instead of building the most efficient histogram for com-

puting the median as we do in RBM, CRBM looks for a Histogram query that could

be answered using cached data in each node. Nodes send updates to the cached an-

swer computed using the previously cached messages in their parents’ memory. The

CRBM algorithm has three main components: (1) Constructing a refinement query,

(2) Computing a cached answer either in the node itself or in its parent, and (3)

Optimizing the message to be sent. In the following, we explain each component in

more detail.
1For example, if all values are equal or reside in a single bin.

39

Constructing a Refinement Query

Using the in-node cached histograms is only useful if the same Histogram query is

used every round. In the first refinement, the query is issued from the base station

and it depends on the median bin found in the previous round. Since a median

value is expected to be stable, we can use the latest refinement query that found

the median value in the previous round as a starting point instead of starting by a

Histogram query that covers the whole possible range of values. However, in some

cases, if the median value is substantially changed since the previous round, its

value might be out of that query’s range. This will lead to a wrong answer. In order

to solve this problem and at the same time use the available information retrieved

from the previous round, we will use a biased Histogram query.

The biased Histogram query will have bins with different sizes. In the first re-

finement we use a Histogram query with two types of bins, small-bins and extended-

bins. The small-bins consists of the median bin in the second latest refinement

query of the previous round, and surrounded by some other bins from each direc-

tion. These bins might be defined in any refinement query but should be in the same

round. We will simply select the smallest possible consecutive bins defined in any

refinement query before and after the median bin. The small bins facilitate finding

the median bin quickly while the two extended bins guarantee this query covers the

possible range of possible values and are required to guarantee the correctness of

the final result.

The Histogram query structure is two folds: number of bins and the range of

each bin. We will use the Sturges’ rule, as we have done in RBM, to decide on

number of bins. However, we will round the upper or lower log value to guarantee

an odd number of bins. Because we are not sure if the median value will increase or

decrease in the next round, we want to have the median value found in the previous

round exactly in the middle of the new histogram query and surrounded by an equal

number of bins before and after the median bin.

It is important to increase the probability of having Histogram refinement queries

with similar bins in any two consecutive rounds to increase the probability of using

the cached results and then decrease the overall cost. We will craft the histogram

40

queries to match the refinement queries in the previous round. The first step is to

select the range of the median bin, the one in the middle of the new Histogram

query. We need to chose a bin with small range to decrease the number of candi-

dates but not very small so that any change to the median value makes this bin not

useful. In fact, each refinement query has a median bin but we need to decide which

refinement we should start with.

Refinement choice Average number of sent messages after 100 rounds
First Refinement 12.6583

Second Last Refinement 10.3169
Last Refinement 10.8322

Table 3.2: Determining the best strategy for the first Histogram query in each round

Table 3.2 shows a comparison between using the first refinement, last refine-

ment, or the second last refinement. It is clear that using a refinement in the middle

is the best because it balances between using a small median bin range so that the

number of candidates is small but not very small as in the last bin when the new

median value is always out of range. Figure 3.3 shows the average cost of each

round using each strategy. Using the first refinement only is very close to running

the RBM algorithm every round and makes little use of the available info about

the median. That is why the cost of each round is almost stable but much higher

than the other two strategies. If the CRBM uses the median bin in the last refine-

ment, the median bin will occasionally fall in the extended (not small) bins and then

the CRBM will use many refinements frequently, which leads to a higher average

for the overall query. The best is using something in between. We leave the op-

timization of which refinement leads to the minimum cost as future work. In our

implementation, we will use the second latest refinement as a starting point.

After collecting the histogram from the first refinement, if the median value is

not found, the median bin will be divided again. However, instead of enforcing

the Sturges’ rule, the CRBM algorithm uses the bins from queries asked in the

previous round. The maximum number of bins is the one suggested by Struges’

rule, however, a smaller number of bins is accepted as well. There are two reasons

for this: (1) Reduce the cost of sending the refinement query because each node can

41

 6

 8

 10

 12

 14

 1 5 10 20 30 40 50 60 70 80 90 100

A
v

g
.

#
B

y
te

s/
S

en
so

r

Round #

Last Refinement

2
nd

 Last Refinement
First Refinement

Figure 3.3: Comparison between using a median bin in different refinements in the
first Histogram query of each round

1 2 3
1 2

Round #2

Round #1

Refinement Query #1

Refinement Query #1
Refinement Query #2
Refinement Query #3
Refinement Query #4

Bin #1 Bin #2 Bin #3 Bin #4 Bin #5

1 2 3 4 5 6 7

Figure 3.4: Example for constructing the first refinement in the CRBM algorithm

reconstruct the query using the index of the median bin in the last refinement query

and number of bins only. Unlike RBM, to allow any node to reconstruct the biased

histogram while sending only the median bin’s index and number of bin in the new

histogram query, all intermediate nodes should receive the histogram query of all

refinements even if the node already sent all its value or its subtree should not be

involved. In either case, the intermediate node will receive the query, forward it to

its children but may or may not respond to the query. (2) Computing a histogram

answer that has been cached already by the HIU algorithm is at least 50% cheaper

than computing it from scratch as we have seen in Section 2.3.

In Figure 3.4 we show an example for selecting the first refinement query based

on previous round’s queries. The bin value was found in refinement number 4

during the first round. In the second round, the first refinement was selected to have

seven bins. The first bin is the median bin selected in the second latest refinement of

the previous round, Bin number 1 at Refinement query number 3 in Round number

42

1. Two more bins are added to each side of the median bin. From the right hand side

we selected Bin number 2 from Refinement query number 3 and Bin number 3 from

Refinement query number 1. On the left hand side, we selected bins number 1 and 2

from Refinement query number 2. After that, two extended bins are added to cover

the remaining range. On the right hand side, we added one bin that covers both bins

number 4 and 5 in Refinement number 1. On the left hand side the extended bin has

only one bin from Refinement 1. The constructed query have bins from different

refinement queries. Since all these queries already sent to all relevant nodes in the

WSN, each sensor can locally compute a cached answer for the newly constructed

query.

Computing the Cached Answer

Computing the cached answer by each node for itself and for its children is very

important to reduce the amount of communication because the refinement queries

may differ from one round to the next. There are two properties in the refinement

queries constructed above that facilitate computing the cached answer in each bin.

(1) A value will not be counted twice in two different refinement queries except if

it falls in the median bin of both queries. (2) All bins in a refinement query exists

in one of the refinement queries in the previous round.

Based on these properties, the main equation to compute the cached answer for a

bin in a refinement query, ranges from LB to UB, is Σn−1
i=0 (Σ

Bi
j=0(h

i
j)) | lbij >= LB

and ubij <= UB, where n is number of refinement queries, Bi is number of bins

in a refinement query i, hj
i is the count for a bin j in a refitment query i, also lbij

and ubij are the lower and upper bound of bin j in a refitment query i, finally, LB

and UB are the lower and upper bound for the bin we want to compute its cached

count. In other words, any bin in any refinement query in the previous round that

falls between the new bin’s boundaries (LB,UB), will be taken into consideration.

Please note that we cannot use bins in any refinement queries after the one selected

as the main refinement query. For example, in Figure 3.4, Bin number 2 in the

second round takes the same count as bin number 1 in the refinement number 3

of the first round. Also, Bin number 7 in the second round, takes the count of bin

43

number 4 plus the count of bin number 5 in the first refinement query of the first

round.

In order to reduce the amount of message transmission, a node’s parent should

be able to compute the node’s cached answer as well. For this reason, a parent keeps

a copy from every message received from each node of its children. These cached

messages are valid for one round only. For the caching purpose, it is sufficient that

each node stores all refinement answers, initiated by itself or by of its children, for

two rounds.

Optimizing the Message to be Sent

Leaf nodes will send the difference between current and previous values, either

positive or negative. A sensor may need 1 or 2 bytes to represent it. In the worst

case, the differences will use 2 bytes which is similar to the RBM algorithm. In-

termediate nodes in the RBM algorithm could either send list of values or send the

histogram. In CRBM, the algorithm chooses from three possible message types

based on the message size: (1) sending the histogram, (2) sending the list of all val-

ues, and (3) sending the list of changed bins only. An intermediate node, computes

its own cached and accurate answer for the current query then constructs a message

that can update the cached version. The parent can also compute this cached an-

swer and by applying the sent message, it can update the node’s answer and then

aggregate it to compute its own histogram.

3.5 Performance Evaluation

In this section we evaluate the performance of our proposed RBM algorithm and

compare its performance against the well-known TAG approach [17]. The B-ary

search in [13] was not used because the algorithm minimizes the number of time

slots required to compute the median instead of the more common goal of mini-

mizing the amount of bytes transmitted. Moreover, our preliminary results show

that this algorithm needs more bytes than TAG. Since the typical goal within the

realm of WSN research is to minimize the energy consumption and since the data

transmission is the main reason for the energy consumption, we will use the average

44

number of bytes sent in the network as our performance indicator. It also allows a

comparison between algorithms in terms of overhead and a comparison with the

minimum bound, explained later.

Similar to the setup in Section 2.3, all algorithms use the same physical network

and logical trees. The physical network is represented by the graph that connects all

nodes. We use three different physical networks generated by placing nodes in the

monitored area using a uniform distribution. The routing tree is a typical shortest

path tree. For each physical network we build our experiments using five logical

trees by selecting five different base stations. We make the following assumptions

about the required storage in each node: (1) an observed value consumes 2 bytes,

(2) each bin in the histogram consumes 2 bytes to accommodate the count of all

nodes in the network, if necessary, and (3) If a node decides to send updates about

b histogram bins only, instead of sending the complete histogram, then the message

size is 3 × b bytes because additional bin IDs, consuming 1 byte, need to be sent

as well. Finally, the maximum packet size per message is 128 bytes. A complete

histogram requires 2×B bytes, where B is the number of the bins in the histogram.

We investigate our snapshot algorithms with respect to four parameters: Ra-

dio range R, Network’s message header size Hs, the number of nodes N and the

standard deviation σ of the observed value. Continuous algorithms have two more

parameters: average amount of change in a sensor’s value δ per round, and the prob-

ability that a sensor’s value change ρ between rounds. The radio range controls the

logical network topology and it changes both the branching factor and routing tree

depth. Studying the header size is important because it may be a tunable param-

eter in the communication protocol and increasing the message header effectively

is detrimental to our approach because it increases the overhead of the refinement

queries. Increasing the number of nodes N , shows the algorithm scalability from

the WSN density point of view. Varying the standard deviation allows to exam-

ine the worst case of our approaches compared to TAG’s, e.g., when all values are

equal. Finally, δ and ρ control how the sensor’ values change between two con-

secutive rounds. Table 3.3 contains a list of investigated parameter’ values. While

testing one parameter, we use the default value (denoted in bold) of all other pa-

45

rameters. The figures show the amortized average of the transmission cost in our

experimental runs. In order to ensure a fair comparison, all algorithms use exactly

the same setup, during all simulations.

We used two datasets, a synthetic and a realistic dataset similar to ones used

in Section 2.3. A synthetic dataset allows the evaluation of more parameters and

to discuss how the algorithms behave with respect to them. Our synthetic dataset

consists of N connected nodes uniformly distributed in an area of 200m× 200m.

Instead of using a uniform distribution to initialize the sensor’ values as done

in Section 2.3, we use a normal distribution because it may have a very small stan-

dard deviation which makes all value resides in a single bin. This is the worst case

for our proposed algorithm in this chapter while it is considered the best case for

the previous chapter. Our median algorithms use several refinements to shorten the

range of the median value and decrease the number of candidates. If all values re-

sides in a single bin, then all values should be involved in the following refinement.

However, in the HIU algorithm, if all values reside in a single bin, nodes need to

send an update to a single bin which is cheaper than sending updates for all bins in

the histogram, if using a uniform distribution. There is no need to send any updates

in the following rounds if all values change within this bin. In our synthetic dataset,

values are initialized using a normal distribution with an average 0, a standard de-

viation σ and ignoring values in the distribution’s tails, namely outside the interval

[-2,2]. We use a normal distribution to show the impact of having equal values or

values uniformly distributed in the network. After that, all values are scaled to the

range between 1 and 216, i.e., using 2 bytes per sensed value. In the continuous

queries, we assume that each value changes every round with a probability ρ%.

The random distribution for the change value is an exponential distribution with an

average 1
δ
. An exponential distribution allows a sensor to have very small or very

large changes to its value while maintaining the same average.

The realistic dataset we use was also used in [28]. This dataset represents the

atmospheric pressure and it was derived from data collected by the Live from Earth

and Mars project 2 by extracting data traces for 1022 nodes. However this dataset

2http://www-k12.atmos.washington.edu/k12/grayskies/nw weather.html

46

Parameter Used Values
R (WSN sensor’s radio range) 10, 20, 30, 40, 50
Hs (Header Size) 0, 4, 8, 16, 32
N (Number of Nodes) 250, 500, 1000, 1500, 2000, 3000, 4000, 5000
σ (standard deviation) 0, 0.25, 0.5, 0.75, 1
δ (Average amount of change) 1%, 25%, 50%, 75%, 100%
ρ (Probability of change) 1%, 25%, 50%, 75%, 100%

Table 3.3: Studied parameters for RBM and CRBM analysis (default values in bold)

did not contain information about the spatial distribution of the data. In order to

create a realistic setting for this dataset, we made a reasonable assumption that

neighboring nodes produce similar values. Then, we used a self-organizing map

approach similar to [12]. We only used the first measurement of each node as an

input of the self organizing map, and the output is the position of each node. The

first measurement was also used to initialize the sensor’ values in the first round in

case of the continuous algorithms and used as the sensor’ values for the snapshot

algorithms.

3.5.1 Snapshot Median Query

All graphs in Figure 3.5 show that RBM decreases the amount of sent bytes by up

to 50% of what TAG sends, e.g., when the radio range is small and consequently the

network’s maximum depth is large. In Figure 3.5(a) the two algorithms decrease

the number of bytes sent as the radio range increases until they both reach the

minimum bound, namely 10 bytes/node, when all nodes can connect directly to the

base station and no in-network aggregation is required. Sending 10 bytes on average

per node is the minimum bound because each node should at least communicate its

value. A value message is 2 bytes and needs 8 bytes as a default header size. It

is worth mentioning that RBM gets closer to the minimum bound when the radio

range is 30m, while TAG does not do so until the range is 100m. Being able to

approach the lower bound at smaller radio ranges is important because in WSNs the

radio range is typically in the order of a few tens of meters and, more importantly,

the energy cost of transmissions grows (at least) quadratically with the growth in

the radio range.

47

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 100

A
v

g
.

#
B

y
te

s/
S

en
so

r

RBM
TAG

(a) Range

 0

 5

 10

 15

 20

 250 1000 2000 3000 4000 5000

A
v

g
.

#
B

y
te

s/
S

en
so

r

RBM
TAG

(b) Number of Nodes

 0

 5

 10

 15

 20

 0 0.5 1 1.5 2

A
v
g
.
#
B

y
te

s/
S

en
so

r

RBM
TAG

(c) Standard Deviation

 0

 10

 20

 30

 40

 50

 0 4 8 16 32

A
v
g
.
#
B

y
te

s/
S

en
so

r

RBM
TAG

(d) Header Size

Figure 3.5: Performance of RBM using average number of bytes sent per a sensor
node (Synthetic dataset)

48

TAG’s performance does not change too much while increasing the number of

sensor nodes as one can see in Figure 3.5(b). This is due to the fact that because

all nodes send their values, increasing the number of nodes increases the traffic

linearly and that does not affect the average traffic very much. On the other hand,

RBM slowly decreases the amount of bytes sent because the more nodes in the

network the more leaf nodes. Leaf nodes and, often whole sub-trees participate

only in the first refinement when they communicate their values, hence the gain.

Figure 3.5(c) shows that, as expected, the TAG algorithm is completely inde-

pendent of the standard deviation value. The RBM algorithm, on the other hand,

decreases the amount of bytes sent as the normal distribution gets closer to the uni-

form shape. In RBM’s worst case, when all values in the network are equal, TAG

sends 20% more bytes than RBM while it sends 40% more if the distribution is

closer to a more uniform one.

Figure 3.5(d) shows that performance of the TAG and RBM degrades similarly

with an increase in the header size. Although RBM sends more message as a result

of refinement process, these messages are still relatively small. TAG sends fewer

but relatively larger messages (in fact, leaf nodes send small messages of a single

value while nodes near to the base station send very large messages that include all

values in their subtree) and is forced to split those because of the maximum packet

size of 128 bytes, thus it is not able to diminish the gap between itself and RBM.

It is worthwhile to note that, in all experiments above, RBM’s performance was

on average, only 25% away from the minimum bound of 10 bytes/node, which

further supports RBM’s efficiency.

Figure 3.6 shows the performance of the TAG and RBM algorithms using the

realistic dataset. Since some parameters are fixed in the realistic dataset, i.e., N and

σ we could only investigate the range R and header size Hs. Figures 3.6(a) and

3.6(b) show that, qualitatively, the performance of RBM and TAG using the realistic

dataset is very similar to our synthetic dataset and confirms RBM’s superiority with

respect to TAG.

49

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 100

A
v

g
.

#
B

y
te

s/
S

en
so

r

RBM
TAG

(a) Range

 0

 10

 20

 30

 40

 50

 0 4 8 16 32

A
v

g
.

#
B

y
te

s/
S

en
so

r

RBM
TAG

(b) Header Size

Figure 3.6: Performance of RBM using average number of bytes sent per node
(Realistic Dataset)

3.5.2 Continuous Median Query

For the sake of comparison we show the performance of four algorithms to evaluate

our continuous algorithms. First, TAG [17], that collects all values to the base

station in order to compute an exact answer. Second, HIU-Median (Section 3.4.1),

that answers a continuous histogram efficiently, then computes the median value

by finding the median bin and then requests all values in this bin. Third, repeating

the RBM (Section 3.3) every round. We call this algorithm RBM*, and finally,

the CRBM algorithm. We use the TAG and RBM algorithms as base lines for our

proposed algorithms for the continuous Median query.

We will start with a discussion of the performance of both HIU-Median and

CRBM with respect to the baseline algorithms. Then, we compare the four algo-

rithms. In the discussion of each algorithm we use a Synthetic dataset and five

parameters: Radio range R, Network’s message header size Hs, the standard devi-

50

ation σ of the observed values, the average amount of change in the sensor’s value

δ, and the probability that a sensor’s value change ρ. In the comparison discussion,

we assume the default value for all parameters as mentioned in Table 3.3.

HIU-Median Algorithm

Figures 3.7 and 3.8 show that the TAG approach of collecting all values to compute

an exact Median may outperform HIU-Median while RBM* always performs better

than both HIU-Median and TAG. The figures show the amortized average of sent

bytes per node. The cost of the Median query using HIU has two components: (1)

Cost to acquire the histogram answer and then define the median bin, (2) Cost to

collect all values in the median bin. In the first round, HIU does not reuse existing

information. However, in consecutive rounds, HIU reduces the number of bytes

sent by each sensor per round to construct the histogram. Typically, HIU requests a

smaller number of values to be collected than TAG. Instead of sending the collection

query to all nodes in the WSN, the cached information (in each node) is used to

direct the query only to relevant nodes as explained in Section 3.4.1. In some

figures TAG outperforms HIU-Median because HIU-median sends more messages.

Figures 3.7(a) and 3.7(b) show the influence of changing ρ and δ as the num-

ber of rounds increase which affects the cost of constructing a histogram with no

influence on the values collection’s cost. In principles, the smaller the ρ (or δ), the

cheaper the Histogram and then the cheaper the Median. In practice, the figures

show that ρ and δ have little influence on the performance of HIU-Median because

the difference is dominated by the default header size (8 bytes).

In Figure 3.8(a) the HIU-Median algorithm significantly outperforms TAG and

slightly outperforms RBM* if the header size is zero (H=0). Although this is a non-

realistic assumption, it is useful to show that HIU-Median actually sends less bytes

than both RBM* and TAG but more messages.

Figure 3.8(b) shows the influence of the sensor’s radio range (R) on the Median

query cost. This parameter affects the TAG, RBM* and HIU-Median cost because

it changes the logical routing tree. However, the costs of TAG and RBM* are fixed

regardless of the number of rounds. The larger the node’s radio range, the smaller

51

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 5 10 20 30 40 50 60 70 80 90 100

A
v
g

.
#
B

y
te

s/
S

en
so

r

Round #

RBM*
TAG

HIU-Median: ρ=0%
HIU-Median: ρ = 50%

(a) Studying HIU-Median using the Probability a value changes (ρ)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 5 10 20 30 40 50 60 70 80 90 100

A
v

g
.

#
B

y
te

s/
S

en
so

r

Round #

RBM*
TAG

HIU-Median δ=0%
HIU-Median δ=50%

(b) Studying HIU-Median using the Average amount of change(δ)

Figure 3.7: Influence of the continuous parameters on the cost of running HIU-
Median in terms of number of sent bytes (X-axis is number of rounds)

52

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 5 10 20 30 40 50 60 70 80 90 100

A
v
g

.
#
B

y
te

s/
S

en
so

r

Round #

RBM*: Hs=8
RBM*: Hs=0

TAG: Hs=8
TAG: Hs=0

HIU-Median: Hs=8
HIU-Median: Hs=0

(a) Studying HIU-Median using the Header Size (Hs)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 5 10 20 30 40 50 60 70 80 90 100

A
v

g
.

#
B

y
te

s/
S

en
so

r

Round #

RBM*: R=50
RBM*: R=10

TAG: R=50
TAG: R=10

HIU-Median: R=50
HIU-Median: R=10

(b) Studying HIU-Median using the Radio Range (R)

 10

 15

 20

 25

 30

 35

 40

 1 5 10 20 30 40 50 60 70 80 90 100

A
v
g
.
#
B

y
te

s/
S

en
so

r

Round #

RBM*: σ=0
RBM*: σ=2

TAG
HIU-Median: σ=0
HIU-Median: σ=2

(c) Studying HIU-Median using the Standard Deviation (σ)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 5 10 20 30 40 50 60 70 80 90 100

A
v
g
.
#
B

y
te

s/
S

en
so

r

Round #

RBM*: N=5000
RBM*: N=1000

TAG: N=5000
TAG: N=1000

HIU-Median: N=5000
HIU-Median: N=1000

(d) Studying HIU-Median using the Number of Nodes (N)

Figure 3.8: Influence of the setup parameters on the cost of running HIU-Median
in terms of number of sent bytes (X-axis is number of rounds)

53

the number of hops to reach the base station and the smaller the number of bytes sent

by TAG, RBM* and HIU-Median. Conversely, the number of messages increases

as the radio range gets smaller. In Figure 3.8(b), TAG performs significantly worse

than RBM* and HIU-Median if the radio range is small (R = 10m). HIU-Median

outperforms the TAG algorithm when radio range is very small. In fact, the cost

of TAG significantly increases by increasing the radio range while the cost of HIU-

Median is similar regardless of the radio range because the HIU algorithm avoids

sending messages by many nodes.

Figure 3.8(c) shows the HIU-Median’s worst case. If the standard deviation is

zero then all values reside in the same bin and then HIU-Median should perform

worse than TAG. In this case, HIU would send bytes to compute the histogram

every round and then collect all values to the base station as TAG. However, the

values distribution has no influence on TAG and only minor influence on RBM*’s

performance.

In the last figure, Figure 3.8(d) shows that increasing the number of nodes in

the network has a limited impact on the HIU-Median algorithm. As seen in Section

2.3, the HIU algorithm gains a small benefit when the number of nodes in the net-

work increases. At the same time, the more nodes in the network the more nodes

in the median bin and the higher the cost of the value collection phase. Because

the value collection phase benefits from cached histograms in the nodes and prune

some subtrees and because all leaf nodes do not participate in the value collection,

because they already sent their values in the HIU phase, increasing the number of

nodes in the network has little overhead on the values collection phase.

The realistic dataset in Figure 3.9 confirms our previous findings. Since some

parameters are fixed in the realistic dataset, e.g., N and σ and others are not known

to us, e.g., δ and ρ, we could only investigate the range R and header size Hs. Fig-

ure 3.9 shows that the performance of RBM* and HIU-Median using the realistic

dataset is similar to using our synthetic dataset and confirms that RBM* outper-

forms HIU-Median if the header size is not zero.

54

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 5 10 20 30 40 50

A
v
g

.
#
B

y
te

s/
S

en
so

r

Round #

RBM*: Hs=8
RBM*: Hs=0

TAG: Hs=8
TAG: Hs=0

HIU-Median: Hs=8
HIU-Median: Hs=0

(a) Studying HIU-Median using the Header Size (Hs)

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 5 10 20 30 40 50

A
v

g
.

#
B

y
te

s/
S

en
so

r

Round #

RBM*: R=50
RBM*: R=10

TAG: R=50
TAG: R=10

HIU-Median: R=50
HIU-Median: R=10

(b) Studying HIU-Median using the Radio Range (R)

Figure 3.9: Studying the HIU-Median using the realistic dataset in terms of number
of sent bytes (X-axis is number of rounds)

55

 0

 5

 10

 15

 20

 1 5 10 20 30

A
v
g

.
#
B

y
te

s/
S

en
so

r

Round #

RBM*
TAG

CRBM: ρ=0%
CRBM: ρ=50%

(a) Studying CRBM using the Probability a value changes (ρ)

 0

 5

 10

 15

 20

 1 5 10 20 30

A
v

g
.

#
B

y
te

s/
S

en
so

r

Round #

RBM*
TAG

CRBM: δ=0%
CRBM: δ=50%

(b) Studying CRBM using the Average amount of change(δ)

Figure 3.10: Influence of the continuous parameters on the cost of running CRBM
in terms of number of sent bytes (X-axis is number of rounds)

56

CRBM Algorithm

The performance of the CRBM algorithm is compared with our two baseline algo-

rithms, TAG and RBM*. Figures 3.10 and 3.11 show the amortized average of sent

bytes per node. The X-axis of all figures is the number of rounds and the Y-axis

is the amount of sent bytes. The figures show that CRBM is capable of computing

the median with a cost very close to the minimum required3, in fact all graphs show

that CRBM uses slightly more bytes than ten when the header size is eight.

Figures 3.10(a) and 3.10(b) show that the CRBM algorithm uses less bytes than

both TAG and RBM*. Decreasing the probability and/or the amount of changes

from 50% to 0% significantly reduces the amount of sent bytes from ten to one

byte per node per round. If the values are almost static or slightly change from a

round to the next then the average amount of sent bytes will approach zero. We note

that in the first round, CRBM uses more bytes than RBM* because RBM* prunes a

subtree of a node once this node sends all its values while CRBM continues sending

the refinement queries to all intermediate nodes in the network even if they already

have sent all their values. As was mentioned, in Section 3.4.2, CRBM does so to

allow all queries to reconstruct the refinement query with minimal information even

though not all bins have the same size.

Figure 3.11(a) shows that the CRBM and RBM* use almost the same amount

of bytes in the first round if the header size is zero. If the header size increases

CRBM performs worse in the first round because CRBM sends more messages,

again because the refinement query is sent to all intermediate nodes. However, in

the second round, CRBM performs better regardless of the header size. At our

default header size, header = 8, CRBM decreases the amount of sent bytes by 20%

than RBM*.

In Figure 3.11(b), we show how the network structure influence CRBM, RBM*,

and TAG. If the radio range is ten, then the maximum number of hops between a

leaf node and the base station is large. If the radio range is 50, then almost all

nodes are very close to the base station and then the number of intermediate nodes

3The minimum number of required bytes every round equals to the number of bytes required to
represent a sensor’s value plus the number of bytes for the header size.

57

 0

 5

 10

 15

 20

 1 5 10 20 30

A
v
g

.
#
B

y
te

s/
S

en
so

r

Round #

RBM*: H=8
RBM*: H=0

TAG: H=8
TAG: H=0

CRBM: H=8
CRBM: H=0

(a) Studying CRBM using the Header Size (Hs)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 5 10 20 30

A
v

g
.

#
B

y
te

s/
S

en
so

r

Round #

RBM*: R=50
RBM*: R=10

TAG: R=50
TAG: R=10

CRBM: R=50
CRBM: R=10

(b) Studying CRBM using the Radio Range (R)

 10

 12

 14

 16

 18

 20

 1 5 10 20 30

A
v
g
.
#
B

y
te

s/
S

en
so

r

Round #

RBM* σ=0
RBM* σ=2

TAG
CRBM σ=0
CRBM σ=2

(c) Studying CRBM using the Standard Deviation (σ)

 10

 12

 14

 16

 18

 20

 1 5 10 20 30

A
v
g
.
#
B

y
te

s/
S

en
so

r

Round #

RBM*: N=5000
RBM*: N=1000

TAG: N=5000
TAG: N=1000

CRBM: N=5000
CRBM: N=1000

(d) Studying CRBM using the Number of Nodes (N)

Figure 3.11: Influence of the setup parameters on the cost of running CRBM in
terms of number of sent bytes (X-axis is number of rounds)

58

is very small. Using a radio range of ten makes the CRBM algorithm worse than

RBM in the first round because it sends more messages to force all refinement

queries to reach all intermediate nodes. This difference in the number of messages

increases because several hops are needed to reach all intermediate nodes. After

a few rounds, CRBM shows enhancement in the performance and decreases the

amortized average of sent bytes. However, if the radio range is large, e.g. 50m, then

the performance of the CRBM will be slightly worse than RBM* in the first round

and slightly better than RBM* in the next rounds. The reason is the small number

of intermediate nodes. In both RBM* and CRBM, if a value changes in a leaf node,

this node should send its value every round to ensure an accurate computation for

the median. The fact that most nodes are leaf nodes, when the radio range = 50m,

reduces the CRBM potential to decrease the number of sent bytes.

Figure 3.11(c) clarifies how RBM* and CRBM behave when changing the stan-

dard deviation for the node’s values. The initial value of the nodes follows the same

normal distribution with the same standard deviation. If the standard deviation is

zero then all values are equal to each other, which is the RBM*’s worst case. If

the standard deviation is two, then all values follow a distribution very similar to a

uniform distribution. The figure shows that CRBM decreases the number of sent

bytes starting from the second round as in all other figures. CRBM performs better

when the values have a distribution similar to uniform for two reasons: (1) CRBM

uses the RBM algorithm in the first round. (2) If the sensors’ values are close to

each other, then the median value is expected to fall in one of the extended bins

not one of the small bins. Note the worst case of the RBM is when σ = 0. Earlier

in Section 3.4.2, we explained that a refinement query in CRBM usually has some

small bins and two extended bins. If σ = 0, then the small bins will be very small

because CRBM will not terminate unless the width of the median bin is one. If

the small bins are very small then they will not be capable of accommodating the

median value of the next rounds. This will cause the median value to fall in one of

the extended bins more frequently and then increase the cost of the CRBM.

Figure 3.11(d) shows that RBM* is the only algorithm that significantly benefits

from decreasing the number of nodes in the monitored area. Although increasing

59

 6

 8

 10

 12

 14

 1 5 10 20 30 40 50

A
v

g
.

#
B

y
te

s/
S

en
so

r

Round #

Single round cost

Amortized Average

Figure 3.12: Per-round cost vs. Amortized average for the CRBM algorithm

the number of nodes allows CRBM to send less bytes, the improvement is rela-

tively small because CRBM is close to the minimum bound already (10 bytes). As

explained in Section 3.5.1, RBM decreases the average amount of sent bytes when

the number of nodes increases in the monitored area because the more nodes in the

network the more leaf nodes. Leaf nodes and, often whole sub-trees, participate

only in the first refinement when they communicate their values, hence the gain.

There is an interesting behavior for some CRBM curves. In the first round the

cost is high, then it starts decreasing for a few rounds and increases then again and

remains stable. In order to better understand this unexpected behavior of CRBM,

we took a closer look at the cost of each round, not only the amortized average.

Figure 3.12 shows the average amount of sent bytes in each round per node

and the amortized average for all rounds. It is clear that the CRBM algorithm

eventually requires a high amount of bytes every few rounds. Recall that CRBM

starts with a regular histogram query where all bins are equal then in the next round

customizes the histogram query to reuse the cached results in each node. After a

few rounds, as the sensor’s values change, the median value may no longer be in

any of the small bins and then requires a query for the extended bin. This increases

the cost of CRBM for two reasons: 1) the first refinement query brings a minor

benefit and is considered just an overhead, 2) the new query for the extended bin

has no cached results and then CRBM cannot reduce the number of necessary bytes

60

 0

 5

 10

 15

 20

 1 5 10 20 30 40 50 60 70 80 90 100

A
v
g

.
#
B

y
te

s/
S

en
so

r

Round #

RBM*: H=8
RBM*: H=0

TAG: H=8
TAG: H=0

CRBM: H=8
CRBM: H=0

(a) Studying CRBM using the Header Size (Hs)

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 5 10 20 30 40 50 60 70 80 90 100

A
v

g
.

#
B

y
te

s/
S

en
so

r

Round #

RBM*: R=50
RBM*: R=10

TAG: R=50
TAG: R=10

CRBM: R=50
CRBM: R=10

(b) Studying CRBM using the Radio Range (R)

Figure 3.13: Studying the CRBM using the realistic dataset in terms of number of
sent bytes (X-axis is number of rounds)

to answer it. As explained in Section 3.4.2, we use the second last refinement query

in the previous round as a guid for the first refinement query in the current round.

Changing this assumption can change the average number of rounds between the

peaks in the graph. Controlling the cycle length of the rounds’ cost curve is left for

future work.

The realistic dataset in Figure 3.13 confirms our previous results that CRBM

is the most efficient algorithm in the long run. As mentioned earlier, since some

parameters are fixed in the realistic dataset, i.e., N and σ and others are not known

to us, i.e., δ and ρ, we could only investigate the range R and header size Hs. The

instability in the CRBM graph at round number 5 happened because the value of

many sensors in the dataset significantly change between round number three and

round number four then the change happens again in the negative direction between

round number four and round number five. This behavior confuses the CRBM algo-

61

 0

 5

 10

 15

 20

 25

 30

 1 5 10 20 30 40 50 60 70 80 90 100

A
v
g
.
#

B
y
te

s/
S

en
so

r

Round #

HIU-Median
CRBM

TAG
RBM*

Figure 3.14: Comparison between HIU-Median and CRBM using the default values

rithm and makes unable to use cached results in round number five which lead to an

increase of the average performance. Although this behavior happens frequently in

the dataset, once the CRBM algorithm runs enough rounds, these expensive rounds

will not have a significant impact on the amortized average.

A Comparison between HIU-Median and CRBM

Figure 3.14 shows the performance of TAG, RBM*, HIU-Median, and CRBM us-

ing all default values. The amortized average of sent bytes for CRBM is the best

among all algorithms. However, the cost of each round is not stable and consis-

tent like HIU-median’s. CRBM outperforms HIU-median for two reasons: (1) The

distribution of sensor’s values has little influence on the CRBM’s performance (Fig-

ure 3.11(c)) comparing to HIU-Median’s Figure 3.8(c), (2) CRBM sends less mes-

sages than HIU-Median thus a large header size does not influence its performance.

Figure 3.15 shows HIU-Median best case when the values distribution is uniform

and the header size is zero. Although HIU-Median outperforms both TAG and

RBM*, it is still worse than CRBM.

It is worth mentioning that RBM* and CRBM are expected to use more time

to compute the median value since it sends several refinement queries every round.

If the epoch between each two consecutive rounds is relatively small, CRBM may

not have enough time slots to compute the median. In this case, we may need to

combine HIU-Median and CRBM, for example, by using one or two refinements

and then collect all values or use the CRBM technique to build the histogram query

62

 0

 5

 10

 15

 20

 1 5 10 20 30 40 50 60 70 80 90 100

A
v
g
.
#

B
y
te

s/
S

en
so

r

Round #

HIU-Median
CRBM

TAG
RBM*

Figure 3.15: Comparison between HIU-Median and CRBM using the best case
scenario for HIU-Median

for the HIU-Median.

3.6 Conclusion

In this chapter we proposed algorithms to answer snapshot and continuous Me-

dian queries in WSNs. RBM is a new in-network algorithm to compute a snapshot

quantile answer, e.g., Median, efficiently. The basic idea is to use several refine-

ment queries, each one being itself a Histogram query, in order to refine the range

where the median value resides, without necessarily retrieving all values to the base

station. Such refinements are done until it becomes cost effective to retrieve a rela-

tively small set of candidate values from the network. RBM also relies on a heuristic

rule that allows the size of each refining histogram to be determined automatically,

based on the obtained values thus far in the refinement process. In the RBM algo-

rithm, each node decides to either send a histogram answering the refinement query

or sending all values relevant to the asked query.

The RBM algorithm can be used to compute an approximate answer for the

Median query with a guaranteed error bound. The base station continues sending a

refinement query that exponentially decreases the range of the median answer until

the range is very small and satisfies the given error bound or an accurate answer is

computed. Using the amortized average of bytes sent per node as the performance

metric, the RBM algorithm needs up to 50% less traffic than TAG, and on average

generates about 25% more than the minimum bound of 10 bytes per node per round.

63

CRBM is an extension of the RBM* algorithm and was designed to compute

a continuous quantile answer efficiently. The main difference between RBM and

CRBM is the histogram query construction. In the RBM algorithm we discussed

the structure of the histogram query. In CRBM, we aim to decrease the continuous

query cost by minimizing the amount of update messages from one round to the

next using similar queries to ones already sent in the previous round. The main

idea is very similar to the HIU algorithm in Chapter 2. We achieve this by using

similar queries to ones already sent in the previous round. This allows the embedded

HIU algorithm to efficiently compute the histogram and avoid sending unnecessary

messages.In the first round, CRBM performs a little bit worse than RBM. However,

the cost of the consecutive rounds is significantly cheaper because nodes depend on

the cached answers from the previous rounds and send updates only. The CRBM

uses almost the same number of bytes as the minimum bound of 10 bytes per node

per round.

Using the average number of bytes sent per node as the performance metric,

our experiments show that RBM* algorithm can generate up to 50% less traffic

than TAG, and generates on average about 25% more than the minimum traffic

possible, i.e, each node sends only its own observed value. In the first round, CRBM

performs a little bit worse than RBM*. However, the cost of the consecutive rounds

is significantly cheaper because nodes do not send their local histogram answer

from scratch, instead they send updates messages to the cached ones. In all figures,

CRBM shows that it uses almost the same number of bytes as the minimum bound

of 10 bytes per node per round (2 for the sensor value and 8 for the header size).

64

Chapter 4

Conclusion and Future Work

In this thesis, we addressed the problem of in-network Histogram and Median query

processing in the context of WSNs. We started our research by exploring the His-

togram query. We could not find an efficient algorithm to compute an answer for the

Histogram query since Madden et. al. proposed the TAG algorithm [17] in 2002.

We proposed the HIU algorithm that is capable of efficiently computing the answer

for a continuous Histogram query in Chapter 2. The main idea is to use in-network

aggregation and in-node caching to reduce the energy consumption by sending up-

dates to the prior round answer instead of sending the whole answer again. On

average, HIU multiplies the network lifetime about three times comparing to TAG

algorithm.

In the same chapter, Chapter 2, we showed that a histogram is capable of pro-

viding approximate answers for some other aggregate queries. Moreover, accurate

answers are applicable with a small overhead. HIU also outperforms the TAG algo-

rithm to answer other queries such as the Max query if the amount and/or probability

of values change is reasonably small as observed in the real datasets.

Subsequently, our investigation moved beyond the Histogram query to the quan-

tile queries for instance, Median . We proposed a few algorithms for the snapshot

and continuous Median queries. In Chapter 3, we proposed a median version of

HIU, HIU-Median algorithm, that computes the accurate median. This Algorithm

sends less bytes than TAG but uses more messages. Its performance is worse than

TAG if the header size is not very small.

The RBM is a new in-network algorithm to compute a snapshot quantile answer,

65

e.g., Median, efficiently. The basic idea is to use several refinement queries, each

one being itself a Histogram query, in order to refine the range where the median

value resides, without necessarily retrieving all values to the base station. Such

refinements are done until it becomes cost effective to retrieve a relatively small

set of candidate values from the network. RBM also relies on a heuristic rule that

allows the size of each refining histogram to be determined automatically, based on

the obtained values thus far in the refinement process.

We can use the RBM to answer continuous queries by repeating the algorithm

every round, e.i. the RBM* algorithm. However, we proposed the CRBM algorithm

as an extension for the RBM* algorithm. It is designed to compute a continuous

quantile answer efficiently. The main difference between RBM and CRBM is the

construction of the first refinement query in each round. Instead of initiating a new

histogram query every round assuming no prior information available, CRBM uses

the previously answered histogram queries to construct the first refinement query of

each round.

The CRBM algorithm uses the same amount of bytes as the minimum bound

when all nodes can connect directly to the base station and no in-network aggrega-

tion is required. In this case, every node should send its value to the base station.

The minimum bound is the amount of required bytes for the sensor’s value plus the

header size of the message.

Our work in this thesis addressed some important problems in query processing

within the context of WSNs. The solutions presented in this thesis are simple yet

efficient as shown by the extensive experimental studies. These solutions are appli-

cable for other problems in the same context where the communication is the main

cost, e.g. wireless devices. We believe the following problems would be interesting

to be addressed in future research.

Mining Data Streams

Mining data streams is concerned with extracting knowledge structures represented

in models and patterns in uninterrupted streams of data [7]. There are many al-

gorithms in the literature designed for pattern discovery from sensors [15, 21, 31].

66

Although most of these publications were discussing raw data mining, i.e., sensors’

values pattern discovery, we believe extensions could be proposed to discover pat-

terns from aggregated results for a Median query. For example, in the CRBM algo-

rithm, we proposed building the histogram query every round based on the previous

cached queries. However, after many rounds, the base station would have enough

data to explore and analyze. Mining the computed median values collected every

round from the WSN can lead to a more efficient histogram query every round.

Moreover, in Figure 3.3, we show the cost of each round per node. Although we

suggested using a refinement query in the middle, i.e. not the first nor the last, we

could not ensure which one should be used. Analyzing the median and histogram

results every round in the base station can help making a better decision on which

refinement query to start with.

Realistic Network Conditions

In our study, we assumed the communication between all nodes are perfectly reli-

able (i.e, there is no link failure), and concentrated on the query processing aspect

of the problem. In reality, this is not true.

HIU, RBM, and CRBM all depend on the in-network caching and in-network

aggregation. Nodes prefer to send updates to the cached results instead of sending

the full result. This makes the unreliable communication vital because a missed

message may affect the result of all the following rounds not only the current one.

The more changes in the sensor values the higher the probability of having a wrong

answer and the more changes to be communicated. Note that nodes applying the

HIU or CRBM algorithm prefers to send the whole messages if more than 50% of

the bins in the histogram change. This means, the more changes in the network,

the higher the probability of sending a full message that does not depend on any

previous message.

Different Routing Trees

The behavior of theCCR06 proposed algorithms depend on the node position in the

routing tree. In our analysis we used the common shortest path tree (SPT) as a

67

routing tree. Recently, some publications show that using other trees could change

the behavior of some algorithms. In [29], the authors proposed the Dominating

Set Tree (DST). They show that using the DST tree instead of SPT enhance the

performance of the TAG in-network algorithm to compute MAX query by substan-

tial margins. It reduces the transmission cost by up to 70% and reduce the overall

energy consumption by up to 53%. Although this tree does not offer the minimum

distance between any node and the base station, as SPT, it minimizes number of

intermediate nodes and then allow more aggregation in each intermediate node. We

would like to explore using this tree for our algorithms. It is expected to enhance

the overall performance and decrease both the transmission and energy consump-

tion cost.

In [20], the authors proposed the BIased SPT (BISPT) logical tree to be used

for one-to-All broadcasting. The BISPT is a logical tree with a smaller set of inter-

mediate nodes, which result to a lower transmission cost for broadcasting. Clearly

this will reduce the query processing cost for solutions that require broadcasting as

a mandatory part of the algorithms. Some of our proposed algorithms, RBM and

CRBM, send several refinement queries and will benefit from such an efficient tree.

Nodes Scheduling and Synchronization

A WSN node does not consume energy only for sending bytes, but also for receiv-

ing or even waiting for receiving a message. This overhead was ignored in our

analysis. In the TAG algorithm each node will listen just once per round but in

RBM (or CRBM) each node will listen multiple times. In the RBM (or CRBM)

algorithm, each node should open its radio multiple times to accommodate all pos-

sible refinements. If there is no good synchronization protocol between nodes, a

node may have to wait for a message for long time which may impact the overall

performance. In this context a venue for future research is to explore how to add a

good synchronization protocol to the RBM (or CRBM) algorithm.

68

Bibliography

[1] M. Burl, B. Sisk, T. Vaid, and N. Lewis. Classification performance of carbon
black-polymer composite vapor detector arrays as a function of array size and
detector composition. Sensors and Actuators B: Chemical, 87(1):130 – 149,
2002.

[2] C.Y. Chow, M.F. Mokbel, and T. He. Aggregate location monitoring for wire-
less sensor networks: A histogram-based approach. In Proc. of MDM, pages
82–91, 2009.

[3] S. Collins et al. New opportunities in ecological sensing using wireless sensor
networks. Frontiers in Ecology and the Environment, 4(8):402–407, 2006.

[4] A. Coman, J. Sander, and M.A. Nascimento. Adaptive processing of histor-
ical spatial range queries in peer-to-peer sensor networks. Distrib. Parallel
Databases J., 22(2):133–163, 2007.

[5] J. Considine, M. Hadjieleftheriou, F. Li, J. Byers, and G. Kollios. Robust
approximate aggregation in sensor data management systems. ACM ToDS,
34(1):Article 6, 2009.

[6] L. P. Cox, M. Castro, and A. Rowstron. Pos: A practical order statistics service
for wireless sensor networks. In Proc. of ICDCS, pages 52–64, 2006.

[7] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining data streams: a
review. SIGMOD Rec., 34:18–26, June 2005.

[8] M. B. Greenwald and S. Khanna. Power-conserving computation of order-
statistics over sensor networks. In Proc. of PoDS, pages 275–285, 2004.

[9] A. Gupta, I.S. Mumick, and V.S. Subrahmanian. Maintaining views incre-
mentally. Proc. of ACM SIGMOD, pages 157–166, 1993.

[10] Intel Berkeley Research Lab. Intel lab data
http://www.select.cs.cmu.edu/data/labapp3/index.html.

[11] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. Turon.
Health monitoring of civil infrastructures using wireless sensor networks.
Proc. of IPSN, pages 254–263, 2007.

[12] T. Kohonen. Self-Organizing Maps. Springer Berlin, 2001.

[13] Fabian Kuhn, Thomas Locher, and Roger Wattenhofer. Tight bounds for dis-
tributed selection. In Proc. of SPAA, pages 145–153, 2007.

[14] X. Y. Li, Y. Wang, and Y. Wang. Complexity of data collection, aggregation,
and selection for wireless sensor networks. IEEE TC, 60(3):386 – 399, 2010.

69

[15] H. Liu, Y. Lin, and J. Han. Methods for mining frequent items in data streams:
an overview. Knowledge and Information Systems, 26:1–30, Jan 2011.

[16] K. Liu, L. Chen, M. Li, and Y. Liu. Continuous answering holistic queries
over sensor networks. In Proc. of IPDPS, pages 1–11, 2008.

[17] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. Tag: a tiny aggrega-
tion service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev., 36(SI):131–
146, 2002.

[18] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. The design of an
acquisitional query processor for sensor networks. Proc. of ACM SIGMOD,
pages 491–502, 2003.

[19] B. Malhotra, M.A. Nascimento, and I. Nikolaidis. Exact top-k queries in
wireless sensor networks. IEEE TKDE, (To appear), 2010.

[20] Baljeet Singh Malhotra. Efficient and reliable in-network query processing
in wireless sensor networks. PhD thesis, Computing Science Department,
University of Alberta, 2010.

[21] S. Papadimitriou, A. Brockwell, and C. Faloutsos. Adaptive, hands-off stream
mining. Proc. of VLDB, pages 560–571, 2003.

[22] B. Patt-Shamir. A note on efficient aggregate queries in sensor networks.
Theor. Comput. Sci., 370(1-3):254–264, 2007.

[23] E.D. Pinedo-Frausto and J.A. Garcia-Macias. An experimental analysis of
zigbee networks. In Proc. of LCN, pages 723 –729, 2008.

[24] S. Pradhan, J. Kusuma, and K. Ramchandran. Distributed compression in a
dense microsensor network. IEEE Signal Processing Magazine, 19(2):51 –60,
2002.

[25] R. Prakash, E. Nourbakhsh, and K. Sahu. Data aggregation in sensor net-
works: No more a slave to routing. In Proc. of Allerton, pages 1452–1459,
2009.

[26] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and beyond:
new aggregation techniques for sensor networks. Proc. of SenSys, pages 239–
249, 2004.

[27] J. Stankovic, Q. Cao, T. Doan, L. Fang, Z. He, R. Kiran, S. Lin, S. Son,
R. Stoleru, and A. Wood. Wireless sensor networks for in-home healthcare:
Potential and challenges. Proc. of HCMDSS, 2005.

[28] M.H. Thanh, K.Y. Lee, Y.W. Lee, and M.H. Kim. Processing top-k monitoring
queries in wireless sensor networks. In Proc. of SENSORCOMM, pages 545–
552, 2009.

[29] P.J. Wan, K. M. Alzoubi, and O. Frieder. Distributed construction of con-
nected dominating set in wireless ad hoc networks. Mobile Networks and
Applications, 9:141–149, 2004.

[30] M.P. Wand. Data-based choice of histogram bin width. The American Statis-
tician, 51(1):59–64, 1997.

70

[31] W. Wu and L. Gruenwald. Research issues in mining multiple data streams.
In Proc. of StreamKDD, pages 56–60, New York, NY, USA, 2010. ACM.

[32] B. Ying, W. Liu, Y. Liu, H. Yang, and H. Wang. Energy-efficient node-level
compression arbitration for wireless sensor networks. In Proc. of the ICACT,
pages 564 –568, 2009.

71

