
Towards an Economics Model for Software

Development in Support of B2C Services

Brendan Tansey1 and Eleni Stroulia1

Computer Science Department, University of Alberta, Edmonton, AB, T6G 2E8,
Canada {tansey,stroulia}@cs.ualberta.ca

Abstract. Economic models are critical for business success because
they can be used to determine the costs and benefits associated with
making a business decision. As the economy moves away from traditional
goods and towards delivering services, the need for an accurate economic
model for evaluating software-development decisions of service-delivering
businesses is paramount. More specifically, the research problem is to
develop an economic model for the development, maintenance, and evo-
lution of software systems in support of B2C services. In this paper, we
describe our work on an initial economics-modeling framework for ap-
plications, following the service-oriented architecture style. We present
methods for calculating both the cost of developing a new service and
the value generated by introducing the service to the market. The con-
junction of these two concepts enables the estimation of a business’s ROI
when new software development is required to deliver a new service. An
example study demonstrates the concepts described herein.

1 Introduction

The primary goal of any business is to make money [23]. To that end, the business
must plan its future actions based on all relevant information. If this information
is not readily available, it may potentially be inferred or predicted based on
models. Among the most important models used for this purpose are economics
models, which can help the company predict costs and revenues and can, in turn,
predict the future financial state of the company. Having the ability to make
accurate financial predictions is crucial during certain points in the lifecycle of
the company, such as during the inevitable phases of expansion; predicting the
costs and benefits of various expansion options can help determine which option
to pursue.

Consider, for example, the fictional online book seller Amazin.com that is
looking forward to an expansion of their services. Based on their available re-
sources, they have determined that they can expand in only one direction at the
current time, and their expansion options are limited to two strategies: they can
either enter into the online music market by selling CDs along with books, or they
can partner with another company and sell their products for a per-transaction
fee. Each of these strategies has potential benefits, but at what cost? Can the
additional revenue created by each option exceed the cost of implementing the

option? Which option provides the highest return-on-investment (ROI)? An eco-
nomic model can help answer these questions1.

Traditionally, economic models for software development have focused on the
prediction and analysis of the costs associated with the development of an ap-
plication [7]. The implicit assumption is that the value of a software product is
known from the outset, based on a contract between the software company and
the client. As the value is constant, profit can be maximized simply by reduc-
ing operating and development costs. However, much development is currently
evolutionary, based on a common framework or on pre-built commercial off-the-
shelf (COTS) components [9]. This includes service-oriented applications2 that
are comprised of a collection of simpler services communicating together to cre-
ate a larger, more functional, service. As such, development of service-oriented
applications (SOAs) falls outside the scope of conventional software economic
models. This increasingly prevalent software-development lifecycle model neces-
sitates the creation of an appropriate economic model.

An economic model for SOAs should help address two basic questions: 1)
What is the cost of the SOA project? –and– 2) What is its value? Both of these
questions have complex and multifaceted answers, and there are many contrib-
utors to both cost and value. This paper covers only the tip of the proverbial
iceberg, in that it concentrates on only the basic cost of creating a service, and
a major contributor to value that is seldom taken into account. In effect, this
paper will serve as a basis for further cost/value research in the area of service-
oriented computing. This in mind, based on the answers to the above questions,
the ROI of the project can be determined, which is at the crux of making strate-
gic decisions, such as those detailed in the Amazin expansion decision above.

Traditional software cost models such as COCOMOII [7] can be used to ad-
dress the first question. There exists, however, an interesting difference between
standard use of these models and what is required in this case: since SOAs gen-
erally utilize a reuse-based development process, the portion of the system that
has already been developed must be taken into consideration. In effect, the cost
of creating the system must be a function of the complexity of the transformation
from a collection of pre-built components to a final product.

The answer to the question of value estimation is more elusive. There is value
in the immediate financial gains produced by marketing a service; in addition, a
non-tangible future value also exists because of the potential services that could
“easily” be built using the constituents of the current service. The flexibility
and reusability of a service composition [17] can be modeled with real option

theory [9]. An option, from a business perspective, gives its owner the right to

1 For the curious, this motivation is inspired by Amazon.com’s actual expansion into
the CD market in June 1998 [2].

2 The term “service” in this paper is used in two senses: it denotes (a) a business
interaction between an organization and a customer and (b) a software component.
Note that the two terms are related: business that deliver services to customers
through web-based applications are increasingly likely to adopt the service-oriented
architecture style for the development of their systems since that enables the flexible
adaptation of these systems in response to their strategic decisions.

buy or sell an asset at a fixed price on a variable market for a limited time.
In software-engineering terms, when systems are composed of small interlocking
components (as is the case with SOAs), there exists the option to replace any
component with an upgrade, which would incur some cost and result in the
benefit of an increase in the value of the service delivered by the system.

Real-option analysis, in conjunction with traditional service valuation market
research, enables the determination of the value of an SOA project. Combined
with the cost analysis of developing and maintaining the system, a complete
service-based economic model can be developed. The following sections will fur-
ther expand on these points. The Methodology section will detail the method-
ology used in determining the costs and values associated with the economic
model, an Illustrative Example will demonstrate the usefulness of the model,
and the Related Research section will discuss the related work in the fields of
cost and value determination.

2 Methodology

The methodology of this study is composed of two parts: the determination of
cost using COCOMOII, and the determination of value using the Net-Present
Value model integrated with Real-Options Theory.

2.1 Cost Determination

A number of COCOMOII parameters must be calibrated for a specific soft-
ware development environment. COCOMOII.2000 comes with a set of defaults
in place, determined through testing the model on 161 sample projects. While
these parameters are adequate as a starting point, they will likely produce less
accurate results than if the model were calibrated to match a specific develop-
ment environment.

COCOMOII is essentially a collection of models that can be used for predict-
ing the effort involved in multiple stages of the product lifecycle using various
approaches to development. One of the included models deals with a software
project based on the reuse of previously created code, which fits well with the
reuse-based development environment of web services. The reuse model deter-
mines the difference between the existing reusable code and the envisioned sys-
tem in terms of logical lines of code to be written. This difference can then be
converted to a measure of effort required to make this alteration. The intuition
behind this model is that the complexity of the change is a function of the dis-
tance from the old code pieces to the new service, and the cost of performing
the change is a function of this complexity.

In this section, we briefly present the equations, parameters, and variables
of COCOMOII.2000 that are relevant to our work. The details of the model,
its parameters, their default values, and how they should be calibrated can be
found in the COCOMOII.2000 model manual [5].

The steps involved in the effort calculation are shown in (1), (2), and (3).

Equivalent KSLOC = Adapted KSLOC ∗
(

1 −
AT

100

)

∗ AAM (1)

Where: AAM =

[AA+AAF (1+(0.02∗SU∗UNFM))]
100 , for AAF ≤ 50

[AA+AAF+(SU∗UNFM)]
100 , for AAF > 50

(2)

AAF = (0.4 ∗ DM) + (0.3 ∗ CM) + (0.3 ∗ IM) (3)

The model parameters, mentioned in the above equations, are as follows.
AAM is the Adaptation Adjustment Modifier, and AAF is the Adaptation Ad-
justment Factor; they represent the effort of fitting the adapted code to an exist-
ing product, and the relative size of the modification, respectively. Equivalent KSLOC
(EKSLOC) is the number of logical source lines of code (SLOC), divided by
1000, required to create the new service. This parameter is a measure of effort,
not an actual count of code lines to be written. It reflects the effort that the
“translation” of the existing service to the new one will require. AT is the per-
centage of code that can be translated using automatic translation tools from
the existing system to the new one, thereby not requiring any effort. AA is the
assessment and assimilation increment, which is a measure of effort required to
determine if the old code base is suitable for the new project. SU is the level
of software understanding increment that models the quality and complexity of
the old code base. UNFM is the familiarity of the programming team with the
code that they are modifying. AA, SU , and UNFM are project-specific parame-
ters that need to be set using the calibration guidelines in the COCOMOII.2000
model manual [5].

This leaves four parameters that need to be calculated before the model
can be used to predict effort: Adapted KSLOC, DM , CM , and IM . These
parameters are based directly on the project in question. Adapted KSLOC is
the number of logical source lines of code that need to be modified in order to
adapt the existing project to the new one. Physical lines of code can be translated
to logical lines of code (i.e., the number of code statements) through the use of
an application such as CodeCount [26] or LOCC [8]. DM represents the percent
of the original design that is modified and is a fairly subjective value. CM is the
percent of the code base that is modified. IM is the percent of integration into the
new code base that is required required (i.e., through automatically translated,
manually translated and newly written code), and measures the percentage of
the code that must be retested to ensure proper integration of the reused code. If
CM and DM are both equal to zero, then SU is also set to zero. This is because
if no changes to the code are necessary, then programmer understanding of the
code is irrelevant.

In order to translate EKSLOC into a useful effort measure, the COCOMOII
Post-Architecture Model can be used, which is shown in (4), (5), and (6).

PM = A ∗ SizeE ∗
17
∏

i=1

EMi (4)

E = B + 0.01 ∗
5

∑

j=1

SFj (5)

Size =

(

1 +
REV L

100

)

∗ (New KSLOC + EKSLOC) (6)

In this model, PM is the amount of effort required for the entire translation
process. It is measured in Person-Months of programmer time required to make
the alteration. A is the effort coefficient, which should be calibrated to reflect
the development environment. There are 17 EMis, Effort Multipliers, to control
the rate at which various factors of the software development process affect the
effort required to perform a change. There are 5 SFjs, Scale Factors, which de-
termine the effect of economies or diseconomies of scale on the software project.
B is the scaling base-exponent, which should be calibrated based on the specific
development environment. REV L is the requirements evolution and volatility
level, which is the percentage of code that is discarded from the original mod-
ule during the modification. New KSLOC is the amount of new code that is
required for the incorporation of the reusable code into the final product.

The time required to perform a change can also be calculated using COCO-
MOII. The equation for this is as follows in (7) and (8).

TDEV =
[

C ∗ (PMNS)
F
]

∗
SCED%

100
(7)

F = (D + 0.2 ∗ [E − B]) (8)

TDEV is the time required to perform the required changes, measured in
calendar months. B, C, D, and E are environment-specific coefficients. E cor-
responds to the value for E from the effort calculation; B, C, and D are unique
to the TDEV equation and should be calibrated. PMNS is the nominal effort
involved in making the required changed; it is measured in person-months, and
does not take the SCED parameter into account. SCED is the required sched-
ule compression: it ranges from 1.43 for an accelerated schedule to 1.00 for a
drawn-out schedule.

Once the effort, measured in person-months, has been determined, it can
be directly translated into a monetary amount by simply multiplying it by the
monthly salary of the programmers involved in the project. This identical pro-
cedure can be used to determine the cost of maintaining a service as well, as
the pre-maintenance version of the service can correspond to the reusable ver-
sion, and the post-maintenance version can correspond to the final product in the
above model. The difference between an initial reuse model and the maintenance
model is that the scope of the change is usually fairly limited during mainte-
nance, but this is not necessarily true for strict reuse; this implies that the values
for Adapted KSLOC, DM , CM , and IM will be lower during maintenance.

There is one point of contention to the use of this model for web services:
the usage of SLOCs as a relevant metric when computing effort involved in a
change has recently been questioned. Basing an effort calculation on the change
in an interface specification may be more relevant than differencing SLOC counts

for environments where web service specification languages such as WSDL and
BPEL are used. This alternate approach can be undertaken by basing the effort
calculations on a measure of the change in Function Points (FPs), which are the
inputs and outputs to a system, shared files or interfaces, queries, and logical
collections of user data. COCOMOII supports the use of FPs, in that the FP
values can be converted to an equivalent number of SLOCs for use in the pre-
diction models. Such conversion ratios do not yet exist for WSDL and BPEL.
In principle, one should calibrate this FP-to-SLOC ratio in the context their
own service-oriented development environment to obtain an accurate estimate
of effort. This can be done by using the effort and lines of code written in past
projects as training points for linear regression, formulated in such a way that
the weight on the model corresponds to the desired FP-to-SLOC ratio.

2.2 Value Determination

To estimate the value of an envisioned service, developed as an extension of a cur-
rent one, the standard corporate valuation tool of Net Present Value (NPV) [28]
can be utilized. NPV determines the future value of a product or service ex-
pressed using the current value of money, which makes analysis of projects with
different time frames directly comparable. In order to express future money in
current terms, the future value is ‘discounted’ by a certain rate, which mod-
els the opportunity cost of the investment in the product [10]. The formula for
determining NPV is as given in (9).

NPV = (C − M)/(1 + d)T − I + Ω (9)

In the NPV equation, C represents the value of the asset, M represents the
continued cost of operating the service, d is the discount rate or risk-free interest
rate, T is the initial development time, I is the initial development cost, and Ω
is the value of flexibility related to the service.

I and T are determined using the cost-analysis techniques presented in the
Cost Determination section. Additional contributors to cost, such as infrastruc-
ture or hardware costs, which are beyond the scope of this paper, can be directly
added to I . M is determined by adding the normal maintenance costs to the non-
software-related costs, such as those incurred through a license agreement with
another company to use or incorporate a service of theirs. The discount rate d
accounts for the opportunity cost involved in the investment, and is set to the
rate of growth the money invested in the project would have obtained had it
not been used to develop this service. If no other risk-free projects are available
to compare against, this variable can be set to the growth rate of a ’tracking
portfolio’, which is a portfolio composed of projects related to the project to be
undertaken [12]. This leaves the value-related variables C and Ω to be deter-
mined.

The value of the service, C, is determined by market forces and can be
ascertained through traditional high-level market research. This variable simply
models the amount of income the owner can expect to receive related to the

operation of the service. The flexibility premium Ω, on the other hand, is more
difficult to model. To determine a value for Ω, we can relate the flexibility
inherent in services to real option theory, which allows us to use the Black-Scholes
formula described below [13]. To do this, we must first identify the manner in
which flexible areas of a service can be related to real options.

Flexibility and Real Option Theory An option is the right to purchase or
sell an asset for a fixed price for a limited time [11]. This fixed price is referred to
as the ‘strike price’, while the current market value of the asset is referred to as
the ‘spot price’. A ‘real option’ is a refinement of this definition that only deals
with real assets, not financial derivatives. This changes the definitions related to
the option slightly in that the strike price is no longer the exercise price for the
option, but is the investment cost instead. Similarly, the spot price is not the
current value of the stock, but the gross value of expected cash flow [15].

There are two types of options: ‘call’ and ‘put’ options. With a call option,
the owner has the right to acquire an asset for a fixed price, and contrarily a
put option gives the owner the right to sell an asset for a fixed price. To relate
service flexibility to real options, the various flexible aspects must be placed in
one of these two categories.

In service-oriented development, a service is often created as the composi-
tion of other services, some of them delivered by other businesses. For example,
imagine a concierge service that, among other services, books travel arrange-
ments and accommodations. This service will be composed of connections to
scheduling, travel, and booking services, all of which are likely managed by sep-
arate corporate entities. When creating the concierge service the owners will have
many choices regarding which company to use for their services; should they use
travel agent A or travel agent B to manage airline ticket bookings? While their
initial decision can be based on a simple cost/benefit analysis of each of the
choices, they also have the option to change, or replace, service providers in
the future. This replacement is akin to a call option; they have the option to
purchase another service for a fixed price (i.e., the price the provider regularly
charges), yet they will get a variable return from their investment based on the
quality improvement of their product due to the provider switch. Also similar
to a call option is the ability to add new services in the future. If the market
demands that the concierge service add a car rental service to their service port-
folio, the company has the option to do so. Generally new services will only be
added in this fashion if the predicted benefit of providing the service is greater
than the cost of incorporating and maintaining the service. Conversely, if the
market no longer desires a service, the company has the option to drop that
service from their portfolio; this is analogous to a put option. If the cost of pro-
viding go-kart bookings is greater than the demand from the concierge service’s
customers, then it would be prudent for the company to abandon this service.
In this case the spot price would be the cost of abandoning the service, such as
early contract termination fees from the provider, and the strike price would be
the ‘termination value’, or the value of the salvaged resources from the discon-

tinued service [9]. Finally, there is the option to upgrade a service. This can also
be classified as a call option, where the strike price is the cost associated with
upgrading, and the spot price is the benefit gained through the upgrade, which
is the scenario demonstrated in the above example.

Valuating Options To determine the actual economic value related to the
ability to exercise an option, the Black-Scholes formula [3] can be used. This
formula is different for call and put options, as is shown in (10), (11), and (12).

Ωcall(U, S, T, r, σ) = U · N(d) − S · e−rT · N
(

d − σ
√

T
)

(10)

Ωput(U, S, T, r, σ) = S · e−rT · N
(

−d + σ
√

T
)

− U · N(−d) (11)

d =
ln

(

U/S · e−rT
)

σ
√

T
+

1

2
σ
√

T (12)

The parameters of this model are as follows: U is the spot price, S is the strike
price, T is the number of periods until the option expires, r is the constant risk-
free interest rate (d in the NPV formula), σ is the constant volatility of the asset,
and N(x) is the cumulative standard normal distribution function. Once the Ω
variable for the option has been determined, it can be added to the NPV formula
to determine the overall value of the service. If the resulting number is positive,
the service will create a positive cash flow for the company. Consequently, if NPV
is negative, the company should use their resources on another project instead.
In the case where multiple projects are possible and all have positive NPVs, the
project with the greatest NPV should be chosen.

3 An Illustrative Example

To assist in the understanding of the concepts developed above, we illustrate
the model we have developed with our motivating example of the Amazin.com
case study. Note that all cost figures, value amounts, time frames, and situations
are fictional; they simply serve to illustrate the various stages of applying our
economics model to estimate ROI.

3.1 Initial State

In the beginning, when they are considering a potential expansion, Amazin.com
is a fairly new online retailer; their sole market is books and all services are
offered over the Internet, using a software system built using web services. They
are doing fairly well financially, want to expand their business.

The current financial condition of the company is as follows: the value of the
service is $500K; the cost of operating the service is $400K; there are no options
held. This places the current NPV at NPVinitial = 500K − 400K = $100K.

3.2 Cost

Amazin, while successful in the book-selling market, would like to apply their
existing web-service architecture to a new domain in an attempt to expand. To
do this, they can modify their systems to sell CDs as well as books. To modify
the existing system to additionally manage CD sales, the following amounts of
alterations must be made: 4% of the original design needs to be modified, 6% of
the original code needs to be modified, 20% of the original system needs to be
retested, 23 function points are to be altered, and 10 new function points are to
be added. Additionally, none of the code is being automatically translated, as
all of the modifications are being performed manually.

The following development environment factors are hypothesized: the FP to
SLOC ratio is 1:27; Software Understanding (SU) is nominal; the Assessment
and Assimilation Increment (AA) is high, as the programmers are already inti-
mate with the code base, and similarly, Programmer Unfamiliarity (UNFM) is
low.

This will yield the following equivalent SLOC calculation to determine the
extent of the development feat:
AAF = (0.4 ∗ 0.04) + (0.3 ∗ 0.06) + (0.3 ∗ 0.2) = 0.094
AAM = [8 + 0.094 ∗ (1 + (0.02 + 30 + 0.0))]/100 = 0.1092
EKSLOC = 23 ∗ 27/1000 ∗ (1 − 0/100) ∗ 0.1092 = 0.6781

With EKSLOC determined, an actual effort value can be calculated, with
the help of a few more assumptions about the development environment: all
Effort Multipliers are set to their nominal values; all Scale Factors are set to
their nominal values; all constants are left at their default COCOMOII.2000
value; the Requirements Evolution and Volatility Level (REV L) is set at 5,
indicating that 5% of the translated code was discarded.
Size = (1 + 5/100) ∗ (10 ∗ 27/1000 + 0.6781) = 0.9955
E = 0.91 + 0.01 ∗ (3.72 + 3.04 + 4.24 + 3.29 + 4.68) = 1.0997
PM = 2.94 ∗ 0.99551.0997 ∗ 1 = 2.925

The time to develop the CD aspect of Amazin, including planning and prepa-
ration time, can also be calculated:
F = 0.28 + 0.2 ∗ (1.0997− 0.91) = 0.31794
TDEV = 3.67 ∗ 2.9250.31794 ∗ 100/100 = 5.163 Months

Assuming that a programmer is paid $50/hour, and there are 152 work-hours
in a month, the dollar amount associated with this production cost would be:
Cost = 5.163 ∗ 50 ∗ 152 = $39238.80

The entire set of modifications to the system will require roughly $40 000
to perform, with a time frame of 5.163 months, assuming only one programmer
is working on the expansion. More programmers can be assigned to the task
to expedite the development process. We can assume there are 5 programmers
adding CD sale functionality, for a total of just over 1 month development time.

For the sake of this example, assume that each CD costs Amazin $7 to
purchase and handle; this $7 per CD is the ongoing cost of the service.

3.3 Value

With the cost of the new CD service determined, the value that can be achieved
needs to be established. This is done though market analysis. For the sake of
simplicity, we assume that all CDs are sold for the same price. The supply and
demand of CDs at different prices is shown in Table 1. The supply column states
the amount of resources Amazin is willing to redirect from selling books (i.e., the
number of CDs Amazin is willing to sell) at each price point, and the demand
column states the number of CDs customers are willing to purchase at each price
point. The optimal price point in this case is the intersection point, at $16 per
CD. The value of this is:
V alue = 16 ∗ 10000 = $160000

Table 1. CD Supply and Demand

Price Supply Demand

$ 13 7000 13000
$ 14 8000 12000
$ 15 9000 11000
$ 16 10000 10000
$ 17 11000 9000
$ 18 12000 8000

Taking into account the ongoing cost of purchasing and handling CDs, the
value of the CD service is effectively:
EffectiveV alue = 160000− 7 ∗ 10000 = $90000

Since the entry into the CD market is a new endeavor, it is expected to grow
in value by 50% annually.

3.4 Option Theory Analysis

Both pieces required for analysis of the expansion strategy are now in place;
the cost of developing the option and the value of executing the option are
established. The value of the option can then be calculated using the following
variables, gathered above: the spot price (U) is 90000, the strike price (S) is
40000, the risk-free interest rate (r) is 0.05, periods until expiration (T) equals
0.43 years (5.163 months), and the expected growth (σ) is 0.5. This yields:

d = ln(90000/40000∗e−(0.05)(0.43))

0.5
√

0.43
+ 1

20.5
√

0.43 = 2.5717

Ω = 90000 ∗ N(2.5717)− 40000 ∗ e−(0.05)∗(0.43) ∗ N(2.5717− 0.5 ∗
√

0.43)
= $49761.92

This option value can then be added to the initial NPV calculation as the Ω
variable, yielding:
NPVnew = 100K + 49.76K = $149.76K

By entering in to the CD market with their new web service, Amazin will
be able to increase their NPV by nearly 50%. If Amazin is considering other
expansion strategies as well, similar calculations can be performed on them and
the highest-valued option can be chosen as the one to implement.

4 Related Research

During the 1970s and early 1980s numerous software cost models were pro-
posed [7], including COCOMO [4], SLIM [27], PRICE S [16], SEER [20], Es-
timacs [29], and SPQR/Checkpoint [21]. Since their conception, most of these
models have become antiquated, are no longer widely used, or have become
proprietary.

COCOMO is an exception: it has been extensively published, and it evolved
into COCOMOII [6] and later into COCOMOII.2000 [5]. Presently, nearly all
commercial software cost estimation products are based on COCOMOII [31, 1,
18, 19], with the exception of some models tailored specifically to web hyperme-
dia applications [24]. COCOMOII is easily accessible, and can be fine-tuned to
suit almost any development environment and project size, which is the reason
we chose it as the basis of our work.

Value estimation has not been equally extensively researched. As Sari Kalin’s
article in CIO magazine [22] mentions, integrating applications and services can
either significantly improve the efficiency of a company, or it can lead to the waste
of significant quantities of resources if performed improperly. Kalin proceeds to
state that an accurate ROI calculation is crucial to the integration decision. One
of the example corporations represented in the article deals with integrating
web services with their company in order to streamline communication with
suppliers. Though the article establishes the need for a viable ROI calculation,
no suggestions for such a calculation are provided. IBM, on the other hand,
discusses methods in which ROI can be calculated in their discussion of web
services and enterprise-wide SOAs [25]. The two methods that they describe are
Book-value ROI and Net Present Value (NPV). As NPV takes into account the
time-value of money, where Book-value ROI does not, all value calculations in
this paper will use NPV for the ROI calculations. NPV has been used successfully
in the past for modeling the value of commercial-off-the-shelf (COTS) based
development [10, 13], and has been proven to work well in environments where
component reuse is prevalent [14], as is the case with web services. Gunjan
Samtani of UBS PaineWebber and Dimple Sadhwani of Island ECN extend the
ROI calculation for web services by listing the multiple aspects of a project that
should be examined in order to account for all possible sources of costs and
benefits [30]. It is with these sources in mind that we propose our economic
model.

5 Conclusion

In this paper, we presented our work modeling the software economics of service-
oriented development. Service-oriented development is fundamentally incremen-
tal in nature: services are reused and composed in different ways to deliver new,
more complex, value-adding services. When business that deliver B2C services
through service-oriented applications make decisions on how to evolve their sys-
tems in order to deliver more to their customers, they have to consider the
alternatives and evaluate the cost of the software development and the potential
value of the envisioned service. In our work we have adopted COCOMOII.2000
as the basis for estimating effort and Net-Present Value integrated with Real-
Options Theory for value estimation. In our example case study, we have shown
how our model can be used to estimate the ROI of a considered expansion de-
cision, by estimating the cost of the necessary software development and the
expected value of the expanded service.

This work is by no means mature. The COCOMOII.2000 model needs to
be calibrated for this particular software-development lifecycle model. Market
research ideas and work on customer expectations of service quality should be
integrated in order to better estimate the potential value of a new service. We
consider the work we reported here as a first step in this challenging and exciting
research field, with the calculation of the numerous other contributors to cost
and value, and their incorporation into this model, to be our future research
projects.

Acknowledgements

This research was supported by a grant from the Alberta IBM CAS. Thanks to
Hakan Erdogmus for his excellent feedback on sections of this paper.

References

[1] U.S. Air Force Analysis Agency. Revic.
http://sepo.spawar.navy.mil/Estimation.html.

[2] Amazon.com. 1998 annual report. http://media.corporate-
ir.net/media files/irol/97/97664/reports/123198 10k.pdf, March 1999.

[3] Fischer Black and Myron S. Scholes. The pricing of options and corporate liabil-
ities. Journal of Political Economy, 81(3):637–54, May-June 1973. Available at
http://ideas.repec.org/a/ucp/jpolec/v81y1973i3p637-54.html.

[4] Barry Boehm. Software Engineering Economics. Prentice Hall PTR, October
1981.

[5] Barry Boehm. COCOMO II Model Definition Manual. University of Southern
California, 2000.

[6] Barry Boehm, Bradford Clark, Ellis Horowitz, Chris Westland, Ray Madachy, and
Richard Selby. Cost models for future software life cycle processes: Cocomo 2.0.
Annals of Software Engineering, 1(1):57–94, December 1995.

[7] Barry W. Boehm and Kevin J. Sullivan. Software economics: a roadmap. In ICSE
’00: Proceedings of the Conference on The Future of Software Engineering, pages
319–343, New York, NY, USA, 2000. ACM Press.

[8] Joseph A. Dane. Modular program size counting. Master’s thesis, University of
Hawaii, December 1999.

[9] Hakan Erdogmus. Building a business case for cots-centric development: an invest-
ment analysis perspective. In Proceedings of the ICSE ’99 Workshop on Ensuring
Successful COTS Development, May 1999.

[10] Hakan Erdogmus. Comparative evaluation of software development strategies
based on net present value. In ICSE’99 International Workshop on Economics-
Driven Software Engineering Research (EDSER1), May 1999.

[11] Hakan Erdogmus. Valuation of complex options in software development. In
ICSE’99 International Workshop on Economics-Driven Software Engineering Re-
search (EDSER1), May 1999.

[12] Hakan Erdogmus. Value of commercial software development under technology
risk. The Financier, 7, 2000.

[13] Hakan Erdogmus and Jennifer Vandergraaf. Quantitative approaches for assessing
the value of cots-centric development. In METRICS ’99: Proceedings of the 6th
International Symposium on Software Metrics, page 279, Washington, DC, USA,
1999. IEEE Computer Society.

[14] John Favaro. A comparison of approaches to reuse investment analysis. In ICSR
’96: Proceedings of the 4th International Conference on Software Reuse, page 136,
Washington, DC, USA, 1996. IEEE Computer Society.

[15] John M. Favaro, Kenneth R. Favaro, and Paul F. Favaro. Value based software
reuse investment. Annals of Software Engineering, 5:5–52, 1998.

[16] F.R. Freiman and R.E. Park. Price software model-version 3: An overview. In Pro-
ceedings, IEEE/PINY Workshop on Quantitative Software Models, IEEE Catalog
No. TH0067-9, pages 32–44, October 1979.

[17] John Hagel. Winning at soa (editorial). Sand Hill Group.
http://www.sandhill.com/opinion/editorial.php?id=13, 2005.

[18] Cost Xpert Group Inc. Cost xpert. http://www.costxpert.com/.
[19] Software Productivity Center Inc. Estimate professional.

http://www.spc.ca/resources/estimate/index.htm.
[20] R.W. Jensen. An improved macrolevel software development resource estimation

model. In Proceedings, ISPA 1983, pages 88–92, April 1983.
[21] C. Jones. Programming productivity. McGraw Hill, 1986.
[22] Sari Kalin. Return on investment - calculating roi. CIO Magazine, August 2002.

Available at http://www.cio.com/archive/081502/roi.html.
[23] Mitchell McInnes, Ian Kerr, J. Anthony VanDuzer, and Chi Carmody. Managing

the Law: The Legal Aspects of Doing Business. Prentice Hall, 2003.
[24] E. Mendes et al. A comparative study of cost estimation models for web hyper-

media applications. Empirical Software Engineering, 8(2):163–196, 2003.
[25] Judith M. Myerson. Work with web services in enterprise-wide soas:

Part 13. http://www-128.ibm.com/developerworks/webservices/library/ws-soa-
enter13/. Last accessed on June 6th, 2006.

[26] University of Southern California Center for Software Engineering. Codecount.
http://sunset.usc.edu/research/CODECOUNT/.

[27] L.H. Putnam. A general empirical solution to the macro software sizing and
estimating problem. IEEE Transactions on Software Engineering, pages 345–361,
July 1978.

[28] S.A. Ross et al. Fundamentals of Corporate Finance. Irwin, 1996.
[29] H.A. Rubin. A comparison of cost estimation tools. In Proceedings, ICSE 8, pages

174–180, August 1985.
[30] Gunjan Samtani and Dimple Sadhwani. Web services return on investment -

working out what you’re getting out of web services. In Web Services Busi-
ness Strategies and Architectures. Wrox Press, August 2002. Article available at
http://www.webservicesarchitect.com/content/articles/samtani07.asp.

[31] Softstar Systems. Costar. http://www.softstarsystems.com/.

