
Content-Based Sub-Image Retrieval Using Relevance Feedback

by

Jie Luo

Technical Report TR 04-16
July 2004

DEPARTMENT OF COMPUTING SCIENCE
University of Alberta

Edmonton, Alberta, Canada

Content-Based Sub-Image Retrieval Using Relevance Feedback

Jie Luo

August 2, 2004

Abstract

This thesis deals with the problem of £nding images that contain a given query sub-image, the so-called
Content-Based sub-Image Retrieval (CBsIR) problem. We propose a scheme named the Hierarchical Tree
Matching (HTM), which relies on a hierarchical tree that encodes the color features of image tiles stored in
turn as an index sequence. The index sequences of both candidate images and the query sub-image are then
compared using a search strategy based on the hierarchical tree structure in order to rank the database images
with respect to the query. Our experimental results on a database of over 10,000 images and disk-resident
metadata suggest that the HTM scheme can be very effective and ef£cient and performs much better than
an alternative method in retrieving the original images, i.e., the ones from which the query sub-images are
extracted.

To further improve the quality of retrieval, we also investigate the use of feedback to better capture the
user’s intention. The user can thus provide feedback on the retrieved results by identifying images of his/her
interest. Combined with the HTM strategy, we use a relevance feedback approach based on a tile re-weighting
scheme. Our experiments show that this learning approach is quite effective, improving the retrieval within
very few iterations.

1 Introduction

1.1 Motivation

Concrete visual means like images has always been preferred by human to express ideas and convey information
since remote antiquity. In the current information explosion age, our reliance on visual modes of communication
has further been reinforced by the recent rapid technological evolution in handling digital data. This can be
witnessed in the overwhelmingly growing amount of digital image data with the development of the world wide
web. Thus, image databases are becoming more and more common in several diverse application domains, such
as multimedia search engines, digital libraries, medical and geographical databases, etc. Although constructing
very large image databases has become fairly easy with the advances of techniques for acquisition, transmission
and storage of images, the information stored there is virtually useless if not organized. In this scenario, searching
for a certain image from a large image repository is just like looking for a book from a huge library without the
aid of catalogs. All these factors have stimulated great interest in image retrieval techniques.

But how dif£cult is the problem of searching and retrieving images? Unfortunately, traditional text retrieval
methods are not suitable for images because of the dimensionality difference between images and text as well as
the data size difference between them (image data is much larger than text). Moreover, it should emphasize the
fact that in some sense words themselves are semantic “objects”, while the image data needed to be processed
and interpreted to extract the perceptual meaning, which cannot be achieved by textual indexing techniques [14].

Early image retrieval [6] was performed based on short descriptions as a set of content-independent attributes
(£le name, format, category, size, author’s name, and disk location) of the images. However, this approach
limits the queries to those based on existing attributes. Another alternative is to use manual text annotations or
keywords so that classical information retrieval (IR) techniques can be used to search images indirectly. But this

1

approach still has problems like ambiguity, incompleteness and subjectiveness. Since image data is very rich
in information, to capture the content of an image using just a few keywords is not feasible, not to mention the
tedious work involved in the annotation process.

A more effective and automatic approach is the so-called content-based image retrieval – CBIR, which con-
sists of using low-level image features to represent, compare and retrieve images. Most CBIR systems [15]
follow the two-step approach to search image databases [8]. Firstly (indexing), a feature vector representing
certain essential properties of the image is extracted and stored as metadata for each database image. Secondly
(searching), given a query image, images most similar to the query image are returned to the user by compar-
ing the feature vectors of database images with that of the query image. These CBIR systems all belong to the
Query-By-Example (QBE) paradigm.

While most CBIR systems retrieve images based on a full image comparison, i.e., given a query image the
system returns overall similar images. However, users can also be interested in object searching [23]. In this
case, the user provides a sub-image query (perhaps an object) and the system should retrieve images that contain
the query (according to human perception) from the image database. The sub-image query can be also an image
itself. This task, which we call content-based sub-image retrieval (CBsIR), is dif£cult to cope with by a variety
of effects (such as size variation and different viewing positions, etc.) that cause the target sub-image to have
dramatically different appearances in different images. A problem associated to the CBsIR task is to how to
locate the sub-image inside a database image effectively and ef£ciently.

Besides the basic CBsIR tasks, several related problems also need to be addressed. Most CBIR and CBsIR
systems automatically generate low-level image features such as color, texture, shape, etc, for image indexing
and retrieval, which do not capture the semantics of images. And there is no effective method yet to automatically
generate good semantic features of general images. When the system retrieves some images that are irrelevant
to the sub-image query according to the user’s judgement, the user might want to provide feedback information
about the relevance of the obtained results to reinforce the accuracy of future retrievals. Then the CBsIR system
should process the feedback information ef£ciently and return better result by the user’s intention.

1.2 Challenges

A large number of challenges exist in the CBIR research domain. This thesis deals with the challenges described
in the following two paragraphs.

The feature extraction of an image database is to compute a n-dimensional vector for a feature based on some
image analysis. Color, texture, shape and spatial information are the most commonly used low-level features in
image retrieval systems. The n components of a feature vector may be derived from one visual features or
a combination of several ones, e.g., [22]. A good low-level feature for an image should be able to preserve the
perceptual similarity, fast to compute and small in size. The feature vector not only affects the retrieval ef£ciency,
but also affects the design of indexing data structures when the size of the image database becomes very large,
e.g., the huge image collection available from the Internet, which makes the CBsIR task especially challenging.
The perceptual similarity determines the effectiveness of the feature for retrieval purpose. Being a contrast to
low-level image features, semantic categories depicted in images are called high-level concepts. However, a big
gap exists between low-level image features and semantic contents of images. In addition, human perception is
subjective and task-dependent. All these limit the retrieval accuracy of most CBIR (and CBsIR) systems. While
high-level concepts could help facilitate the human-computer interaction, they are almost impossible to extract
without human assistance.

A distance function measures the similarity between two given images by computing the difference of the
two corresponding feature vectors. The greater the distance, the smaller the similarity. The distance function
is usually de£ned as City-Block (L1) norm, Euclidean norm (L2), or weighted Euclidean norm [10]. Vectorial
distances are ef£cient in comparing histograms and allow the use of spatial or metric access methods to speedup
query processing [53]. However, they have also well-known limitations. One of such limitations is that a high

2

value in a single histogram bin dominates the distance between two histograms, no matter the relative importance
of this single value [36][50]. This kind of limitation causes distortion in retrieval results when comparing images
having a large background with the same color but a different foreground with images having the same foreground
(a high degree of semantic similarity) but a large background with a different color.

Another question to consider is, how precisely should we measure the distance between database images
and the sub-image query? If we choose a high precision, it surely distinguishs distances in a £ner granularity.
However, it should also be noticed that there are so many approximations in the whole retrieval process and
humans often do not have such a £ne distinction between perceived similarities. Thus, a lower precision might
be better suited. This yet results in the increase in the number of tied distances. Different degrees of distance
precision yields different distance £gures. The ranking based on these distances often become confusing and
could handicap the correct understanding of the investigated methods.

In addition, once it is determined that an image contains a sub-image query, it becomes necessary in many
cases (like tracking objects in videos) to £nd the place of the sub-image inside the database image. Note that there
should be no restriction as to where the sub-image query may be within a relevant image in the CBsIR system.
Because of the lack of accurate and ef£cient image segmentation process for large, arbitrary and heterogeneous
image databases, the sub-image queries may have to be located in unsegmented images. The problem of how to
locate the sub-image effectively and ef£ciently is thus made more dif£cult.

1.3 Contributions

In this work, we investigate the problem of content-based sub-image retrieval (CBsIR) to £nd database images
that contain the query sub-images in two ways.

First, we propose a new method called Hierarchical Tree Matching (HTM) for the CBsIR problem. The
highlights of this approach are: (i) it uses a £xed decomposition without relying on image segmentation (typically
not an accurate process), (ii) the hierarchical partition encodes the local spatial information as well as global
distribution of colors in the image, (iii) the multi-scale representation is small in size and stored in the format of
an index sequence (allowing fast access during the search phase), (iv) a search strategy is designed to achieve
effective and ef£cient retrieval based on the multi-scale representation. Experimental evidence, tested on an
image database of over 10,000 images, shows the new approach outperforms other related CBsIR approaches
and achieves a good balance of accuracy and ef£ciency.

To further improve retrieval results, we also address how relevance feedback can be used to enhance the
performance of HTM-based CBsIR system. We present a tile re-weighting scheme that assigns penalties to each
tile consisting of database images and updates those of all relevant images using both the relevant (positive)
and irrelevant (negative) images identi£ed by the user. Learning is effected by modifying the query vector
to incorporate the positive examples based on the update of their tile penalties during the feedback iteration.
Besides, a new similarity distance between an image and the sub-image query is also learned by using a weighted
metric by the tile penalty, which is possible to shorten the distance between the query and relevant images and
elongate the distance between the query and irrelevant images. Our results suggest that this learning method is
quite effective for the CBsIR system.

1.4 Organization

Section 2 discusses related research literatures in (color-based) image retrieval, distinguishing the problem of
content-based sub-image retrieval (CBsIR) from other active research domains in content-base image retrieval
(CBIR) and giving a brief survey of related CBsIR systems. In Section 3, we propose the Hierarchical Tree
Matching approach for CBsIR. We investigate the new method by discussing in detail each step in the whole
retrieval process. Section 4 describes how to use relevance feedback combined with the hierarchical tree matching
scheme to improve the results of content-based sub-image retrieval. Corresponding experimental results are

3

shown in the above two sections respectively. Finally, Section 5 concludes the thesis and offers direction for
future work.

2 Related Work for Content-Based Sub-Image Retrieval

Thus far, a large amount of research published within the area of content-based image retrieval (CBIR) [32][53]
deals with full-image retrieval, where typically one provides a query image and the CBIR system £nds the most
similar images from an image database. The notion of similarity is usually such that the returned images should
resemble the query in an “overall”manner. An also interesting, though so far much less explored, problem is
that of £nding images that contain the query images, i.e., images where the query image is part of the overall
image. We term this problem Content-Based Sub-Image Retrieval (CBsIR); and de£ne it as follows [39]: given
a sub-image query Q and an image database S, retrieve from S those images Q′ which contain Q according to
some notion of similarity. It is important to clarify that the sub-image retrieval problem is a distinct branch of the
image retrieval domain, which has its own characteristics and merits in various applications.

In this section, we discuss existing techniques for two branches in CBIR from different points of view. The
use of low-level features, color in particular, is useful for large and heterogeneous collections of images, where
images belong to several distinct, non-related semantic and visual domains. Since color is also used as image
feature in our CBsIR system, a survey of existing color-based image retrieval approaches providing an overview
of the background for our CBsIR system is presented in Section 2.1. Although our approach for the CBsIR prob-
lem decomposes the images into tiles and de£ne distances between feature vectors extracted from different image
tiles, this is not the same as region-based image retrieval (RBIR) investigated elsewhere, e.g., [34][41]. Nonethe-
less, some region-based image retrieval methods are also reviewed in Section 2.2 for completeness. Moreover,
within the context of CBsIR, methods proposed in related literatures are investigated in Section 2.3 and further
compared with our CBsIR approach by experiments in Section 3.

2.1 Color-Based Image Retrieval

The choice of the right image features for an image retrieval system is important since image features affect
every aspect of the whole retrieval process. Most of the CBIR systems explore low-level image features like
color, texture, shape, etc., since they can be extracted automatically. Color is the most commonly used low-level
feature, possibly because color is immediately perceived by humans and related concepts are easy to understand
and implement. Besides, color is one of the most prominent perceptual features in a large majority of image
domains and using color information can often achieve satisfactory results. Most commercial CBIR systems
include color as one of their image features (e.g., QBIC of IBM [9], Virage[11], etc). This section is thus mostly
concerned with color-based image retrieval approaches.

2.1.1 Color Spaces

The color of a pixel in a digital image is typically represented by three values, one for each channel of the chosen
color space. A color space is a speci£cation of a 3D coordinate system and a subspace within that system where
each color is represented by a single point [7]. The £rst step in any color-based image retrieval system is to
choose a color space where images will be represented and compared.

The most well-known and used color space is the RGB (Red, Green, Blue) model [7][36]. The RGB color
space is device-dependent such that the displayed color depends not only on the RGB values, but also on the
device speci£cations. The main drawback of this model is that it is not perceptually uniform, in the sense that
the differences between RGB colors do not re¤ect the differences perceived by human. The RGB color space is

4

R

1

1

1

B

G

Red

Blue

Black

Cyan

Green

Grey
sc

ale

0

Yellow

Magenta

White

L
white

−a
green

+b

−b
blue

black

+a
red

yellow

(a) The RGB color space (b) The CIE Lab color space

Figure 1: Color spaces

a cube shown in Figure 1(a), where the main diagonal represents the gray values from black to white, and any
point (color) inside the cube is represented by a weighted sum of red, green, and blue [53].

Another kind of color spaces is uniform color spaces, where the numerical differences among colors are
consistent with the differences perceived by human. The CIE Lab model is one such example. As shown in
Figure 1(b), the CIE Lab color space represents the differences of three elementary pairs: red-green, yellow-blue
and black-white. Different from the RGB color space, the CIE Lab color space is device independent.

The third kind is called the user-oriented color spaces [32][36], which are based on human perception of
colors like hue, saturation and intensity. Some example of this kind are the HSI and HSV color spaces, where are
device dependent.

2.1.2 Color-Based Image Description and Representation

To achieve effectiveness and ef£ciency in image retrieval systems, a compact and accurate description of the
color distribution and the spatial distribution of colors in the digital images is needed. These descriptors can be
further reduced in size by static or dynamic reduction methods.

Static methods use a £xed scheme for each image. The simplest scheme to reduce the number of colors in an
images is to use a uniform and coarse quantization of each color channel. Thus the obtained colors need not be
represented explicitly and the comparison of images is easier. However, it is possible that the colors present in an
image are not uniformly distributed in the color space. It is also not appropriate for non-uniform color spaces like
HSV, since similar colors may be separated and non-similar colors classi£ed together. Another problem is that
it is dif£cult to obtain an adequate compromise about the granularity of the quantization for the not necessarily
uniformly distributed colors in the color space. Dynamic reduction methods exploit the visual content of the
images and rely on image segmentation techniques to reduce both the number of colors and the number of spatial
locations in an image. A typical image segmentation technique groups neighboring pixels with similar colors
together into regions whose colors are the average color of their pixels. The resulted regions are more compact
and meaningful since they bear high degree of color similarity and well-de£ned spatial location, size and shape.
A sample of the image segmentation techniques used by these methods includes: boundary detection, region
growing, region splitting and merging [7].

Once the description of the image is chosen, a representation of this information is the next step in image
retrieval systems. Color histogram has been widely used to describe the color information of the image since it
is easy to compute, relative insensitive to position and orientation changes, feasible in terms of memory usage,
ef£cient to compare using vectorial distance functions and suf£ciently accurate for retrieving images based on
overall color impression. The stored information about the visual content of an image can be represented in three
possible ways described next.

Global representations describe the color distribution of the whole image, ignoring the spatial distribution
of colors. The most commonly used global representation is the Global Color Histogram (GCH) [32][36]. A

5

GCH is computed by counting the number of pixels in the image having each of the quantized colors. Usually,
the pixel count is normalized to avoid scaling bias [53]. However, since global color histogram ignore spatial or
topological information, it has limited image discriminative power. Another alternative is to use partition-based
representations to describe the color distribution of each partition of an image individually. Generally, the image
is statically partitioned into a set of rectangular units according to some scheme, and a Local Color Histogram
(LCH) is used to describe each partition unit individually. In this kind of representation, extra information about
spatial properties of the partition units such as size, shape and spatial location need not to be saved, since it is easy
to obtain that from the prede£ned scheme. Some partition-based approaches also use other kinds of color his-
tograms [28][58] to introduce some spatial information about the visual content of the images decomposing them
into spatial cells according to a £xed scheme. Apart from the above two representations, regional representation
exists for object-level image retrieval, which will be discussed in more detail in section 2.2.

Based on the image representation, existing color-based image retrieval techniques can be classi£ed into three
main categories: (1) global approaches (e.g. [32][36]), (2) partition-based approaches (e.g. [28][58]), (3) region-
based approaches (e.g. [34][41]). Each of these categories poses a distinct compromise among the complexity
of the image analysis algorithm, the amount of space required to represent the visual features extracted from
images, the complexity of the distance function used to compare these features, and the retrieval effectiveness.

2.1.3 Distance Function

The success of the image retrieval problem depends mainly on two factors. One is the stability of image features
used, the other one is the characteristics of the distance function used for comparing the image features. The
distance function affects directly the query processing time and the retrieval accuracy. The better the distance
simulates the human perception of similarity, the more effective is the image retrieval system in retrieving images
related to the user’s need. The computational complexity of the distance function is also considered an impor-
tant factor when processing a visual query. Moreover, the distance function restricts use of different £ltering
techniques and/or access methods can be used to speedup query processing.

Some well-known vectorial distance functions include [53]:

L1(City −Block) : L1(a, b) =
k

∑

i=1

|ai − bi|

L2(Euclidean) : L2(a, b) = (
k

∑

i=1

|ai − bi|
2)1/2

L∞(Chebyshev) : L∞(a, b) = maxki=1|ai − bi|

where a = (a1, a2, . . . , ak) and b = (b1, b2, . . . , bk), both are k-dimensional feature vectors.
Modeling visual features in a vectorial space has the advantage that the geometric distance used to compare

two vectors are computationally simple. However, there are other cases, such as in region-based image retrieval
systems, where it is not possible to model complex image retrieval systems in a vectorial space. In such scenario,
a metric space, where there is no restriction about the representation of the visual features, is used instead. A
recent metric proposed to measure the distance between two distributions of some random variables in an image,
such as color histograms, is the Earth-Mover’s Distance (EMD) [31]. EMD re¤ects the minimal amount of work
that must be performed to transform one distribution into the other by moving the “distribution mass” around.
It comes from the transportation problem in combinatorial optimization. EMD can be computed by solving a
linear programming problem, thus it is computationally expensive. In addition, recent research in psychology
and computer vision implies that human perception of similarity contradict in different ways with the metric
axioms, which are believed to be too restrictive in the context of similarity search. One of the most criticized
metric axiom is the triangular inequality, coincidentally the most important axiom for indexing purposes [30]

6

but dif£cult to enforce in complex matching algorithms that are statistically robust. This raises serious questions
about the extent to which existing work on classi£cation can be applied using complex models of similarity. Thus,
as a possible solution, non-metric distances turn up in many application domains, such as string (DNA) matching
and retrieval from image databases. Some non-metric similarity measures are suggested for image classi£cation
in [27].

2.1.4 Similarity Search

Searching for target digital images differs from the usual database search. The simplest way is sequential scan-
ning. Each image is compared against the query image for the candidate matches to the query image. Although
simple this approach does not scale since the query processing time is proportional to the database size.

In order to reduce the complexity of the searching process, £ltering techniques and access methods can be
used. On one hand, £ltering techniques try to reduce the complete database into a much smaller subset that has to
be compared using a complex function, by relying on a simpler distance that lower-bounds the original complex
distance to quickly £lter out irrelevant images. One of the most common reductions for £ltering techniques
consist in mapping a general metric space into a vector space in such a way that each element of the metric
space will be represented as a point in the target vector space [48]. If the vectorial distance is a lower-bound
for the original distance, then it is guaranteed that the £ltering process will not £lter out relevant images. An
example of the reduction discussed above is the use of the average color as a £lter for color histograms. Since
the comparison of average colors is much more ef£cient than the comparison of color histograms, it is possible
to quickly eliminate the majority of the irrelevant images using this simple £lter.

On the other hand, access methods aim to divide the search space into several subspaces so that only a few
of these subspaces need to be searched when processing a query. This may be based on using more sophisticated
combinations of techniques and data structures to quickly locate the features that are relevant to a visual query.
Spatial access methods (SAMs) use spatial coordinates to group and classify points in the space. These methods
are very sensitive to the number of dimensions of the vectorial space. A survey on SAMs can be found in
[24]. SAMs uses the absolute spatial location of objects to partition and search the vectorial space. But in a
general metric space, the unique information available is the relative distance among objects. In this case, metric
access methods (MAMs) [35] aim to partition the data space in regions by choosing representative elements and
clustering the other elements around them. These MAMs can be classi£ed in main categories [35] as those based
on discrete distance functions and those that deal with continuous distances or as static and dynamic according
to their support for insertion/deletion after the creation of the index.

2.2 Region-Based Image Retrieval

2.2.1 Techniques for RBIR

Because low-level image features have weak connections to semantic content of images, object (region)-level
image retrieval has been used in an attempt that obtained regions correspond to higher-level concepts, e.g., ob-
jects, that can be easily distinguished by the user. To achieve object-level querying, most region-based image
retrieval systems are based on segmentation techniques to decompose images according to their visual content.
The segmentation of images yields regions with different size, spatial location and shape, being more ¤exible
than the £xed scheme adopted in partition-based approaches. However, the comparison of segmented images is a
very dif£cult problem because of inaccurate segmentation [41]. In general, the result of the image analysis algo-
rithm in region-based approaches can not be used directly to represent and to compare images, since the number
of segmented regions is usually very high. Because a precise description and comparison of a large number of
regions are too expensive in computational terms, the image analysis result is post-processed so as to reduce the
number of segmented regions and to simplify the description of the left regions. Unfortunately, this simpli£ca-
tion certainly affects the effectiveness of these approaches. Except for some narrowly de£ned problem domains

7

where domain knowledge and the apriori object models are available, accurate and complete segmentation on
generic real world scene can seldom be achieved [25]. Some common characteristics in natural scenery, such as
shade, highlight, and sharp contrast, are major challenges to image segmentation. The most common approach
in RBIR systems is to compare the regions individually, e.g., [34]. In order to reduce the effect of inaccurate
segmentation, recent systems like SIMPLIcity [41] and CBC [47] try to compare images using the properties of
all segmented images, not only on a region-by-region basis. In the following we describe some existing work in
region-based methods.

The QBIC system [9] uses a clustering process where two clusters are merged if their mutual rank falls bellow
a threshold. The Euclidean distance between two clusters’ mean colors is treated as the distance between clusters.
A bounding rectangle is calculated for each connected component identi£ed after the clustering process. Then the
bounding rectangles for a given color are successively clustered into groups of rectangles that are geometrically
close to each other until one rectangle remains. The distance between two regions is computed as a weighted sum
of the distance between the clustered colors and the distance between the resulting hierarchical tree associated
to them. Finally, the similarity between two images is measured by the average of the distances between each
region of one image and its closest region in another image.

In [17], a boundary detection procedure that explores edge ¤ow of both color and texture is used to segment
images into homogeneous regions. Each region has several features, such as color, texture and shape, which are
indexed separately. A query might consists of more than one of these features. And the results from individual
features are sorted by a weighted similarity measure. The system deals with images of different categories by
tuning a set of system parameters.

The Blobworld system [34] clusters pixels in eight-dimensional space of joint color, texture and position,
which is modeled as a mixture of Gaussians. A 500 bins local color histogram in L*a*b* color space is used to
represent the color distribution of each region. The images are compared based on individual regions using the
weighted Euclidean distance. The retrieval task is that of £nding database images that have a region similar to
a given region, possibly an object, in a query image. Although it allows querying based on a limited number of
regions, the query is performed by merging single-region query results.

In the SIMPLIcity project [41], images are segmented based on color and frequency features by the k-means
clustering algorithm to group the feature vectors into classes, which correspond to regions. The IRM (Integrated
Region Matching) similarity measure is used to compare images based on the properties of all segmented regions.
First, a certain region of an image is allowed to match several regions of another image during the match process.
After regions are matched, a weighted sum of the similarity between region pairs is computed for the image
similarity measure, with weights by a signi£cance matrix.

The CBC approach [47] applies a fully automatic clustering algorithm. Its time complexity is in O(nlogn),
where n is the number of pixels in the input image. The average L*a*b* color and the spatial coordinates of the
geometric center of each resulting region are extracted as image features. A distance function similar to the IRM
measure as in SIMPLIcity system is adopted to compare two segmented images.

2.2.2 RBIR vs CBsIR

The sub-image retrieval problem we consider is similar to the region-based image retrieval (RBIR) discussed
before, since the goal can also be to retrieve images at object-level. However, the difference between these two
problems stands out as the CBsIR problem is to search for an image, given as a whole, which is contained within
another image, whereas in RBIR one is searching for a region, possibly the result of some image segmentation.
The former is more intuitive since users can provide a query image as in traditional CBIR, and unlike the lat-
ter, it does not rely on any type of segmentation preprocessing. Unfortunately, automatic image segmentation
algorithms usually lead to inaccurate segmentation of the image when trying to achieve homogeneous visual
properties. Sometimes the obtained regions are only parts of a real object which a user would likely identify
by looking at the image and should be combined with some neighbor regions so as to represent a meaningful

8

object. Thus, complex distance functions are generally used to compare poorly segmented images at query time.
Also, the number and size of regions per image are variable and a precise representation of the obtained regions
may be storage-wise expensive. What’s more, since region-based queries are usually performed after the image
segmentation and region description steps, it clearly puts some restriction on the user’s expression of his/her
information need depending on how good the segmentation results match the semantics of images, although the
user can explicitly select any detected region as query region. In those image retrieval systems whose images are
heterogeneous, rich in texture, very irregular and variable in contents, accurate regions are hard to obtain, making
RBIR likely perform poorly. Whereas the seemingly simpler CBsIR with £xed partition could be a solution in
such cases.

2.3 Recent Work in Content-Based Sub-Image Retrieval

In [55], T. Wang et al intend to £nd an effective way to perform CBsIR and ranking. Two kinds of image fea-
ture vectors: the global color histogram and the autocorrelogram [25] with L1 and D1 distance measures [16]
are tested in the sub-image retrieval system. Another distance measure called S1 which aims to emphasize the
contribution of colors that have very different distributions between the images is proposed as well. Preliminary
experiments with several distance measures for both feature vectors £nd that the combination of autocorrelo-
gram feature vector and the so-called S1 distance measure outperforms other combinations and yields excellent
results for sub-image retrieval with an acceptable processing overhead. Yet more work is still needed to further
understand how to achieve the CBsIR task ef£ciently and how the corresponding CBsIR system works. As we
have pointed out in Section 2.2.2, the CBsIR systems we are concerned with do not belong in the region-based
image retrieval domain, but use other categories of image retrieval approaches classi£ed by the way how the
information in an image is represented. These methods include partition-based approaches as in [28][39][43][57]
and point-based approaches as in [45].

2.3.1 Partition-Based CBsIR

Image partitioning is an important factor to determine the functionality and the ef£ciency of image retrieval sys-
tems [38]. By breaking images into smaller and more manageable units, it usually becomes easier to compress,
store, access and retrieve the image data. The partition-based approaches usually adopt a hierarchical representa-
tion of the spatial decomposition using a simple £xed strategy based on a grid of rectangular cells superimposed
over the images [28][39]. The cells at distinct hierarchical levels have various sizes and overlap,which makes
it possible to detect that two images whose objects are in different positions are deemed similar. Two images
are compared initially at the top of the hierarchy and re£ned in subsequent levels. For ef£ciency and effective-
ness, the partition-based approaches generally stand in between two other kinds of solution to CBIR known as
global approaches, which sacri£ce retrieval effectiveness with the absence of spatial and topological informa-
tion for high ef£ciency in terms of visual feature extraction, space overhead, and image comparison, and the
region-based approaches using complex image processing techniques to decompose images into regions of high
similarity, implying complex image analysis algorithms for feature extraction, complex distance functions for
image comparison and high space overhead but an improved retrieval effectiveness. The space overhead for the
partition-based approaches might be large in such cases when using the hierarchical representation of the partition
structure as mentioned before. In the following, we brie¤y review some recent work in partition-based methods.
The paper by Leung and Ng [28] investigates the idea of using the Padding and Reduction algorithms to support
sub-image queries of arbitrary size based on local color information. The algorithms either enlarge the query
sub-image to match the size of an image block obtained by the multi-resolution representation of the database
images, or conversely contract the image blocks of the database images so that they become as small as the query
sub-image. The paper presents an analytical cost model and focuses on avoiding I/O overhead during query
processing time. To £nd a good strategy to search multiple resolutions, four techniques are investigated: the

9

branch-and-bound algorithm, Pure Vertical (PV), Pure Horizontal (PH) and Horizontal-and-Vertical (HV). The
HV strategy is argued to be the best considering ef£ciency. However, the authors do not report clear conclusions
regarding the effectiveness of their approach (e.g., Precision and/or Recall £gures).

In [39], the global feature extraction is considered to capture the spatial information within the image “re-
gions” which are not the same concept of regions in region-based image retrieval. The average color and the
covariance matrix of the color channels in L*a*b* color space are used to represent the color distribution. They
apply a three-level non-recursive £xed hierarchical partition with overlapping rectangle “regions” to achieve the
multi-scale representation of database images. Aiming at reducing the index size of these global features, a com-
pact abstraction for the global features of a “region” is introduced. A new distance measure on such abstraction
is thus proposed for ef£ciently searching through the tiles from the multi-scale partition strategy. This distance is
called inter hierarchical distance (IHD) since it is taken between feature vectors of different hierarchical levels
of the image partition. The IHD index is a two dimensional vector which consumes small storage space. And the
search strategy is a simple linear scan of the index £le, which assesses the similarity between the query image
and a particular database image as well as all its “sub-regions” using their IHD vectors. Finally, the minimum
distance found is used to rank this database image. This approach is argued to be ef£cient and effective. We will
compare our proposed approach with this one in Section 3.

The application of CBsIR to the domain of high resolution art images has been studied in [43]. The proposed
approach is called the Multi-scale Color Coherence Vector (M-CCV) method, based on the use of color coherence
vectors [12] extracted from image patches for the query and target images at a range of scales with multiple vector
matching to £nd the best sub-image matches. The query sub-image may be a poor quality reproduction of part
of the original and may be digitized under signi£cantly different conditions. Tested on a collection of art images,
many of which at very high resolution, the technique is demonstrated to perform well.

2.3.2 Point-Based CBsIR

Image retrieval systems of the “query by example” style usually concern the entire image. In the context of
part/object-level user interest, global image descriptors are of less use. In this case, the approaches based on grey
points of interest [19] and color points of interest [45] have been developed for object/sub-image retrieval tasks,
which require more local descriptors, and are discussed next.

Points of interest are points extracted and characterized from color signal at once [45]. They are pixels that
capture signi£cant local features of an image, and usually locate around corners and edges of images. A local
image descriptor based on color points of interest, was proposed in [45] which focuses on object or sub-image
retrieval. Compared with region-based approaches in which the quality of the segmentation step is sensitive to im-
age geometrical contents, the points of interest extraction performs well whatever the image content is. Besides,
points are more robust to geometric transformations of the image like view point changes, since the description is
computed locally, and robust to partial occultation. Moreover, content-based image retrieval techniques exploit
photometric information contained in the images, which just matches the de£nition of a point of interest - being
located where this photometric information is most signi£cant. Therefore, there exists great expectation of using
points to achieve a rich and compact image characterization.

When applied to image retrieval, image matching based on points of interest needs points with good re-
peatability. The ideal interest points, which indicate local features, should be invariant to illumination change
and geometrical transformation. Many point extractors exist in the literature of Computer Vision. It has been
demonstrated that the Harris color detector [29] £ts better for the required repeatability. The £rst step of the
image feature indexing is to extract points of interest from the whole images by this detector. Second, the points
of interest are described using photometric quantities implying color differential invariants. The resulting image
characterization is argued more compact than other existing ones, since it contains more photometric informa-
tion while having comparable storage cost. This characterization is also claimed to perform well for object or
sub-image description, as it implies a local description of the image that is robust to image transformations. The

10

search strategy applied in [45] consists of a voting algorithm. The vote computed for each image of the database
is the function of the distances between the query points and the candidate points of the involved image. Experi-
mental results show the success of this approach for partial retrieval on sub-images and on 3D objects as well as
object retrieval under dif£cult conditions like viewpoint changes and occultations.

3 CBsIR Framework via Hierarchical Tree Matching

There are two main factors that cause the limited retrieval accuracy in CBIR in general and CBsIR in particular.
One is the gap between low-level image features and semantic contents of images. We will discuss how to reduce
this gap in Section 4 using machine learning techniques. The other one is the “numerical gap” that consists
in various steps of the retrieval process, such as image representation, distance measure, search strategy. To
minimize this kind of gap, we have developed a compact and visually consistent image features, accurate and
computationally inexpensive distance functions and ef£cient data structures for similarity search.

In [57], we propose an approach called HTM (Hierarchical Tree Matching) for the CBsIR problem. It consists
of three main components:

1. a tree structure that models a hierarchical partition of images into tiles using color features;

2. an index sequence to represent the tree structure (allowing fast access during the search phase);

3. a search strategy based on the tree structures of both database images and the query image.

By using a tree to model the hierarchical decomposition of an image into tiles, our method is capable of handling
virtually all parts of an image. Note that by using a £xed decomposition we do not rely on image segmenta-
tion, typically not an accurate process. The number of partitioned tiles is £xed as long as the partition strategy
is determined. The resulting tree is small for storage and speedy for searching. In addition, the parent-child
relationship in the hierarchical tree structure implicitly facilitates the tile combination instead of using complex
distance functions when matching images during the search phase. We store the image features associated with
the nodes in the tree structure in the format of an index sequence, which allows fast access during the search
phase. Also, we process the query sub-image by constructing a tree structure in the same way as the ones con-
structed for the database images, eliminating any size constraint on the query sub-image. The retrieval of relevant
images is accomplished by ef£ciently comparing the query’s tree structure with all the sub-trees of the database
images. Then the distance between the tree structures can be effectively computed in order to rank the database
images with respect to the query. Our experiments show that this strategy yields good results using different color
features of the images, while consuming acceptable time and space. Compared to the related approach proposed
in [39], our method is distinctly better based on the experimental results.

In the following, Section 3.1 presents the hierarchical partition of images and the tree structure to represent
the decomposition. Section 3.2 and Section 3.3 provide an account of using different image features and their
corresponding distance measures in our CBsIR system respectively. A brief review of the feature extraction
method and its distance function in related work are presented in Section 3.4. Some practical considerations
about ef£ciency and storage are listed in Section 3.5. Section 3.6 describes different strategies to search sub-
images effectively. The experiments and results are discussed in Section 3.7. Finally, Section 3.8 concludes the
section.

3.1 HTM’s Hierarchical Partition and Tree Structure

To model an image, a grid is laid on it yielding a hierarchical partition and tiles. Although granularity could be
arbitrary, we have obtained good results using a 4×4 grid resulting in a three-level multi-scale representation of
the image (similarly to what was done in [28] and [39]). The hierarchical partition of an image with its resulting

11

Ir Ig Ib Ar Ag Ab

parent
children

parent

 ar ag ab Br Bg Bb br bg bb er eg eb...... Cr Cg Cb Dr Dg Db fr fg fb
 cr cg cb dr dg db gr r gg gb hr hg hb

children

A B

C D

b dca

...

...

e f g h

i

p

 1st level 2nd level 3rd level

 image I

 Original

A

I

B

 a b

C D

 e f b c f g c d g h i p

Figure 2: Hierarchical partition of an image with the resulting tree structure and one possible corresponding
index sequence for storage.

tree structure and one possible corresponding index sequence for storage (to be discussed in Section 3.5.2) are
shown in Figure 2.

As illustrated in Figure 2, there are three levels in the hierarchical structure:

1. The highest level: the whole image itself.

2. The second level: the image is decomposed into 3×3 rectangles with each side having half the length of
the whole image, yielding 9 overlapping tiles.

3. The lowest level: each tile of the second level is partitioned into 4 non-overlapping sub-tiles, resulting in
4×9=36 rectangles.

Note that to exclude redundancy in the CBsIR system, at the lowest level only the indices of the 4×4=16 unique
tiles are stored with a small structure for relationship information. The features of the image tiles are associated
to the nodes in the tree structures for images. Thus, every database image is represented as a series of tiles, each
of which is mapped to a subtree of the tree structure modeling the image. Although similar, the tree model of
the hierarchical partition is not the well-known Quadtree [5]. Our tree structure models the overlapping tiles at
intermediate levels from the hierarchical partition, while the quadtree is used to describe a class of hierarchical
data structures whose common property is that they are based on the principle of recursive decomposition of
non-overlapping spaces.

3.2 Feature Extraction using Average Color and Vectorial Distance

3.2.1 Average Color

As discussed in Section 2.1, color is one of the most prominent perceptual features to human and is commonly
used in both academic and commercial image retrieval systems. To describe the color information of an image,
the static and uniform quantization of a color space has well-known disadvantages (mentioned in Section 2.1)
although it is the simplest scheme to reduce the number of colors present in an image.

An alternative to avoid this static quantization step is to reduce the color information by computing statistics
about the color distribution. One of such statistics is the average color. Such methods have several advantages
to be computationally simple, to result in very compact image feature descriptors, and to provide an ef£cient
way for image comparison. On the other hand, of course, their effectiveness are sometimes compromised since
images composed by completely different colors might yield identical statistics.

We use the average color of the image tiles in the RGB color space as one choice for image indexing in our
CBsIR system. If the color components of a pixel P are PR, PG and PB respectively, the average color for an
image tile T is computed as:

Ui(T) =
1

N

∑

P∈T

Pi i ∈ {R,G,B}

12

where N is the total number of pixels in the image tile T . Thus, a small three dimensional global color feature
vector V (UR(T), UG(T), UB(T)) is obtained per image tile.

3.2.2 Vectorial Distance Functions

Features alone cannot completely guarantee stability of the image retrieval system. Distance functions used to
compare features also play an important role. An ideal distance function D and the feature F (I) would satisfy
the perceptual similarity:

D(F (I1), F (I2)) is small⇔ I1 and I2 are perceptually similar.

In most cases, visual features of an image are represented by high-dimensional vectors. These vectors can be
treated as points in high-dimensional space (each vector element corresponds to a spatial coordinate). Therefore,
it is natural to de£ne distance functions in terms of Euclidean norms. The L1 norm and L2 norm as discussed in
Section 2.1.3 are commonly used to compare two feature vectors. In practice, the L1 distance function performs
better than the L2 distance function because the former is statistically more robust to outliers [3]. [10] suggests
using a more complex quadratic form of distance measure which tries to capture the perceptual similarity between
any two colors. That work uses low-dimensional color features as £lters before using the quadratic form for the
distance function, aiming to avoid intensive computation of quadratic functions. The advantages of modeling
visual features in a vectorial space stand out. We can apply not only the computationally simple geometric dis-
tances to vector comparison, but also the spatial or metric access methods to speedup query processing if possible
[53]. The use of access methods is important for large collections of images, because the query processing time
should not increase in the same rate as the image collection increases.

Our distance measure for the statistics-relied feature extraction is based on the L1 norm because it is simple
and robust. After [39], the similarity of two feature vectors is determined by computing the weighted L1-norm:

‖ V (Ta)− V (Tb) ‖db=
∑

i∈{R,G,B}

| Vi(Ta)− Vi(Tb) |

β(Vi)

where Ta and Tb are two different image tiles, V represents the statistics-relied three dimensional global color
feature vector extracted from the image tiles, and β(Vi) are the standard deviations of the respective features over
the entire database.

Remember that we also need to pre-process the query sub-image in order to extract image features and build
a data structure comparable with the tree structures of database images. Thus, the same hierarchical tree structure
(Figure 2) is generated for the query sub-image as well as for all database images. Since we have the tree
structures for both the database image and the query sub-image, we propose the following formula to compute
the distance between the query sub-image Q and a certain tile IS of a database image I (note that the full image
is also considered a tile of the image itself):

d(IS , Q) =

∑m
i=1 ‖ V (ISi

)− V (Qi) ‖db
m

where m is the number of unique leaf nodes in the tree structure for a tile, and Ti and Qi represent the corre-
sponding leaf nodes in the tree structures for the tile and the query sub-image respectively. In effect, this is the
average distance between the compared leaf nodes.

To measure the distance between a database image I and the query sub-image Q, we use a formula similar to
the IHD method’s [39] to obtain the minimum distance values among the comparisons of the query sub-image’s
tree structure with all the corresponding sub-tree structures of a database image. This image similarity measure
is de£ned as:

DI(I,Q) = mini=0...NTdb
d(Ii, Qj)

13

 1 2 3 4 36

 Full image I

Query image Q

−

I

 I I I I

 Q1 Q4 Q36

Figure 3: Simple example of tree structures for database image and query sub-image.

where NTdb + 1 represents the number of all sub-trees in the tree structure (tiles) of a database image that we
should compare with the query’s tree structure at different hierarchical levels, and j indicates the ordinal of the
query’s tree structure at a certain hierarchical level comparable to a sub-tree structure of the database image.

Figure 3 illustrates how we measure the similarity between the tree structures of the query sub-image and
database images using the above idea. The root level of the tree structure represents the whole image. Using the
previously discussed hierarchical partition (Section 3.1), the original image is progressively decomposed with a
sliding window in order to capture overlapping image tiles. Figure 3 shows the full tree structure transformed
from a 4×4 grid (There are 36 leaf nodes in the full tree structure.) Note that even though the query is a tile of
the whole image, it has the same tree structure associated with it as the full image. Using the proposed distance
measure, we can calculate the distance between the two tree as follows:

d(Ifull, Q) =

∑16
i=1 ‖V (Ii)− V (Qi)‖db

16
=

∑16
i=1

∑

j∈{R,G,B}
|Vj(Ii)−Vj(Qi)|

β(Vj)

16

Note that since all tiles of a database image is treated equally, no leaf node of the tree structures should be com-
pared more than once. Hence only the 16 nodes corresponding to the 16 unique tiles are used in the comparison.

3.3 Feature Extraction and Distance Measure by Border/Interior Pixel Classi£cation

Content-based image retrieval is performed based on abstract descriptions of the images extracted during the im-
age analysis phase. Image analysis algorithms might depend on the properties of the images being analyzed, thus
are usually distinct for different image domains and gradually change when the image domains expand. Unlike
a narrow image domain which has a limited and predictable variability in all relevant aspects of its appear-
ance, such as collections of £ngerprints and X-rays of human skeleton, a broad image domain has an unlimited
and unpredictable variability of the image’s content. It is not possible to use semi-automatic techniques and
domain-dependent knowledge during the analysis and comparison of images since the interpretation of the im-
age’s content is generally not unique and the image collections are very large as those formed by the huge amount
of images available at the world wide web. In this scenario, low-level visual features of the images such as color
and texture are especially useful to represent and compare images automatically.

In [54], a different alternative for CBIR in broad image domains is proposed. The authors propose the use
of a simple yet powerful image analysis algorithm, whose result can be ef£ciently stored and compared without
simpli£cation avoiding the necessity of post-processing on the result of sophisticated image analysis algorithms
used in region-based image retrieval approaches discussed before. This approach is called BIC (Border/Interior
pixel Classi£cation). The BIC method is made up of three main components: (1) a simple and powerful image
analysis algorithm that classify image pixels as border or interior, (2) a new logarithmic distance function to
compare color histograms, (3) a compact representation for the visual features extracted from images. It is
argued that the compactness, effectiveness and ef£ciency of BIC rely on its consistency among the analysis,
representation and comparison of images.

14

The BIC approach has been shown to outperform several other CBIR approaches and, as such, we adopt it in
our CBsIR system to extract the visual feature of each tile with the goal of improving the retrieval accuracy when
compared with the simpler approach adopted in [57], where for each tile only the average color was recorded
and used for image indexing. In this section, we focus on the discussion of image description within the BIC
method proposed in [54]. The, we discuss BIC’s distance function and compare it with other distance measures
in Section 3.3.2. Section 3.5.1 will investigate the way how BIC achieves a compact representation of visual
features extracted from images.

3.3.1 Image Description

The use of simple and robust image analysis algorithms, whose results can be preserved without approximation
during the representation and comparison of the visual features, is the key to achieve ef£cient and effective
CBIR systems in broad image domains. However, automatic segmentation algorithms have many drawbacks (as
discussed in Section 2.2), which imply that they are very likely not the most adequate ones to deal with image
retrieval tasks in broad image domains. The aforementioned reason spurs the proposal of a new image analysis
algorithm in the BIC approach [54], trying to overcome these drawbacks from another point of view.

The BIC approach is based on a very simple (but powerful) image analysis algorithm that runs in time O(n),
where n is the size (pixels) of the image being analyzed. The image analysis algorithm in BIC uses the RGB
color space uniformly quantized in 4×4×4=64 colors. Any other color space and quantization scheme could be
used as well, but this con£guration is largely adopted in practice and seems to be a good uniform quantization
scheme for the RGB color space [36]. The pixel count of each histogram bin is normalized between 0 and 255
for the sake of being able to represent a histogram bin using only one byte of memory. There is also no clear
advantage in using more than 256 distinct values per histogram bin as observed in practice. After the quantization
step, image pixels are classi£ed as either border or interior pixels. The classi£cation criterion is: if a pixel is at
the border of the image itself or if at least one of its 4-neighbors (top, bottom, left and right) has a different
quantized color then it is classi£ed as border pixel; if a pixel’s 4-neighbors have the same quantized color then it
is classi£ed as interior pixel. Notice that this classi£cation is mutually exclusive and it is based on a inherently
binary visual property of the images.

The next step after pixel classi£cation is to compute color histograms. Unlike the computation for global
color histogram, here one color histogram is computed using only border pixels and another color histogram
is computed using only interior pixels. In this way, each quantized color has the border/interior classi£cation
representation. In our CBsIR system, each image tile is thus described within BIC by means of two color
histograms with 64 bins each (one for each quantized color). Assume an M -color model, a BIC histogram
is an M-dimensional feature vector (Bicclass1 , Bicclass2 , · · · , BicclassM , class ∈ border, interior), in which each
Bicclassi represents the percentage of classi£ed pixels in an image corresponding to each quantized color c i. The
BIC histogram Bic of an image tile T being of size n1 × n2 is de£ned as:

Bicclassci (T) = probability[p ∈ T class
ci] =

‖ T class
ci ‖

n1 ∗ n2
class ∈ {border, interior}

where for any border or interior pixel p from image tile T , Bicclassci (T) gives the probability that the color of
pixel p is ci. ‖ T class

ci ‖ is the number of pixels that are classi£ed in either class with color c i in image tile T .
The color coherent vector (CCV) approach of [12] also includes a binary classi£cation of image pixels, which

is nevertheless based on a non-binary visual property of the images - the size of the connected components. This
requires the use of an empirical size threshold in order to have a binary classi£cation in CCV. Most of the useful
information about the size of the connected components are lost in this reduction and the approach may be very
sensitive to the chosen threshold that varies according to the visual content of the images. Therefore, the CCV
approach is shown in [54] to be slightly more effective than a simple GCH.

15

%

ColorsBlack White

Border Pixels

%

ColorsBlack White

Interior Pixels

%

ColorsBlack White

%

ColorsBlack White

Border Pixels

%

ColorsBlack White

Interior Pixels

%

ColorsBlack White

BIC HistogramsImages GCH

Figure 4: GCH vs. BIC Histograms for texture discrimination.

BIC’s classi£cation of pixels in border/interior for each quantized color allows a more informed color dis-
tribution abstraction and is much more discriminative than a simple GCH or CCV according to [54]. This
discriminative power can be analyzed for individual color in terms of texture, shape and connected components.
For instance, the texture information of images in Figure 4 can be captured by the BIC classi£cation in such a
way that it yields distinct sets of color histograms for the two images, while the two GCHs are the same. The
analysis of visual properties depends on the portion of the image covered by and also on the proportion between
border/interior pixels for each quantized color. If the number of interior pixels for a given color is smaller than
the number of border pixels for the same color, then at least one of the following visual properties could be a pos-
sibility: (1) the color is distributed in a relatively large areas with very irregular shape; (2) the color is distributed
in small connected areas where the border of each area is larger than its interior; (3) the color is part of an image
area that is rich in texture information. On the contrary, if the opposite situation is true, it can be concluded that
(4) the color is distributed in relatively large and homogeneous areas with regular shape.

Figure 51 shows two examples of images analyzed by border and interior pixels. The original images are at
the left column. The resulting binary images showing border pixels in black and interior pixels in white are at
the middle column. The images showing border pixels in the corresponding original colors and interior pixel in
white are at the right column.

3.3.2 dLog Distance Function

Apart from a simple and powerful image analysis algorithm, the BIC approach [54] also involves a new loga-
rithmic distance (dLog) for comparing histograms. This dLog distance function has two main advantages over
vectorial distances (e.g. L1): (1) it is able to increase substantially the effectiveness of several histogram-based
CBIR approaches, and at the same time, (2) it reduces by 50% the space requirement to represent a histogram.
Now, we give a detailed study about the dLog distance function and how we accomodate it to our CBsIR system.

As discussed in Section 3.3.1, there are two color histograms with 64 bins each associated with each image
tile. Actually, these two histograms can be stored and compared as a single histogram with 128 bins. Thus, any
vectorial distance functions like L1 or L2 could be used to compare the BIC visual features. Although vectorial
distances do have their advantages as mentioned in Section 3.2.2, they have also well-known limitations. One of

1From http://db.cs.ualberta.ca/mn/BIC/bic-sample.html

16

Figure 5: Two examples of the result by the BIC pixel classi£cation.

such limitations is that a high value in a single histogram bin dominates the distance between two histograms,
no matter the relative importance of this single value [36][50]. It is generally true that the foreground areas
determines the semantic of the image and as such, it is more important to determine the similarity among images.
On the other hand, it is equally true that, in general, the background covers the majority of the image area.
Therefore, the tiles that compose the background are usually larger than the tiles that compose the foreground. For
example, consider a set of images with a dominating and homogeneous background area of the image’s content.
Thus, this background can be represented in just one histogram bin. Now suppose we perform a similarity search
using a query sub-image obtained from one of such images as example. When a vectorial distance is applied
to compare these histograms, images having a background with the same color but a different foreground are
retrieved ahead of any other image having the same foreground (a high degree of semantic similarity) but a
background with a different color.

To deal with the above distortion based only on the information available within the histogram representation,
the authors of [54] have proposed the dLog distance function which compares histograms in a logarithmic scale.
The basic motivation behind this is based on the observation that classical techniques based on global color
histograms treat all colors equally, despite of their relative concentration. However, the perception of stimulus,
color in images in particular, is believed to follow a “sigmoidal” curve [50]. The relative increment in a stimulus
is perceived more clearly when the intensity of the stimulus is smaller than when it is larger. For instance, a
change from 10% to 20% of a color is perceived more clearly than an change from 85% to 95%. Indeed it has
been a well observed phenomena regarding many other phenomena involving how sensitive one is (including
animals) to different stimuli [2]. Thus, the distance function is de£ned as follows:

dLog(a, b) =
i<M
∑

i=0

|f(a[i])− f(b[i])|

f(x) =

0, if x = 0
1, if 0 < x ≤ 1
dlog2xe+ 1. otherwise

where a and b are two histograms with M bins each. The values a[i] and b[i] represent the ith bins of histograms

17

a and b respectively. Here, M equals to 256 since the histogram bins are normalized between 0 and 255 as
discussed in Section 3.3.1.

The dLog distance function does not solve the problem of comparing histograms when some bins are of
very high values, but it diminishes this effects in most of the situations. In a log-scale, the range of distances
between histogram bins becomes much smaller than in the original scale. For instance, the smallest distance
between histogram bins in the original scale (being zero when both images have the same amount of a particular
color) remains the same in log-scale. But the largest distance between histogram bins in the original scale (being
255 when the images have just one color and they are different) could be reduced to just 9 in log-scale, about
255/9=28 times smaller than in the original scale.

In [54]’s experiments, a study of substituting the dLog distance forL1 in existing histogram-based approaches
(e.g. GCH, CCV) shows that it clearly increase the effectiveness of all histogram-based approaches tested.
The dLog distance function also plays an important role in the BIC histogram representation, which allows a
substaintial reduction in storage. We will expand this issue in Section 3.5.1.

For the superiority of the dLog distance function, we accomodate it in our CBsIR system when using the BIC
image feature description. Thus, the distance between two tiles Ta and Tb from images Ia and Ib respectively is
de£ned as:

DT (Ta, Tb) =

∑m
i=1 dLog(H(Tai

), H(Tbi))

m

where Tai
and Tbi are sub-tiles of Ta and Tb respectively, represented as corresponding leaf nodes in the tree

structures of the tiles, m is the number of unique leaf nodes in the tree structures at any hierarchical levels
(if already at the leaf level, m=1), and the H function computes the BIC histogram of each tile. The image
similarity is measured similarly as in Section 3.2.2, which is based on the hierarchical tree matching scheme.
The only difference is that here the BIC image description and the corresponding dLog distance function are used
instead of the statistics-relied color features and the weighted L1 distance function.

3.4 Feature Extraction and Vectorial Distances for Sebe et al’s method (IHD)

3.4.1 Color Indexing

Related work [39] (called IHD method here) as discussed in Section 2.3 also uses color indexing for image
feature extraction. Aiming to capture spatial relationships of color areas while also to preserve cheap memory
cost and suf£cient retrieval accuracy, the IHD method adopts the use of taking the covariance and the mean of
the color distribution in a multidimensional color space [20] to index the image database. For the color features,
the L*a*b* color space is chosen because it is perceptually uniform. The color features representing the color
distribution include the average color µ = (µL, µa, µb) and the covariance matrix [σij] (i, j ∈ {L, a, b}) of the
color channels. If the color components of a pixel P are PL, Pa and Pb respectively, then the index entries
characterizing the color distribution of an image or an image patch A are:

µi(A) =
1

N

∑

P∈A

Pi i, j ∈ {L, a, b}

σij(A) =
1

N

∑

P∈A

(Pi − µi(A))(Pj − µj(A))

where N is the total number of pixels in the image or image patch A. Since the covariance matrix is symmetric,
only 6 entries have to be stored. Hence, a nine dimensional global color feature νcolor(A) is obtained for the
CBsIR system using the IHD method in [39].

18

3.4.2 Inter Hierarchical Distance (IHD)

For the IHD method [39], the full image I is also decomposed into a number of sub-patches by a similar partition
strategy. While the partition-based approach used in [39] already introduces some spatial information, the space
issue is explicitly considered leading to a new distance measure called inter hierarchical distance (IHD). The
authors argue that the solution to extract the global features of image sub-patches νcolor(A) in order to represent
the spatial information would increase the index size dramatically. However, if only the differences of the global
features of the image and its sub-patches are stored, then the spatial encoding is guaranteed without a major
increase of the index size. Thus, a measure of the distance between the global features of the image and the
features of its sub-patches is proposed. This distance is called inter hierarchical distance (IHD) since it is taken
between feature vectors of different hierarchical levels of the image partition.

In case of color features discussed in Section 3.4.1, a two dimensional feature vector is used. The vector
components are the L1-norm of the differences of the mean and covariance elements respectively [39]:

V l
IHD,1(A) =

∑

i=L,a,b

|µi(A)− µi(Al)|

V l
IHD,2(A) =

∑

i,j=L,a,b

|σij(A)− σij(Al)|

where A is the full image and Al is a certain sub-patch, µ is the mean element and σ is the covariance element
from the L ∗ a ∗ b∗ color space. However, there is no such tree-like data structure for the IHD method. So for the
example in Figure 3, the distances between the query and the full database image as well as its sub-patches S are
computed as follows:

d(IS , Q) = ‖V S
IHD(I)− V Q

IHD(I)‖db

Note that when S = 0, IS represents the full image, and thus V 0
IHD(I) = 0.

An importance difference between IHD and HTM is that instead of considering only the global feature infor-
mation represented by IHD vectors of the query sub-image and a certain sub-patch in a database image, our HTM
method also uses the local information of a tile represented by the leaf nodes in its tree structure. The average
of distance values among the corresponding leaf nodes is regarded as the distance between the tree structures of
query sub-image and a certain tile of the database image at any hierarchical level. We will demonstrate in our
performance study that the HTM scheme using statistics-relied feature extraction results in much more retrieval
accuracy with small extra query processing time cost when compared with the IHD method, although much more
information of the hierarchical structure needs to be stored and compared.

Since the tree structure for the query sub-image could also be a sub-tree of the tree structure for the database
images, we ¤oat the tree structure of the query sub-image within the whole tree structure of database images
using the search strategy presented in Section 3.6.1. When comparing the tree structures of query sub-image and
the tiles of database images with statistics-relied color features, we apply the distance measures presented in the
previous sections to compute the distances between them.

3.5 Ef£ciency and Storage Consideration

As image databases grow larger, image retrieval systems need to address ef£ciency issues in addition to the issue
of retrieval effectiveness. Ef£ciency concerns lie in every phase of the retrieval process. In this section, we
focus on investigating the methods that improve the ef£ciency and the compactness of image indexing, without
compromising effectiveness. Section 3.6 will discuss ef£ciency concerns in the search phase afterwards.

19

 Br Bg Bb Dr Dg DbIr Ig Ib Ar Ag Ab

parent

...... Cr Cg Cb

children

 br bg bb ar ag ab br bg bb
 cr cg cb

children

children

parent

parent

 er eg eb fr fg fb cr cg cb dr dg db gr fr fg fb gr gg gb gg gb hr hg hb

Figure 6: Index sequence.

3.5.1 Feature Representation

As discussed above, our CBsIR system extracts features of the image database in two distinct ways. For one
statistics-relied feature extraction, the color feature representing the average color of each tile of the database
image is just a small three dimensional feature vector. This feature extraction method has the inherent advantage
to result in very compact descriptors that are easy to compute and ef£cient for searching. Although the effective-
ness of this method might be affected sometimes (e.g., as mentioned in Section 3.2.1), the search strategy based
on the hierarchical tree matching scheme (discussed in Section 3.6.1) would remedy this in most cases.

Also statistics-based, the BIC method of [54] is adopted in our CBsIR system for image feature extraction.
We have already discussed two of its components - a simple yet powerful image analysis algorithm and a new
logarithmic distance for histogram comparison in Section 3.3.1 and Section 3.3.2 respectively. Now we study in
detail the third component of BIC which yields a compact representation of the image visual features allowing
ef£cient image comparison.

When the dLog distance function is used to compare histograms, it is possible to store the result of the f(x)
function instead of the normalized pixel count. The comparison of the histograms according to the dLog distance
thus becomes computationally simpler. A more careful look at the de£nition of the dLog function reveals that
it is in fact an L1 distance of the log of the pixel count - f(x). Therefore, all we have to do is just compare the
log-based represented histograms using the L1 vectorial distance.

Besides, remember that in f(x) function x stands for each bin of a histogram whose value range is between
0 and 255. Therefore, the f(x) can be perceived as an integer between 0 and 9. It can assume only 10 distinct
values and these values can be stored in just 4 bits (10 < 24). This means that the log-based representation of
histograms requires only half of the space necessary to store the normalized pixel count which is the original
representation.

The log-based representation allows a reduction of 50% in the required storage space for any histogram-based
CBIR approach [54]. For the particular case of the BIC approach, it is possible to store a BIC histogram being
of 128 bins (64 for border pixels and 64 for interior pixels) in just 64 bytes of memory. This is a very compact
representation of image visual features. Thus, high-end workstations can maintain fairly large collections of
images in memory, completely avoiding the need of disk-based access methods to speedup query processing.

3.5.2 Index Sequence

Apart from compact image representations in our CBsIR system, we also consider a compact storage format for
the visual features that allows fast access during the search phase.

From the progressive decomposition strategy (illustrated by the hierarchical structure in Figure 2), a prede-
£ned parent-child relationship for the tree structure can be easily extracted. Using the tree structure introduced
in Figure 2, Figure 6 gives an illustration of the index sequence representing such relationships.

In Figure 6, each node in the tree structure is represented by the sequence for the elements of the three
dimensional feature vector based on statistics-relied image indexing or by that for the bins of the BIC histograms.
The relationship of parent node and child nodes in the tree structure is maintained by a prede£ned order of
sequences in the index.

20

Ar Ag Ab

parent

parent

 ar ag ab Br Bg Bb br bg bbIr Ig Ib Cr Cg Cb Dr Dg Db cr cg cb dr dg db

children

...... er eg eb fr fg fb gr gg gb hr hg hb

children

Figure 7: Index sequence without redundant tile at the lowest level of the hierarchical structure.

Note that Figure 6 represents the storage of redundant tiles at the lowest level of the hierarchical structure.
Since this index sequence is stored on secondary storage and aimed for fast retrieval, we apply an immediate
improvement (shown in Figure 7) by storing only the indices of the 16 unique tiles at the lowest level (excluding
the redundancy) with a small structure of the relationship information as an extra overhead. This cost is much
less compared with that of storing and fetching the information about those redundant tiles, which would thus
further speedup the image comparison in search phase.

3.6 Search Strategy

Searching is a fundamental problem in computer science [53]. However, similarity search in digital images that
are close or similar to a given visual query is inherently different from the exact-match search in traditional
database systems. Apart from introducing the use of £ltering techniques and access methods to reduce the
complexity of the searching process, some approximate methods relying heavily on clustering techniques to
classify similar objects together are also applied for the indexing of non-metric spaces in such case that the
precision of a query can be relaxed to reduce the query processing time. In the following, we discuss in detail
our search strategy for sub-image search.

3.6.1 Search by Hierarchical Tree Matching

The search algorithm in [51] uses an expensive branch-and-bound procedure to retrieve the best match, pre-
serving the query’s scale. The IHD approach in [39] simply follows a linear scan (as “sequential scanning” in
Section 2.1.4) to compare the IHD vectors of the query sub-image and database image patches, which achieves
fast speed (because of the compact feature representation being just a two dimensional vector) but compromises
accuracy as we will discuss in our performance study. Here, we combine the above approaches and come up with
a hybrid of both so as to expediate the matching process without compromising effectiveness. Besides, this search
strategy is based on a distinct query representation: unlike the scale-preserving sub-image retrieval in [51], we
generalize the image comparison by constructing the same tree structure to represent the hierarchical partition
for both the database images and query sub-image, so that images can be retrieved independent of the size of
the sub-image (i.e., scale independency). A formal algorithm written in pseudo code (Figure 8) summarizes the
search strategy of the HTM method for £nding the most similar images to the sub-image query within the whole
database.

To further illustrate the search strategy, Figure 9 shows the process of £nding the best matching image and
the updating of the tree structure of the query sub-image in the search phase using the example given in Figure 3.

First, in step (a), we compare the full tree structures of the database image I and the query sub-image Q.
Note that, at this point, the query sub-image has the same tree structure (a three-level hierarchical structure)
as the database image. As discussed in Section 3.5.2, the tree structures are mapped into index sequences,
which maintain the relationship of nodes inside the tree structures. Each piece in the index sequence stores the
information about the image feature associated with a certain node in the tree. Using the distance measures
discussed for different methods and feature representations respectively, we can obtain the distance between the
full trees.

21

}12.

13. rankList := sortForMinimum(distArray);

procedure

begin

1 for each

SearchHTM(databaseMetafile, queryTree)

2. dbImageTree := fetchMeta(databaseMetafile, I);

3. entry := 0;

for each do {5.

6. querySubtree := updateQuery(queryTree, L);

4. tempDist[entry++] := fullTreeCompare(dbImageTree, queryTree);

8. tempDist[entry++] := subTreeCompare(dbImageTree, I_sub, querySubtree);

10. }

image I in the database do {

}9.

7. for each do {

 subsequent level L of the hierarchical structure

 subtree I_sub at level L of the hierarhical structure for Image I

 end

11. distArray[I] := findMinimum(tempDist);

Figure 8: Search algorithm of the HTM method.

In order to compare the query with the sub-tiles of the database image, we ¤oat the query sub-image’s tree
structure within that of the database image. Before doing this, we have to update the tree structure of the query
image. Since we want to make the query’s tree and the database image’s sub-trees (e.g., subtree1 of image I in
Figure 9) comparable, we have to reprocess the query sub-image as to obtain a tree structure similar to a certain
database image’s sub-tree at a particular hierarchical level. In Figure 9, the new query tree is shown to the right of
steps (b) and (c). The indices of the leaf nodes in the query’s updated tree structure is used to continue comparing
with the sub-trees of the database image. For this example, step (b) shows the comparison of the query sub-image
with the £rst sub-tree of the database image I . In step (c), the second sub-tree of the database image (subtree2
of image I in Figure 9) is compared with the query’s new tree. (According to our distance measure, subtree2 is
determined as a perfect match for the query.) The comparison is similar for the remaining sub-trees and those
at the lower levels of the database image’s tree structure. Finally, the minimum distance representing the best
matching sub-tile is used as the distance for the database image between the query. In short, the whole searching
process is done by updating the query’s tree structure and ¤oating it around inside the full tree structure of the
candidate database image for tree comparison at different hierarchical levels, until there are no more sub-trees
left.

Experiments detailed in Section 3.7 show that this search strategy by the hierarchical tree matching scheme
yields better retrieval accuracy compared to related work (e.g., [39]) at the cost of small storage overhead. The
query processing time cost is also very acceptable compared to [51]. Moreover, it should be emphasized that

22

......

......

 1 2 3 4 36 1 4 36

1st level

Index sequence for database image I

3rd level

subtree2

(a) Image I

2nd level

Query image Q

 subtree1

Index sequence for the query image Q

3rd level

 (b)

a snippet of index sequence for image I

Query Q’s updated tree

Subtree1 of image I

(c)
index sequence for the query image(updated)

another snippet of index sequence for image I

Subtree2 of image I

I I I I I Q ... Q Q

Figure 9: Determining the best matching image (sub)tree.

this search strategy has implicitly solved the object localization problem (an adjunct issue to the sub-image
retrieval problem) along with the search task. By using the hierarchical partition strategy, the spatial information
is actually kept in the relationship of tiles represented in the hierarchical tree structure. During the process of
determining the distance between the query sub-image and the candidate database image, the best matching tile
that yields that minimum distance from the query among all sub-tiles and the full tile of the database image is
£ltered out, which also implies the location information of this tile as to where it is located inside the full image
because of the hierarchical decomposition. Note that, in this way, we do not need any additional process to deal
with the object localization problem, which suggests the superiority of our search strategy by the hierarchical tree
matching scheme.

3.7 Performance Study

3.7.1 Performance Measures

Our sub-image retrieval task is to retrieve, as highly ranked as possible, the image from which a given sub-image
was extracted. Hence, for each query sub-image there is only one relevant answer, namely the original image. We
apply the following two measures (also used in [25][39], etc.) to evaluate the effectiveness of various competing
sub-image retrieval approaches. If Q1, · · · , Qn are query sub-images, and for the ith query Qi, Ii is the only
image that “contains” Qi, (i.e., Qi “appears” in Ii). A method is said to be better if it has lower average r-
measure and a higher average precision. Since there is only one relevant image per query, traditional Precision

23

× Recall graphs are not meaningful here.

1. Average r-measure gives the mean rank of the correct answer averaged over all queries: 1
n

∑n
i=1 rank(Ii).

2. Average precision of a method gives the average of the precision values over all queries’ recall points (with
100% being perfect performance), i.e., at the correct answer: 1

n

∑n
i=1

1
rank(Ii)

.

Now for the performance study, we use two kinds of criterion. One is the effectiveness, which is measured
via average r-measure and average precision. The other criterion is ef£ciency, which we evaluate by the space
and time requirements of the compared approaches.

Initially, we measure the distance between the database images and the query sub-image using a default
precision of 6 decimal digits. But it becomes clear that it is not appropriate. The distance between many images
would differ only in the 5th or even 6th decimal digit. Since there are so many approximations in the retrieval
process, e.g., the image partitioning, the use of statistics-relied feature vector per partition, etc., it does not seem
to make sense to use such a £ne granularity for the distance calculation. In addition, humans do not have such
a £ne distinction between perceived similarities. Thus, we decide to use only two decimal digits precision. An
immediate consequence of this lower distance granularity is the increase in the number of tied distances. Let us
call the set of images with the same distance a group. As we shall see shortly this can have a large impact on the
results depending on how one de£nes and measures the rank of a relevant image.

We adopted two kinds of measurement to rank retrieved images [57]. One is the average actual rank,
which is the average between the minimum and maximum ranks for the images inside the same group as
where the relevant image is. Assume rank(Ij) is the absolute rank of image Ij after ordering all images by
their distance to the query image (with ties broken arbitrarily). Then if a relevant image Ij has the same dis-
tance as images Ii, Ii+1, · · · , Ik(i ≤ j ≤ k), the average actual rank of Ij is de£ned as (minp(rank(Ip)) +
maxp(rank(Ip)))/2, p ∈ {i, · · · , k}. The other measure is the group rank, where all images inside the same
group have the same rank which is the rank obtained as if the whole group was a single “object”. In this case
an image’s rank does not depend on its group size, but rather on how many groups of images rank before the
image’s own group. This re¤ects the fact that if two images have the same distance, they should also have the
same ranking, as any difference in ordering is only “accidental”. Table 1 exempli£es the measures above. Note
that while the group rank is quite optimistic, the average actual rank is probably more realistic.

Table 1: Average actual rank and group rank.

Image Distance Original Rank Average Actual Rank Group Rank

IA 0.05 1 1.5 1
ID 0.05 2 1.5 1
IF 0.43 3 4 2
IT 0.43 4 4 2
IM 0.43 5 4 2
IB 0.67 6 6 3

3.7.2 Experimental Setup

It is important to evaluate performance scienti£cally so as to ensure the validity of the results. In order to test
the robustness of different feature extraction methods and the learning aptitude of the further improved CBsIR
system with the relevance feedback technique discussed in Section 4, we use an image database with 10,150

24

images: a mixture of the public Stanford10k2 image dataset and some images from one of COREL’s CD-ROMs.
The image database Stanford10k contains color JPEG images of size 128×85, 85×128, 128×96, or 96×128,
etc. The database images have the same dimensions, but not necessarily the same orientation. Our well-balanced
large-scale testbed is very realistic and helps us reach a fair evaluation of different methods. The content of the
database images ranges from animals, people, scenery, and architecture, etc.

For the query sub-image datasets, we have constructed two different query sets to evaluate different aspects
of the system. Both of them are obtained by manually cropping part of the original images. These original
images are considered as the unique correct answer for the respective queries. The £rst query set consists of 20
query images ranging over different themes. A sample of the query sub-images, along with those from which
they are extracted are displayed in Table 2. The size of the query sub-images varies, being on average 33% the
size of the database images. The performance results are collected on a computer running Linux 2.4.18 with
two AMD Athlon MP 2400+ CPUs and 2GB of main memory. As for the second query set, we obtain 21 query
sub-images which are distinct from those in the £rst query set. This is because we want to test how accurate the
combinations of the HTM scheme with different images features, such as average color and the BIC histograms,
could hit the original image by distinguishing it from the similar images that belong to the same category as that
of the answer image (original image). The size of the query sub-image also varies, being on average of 18%
the size of the database images. Experimental results on this database are collected from the online demo3 on a
computer running Linux 2.4.17 with two Pentium III CPUs and 256MB of main memory. The above data serve
as the ground truth to test different image features and retrieval methods.

Table 2: Six sample images with query sub-images indicated by the white frames.

We apply three different image features: the statistics-relied feature (average color), the BIC histogram, and
the IHD feature vector on the above image database. And we compare the performance of the combinations of
the HTM scheme with different image features, as well as the HTM-based retrieval method versus other related
approaches. Besides, the average size of query sub-images is another tuning factor in the experiments.

Speci£cally, we use the £rst query set to obtain a preliminary comparison of the HTM scheme using average
color feature of image tiles and the corresponding distance measures with the IHD method. For our HTM method,
the RGB color space is used while for the IHD method, the L*a*b* color space is applied instead. As for the
second query set, we apply the average color feature vectors and the BIC histograms on the HTM scheme and
compare these combinations with the IHD method. To compute the BIC histograms, we consider the RGB color
space with quantization into C colors. The tradeoff between retrieval accuracy and ef£ciency using the BIC
methods is studied by changing this parameter.

2http://www-db.stanford.edu/∼wangz/image.vary.jpg.tar.
3http://db.cs.ualberta.ca/mn/CBsIR.html

25

Table 3: Performance of different methods using average actual rank.

Methods HTM/Avg IHD/AvgCov

Avg r-measure 31.2 1030
Avg precision 0.34 0.01

Table 4: Performance of different methods using group rank.

Methods HTM/Avg IHD/AvgCov

Avg r-measure 10.45 26
Avg precision 0.36 0.2

3.7.3 Results Analysis

First, we compare our HTM method with related work using the £rst query set. Table 3 shows the effective-
ness obtained using the average actual rank (de£ned in Section 3.7.1). Here, the statistics-relied image feature
representation (average color) is chosen for the reason that the compared IHD method also uses the average
color but with an additional covariance matrix to represent the color distribution. Apparently, the color feature
representation of the IHD method is more complex and more informative than HTM’s statistics-relied feature
representation. However, Table 3 clearly demonstrates the superiority of HTM’s retrieval scheme. When looking
at the group ranks (de£ned in Section 3.7.1) in Table 4, even though HTM is still superior, a relatively much better
result is obtained for the IHD method. The average r-measure of 1030, obtained when using the average actual
rank, dropped drastically to 26 using the group rank. This misleading result is due to the large number of ties
inside the groups obtained for the IHD method. Using the IHD method, we obtain groups as large as 351 images,
each group having 83 images on average. On the other hand, the HTM method is able to discriminate better. No
group is larger than 31, and on average each group contains about 4 images. That is, the less discriminating an
approach is, the more ties it will yield. And the more ties there are, the less groups exist. Hence, the lower the
group ranks. Nevertheless, the more precise and discriminative an approach, the closer the two rank measures.

A more interesting conclusion can be drawn if one uses only the queries that yields the 10 best results for
each method. Using the average actual rank, our HTM method yields 2.5 for average r-measure and 0.65 for
average precision while the IHD method obtains 191.7 for average r-measure (a very large improvement when
compared to the 1030 obtained for all 20 queries) and 0.02 for average precision. Using group rank, our HTM
method produces 2.4 for average r-measure and 0.65 for average precision, while the IHD returns 5.7 for average
r-measure and 0.37 for average precision, another large improvement. One should note that these £gures for the
IHD method are quite close to the ones reported in [39] - even though we use a different dataset and different
queries - which suggests to us that that paper may have used the group rank as a measure of retrieval effectiveness.

Because of the distinct difference between the two methods for the aspect of effectiveness, it is worthwhile
to look at the distributions of the ranks of the relevant (original) images. As can be seen in Table 5, for our HTM
method 80% of the relevant images are ranked among the top 50 retrieved images, while for the IHD method
only 10% of the original images are ranked among the same top 50. Examples of sample queries and answers by
different methods are shown in Figure 10. Furthermore, Table 6 gives the top 3 retrieval results for six sample
query sub-images and their corresponding original images’ ranks using average actual rank by the HTM method.

Table 7 shows the average cost, measured in seconds, to process a query, i.e., to access all metadata, obtain
the distance between the sub-image query and the database images and sort the resulting £le. There is a slight
difference between the two methods for the time cost of search phase. The IHD method is faster than our HTM
approach since it only stores a two dimensional feature vector per each tile of the database images and applies a

26

Table 5: Comparison of the distributions of relevant images using average actual rank.

Number of Queries(%) Number of Queries(%)
Rank Range

for Original Images HTM/Avg IHD/AvgCov

[1,10] 12 (60%) 1 (5%)
[11,20] 0 (0%) 1(5%)
[21,50] 4 (20%) 0 (0%)

[51, 100] 3 (15%) 2 (10%)
[101,500] 1 (5%) 5 (25%)

[501, 5000] 0 (0%) 11 (55%)

Table 6: Search results for six sample query sub-images by HTM. (Note that the size of query sub-images and
retrieved images is changed for viewing purpose.)

Query Sub-Image/
Rank of Relevant Image Top 3 Retrieved Images

/1

/1

/2

/3.5

/40.5

/51

27

IHD: 14HTM: 1;

IHD: 53HTM: 3;

IHD: 317HTM: 5;

Query sub−image

Query sub−image

Query sub−image

Figure 10: Sample query sub-images and their original images (answers) with average actual ranks using different
methods. (Lower ranks are better.)

28

simple linear search on them. Even though the IHD method is 33% faster than HTM, it is important to note that
HTM processes a query using much more hierarchical structure information in the tree matching phases and deals
with a database of 10,150 images, where all the metadata is stored on disk, not in main memory, still very fast,
namely in 0.15 seconds on average. As we have pointed out before in Section 3.4 that the improved effectiveness
by the HTM method clearly dominates the small extra time cost comparing with the IHD approach, which is very
acceptable.

Table 7: Comparing query processing ef£ciency for HTM and IHD.

Methods Search Phase (sec.)

HTM/Avg 0.15
IHD/AvgCov 0.10

In order to extract image features from the image database and generate the metadata £le, our HTM method
use 3.35 hours while the IHD method use 4.31 hours using the machine mentioned in Section 3.7.2. (Note that
this procedure can be done off-line). When looking at the space cost for those disk-resident index £les, the
HTM method would require 4.38 MB while the IHD method would need less storage, namely 3.25 MB. Here,
our implementation stores the indices of all the leaf nodes (ignoring the intermediate nodes) for the partition
strategy, which means there is still much duplicated information because of the overlapping at the second level
in the hierarchical structure. That is why the index £le takes more space than the IHD index £le. However,
considering the much better effectiveness of our HTM method compared to the IHD method, this extra cost
seems worthwhile. In addition, as discussed earlier, this is an issue which can be improved using a more storage-
conscious implementation.

In a word, based on our experimental results, our proposed HTM method is very effective compared to the
IHD method of [39] with very acceptable retrieval time and space cost. Although it is not completely clear why
there are a few outliers in the results, we believe the low contrast between the tile of interest and the image’s
background is to be blamed. Another possible source of problem seems to be images with an unusual large
number of colors, detracting the discriminative power from the average color feature.

One venue to further explore the HTM scheme is to try using more powerful yet compact representation for
the tile features. Now, we apply the BIC approach discussed before as well as the statistics-relied approach for
image feature extraction on the database. Here, the second query set is used to test the robustness about the HTM
scheme when there are several images that are similar to the correct answer of the query sub-image. Also, the
related IHD method is applied on the second query set, serving as a comparison. For experiments on this query
set, we use the average actual rank measure since it seems more realistic.

Table 8 gives the retrieval accuracy comparison using different image feature representations with the HTM
scheme and the IHD approach. For the BIC method, the BIC parameter (SIZE) refers to the number of uniformly
quantized colors on the RGB color space. The average color is also extracted from the RGB color space, which
is the original approach used in [57]. From Table 8 we can see that the IHD approach produces the worst results,
which is consistent with what we have obtained from the experiments using different query set. In addition,
even using just 16 quantized colors for image feature representation by BIC, the system achieves better retrieval
accuracy than using the average color for image feature representation. And the use of 64 quantized colors yields
very good results and is the best among all. For a more detailed comparison, Table 9 also shows the distributions
of the ranks of the original images using different image feature representations with the HTM scheme and the
IHD approach.

Besides, it should be noticed that the average size of the query has some effect on the £nal retrieval accuracy.
When the average size of the query decreases, using simply the average color of each tile could not achieve good
performance since it is far from discriminative than using BIC. The values for the HTM/AvgColor combination

29

Table 8: Retrieving original images using IHD and different feature representations with HTM.

Methods HTM/BIC HTM/BIC HTM/Avg IHD/AvgCov

BIC parameter(SIZE) 64 colors 16 colors - -
Avg r-measure 2.24 22.81 573.29 1360.90
Avg precision 0.91 0.43 0.15 0.002

Table 9: Comparison of the distributions of original images using different feature representations.

Methods HTM/BIC HTM/BIC HTM/Avg IHD/AvgCov
BIC parameter(SIZE) 64 colors 16 colors - -

Rank Range No. of Qs No. of Qs No. of Qs No. of Qs

[1,10] 20 (95.2%) 14 (66.7%) 5 (23.8%) 0 (0%)
[11,20] 0 (0%) 3 (14.3%) 5 (23.8%) 0 (0%)
[21,50] 1 (4.8%) 0 (0%) 2 (9.5%) 0 (0%)

[51, 100] 0 (0%) 2 (9.5%) 0 (0%) 0 (0%)
[101,500] 0 (0%) 2 (9.5%) 3 (14.3%) 6 (28.6%)

[501, 5000] 0 (0%) 0 (0%) 6 (28.6%) 15 (71.4%)

are better in [57] because the average query size is then larger than the one (being 18%) used in the experiments
reported here. Because query sub-images and the database images have similar resolution (result of the cropping
operation), larger query has more details about the object of interest it embodies, thus can be more discriminative.
If we were to use larger query sizes for both image feature representations with the HTM scheme, the relative
advantage of HTM/BIC would be even larger. Table 10 compares the average cost of query processing time for
the use of different BIC histograms for feature extraction. Some sample queries and their answer images’ ranks
retrieved from the above database using the IHD approach and different image indexing methods with the HTM
scheme are displayed in Figure 11 as well.

Table 10: Comparing query processing ef£ciency using different BIC histograms with the HTM scheme.

Methods Search Phase (sec.)

HTM/BIC/64 quantized colors 1.89
HTM/BIC/16 quantized colors 0.56

3.8 Summary

In summary, we have proposed a new method called Hierarchical Tree Matching (HTM) for the problem of
content-based sub-image retrieval (CBsIR). The highlights of the HTM method are:

1. it adopts a multi-scale hierarchical partition to model both database images and the query sub-images in
trees, eliminating any reliance on the typically complex and inaccurate image segmentation as well as any
size constraint on the query sub-image;

2. it stores the image visual features associated to the tree structure in the format of an index sequence,
allowing fast access during the search phase;

30

HTM/Avg: 33

BIC/16colors: 1

IHD/Avg+Covariance: 2396

BIC/64colors: 1

IHD/Avg+Covariance: 322

BIC/16colors: 8BIC/64colors: 1

HTM/Avg: 132

BIC/64colors: 1

HTM/Avg: 314

BIC/16colors: 18

IHD/Avg+Covariance: 410

Figure 11: Sample query sub-images and answers with ranks using the IHD method and different image indexing
methods with HTM. (Lower ranks are better.)

31

3. it uses a distance measure that considers not only the global feature information of a sub-tree structure but
also the local spatial distribution offered by the child nodes in the sub-tree structure so as to capture more
detailed distinction;

4. it applies a search strategy that compares the tree structures of both database images and query sub-image
at any hierarchical levels for the best matched tile and locates the object of interest at the same time.

Our experimental evidence shows that this method outperforms the recently proposed partition-based CBsIR
method [39] by achieving a good balance of retrieval accuracy and ef£ciency. As a side contribution, we have
shown that one can obtain very different rank measures depending on the distance granularity and ranking criteria
in the presence of ties.

We have also studied different methods for image indexing with the HTM scheme, such as the statistics-
relied average color feature vector approach and the BIC method [54]. The extraction of average color feature
from each tile as the statistics-relied approach is very easy to compute and yields very compact descriptors for
ef£cient image comparison, but has limited discriminative power in similarity matching. Whereas, based on a
simple yet powerful image analysis algorithm and a new logarithmic distance function, the BIC method achieves
not only compact representation for the visual features extracted from image tiles but also outstanding accuracy
in retrieving images of broad image domains. It is clear that the combination of the proposed HTM scheme with
image indexing by the BIC method has notable superiority for CBsIR.

4 Supervised Learning in Content-Based Sub-Image Retrieval

We have already shown that the HTM method is a stable, effective and ef£cient approach for content-based
sub-image retrieval. It is, however, impossible for any image retrieval method to be entirely “foolproof”. The
main reason is the gap between low-level image features and semantic contents of images. This problem arises
because visual similarity measures, such as color histograms, do not necessarily match the semantics of images
and human subjectivity. Human perception of image similarity is subjective and task-dependent, that is, people
often have different semantic interpretations of the same image. Even the same person may perceive the same
image differently at different times. In addition, each type of visual feature tends to capture only one aspect of
the image property and it is usually hard for a user to specify clearly how different aspects are combined to form
an optimal query. Therefore, for any query sub-image, not all top ranked images retrieved by a retrieval method
are actually relevant according to the user’s perception. To address this problem, interactive relevance feedback
techniques have been proposed to incorporate human perception subjectivity into the retrieval process. Users can
thus be prompted to evaluate the results by marking each retrieved image as “relevant”or “irrelevant”. Queries
or similarity measures are automatically re£ned on the basis of these evaluations, which potentially improves the
quality of retrieval.

In this section, we investigate the use of information, provided interactively by a user, to improve the perfor-
mance of the HTM-based approaches for CBsIR. Inspired from techniques in RBIR [46][56], we outline a tile
re-weighting scheme that uses feedback information (in the form of labeled examples). Learning is thus effected
by interpolating the query vector with feature vectors of positive examples. Furthermore, the feedback infor-
mation is also incorporated into the image similarity measure based on the tile re-weighting scheme, implicitly
re£ning the £nal ranking of retrieved images.

For organization, Section 4.1 discusses some research work in other related image retrieval situations. Then
the learning method for CBsIR are introduced in Section 4.2. The performance measures (Section 4.3), the
experimental framework and results (Section 4.4) are presented next. Section 4.5 closes the section with a brief
summary.

32

4.1 Relevance Feedback in Other Image Retrieval Scenarios

4.1.1 Learning in traditional CBIR

The key issue in relevance feedback is how to use positive and negative examples to re£ne the query and/or to
adjust the similarity measure. Early relevant feedback schemes for CBIR are adopted from feedback schemes
developed for classical textual document retrieval. These schemes fall into two categories: query point movement
(query re£nement) and re-weighting (similarity measure re£nement), both based on the well-known vector model.

The query point movement methods aim to improve the estimate of the “ideal query point” by moving it
towards positive example points and away from the negative example points in the query space. One frequently
used technique to iteratively update the query is the Rocchio’s formula [1]. It is used in the MARS system [18],
replacing the document vector by visual feature vectors. Another approach is to update query space by selecting
feature models. The best way for effective retrieval is argued to be using a “society” of feature models determined
by a learning scheme since each feature model is supposed to represent one aspect of the image content more
accurately than others.

Re-weighting methods enhance the importance of a feature’s dimensions that help retrieve relevant images
while also reduce the importance of the dimensions that hinder the process. This is achieved by updating the
weights of the feature vector in the distance metric. The re£nement of the re-weighting method in the MARS
system is called the standard deviation method [18]. Another alternative for learning the distance metric is to
automatically select the best one from a set of pre-de£ned distance metrics for the retrieval process based on the
relevance feedback, e.g., [21].

Recent work has proposed more computationally robust methods that perform global feature optimization.
The MindReader retrieval system [26] formulates a minimization problem on the parameter estimating process.
Using a distance function that is not necessarily aligned with the coordinate axis, the MindReader system allows
correlations between attributes in addition for different weights on each component. A further improvement over
the MindReader approach [37] uses a uni£ed framework to achieve the optimal query estimation and weighting
functions. By minimizing the total distances of the positive examples from the revised query, the weighted
average and a whitening transform in the feature space are found to be the optimal solutions. However, this
algorithm does not use the negative examples to update the query and image similarity measure; and initially the
user needs to input the critical data of training vectors and the relevance matrix into the system.

Machine learning is about constructing computer programs that can be improved with experience. Any task
that can be improved as a result of experience can be considered as a machine-learning task. In CBIR, relevance
feedback improves the retrieval performance, and the experience is the feedback examples provided by the user.
Therefore, relevance feedback can be considered as a learning problem – the system learns from the examples
provided as feedback by a user to re£ne the retrieval results. The aforementioned query-movement method
represented by the Rocchio’s formula and re-weighting method are both simple learning methods. However, as
users are usually reluctant to provide a large number of feedback examples, i.e., the number of training samples is
very small. And the feature dimensions in CBIR systems are usually high. Thus, the fact that how to learn from
small training samples in a very high dimension feature space makes many learning methods, such as decision
tree learning and arti£cial neural networks, unsuitable for CBIR.

There are several key issues in addressing relevance feedback in CBIR as a small sample learning problem.
First, how to quickly learn from small sets of feedback samples to improve the retrieval accuracy effectively;
second, how to accumulate the knowledge learned from the feedback; and third, how to integrate low-level visual
and high-level semantic features in the query. Most of the research in literature has focused on the £rst issue.
To address the £rst issue, Bayesian learning has been explored in research about effective learning algorithms
and it has been shown advantageous compared with other learning methods, e.g., [40]. Active learning methods
have been used to actively select samples which maximize the information gain, or minimize entropy/uncertainty
in decision-making. These methods enable fast convergence of the retrieval result which in turn increases user

33

satisfaction. Chen et al [44] use Monte carlo sampling to search for the set of samples that will minimize the
expected number of future iterations. Tong and Chang propose in [49] the use of SVM active learning algorithm
to select the sample which maximizes the reduction in the size of the version space in which the class boundary
lies. Without knowing apriori the class of a candidate, the best search is to halve the search space each time.
In their work, the points near the SVM boundary are used to approximate the most-informative points; and the
most-positive images are chosen as the ones farthest from the boundary on the positive side in the feature space.

4.1.2 Learning in RBIR

Relevance feedback (RF) has also been introduced in RBIR systems for a dramatic performance boost as it does
for the image retrieval systems using global representations. Next, we discuss some learning algorithms in RBIR,
while Section 4.2 focus on presenting the relevance feedback technique for CBsIR.

In [56], the authors introduce several learning algorithms using the adjusted global image representation
to RBIR. First, the query point movement technique is considered by assembling all the segmented regions of
positive examples together and resizing the regions to emphasize the latest positive examples in order to form a
composite image as the new query. Second, the application of support vector machine (SVM) [49] in relevance
feedback for RBIR is discussed. Both the one class SVM as a class distribution estimator and two classes SVM
as a classi£er are investigated. Third, a region re-weighting algorithm is proposed corresponding to the feature
re-weighting ones. It assumes that important regions should appear more times in the positive images and fewer
times in all the images of the database. For each region, measures of region frequency RF and inverse image
frequency IIF (analogous to the TF and IDF in text retrieval [33]) are introduced for the region importance.
Thus the region importance is de£ned as its region frequency RF weighted by the inverse image frequency IIF,
and normalized over all regions in an image. Also, the feedback judgement is memorized for future use by
calculating the cumulate region importance. However, this algorithm only consider positive examples while
ignoring the effect of the negative examples in each iteration of the retrieval results. Experimental results on a
general-purpose image database demonstrate the effectiveness of those proposed learning methods in RBIR.

4.2 Relevance Feedback for CBsIR

Relevance feedback as an interactive learning technique has been demonstrated to boost performance in CBIR
systems [42][52]. Despite the great potential of RF shown in CBIR systems using global representations and in
RBIR systems, to the best of our knowledge there is no research that uses it within CBsIR systems. Here, we
present our solution to improve the retrieval performance of the CBsIR framework discussed in Section 3 by using
relevance feedback to learn the user’s intention. Our relevance feedback approach has three main components: (1)
a tile re-weighting scheme that assigns penalties to each tile of database images and updates those tile penalties
for all relevant images retrieved at each iteration using both the relevant (positive) and irrelevant (negative) images
identi£ed by the user; (2) a query re£nement strategy that is based on the tile re-weighting scheme to approach
the most informative query according to the user’s intention; (3) an image similarity measure that re£nes the £nal
ranking of images using the user’s feedback information. Each of these components is explained in details in the
following subsections.

4.2.1 Tile Re-Weighting Scheme

Researches in RBIR [46][56] have proposed region re-weighting schemes for relevance feedback (RF). In this re-
search, we design our tile re-weighting scheme that specializes the technique presented in [46] to accomodate our
tile-oriented (not region-oriented) HTM approach for CBsIR. It should be emphasized that instead of considering
all the images in the database to compute the parameters for region weight [56] (which is computationally expen-
sive), our tile re-weighting scheme uses only the positive and negative examples identi£ed by the user to update

34

the tile penalty of the positive images only, which is much more ef£cient. Moreover, the region re-weighting
scheme in [46] uses a prede£ned similarity threshold to determine whether the region and the image is similar or
not, otherwise the comparison of region pairs would become too expensive since images might consist of differ-
ent and large number of regions. This threshold is sensitive and subject to change for different kinds of image
datasets. Thus, how to obtain the right threshold is yet another challenge for the RF method in RBIR. However,
our RF method for the CBsIR problem does not need any threshold because the number of obtained tiles is the
same and small for each database image and there exists implicit relationship between the tiles, which makes it
easier to compare them.

In our system, the user provides feedback information by identifying positive and negative examples from
the retrieved images. The basic assumption is that important tiles should appear more often in positive images
than unimportant tiles, e.g., “background tiles” should yield to “theme tiles” in positive images. On the other
hand, important tiles should appear less often in negative images than unimportant tiles. Following the principle
of “more similar means better matched thus less penalty”, we assign a penalty to every tile that represents the
database image for the matching process. User’s feedback information is used to estimate the “tile penalties” for
all positive images, which also re£nes the £nal ranking of images. Note that during the RF iterations, the user
does not need to specify which tile of a certain positive image is similar to the query, which would only make the
problem simpler at an additional cost to the user. (Nonetheless, we plan to address this in the future.)

Next, we introduce some de£nitions used to illustrate the tile penalty and formalize the overall RF process.

De£nition 1: The distance between two tiles Ta and Tb from images Ia and Ib respectively, is:

DT (Ta, Tb) =

∑m
i=1 Dist(Feature(Tai

), Feature(Tbi))

m

where Tai
and Tbi are sub-tiles of Ta and Tb respectively, m is the number of unique leaf nodes in the tiles’ tree

structures at any hierarchical levels (if already at the leaf level, m = 1), the Dist function is to be instantiated
with some particular distance measure based on the result of the feature extraction done by the Feature function
on the tiles, e.g., BIC’s dLog() function de£ned in the previous section. ♠

De£nition 2: The penalty for a certain tile i from a database image after k iterations is de£ned as: TP i(k), i =
0, · · · , NT , where NT + 1 is the number of tiles per database image, and TPi(0) is initialized as 1

NT+1 . ♠
For instance, in Figure 2, NT + 1 = 1 + 9 + 16, i.e., is equal to the number of nodes in the tree structure

representing the hierarchical partition of a database image; for the lowest level, only unique nodes count.

De£nition 3: For each tile from a positive image, we de£ne a measure of the distance DTS between tile T and
an image set IS = {I1, I2, · · · , In}. This re¤ects the extent to which the tile is consistent with other positive
images in the feature space. Intuitively, the smaller this value, the more important this tile is in representing the
user’s intention.

DTS(T, IS) =

{

∑n
i=1 exp(DT (T, I0

i)), if T is at full tree level
∑n

i=1 exp(minj=1..NTDT (T, Iji)), if T is at the subtree level

where NT in this case is the number of tiles at the current subtree level. ♠
Assuming that I is one of the identi£ed positive example images, we can compute the tile penalty of im-

age I which consists of tiles {T0, T1, · · · , TNT }. The user provides positive and negative example images dur-
ing each kth iteration of feedback, denoted respectively as IS+(k) = {I+

1 (k), · · · , I+
p (k)} and IS−(k) =

{I−1 (k), · · · , I−q (k)}, where p+ q is typically much smaller than the size of the database.
Based on the above preparations, we now come to the de£nition of tile penalty.

De£nition 4: For all images (only being positive), the tile penalty of T i after k iterations of RF is computed (and
normalized) as:

TPi(k) =
Wi ×DTS(Ti, IS

+(k))
∑NT

j=0(Wj ×DTS(Tj , IS+(k))

35

where Wi = 1− DTS(Ti,IS
−(k))

∑NT

j=0
DTS(Tj ,IS−(k))

, acts as a penalty, re¤ecting the in¤uence of the negative examples. ♠

This implies the intuition that a tile from a positive example image should be penalized if it is similar to
negative examples. Basically, we compute the distances DTS between a particular tile T and the positive image
set IS+ as well as the negative image set IS− respectively to update the penalty of that tile from a positive
example image. The inverse of the tile’s distance from the negative image set is used to weight its corresponding
distance from the positive image set.

Let us now illustrate the above methodology with a simple example, which also motivates the notion of
tile penalty. For simplicity, assume that the color palette consists of only three colors: black, gray and white.
Figure 12 shows the top 3 retrieved images and the user’s feedback judgement. Image I1 is marked as a positive
example since it actually contains the query image, which exactly represents the sub-image retrieval problem we
are dealing with. Image I2 is also marked as a positive example because it is the enlargement of the query image
(and therefore containing it as well).

Initially retrieved images

 User’s Feedback

Query Q Image I3Image I2

Positive

Image I1

Positive

Negative

Figure 12: Initial set of retrieved images with user’s feedback.

For the sake of illustration, assume a two-level multi-cale representation of database images is used as in
Figure 13. The tile penalties for tiles per database image are initialized as 0.1 for the 10 tiles, i.e., TPi(0) =
0.1, i ∈ [0, 9]. Now, take tile T1 for example. According to De£nition 3, we need to compute the distances DTS
between T1 and the positive/negative image set. In order to do this, £rstly, the distances between T1 and all tiles
at the corresponding subtree levels of all the images in the positive/negative image set should be obtained by
De£nition 1. Then, using De£nition 4 the new penalty of T 1 is updated from 0.1 to 0.090 correspondingly. The
penalties for other tiles is updated in the same way during each feedback iteration. We illustrate the new values
of all tile penalties for database image I1 as a positive example after one feedback iteration in Figure 13. We
can see that after the user provides feedback information, some tiles lose some weight while others gain. For
instance, T1, T2, T3 and T9 receive less penalties now because they only contain the color of grey and/or black
which is/are also in the query. T0, T4, T5, T7 and T8 are penalized more since they all contain the color white.
The new weights for these tiles generally follow the trend that more percentage of white color more penalty.
T6, which is a rotation of the query image maintains its weight for this iteration. This means that our system
is to some extent also capable of perceiving changes such as rotation. Besides, for a closer look at the updated
tile penalties of positive image I1, T1 receives more penalty than T3 now although they are similar to the query
image in the same degree. Note that, according to De£nition 4, both the positive and the negative example images
are used to calculate new tile penalties. And we penalize a tile more if it is also somewhat more similar to the
negative example images compared with other tiles in the positive example image. Thus it is reasonable that the
tile penalty for T1 appears higher than that for T3 after feedback learning, since T1 contains some black color
which is also in the negative example image I3 while T3 contains only the grey color.

4.2.2 Query Feature Update

The RF process using query re£nement strategy is based on the tile re-weighting scheme and all positive and
negative example images. The main concern is that we need to maintain as much as possible the original feature of
query image while introducing new feature elements that would capture more new relevant images. Considering

36

Trees for Tiles

T1,T2,...,T9

 TPdb1(1)= 0.090

 TPdb4(1)= 0.112

 TPdb7(1)= 0.117

T1

 TPdb2(1)= 0.082

 TPdb5(1)= 0.105

T2

T4

T5

T7 T8

 TPdb3(1)= 0.086

 TPdb6(1)= 0.100

 TPdb9(1)= 0.090

T3

T6

T9

 TPdb8(1)= 0.113

TPdb0(1) = 0.105

Tree for Tile T0

T0

Query Image Positive Example I1

Figure 13: Comparison of tile penalty for database image I1 before and after feedback.

the hierarchical tree structure of the query image, we use the most similar tile (with minimum tile penalty) at
every subtree level of each positive image to update the query feature at the corresponding subtree level.

De£nition 5: The updated query feature after k iterations is:

qnkl [j] =

∑p
i=1(1− TPminil(k))× Poskil [j]

∑p
i=1(1− TPminil(k))

where qnkl is the new feature with M dimensions for a subtree (tile) at the lth level of the tree structure for the
query image after k iterations, TPminil(k) is the minimum tile penalty for a subtree (tile) found at the lth level
of the tree structure for the ith positive image after k iterations, Poskil is the feature for the subtree (tile) with
minimum tile penalty at the lth level of the ith positive image’s tree structure after k iterations, and p is the
number of positive images given by the user at this iteration. ♠

Intuitively, we use the weighted average to update the feature for a subtree (tile) of the query, based on the
features of those tiles that have minimum tile penalties within respective positive images. In this way, we try to
approach the optimal query that carries the most information needed to retrieve as many relevant images to the
query as possible.

4.2.3 Image Similarity

With the updated query feature and tile penalties for positive images, we can now de£ne the distance between
images and the query for ranking evaluation at each feedback iteration. In order to locate the best match to the
query sub-image, our image similarity measure tries to £nd the minimum from the distances between the database
image tiles and the query (recall that both the database image and the query sub-image have been modeled by
the tree structure in the same way) at corresponding hierarchical level in the tree structure, weighted by the tile
penalty of corresponding database image tiles.

De£nition 6: The distance between the (updated) query image Q and a database image I at the k th iteration is:

DIk(I,Q) = mini=0..NTTPi(k − 1)×DT (Ii, Qj)

where NT + 1 is the number of all subtrees in the tree structure (tiles) of a database image, and TPi(k − 1) is
the tile penalty for the ith tile of image I after k − 1 iterations. ♠

For the comparison of full tree structures, i = 0 and j = 0, indicating both the full tree structure of the
database image and the query image. For the comparison of subtree structures, i = 1..Nl for each 1 ≤ j ≤

37

(L− 1), where Nl is the number of subtree structures at the lth level of the tree structure and L is the number of
levels of the tree structure, mapped from the hierarchical partition. j indicates the subtree structure at a particular
level of the query image’s tree structure, as a result of shrinking the original query tree structure to make the
comparison with the subtree structures of database images comparable.

Thus, the overall RF process for the CBsIR system can be summarized in the following pseudo algorithm:

1. The user submits a query (sub)-image with no concern about whether the query is a tile or similar to any
tile of any database image;

2. The system retrieves the initial set of images using a similarity measure, which consists of database images
containing tiles similar to the query sub-image;

3. The system collects positive and negative feedback examples identi£ed by the user;

4. For each positive image, update the tile penalties of those tiles representing this image using positive
examples and negative examples;

5. Update the query using positive images and their newly updated tile penalties;

6. Use the revised query and new tile penalties for database images to compute the ranking score for each
image and sort the results;

7. Show the new retrieval results and go to step 3.

4.3 Performance Measures

Up to now, we have integrated relevance feedback with our CBsIR system via the hierarchical tree matching
scheme. Two types of effectiveness for the system should be taken into account. The £rst one (similar to what was
done in the previous section) is about retrieving the original images from which the queries are extracted. This is
evaluated by using the average r-measure and the average precision as discussed in Section 3.7. The second type
of effectiveness is about retrieving all images relevant to the queries, where it becomes appropriate to calculate
the precision and recall for each feedback iteration. For certain applications, it is more useful that the system
brings new relevant images (found because of the update of query feature from previous feedback) forward into
the top range rather than keeping those already retrieved relevant images again in the current iteration. For other
applications, however, the opposite situation applies and the user is more interested in obtaining more relevant
images during each iteration including those s/he has already seen before. Besides, it is more helpful that the
system learn the user’s intention within as fewer iterations as possible. Given these observations, we use two
complementary measures for precision and recall as follows:

1. New Recall: the percentage of relevant images that were not in the set of the relevant images retrieved
during previous iterations over the number of relevant images in the answer set. (Measured only after the
£rst iteration, i.e., after the £rst feedback cycle.)

2. New Precision: the percentage of relevant images that were not in the set of the relevant images retrieved
during previous iterations over the number of retrieved images at each iteration. (Also measured after the
£rst iteration.)

3. Actual Recall: the percentage of relevant images at each iteration over the number of relevant images in
the answer set.

4. Actual Precision: the percentage of relevant images at each iteration over the number of retrieved images
at each iteration.

38

The new recall and precision explicitly measure the learning aptitude of the system; ideally it retrieves more new
relevant images as soon as possible.

Moreover, we also try to measure the total number of distinct relevant images the system can £nd during all
the feedback iterations. This is a history-based measure that implicitly includes some relevant images “lost” (out
of the top presented images) in the process. We call them cumulative recall and cumulative precision de£ned as
follows:

1. Cumulative Recall: the percentage of distinct relevant images from all iterations so far (not necessarily
shown at the current iteration) over the number of relevant images in the prede£ned answer set.

2. Cumulative Precision: the percentage of distinct relevant images from all iterations so far over the number
of retrieved images at each iteration.

Table 11 exempli£es the measures mentioned above, assuming the answer set for a query contains 3 images
A, B, C and the number of returned (presented) images is 5.

Table 11: Cumulative/New/Actual Recall and Precision

Iteration Retrieved Cumulative New Actual
Relevant Ones Recall/Precision Recall/Precision Recall/Precision

1 A 33.33%/20% –/– 33.33%/20%
2 A 33.33%/20% 0%/0% 33.33%/20%
3 B,C 100%/60% 66.67%/40% 66.67%/40%

In addition, we also measure each method’s storage overhead and query processing (time) cost.

4.4 Experiments and Results

We test the proposed relevance feedback approach for the CBsIR system using the image database mentioned in
Section 3.7.2. The broad-domain image dataset consists of 10,150 color JPEG images: a mixture of the public
Stanford10k4 dataset and some images from one of COREL’s CD-ROMs, each of which falls into a particular
category – we use 21 such categories5. Some categories do not have rotated or translated images, but others do.
On average, each answer set has 11 images, and none of the answer sets has more than 20 images, which is the
amount of images we present to the user for feedback during each iteration. We manually crop part of a certain
image from each of the above categories to form a query image set of 21 queries (one for each category). Images
of the same categories serve as the answer sets for queries (one sample query and its corresponding answer set are
shown in Figure 14). The size of the query image varies, being on average 18% the size of the database images.
The following performance results are collected from the online demo6 on a computer running Linux 2.4.17 with
two Pentium III CPUs and 256MB of main memory.

In our experiments, the maximum number of iterations explored is set to 10 (users will give feedback 9 times
by pointing out which images are relevant (positive)/irrelevant (negative) to the query) and we present the top
20 retrieved images at each iteration. Note that in our system the series of feedback iterations between queries
is independent, i.e., the information collected from the user is not integrated into the search for the next queries,
even if the very same query is submitted to the system again. This consideration is based on the observation of
the subjectivity of human perception and the fact that even the same person would perceive the same retrieval
result differently at different times.

4http://www-db.stanford.edu/∼wangz/image.vary.jpg.tar.
5The union of http://db.cs.ualberta.ca/mn/CBIRone/ and http://db.cs.ualberta.ca/mn/CBIRtwo/
6http://db.cs.ualberta.ca/mn/CBsIR.html

39

Query Image Answer Set

Figure 14: A sample query (sub)image and its relevant answer set.

Table 12: Comparison of retrieving the original images using BIC by feedback iterations.
BIC parameter (SIZE) Average No. of Iterations needed for Rank ≤ top 20

64 quantized colors 1.1
16 quantized colors >2.3

Although we have already shown the good retrieval accuracy of £nding the original images by using the BIC
method for image indexing in our CBsIR system, here we further study the effectiveness of our CBsIR system
using BIC to retrieve the original images in terms of feedback iterations. Besides, we tune the BIC parameter
(SIZE – the number of quantized colors) to further investigate the HTM-based CBsIR system using the BIC
method and relevance feedback technique, comparing the effectiveness as well as ef£ciency and storage cost for
image feature extraction having different degrees of information.

In Table 12, it is clear that using the 64 quantized colors the hit rate of the original images can almost reach
the optimal value.

For the retrieval accuracy of relevant images using 64 quantized colors in the BIC method, the results are
shown in Figure 15 and Figure 16 by the measures proposed in Section 4.3.

As it can be clearly seen that after 5 iterations the system has already learned most of the information it could
learn, i.e., the information gain (given by the new recall and new precision curves) is nearly null. On the other
hand, after only 5 iterations the actual recall and actual precision values increased by 55% and 60% respectively.
It is also noteworthy to mention that the stable actual precision value of nearly 40% is not as low as it may seem at
£rst. The answer sets have an average of 11 images and since the user is presented with 20 images, the maximum
precision one could get (on average) would be about 50%. Hence, in this perspective 40% of actual precision
is not a low value. Similarly 70% of actual recall means that on average 8 images out of the 20 presented are
actually relevant after 5 iterations, which also seems to be quite reasonable. We also obtained about 85% for
cumulative recall and about 50% for cumulative precision. The reason for the higher values than those for actual
recall and actual precision is because some relevant images that may be “lost” in subsequent iterations are always
accounted for in these measures.

Figure 17 and Figure 18 give the glimpse of screenshots about the online demo using 64 quantized colors in
BIC for a sample query during the £rst two iterations.

On the aspect of effectiveness, using 16 quantized colors expectably yields a worse accuracy than using
64 quantized colors in the BIC method. Looking at Figure 19 and Figure 20, the former achieves about 60%
for the £nal actual recall and about 30% for the £nal actual precision, both about 10% lower than the latter as

40

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

R
ec

al
l

of Iteration

Actual
Cumulative

New

Figure 15: Effectiveness measures by actual recall, cumulative recall and new recall using 64 quantized colors in
BIC.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 3 4 5 6 7 8 9 10

Pr
ec

is
io

n

of Iteration

Actual
Cumulative

New

Figure 16: Effectiveness measures by actual precision, cumulative precision and new precision using 64 quantized
colors in BIC.

41

Figure 17: Results of online demo using 64 quantized colors in BIC for a sample query after the £rst iteration.
(The user has given feedback once.)

42

Figure 18: Results of online demo using 64 quantized colors in BIC for a sample query after the second iteration.

43

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

R
ec

al
l

of Iteration

Actual
Cumulative

New

Figure 19: Effectiveness measures by actual recall, cumulative recall and new recall using 16 quantized colors in
BIC.

shown in Figure 15 and Figure 16. The results obtained using 16 quantized colors are also reasonable. The
£nal cumulative recall value increases to 70% from the actual recall value being about 60%. Similarly, the £nal
cumulative precision is brought up to about 40%. The learning aptitudes of the system using different informative
degrees of the feature representation (measured by the new recall and new precision shown in Figure 19 and
Figure 20) follow a similar trend, i.e., most of the information is learned by the £rst 5 iterations. However, it
should be noticed that when using 16 quantized colors the left 5 iterations contribute more to reach the £nal
cumulative/actual recall and precision at the 10th iteration, compared with that of using 64 quantized colors. As
shown in Figure 21 and Figure 22, using 16 colors the information gain between the 6th iteration and the 10th

iteration is 22.1% for new recall measure and 21.6% for new precision measure; while for 64 quantized colors,
these values drop to 10.5% and 15.7% respectively. This is because the result and information gain of using
64 quantized colors are just already better than those of using 16 quantized colors in the previous 5 iterations.
Not as much as information left could be learned by the feature representation using 64 quantized colors. The
switch point of the two curves is observed in Figure 21 and Figure 22, appearing in between the 4th and the 5th

iterations.
Figure 23 shows the average cost, measured in seconds, to process a query during each iteration, i.e., to access

all disk-resident data, complete the learning from the user’s feedback at the current iteration (not applicable to the
£rst iteration), obtain the distance between the query image and database images and sort them by their resulting
ranks. The £rst iteration takes, on average, slightly less than 2 seconds when using 64 quantized colors and
0.6 second when using 16 quantized colors, whereas each subsequent iteration requires about 2.5 seconds and 1
second respectively for the two feature representations. This slight increase is due to the overhead for computing
and updating the tile penalties. If to compare these two image feature representations, using 64 quantized colors
is 3.5 times slower than only using 16 quantized colors. With relevance feedback, the difference is narrowed
down a little bit with 3 times slower when using 64 quantized colors.

In order to extract image features from the image database applying the BIC method and generate the meta-
data £le, the use of either 64 quantized colors or 16 quantized colors requires about 25 minutes on a computer
running Linux 2.4.20 with AMD Athlon XP 1900+ CPU and 1GB of main memory. This procedure can never-
theless be done off-line. The storage cost for the disk-resident metadata is 10.5 MB (only about 20% the size of

44

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 3 4 5 6 7 8 9 10

Pr
ec

is
io

n

of Iteration

Actual
Cumulative

New

Figure 20: Effectiveness measures by actual precision, cumulative precision and new precision using 16 quantized
colors in BIC.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2 3 4 5 6 7 8 9 10

N
ew

 R
ec

al
l

of Iteration

64 Quantized Colors
16 Quantized Colors

Figure 21: New recall (de£ned from the second iteration) comparison using 64 quantized colors and 16 quantized
colors in BIC.

45

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2 3 4 5 6 7 8 9 10

N
ew

 P
re

ci
si

on

of Iteration

64 Quantized Colors
16 Quantized Colors

Figure 22: New precision (de£ned from the second iteration) comparison using 64 quantized colors and 16
quantized colors in BIC.

the image database), while using 16 quantized colors needs proportionally less storage, namely 2.7 MB.
In summary, our proposed relevance feedback-based approach for content-based sub-image retrieval (using

64 quantized colors in the BIC method for image indexing) was able to achieve a very good retrieval accuracy
with small space cost and fast retrieval time including the overhead due to the feedback learning. When using
only 16 quantized colors in BIC, the query processing time cost is cheaper. While the retrieval accuracy suffers,
it is still acceptable.

4.5 Summary

In this section, we have addressed how relevance feedback can be used to improve the performance of CBsIR.
We present the supervised learning method known as relevance feedback, which is based on a tile re-weighting
scheme that assigns penalties to each tile of database images and updates those of all relevant images using both
the positive and negative examples identi£ed by the user. Moreover, the user’s feedback information can also be
used to re£ne the image similarity measure by weighting the tile distances between the query and the database
image tiles with their corresponding tile penalties. We combine the learning method with the BIC approach
for image indexing to improve the performance of content-based sub-image retrieval. Our results on an image
database of over 10,000 images suggest that the learning method is quite effective for CBsIR.

5 Conclusions and Future Work

The main contribution of this thesis is the proposal of hierarchical tree matching (HTM) scheme for solving the
thus far much less explored problem of content-based sub-image retrieval (CBsIR) and its accompanying issue
on object localization. The novelty in this new method is the characterization of images in terms of hierarchical
tiles that captures the spatial correlation of the color features and makes for fast and precise object matching.
As a summary of the new method, we adopt a multi-scale hierarchical partition to both the database and query
images. The average color feature of image tiles is associated with a hierarchical tree structure stored in an
index sequence so as to yield fast access during search phase. For the search strategy, we compare the query

46

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8 9 10

Se
ar

ch
 T

im
e

(s
ec

.)

of Iteration

64 Quantized Colors
16 Quantized Colors

Figure 23: Comparing query processing ef£ciency using different BIC histograms at each iteration.

image’s tree structure with the sub-tree structures of the database images at all hierarchical levels and use the
average distance between the leaf nodes as the distances between the query tree and the sub-trees of the database
images, which introduces local spatial information to provide more veracious matching. Experimental results on
a collection of heterogeneous images show that our method achieves both good retrieval accuracy and ef£ciency.
As a side contribution we have shown that one can obtain very different rank measures depending on the distance
granularity and ranking criteria in the presence of ties.

Certainly there is room for improvement and a few possible venues for further investigation include the
design of disk based access structure for the hierarchical tree (to enhance the scalability for larger databases), the
use of better (more powerful yet compact) representation for the tile features, and the incorporation of machine
learning techniques to shorten the gap between low-level image features and high-level semantic contents of
images so as to better understand the user’s intention. In the latter part of this thesis, we have studies two of the
above issues to improve the performance of the CBsIR system using the hierarchical tree matching scheme. On
one hand, we adopt the use of a compact and ef£cient CBIR approach suitable for broad image domains called
BIC [54] for image indexing. Experimental results show the BIC feature representation for the image tiles is
far more discriminative than the statistic-based feature representation (average color) because of BIC’s simple
and powerful image analysis algorithm based on a border/interior pixel classi£cation. The logarithmic distance
function also helps diminish the distortion in histogram comparison and provide a compact representation of
visual features. One other possible improvement of using the BIC approach for feature extraction is to try to
solve the problem that image background, which usually covers the majority of image area but does not determine
the semantic of the image, could cause distortion in similarity measure by performing “background elimination”
during the image analysis process. This action would detect background pixels according to some criterion and
exclude these pixels when computing the BIC histogram. In this way, the information that distracts the image
semantic is excluded from the image feature representation. Thus, better similarity hit could be expected during
the search phase.

On the other hand, the supervised learning method - relevance feedback is investigated to incorporate human
perception subjectivity into the retrieval process, trying to capture semantic contents of image in terms of objects.
The query re£nement method in relevance feedback is integrated with the CBsIR system by applying a tile re-
weighting scheme to assign penalties to tiles that compose database images so as to better approach the user’s

47

intention. The tile penalties of positive images based on both the positive and negative examples identi£ed by
users (without explicit sub-image feedback) are used to update the query for an improvement in the retrieval
accuracy of the next iteration. Our experimental results on the general-purpose image database demonstrate the
clear performance improvement by this framework compared to that of the previous CBsIR system [57], which
uses only average color as the feature representation for image tiles and allowed only one iteration of retrieval.
(Note that as far as we know, there is no research that uses relevance feedback within CBsIR systems and it is
not comparable to the region-based retrieval systems although they aim at a similar retrieval goal.) Some venues
for future work include integrating other powerful learning algorithms into CBsIR, handling the difference in
image resolution between possible queries and target images, and accomplishing a more friendly user interface
that allows real time query de£nition.

In general, the algorithms we propose for the CBsIR problem are not only simple and inexpensive but also
quite effective and might be used to automatically solve the adjunctive object localization problem existing in
various applications, such as tracking of objects in a video sequence. It is unreasonable to expect any CBsIR
system to be absolutely foolproof. However, the goal is to build relatively better CBsIR systems that can offer
applications not considered and/or hard to be solved by RBIR with a similar perception on the image content. In
this direction, based on the experiments, we feel that there is a compelling reason to use our HTM scheme and
corresponding RF approach as one of the basic components in such systems.

A Simulation of HTM’s Search Process

A high-level simulation of the search process can be viewed in the following series of £gures from Figure 24 to
Figure 28.

48

Figure 24: Tree structures modeling the hierarchical partition of the image.

49

Figure 25: Matching the full trees of the query and the database image.

50

Figure 26: Matching the sub-trees of the query and a certain tile at the second level of the hierarchical partition.

51

Figure 27: Obtained distances between the query and each tile of the database image after two kinds of match.

52

Figure 28: Image similarity measure - £nding the minimum among the obtained distances as the distance between
the query and the database image.

53

References

[1] J. Rocchio. Relevance feedback in information retrieval. In The SMART Retrieval System: Experiments in
Automatic Document Processing (Salton, G. eds), pages 313–323, Prentice-Hall.

[2] J. C. Falmagne. Psychophysical measurement and theory. In Handbook of Perception and Human Perfor-
mance, Vol. I, chapter 1. Willey Interscience, 1986.

[3] P. J. Rousseeuw and A. M. Leroy. Robust regression and outlier detection. John Wiley and Sons, 1987.

[4] L. Kaufman and P. J. Rousseuw. Finding Groups in Data - An Introduction to Cluster Analysis. Wiley-
Interscience, 1990.

[5] H. Samet. em The Design and Analysis of Spatial Data Structures. Addison-wesley Publishing Company,
Inc, 1990.

[6] M. Swain and D. Ballard. Color indexing. Intl. Journal of Computer Vision, vol. 7, no. 1, pages 11–32, 1991.

[7] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison-Wesley, 1992.

[8] M. Stricker and M. Swain. The capacity of color histogram indexing. In Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition, pages 704–708, June 1994.

[9] J. Ashley, R. Barber, M. Flickner, et al. Automatic and semiautomatic methods for image annotation and
retrieval in QBIC. In Proc. of SPIE - Storage and Retrieval for Image and Video Databases III, volume 2420,
pages 24–35, 1995.

[10] J. Hafner, H. Sawhney, W. Equitz, M. Flickner, and W. Niblack. Ef£cient color histogram indexing for
quadratic form distance functions. IEEE Trans. on Pattern Analysis and Machine Intelligence, 17(7):729–
736, July 1995.

[11] J. Bach, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz, R. Humphrey, R. Jain, and C. Shu. The Virage
image search engine: An open framework for image management. in Proc. of SPIE Storage and Retrieval for
Image and Video Databases IV, San Jose CA, USA, pages 76–87, 1996.

[12] G. Pass, R. Zabih, and J. Miller. Comparing images using color coherence vectors. In Proc. of ACM
Multimedia 96, pages 65–73, 1996.

[13] J. -Y. Chen, C. A. Bouman, and J. P. Allebach. Multiscale branch and bound image database search. In
Storage and Retrieval for Image and Video Database V, Proc. of SPIE 3022, pages 133-144, 1997.

[14] W. Grosky. Managing multimedia information in database systems. Communications of the ACM 40, No.
12, December 1997.

[15] W. Grosky, R. Jain, and R. Mehrotra. The handbook of multimedia information management. Prentice-Hall,
Inc. 1997.

[16] J. Huang, S. R. Kumar, M. Mitra, W. Zhu, and R. Zabih. Image indexing using color correlograms. In Proc.
of the IEEE Comp. Soc. Conf. Comp. Vis. and Patt. Rec., pages 762–768, 1997.

[17] W. Ma. NETRA: a toolbox for navigating large image databases. Ph.D dissertation, Dept. of Electronical
and Computer Engineering, Univ. of California at Santa Barbara, 1997.

54

[18] Y. Rui, T. S. Huang, and S. Mehrotra. Content-base image retrieval with relevance feedback in MARS. In
Proc. of the IEEE Intl. Conf. on Image Procssing, pages 815–818, 1997.

[19] S. Smith and J. Brady. Susan - a new approach to low level image processing. In International Journal of
Computer Vision, 23(1):45–78, May 1997.

[20] M. Stricker and A. Dimai. Spectral covariance and fuzzy regions for image indexing. Machine Vision and
Applications, 10:66-73, 1997.

[21] S. Sclaroff, L. Taycher, and M. L. Cascia. ImageRover: a content-based image browser for the World Wide
Web. Boston University, CS Dept. Technical Report 97-005, 1997.

[22] S. Belongie, C. Carson, H. Greenspan, and J. Malik. Color- and texture-based image segmentation using
EM and its application to content-based image retrieval. In Proc. of the 8th Intl. Conference on Computer
Vision, pages 675–682, 1998.

[23] Y. Gong. Intelligent image databases: towards advanced image retrieval. Kluwer Academic Publishers,
1998.

[24] V. Gaede and O. Günther. Multidimensional access methods. ACM Computing Surveys, 30(2):170–231,
1998.

[25] J. Huang. Color-spatial image indexing and applications. Ph.D dissertation, Dept. of Computer Science,
Cornell University, 1998.

[26] Y. Ishikawa, R. Subramanya, and C. Faloutsos. Mindreader: Query Database Through Multiple Examples.
In Proc. of the 24th Intl. Conf. Very Large Database (VLDB), pages 218–227, 1998.

[27] D. W. Jacobs, D. Weinshall, and Y. Gdalyahu. Condensing image databases when retrieval is based on
non-metric distances. In Proc. of the Intl. Conf. on Computer Vision (ICCV), pages 596–601, 1998.

[28] K-S. Leung and R. Ng. Multiresolution subimage similarity matching for large image databases. In Proc.
of SPIE - Storage and Retrieval for Image and Video Databases VI, pages 259–270, 1998.

[29] P. Montesinos, V. Gouet, and R. Deriche. Differential invariants for color images. In Proc. of the 14th Intl.
Conf. on Pattern Recognition, 1998.

[30] W. Niblack, X. Zhu, J. L. Hafner, et al. Updates to the QBIC system. In Proc. of SPIE - Storage and
Retrieval for Image and Video Databases VI, volume 3312, pages 150–161, 1998.

[31] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions with applications to image databases. In
Proc. of the 6th Intl. Conf. on Computer Vision, pages 59–66, 1998.

[32] A. Del Bimbo. Visual Information Retrieval. Morgan Kaufmann, 1999.

[33] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addision Wesley, 1999.

[34] C. Carson et al. Blobworld: A system for region-based image indexing and retrieval. In Proc. of the 3rd
Intl. Conf. on Visual Information Systems, pages 509–516, 1999.

[35] E. Chavez, G. Navarro, R. Baeza-Yates, and J. L. Marroquin. Searching in metric spaces. ACM Computing
Surveys, 1999.

[36] G. Lu. Multimedia Database Management Systems. Artech House, 1999.

55

[37] Y. Rui, and T. S. Huang. A novel relevance feedback technique in image retrieval. In Proc. of the 7th ACM
Conf. on Multimedia, 67–70, 1999.

[38] J. R. Smith, V. Castelli, and C. S. Li. Adaptive storage and retrieval for large compressed images. In Proc.
of SPIE - Storage and Retrieval for Image and Video Databases VII, volume 3656, pages 467–478, 1999.

[39] N. Sebe, M. S. Lew, and D. P. Huijsmans. Multi-scale sub-image search. In Proc. of the 7th ACM Intl. Conf.
on Multimedia (Part II), pages 79–82, 1999.

[40] N. Vasconcelos and A. lippman. Learning from user feedback in image retrieval systems. In Proc. of
NIPS’99, Denver, Colorado, 1999.

[41] J. Li, J. Z. Wang, and G. Wiederhold. IRM: Integrated region matching for image retrieval. In Proc. of the
8th ACM Intl. Conf. on Multimedia, pages 147–156, 2000.

[42] Y. Rui and T. S. Huang. Optimizing learning in image retrieval. In Proc. of the IEEE Intl. Conf. on Computer
Vision and Pattern Recognition, pages 236–245, 2000.

[43] S. Chan, P. Lewis, K. Martinez, J. Stevenson, and C. Lahanier. Handling sub-image queries in content-based
retrieval of high resolution art images. In International Cultural Heritage Informatics Meeting: Short Paper
Track 6, September 2001.

[44] Z. Chen, W. Liu, F. Zhang, M. Li, and H. Zhang. Web mining for web image retrieval. Journal of the
American Society for Information Science and Technology, Vol. 52, No. 10, pages 831–839, 2001.

[45] V. Gouet and N. Boujemaa. Object-based queries using color points of interest. In Proc. of the IEEE
Workshop on Content-based Access of Image and Video Libraries (CBAIVL’01, pages 30–36, 2001.

[46] F. Jing, B. Zhang, F. Lin, W. Ma, and H. Zhang. A novel region-based image retrieval method using
relevance feedback. In Proc. of the 3rd Intl. Workshop on Multimedia Information Retrieval, pages 28–31,
2001.

[47] R. O. Stehling, M. A. Nascimento, and A. X. Falcão. An adaptive and ef£cient clustering-based approach
for content-based image retrieval in image databases. In Proc. of the 2001 Intl. Database Engineering and
Application Symposium, pages 356–365, 2001.

[48] R. F. Santos, A. Traina, C. Traina, and C. Faloutsos. Similarity search without tears: The omni-family of
all-purpose acceess methods. In Proc. of the 17th IEEE Intl. Conf. on Data Engineering, pages 623–630,
2001.

[49] S. Tong and E. Chang. Support vector machine active learning for image retrieval. In Proc. of the 9th ACM
Intl. Conf. on Multimedia, pages 107–118, Ottawa, Canada, 2001.

[50] M. A. Nascimento and V. Chitkara. Color-base image retrieval using binary signatures. In Proc. of the 2002
ACM Symposium on Applied Computing, pages 687–692, 2002.

[51] M. A. Nascimento, J. Luo, and M. Xue. Scale-preserving sub-image retrieval. Technical Report, Dept. of
Computing Science, Univ. of Alberta, Canada, 2002.

[52] T. S. Huang, et al. Learning in content-based image retrieval. In Proc. of the 2nd Intl. Conf. on Development
and Learning, pages 155–162, 2002.

56

[53] R. O. Stehling, M. A. Nascimento, and A. X. Falcão. Techniques for color-based image retrieval. In C.
Djeraba, editor, Multimedia Mining - A Highway to Intelligent Multimedia Documents, chapter 6. Kluwer
Academics, 2002.

[54] R. O. Stehling, M. A. Nascimento, and A. X. Falcão. A compact and ef£cient image retrieval approach
based on border/interior pixel classi£cation. In Proc. of the 11th Intl. Conf. on Information and Knowledge
Management, pages 102-109, 2002.

[55] T. Wang, J. Shi, and M. A. Nascimento. Experimental results towards content-based sub-image retrieval.
In Proc. of the 2002 IEEE Intl. Conf. on Information Technology: Coding and Computing (ITCC), pages
230–235, 2002.

[56] F. Jing, M. Li, L. Zhang, H. Zhang, and B. Zhang. Learning in region-based image retrieval. In Proc. of the
2nd Intl. Conf. on Image and Video Retrieval, pages 206–215, 2003.

[57] J. Luo and M. A. Nascimento. Content-based sub-image retrieval via hierarchical tree matching. In Proc.
of the 1st ACM Intl. Workshop on Multimedia Databases, pages 63–69, 2003.

[58] R. O. Stehling, M. A. Nascimento, and A. X. Falcão. Cell histograms versus color histograms for image
representation and retrieval. Knowledge and Informaiton Systems Journal (KAIS), 5(3), pages 315–336, 2003.

57

