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Abstract

In this thesis we study operator ideals on ordered Banach spaces such as

Banach lattices, C∗-algebras, and noncommutative function spaces.

The first part of this work is concerned with the domination problem:

the relationship between order and algebraic ideals of operators. Fremlin,

Dodds and Wickstead described all Banach lattices on which every operator

dominated by a compact operator is always compact. First, we show that

even if the dominated operator is not compact it still belongs to a relatively

small class of operators, namely, the ideal of inessential operators. A similar

question is studied for strictly singular operators. In particular, we show

that the cube of every operator, dominated by a strictly singular operator,

is inessential. Then we provide a complete solution of the domination prob-

lem for compact and weakly compact operators acting between C∗-algebras

and noncommutative function spaces. Finally, we consider the domination

problem for weakly compact operators acting on general noncommutative

function spaces.

The second part is devoted to the operator ideal structure of the alge-

bra of all linear bounded operators on a Banach space. First, we investigate

the existence of non-trivial proper ideals on Lorentz sequence spaces and

characterize some of them. Second, we look at the coincidence of some clas-

sical operator ideals, such as of compact, strictly singular, innesential, and

Dunford-Pettis operators acting on noncommutative Lp-spaces. In particu-

lar, we obtain a characterization of strictly singular and inessential operators

acting either between discrete noncommutative Lp-spaces or Lp-spaces, as-

sociated with a hyperfinite von Neumann algebras with finite trace.



Many of the results presented in this thesis were obtained jointly with

other people. The thesis is based on papers [58, 70, 71, 93] by the author

and his collaborators.
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Chapter 1

Basic definitions and notations

1.1 Ordered Banach spaces

Let X be a Banach space and C ⊂ X be a cone, that is, a set closed un-

der addition and multiplication by a non-negative real number such that

C ∩ (−C) = {0}. This cone is generating in X if X = C −C. The set of all

functionals f ∈ X∗, such that f(x) > 0 for every x ∈ C forms a cone in X∗,

that is referred as the dual cone of C. If the dual cone of C is generating

then we call C normal.

We say that X is a real ordered Banach space (OBS) if it is equipped with

a norm-closed cone C ⊂ X. The elements of C are called positive (denoted

x > 0). One can define an order as follows: x 6 y if and only if y−x ∈ C. An

order interval [x, y] ⊂ X is the set of all elements z ∈ X such that x 6 z 6 y.

It was shown in [8] that a closed cone C is generating if and only if there

exists δX > 0, such that, for every x ∈ X, there exist a and b such that

x = a − b and max(‖a‖, ‖b‖) 6 δX‖a − b‖ for every a, b ∈ C. And it is

normal if and only if there exists γX > 0 such that ‖x‖ 6 γX max{‖a‖, ‖b‖},

whenever a 6 x 6 b.
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An operator T acting between two OBS’s is called positive if it maps

positive elements to positive elements.

A complex OBS Y is the complexification of a real OBS Yr that is Y =

Yr + iYr. The positive elements of Y are exactly those belonging to the cone

of Yr. We say a cone is generating (normal) in Y if it is generating (normal)

in Yr.

Natural examples of OBS with proper normal generating cones and δ =

γ = 1 are Banach lattices, C∗-algebras, and noncommutative functions

spaces. They will be discussed in the following sections of this chapter.

1.2 Banach lattices

We adhere to standard definitions and properties of Banach lattices that can

be found in [1, 6, 63, 64, 67]

An OBS E is called a (real) Banach lattice with respect to its cone if for

every two elements x, y ∈ E

• their supremum x ∨ y and infimum x ∧ y are in E,

• |x| 6 |y| implies ‖x‖ 6 ‖y‖, where |x| = x ∨ (−x).

For a Banach lattice E its positive cone E+ = {x ∈ E : x > 0} is normal

and generating.

A Banach lattice E is called order continuous if ‖xα‖ → 0 for every

decreasing net (xα) ⊂ E such that ∧xα = 0.

A linear subspace I ⊆ E is an (order) ideal if x ∈ I whenever y ∈ E and

|x| < |y|. A non-zero element a ∈ E+ is an atom if 0 6 b 6 a implies b = λa,
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for some constant λ > 0. We say E is atomic if for every element x ∈ E+,

there exists an atom a 6 x in E.

Any Banach space with a 1-unconditional basis can be realized as an

order continuous atomic Banach lattice with the standard order defined co-

ordinatwise. There are many examples of non-atomic order continuous Ba-

nach lattices, in particular, Lp (1 6 p <∞), and various Lorentz and Orlicz

function spaces on non-atomic measure space.

An element e ∈ E is called an (order) unit if any ideal that contains e

coincides with E. We say that E is an AM -space if ‖x+y‖ = max{‖x‖, ‖y‖}

for every disjoint x, y ∈ E. By Kakutani’s theorem every AM - space with

a unit is lattice isometric(there exists a surjective isometry that preserves

lattice operations) to a C(K) space for some compact Hausdorff topological

space K.

1.3 C∗ and von Neumann algebras

A C∗-algebra A is a Banach algebra with a ∗-map from A to A with the

following properties:

(i) (A+B)∗ = A∗ +B∗,

(ii) (cA)∗ = c̄A∗,

(iii) A∗∗ = A,

(iv) (AB)∗ = B∗A∗,

(v) ‖A∗A‖ = ‖A‖2,
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for every A,B ∈ A and c ∈ C.

A C∗-algebra A is called unital if it has an algebraic unit 1. Every C∗-

algebra A can be realized as a C∗-subalgebra of codimension one of a unital

C∗ algebra AU . This process is called the unitization. Thus, we can define

the spectrum of A ∈ A,

σ(A) = {λ ∈ C : λ1− A is not invertible in AU}

We say that A ∈ A is positive if and only if it is self-adjoint (A = A∗)

and the σ(A) ⊂ [0,∞).

As usual we define A+ = {A ∈ A, A > 0}. It is easy to see that A is a

complex OBS with a normal generating cone A+ and δA = γA = 1. Every

element A ∈ BA can be written as follows A = A1 −A2 + i(A3 −A4), where

Ai ∈ BA ∩ A+. The following properties of positive elements in A will be

required later:

(i) A > B implies C∗AC > C∗BC, for any C ∈ A.

(ii) A > 0 implies there exists a unique B ∈ A+, such that B2 = A. B is

denoted as A
1
2 .

(iii) A > B > 0 implies A
1
2 > B

1
2

(iv) A > B implies ‖A‖ > ‖B‖.

A representation π of A on a Hilbert space H is a ∗-homomorphism from A

into B(H), the space of all linear bounded operators on H.

It is called faithful if π(A) 6= 0 for every A ∈ A and irreducible if π(A)

has no proper invariant subspaces.
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The Gelfand-Naimark theorem states that every C∗-algebra can be faith-

fully (isometrically) represented as a closed ∗-subalgebra of B(H) for some

Hilbert space H. Note that this representation preserves the order. That is,

A > 0 if (π(A)x, x) > 0, for every x ∈ H, where π is a representation into

B(H).

Every element A ∈ A ⊂ B(H) can be written as A=U |A|, where |A| =

(A∗A)
1
2 and U ∈ B(H) is a partial isometry. This decomposition is called

polar.

A unital C∗-subalgebra A ⊆ B(H) is a von Neumann algebra if, in addi-

tion, it is closed with respect to the weak operator topology. That is, A ∈ A,

whenever ((An − A)f, g) → 0, for every f, g ∈ H and (An) ∈ A. Equiva-

lently, A is a von Neumann algebra if and only if A′′ = (A′)′ = A, where

A′ = {C ∈ B(H), such that AC = CA for every A ∈ A} is the commutant

of A. Every von Neumann algebra A has a unique predual which is usually

denoted as A∗. From the definition it follows that B(H) is a von Neumann

algebra.

A trace τ on a von Neumann algebra A is an additive positively homoge-

neous function from A+ to [0,∞] such that τ(A∗A) = τ(AA∗). It is faithful if

τ(A) > 0 for every positive A 6= 0, normal if τ(supAi) = sup τ(Ai) for every

bounded increasing net Ai, finite if τ(1) < ∞, and semifinite if for every

nonzero A > 0, there exists a nonzero 0 6 B 6 A such that τ(B) <∞. For

additional properties of C∗ and von Neumann algebras we refer the reader

to [24, 12, 26, 27, 53, 95]
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1.4 Noncommutative function spaces

Let H be a Hilbert space. A linear operator A : D ⊂ H → H is densely

defined if its domain D is a linear subspace dense in H, and A is closed

if its graph is closed. Suppose a von Neumann subalgebra A ⊆ B(H) is

equipped with a normal faithful semi-finite trace τ . We say that a closed

densely defined operator A is affiliated with A if A commutes with every

unitary operator in A′, that is, U(D) ⊆ D and UAU∗ = A for every unitary

operator U ∈ A′. Let P(A) ⊂ A be the set of all projections in A. We

denote by Ã the set of closed, densely defined operators, affiliated with A.

An operator A ∈ Ã is τ -measurable if for each ε > 0 there exists a projection

P ∈ A such that P (H) lies in the domain of A and τ(1 − P ) 6 ε. It is

known that the set of τ -measurable operators in Ã is a ∗-algebra, equipped

with the measure topology: the uniform topology given by the following

system of neighbourhoods at 0: {U(ε, δ), ε, δ > 0}, where U(ε, δ) = {A ∈ Ã :

there exists P ∈ P(A), ‖PA‖ < ε, τ(1 − P ) < δ} [36]. We can define the

generalized singular value function: for x ∈ A and t ≥ 0, µx(t) = inf{‖xP‖ :

P ∈ P(A), τ(1 − P ) ≤ t} (see e.g. [77, 36] for other formulae for µx(·)).

Define L1(τ) to be the completion of the set {x ∈ A : τ(|x|) < ∞} with

respect to the norm: ‖x‖ = τ(|x|). One can show that L1(τ) ⊂ Ã [36, 80].

By [95, Theorem V.2.18] L1(τ) can be identified with A∗.

Now suppose E(τ) is a linear subspace of Ã equipped with a complete

norm ‖ · ‖E . We say that E(τ) is a noncommutative function space if:

(i) L1(τ) ∩ A ⊂ E(τ) ⊂ L1(τ) +A.

(ii) For any x ∈ E(τ) and a, b ∈ A, we have axb ∈ E(τ), and ‖axb‖E ≤
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‖a‖‖x‖E‖b‖.

We call E(τ) symmetric if, whenever x ∈ E(τ), y ∈ Ã, and µy ≤ µx,

then y ∈ E(τ), with ‖y‖E ≤ ‖x‖E . Following [33], we say that E(τ) is

strongly symmetric if, in addition, for any x, y ∈ E(τ), with y ≺≺ x, we have

‖y‖E ≤ ‖x‖E . Here, ≺≺ refers to the Hardy-Littlewood domination: for any

α > 0,
∫ α
0
µy(t) dt ≤

∫ α
0
µx(t) dt. It is known that, as in the commutative

case, y ≺≺ x iff there exists an operator T , contractive both on A and

A? = L1(τ), so that y = Tx [28]. We say that E is fully symmetric if it

is strongly symmetric and, for any x ∈ E(τ) and y ∈ Ã, we have y ∈ E(τ)

whenever y ≺≺ x. By E×(τ) = {τ -measurable A ∈ Ã : sup{τ(|BA|) : B ∈

E(τ), ‖B‖ 6 1} <∞} we denote the Köthe dual of E(τ). If E(τ) is strongly

symmetric, then E×(τ) is a fully symmetric noncommutative function space

[33].

Any symmetric noncommutative function space E(τ) has a generating

and normal cone E(τ) ∩ Ã+.

Many symmetric noncommutative function spaces arise from their com-

mutative analogues. Indeed, suppose τ is a normal faithful semi-finite trace

on a von Neumann algebra A. Suppose E is a symmetric (commutative)

function space (in the sense of e.g. [59]) on Ω, the range of τ . We can

define the corresponding noncommutative function space E(τ), consisting of

those x ∈ Ã for which the norm ‖x‖E(τ) = ‖µx‖E is finite. By [55], this

procedure yields a Banach space. It is well known (see e.g. [29, 33, 77]) that

many properties of the function space E (for instance, being reflexive or order

continuous) pass to the non-commutative space E(τ).

In the discrete case (E is a symmetric sequence space on N, and τ is
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the canonical trace on B(H)), the construction above produces a noncom-

mutative symmetric sequence space, (often referred to as a Schatten space),

denoted by CE(H) (instead of E(τ)). When H = `2 (H = `n2 ), we write CE

(resp. CnE) instead of CE(H). For properties of Schatten spaces, the reader is

referred to e.g. [45, 92].

1.5 Operator ideals

Let X be a Banach space and BX the unit ball of X. We say that J is an

operator ideal if it is a two-sided algebraic ideal in the algebra of all linear

bounded operators L(X). Evidently, {0} and L(X) are operator ideals. We

will be interested in non-trivial proper ideals in L(X), that is, those that are

different from the ones mentioned above.

An operator S, acting from X to a Banach space Y , is (weakly) compact

if S(BX) is relatively (weakly) compact, strictly singular if it is not an iso-

morphism when restricted to any infinite-dimensional subspace of X, finitely

strictly singular if for every ε > 0 there exists n ∈ N, such that in every n-

dimensional subspace there exists a norm one vector with ‖Sx‖ < ε, strictly

cosingular if there is no an infinite-dimensional subspace Z ⊆ Y and a cor-

responding quotient map QZ such that QZS is surjective, Dunford-Pettis if

S maps every weakly null sequence to norm null, inessential if I + US is

Fredholm for every U ∈ L(Y,X). We will make use of the following charac-

terization of inessential operators.

Lemma 1.5.1. [75] Suppose T ∈ L(X, Y ). Then T is inessential if and only

if I + AT has a finite-dimensional null space for every A ∈ L(Y,X).
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We denote the classes of compact, weakly compact, finitely strictly sin-

gular, strictly singular, strictly cosingular, Dunford-Pettis, and inessential

operators acting between X and Y as K(X, Y ), WK(X, Y ), FSS(X, Y ),

SS(X, Y ), SCS(X, Y ), DP(X, Y ), IN (X, Y ), respectively. The following

chains of inclusions hold:

K(X, Y ) ⊆ FSS(X, Y ) ⊆ SS(X, Y ) ⊆ IN (X, Y ),

K(X, Y ) ⊆ SCS(X, Y ) ⊆ IN (X, Y ),

In the case when X = Y , it is known that these classes form norm-closed

operator ideals in L(X) .

For two closed ideals J1 and J2 in L(X), we will denote by J1 ∧ J2 the

largest closed ideal J in L(X) such that J ⊆ J1 and J ⊆ J2 (that is, J1∧J2 =

J1 ∩ J2), and we will denote by J1 ∨ J2 the smallest closed ideal J in L(X)

such that J1 ⊆ J and J2 ⊆ J . We say that J2 is a successor of J1 if J1 ( J2.

If, in addition, no closed ideal J in L(X) satisfies J1 ( J ( J2, then we call

J2 an immediate successor of J1.

Fore more information on operator ideals we refer the reader to [2, 76, 81].
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Chapter 2

Domination problem

2.1 Introduction

Let X and Y are OBS and T, S ∈ L(X, Y ). We say that T is dominated by

S if 0 6 T 6 S. Assume that S belongs to a certain ideal of operators, e.g.,

(weakly) compact, strictly singular, Dunford-Pettis and etc. Does this imply

that T (or some power of T ) is in the same ideal? We refer to this problem

as the domination problem.

The domination problem has been extensively studied for Banach lattices,

see [34, 40, 39, 54, 38, 42, 101, 100]. Let us mention several results on this

subject. In the rest of this section X and Y are Banach lattices.

Theorem 2.1.1. [34], [100, Theorem 1] The following statements are equiv-

alent:

(i) for any two operators 0 6 T 6 S : X → Y , if S is compact then T is

compact;

(ii) one of the following three (non-exclusive) conditions holds:

(a) both X∗ and Y are order continuous;

10



(b) Y is atomic and order continuous;

(c) X∗ is atomic and order continuous.

Theorem 2.1.2. [5, Theorem 5.13] Let 0 6 T 6 S : X → X. If S is

compact, then T 3 is also compact.

Theorem 2.1.3. [5, Theorem 5.31] The following statements are equivalent:

(i) either X∗ or Y is order continuous;

(ii) every positive operator from X to Y dominated by a weakly compact

operator is weakly compact.

Recently, similar results where obtained in the case when S is strictly

singular.

Theorem 2.1.4. [39, Theorem 1.1] Suppose S is a positive strictly singular

operator and Y is order continuous. Then every operator dominated by S is

strictly singular if either of the following conditions holds:

(i) X is atomic and order continuous;

(ii) X and X∗ are order continuous and X satisfies the subsequence splitting

property.

Theorem 2.1.5. [42, Corollary 2.4] Let 0 6 T 6 S : X → X. If S is

strictly singular, then T 4 is also strictly singular.

The preceding results show that an operator acting between Banach lat-

tices, dominated by a compact or strictly singular operator, does not nec-

essarily belong to the same class. In the next section we will investigate

11



whether it belongs to a ’slightly’ larger class of operators, so called, the

inessential operators. We will show that every operator, dominated by a

compact operator, is inessential, and that the cube of any operator domi-

nated by a strictly singular operator is inessential. There are many Banach

spaces for which the class of inessential operators has been well studied. In

particular, it is known that SS(X) = IN (X) when X is subprojective (see

[74]), or when X = Lp(µ) for some (p > 1) and a finite measure µ (see [97]),

or when X = C(K) for some compact Hausdorff topological space K (see

[68]), or when X is a Lorentz space with a certain weak additional condition

on the generating function (see [88]).

In the last section of this chapter we will investigate the domination

problem in the noncommutative setting, in particular, for C∗-algebras and

noncommutative function spaces. Surprisingly, in this case the domination

problem has drawn little attention so far, except in [30, 69] this problem was

studied for completely positive maps.

We will obtain an analogue of Theorem 2.1.1 for C∗-algebras, and show

that every operator dominated by a weakly compact operator is weakly com-

pact. Finally, we will settle the domination problem for the noncomuttative

sequence spaces and obtain some partial results in the general case.

2.2 Banach lattices

This section is based on [93]. Throughout this section X and Y are Banach

lattices.

We say that an operator between two Banach spaces is c0-strictly singular

if it is not an isomorphism on every subspace isomorphic to c0. Similarly we

12



define `1-strictly singular operators. The following theorem is a generaliza-

tion of [73, Corollary 4] that is discussed in [39, Remark 3.9].

Theorem 2.2.1. Let X be an AM-space and Z an arbitrary Banach space.

Then for every operator S ∈ L(X,Z) the following are equivalent.

(i) S is c0-strictly singular;

(ii) S is weakly compact;

(iii) S is strictly singular.

Corollary 2.2.2. Let X be an AM-space. Suppose T ∈ L(X, Y ) is domi-

nated by a strictly singular operator S. Then T ∈ SS(X, Y ).

Proof. Theorem 2.2.1 implies that T is dominated by a weakly compact op-

erator S. Therefore, T is weakly compact by Theorem 2.1.3 since X∗ is order

continuous. Hence the result follows by applying Theorem 2.2.1 again.

The following fact is known [42]; however for the reader’s convenience we

provide the proof.

Proposition 2.2.3. If T ∈ L(X, Y ) is dominated by a strictly singular op-

erator S, then T is c0-strictly singular.

Proof. Assume that T is not c0-strictly singular. Then [67, Theorem 3.4.11]

implies that T is an isomorphism on a lattice copy of c0, say Z. Consider the

restrictions A = T|Z and B = S|Z . Applying Corollary 2.2.2 to A and B we

conclude that A is strictly singular. This is a contradiction.

The following lemma is a trivial observation.
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Lemma 2.2.4. Let Z be a Banach space and A,B ∈ L(Z). Then dim Ker (I − AB)

is finite if and only if dim Ker (I −BA) is finite.

Proof. Let Ker (I −BA) be finite dimensional. Clearly, ABx = x for every

x ∈ Ker (I − AB). Therefore BA(Bx) = Bx, thus Bx ∈ Ker (I −BA). Note

thatB is injective restricted to Ker (I − AB). This implies dim Ker (I − AB) 6

dim Ker (I −BA). The other direction is obtained by switching A and B

above.

Lemma 2.2.5. Let Y be an AM-space. Assume T ∈ L(X, Y ) is dominated

by a strictly singular operator. Then TU ∈ SS(Y ) and UT ∈ IN (X) for

every U ∈ L(Y,X).

Proof. Proposition 2.2.3 guarantees that T and, consequently TU are c0-

strictly singular. Theorem 2.2.1 implies that TU ∈ SS(Y ). Similarly for

every V ∈ L(X) we have TV U ∈ SS(Y ). Therefore, dim Ker(IY − TV U) <

∞ and, hence, dim Ker(IX −V UT ) <∞ by Lemma 2.2.4. As V was chosen

arbitrarily, Lemma 1.5.1 implies UT ∈ IN (X).

The next theorem is an immediate consequence of Corollary 2.2.2 and

Lemma 2.2.5

Theorem 2.2.6. Suppose that T ∈ L(X, Y ) factors through an AM-space

such that at least one of the factors is dominated by a strictly singular oper-

ator. Then T ∈ IN (X, Y ).

It is a simple observation that an operator
(
S1 S2
S3 S4

)
acting on X ⊕ Y is

strictly singular if and only if each Si is strictly singular. Note also that(
T1 T2
T3 T4

)
6
(
S1 S2
S3 S4

)
if and only if Ti 6 Si as i = 1, 2, 3, 4.
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Theorem 2.2.7. Suppose Y is an AM-space. Consider T̃ ∈ L(X ⊕ Y )

where T̃ =
(

0 T2
T3 T4

)
. If T̃ is dominated by a strictly singular operator then it

is inessential.

Proof. Note that T2 and T4 are strictly singular by the preceding observation

and Corollary 2.2.2. Therefore,
(
0 T2
0 T4

)
is strictly singular. It is left to show

that
(

0 0
T3 0

)
is inessential. By Lemma 1.5.1 and Lemma 2.2.4 it suffices to

show that for any
(
U1 U2
U3 U4

)
∈ L(X ⊕ Y ) the kernel of(

I 0
0 I

)
−
(

0 0
T3 0

)(
U1 U2

U3 U4

)
is finite-dimensional in L(X ⊕ Y ) . Equivalently, the solution space of the

following system of equations

x = 0, −T3U1x+ (I − T3U2)y = 0

is finite-dimensional in X ⊕ Y . Indeed, Lemma 2.2.5 implies that T3U2 ∈

SS(Y ) and, thus, ker (I − T3U2) is finite-dimensional.

We will use the following statement which follows from [67, Corollary 3.4.14]

and [67, Theorem 3.4.17].

Theorem 2.2.8. Let Y be an order continuous Banach lattice. If T ∈

L(X, Y ) is a positive isomorphism on a copy of `1, then T is an isomor-

phism on a lattice copy of `1 generated by a positive disjoint sequence.

We say that an operator is disjointly strictly singular on X if it is not an

isomorphism on every subspace spanned by an infinite disjoint sequence of

vectors.
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Theorem 2.2.9. [38, Theorem 1.1] Let Y be an order continuous Banach

lattice. If T ∈ L(X, Y ) is dominated by a disjointly strictly singular operator

S then T is disjointly strictly singular.

Theorem 2.2.10. Let Y be an order continuous Banach lattice and T ∈

L(X, Y ) dominated by a Dunford-Pettis disjointly strictly singular operator

S (in particular, S could be a compact operator). Then T ∈ SS(X, Y ).

Proof. Suppose T is not strictly singular. Therefore, there exists an infinite

dimensional subspace M ⊆ X such that T is an isomorphism when restricted

to M . Since Y is order continuous, T is Dunford-Pettis by [100, Theorem 2]

and, thus, M contains a copy of `1 by [5, Theorem 5.80]. Then Theorem 2.2.8

yields that T must be an isomorphism on a lattice copy of `1 generated by a

positive disjoint sequence, that contradicts Theorem 2.2.9.

For the rest of the section we use some ideas developed in [42]. The

next theorem provides the affirmative answer to our conjecture for compact

operators.

Theorem 2.2.11. Let T ∈ L(X, Y ) be dominated by a Dunford-Pettis op-

erator S ∈ SS(X, Y ) (in particular, S could be a compact). Then T ∈

IN (X, Y ).

Proof. Assume T 6∈ IN (X, Y ). Then, by Lemma 1.5.1, there exists A ∈

L(Y,X) and an infinite dimensional subspace M ⊂ X such that ATx =

x for every x ∈ M . Proposition 2.2.3 implies that T and, consequently,

TA are c0-strictly singular and, therefore, they are order weakly compact

by [67, Corollary 3.4.5]. Then by [5, Theorem 5.58] we have the following
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factorization for TA:

X T // Y
φ

  

A // X T // Y A // X

E

B

>> ,

where φ is a lattice homomorphism and E is an order continuous Banach

lattice. Note that φT 6 φS and φS is Dunford-Pettis and strictly singu-

lar. Now Theorem 2.2.10 yields that φT and, therefore, ATAT are strictly

singular. But ATAT|M = id|M which is a contradiction.

Remark 2.2.12. We say that a seminormalized sequence (xn) ∈ X is

almost disjoint if there exists a disjoint sequence (yn) ⊂ X such that

||xn − yn|| → 0. Let Z be a Banach space. Suppose that an infinite dimen-

sional subspace E ⊆ X contains an almost disjoint seminormalized sequence

(xn). If T ∈ L(X,Z) is an isomorphism on E then T is an isomorphism on

a subspace generated by a disjoint sequence.

Indeed, suppose ||yn−xn|| → 0, where (yn) is a disjoint sequence. Then by

passing to a subsequence we may assume that the sequences (xn) and (Txn)

are equivalent to (yn) and (Tyn) respectively, see [4, Theorem 1.3.9]. That is,

there exist isomorphisms between the closed linear spans U : [xn]→ [yn] and

V : [Txn] → [Tyn], such that Uxn = yn and V Txn = Tyn for all n. Clearly,

UT−1V −1T is the identity on [yn] and consequently T is an isomorphism on

[yn].

Remark 2.2.13. Suppose that E is an order continuous Banach lattice and

N is a separable closed subspace of E. We will use the following classical

facts.
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(i) N is contained in a closed ideal I with a weak unit ([64, Proposi-

tion 1.a.11, Vol 2]).

(ii) There is a positive projection P from E onto I ([64, Proposition 1.a.11,

Vol 2]).

(iii) There is a positive one-to-one operator j : I → L1(µ) for some finite

measure space (Ω,Σ, µ) ( [64, Proposition 1.b.14]).

(iv) Either j is an isomorphism on N or N contains an almost disjoint

seminormalized sequence ([64, Theorem 1.c.8 and its proof]).

Theorem 2.2.14. Let T ∈ L(X) be dominated by S ∈ SS(X). Then T 3 ∈

IN (X).

Proof. Suppose T 3 6∈ IN (X). Lemma 1.5.1 implies that there exists an

operator A ∈ L(X) and an infinite dimensional subspace N0 ⊂ X such that

AT 3x = x for every x ∈ N0. Then, by Lemma 2.2.4, it follows that there

exists an infinite dimensional subspace M ⊂ X such that TAT 2x = x for

every x ∈M . Without loss of generality we may assumeM is separable. Note

that T and, consequently, TA are c0-strictly singular by Proposition 2.2.3

and, therefore, are order weakly compact by [67, Corollary 3.4.5]. Then

[6, Theorem 5.58] implies that T and TA factor through order continuous

Banach lattices E and F , and we have the following diagram:

X

φ   

T // X T // X

ψ   

A // X T // X

E
T̃

>>

F
B

>> ,
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where φ and ψ are lattice homomorphisms and T̃ is positive. It is clear

that φ(M) is infinite dimensional (since T is an isomorphism on M) and

separable. We apply Remark 2.2.13 to N = φ(M) and E. Then, either

φ(M) contains an almost disjoint sequence, or φ(M) is isomorphic to a closed

subspace of L1(µ) and jP restricted to φ(M) is an isomorphism. Assume

that the first case holds. Since ψT T̃ 6 ψST̃ and F is order continuous, it

follows that ψT T̃ is disjointly strictly singular by Theorem 2.2.9. Then, by

Remark 2.2.12, ψT T̃ can not be an isomorphism on φ(M). This contradicts

to TAT 2 being the identity on M . Suppose the second case holds. Observe

that 0 6 jPφT 6 jPφS : X → L1(µ). It was proved in [42, Proposition

3.2] that every operator into L1(µ) which is dominated by a strictly singular

operator is itself strictly singular. Since jPφS is strictly singular, we conclude

that so is jPφT and, consequently, jPφTAT 2. On the other hand, since jPφ

is an isomorphism on M and jPφx = jPφTAT 2x for every x ∈M it follows

jPφTAT 2 is an isomorphism on M , which is a contradiction.

Theorem 2.2.15. Let X and Y be an order continuous and T ∈ L(X, Y )

dominated by S ∈ SS(X, Y ). Assume that T is `p-strictly singular for all

p > 1. Then T is strictly singular.

Proof. Suppose T is an isomorphism on an infinite dimensional subspace M .

Without loss of generality, M is separable. By Theorem 2.2.9, T is disjointly

strictly singular and, thus, M has no almost disjoint seminormalized infinite

sequences by Remark 2.2.12. Therefore, Remark 2.2.13 implies that M is

isomorphic to a subspace of L1(µ), where µ is finite. By [47, Theorem IV.5.3])

`p is finitely representable in M for some p > 1, and thus, applying [47,

Theorem IV.5.6], M contains a subspace isomorphic to `q, for some 1 6 q 6 p.
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This is a contradiction: if q > 1, this contradicts the asumption of the

problem, and q = 1 is imposible, because T , being disjointly strictly singular,

is `1-strictly singular by Theorem 2.2.8.

As an application, we consider Tsirelson’s space T . By [19, Theorem I.8],

T has a 1-unconditional basis and no super-reflexive subspaces, in particular,

it contains no copy of `p for any p > 1. Since it has a 1-unconditional basis,

it can be naturally given a Banach lattice structure. Moreover, it is order

continuous by [5, Theorem 4.14]. Then [40, Proposition 0.5] implies that an

operator A from T to an order continuous Banach lattice Y dominated by

a strictly singular operator is strictly singular. Theorem 2.2.15 extends the

preceding statement. That is, every operator to or from T dominated by a

strictly singular operator is strictly singular, provided that the second lattice

is order continuous. It is easy to check that the same statement holds for the

original Tsirelson’s space T ∗.

2.3 Domination problem in the noncommu-

tative setting

This section is based on [70]. It is structured as follows. First, we prove some

preliminary results about properties of positive operators, order intervals, and

positive solids. In Subsection 2.3.1, we establish some basic facts about non-

commutative function spaces. In Subsection 2.3.2, we investigate compact

C∗-algebras, characterizing them in terms of compactness of order intervals.

We also show that a C∗-algebra is compact iff it is hereditary in its enveloping

algebra. Subsection 2.3.3 deals with the positive analogues of the Schur
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Property. In Subsection 2.3.4, we study compactness of order intervals in

preduals of von Neumann algebras.

Our main results are contained in the following sections. In Subsec-

tion 2.3.5, we investigate whether an operator to or from a noncommutative

function space, dominated by a compact operator, must itself be compact.

Subsection 2.3.6 is devoted to the same question for C∗-algebras. In Subsec-

tion 2.3.7, we consider domination by compact multiplication operators on

C∗-algebras.

2.3.1 Compactness and positivity in Schatten spaces

To work with Schatten spaces, we need to introduce some notation. Denote

the canonical basis in `2 by (ek). Let Pn be the orthogonal projection onto

span[e1, . . . , en], and P⊥n = 1 − Pn. For convenience, set P0 = 0. If E is

a non-commutative symmetric sequence space, let Qn be the projection on

E , defined via Qnx = PnxPn. Similarly, let Rnx = P⊥n xP
⊥
n . The usual

approximation argument shows that limn ‖(1−Qn)x‖ = 0.

Lemma 2.3.1. Suppose E is a noncommutative symmetric sequence space on

B(`2), Z is an ordered normed space, and T : E → Z is a positive operator.

Then, for any x ∈ E+, ‖T (x − Rnx − Qnx)‖2 ≤ 4NZ‖T (Qnx)‖‖T (Rnx)‖,

where NZ is the normality constant of Z.

Proof. For t ∈ R\{0}, consider U(t) = tPn+t−1P⊥n , and V (t) = tPn−t−1P⊥n .

These operators are self-adjoint and invertible, hence x(t) = U(t)xU(t) and

y(t) = V (t)xV (t) are positive elements of E . An elementary calculation

shows that x(t) = t2Qnx + t−2Rnx + (x−Qnx− Rnx), and y(t) = t2Qnx +

t−2Rnx−(x−Qnx−Rnx). Let a(t) = t2Qnx+t−2Rnx, and b = x−Qnx−Rnx.
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By the above, −a(t) ≤ b ≤ a(t). Therefore, for any t,

N−1Z ‖Tb‖ ≤ ‖Ta(t)‖ ≤ t2‖TQnx‖+ t−2‖TRnx‖.

Taking t = ‖TRnx‖1/4/‖TQnx‖1/4, we obtain the desired inequality.

Corollary 2.3.2. Suppose E is a noncommutative symmetric sequence space

on B(`2), Z is a normal OBS, and T : E → Z is a positive operator. Then

‖T (I −Qn)‖ ≤ ‖TRn‖+ 8NZ
1/2‖TRn‖1/2‖TQn‖1/2.

Proof. Lemma 2.3.1 shows that, for x ≥ 0,

‖T (I −Rn −Qn)x‖ ≤ 2N
1/2
Z ‖TRn‖1/2‖TQn‖1/2‖x‖.

A polarization argument implies ‖T (I−Rn−Qn)‖ ≤ 8N
1/2
Z ‖TRn‖1/2‖TQn‖1/2.

Finally, by the triangle inequality, ‖T (I−Qn)‖ ≤ ‖TRn‖+‖T (I−Rn−Qn)‖.

For future use, we need to quote a result from [22, Section 2].

Lemma 2.3.3. Suppose τ is a normal faithful semi-finite trace on a von Neu-

mann algebra A, and a strongly symmetric noncommutative function space E

is order continuous. Suppose, furthermore, that x is an element of A, and a

sequence of projections pn ∈ A decreases to 0 in the strong operator topology.

Then limn ‖xpn‖ = limn ‖pnx‖ = limn ‖pnxpn‖ = 0.

Specializing to Schatten spaces, we obtain:

Corollary 2.3.4. Suppose E is an order continuous symmetric sequence

space. Then, for every x ∈ CE , limn ‖x−Qnx‖ = 0.
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Proof. By [29, Section 3], CE is order continuous iff E is order continuous.

It suffices to show that, for x ∈ B(CE)+, and ε ∈ (0, 1), ‖x − Qnx‖ < ε

for n sufficiently large. By Lemma 2.3.3, ‖Rnx‖ = ‖PnxPn‖ < ε2/16 for

sufficiently large n. By Lemma 2.3.1 (applied when T is the identity map),

‖x − Qnx − Rnx‖ < ε/2. We complete the proof by using the triangle

inequality.

Lemma 2.3.5. Suppose E is an order continuous symmetric sequence space,

not containing `1, and S : CE → Z is compact (Z is a Banach space). Then

limn ‖S|Rn(CE)‖ = 0.

Proof. Suppose not. By Corollary 2.3.4, we have limn ‖(I − Qn)x‖ = 0.

A standard approximation argument yields a sequence 0 = n0 < n2 < . . .

with the property that for each k there exists xk ∈ CE , so that ‖xk‖ = 1,

and (Pnk
− Pnk−1

)xk(Pnk
− Pnk−1

) = xk, and ‖Sxk‖ > c > 0. By compact-

ness, the sequence (Sxk) must have a convergent subsequence (Sxki). Then

limN N
−1‖

∑N
i=1 Sxki‖ > 0, while limN N

−1‖
∑N

i=1 xki‖ = 0. Contradiction.

Next we describe the Schatten spaces not containing `1.

Proposition 2.3.6. Let E be a separable symmetric sequence space. For any

infinite-dimensional Hilbert space H, the following are equivalent:

(i) E contains a copy of `1.

(ii) E contains a lattice copy of `1 positively complemented.

(iii) CE(H) contains a positively complemented copy of `1 spanned by a dis-

joint positive sequence.
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(iv) CE(H) contains a copy of `1.

Proof. The implications (2) ⇒ (1) and (3) ⇒ (4) are trivial. To show (2) ⇒

(3), observe that CE(H) contains E as a diagonal subspace, which is positively

complemented. (4) ⇒ (1) follows directly from [9, Corollary 3.2]. To prove

(1)⇒ (2), apply a “gliding hump” argument to show that E contains disjoint

vectors (xi), equivalent to the canonical basis of `1. Then X = span[|xi| : i ∈

N] is a sublattice of E , lattice isomorphic to `1. By [67, Theorem 2.3.11], X

is positively complemented.

For a subset M ⊂ X+ (X is an OBS), define the positive solid of M :

PSol(M) = {x ∈ X+, such that 0 6 x 6 y and y ∈M}.

Lemma 2.3.7. If E is an order continuous noncommutative symmetric se-

quence space, and M ⊂ E is relatively compact, then PSol(M) is relatively

compact.

For the proof, we need two technical results.

Lemma 2.3.8. Suppose E and M are as in Lemma 2.3.7. Then there exists

a projection p with separable range, so that M = pMp.

Proof. The set M must contain a countable dense subset S. The elements of

M are compact operators, hence, for any x ∈ S, there exists a projection px

with separable range, so that pxxpx = x. Then p = ∨x∈Spx has the desired

properties.

Lemma 2.3.9. Suppose E is an order continuous noncommutative symmetric

sequence space on B(`2), and M is relatively compact subset of E. Then

limn ‖Rn|M‖ = 0.
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Proof. For every ε > 0 there are x1, . . . , xk in M such that for every x ∈ M

there is an 1 6 i 6 k such that ‖x − xi‖ < ε/2. Pick N ∈ N such that

‖Rnxi‖ < ε/2 for every n > N and 1 6 i 6 k. Hence, ‖Rnx‖ 6 ‖Rnxi‖ +

‖Rn‖‖x− xi‖ < ε for every x ∈M and n > N .

Proof of Lemma 2.3.7. By Lemma 2.3.8, we can restrict ourselves to spaces

on B(`2). As Qn is a finite rank projection, it suffices to show that, for any

ε ∈ (0, 1), there exists n ∈ N so that ‖(I −Qn)x‖ < ε for any x ∈ PSol(M).

To this end, write (I −Qn)x = (x−Qnx−Rnx) +Rnx. Reasoning as in the

proof of Lemma 2.3.1, we observe that

−
(
t2Qnx+ t−2Rnx

)
≤ x−Qnx−Rnx ≤ t2Qnx+ t−2Rnx

for any t > 0, hence ‖x − Qnx − Rnx‖ ≤ t2‖Qnx‖ + t−2‖Rnx‖. Taking

t = ‖Rnx‖1/2/‖Qnx‖1/2, we obtain ‖x−Qnx−Rnx‖ ≤ 2‖Rnx‖1/2‖Qnx‖1/2.

By scaling, we can assume that supy∈M ‖y‖ = 1. By Lemma 2.3.9, there

exists n ∈ N so that ‖Rny‖ < ε2/16 for any y ∈ M . For any x ∈ PSol(M),

there exists y ∈M so that 0 ≤ x ≤ y, hence 0 ≤ Rnx ≤ Rny. By the above,

‖x−Qnx−Rnx‖ ≤ 2‖Rny‖1/2 < ε/2, hence

‖(I −Qn)x‖ = ‖x−Qnx−Rnx‖+ ‖Rnx‖ ≤
ε

2
+
ε2

16
< ε.

Corollary 2.3.10. Suppose E is a fully symmetric noncommutative sequence

space. Then E is order continuous if and only if any order interval in E is

compact.
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Lemma 2.3.11. Suppose E is a fully symmetric noncommutative function

or sequence space, which is not order continuous. Then there exists a positive

complete isomorphism j : `∞ → E.

Proof. In the notation of [33, Section 6], there exists x ∈ E+\Ean. Moreover,

there exists a sequence of mutually orthogonal projections ei ∈ A (i ∈ N),

so that infi ‖eixei‖ > 0. The map y 7→
∑

i eiyei is contractive in A, and in

its predual, hence
∑

i eiyei ≺ y, for any y ∈ A + A?. Due to A being fully

symmetric,
∑

i eixei ∈ E , and ‖
∑

i eixei‖ ≤ ‖x‖. Therefore, the map

j : `∞ → E : (αi) 7→ (
∑
i

αiei)(
∑
i

eixei) =
∑
i

αieixei

has the desired properties.

Proof of Corollary 2.3.10. Note that an order interval [0, x] is closed. If E

is order continuous, an application of Lemma 2.3.7 to M = {x} shows the

compactness of [0, x]. If E is not order continuous, then, for x as in Lemma

2.3.11, [0, x] is not (relatively) compact.

2.3.2 Compactness of order intervals in C∗-algebras

If Z is an OBS, and x ∈ Z+, define the order interval [0, x] as the set

{y ∈ Z+ : y ≤ x}. In this subsection, we investigate the compactness of

order intervals in C∗-algebras, and obtain a new description of compact C∗-

algebras.

First we introduce some definitions. We say that an element a of a Banach

algebra A is multiplication compact if the map A → A : b 7→ aba is compact.

Combining [109], [108], we see that, for an element a of a C∗-algebra A, the

following are equivalent:
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(i) a is multiplication compact.

(ii) The map A → A : b 7→ ab is weakly compact.

(iii) The map A → A : b 7→ ba is weakly compact.

(iv) The map A → A : b 7→ aba is weakly compact.

By [107], there exists a faithful representation π : A → B(H) so that a is

multiplication compact iff π(a) is a compact operator on H. If, in addition,

A is an irreducible C∗-subalgebra of B(H), then a ∈ A is multiplication

compact iff a is a compact operator [106].

Suppose A is a C∗-subalgebra of B(H), where H is a Hilbert space. For

x ∈ B(H) we define an operator Mx : A → B(H) : a 7→ x∗ax.

Lemma 2.3.12. For an element a of a C∗-algebra A, the following are equiv-

alent.

(i) a is multiplication compact.

(ii) The operator Ma is compact.

(iii) The operator Ma is weakly compact.

Proof. (2)⇒ (3) is trivial. To show (1)⇒ (2), recall that a is multiplication

compact iff the map A → A : b 7→ ab is weakly compact. Passing to the

adjoint, we see that the last statement holds iff the map A → A : b 7→ ba∗

is weakly compact, or equivalently, iff a∗ is multiplication compact. By [13],

this implies the compactness of Ma.

To prove (3) ⇒ (1), note that M??
a takes b ∈ A?? to a∗ba. We identify

M??
a with Ma, acting on A??. Write a = cu, where c = (aa∗)1/2, and u

27



(respectively, u∗) is a partial isometry from (ker a)⊥ = (ker c)⊥ to ran a =

ran c (from ran a∗ = ran c to (ker a∗)⊥ = (ker c)⊥). Then Ma = MuMc,

and Mu is an isometry on ran (Mc) ⊂ A??. Writing Mc = M−1
u Ma, we

conclude that Mc is weakly compact. However, Mcx = cxc, hence, by the

remarks preceding the lemma, c is multiplication compact. The operator

S : A?? → A?? : b 7→ aba can be written as S = UMcV , where V b = ub

and Ub = bu. Then S is weakly compact, and therefore, a is multiplication

compact.

Multiplication compactness of elements of a C∗-algebra can be described

in terms of compactness of order intervals.

Proposition 2.3.13. For a positive element a of a C∗-algebra A, the fol-

lowing are equivalent:

(i) a is multiplication compact.

(ii) aα is multiplication compact for any α > 0.

(iii) The order interval [0, a] is compact.

(iv) The order interval [0, a] is weakly compact.

Proof. The implications (2)⇒ (1) and (3)⇒ (4) are immediate. To establish

(1)⇒ (2), pick a faithful representation π so that a is multiplication compact

if and only if π(a) is compact, and note that the compactness of π(a) is

equivalent to the compactness of π(a)α = π(aα).

For (2) ⇒ (3), assume ‖a‖ = 1. By [24, Lemma I.5.2], for any x ∈ [0, a]

there exists u ∈ B(A), so that x1/2 = ua1/4, hence x = a1/4u∗ua1/4. In
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particular, [0, a] ⊂ Ma1/4(B(A)). If a is multiplication compact, then so is

a1/4. Therefore, [0, a] is compact.

To prove (4) ⇒ (1), suppose a is not multiplication compact. Then a1/2

is not multiplication compact, hence Ma1/2(B(A)) is not relatively compact.

Note that any element x ∈ B(A) can be written as x = x1− x2 + i(x3− x4),

with x1, x2, x3, x4 ∈ B(A)+. Thus, Ma1/2(B(A)+) is not relatively weakly

compact. However, [0, a] ⊃ Ma1/2(B(A)+). Indeed, if 0 ≤ y ≤ 1, then

0 ≤ a1/2ya1/2 ≤ a. Therefore, [0, a] is not relatively weakly compact.

These results allow us to obtain new characterizations of compact C∗-

algebras. Recall that a Banach algebra is called compact (or dual) if all of

its elements are multiplication compact. By [9], compact C∗-algebras are

precisely the algebras of the form A = (
∑

i∈I K(Hi))c0 , where each Hi is a

complex Hilbert space, and K(H) denotes the space of compact operators

on H. Several alternative characterizations of compact C∗-algebras can be

found in [26, 4.7.20].

Proposition 2.3.14. For a C∗-algebra A, the following four statements are

equivalent.

(i) A is compact.

(ii) For any c ∈ A+, the order interval [0, c] is compact.

(iii) For any c ∈ A+, the order interval [0, c] is weakly compact.

(iv) For any relatively compact M ⊂ A+, PSol(M) is relatively compact.

Proof. The implications (4) ⇒ (2) ⇒ (3) are immediate.
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(3) ⇒ (1): by Proposition 2.3.13, any positive a ∈ A is multiplication

compact. By [13, Corollary 10.4], the map A → A : x 7→ axb is compact

for any a, b ∈ A+. As any x ∈ A is a linear combination of four positive

elements, it is multiplication compact.

(1)⇒ (4): it suffices to show that, for any ε > 0, PSol(M) admits a finite

ε-net. Assume, without loss of generality, that M ⊂ B(A)+. The map A+ →

A+ : a 7→ a1/4 is continuous, hence M1/4 = {a1/4 : a ∈ M} is compact. Pick

(ai)
n
i=1 ⊂ M so that (a

1/4
i )ni=1 is an ε/4-net in M1/4. By Proposition 2.3.13,

a
1/4
i is multiplication compact for each i, hence a

1/4
i B(A)+a

1/4
i contains an

ε/4-net (bij)
m
j=1.

Now consider x ∈ [0, a], for some a ∈ M . As noted in the proof of

Proposition 2.3.13, there exists u ∈ B(A), so that x = a1/4u∗ua1/4. Pick i

and j so that ‖a1/4 − a1/4i ‖ < ε/4, and ‖a1/4i u∗ua
1/4
i − bij‖ < ε/4. Then

‖a1/4u∗ua1/4 − bij‖ ≤ ‖(a1/4i − a1/4)u∗ua1/4‖

+‖a1/4i u∗u(a
1/4
i − a1/4)‖+ ‖a1/4i u∗ua

1/4
i − bij‖ < ε.

Recall that a C∗-subalgebra A of a C∗-algebra B is called hereditary if,

for any a ∈ A+, we have {b ∈ B : 0 ≤ b ≤ a} ⊂ A.

Proposition 2.3.15. A C∗-algebra A is a hereditary subalgebra of A?? if

and only if A is a compact C∗-algebra.

Proof. If A is compact, then it is an ideal in A?? [109]. It is well known (see

e.g. [12, Proposition II.5.3.2]) that any ideal in a C∗-algebra is hereditary.

Now supposeA is a hereditary subalgebra ofA??. By [26, Exercise 4.7.20],

it suffices to show that, for any a ∈ A+, any non-zero point of the spectrum
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of a is an isolated point. Suppose, for the sake of contradiction, that there

exists a ∈ A+ whose spectrum contains a strictly positive non-isolated point

α. In other words, for every δ > 0, ((α − δ, α) ∪ (α, α + δ)) ∩ σ(a) 6= ∅.

Without loss of generality, we can assume 0 ≤ a ≤ 1. Thus, we can find

countably many mutually disjoint non-empty subsets Si of (α/2,∞) ∩ σ(a).

Denote the corresponding spectral projections by pi (that is, pi = χSi
(a)).

These projections belong to A??. Furthermore, pi ≤ (inf Si)
−1a, hence, by

the hereditary property, these projections belong to A.

Now consider the linear map T : A → A : x 7→ axa. Then T ?? is also

implemented by x 7→ axa. If 0 ≤ x ≤ 1, then axa ≤ a2, hence axa ∈ A.

Therefore, T ?? takes A?? to A. By Gantmacher’s Theorem (see e.g. [6,

Theorem 5.23]), T is weakly compact. However, T is an isomorphism on the

copy of c0, spanned by the projections pi, leading to a contradiction.

2.3.3 Positive Schur Property. Compactness of order
intervals in Schatten spaces

An OBS X is said to have the Positive Schur Property (PSP) if every weakly

null positive sequence is norm convergent to 0 and X has the Super Positive

Schur Property (SPSP) if every positive weakly convergent sequence is norm

convergent. Clearly, the Schur Property implies the SPSP, which, in turn,

implies the PSP. Note that, if X has the SPSP, then, by the Eberlein-Smulian

Theorem, any weakly compact subset of X+ is compact.

The PSP and SPSP of Banach lattices have been investigated earlier. By

[102], the Schur Property and the PSP coincide for atomic Banach lattices. In

[56], it is shown that `1 is the only symmetric sequence space with the Schur
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Property (by Remark 2.3.24 below, the symmetry assumption is essential).

[57] gives a criterion for the PSP of Orlicz spaces.

Lemma 2.3.16. Suppose E is a symmetric sequence space, and (An) is a

positive bounded sequence in CE without a convergent subsequence. Then

there exist a subsequence (Ank
) and c > 0 such that ‖RkAnk

‖ > c for every

k.

Proof. Assume there is no such subsequence, that is

lim
m

sup
n
‖RmAn‖ = 0.

Applying Lemma 2.3.1 when T is the identity operator, we obtain the in-

equality

‖An −QmAn‖ 6 ‖An −QmAn −RmAn‖+ ‖RmAn‖

6 2‖QmAn‖
1
2‖RmAn‖

1
2 + ‖RmAn‖.

Thus, limm supn ‖An−QmAn‖ = 0. However, Qm is a finite rank map, hence

the set (An) is relatively compact, a contradiction.

Proposition 2.3.17. Suppose E is a separable symmetric sequence space.

Let (An) be a weakly null positive sequence in CE(H), which contains no

convergent subsequences. Then there exists c > 0 with the property that, for

any ε ∈ (0, 1), there exist sequences 1 = n1 < n2 < . . . and 0 = m0 < m1 <

. . ., so that infk ‖Ank
‖ > c, and∑

k

‖Ank
− (Pmk

− Pmk−1
)Ank

(Pmk
− Pmk−1

)‖ < ε.

Consequently, the sequence (Ank
) is equivalent to a disjoint sequence of pos-

itive finite dimensional operators.

32



Proof. By the separability (equivalently, order continuity) of E , there exists

a projection p ∈ B(H) with separable range, so that pAkp = Ak for any k.

Thus, it suffices to prove our proposition in CE .

Furthermore, the order continuity of E implies that the finite rank op-

erators are dense in CE . It is easy to see that, for any rank 1 operator u,

limn ‖u−Qnu‖ = 0. Thus, limn ‖x−Qnx‖ = 0 for any x ∈ E .

By scaling, we can assume supn ‖An‖ = 1. Applying Lemma 2.3.16, and

passing to a subsequence if necessary, we may assume that ‖RnAn‖ > c,

for some positive number c. We construct the sequences (nk) and (mk)

recursively. Set n1 = 1 and m0 = 0. As noted above, there exists m1 > m0

so that ‖An1 − Pm1An1Pm1‖ < ε/2.

Suppose we have already selected 0 = m0 < m1 < . . . < mj and 1 = n1 <

n2 < . . . < nj so that, for 1 ≤ j ≤ k,

‖Ank
− (Pmk

− Pmk−1
)Ank

(Pmk
− Pmk−1

)‖ < 2−jε.

As Qm is a finite rank operator for any m, and the sequence (An) is weakly

null, limn ‖QmAn‖ = 0. Consequently, there exists nk+1 > nk so that

‖Qmk
Ank+1

‖ < 2−2(k+1)−4ε2. Then

‖Ank+1
−Rmk

Ank+1
‖ ≤ ‖Ank+1

−Rmk
Ank+1

−Qmk
Ank+1

‖+ ‖Qmk
Ank+1

‖

≤ 2‖Qmk
Ank+1

‖1/2‖Rmk
Ank+1

‖1/2 + ‖Qmk
Ank+1

‖ < 2−(k+2)ε.

Now find mk+1 so that ‖Rmk
Ank+1

−Qmk+1
Rmk

Ank+1
‖ < 2−(k+2)ε.

Proposition 2.3.18. For any Hilbert space H, C1(H) has the SPSP.

Proof. It suffices to consider the case of infinite dimensional H. Suppose

A0, A1, A2, . . . are positive elements of cs1(H), and An → A0 weakly. Then
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there exist projections p0, p1, p2, . . . with separable range, so that piAipi = Ai

for every i. Then p = ∨i≥0pi has separable range, and pAip = Ai for every i.

Thus, we can assume that H = `2.

By Lemma 2.3.16 there exist c > 0 and a subsequence such that ‖RkAnk
‖ >

c. Since Rm > Rk when m 6 k, we have tr(RmAnk
) > c for every k. On the

other hand we can always pick m such that tr(RmA) = ‖RmA‖ < c. This

contradicts An → A weakly.

For Schatten spaces, Lemma 2.3.7 immediately implies:

Proposition 2.3.19. Suppose E is a separable strongly symmetric noncom-

mutative sequence space. Then any order interval in E is compact.

Remark 2.3.20. (1) For E = S1, this result has been known (see e.g. [95,

Corollary III.5.11]). (2) As noted above, for symmetric sequence spaces order

continuity is equivalent to separability.

Proposition 2.3.21. Suppose E is a strongly symmetric sequence space, and

H is an infinite dimensional Banach space. Then the following are equivalent:

(i) E = `1.

(ii) E has the Schur Property.

(iii) E has the PSP.

(iv) E has the SPSP.

(v) CE(H) has the PSP.

(vi) CE(H) has the SPSP.
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Proof. (1) ⇒ (2) is well known. The implications (2) ⇒ (4) ⇒ (3), (6) ⇒

(4), and (6) ⇒ (5) ⇒ (3) are obvious. (1) ⇒ (6) follows from Proposi-

tion 2.3.18.

(3)⇒ (1). Assume that basis (en) of E is not equivalent to the canonical

basis of `1. By symmetry, (en) contains no subsequence equivalent to the

canonical basis of `1. By Rosenthal’s dichotomy, the sequence (en) is weakly

null, which contradicts the PSP.

We complete this section by (partially) describing Banach lattices pos-

sessing various versions of the Schur Property.

Proposition 2.3.22. Any Banach lattice E with the SPSP is atomic.

Recall that a Banach lattice is called atomic if it is the band generated

by its atoms.

Proof. Clearly, a Banach lattice with the SPSP cannot contain a lattice copy

of c0. Theorems 2.4.12 and 2.5.6 of [67] show that E is a KB-space. In

particular, E is order continuous. By [64, Proposition 1.a.9], without loss of

generality, we may assume E is atomless and has a weak unit. Therefore,

by [64, Theorem 1.b.4], there exists an atomless probability measure space

(Ω, µ), so that L∞(µ) ⊂ E ⊂ L1(µ). Suppose, furthermore, that e ∈ E+\{0}.

Find S ⊂ Ω of finite measure, so that eχS > αχS for some positive number α.

By the proof of [21, Proposition 2.1], there exists a weakly null sequence (fn),

so that |fn| = 1 µ-a.e. on S, fn = 0 on Ω\S, and fn → 0 in σ(L∞(µ), L1(µ)).

Letting en = e+fn, we conclude that en ≥ 0 for every n, and en → e weakly,

but not in norm.
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Proposition 2.3.23. For any order continuous Banach lattice E the SPSP,

the PSP, and the Schur Property are equivalent.

Proof. Proposition 2.3.22 implies E is atomic. Therefore the result follows

from the fact that the lattice operations are weakly sequentially continuous,

see [67, Proposition 2.5.23].

Remark 2.3.24. An order continuous atomic Banach lattice with the Schur

Property need not be isomorphic to `1, even as a Banach space. Indeed, sup-

pose (En) is a sequence of finite dimensional lattices. Then E = (
∑∞

n=1En)`1

has the Schur Property. If, for instance, En = `n2 , E is not isomorphic to `1.

We do not know of any Banach lattice with the Schur Property which is not

isomorphic to an `1 sum of finite dimensional spaces.

2.3.4 Compactness of order intervals in preduals of von
Neumann algebras

Following [95, Definition III.5.9], we say that a von Neumann algebra A is

atomic if every projection in A has a minimal Abelian subprojection. Note

thatA is atomic iff it is isomorphic to (
∑

i∈I B(Hi))`∞(I), for some index set I,

and collection of Hilbert spaces (Hi)i∈I . Indeed, any von Neumann algebra of

the above form is atomic. To prove the converse, note that an atomic algebra

must be of type I. Moreover, it can be written as A = (
∑

j∈J Aj)`∞(J), where

Aj is an atomic algebra of type Ij. By [95, Theorem V.1.27] (see also [53,

Theorem 6.6.5] and [12, III.1.5.3]), Aj is isomorphic to Cj⊗B(Hj), where Cj
is the center of Aj. Denote the set of all minimal projections in Cj by Fj.

Then the elements of Fj are mutually orthogonal, and their join equals the

identity of Cj. Thus, Cj is isomorphic to `∞(Fj). Alternatively, one could use
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[12, III.1.5.18] and its proof to show that Cj is an `∞ space.

Theorem 2.3.25. For a von Neumann algebra A, the following are equiva-

lent:

(i) A is an atomic von Neumann algebra.

(ii) A? has the SPSP.

(iii) All order intervals in A? are compact.

Note that the predual of any von Neumann algebra has the PSP. Indeed,

suppose (fn) is a sequence of positive elements of A?, converging weakly to

0. Then ‖fn‖ = 〈fn,1〉, hence limn ‖fn‖ = limn〈fn,1〉 = 0.

The following auxiliary result may be known to experts. However, we

have not been able to find it in the literature.

Lemma 2.3.26. Any order interval in the predual of a von Neumann algebra

is weakly compact.

Proof. Suppose f is a positive element ofA?. Then [0, f ] is convex and closed.

For any g ∈ [0, f ] and a ∈ A, Cauchy-Schwarz Inequality [95, Proposition

I.9.5] yields |g(a)|2 ≤ g(1)g(a∗a) ≤ f(1)f(a∗a). By [95, Theorem III.5.4],

[0, f ] is relatively weakly compact.

Proof of Theorem 2.3.25. If (1) holds, then A = (
∑

iB(Hi))∞, hence A? =

(
∑

i S1(Hi))1. (2) and (3) follow from Propositions 2.3.21 and 2.3.19, respec-

tively.

Now suppose A is not atomic. Write A = AI ⊕ AII ⊕ AIII , where AI ,

AII , and AIII are the summands of type I, II, and III, respectively. Then

either A = AII ⊕AIII is non-trivial, or AI is not atomic.
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(i) IfAI is not an atomic von Neumann algebra, writeAI = (
∑

s∈S As)`∞(S),

with As = Cs⊗B(Hs) (Cs is the center of As). By [95, Theorem III.1.18], Cs
is isomorphic to L∞(νs), for some locally finite measure νs. Consequently,

A? contains L1(νs) ⊗ S1(Hs) as a positively and completely contractively

complemented subspace. If AI is not an atomic von Neumann algebra, then

νs is not a purely atomic measure, for some s. By the above, A? contains

L1(νs)⊗ S1(Hs) as a positively and completely contractively complemented

subspace. Furthermore, L1(νs) is complemented in L1(νs) ⊗ S1(Hs) via a

positive projection Q: just pick a rank one projection e ∈ B(Hs), and set

Q(x) = (IL1(νs) ⊗ e)x(IL1(νs) ⊗ e). Finally, L1(νs) contains a positively com-

plemented copy of L1(0, 1). Indeed, we can represent L1(νs) a direct sum of

spaces L1(σi), where σi is a finite measure. Since νs is not purely atomic,

the same is true for L1(σi), for some i. By [95, Theorem III.1.22] (or [53,

Theorem 9.4.1]), L1(νs) contains a positively complemented copy of L1(0, 1).

To finish the proof in this case, note that L1(0, 1) fails the SPSP, and

has non-compact order intervals. Indeed, let f = 1, and fn = 1 + rn, where

r1, r2, . . . are Rademacher functions. Then fn → f weakly, but not in norm.

This witnesses the failure of the SPSP. Moreover, fn/2 ∈ [0,1], hence the

order interval [0,1] is not compact.

(ii) Now suppose A0 = AII⊕AIII is non-trivial. Let B be a MASA in A0

(hence a von Neumann subalgebra). As noted above, B is isomorphic (in the

von Neumann algebra sense) to L∞(Ω, ν), where ν is a locally finite measure.

Moreover, A0 has no minimal projections, hence ν is non-atomic. Therefore,

we can find Ω0 ⊂ Ω, so that L∞(Ω0, ν) is isomorphic to L∞(0, 1). Then there

exists a von Neumann algebra isomorphism J : L∞(0, 1)→ C ⊂ B.
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Define φ : C → C by setting φ(x) =
∫ 1

0
J−1(x). Clearly, φ is a norm

one positive normal functional. By Hahn-Banach Theorem, φ has a norm

1 extension to a functional ψ on A0. By [95, Lemma III.3.2], ψ is positive.

Moreover, A0? is L-embedded into its second dual, hence ψ is normal.

Show first that the order interval [0, ψ] is not compact. To this end,

let (rn) be the sequence of Rademacher functions on (0, 1), and let xn =

J(1 + rn)/2. For a ∈ A0, let ψn(a) = ψ(xnaxn). Clearly, 0 ≤ ψn ≤ ψ,

for any n. However, for n 6= m, ‖ψn − ψm‖ ≥ 1/4. Indeed, it is easy to

observe that ψn(xn) = 8−1
∫ 1

0
(1 + rn)3 = 1/2, while for n 6= m, ψm(xn) =

8−1
∫ 1

0
(1 + rm)2(1 + rn) = 1/4.

By Lemma 2.3.26, [0, ψ] is weakly compact, hence the sequence (ψn) has

a weakly convergent subsequence. This witnesses the failure of the SPSP.

Complementing Theorem 2.3.25, we prove that A? contains an order copy

of L1(0, 1), complemented via a positive projection.

Proposition 2.3.27. Suppose A is a von Neumann algebra, whose sum-

mands of types I, II, and III are denoted by AI , AII , and AIII , respectively.

Suppose at least one of the three conditions holds: (i) AI is not atomic; (ii)

AII is non-trivial; (iii) AIII is non-trivial, and has separable predual. Then

there exists an order isometry j : L1(0, 1) → A?, and a positive projection

P : A? → ran (j).

Proof. The case of AI being non-atomic has been dealt with in the proof of

Theorem 2.3.25.

Now suppose AII is non-trivial. By [65], AII contains an “appropriately

embedded” copy of the hyperfinite II1 factor R, which (by [95, Theorem

39



V.2.36]) is the range of a weak∗ continuous projection. It therefore suffices

to show that there exists an isometry J : L1(µ) → R?, so that the range of

J is the range of a positive projection. Here, µ is the “canonical” measure

on the Cantor set ∆, defined as follows: represent ∆ = {0, 1}N, and write

µ = νN, where the measure ν on {0, 1} satisfies ν(0) = ν(1) = 1/2. For α =

(i1, . . . , in) ∈ I = {0, 1}<N, define the function fα by setting fα(j1, j2, . . .) =∏n
k=1 δik,jk (here, δi,j stands for Kronecker’s delta). Note that fα and fβ

have disjoint supports if α and β are different bit strings of the same length.

Moreover, fα = f(α,0) + f(α,1). Clearly, L1(µ) is the closed linear span of the

functions fα.

We let ∆n = {0, 1}n, and denote by µn the product of n copies of ν. In

this notation, L1(µn) is isometric to `2
n

1 . We can also identify L1(µn) with

span[fα : |α| = n]. Let in be the formal identity L1(µn−1)→ L1(µn) (taking

fα to itself, when |α| ≤ n).

For n ∈ N, consider the map jn : M2n−1 →M2n : x 7→ x⊗M2. Denote by

Trn the normalized trace on M2n , and by M?
2n the dual of M2n defined using

Trn. Then jn : M?
2n−1 → M?

2n is an isometry. Furthermore, the diagonal

embedding un : L1(µn) → M?
2n is an isometry, and unin = jnun−1. We can

view both M?
2n−1 and L1(µn) as subspaces of M?

2n , Furthermore, for any n

there exist positive contractive unital projections pn : M?
2n → L1(µn) and qn :

M?
2n → M?

2n−1 (the “diagonal” and “averaging” projections, respectively).

We then have pnjn = inpn−1.

It is well known (see e.g. [79, Theorem 3.4]) that R? can be viewed

as ∪nM?
2n . Moreover, for any n there exists a positive contractive unital

projection q̃n : R? → M?
2n (with q̃n|M?

2n
= qn+1 . . . qN). Now identify L1(µ)
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with ∪nL1(µn), and define the projection P by setting P |M?
2n

= qn.

(iii) Suppose A is a type III von Neumann algebra with separable pred-

ual. By [89], it contains a weak∗-closed subalgebra C, isomorphic of L∞(0, 1).

Moreover, there exists a weak∗ continuous contractive conditional expecta-

tion σ from B to C (see e.g. [12, Section II.6.10] or [53, pp. 187-189] for prop-

erties of conditional expectations). Then ρ? ◦ σ? yields an order-preserving

isometric embedding of L1(0, 1) to A?.

2.3.5 Compact operators on noncommutative function
spaces

First we consider maps from ordered Banach spaces into Schatten spaces.

Proposition 2.3.28. Suppose E is a separable symmetric sequence space, H

is a Hilbert space, A is a generating OBS, and 0 6 T 6 S : A → SE(H). If

S is compact, then T is compact.

Proof. It is enough to show T (B(A)+) is relatively compact. Thus follows

from Lemma 2.3.7, since T (B(A)+) ⊆ PSol(S(B(A)+)).

For operators into Schatten spaces, we have:

Proposition 2.3.29. Suppose E is a separable symmetric sequence space,

and H is a Hilbert space.

(1) If E does not contain `1, and operators T and S from CE(H) to a

normal OBS Z satisfy 0 ≤ T ≤ S, then the compactness of S? implies the

compactness of T ?.

(2) Conversely, suppose E contains `1, and a Banach lattice Z is either not

atomic, or not order continuous. Then there exist 0 ≤ T ≤ S : CE(H) → Z

so that S is compact, but T is not.
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Proof. (1) By [63, Theorem 1.c.9], E? is separable. Now apply Proposition

2.3.28.

(2) By [100], there exist 0 ≤ T̃ ≤ S̃ : `1 → Z so that S̃ is compact, but T̃ is

not. By Proposition 2.3.6, there exists a lattice isomorphism j : `1 → CE , and

a positive projection P from CE onto j(`1). Then the operators T = T̃ j−1P

and S = S̃j−1P have the desired properties.

Finally we deal with operators on general noncommutative function spaces.

Proposition 2.3.30. Suppose E is a strongly symmetric noncommutative

function space, such that E× is not order continuous. Suppose, furthermore,

that a symmetric noncommutative function space F contains non-compact

order intervals. Then there exist 0 ≤ T ≤ S : E → F , so that S has rank 1,

and T is not compact.

Note that many spaces F contain non-compact order intervals. Suppose,

for instance, that F arises from a von Neumann algebra A that is not atomic,

and is equipped with a normal faithful semifinite trace τ . Using the type

decomposition, we can find a projection p ∈ A with a finite trace. Then

the interval [0, p] is not compact. Indeed, [95, Proposition V.1.35] allows

us to construct a family of projections (pni) (n ∈ N, 1 ≤ i ≤ 2n), so that

(i) p = p11 + p12, and pni = pn+1,2i−1 + pn+1,2i for any n and i, and (ii) all

projections pni are equivalent. Then the family qn =
∑2n−1

i=1 pn,2i is a sequence

in [0, p], with no convergent subsequences.

Note that, for fully symmetric noncommutative sequence spaces, order

continuity is fully described by Corollary 2.3.10.
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Lemma 2.3.31. Suppose E is a strongly symmetric noncommutative func-

tion space, so that E× is not order continuous. Then there exists an isomor-

phism j : `1 → E, so that both j and j−1 are positive, and j(`1) is the range

of a positive projection.

Proof. By [29], E× is fully symmetric. By Lemma 2.3.11, there exists x ∈

B(E×)+, and a sequence of mutually orthogonal projections (ei), so that

(αi) 7→
∑
αieixei determines a positive embedding of `∞ into E×. For each

i, find yi ∈ E+ so that eiyiei = yi, ‖yi‖ < 2‖eixei‖−1, and 〈eixei, yi〉 = 1.

The map j : `1 → E : (αi) 7→
∑

i αiyi determines a positive isomorphism.

Furthermore, define U : E → `1 : y 7→ (〈eixei, y〉)i. Clearly, U is a bounded

positive map, and Uj = I`1 . Therefore, jU is a positive projection onto j(`1).

Proof of Proposition 2.3.30. In view of Lemma 2.3.31, it suffices to construct

0 ≤ T ≤ S : `1 → F , so that S has rank 1, and T is not compact. Pick

y ∈ F , so that [0, y] is not compact. Then find a sequence (yi) ⊂ [0, y],

without convergent subsequences. Denote the canonical basis of `1 by (δi).

Let δ?i be the biorthogonal functionals in `∞. Following [100], define S and

T by setting Sδi = y, and Tδi = yi. In other words, for a = (αi) ∈ `1,

Sa = 〈1, a〉y, and Ta =
∑

i〈δ?i , a〉yi. It is easy to see that rankS = 1, and

0 ≤ T ≤ S. Moreover, T (B(`1)) contains the non-compact set {y1, y2, . . .},

hence T is not compact.
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2.3.6 Compact operators on C∗-algebras and their du-
als

In this section, we determine the C∗-algebras A with the property that every

operator on A, dominated by a compact operator, is itself compact. First we

introduce some definitions. Let A be a C∗-algebra, and consider f ∈ A?. Let

e ∈ A?? be its support projection. Following [50], we call f atomic if every

non-zero projection e1 ≤ e dominates a minimal projection (all projections

are assumed to “live” in the enveloping algebra A??). Equivalently, f is

a sum of pure positive functionals. We say that A is scattered if every

positive functional is atomic. By [49], [50], the following three statements are

equivalent: (i) A is scattered; (ii) A?? = (
∑

i∈I B(Hi))∞; (iii) the spectrum

of any self-adjoint element of A is countable. Consequently (see [26, Exercise

4.7.20]), any compact C∗-algebra is scattered. In [104], it is proven that a

separable C∗-algebra has separable dual if and only if it is scattered.

The main result of this section is:

Theorem 2.3.32. Suppose A and B are C∗-algebras, and E is a generating

OBS.

(i) Suppose A is a scattered. Then, for any 0 ≤ T ≤ S : E → A?, the

compactness of S implies the compactness of T .

(ii) Suppose B is a compact. Then, for any 0 ≤ T ≤ S : E → B, the

compactness of S implies the compactness of T .

(iii) Suppose A is not scattered, and B is not compact. Then there exist

0 ≤ T ≤ S : A → B, so that S has rank 1, while T is not compact.
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From this, we immediately obtain:

Corollary 2.3.33. Suppose A and B are C∗-algebras. Then the following

are equivalent:

(i) At least one of the two conditions holds: (i) A is scattered, (ii) B is

compact.

(ii) If 0 ≤ T ≤ S : A → B, and S is compact, then T is compact.

It is easy to see that a von Neumann algebra is scattered if an only if it

is finite dimensional if and only if it is compact. This leads to:

Corollary 2.3.34. If von Neumann algebras A and B are infinite dimen-

sional, then there exist 0 ≤ T ≤ S : A → B, so that S has rank 1, while T is

not compact.

We establish similar results about preduals of von Neumann algebras.

Lemma 2.3.35. (1) Suppose A is an atomic von Neumann algebra, and E

is a generating OBS. Then 0 ≤ T ≤ S : E → A?, where S is a compact

operator, implies T is compact.

(2) Suppose A is a von Neumann algebra, and AI ,AII ,AIII are its sum-

mands of type I, II, and III, respectively. Suppose, furthermore, that

one of the three statements is true: (i) AI is not atomic, (ii) AII is not

empty, (iii) AIII is non-empty, and has separable predual. Then there exists

0 ≤ T ≤ S : A? → A?, so that S is compact, and T is not.

Proof. (1) The weak compactness of S implies, by Theorem 2.3.44, the weak

compactness of T . By Theorem 2.3.25, A? has the SPSP, hence T (B(E)+)
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is relatively compact. Thus, T (B(E)) is relatively compact as well, hence T

is compact.

(2) It suffices to show that there exists an order isomorphism j : L1(0, 1)→

A?, so that there exists a positive projection P onto ran (j). Indeed, by [100],

there exist operators 0 ≤ T0 ≤ S0 : L1(0, 1) → L1(0, 1), so that S0 is com-

pact, and T0 is not. Then T = jT0j
−1P and S = jS0j

−1P have the desired

properties. The existence of j and P as above follows from the proof of

Proposition 2.3.27.

To establish Theorem 2.3.32, we need a series of lemmas.

Lemma 2.3.36. Suppose A is a C∗-algebra for which A? has non-compact

order intervals, and a Banach lattice E is not order continuous. Then there

exist 0 ≤ T ≤ S : A → E, so that S has rank 1, while T is not compact.

Proof. By [67, Theorem 2.4.2], there exists y ∈ E+, and normalized elements

y1, y2, . . . ∈ [0, y] with disjoint supports. By our assumption there exist

ψ ∈ A?+ and a sequence (φi) ⊂ [0, ψ] which does not have convergent subse-

quences. By Alaoglu’s theorem we may assume φi → φ in weak∗ topology.

Define two operators via

Sx = ψ(x)y and Tx = φ(x)y +
∞∑
n=1

(φn − φ)(x)yn.

Note that T is well defined: (φn − φ)(x)→ 0 for all x, hence

‖
k∑

n=m+1

(φn − φ)(x)yn‖ ≤ sup
m>n
|(φm − φ)(x)|‖y‖−→

n→∞
0.

Moreover, for any x > 0 and N ∈ N we have

φ(x)y +
N∑
n=1

(φn − φ)(x)yn = φ(x)(y −
N∑
n=1

yn) +
N∑
n=1

φn(x)yn > 0,
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and

ψ(x)y − φ(x)y −
∑N

n=1(φn − φ)(x)yn =

ψ(x)y −
∑n

n=1 φn(x)yn − φ(x)
(
y −

∑N
n=1 yn

)
≥(

ψ(x)− φ(x)
)(
y −

∑N
n=1 yn

)
.

By sending N to infinity, we obtain that 0 6 Tx 6 Sx for every x > 0.

Clearly, rankS = 1. It remains to show that T ? is not compact. Note that

there exist norm one f1, f2, . . . ∈ E? so that fn(ym) = δnm. It is easy to see

that T ?f = f(y)φ+
∑∞

n=1 f(yn)(φn − φ), hence T ?fm = (fm(y)− 1)φ+ φm.

The sequence (T ?fm) has no convergent subsequences, since if it had, (φm)

would have a convergent subsequence, too. This rules out the compactness

of T ?.

Corollary 2.3.37. Suppose a C∗-algebra B is not compact, and A? has non-

compact order intervals. Then there exist 0 ≤ T ≤ S : A → B, so that S has

rank 1, while T is not compact.

Proof. By Lemma 2.3.36, it suffices to show that B contains a Banach lattice

which is not order continuous. By [26, Exercise 4.7.20], B contains a positive

element b, whose spectrum contains a positive non-isolated point. Then

the abelian C∗-algebra B0, generated by b, is not order continuous. Indeed,

suppose α > 0 is not an isolated point of σ(a). Then there exist disjoint

subintervals Ii = (βi, γi) ⊂ (α/2, 3α/2), so that δi = (βi + γi)/2 ∈ σ(b) for

every i ∈ N. For each i, consider the function σi, so that σi(βi) = σi(γi) = 0,

σi((βi+γi)/2) = 1, and σi is defined by linearity elsewhere. Then the elements

yi = σi(b) belongs to B0, are disjoint and normalized, and yi ≤ y = 2α−1b.
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Proof of Theorem 2.3.32. (1) If A is scattered, then A?? is atomic. Now

invoke Lemma 2.3.35(1).

(2) By assumption, M = S(B(E)+) is relatively compact, and T (B(E)+) ⊂

PSol(M). By Proposition 2.3.14, T (B(E)+) is relatively compact.

(3) Combine Theorem 2.3.25 with Corollary 2.3.37.

2.3.7 Comparisons with multiplication operators

Suppose A is a C∗-subalgebra of B(H), where H is a Hilbert space. For

x ∈ B(H) we define an operator Mx : A → B(H) : a 7→ x∗ax. In this

section, we study domination of, and by, multiplication operators, in relation

to compactness. First, record some consequences of the results from Section

2.3.2.

Proposition 2.3.38. Suppose x is an element of a C∗-algebra A.

(i) If Mx is weakly compact, and 0 ≤ T ≤Mx : A → A, then T is compact.

(ii) If 0 ≤Mx ≤ S : A → A, and S is weakly compact, then Mx is compact.

Proof. By passing to the second adjoint if necessary, we can assumeA is a von

Neumann algebra. Note that [0, x∗x] = Mx(B(A)+). Indeed, if a ∈ B(A)+,

then 0 ≤ a ≤ 1, hence 0 ≤ Mxa ≤ Mx1 = x∗x, hence Mxa ∈ [0, x∗x]. Next

show that any b ∈ [0, x∗x] belongs to Mxa ∈ [0, x∗x]. By [27, p. 11], there

exists v ∈ B(A) so that b1/2 = vc, where c = (x∗x)1/2. Write x = uc, where

u is a partial isometry from (kerx)⊥ onto ranx. Then c = u∗x = x∗u, and

therefore, b = Mx(uv
∗vu∗).

Therefore, Mx is (weakly) compact if and only if the interval [0, x∗x] is

(weakly) compact. By Proposition 2.3.13, the compactness and weak com-
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pactness of [0, x∗x] are equivalent. To establish (1), suppose 0 ≤ T ≤ Mx,

and Mx is weakly compact. Then T (B(A)+) is relatively compact, as a

subset of [0, x∗x]. Thus, T is compact. (2) is established similarly.

If the “symbol” x of the operator Mx comes from the ambient B(H), we

obtain:

Proposition 2.3.39. Suppose A is an irreducible C∗-subalgebra of B(H),

x ∈ B(H), Mx : A → B(H) is compact, and 0 ≤ T ≤ Mx. Then T is

compact.

Proposition 2.3.40. Suppose A is an irreducible C∗-subalgebra of B(H),

S : A → B(H) is compact, x ∈ B(H), and 0 ≤ Mx ≤ S. Then Mx is

compact.

Remark 2.3.41. The irreducibility of A is essential here. Below we con-

struct an abelian C∗-subalgebra A ⊂ B(H), and operators x1, x2 ∈ B(H),

so that 0 ≤ Mx1 ≤ Mx2 , Mx2 is compact, while Mx1 is not (here, Mx1

and Mx2 are viewed as taking A to B(H)). By [100], there exist operators

0 ≤ R1 ≤ R2 : C[0, 1] → C[0, 1] so that R2 is compact, and R1 is not. Let

λ be the usual Lebesgue measure on [0, 1], and let j : C[0, 1] → B(L2(λ))

be the diagonal embedding (taking a function f to the multiplication op-

erator φ 7→ φf). By [72, Theorem 3.11], R1 and R2 are completely pos-

itive. Thus, by Stinespring Theorem, these operators can be represented

as Ri(f) = V ∗i πi(f)Vi (i = 1, 2), where πi : C[0, 1] → B(Hi) are repre-

sentations, and Vi ∈ B(L2(λ), Hi). Let H = L2(λ) ⊕2 H1 ⊕2 H2. Then

π = j ⊕ π1 ⊕ π2 : C[0, 1] → B(H) is an isometric representation. Let
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A = π(C[0, 1]). Furthermore, consider operators x1 and x2 on H, defined via

x1 =

 0 0 0
V1 0 0
0 0 0

 and x2 =

 0 0 0
0 0 0
V2 0 0

 .

Then, for any f ∈ C[0, 1], jRi(f) = x∗iπ(f)xi. Considering Mx1 and Mx2 as

operators on A, we see that 0 ≤ Mx1 ≤ Mx2 , Mx2 is compact, and Mx1 is

not.

The following lemma establishes a criterion for compactness of Mx. This

result may be known to experts, but we could not find any references in the

literature.

Lemma 2.3.42. Suppose A is an irreducible C∗-subalgebra of B(H), and

c ∈ B(H). Then c∗B(A)+c is a relatively compact set if and only if c is a

compact operator.

Proof. By polar decomposition, it suffices to consider the case of c ≥ 0.

Indeed, write c = du, where d = (cc∗)1/2, and u is a partial isometry from

(ker c)⊥ = ran c∗ to (ker c∗)⊥ = ran c. Then Mc = MuMd, and Md = Mu∗Mc

(here, we abuse the notation slightly, and allow Mu and Mu∗ to act on B(H)).

Therefore, the sets c∗B(A)+c = Mc(B(A)+) and dB(A)+d = Md(B(A)+) are

compact simultaneously.

If c is compact, then, by [107], cB(B(H))c is relatively compact. The set

cB(A)+c is also relatively compact, since it is contained in cB(B(H))c.

Now suppose c is not compact. By scaling, we can assume that the

spectral projection p = χ(1,∞)(c) has infinite rank. We shall show that, for

every n ∈ N, there exist a1, . . . , an ∈ B(A)+ so that ‖c(ai − aj)c‖ > 1/3 for

i 6= j. Note first that there exist mutually orthogonal unit vectors ξ1, . . . , ξn in
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ran p, so that 〈ξi, ξj〉 = 〈cξi, cξj〉 = 0 whenever i 6= j. Indeed, if σ(c)∩ (1,∞)

is infinite, then there exist disjoint Borel sets Ei ⊂ (1,∞) (1 ≤ i ≤ n), so

that σ(c) ∩ Ei 6= ∞. Then we can take ξi ∈ χEi
(c). On the other hand,

if σ(c) ∩ (1,∞) is finite, then for some s ∈ σ(c) ∩ (1,∞), the projection

q = χ{s}(c) has infinite rank. Then we can take ξ1, . . . , ξn ∈ ran q.

Let ηi = cξi/‖cξi‖ (by construction, these vectors are mutually orthog-

onal). As A is irreducible, its second commutant is B(H). By Kaplansky

Density Theorem (see e.g. [24, Theorem I.7.3]), B(A)+ is strongly dense in

B(B(H))+. Thus, for every 1 ≤ i ≤ n there exist ai ∈ B(A)+ so that

‖aiηk‖ < 1/3 for i 6= k, and ‖aiηi − ηi‖ < 1/3. Consider bi = caic ∈

c(B(A)+)c. For i 6= j,

‖bi − bj‖ ≥ 〈c(ai − aj)cξi, ξi〉 = ‖cξi‖2〈(ai − aj)ηi, ηi〉 >
2

3
− 1

3
=

1

3
.

As n is arbitrary, we conclude that c(B(A)+)c is not relatively compact.

Proof of Proposition 2.3.39. Suppose x ∈ B(H) is such that Mx : A →

B(H) is compact. By polar decomposition, we can assume that x ≥ 0.

Then xB(A)+x is relatively compact, and therefore, By Lemma 2.3.42, x

is a compact operator. By Proposition 2.3.13, [0, x2] is compact. But

T (B(A)+) ⊂ [0, x2], hence T (B(A)+) is relatively compact. By polariza-

tion, T (B(A)) is compact.

To prove Proposition 2.3.40, we need a technical result.

Lemma 2.3.43. Suppose z ∈ B(H), and x, y ∈ [0,1H ]. Then zxz∗ ≥

zxyxz∗.
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Proof. Note that zxz∗ − zxyxz∗ = z(x − x2)z∗ + zx(1 − y)xz∗, and both

terms on the right are positive.

Proof of Proposition 2.3.40. As in the proof of Proposition 2.3.39, we can

assume that x ≥ 0, and that p = χ(1,∞)(x) is a projection of infinite rank.

It suffices to show that there exist a0 ≥ a1 ≥ . . . ≥ an in B(A)+, so that

‖x(ak−1−ak)x‖ > 2/3 for 1 ≤ k ≤ n. Indeed, if S is compact, then there exist

u1, . . . , um ∈ B(H), so that for every a ∈ B(A)+ there exists j ∈ {1, . . . ,m}

so that ‖Sa− uj‖ < 1/3. By the pigeon-hole principle, if n > m, there exist

i < j in {1, . . . , n} and k in {1, . . . ,m}, so that max{‖Sai−uk‖, ‖Saj−uk‖} <

1/3. However, ‖Sai−Saj‖ ≥ ‖x(ai−aj)x‖ > 2/3, leading to a contradiction.

Imitating the proof of Proposition 2.3.39, we use the spectral decompo-

sition of x to find mutually orthogonal unit vectors ξ1, . . . , ξn in ran p, so

that (i) xkξi is orthogonal to x`ξj for any i 6= j, and k, ` ∈ {0, 1, . . .}, and

(ii) for any i, 1 = ‖ξi‖ ≤ ‖xξi‖ ≤ ‖x2ξi‖ ≤ . . .. To construct a0, . . . , an, let

c = (2/3)1/(2n+1), and let ηi = xξi/‖xξi‖. By Kaplansky Density Theorem,

for 0 ≤ k ≤ n there exist bk ∈ B(A)+, so that

bkηi =

{
cηi 1 ≤ i ≤ n− k
0 i > n− k

(we can take bn = 0). Let a0 = b0, a1 = b0b1b0, a2 = b0b1b2b1b0, etc.. By

Lemma 2.3.43, a0 ≥ a1 ≥ . . . ≥ an. Furthermore,

akηi =

{
c2k−1ηi 1 ≤ i ≤ n− k
0 i > n− k ,

and therefore,

‖x(ak−1 − ak)x‖ ≥ 〈x(ak−1 − ak)xξn−k+1, ξn−k+1〉

= 〈(ak−1 − ak)ηn−k+1, ηn−k+1〉 = c2k−1 > 2
3
.
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Therefore, the sequence (ak)
n
k=0 has the desired properties.

2.3.8 Weakly compact operators

In this section, we show that, under certain conditions, weak compactness

is inherited under domination. First consider operators on C∗-algebras and

their duals.

Theorem 2.3.44. Suppose E is an OBS, and A is a C∗-algebra, S is a

weakly compact operator, and one of the following holds:

(i) E is generating, and 0 ≤ T ≤ S : E → A?.

(ii) E is normal, and 0 ≤ T ≤ S : A → E.

Then T is weakly compact.

Note that, for commutative A, this theorem follows from [99], and the

order continuity of A?.

Proof. (1) Suppose, for the sake of contradiction, that T (B(E)+) is not

weakly compact. By Pfitzner’s Theorem [74], there exist a bounded sequence

(an) ⊂ A of positive pairwise orthogonal elements, a sequence (φn) ⊂ B(E)+,

and c > 0, such that Tφn(an) > c. Therefore, Sφn(an) > c, which contradicts

the weak compactness of S(B(E)) (once again, by Pfitzner’s Theorem).

(2) Apply part (1) to 0 ≤ T ? ≤ S?.

Remark 2.3.45. Theorem 2.3.44 fails for operators from duals of C∗-algebras

to C∗-algebras, even in the commutative setting. Indeed, by [6, Theorem

5.31], there exist 0 ≤ T ≤ S : `1 → `∞, so that S is weakly compact, whereas

T is not.
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For operators to or from general Banach lattices, we have:

Theorem 2.3.46. Suppose either (i) A is a generating OBS, and B is order

continuous Banach lattice, or (ii) A is a Banach lattice with order continuous

dual, and B is an normal OBS. If 0 6 T 6 S : A → B, and S is weakly

compact, then T is weakly compact as well.

Proof. The proof of (i) is contained in the first few lines of the proof of [6,

Theorem 5.31]. (ii) follows by duality.

Next we obtain a partial generalization of the above results for noncom-

mutative function spaces. In the discrete case, we obtain a characterization

of order continuous Banach lattices.

Proposition 2.3.47. Suppose E is a symmetric sequence space, containing

a copy of `1, H is an infinite dimensional Hilbert space, and X is a Banach

lattice. Then the following are equivalent:

(i) If 0 6 T 6 S : CE(H)→ X, and S is weakly compact, then T is weakly

compact.

(ii) X is order continuous.

Proof. (2)⇒ (1) follows from Theorem 2.3.46.

(1) ⇒ (2): By Proposition 2.3.6 CE(H) contains a positive disjoint se-

quence, that spans a positively complemented copy of `1. Hence, the result

follows from [6, Theorem 5.31].

Now consider domination by a weakly compact operator for noncommu-

tative function spaces.
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Recall that a noncommutative symmetric function space E is said to have

the Fatou Property (sometimes referred to as the Beppo Levi Property) if

for any norm-bounded increasing net (xi) ⊂ E+, there exists x ∈ E so that

xi ↑ x, and ‖x‖ = supi ‖xi‖. In the commutative setting, any symmetric

space with the Fatou Property is order complete.

We say that a noncommutative function space E is a KB space if any

increasing norm bounded sequence in E is norm-convergent. Equivalently, E

is order continuous, and has the Fatou Property (see [32]). Furthermore, the

following are equivalent: (i) E is a KB space, (ii) E is weakly sequentially

complete, and (iii) E contains no copy of c0. It is clear from [29] that, if E is

symmetric KB function space, then the same is true of E(τ).

The following result is contained in [29, Section 5].

Proposition 2.3.48. Suppose E is a noncommutative strongly symmetric

function space. Then:

(i) E× is strongly symmetric,

(ii) E× coincides with E? if and only if E is order continuous. In this case,

for every f ∈ E? there exists a unique y ∈ E× so that f(x) = τ(xy), for

any x ∈ E.

(iii) E coincides with E×× if and only if E has the Fatou Property.

Proposition 2.3.49. Suppose E = E(τ) is a noncommutative strongly sym-

metric KB function space, X a generating OBS, and 0 ≤ T ≤ S : X → E,

with S weakly compact. Then T is weakly compact as well.
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Proof. By [29, Section 5], any positive element φ ∈ E?? = (E×)? can be

written as φ(f) = τ(af) + ψ(f), where a ∈ E is positive, and ψ is a positive

singular functional. The canonical embedding of E into its double dual takes

a to the linear functional f 7→ τ(fa).

S is weakly compact, hence S??(X) ⊂ E . A normal functional cannot

dominate a singular one, hence T ??(B(X??)+) ⊂ E . Since X?? is a generating

OBS, then T ??(B(X??)) ⊂ E . Therefore, T is weakly compact.

Alternatively, one can prove the above result using the characterization

of σ(F×,F)-compact sets given in [31, Proposition 6.2].

Remark 2.3.50. Note that the assumptions of Proposition 2.3.49 are stronger

than those of its commutative counterpart – Theorem 2.3.46. For instance,

the statement of Theorem 2.3.46(i) holds when the range space is order con-

tinuous. Propositions 2.3.49 is proved under the additional assumption of

the Fatou property. One reason for this is that much more is known about

order continuous Banach lattices (see e.g. [67, Section 2.4]). One useful

characterization states that a Banach lattice E is order continuous iff it is

an ideal in its second dual. No such description seems to be known in the

non-commutative setting.
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Chapter 3

Operator ideals

The purpose of the first section of this chapter is to uncover the structure of

ideals on Lorentz sequence spaces. We show that (some of) these ideals can

be arranged into the following diagram.

SS
%-

{0} +3 K ( J j // J `p ∧ SS
%-

55

J `p ∨ SS // SSdw,p
+3 L(dw,p)

J `p
55

On this diagram, a single arrow between ideals, J1 −→ J2, means that

J1 ⊆ J2. A double arrow between ideals, J1 =⇒ J2, means that J2 is the

only immediate successor of J1 (in particular, J1 6= J2), whereas a dotted

double arrow between ideals, J1 +3 J2 , only shows that J2 is an immediate

successor for J1 (in particular, J1 may have other immediate successors).

While working with the diagram above, we obtain several important

characterizations of some ideals in L(dw,p). In particular, we show that

FSS(dw,p) = SS(dw,p) (Theorem 3.1.19). We also characterize the ideal

of weakly compact operators (Theorem 3.1.20) and Dunford-Pettis operators

(Theorem 3.1.38) on dw,p. We show in Theorem 3.1.27 that J j is the only

immediate successor of K under some assumption on the weights w. In the
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last section of the paper, we show that all strictly singular operators from

`1 to dw,1 can be approximated by operators factoring through the formal

identity operator j : `1 → dw,1 (see Section 3.1.3 for the definition). We also

obtain a result on factoring positive operators from SS(dw,p) through the

formal identity operator (Theorem 3.1.50).

In the last section we study the relationship between the ideals of com-

pact, (finitely) strictly singular, inessential and Dunford-Pettis operators on

noncommutative Lp-spaces. In particular, we obtain the characterization of

strictly singular operators acting between noncommutative Lp, that general-

izes the corresponding results of [97].

3.1 Operator ideals on Lorentz sequence spaces

This section is based on [58].

The spaces for which the structure of closed ideals in L(X) is well-

understood are very few. It was shown in [15] that the only non-trivial closed

ideal in the algebra L(`2) is the ideal of compact operators. This result was

generalized in [46] to the spaces `p (1 6 p <∞) and c0. A space constructed

recently in [11] is another space with this property. In [60] and [61], it was

shown that the algebras L
(
(⊕∞k=1`

k
2)c0
)

and L
(
(⊕∞k=1`

k
2)`1
)

have exactly two

non-trivial closed ideals. There are no other separable spaces for which the

structure of closed ideals in L(X) is completely known.

Partial results about the structure of closed ideals in L(X) were obtained

in [76, 5.3.9] for X = Lp[0, 1] (1 < p < ∞, p 6= 2) and in [90] and [91] for

L(`p ⊕ `q) (1 6 p, q < ∞). The purpose of this paper is to investigate the

structure of ideals in L(dw,p) where dw,p is a Lorentz sequence space (see the
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definition in Subsection 3.1).

It is well-known that if X is a Banach space then every non-zero ideal in

the algebra L(X) must contain the ideal F(X) of all finite-rank operators

on X. It follows that, at least in the presence of the approximation property

(in particular, if X has a Schauder basis), every non-zero closed ideal in L(X)

contains the closed ideal K(X) of all compact operators.

If X is a Banach space and T ∈ L(X) then the ideal in L(X) generated

by T is denoted by JT . It is easy to see that JT =
{∑n

i=1AiTBi : Ai, Bi ∈

L(X)
}

. It follows that if S ∈ L(X) factors through T , i.e., S = ATB for

some A,B ∈ L(X) then JS ⊆ JT .

Basic sequences

The main tool in this paper is the notion of a basic sequence. In this sub-

section, we will fix some terminology and remind some classical facts about

basic sequences. For a thorough introduction to this topic, we refer the reader

to [17] or [35].

If (xn) is a sequence in a Banach space X then its closed span will be

denoted by [xn]. We say that a basic sequence (xn) dominates a basic se-

quence (yn) and write (xn) � (yn) if the convergence of a series
∑∞

n=1 anxn

implies the convergence of the series
∑∞

n=1 anyn. We say that (xn) is equiv-

alent to (yn) and write (xn) ∼ (yn) if (xn) � (yn) and (yn) � (xn).

Remark 3.1.1. It follows from the Closed Graph Theorem that (xn) � (yn)

if and only if the linear map from span{xn} to span{yn} defined by the

formula T : xn 7→ yn is bounded.

If (xn) is a basis in a Banach spaceX, z =
∑∞

i=1 zixi ∈ X, and A ⊆ N then
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the vector
∑

i∈A zixi will be denoted by z|A (provided the series converges;

this is always the case when the basis is unconditional). We will refer to

z|A as the restriction of z to A. The restrictions z|[n,∞)∩N and z|(n,∞)∩N,

where n ∈ N, will be abbreviated as z|[n,∞) and z|(n,∞), respectively. We say

that a vector v is a restriction of z if there exists A ⊆ N such that v = z|A.

The vector z =
∑∞

i=1 zixi will also be denoted by z = (zi). If z =
∑∞

i=1 zixi

then the support of z is the set supp z = {i ∈ N : zi 6= 0}.

Every 1-unconditional basis (xn) in a Banach space X defines a Banach

lattice order on X by
∑∞

i=1 aixi > 0 if and only if ai > 0 for all i ∈ N (see,

e.g., [64, page 2]). For x ∈ X, we have |x| = x ∨ (−x). A Banach lattice

is said to have order continuous norm if the condition xα ↓ 0 implies

‖xα‖ → 0. For an introduction to Banach lattices and standard terminology,

we refer the reader to [1, §1.2].

If (xn) is a basic sequence in a Banach space X, then a sequence (yn) in

span{xn} is a block sequence of (xn) if there is a strictly increasing sequence

(pn) in N and a sequence of scalars (ai) such that yn =
∑pn+1

i=pn+1 aixi for all

n ∈ N.

The following two facts are classical and will sometimes be used without

any references. The first fact is known as the Principle of Small Perturbations

(see, e.g., [35, Theorem 4.23]).

Theorem 3.1.2. Let X be a Banach space, (xn) a basic sequence in X, and

(x∗n) the correspondent biorthogonal functionals defined on [xn]. If (yn) is a

sequence such that
∑∞

n=1 ‖x∗n‖ · ‖xn − yn‖ < 1 then (yn) is a basic sequence

equivalent to (xn). Moreover, if [xn] is complemented in X then so is [yn]. If

[xn] = X then [yn] = X.
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The next fact, which is often called the Bessaga-Pe lczyński selection prin-

ciple, is a result of combining the “gliding hump” argument (see, e.g., [17,

Lemma 5.1]) with the Principle of Small Perturbations.

Theorem 3.1.3. Let X be a Banach space with a seminormalized basis (xn)

and let (x∗n) be the correspondent biorthogonal functionals. Let (yn) be a

seminormalized sequence in X such that x∗n(yk)
k→∞−→ 0 for all n ∈ N. Then

(yn) has a subsequence (ynk
) which is basic and equivalent to a block sequence

(uk) of (xn). Moreover, ynk
− uk → 0, and uk is a restriction of ynk

.

Lorentz sequence spaces

Let 1 6 p <∞ and w = (wn) be a sequence in R such that w1 = 1, wn ↓ 0,

and
∑∞

i=1wi =∞. The Lorentz sequence space dw,p is a Banach space of all

vectors x ∈ c0 such that ‖x‖dw,p <∞, where

‖(xn)‖dw,p =
( ∞∑
n=1

wnx
∗p
n

)1/p
is the norm in dw,p. Here (x∗n) is the non-increasing rearrangement of

the sequence (|xn|). An overview of properties of Lorentz sequence spaces

can be found in [63, Section 4.e].

The vectors (en) in dw,p defined by en(i) = δni (n, i ∈ N) form a 1-

symmetric basis in dw,p. In particular, (en) is 1-unconditional, hence dw,p is

a Banach lattice. We call (en) the unit vector basis of dw,p. The unit vector

basis of `p will be denoted by (fn) throughout the paper.

Remark 3.1.4. It is proved in [7, Lemma 1] and [18, Lemma 15] that if

(un) is a seminormalized block sequence of (en) in dw,p, un =
∑pn+1

i=pn+1 aiei,
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such that ai → 0, then there is a subsequence (unk
) such that (unk

) ∼ (fn)

and [unk
] is complemented in dw,p. Further, it was shown in [7, Corollary 3]

that if (yn) is a seminormalized block sequence of (en) then there is a semi-

normalized block sequence (un) of (yn) such that un =
∑pn+1

i=pn+1 aiei, with

ai → 0. Therefore, every infinite dimensional subspace of dw,p contains a

further subspace which is complemented in dw,p and isomorphic to `p ([18,

Corollary 17]).

Remark 3.1.5. Remark 3.1.4 yields, in particular, that dw,p does not contain

copies of c0. Since the basis (en) of dw,p is unconditional, the space dw,p is

weakly sequentially complete by [6, Theorem 4.60] (see also [63, Theorem

1.c.10]). Also, [6, Theorem 4.56] guarantees that dw,p has order continuous

norm. In particular, if x ∈ dw,p then ‖x|[n,∞)‖ → 0 as n→∞.

Remark 3.1.6. It was shown in [44] that if p > 1 then dw,p is reflexive. This

can also be easily obtained from Remark 3.1.4 (cf. [63, Theorem 1.c.12]).

Remark 3.1.7. The unit vector basis (en) of dw,p is weakly null. Indeed,

by Rosenthal’s `1-theorem (see [87]; also [63, Theorem 2.e.5]), (en) is weakly

Cauchy. Since it is symmetric, (en) ∼ (e2n − e2n−1).

The next proposition will be used often in this section.

Proposition 3.1.8 ([7, Proposition 5 and Corollary 2]). If (un) is a semi-

normalized block sequence of (en) then (fn) � (un). If (un) does not contain

subsequences equivalent to (fn) then also (un) � (en).

The following lemma is standard.
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Lemma 3.1.9. Let (xn) be a block sequence of (en), xn =
∑pn+1

i=pn+1 aiei. If

(yn) is a basic sequence such that yn =
∑pn+1

i=pn+1 biei, where |bi| 6 |ai| for all

i ∈ N, then (xn) is basic and (xn) � (yn).

Proof. Let

γi =

{
bi
ai
, if ai 6= 0,

0, if ai = 0.

Define an operator T ∈ L(dw,p) by T (
∑∞

i=1 ciei) =
∑∞

i=1 ciγiei. Then T is,

clearly, linear and, since the basis (en) is 1-unconditional, T is bounded with

‖T‖ 6 1. In particular, T |[xn] is bounded. Also, T (xn) = yn for all n ∈ N,

hence (xn) � (yn).

3.1.1 Operators factorable through `p

Let X and Y be Banach spaces and T ∈ L(X). We say that T factors

through Y if there are two operators A ∈ L(X, Y ) and B ∈ L(Y,X) such

that T = BA.

The following two lemmas are standard. We present their proofs for the

sake of completeness.

Lemma 3.1.10. Let X and Y be Banach spaces and T ∈ L(X, Y ), S ∈

L(Y,X) be such that ST = idX . Then T is an isomorphism and RangeT is

a complemented subspace of Y isomorphic to X.

Proof. For all x ∈ X, we have ‖x‖ = ‖STx‖ 6 ‖S‖‖Tx‖, so ‖Tx‖ > 1
‖S‖‖x‖.

This shows that T is an isomorphism. In particular, RangeT is a closed

subspace of Y isomorphic to X.

Put P = TS ∈ L(Y ). Then P 2 = TSTS = T idXS = TS = P , hence

P is a projection. Clearly, RangeP ⊆ RangeT . Also, PT = TST = T ,
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so RangeT ⊆ RangeP . Therefore RangeP = RangeT , and RangeT is

complemented.

Lemma 3.1.11. Let X and Y be Banach spaces such that Y is isomorphic

to Y ⊕ Y . Then the set J =
{
T ∈ L(X) : T factors through Y

}
is an ideal

in L(X).

Proof. It is clear that J is closed under multiplication by operators in L(X).

In particular, J is closed under scalar multiplication. Let A,B ∈ J . Write

A = A1A2 and B = B1B2, where A1, B1 ∈ L(Y,X) and A2, B2 ∈ L(X, Y ).

Then A+B = UV where V : x ∈ X 7→ (A2x,B2x) ∈ Y ⊕ Y and U : (x, y) ∈

Y ⊕ Y 7→ A1x + B1y ∈ Y . Clearly, UV factors through Y ⊕ Y ' Y . Hence

A+B ∈ J .

We will denote the set of all operators in L(dw,p) which factor through a

Banach space Y by JY .

Theorem 3.1.12. The sets J `p and J `p are proper ideals in L(dw,p).

Proof. Since `p is isomorphic to `p ⊕ `p, it follows from Lemma 3.1.11 that

J `p is an ideal in L(dw,p). Let us show that J `p 6= L(dw,p).

Assume that J `p = L(dw,p), then the identity operator I on dw,p be-

longs to J . Write I = ST where T ∈ L(dw,p, `p) and S ∈ L(`p, dw,p). By

Lemma 3.1.10, the range of T is complemented in `p and is isomorphic to dw,p.

This is a contradiction because all complemented infinite-dimensional sub-

spaces of `p are isomorphic to `p (see, e.g., [63, Theorem 2.a.3]), while dw,p

is not isomorphic to `p (see [14] for the case p = 1 and [44] for the case

1 < p <∞; see also [63, p. 176]).
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Being the closure of a proper ideal, J `p is itself a proper ideal (see, e.g.,

[23, Corollary VII.2.4]).

Proposition 3.1.13. There exists a projection P ∈ L(dw,p) such that RangeP

is isomorphic to `p. For every such P we have JP = J `p.

Proof. Such projections exist by Remark 3.1.4. Let Y = RangeP , U : Y → `p

be an isomorphism onto, and i : Y → dw,p be the inclusion map. It is easy to

see that P = (iU−1)(UP ), hence P ∈ J `p , so that JP ⊆ J `p .

On the other hand, if T ∈ J `p is arbitrary, T = AB with A ∈ L(`p, dw,p),

B ∈ L(dw,p, `p), then one can write T = (AUP )P (iU−1B), so that T ∈ JP .

Thus J `p ⊆ JP .

Corollary 3.1.14. The ideal J `p properly contains the ideal of compact op-

erators K(dw,p).

Proof. It was already mentioned in the introductory section that compact

operators form the smallest closed ideal in L(dw,p). Since a projection onto

a subspace isomorphic to `p is not compact, it follows that K(dw,p) 6= J `p .

3.1.2 Strictly singular operators

In this section we will study properties of strictly singular operators in

L(dw,p). Since projections onto the subspaces of dw,p isomorphic to `p are

clearly not strictly singular, it follows from Proposition 3.1.13 that SS(dw,p) 6=

J `p . Moreover, SS 6= J `p∨SS and J `p∧SS 6= J `p . So, the ideals we discussed

so far can be arranged as follows:

SS 6=**
{0} +3 K // J `p ∧ SS

6= **

44

J `p ∨ SS // L(dw,p)

J `p
44

65



The following theorem shows that there can be no other closed ideals

between SS and J `p ∨ SS on this diagram.

Theorem 3.1.15. Let T ∈ L(dw,p). If T 6∈ SS(dw,p) then J `p ⊆ JT .

Proof. Let T 6∈ SS(dw,p). Then there exists an infinite-dimensional subspace

Y of dw,p such that T |Y is an isomorphism. By Remark 3.1.4, passing to a

subspace, we may assume that Y is complemented in dw,p and isomorphic

to `p. Let (xn) be a basis of Y equivalent to the unit vector basis of `p. Define

zn = Txn, then (zn) is also equivalent to the unit vector basis of `p. By

Remark 3.1.4, (zn) has a subsequence (znk
) such that [znk

] is complemented

in dw,p and isomorphic to `p.

Denote W = [xnk
]. Then W and T (W ) are both complemented subspaces

of dw,p isomorphic to `p. Let P and Q be projections onto W and T (W ),

respectively. Put S =
(
T |W

)−1
, S ∈ L

(
T (W ), dw,p

)
. Then it is easy to see

that P = (SQ)TP . Since SQ and P are in L(dw,p), we have JP ⊆ JT . By

Proposition 3.1.13, J `p ⊆ JT .

Corollary 3.1.16. J `p
∨
SS(dw,p) is the only immediate successor of SS(dw,p)

and J `p is an immediate successor of J `p ∧ SS(dw,p).

Now we will investigate the ideal of finitely strictly singular operators

on dw,p. To prove the main statement (Theorem 3.1.19), we will need the

following lemma due to Milman [68] (see also a thorough discussion in [90]).

This lemma will be used more than once in this section.

Lemma 3.1.17 ([68]). If F is a k-dimensional subspace of c0 then there exists

a vector x ∈ F such that x attains its sup-norm at at least k coordinates (that

is, x∗ starts with a constant block of length k).
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We will also use the following simple lemma.

Lemma 3.1.18. Let sn =
∑n

i=1wi (n ∈ N) where w = (wi) is the sequence

of weights for dw,p. If x ∈ dw,p, y = x∗, and N ∈ N then 0 6 yN 6 ‖x‖
s
1/p
N

.

Proof. ‖x‖p = ‖y‖p =
∑∞

i=1 y
p
iwi > ypN

∑N
i=1wi = ypNsN .

Theorem 3.1.19. Let X and Y be subspaces of dw,p. Then FSS(X, Y ) =

SS(X, Y ). In particular, FSS(`p, dw,p) = SS(`p, dw,p) and FSS(dw,p) =

SS(dw,p).

Proof. Let T ∈ L(X, Y ). Suppose that T is not finitely strictly singular.

We will show that it is not strictly singular. Since T is not finitely strictly

singular, there exists a constant c > 0 and a sequence Fn of subspaces of X

with dimFn > n such that for each n and for all x ∈ Fn we have ‖Tx‖ > c‖x‖.

Fix a sequence (εk) in R such that 1 > εk ↓ 0. We will inductively con-

struct a sequence (xk) in X and two strictly increasing sequences (nk), (mk)

in N such that:

(i) (xk) and (Txk) are seminormalized; we will denote Txk by uk;

(ii) for all k ∈ N, supp xk ⊆ [nk,∞) and suppuk ⊆ [mk,∞);

(iii) if k > 2 then ‖xk−1|[nk,∞)‖ < εk, ‖uk−1|[mk,∞)‖ < εk, and all the coor-

dinates of uk−1 where the sup-norm is attained are less than mk;

(iv) for each k ∈ N, the vector u∗k begins with a constant block of length at

least k.

That is, (xn) and (un) are two almost disjoint sequences and un’s have long

“flat” sections.
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Take x1 to be any nonzero vector in F1 and put n1 = m1 = 1. Suppose we

have already constructed x1, . . . , xk−1, n1, . . . , nk−1, and m1, . . . ,mk−1 such

that the conditions (i)–(iv) are satisfied. Choose nk ∈ N and mk ∈ N such

that nk > nk−1, mk > mk−1 and the condition (iii) is satisfied.

Consider the space

V =
{
y = (yi) ∈ Fnk+mk+k : yi = 0 for i < nk

}
⊆ Fnk+mk+k.

It follows from dimFnk+mk+k > nk + mk + k that dimV > mk + k. Since

V ⊆ Fnk+mk+k, ‖Ty‖ > c‖y‖ for all y ∈ V . In particular, dim (TV ) > mk+k.

Define

Z =
{
z = (zi) ∈ TV : zi = 0 for i < mk

}
.

It follows that dimZ > k.

Clearly, supp y ⊆ [nk,∞) for all y ∈ V and supp z ⊆ [mk,∞) for all

z ∈ Z. By Lemma 3.1.17, we can choose uk ∈ Z such that uk is normalized

and u∗k starts with a constant block of length k. Put xk = (T |V )−1(uk) ∈ Y .

Since xk ∈ V and ‖uk‖ = 1, it follows that 1
‖T‖ 6 ‖xk‖ 6

1
c
, so the conditions

(i)–(iv) are satisfied for (xk).

For each k ∈ N, let x′k = xk|[nk,nk+1) and u′k = uk|[mk,mk+1). Passing to

tails of sequences, if necessary, we may assume that both (x′k) and (u′k) are

seminormalized block sequences of (en).

Since the non-increasing rearrangement of each u′k starts with a con-

stant block of length k by (iii), the coefficients in u′k converge to zero by

Lemma 3.1.18. Therefore, passing to a subsequence, we may assume by Re-

mark 3.1.4 that (u′k) is equivalent to the unit vector basis (fn) of `p. Using

Theorem 3.1.2 and passing to a further subsequence, we may also assume

that (xk) ∼ (x′k) and (uk) ∼ (u′k).
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By Proposition 3.1.8, the sequence (x′k) is dominated by (fn). Notice that

the condition uk = Txk implies (xk) � (uk). Therefore, we get the following

chain of dominations and equivalences of basic sequences:

(fn) � (x′k) ∼ (xk) � (uk) ∼ (u′k) ∼ (fn).

It follows that all the dominations in this chain are, actually, equivalences.

In particular, (xk) ∼ (uk). Thus, T is an isomorphism on the space [xk],

hence T is not strictly singular.

Recall that an operator T on a Banach space X is weakly compact if the

image of the unit ball of X under T is relatively weakly compact. Alterna-

tively, T is weakly compact if and only if for every bounded sequence (xn)

in X there exists a subsequence (xnk
) of (xn) such that (Txnk

) is weakly

convergent.

If 1 < p <∞ then dw,p is reflexive, and, hence, every operator in L(dw,p)

is weakly compact. In case p = 1 we have the following.

Theorem 3.1.20. Let T ∈ L(dw,1). Then T is weakly compact if and only

if T is strictly singular.

Proof. Suppose that T is strictly singular. We will show that T is weakly

compact.

Let (xn) be a bounded sequence in X. By Rosenthal’s `1-theorem, there

is a subsequence (xnk
) of (xn) such that (xnk

) is either equivalent to the unit

vector basis (fn) of `1 or is weakly Cauchy. In the latter case, (Txnk
) is also

weakly Cauchy. If (xnk
) ∼ (fn) then, since T is strictly singular, (Txnk

)

cannot have subsequences equivalent to (fn). Hence, using Rosenthal’s the-

orem one more time and passing to a further subsequence, we may assume

69



that, again, (Txnk
) is weakly Cauchy. Since dw,1 is weakly sequentially com-

plete, the sequence (Txnk
) is weakly convergent. It follows that T is weakly

compact.

Conversely, let J be the closed ideal of weakly compact operators in

L(dw,1). By the first part of the proof, J is a successor of SS(dw,1). Sup-

pose that J 6= SS(dw,1). By Theorem 3.1.15, J `1 ⊆ J . This, however, is a

contradiction since a projection onto a copy of `1 (which belongs to J `1 by

Proposition 3.1.13) is not weakly compact.

3.1.3 Operators factorable through the formal identity

The operator j : `p → dw,p defined by j(en) = fn is called the formal iden-

tity operator from `p to dw,p. It follows immediately from the definition

of the norm in dw,p that ‖j‖ = 1.

We will denote by the symbol J j the set of all operators T ∈ L(dw,p)

which can be factored as T = AjB where A ∈ L(dw,p) and B ∈ L(dw,p, `p).

Proposition 3.1.21. J j is an ideal in L(dw,p).

Proof. It is clear from the definition that the set J j is closed under both right

and left multiplication by operators from L(dw,p). We have to show that if

T1 and T2 are in J j then T1 + T2 is in J j, as well.

Write T1 = A1jB1, T2 = A2jB2 with A1, A2 ∈ L(dw,p) and B1, B2 ∈

L(dw,p, `p). Let A ∈ L(dw,p ⊕ dw,p, dw,p) and B ∈ L(dw,p, `p ⊕ `p) be defined

by

A(x1, x2) = A1x1 + A2x2 and Bx = (B1x,B2x).
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Define also U : `p → `p ⊕ `p and V : dw,p → dw,p ⊕ dw,p by

U
(
(xn)

)
=
(
(x2n−1), (x2n)

)
, and V

(
(xn)

)
=
(
(x2n−1), (x2n)

)
.

Since the bases of `p and dw,p are both unconditional, U and V are bounded.

Now observe that for each x = (xn) ∈ dw,p we can write

AV jU−1Bx = AV jU−1(B1x,B2x) =

A(jB1x, jB2x) = A1jB1x+A2jB2x = T1x+ T2x.

This shows that T1 + T2 = AV jU−1B with AV ∈ L(dw,p) and U−1B ∈

L(dw,p, `p), hence T1 + T2 ∈ J j.

As we already mentioned before, the space dw,p contains many comple-

mented copies of `p. Consider the operator jUP ∈ L(dw,p) where P is a

projection onto any subspace Y isomorphic to `p and U : Y → `p is an iso-

morphism onto. It turns out that the ideal generated by any such operator

does not depend on the choice of Y and, in fact, coincides with J j.

Proposition 3.1.22. Let Y be a complemented subspace of dw,p isomorphic

to `p, P ∈ L(dw,p) be a projection with range Y , and U : Y → `p be an

isomorphism onto. If T = jUP then JT = J j.

Proof. Clearly, JT ⊆ J j. Let S ∈ J j. Then S = AjB where A ∈ L(dw,p) and

B ∈ L(dw,p, `p). It follows that

S = AjB = Aj(UPU−1)B = AT (U−1B) ∈ JT .
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The next goal is to show that the ideal J j “sits” between K(X) and

SS(X) ∧ J `p .

Theorem 3.1.23. The formal identity operator j : `p → dw,p is finitely

strictly singular.

Proof. Let ε > 0 be arbitrary. Take n ∈ N such that 1
n

∑n
i=1wi < ε; such n

exists by wn → 0. Since (wn) is also a decreasing sequence, it follows that

wi < ε for all i > n.

Let Y ⊆ `p be a subspace with dimY > n. By Lemma 3.1.17, there exists

a vector x ∈ Y such that ‖x‖`p = 1 and x attains its sup-norm at at least n

coordinates. Denote δ = ‖x‖sup > 0. Then ‖x‖`p > n1/pδ, so δ 6 n−1/p.

Observe that the non-increasing rearrangement x∗ of x satisfies the con-

dition that x∗i = δ for all 1 6 1 6 n. Therefore

‖jx‖pdw,p
=
∞∑
i=1

x∗pi wi 6 δp
n∑
i=1

wi + ε
∞∑

i=n+1

x∗pi 6 δpnε+ ε‖x‖p`p 6 2ε.

Hence ‖jx‖dw,p 6 (2ε)1/p.

Corollary 3.1.24. The following inclusions hold: K(dw,p) ( J j and J j ⊆

SS(dw,p) ∧ J `p.

Proof. Let Y , P , and U be as in Proposition 3.1.22. Then jUP ∈ J j. If

xn = U−1fn ∈ dw,p then (xn) is seminormalized and jUPxn = en. Hence

the sequence (jUPxn) has no convergent subsequences, so that jUP is not

compact.

The inclusion J j ⊆ SS(dw,p) ∧ J `p is obvious since j is strictly singular.
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Conjecture 3.1.25. The ideal J j is the only immediate successor of K(dw,p).

In [7] and [18] (see also [63]), conditions on the weights w = (wn) are given

under which dw,p has exactly two non-equivalent symmetric basic sequences.

We will show that the conjecture holds true in this case.

Lemma 3.1.26. If T ∈ SS(dw,p)\K(dw,p) then there exists a seminormalized

basic sequence (xn) in dw,p such that (fn) � (xn) and (Txn) is weakly null

and seminormalized.

Proof. Let (zn) be a bounded sequence in dw,p such that (Tzn) has no con-

vergent subsequences. Then (zn) has no convergent subsequences either.

Applying Rosenthal’s `1-theorem and passing to a subsequence, we may as-

sume that (zn) is either equivalent to the unit vector basis of `1 or is weakly

Cauchy.

Case: (zn) is equivalent to the unit vector basis of `1. Since a reflexive

space cannot contain a copy of `1, we conclude that p = 1, so (zn) ∼ (fn).

Again, by Rosenthal’s theorem, (Tzn) has a subsequence which is either

equivalent to (fn) or is weakly Cauchy. If (Tznk
) ∼ (fn) then T is an iso-

morphism on the space [znk
], contrary to the assumption that T ∈ SS(dw,p).

Therefore, (Tznk
) is weakly Cauchy. Put xk = zn2k

− zn2k−1
. Then (xk) is

basic and (Txk) is weakly null. Passing to a further subsequence of (znk
) we

may assume that (Txk) is seminormalized. Also, (xk) is still equivalent to

(fn), hence is dominated by (fn).

Case: (zn) is weakly Cauchy. Clearly, (Tzn) is also weakly Cauchy. Con-

sider the sequence (un) in dw,p defined by un = z2n − z2n−1. Then both (un)

and (Tun) are weakly null. Passing to a subsequence of (zn), we may assume
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that (Tun) and, hence, (un) are seminormalized. Applying Theorem 3.1.3,

we get a subsequence (unk
) of (un) which is basic and equivalent to a block

sequence (vn) of (en). Denote xk = unk
. By Proposition 3.1.8, (fn) dominates

(vn) and, hence, (xk).

Theorem 3.1.27. If dw,p has exactly two non-equivalent symmetric basic

sequences, then J j is the only immediate successor of K(dw,p).

Proof. Let T be a non-compact operator on dw,p. It suffices to show that

J j ⊆ JT . We may assume that T is strictly singular because, otherwise, we

have J j ⊆ J `p ⊆ JT by Theorem 3.1.15.

Let (xn) be a sequence as in Lemma 3.1.26. Passing to a subsequence and

using Theorem 3.1.3, we may assume that (Txn) is basic and equivalent to a

block sequence (hn) of (en) such that Txn−hn → 0. We claim that (hn) has

no subsequences equivalent to (fn). Indeed, otherwise, for such a subsequence

(hnk
) of (hn), we would have (fn) ∼ (fnk

) � (xnk
) � (Txnk

) ∼ (hnk
) ∼ (fn),

so (xnk
) ∼ (Txnk

), contrary to T ∈ SS(dw,p). By [18, Theorem 19], (hn) has

a subsequence which spans a complemented subspace in dw,p and is equivalent

to (en). Therefore, by Theorem 3.1.2, we may assume (by passing to a further

subsequence) that (Txn) ∼ (en) and [Txn] is complemented in dw,p.

We have proved that there exists a sequence (xn) in dw,p such that [Txn]

is complemented in dw,p and

(fn) � (xn) � (Txn) ∼ (en).

Let A ∈ L(`p, dw,p) and B ∈ L([Txn], dw,p) be defined by Afn = xn and

B(Txn) = en. Let Q ∈ L(dw,p) be a projection onto [Txn]. Then for all
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n ∈ N, we obtain: BQTAfn = BQTxn = BTxn = en. It follows that

BQTA = j, so that J j ⊆ JT .

In order to prove Conjecture 3.1.25 without additional conditions on w,

it suffices to show that if T ∈ J j \ K(dw,p) then J j ⊆ JT . We will prove a

weaker statement: if T ∈ J j \ K(dw,p) then J j ⊆ JT .

Recall (see [7, p.148]) that if x = (an) ∈ dw,p then a block sequence

(yn) of (en) is called a block of type I generated by x if it is of the

form yn =
∑pn+1

i=pn+1 ai−pnei for all n. A set A ⊆ dw,p will be said to be

almost lengthwise bounded if for each ε > 0 there exists N ∈ N such

that ‖x∗|[N,∞)‖ < ε for all x ∈ A. We will usually use it in the case when

A = {xn} for some sequence (xn) in dw,p. We need the following result, which

is a slight extension of [7, Theorem 3]. We include the proof for completeness.

Theorem 3.1.28. Let (xn) be a seminormalized block sequence of (en) in dw,p.

(i) If (xn) is not almost lengthwise bounded then there exists a subsequence

(xnk
) such that (xnk

) ∼ (fn).

(ii) If (xn) is almost lengthwise bounded, then there exists a subsequence

(xnk
) equivalent to a block of type I generated by a vector u =

∑∞
i=1 biei ∈

dw,p with bi ↓ 0. Moreover, if the sequence (xn) is bounded in `p then u

is in `p.
1

Proof. (i) Without loss of generality, ‖xn‖ 6 1 for all n ∈ N. By the as-

sumption, there exists ε > 0 with the property that for each k ∈ N, there is

1As a sequence space, `p is a subset of dw,p. That is, we can identify `p with Range j.
More precisely, we claim here that if (j−1xn) is bounded in `p then u is in Range j. Being
a block sequence of (en), (xn) is contained in Range j.
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nk ∈ N such that ‖x∗nk
|(k,∞)‖ > ε. Let uk be a restriction of xnk

such that

u∗k = x∗nk
|[1,k] and vk = xnk

− uk.

Clearly, each nonzero entry of uk is greater than or equal to the greatest

entry of vk. By Lemma 3.1.18, the k-th coordinate of u∗k is less than or equal

to 1

s
1/p
k

where sk =
∑k

i=1wi. It follows that (vk) is a block sequence of (en)

such that ε 6 ‖vk‖ 6 1 and absolute values of the entries of vk are all at most

1

s
1/p
k

. Since limk sk = +∞ by the definition of dw,p, passing to a subsequence

and using Remark 3.1.4 we may assume that (vk) is equivalent to (fn). By

Proposition 3.1.8, (fn) dominates (xnk
). Using also Lemma 3.1.9, we obtain

the following diagram:

(fn) � (xnk
) � (vk) ∼ (fn).

Hence (xnk
) is equivalent to (fn).

(ii) Suppose that xn =
∑pn+1

i=pn+1 aiei. Clearly, the sequence (ai) is bounded.

Without loss of generality, apn+1 > . . . > apn+1 > 0 for each n. Put yn = x∗n.

Using a standard diagonalization argument and passing to a subsequence,

we may assume that (yn) converges coordinate-wise; put bi = lim
n→∞

yn,i. It is

easy to see that bi > bi+1 for all i. Put u = (bi).

Case: the sequence (pn+1 − pn) is bounded. Passing to a subsequence,

we may assume that N := pnk+1 − pnk
is a constant. Note that suppu ⊆

[1, N ] and supp ynk
⊆ [1, N ] for all k. Put uk =

∑pnk+1

i=pnk
+1 bi−pnk

ei, then

u = u∗k and (uk) as a block of type I generated by u. By compactness,

‖xnk
−uk‖ = ‖ynk

−u‖ → 0. Therefore, passing to a further subsequence, we

have (xnk
) ∼ (uk). Being a vector with finite support, u belongs to `p.

Case: the sequence (pn+1 − pn) is unbounded. We will construct the

required subsequence (xnk
) and a sequence (Nk) inductively. Put n1 = N1 =
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1 and let k > 1. Suppose that n1, . . . , nk−1 and N1, . . . , Nk−1 have already

been selected. Since (xn) is almost lengthwise bounded, we can find Nk >

Nk−1 such that ‖yn|(Nk,∞)‖ < 1
k

for all n. Put vk = u|[1,Nk]. Using coordinate-

wise convergence, we can find nk > nk−1 such that ‖ynk
|[1,Nk]−vk‖`p < 1

k
and

pnk
+Nk 6 pnk+1. Put uk =

∑pnk
+Nk

i=pnk
+1 bi−pnk

ei. Then u∗k = vk, so that

‖xnk
|(pnk

,pnk
+Nk] − uk‖`p = ‖ynk

|[1,Nk] − vk‖`p < 1
k

(3.1)

and

‖xnk
|(pnk

+Nk,pnk+1]‖ = ‖ynk
|(Nk,∞)‖ < 1

k
.

It follows that ‖xnk
−uk‖ → 0. Passing to a subsequence, we get (xnk

) ∼ (uk).

Next, we show that u ∈ dw,p. Since ‖ · ‖ 6 ‖ · ‖`p , it follows from (3.1)

that

‖vk‖ = ‖uk‖ 6 ‖xnk
|(pnk

,pnk
+Nk]‖+ 1

k
6 ‖xnk

‖+ 1
k
.

Since (xn) is bounded, so is (vk). Since supp vk = Nk →∞, we have u ∈ dw,p.

For the “moreover” part, we argue in a similar way. By (3.1), we have

‖vk‖`p 6 ‖uk‖`p 6 ‖xnk
|(pnk

,pnk
+Nk]‖`p + 1

k
6 ‖xnk

‖`p + 1
k
.

Therefore, if (xn) is bounded in `p then so is (vk), hence u ∈ `p.

Lemma 3.1.29. Suppose that (un) is a block of type I in dw,p generated

by some u =
∑∞

i=1 biei. If bi ↓ 0 and u ∈ `p then (un) has a subsequence

equivalent to (en)

Proof. By Corollary 4 of [7], we may assume that the basic sequence (un)

is symmetric. It suffices to show that [un] is isomorphic to dw,p because all

symmetric bases in dw,p are equivalent; see e.g., Theorem 4 of [7]. Without
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loss of generality, ‖u‖ = 1. Lemma 4 of [7] asserts that [un] is isomorphic

to dw,p iff (s
(u)
n ) ∼ (sn), where sn =

∑n
i=1wi, s

(u)
n =

∑∞
i=1 b

p
i (sni − sn(i−1)),

and (αn) ∼ (βn) means that there exist positive constants A and B such

that Aαn 6 βn 6 Bαn for all n. Let’s verify that this condition is, indeed,

satisfied. On one hand, taking only the first term in the definition of s
(u)
n , we

get s
(u)
n > bp1sn. On the other hand, it follows from wi ↓ that sni−sn(i−1) 6 sn

for every i, hence s
(u)
n 6

∑∞
i=1 b

p
i sn = ‖u‖p`psn.

Lemma 3.1.30. Let (xn) be a block sequence of (fn) in `p such that the

sequences (xn) and (jxn) are seminormalized in `p and dw,p, respectively.

Then there exists a subsequence (xnk
) such that (jxnk

) ∼ (en).

Proof. Clearly, (xn) ∼ (fn). It follows that (jxn) 6∼ (fn) because, otherwise,

j would be an isomorphism on [xn], which is impossible because j is strictly

singular by Theorem 3.1.23. Applying Theorem 3.1.28 to (jxn) and passing

to a subsequence, we may assume that (jxn) ∼ (un), where (un) is a block of

type I generated by some u =
∑∞

i=1 biei such that bi ↓ 0 and u ∈ `p. Applying

Lemma 3.1.29 and passing to a subsequence, we get (un) ∼ (en).

Theorem 3.1.31. If T ∈ J j \ K(dw,p) then J j ⊆ JT .

Proof. Write T = AjB where B : dw,p → `p and A : dw,p → dw,p. Let (xn) be

as in Lemma 3.1.26. The sequence (Bxn) is bounded, hence we may assume

by passing to a subsequence that it converges coordinate-wise. Since (Txn) is

weakly null and seminormalized, it has no convergent subsequences. It follows

that, after passing to a subsequence of (xn), we may assume that (Tzn) is

seminormalized, where zn = x2n − x2n−1. In particular, (zn), (Bzn), and

(jBzn) are seminormalized. Also, (Bzn) converges to zero coordinate-wise.
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Using Theorem 3.1.3 and passing to a further subsequence, we may assume

that (Bzn) is equivalent to a block sequence (un) of (fn) and Bzn − un → 0.

It follows from (fn) � (xn) that (fn) � (zn) � (Bzn) ∼ (un) ∼ (fn). In

particular, (zn) ∼ (fn).

Since Bzn − un → 0 and (jBzn) is seminormalized, we may assume that

the sequence (jun) is seminormalized. By Lemma 3.1.30, passing to a further

subsequence, we may assume that (jun) and, hence, (jBzn) are equivalent

to (en).

Passing to a subsequence and using Theorem 3.1.3, we may assume that

(Tzn) is equivalent to a block sequence (vn) of (en) such that Tzn − vn →

0. Since T ∈ SS(dw,p), no subsequence of (Tzn) and, therefore, of (vn)

is equivalent to (fn). By Proposition 3.1.8, (vn) � (en). It follows from

(jBzn) ∼ (en) that (en) � (Tzn), hence (Tzn) ∼ (en) ∼ (vn).

Write vn =
∑pn+1

i=pn+1 anen. By Remark 3.1.4, an 6→ 0. Hence, passing

to a subsequence and using [18, Remark 9], we may assume that [vn] is

complemented. By Theorem 3.1.3, we may assume that [Tzn] is comple-

mented. Let P ∈ L(dw,p) be a projection onto [Tzn] and U ∈ L(`p, dw,p) and

V ∈ L([Tzn], dw,p) be defined by Ufn = zn and V Tzn = en. Then we can

write j = V PTU . Therefore J j ⊆ JT .
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3.1.4 dw,p-strictly singular operators

The ideals in L(dw,p) we have obtained so far can be arranged into the fol-

lowing diagram.

SS
&.

{0} +3 K ( J j // J `p ∧ SS
&.

44

J `p ∨ SS // L(dw,p)

J `p
44

(see the Introduction for the notations). In this section, we will characterize

the greatest ideal in the algebra L(dw,p), that is, a proper ideal in L(dw,p)

that contains all other proper ideals in L(dw,p).

If X and Y are two Banach spaces, then an operator T ∈ L(X) is called

Y -strictly singular if for any subspace Z of X isomorphic to Y , the restric-

tion T |Z is not an isomorphism. The set of all Y -strictly singular operators

in L(dw,p) will be denoted by SSY .

According to this notation, the symbol SSdw,p stands for the set of all

dw,p-strictly singular operators in L(dw,p) (not to be confused with SS(dw,p)).

Lemma 3.1.32. Suppose that T ∈ SSdw,p and (xn) is a basic sequence in

dw,p equivalent to the unit vector basis (en). Then Txn → 0.

Proof. Suppose, by way of contradiction, that Txn 6→ 0. Then there is a

subsequence (xnk
) such that (Txnk

) is seminormalized. Since (xn) is weakly

null (Remark 3.1.7), we may assume by using Theorem 3.1.3 and passing to

a further subsequence that (Txnk
) is a basic sequence equivalent to a block

sequence (zk) of (en).

By Proposition 3.1.8, either (zk) has a subsequence equivalent to (fn) or

(zk) � (en). Since (Txnk
) cannot have subsequences equivalent to (fn) (this
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would contradict boundedness of T ), the former is impossible. Therefore

(zk) � (en). We obtain the following diagram:

(en) ∼ (xnk
) � (Txnk

) ∼ (zk) � (en).

Therefore T |[xnk
] is an isomorphism. This contradicts T being in SSdw,p .

Corollary 3.1.33. Let T ∈ SSdw,p. If Y ⊆ dw,p is a subspace isomorphic to

dw,p then there is a subspace Z ⊆ Y such that Z is isomorphic to dw,p and

T |Z is compact.

Proof. Let (xn) be a basis of Y equivalent to (en). By Lemma 3.1.32, Txn →

0. There is a subsequence (xnk
) of (xn) such that

∑∞
k=1

‖Txnk
‖

‖xnk
‖ is convergent.

Let Z = [xnk
]. It follows that Z is isomorphic to dw,p and T |Z is compact

(see, e.g., [16, Lemma 5.4.10]).

Theorem 3.1.34. The set SSdw,p of all dw,p-strictly singular operators in

L(dw,p) is the greatest proper ideal in the algebra L(dw,p). In particular,

SSdw,p is closed.

Proof. First, let us show that SSdw,p is an ideal. Let T ∈ SSdw,p . If A ∈

L(dw,p) then, trivially, AT ∈ SSdw,p . If TA 6∈ SSdw,p then there exists a

subspace Y of dw,p such that Y and TA(Y ) are both isomorphic to dw,p.

Then A|Y is bounded below, hence A(Y ) is isomorphic to dw,p. It follows

that T is an isomorphism on a copy of dw,p, contrary to T ∈ SSdw,p . So,

SSdw,p is closed under two-sided multiplication by bounded operators.

Let T, S ∈ SSdw,p . We will show that T + S ∈ SSdw,p . Let Y be a sub-

space of dw,p isomorphic to dw,p. By Corolary 3.1.33, there exists a subspace
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Z of Y such that Z is isomorphic to dw,p and T |Z is compact. Applying Coro-

lary 3.1.33 again, we can find a subspace V of Z such that V is isomorphic to

dw,p and S|V is compact. Therefore (T + S)|V is compact, so that (T + S)|Y
is not an isomorphism. So, SSdw,p is an ideal.

Clearly, the identity operator I does not belong to SSdw,p , so SSdw,p is

proper. Let us show that SSdw,p is the greatest ideal in L(dw,p).

Let T 6∈ SSdw,p . Then there exists a subspace Y of dw,p such that Y

and T (Y ) are isomorphic to dw,p. By [18, Corollary 12], there exists a com-

plemented (in dw,p) subspace Z of T (Y ) such that Z is isomorphic to dw,p.

Let P ∈ L(dw,p) be a projection onto Z. Put H = T−1(Z). It follows that

H is isomorphic to dw,p. Let U : dw,p → H and V : Z → dw,p be surjective

isomorphisms. Then S ∈ L(dw,p) defined by S = (V P )TU is an invertible

operator. Clearly S ∈ JT , hence JT = L(X).

The fact that SSdw,p is closed follows from [23, Corollary VII.2.4].

The next theorem provides a convenient characterization of dw,p-strictly

singular operators.

Lemma 3.1.35. Let T ∈ L(dw,p) be such that Ten → 0. Suppose that (xn) is

a bounded block sequence of (en) in dw,p such that (xn) is almost lengthwise

bounded. Then Txn → 0.

Proof. Write xn =
∑pn+1

i=pn+1 aiei. Since (xn) is bounded, there is C > 0

such that |ai| 6 C for all i and n ∈ N. Let ε > 0. Find N ∈ N such

that ‖x∗n|[N,∞)‖ < ε for all n ∈ N. Let un be a restriction of xn such that

u∗n = x∗n|[1,N) and vn = xn − un. It is clear that ‖vn‖ = ‖x∗n|[N,∞)‖ < ε. Also,

‖Tun‖ 6 NC ·maxpn+16i6pn+1 ‖Tei‖.
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Pick M ∈ N such that ‖Tek‖ < ε
N

for all k >M . Then

‖Txn‖ 6 ‖Tun‖+ ‖Tvn‖ 6 NC
ε

N
+ ε‖T‖ = ε

(
C + ‖T‖

)
for all n such that pn > M . It follows that Txn → 0.

Theorem 3.1.36. An operator T ∈ L(dw,p) is dw,p-strictly singular if and

only if Ten → 0.

Proof. Suppose that Ten → 0 but T /∈ SSdw,p . Then there exists a subspace

Y of dw,p such that Y is isomorphic to dw,p and T |Y is an isomorphism. Let

(xn) be a basis of Y equivalent to (en). By Remark 3.1.7, xn
w−→ 0. Using

Theorem 3.1.3 and passing to a subsequence, we may assume that (xn) is

equivalent to a block sequence (zn) of (en) such that xn− zn → 0. Since (zn)

is equivalent to (en), it is almost lengthwise bounded by Theorem 3.1.28. By

Lemma 3.1.35, Tzn → 0. Since xn − zn → 0, we obtain Txn → 0. This is a

contradiction since (xn) is seminormalized and T |[xn] is an isomorphism.

The converse implication follows from Lemma 3.1.32.

Remark 3.1.37. In Theorem 3.1.34 we showed, in particular, that SSdw,p

is closed under addition. Alternatively, we could have deduced this from

Theorem 3.1.36.

Recall that an operator T on a Banach space X is called Dunford-Pettis

if for any sequence (xn) in X, xn
w−→ 0 implies Txn → 0. If 1 < p <∞ then

the class of Dunford-Pettis operators on dw,p coincides with K(dw,p) because

dw,p is reflexive. For the case p = 1 we have the following result.

Theorem 3.1.38. Let T ∈ L(dw,1). Then T is dw,1-strictly singular if and

only if T is Dunford-Pettis.
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Proof. If T is Dunford-Pettis then then T is dw,1-strictly singular by Theo-

rem 3.1.36 because (en) is weakly null.

Conversely, suppose that T is dw,1-strictly singular. Let (xn) be a weakly

null sequence. Suppose that (Txn) does not converge to zero. Then, passing

to a subsequence, we may assume that (xn) is a seminormalized weakly null

basic sequence equivalent to a block sequence (un) of (en) such that xn−un →

0. Clearly, (un) is weakly null. In particular, (un) has no subsequences

equivalent to (fn). By Theorem 3.1.28, (un) is almost lengthwise bounded.

Hence, by Lemma 3.1.35, Tun → 0. It follows that Txn → 0, contrary to the

choice of (xn).

3.1.5 Strictly singular operators between `p and dw,p.

We do not know whether the ideals J j, SS ∧ J `p , and SS are distinct. In

this section, we discuss some connections between these ideals.

Conjecture 3.1.39. J j = SS∧J`p . In particular, every strictly singular op-

erator in L(dw,p) which factors through `p can be approximated by operators

that factor through j.

The following statement is a refinement of Lemma 3.1.9. Recall that dw,p

is a Banach lattice with respect to the coordinate-wise order.

Lemma 3.1.40. Suppose that (xn) and (yn) are seminormalized sequences

in dw,p such that |xn| > |yn| for all n ∈ N and xn → 0 coordinate-wise. Then

there exists an increasing sequence (nk) in N such that (xnk
) and (ynk

) are

basic and (xnk
) � (ynk

).
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Proof. Clearly, yn → 0 coordinate-wise. By Theorem 3.1.3, we can find a

sequence (nk) and two block sequences (uk) and (vk) of (en) such that (xnk
)

and (ynk
) are basic, (xnk

) ∼ (uk), (ynk
) ∼ (vk), xnk

− uk → 0, ynk
− vk → 0,

and for each k ∈ N, the vector uk (vk, respectively) is a restriction of (xnk
)

(of (ynk
), respectively).

For each k ∈ N, define hk ∈ dw,p by putting its i-th coordinate to be equal

to hk(i) = sign
(
vk(i)

)
·
(
|uk(i)| ∧ |vk(i)|

)
. Then (hk) is a block sequence

of (en) such that |hk| 6 |uk|. A straightforward verification shows that

|hk − vk| 6 |uk − xnk
|. It follows that hk − vk → 0. By Theorem 3.1.2,

passing to a subsequence, we may assume that (hk) is basic and (hk) ∼ (vk).

By Lemma 3.1.9, (uk) � (hk). Hence (xnk
) � (ynk

).

The next lemma is a version of Theorem 3.1.28 for the case (xn) is an

arbitrary bounded sequence.

Lemma 3.1.41. If the bounded sequence (xn) in dw,p is not almost length-

wise bounded, then there is a subsequence (xnk
) such that (xn2k

− xn2k−1
) is

equivalent to the unit vector basis (fn) of `p.

Proof. We can assume without loss of generality that no subsequence of (xn)

is equivalent to the unit vector basis of `1. Indeed, if (xnk
) is equivalent to

the unit vector basis of `1 then p = 1. It follows that (xnk
) is equivalent to

(fn) and hence (xn2k
− xn2k−1

) is equivalent to (fn), as well.

Without loss of generality, supn ‖xn‖ = 1. Since (xn) is not almost length-

wise bounded, there exists c > 0 such that

∀N ∈ N ∃n ∈ N ‖x∗n|[N,∞)‖ > c. (3.2)
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Let c
4
> εk ↓ 0. We will inductively construct increasing sequences (nk) and

(Nk) in N and a sequence (yk) in dw,p such that the following conditions are

satisfied for each k:

(i) ‖xnk
|[Nk+1,∞)‖ < εk;

(ii) yk is supported on [Nk, Nk+1);

(iii) yk is a restriction of xnk
;

(iv) ‖yk‖ > c
2
;

(v) ‖yk‖∞ 6 s
−1/p
Nk

where sN is as in Lemma 3.1.18.

For k = 1, we put N1 = 1, and define n1 to be the first number n such that

‖xn‖ > c; such an n exists by (3.2). Pick N2 ∈ N such that ‖xn1 |[N2,∞)‖ < ε1.

Put y1 = xn1|[N1,N2). It follows that 1 > ‖y1‖ > c − ε1 > c
2
, and the

coordinates of y1 are all at most 1 (= s
−1/p
1 ), hence all the conditions (i)–(v)

are satisfied for k = 1.

Suppose that appropriate sequences (ni)
k
i=1, (Ni)

k+1
i=1 , and (yi)

k
i=1 have

been constructed. Use (3.2) to find nk+1 such that ‖x∗nk+1
|[2Nk+1,∞)‖ > c.

Let z be the vector obtained from xnk+1
by replacing its Nk+1 largest (in

absolute value) entries with zeros. Then ‖z|[Nk+1,∞)‖ > ‖z∗|[Nk+1,∞)‖ =

‖x∗nk+1
|[2Nk+1,∞)‖ > c. By Lemma 3.1.18, ‖z‖∞ 6 s

−1/p
Nk+1

. Choose Nk+2

such that ‖xnk+1
|[Nk+2,∞)‖ < εk+1. It follows that ‖z|[Nk+2,∞)‖ < εk+1. Put

yk+1 = z|[Nk+1,Nk+2). Then ‖yk+1‖ > c − εk+1 >
c
2
, and the inductive con-

struction is complete.

The sequence (yk) constructed above is a seminormalized block sequence

of (en) such that the coordinates of (yk) converge to zero by condition (v).
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Using Remark 3.1.4 and passing to a subsequence, we may assume that (yk)

is equivalent to the unit vector basis (fn) of `p.

Since (xn) contains no subsequences equivalent to the unit vector basis

of `1, using the Rosenthal’s `1-theorem and passing to a further subsequence,

we may assume that (xnk
) is weakly Cauchy. For all m > k ∈ N, we have:

‖xnk
|[Nm,∞)‖ 6 ‖xnk

|[Nk+1,∞)‖ 6 εk. Therefore ‖xnm − xnk
‖ > ‖(xnm −

xnk
)|[Nm,∞)‖ > ‖xnm|[Nm,∞)‖ − εk > ‖ym‖ − εk > c

2
− εk >

c
4
. It follows

that the sequence (uk) defined by uk = xn2k
− xn2k−1

is seminormalized and

weakly null. Passing to a subsequence of (xnk
), we may assume that (uk) is

equivalent to a block sequence of (en). By Proposition 3.1.8, (fn) � (uk).

Let vk = xn2k
−
(
xn2k−1

|[1,N2k)

)
. Then ‖uk − vk‖ = ‖xn2k−1

|[N2k,∞)‖ <

ε2k−1 → 0. By Theorem 3.1.2, passing to a subsequence of (xnk
), we may

assume that (vk) is basic and (vk) ∼ (uk). Also, (vk) is weakly null. Note

that |y2k| 6 |vk| for all k ∈ N, since supp y2k ⊆ [N2k, N2k+1), so that y2k

is a restriction of vk. By Lemma 3.1.40, passing to a subsequence, we may

assume that (vk) � (y2k). Therefore we obtain the following diagram:

(fk) � (uk) ∼ (vk) � (y2k) ∼ (f2k) ∼ (fn).

It follows that (uk) is equivalent to (fk).

Corollary 3.1.42. If T ∈ SS(`p, dw,p) then the sequence (Tfn) is almost

lengthwise bounded.

Proof. Suppose that (Tfn) is not almost lengthwise bounded. By Lemma 3.1.41,

there is a subsequence (fnk
) such that (Tfn2k

−Tfn2k−1
) is equivalent to (fn).

It follows that T |[fn2k
−fn2k−1

] is an isomorphism.
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Remark 3.1.43. If we view T as an infinite matrix, the vectors (Tfn) rep-

resent its columns.

Theorem 3.1.44. If T ∈ L(`1, dw,1) is such that the sequence (Tfn) is almost

lengthwise bounded, then for any ε > 0 there exists S ∈ L(`1) such that

‖T − jS‖ < ε, where j ∈ L(`1, dw,1) is the formal identity operator.

Proof. Let ε > 0 be fixed. Find N ∈ N such that ‖(Tfn)∗|[N,∞)‖ < ε for

all n. Let zn ∈ dw,1 be the vector obtained from Tfn by keeping its largest

N coordinates and replacing the rest of the coordinates with zeros.

Define S : `1 → dw,1 by Sfn = zn. Note that ‖T − S‖ = supn ‖(T −

S)fn‖ = supn ‖Tfn − zn‖ 6 ε; in particular, S is bounded. Let F =

span{e1, . . . , eN}. Since dimF <∞, there exists C > 0 such that

1

C
‖x‖`1 6 ‖x‖dw,1 6 C‖x‖`1

for all x ∈ F . Observe that for each n ∈ N, the non-increasing rearrangement

(Sfn)∗ is in F . Therefore, for all n ∈ N, we have

‖Sfn‖`1 = ‖(Sfn)∗‖`1 6 C‖(Sfn)∗‖dw,1 = C‖Sfn‖dw,1 6 C‖S‖.

It follows that the operator S̃ : `1 → `1 defined by S̃fn = Sfn belongs to

L(`1). Obviously, S = jS̃. So, ‖T − jS̃‖ < ε.

The next corollary follows immediately from Theorem 3.1.44 and Corol-

lary 3.1.42. This corollary can be considered as a support for Conjecture 3.1.39.

Corollary 3.1.45. SS(`1, dw,1) is contained in the closure of {jS : S ∈

L(`1)}.

Question. Does Corollary 3.1.45 remain valid for p > 1?
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The following fact is standard, we include its proof for convenience of the

reader.

Proposition 3.1.46. If X is a Banach space then SS(X, `1) = K(X, `1).

Proof. Let T 6∈ K(X, `1). Pick a bounded sequence (xn) in X such that

(Txn) has no convergent subsequences. By Schur’s theorem, (Txn) and,

therefore, (xn) have no weakly Cauchy subsequences. Applying Rosenthal’s

`1-theorem twice, we find a subsequence (xnk
) such that (xnk

) and (Txnk
)

are both equivalent to the unit vector basis of `1. It follows that T is not

strictly singular.

Proposition 3.1.47. For all p ∈ [1,∞), SS(dw,p, `p) = K(dw,p, `p).

Proof. By Proposition 3.1.46, we only have to consider the case p > 1.

Let T 6∈ K(X, `p). Pick a bounded sequence (xn) in X such that (Txn)

has no convergent subsequences. Since dw,p contains no copies of `1, by

Rosenthal’s `1-theorem we may assume that (xn) is weakly Cauchy. Passing

to a further subsequence, we may assume that the sequence (Tyn), where

yn = x2n − x2n−1, is seminormalized. It follows that (yn) is also seminor-

malized. Also, (yn) and, therefore, (Tyn) are weakly null. Passing to a

subsequence of (xn), we may assume that (yn) and (Tyn) are both basic,

equivalent to block sequences of (en) and (fn), respectively. By [7, Propo-

sition 5] and [63, Proposition 2.a.1], (fn) � (yn) and (fn) ∼ (Tyn). So, we

obtain the diagram

(fn) � (yn) � (Tyn) ∼ (fn).

Hence [yn] is isomorphic to [Tyn], so that T is not strictly singular.
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The following lemma is standard.

Lemma 3.1.48. Let X be a Banach space. Every seminormalized basic

sequence in X is dominated by the unit vector basis of `1.

Lemma 3.1.49. Let (xn) and (yn) be two sequences in a Banach space X

such that (xn) is equivalent to the unit vector basis of `1 and (yn) is con-

vergent. Then the sequence (zn) defined by zn = xn + yn has a subsequence

equivalent to the unit vector basis of `1.

Proof. Observe that (zn) cannot have weakly Cauchy subsequences since (xn)

does not have such subsequences. Since (zn) is bounded, the result follows

from Rosenthal’s `1-theorem.

Recall that an operator A between two Banach lattices X and Y is called

positive if x > 0 entails Tx > 0.

Conjecture 3.1.39 asserts, in particular, that if T ∈ SS(dw,p) and T = AB

for some A : dw,p → `p and B : `p → dw,p then T ∈ J j. In the next theorem,

we prove this under the additional assumptions that p = 1 and both A and

B are positive.

Theorem 3.1.50. Let T ∈ SS(dw,1) be such that T = AB, where A ∈

L(`1, dw,1), B ∈ L(dw,1, `1), and both A and B are positive. Then T ∈ J j.

Proof. Define a sequence (AN) of operators in L(`1, dw,1) by the following

procedure. For each n ∈ N, let ANfn be obtained from Afn by keeping the

largest N coordinates and replacing the rest of the coordinates with zeros.

Since Afn > 0 for all n ∈ N, this defines a positive operator `1 → dw,1. Also,

‖ANfn‖ 6 ‖Afn‖ 6 ‖A‖ for all n ∈ N, hence ‖AN‖ 6 ‖A‖.

90



Define A′N = A−AN . It is clear that 0 6 A′Nfn 6 Afn for all n ∈ N, hence

A′N > 0 and ‖A′N‖ 6 ‖A‖. We claim that A′N → 0 in the strong operator

topology (SOT). Indeed, since A′Nfn is obtained from Afn by removing the

largest N coordinates, the elements of the matrix of A′N are all smaller than

‖A‖
sN

by Lemma 3.1.18. In particular, if 0 6 x ∈ `1, then A′Nx ↓ 0; it follows

that ‖A′Nx‖ → 0 because dw,1 has order continuous norm (see Remark 3.1.5).

If x ∈ `1 is arbitrary then ‖A′Nx‖ 6
∥∥A′N |x| ∥∥→ 0.

We will show that ‖A′NB‖ → 0 as N →∞, so that ‖AB−ANB‖ → 0 as

N →∞. Since (ANfn)∞n=1 is almost lengthwise bounded (in fact, the vectors

in the sequence (ANfn)∞n=1 all have at most N nonzero entries), the theorem

will follow from Theorem 3.1.44.

Assume, by way of contradiction, that there are c > 0 and a sequence

(Nk) in N such that ‖A′Nk
B‖ > c. Then there exists a normalized positive

sequence (xk) in dw,p such that ‖A′Nk
Bxk‖ > c. By Rosenthal’s `1-theorem,

we may assume that (xk) is either weakly Cauchy or equivalent to (fn).

Assume that (xk) is weakly Cauchy. Then (Bxk) is weakly Cauchy. Since

(Bxk) is a sequence in `1, it must converge to some z ∈ `1 by the Schur

property. Then ‖A′Nk
Bxk−A′Nk

z‖ 6 ‖A′Nk
‖·‖Bxk−z‖ 6 ‖A‖·‖Bxk−z‖ →

0. Since A′Nk
→ 0 in SOT, it follows that A′Nk

Bxk → 0, contrary to the

assumption. Therefore (xk) must be equivalent to (fn).

Since the entries of the matrix of A′N are all less than ‖A‖
sN

, the coordinates

of the vector A′Nk
Bxk are all less than ‖A‖

sNk

‖B‖ → 0. Hence, passing to a

subsequence, we may assume that (A′Nk
Bxk) is equivalent to a block sequence

(uk) of (en) such that each uk is a restriction of A′Nk
Bxk. In particular, the

coordinates of (uk) converge to zero. Passing to a further subsequence, we
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may assume by Remark 3.1.4 that (A′Nk
Bxk) ∼ (fn).

The sequence (Txk) cannot have subsequences equivalent to (fn) since T

is strictly singular. Therefore, by Rosenthal’s `1-theorem, we may assume

that (Txk) is weakly Cauchy. Since dw,1 is weakly sequentially complete

(Remark 3.1.5), the sequence (Txk) weakly converges to a vector y ∈ dw,1.

Since the positive cone in a Banach lattice is weakly closed, y > 0.

Note that Txk > A′Nk
Bxk > uk > 0 for every k. Since (uk) is a seminor-

malized block sequence of (en), it follows that (Txk) is not norm convergent.

Write Txk = y + hk; then (hk) converges to zero weakly but not in norm.

Therefore, passing to a subsequence, we may assume that (hk) is seminor-

malized and basic (but not, necessarily, positive).

Let rk = A′Nk
Bxk−(A′Nk

Bxk∧y) > 0, k ∈ N. Observe that A′Nk
Bxk∧y ∈

[0, y] for all k. Since dw,1 has order continuous norm and the order in dw,1 is

defined by a 1-unconditional basis, order intervals in dw,1 are compact (see,

e.g., [103, Theorem 6.1]). Therefore, passing to a subsequence of (xnk
), we

may assume that (A′Nk
Bxk ∧ y) is convergent, hence, passing to a further

subsequence, (rk) is equivalent to (fn) by Lemma 3.1.49 and Theorem 3.1.2.

It follows from y+hk > A′Nk
Bxk > 0 that |hk| > rk for all k. Passing to a

subsequence, we may assume by Lemma 3.1.40 that (hk) � (rk) ∼ (fn). By

Lemma 3.1.48, in fact (hk) ∼ (fn), and, hence, by Lemma 3.1.49, (ABxk) ∼

(fn). Since also (xk) ∼ (fn), this contradicts to T = AB ∈ SS(dw,1).
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3.2 Strictly singular operators on noncom-

mutative Lp

The results of this section are based on [71]. This section is structured as

follows. In Subection 3.2.1, we consider operators on Lp(τ), where τ is a

faithful normal trace on a finite hyperfinite algebra. Generalizing [97], we

show that T ∈ L(Lp(τ)) is strictly singular if and only if Lp(τ) contains a

subspace E, isomorphic to either `2 or `p, so that T |E is an isomorphism,

and both E and T (E) are complemented (Theorem 4). We also show that, if

either 2 ≤ u2 ≤ u1 < ∞, or 1 < u1 ≤ u2 ≤ 2, then SS(Lu1(τ1), Lu2(τ2))+ =

K(Lu1(τ1), Lu2(τ2))+. (Proposition 4).

In Subection 3.2.2, we restrict our attention to the Schatten spaces Cp.

We show that SS(Cp,Cq) = K(Cp,Cq) if ∞ > p > 2 > q > 1, and otherwise,

SS(Cp,Cq) ) FSS(Cp,Cq) ) K(Cp,Cq) (Theorem 3.2.25). Similar coinci-

dence results are established for positive operators (Theorems 3.2.27 and

3.2.28). Although the dual of a strictly singular operator need not be strictly

singular, we show that T ∈ SS(C∞) if and only if T ∗ ∈ SS(C1) (Proposi-

tion 3.2.23). Eventually, we prove that T ∈ B(C1, Z) is Dunford-Pettis iff its

restriction to every copy of `2 is compact (Proposition 3.2.31).

Finally, in Subsection 3.2.3, we investigate ideals of operators on C∗-

algebras. Among other things, we prove that a von Neumann algebra A is of

finite type I if and only if FSS(A) = SS(A) = IN (A) = WK(A). More-

over, if A is not of finite type I, then all of this classes are different (Theorem

4). Incidentally, we establish some results for commutative function spaces.

Throughout this section, we shall use the term `p-basis as a shorthand

for “a sequence equivalent to the canonical basis of `p.”
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3.2.1 Noncommutative Lp: continuous case

Characterization of strictly singular operators

The main result of this subsection is:

Theorem 3.2.1. Suppose τ is a faithful normal finite trace on a hyperfinite

von Neumann algebra A, and 1 < p < ∞. For T ∈ L(Lp(τ)), the following

statements are equivalent:

(i) T is not strictly singular.

(ii) Lp(τ) contains a subspace E, isomorphic either to `p or `2, so that T |E
is an isomorphism, and both E and T (E) are complemented.

Throughout, we assume p 6= 2, and τ(1) = 1. The implication (2)⇒ (1)

is clear. Proving (1) ⇒ (2) is easy for 2 < p < ∞, due to Kadec-Pelczynski

dichotomy (see e.g. [85, Theorem 0.2]): any infinite dimensional subspace

of Lp(τ) contains a further subspace E, isomorphic to either `p or `2, and

complemented in Lp(τ). In fact, for 2 < p <∞ our conclusion remains true

even for any normal faithful semifinite trace τ on a von Neumann algebra A

(not necessarily hyperfinite). Below, we use some ideas from [97] to tackle

the case of 1 < p < 2.

Proposition 3.2.2. Suppose A, τ , and p are as in Theorem 4. Then any

separable subspace of Lp(τ) (1 6 p < ∞) is contained in a subspace with an

unconditional FDD. Consequently, if A is separably acting, then Lp(τ) has

an unconditional FDD.

Remark 3.2.3. By [105, Lemma 1.8], for a von Neumann algebra A with

a normal faithful semifinite trace τ , the following are equivalent: (i) A is
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separably acting; (ii) A has a separable predual, and (iii) L2(τ) is separable.

Consequently, these statements are equivalent to Lp(τ) being separable, for

any (equivalently, all) p ∈ [1,∞).

Remark 3.2.4. The hyperfiniteness of A is essential here. Indeed, by [52,

Theorem 2.19], for p ∈ (1, 80/79) ∪ (80,∞), there exists a von Neumann

algebra A with separable predual, equipped with a finite faithful normal

trace τ , so that Lp(τ) fails the Approximation Property.

Proof. If A is a hyperfinite von Neumann algebra, it contains a net (Aα) of

finite dimensional von Neumann subalgebras, ordered by inclusion, so that A

is the weak∗-closure of ∪αAα. The conditional expectations Qα : A → Aα are

completely contractive, and satisfy QαQβ = QβQα = Qα whenever α ≤ β.

By [79, Theorem 3.4], Qα extends to a completely contractive map from

Lp(τ) to Lp(τα), where τα is the restriction of τ to Nα, and Lp(τ) is the norm

closure of ∪αLp(τα).

Now suppose (xk) is a dense subset of a subspace X ⊂ Lp(τ). Then

there exists an increasing sequence (αk) so that maxj≤k dist(xj,Aαk
) < 4−k

for any k. Now define A′ as the weak∗ closure of ∪kAαk
in A, and let τ ′

be the restriction of τ to A′. As noted in the proof of [79, Theorem 3.4],

Lp(τ
′) = ∪kLp(ταk

), and this space contains X. By [80, Section 7] (or [83]),

the subspaces Lp(ταk
) ∩ kerQαk−1

form an unconditional FDD.

We say that a Banach space has the Unconditional Sequence Property

(USP) if every weakly null seminormalized sequence contains an uncondi-

tional subsequence. Theorem 3.2.2 combined with [63, Theorem 1.g.5], [63,

Proposition 1.a.12], and the fact that every normalized block sequence of an
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unconditional basis is unconditional imply the following.

Corollary 3.2.5. Suppose τ is a normal faithful semifinite trace on a hy-

perfinite von Neumann algebra A. Then, for 1 < p < ∞, Lp(τ) has the

USP.

The USP of commutative Lp spaces (1 < p < ∞) is well known, and

follows from the unconditionality of the Haar basis. It was proved in [51]

that L1(0, 1) fails the USP. In the case of noncommutative L1 we have the

following.

Proposition 3.2.6. Let τ be a normal faithful semifinite trace on a von-

Neumann algebra A. Then L1(τ) has USP if and only if A is atomic of type

I.

Proof. If A is not atomic of type I then L1(τ) contains a complemented copy

of L1(0, 1) by [70, Theorem 1.5.3], and, therefore, it fails the USP. Otherwise,

L1(τ) has the USP since it can be written as
∑

i(C1(Hi))`1 , where Hi is a

Hilbert space.

Question. Suppose τ is a normal faithful semifinite trace on a von Neumann

algebra A, and 1 < p <∞. Does Lp(τ) have the USP?

The following lemma can be deduced from Rosenthal’s characterization

of `1-bases. We present an easy proof for the sake of completeness.

Lemma 3.2.7. A seminormalized unconditional sequence in a Banach space

is either weakly null, or contains a subsequence equivalent to `1. Conse-

quently, any bounded unconditional basic sequence in a reflexive space is

weakly null.
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Proof. Suppose a normalized sequence (xn), with an unconditional constant

C, is not weakly null. Passing to a subsequence, we find a norm one x∗ ∈ X∗

so that |x∗(xn)| > c > 0 for every n. For any finite sequence (αn) let

ωn = sgn(αn) |x
∗(xn)|
x∗(xn)

. Then∑
n

|αn| ≥ ‖
∑
n

αnxn‖ ≥ C−1‖
∑

n αnωnxn‖

> C−1|x∗(
∑

n αnωnxn)| ≥ cC−1
∑

n |αn|.

Thus, (xn) is equivalent to the `1-basis.

Proposition 3.2.8. If 1 < p < 2, then any sequence in Lp(τ), equivalent to

the `2-basis, has a subsequence whose linear span is complemented.

Proof. Suppose (xn) is a sequence, equivalent to the `2-basis. By Hahn-

Banach Theorem, Lq(τ) (here, as before, 1/p+ 1/q = 1) contains a bounded

biorthogonal sequence (yn). By passing to a subsequence, we may assume

yn → y weakly. Note that, for any n, y(xn) = limm ym(xn) = 0, hence

the sequence zn = yn − y is weakly null, and biorthogonal to (xn). By

passing to a further subsequence, and using the noncommutative Kadec-

Pelczynski dichotomy [85, Theorem 5.4], we assume that (zn) is equivalent

either to the `2-basis, or to the `q-basis, and complemented. The latter,

however, is impossible. Indeed, then there exists a constant C so that, for

every sequence (αi), C
−1(
∑

i |αi|2)1/2 ≤ ‖
∑

i αixi‖ ≤ C(
∑

i |αi|2)1/2, and

C−1(
∑

i |αi|q)1/q ≤ ‖
∑

i αizi‖ ≤ C(
∑

i |αi|q)1/q. In particular, for any m,

Cm1/q > ‖
∑m

i=1 zi‖ = sup‖x‖p≤1 |(
∑m

i=1 zi)(x)|

≥ |(
∑m

i=1 zi)(C
−1m−1/2

∑m
i=1 xi)| = C−1m1/2,

which fails for sufficiently large values of m.
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Thus, (zn) is equivalent to the `2-basis, and there exists a projection

P from Lq(τ) onto Z = span[zn : n ∈ N]. Note that the restriction of

P ∗ onto X = span[xn : n ∈ N] is an isomorphism. Indeed, for any se-

quence (αn) ∈ `2, we have ‖
∑

n αnxn‖ ∼ (
∑

n |αn|2)1/2. Furthermore, let

z = (
∑

n |αn|2)−1/2
∑

n αnzn. Then Pz = z, and ‖z‖ . 1, hence

‖P ∗(
∑
n

αnxn)‖ & ‖(P ∗(
∑
n

αnxn))(z)‖ = ‖(
∑
n

αnxn)(Pz)‖ & (
∑
n

|αn|2)1/2.

To complete the proof, note that U−1P ∗ is a bounded projection onto X

where by U we denoted the restriction of P ∗ onto X = span[xn : n ∈ N],

viewed as an operator into ranP ∗.

Suppose τ is a normal faithful semifinite trace on a von Neumann algebra

A. We say that K ⊂ Lp(τ) is p-equiintegrable if limα suph∈K ‖eαheα‖p = 0 for

every net of projections (eα), converging (weakly) to 0 (see e.g. [95, Section

II.2] for a discussion on various modes of convergence). By [85, Section 4],

the following are equivalent:

(i) K is p-equiintegrable.

(ii) limn suph∈K ‖enhen‖p = 0 for every sequence of projections (en), con-

verging (weakly) to 0.

(iii) limα suph∈K ‖xαhyα‖p = 0 if the nets of positive operators (xα) and

(yα) converge to 0 weak∗.

The following result seems to be folklore.

Lemma 3.2.9. Suppose K is p-equiintegrable. Then for every ε > 0 there

exists δ > 0 so that supf∈K max{‖ef‖, ‖fe‖} < ε whenever e is a projection

of trace not exceeding δ.
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Remark 3.2.10. If τ is finite, then a sequence of projections (en) converges

weakly to 0 iff lim τ(en) = 0. In this setting, the above lemma shows that

K is p-equiintegrable if and only if it is (in the terminology of [85]) K is

p-biequiintegrable. If τ is not finite, p-equiintegrability need not imply p-

biequiintegrability.

Proof. Note that, if (en) is a sequence of projections, and limn τ(en) = 0, then

en → 0 weak∗. Indeed, otherwise, by passing to a subsequence, we can find

x ∈ L1(τ) and c > 0, so that |τ(xen)| > c for any n. By polarization, we can

assume that x ≥ 0. Denote by µx(t) the generalized singular value function

of x. Then (see e.g. [29]) ‖x‖1 =
∫
µx(t) dt, and τ(xen) ≤

∫ τ(en)
0

µx(t) dt.

The latter converges to 0, leading to a contradiction.

Find δ so that supf∈K ‖rfr‖ < ε/4 whenever r is a projection with τ(r) <

2δ. If τ(e) < δ, denote by e′ the range projection of fe. Clearly, τ(e′) ≤ τ(e).

Let r = e ∨ e′. Then τ(r) ≤ τ(e) + τ(e′) < 2δ, hence ‖rfr‖ < ε for f ∈ K.

However, fe = e′fe = e′(rfr)e, hence ‖fe‖ ≤ ‖rfr‖ < ε. An estimate for

‖ef‖ is obtained similarly.

Proof of Theorem 4. It remains to establish (1)⇒ (2) for 1 < p < 2. Suppose

T ∈ B(Lp(τ)) is not strictly singular – that is, it fixes an infinite dimensional

subspace X. To show that T is an isomorphism on E ⊂ X, so that E is

isomorphic to either `p or `2, and both E and T (E) are complemented, we

consider two cases separately: (1) BX is not p-equiintegrable (then E ∼ `p);

(2) BX is p-equiintegrable (then E ∼ `2).

Case 1. Let BX be not p-equiintegrable. By [85, Theorem 5.1], X contains a

complemented subspace Y , isomorphic to `p. Denote by (fn) an `p-basis in Y .
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(Tfn) is an `p-basic sequence, hence, by [85, Theorem 5.1] again (or by [84]),

there exists a normalized block sequence hk =
∑

j∈Ik αjTfj, whose linear

span is complemented in Lp(τ). By [63, Proposition 2.a.1], the linear span of

the vectors gk = T−1hk =
∑

j∈Ik αjfj is complemented in span[fn : n ∈ N],

hence also in Lp(τ).

Case 2. Suppose BX is p-equiintegrable. By Corollary 3.2.5, X contains a

normalized unconditional basic sequence (fn). We shall use fn’s to produce

the following sequence (gn):

(i) ‖gn‖p ∈ [1/2, 2].

(ii) supn ‖gn‖∞ <∞.

(iii) The sequence (gn) is weakly null in both Lp(τ) and L2(τ).

(iv) (gn) is equivalent to an orthonormal basis in `2, in both Lp(τ) and

L2(τ).

(v) (Tgn) is equivalent to the `2-basis.

Without loss of generality, we assume ‖fn‖p = 1 for every n. Set c =

infn ‖Tfn‖, and fix ε ∈ (0,min{1/40, c/(8‖T‖)}). The sequence (fn) is p-

equiintegrable, hence there exists δ > 0 so that max{‖efn‖p, ‖fne‖p} < ε

whenever e is a projection of trace not exceeding δ. Let M = δ−p + 1. Write

fn = un|fn|, where fn is a partial isometry from (ker fn)⊥ onto ran fn. Let

φ(t) =

{
t t ≤M
0 t > M

, and f̃n = unφ(|fn|). Note that ‖fn − f̃n‖p < ε.

Passing to a subsequence, we can assume f̃n → f weakly. Then f̃n−fn →

f weakly as well, hence ‖f‖ ≤ lim inf ‖f̃n− fn‖ < ε. Spectral calculus allows
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us to pick projections q1 and q2, so that τ(q⊥1 ), τ(q⊥2 ) < δ, f = q1fq2+q⊥1 fq
⊥
2 ,

and N = ‖q1fq2‖ < ∞. Let gn = q1(f̃n − f)q2. Then ‖gn‖∞ ≤ M + N .

Furthermore,

fn − gn = q⊥1 fn + q1fnq
⊥
2 + q1(f − f̃n)q2 + q1fq2.

The fact that τ(q⊥1 ), τ(q⊥2 ) < δ leads to

‖fn − gn‖p ≤ ‖q⊥1 fn‖p + ‖q1fnq⊥2 ‖p + ‖q1(f − f̃n)q2‖p + ‖q1fq2‖p < 4ε,

and therefore, ‖gn‖p ⊂ [1 − 4ε, 1 + 4ε] ⊂ [1/2, 2]. We also have ‖gn‖∞ ≤

M +N . By Hölder’s Inequality,

‖gn‖2 ≤ ‖gn‖p/2p ‖gn‖1−p/2∞ ≤ 2
p
2 (M +N)1−

p
2 .

Note that gn → 0 weakly in Lp(τ). That is, for any x∗ ∈ Lq(τ) (1/p +

1/q = 1), limn x
∗(gn) = 0. As L2(τ) = Lq(τ) ∩ L2(τ)

‖·‖2
, gn → 0 weakly

in L2(τ) as well. Therefore, by passing to a subsequence several times, and

applying Proposition 3.2.2, we can assume that the sequence (gn) is uncondi-

tional, both in Lp(τ) and in L2(τ). Furthermore, the sequence (Tgn) ⊂ Lp(τ)

is weakly null, hence, by passing to a further subsequence, we can assume it

is unconditional as well. On the other hand,

‖Tgn‖p ≥ ‖Tfn‖p − ‖T‖‖fn − gn‖p ≥ c− 4ε‖T‖ > c

2
.

It remains to show that the sequence (Tgn) is equivalent to the `2-basis.

By unconditionality, there exists a constant C1 so that, for any sequence

(αn), ‖
∑

n αnTgn‖ ≥ C1Ave±‖
∑

n±αnTgn‖ (we are averaging over all pos-

sible signs). However, Lp(τ) has cotype 2, hence Ave±‖
∑

n±αnTgn‖ ≥
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C2(
∑

n |αn|2‖Tgn‖2)1/2, for some C2. Consequently, there exists C3 > 0 so

that ‖
∑

n αnTgn‖ ≥ C3(
∑

n |αn|2)1/2. On the other hand, ‖
∑

n αnTgn‖ ≤

‖T‖‖
∑

n αngn‖ ≤ C4(
∑

n |αn|2)1/2, for some constant C4.

By Proposition 3.2.8, we can assume that T is an isomorphism on a

complemented subspace Y , isomorphic to `2. Using Proposition 3.2.8 again,

we can assume that T (Y ) is complemented as well.

Remark 3.2.11. The proof of Theorem 4 can be modified to yield: if p1, p2 ∈

(1,∞) are distinct, then, for T in L(Lp1(τ1), Lp2(τ2)), the following statements

are equivalent: (i) T is not strictly singular; (ii) T is an isomorphism on E,

where E is isomorphic to `2, and both E and T (E) are complemented.

Remark 3.2.12. Note that we used hyperfiniteness only to claim the exis-

tence of unconditional basic sequence in every weakly null sequence. So in

the statement of Theorem 4 we can replace hyperfiniteness with the USP. In

general, we are not aware of any Lp space (1 < p <∞) without the USP.

Strict singularity and compactness of positive operators

From the previous section it can be noticed that a strictly singular opera-

tor on Lp(τ) (p > 1) is the one that maps any `2-basis into `p-basis or vice

versa. Therefore its second power is always a compact operator. The fol-

lowing results shows that the situation is even simpler in the case of positive

operators.

Proposition 3.2.13. Suppose τ1 and τ2 are normal faithful finite traces on

hyperfinite von Neumann algebras A1 and A2, respectively. Suppose, fur-
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thermore, that either 2 ≤ u2 ≤ u1 < ∞, or 1 < u1 ≤ u2 ≤ 2. Then

SS(Lu1(τ1), Lu2(τ2))+ = K(Lu1(τ1), Lu2(τ2))+.

Particularizing to the case of u1 = u2 = u, we obtain:

Corollary 3.2.14. Suppose τ1 and τ2 are as in Proposition 4, and 1 < u <

∞. Then SS(Lu(τ1), Lu(τ2))+ = K(Lu(τ1), Lu(τ2))+.

In the commutative case, similar results were obtained in [20, 37].

Below, we shall assume that all traces are normalized. Denote by Lp(τ)sa

the self-adjoint (real) part of Lp(τ). For the proof we need an auxiliary result.

Lemma 3.2.15. Suppose 2 < p < ∞, and (xk) is an unconditional self-

adjoint normalized sequence in Lp(τ), where τ is a finite normal faithful

trace on a von Neumann algebra A. Then either (xk) is equivalent to the

`2-basis, or there exist n1 < n2 < . . ., and a sequence of mutually orthogonal

projections pk ∈ A, so that limk ‖xnk
− pkxnk

pk‖p = 0.

Proof. The proof uses a variation on a well-known “Kadec-Pelczynski” method.

Our exposition follows [94]. For c > 0, set

Mc =
{
x ∈ Lp(τ) : τ(χ(c‖x‖p,∞)(|x|)) ≥ c

}
.

If there exists c > 0 so that xk ∈ Mc for every k, then, by the proof of [94,

Theorem 2.4], (xk) is equivalent to the `2-basis. Otherwise, by passing to a

subsequence, we can assume that the projections

qk = χR\(−4−k,4−k)(xk)

satisfy two conditions:
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(i) τ(q1) < 1/8, and τ(qk) < τ(qk−1)/8 for k > 1.

(ii) If q is a projection with τ(q) ≤ 2τ(qk), then maxi≤k ‖qxi‖p < 4−(k+1)

(see [36, Theorem 4.2] to show that this can be satisfied).

Let rk = ∨j>kqj, and pk = qk ∧ r⊥k . We claim that

‖xk − pkxkpk‖p < 4−k. (3.3)

Indeed, write pk = qk − q′k. Then

xk − pkxkpk = (xk − qkxkqk) + q′kxk(qk − q′k) + qkxkq
′
k.

Clearly, ‖xk−qkxkqk‖p ≤ ‖xkq⊥k ‖∞ < 8−k. Furthermore, τ(rk) ≤
∑

j>k τ(qj) <

2τ(qk+1), hence, by Kaplansky’s Formula [53, Theorem 6.1.7],

τ(q′k) = τ(qk)−τ(qk∧r⊥k ) = τ(qk∨r⊥k )−τ(r⊥k ) ≤ 1−τ(r⊥k ) = τ(rk) < 2τ(qk+1).

Thus, ‖q′kxk‖p = ‖xkq′k‖p < 4−(k+1). Together, these inequalities give us

(3.3).

Lemma 3.2.16. Suppose τ is a faithful normal semifinite trace on a von

Neumann algebra, and 1 ≤ p < ∞. Then every p-equiintegrable weakly null

sequence (fn) ⊂ Lp(τ)+ is norm null. In particular, no sequence in Lp(τ)+

is equivalent to a standard basis of `2.

Proof. Consider a weakly null sequence (fj) ⊂ Lp(τ)+. Then limn τ(fj) = 0.

The case of p = 1 is the easiest to handle: ‖fj‖1 = τ(fj)→ 0.

Now let 1 < p <∞. Suppose, for the sake of contradiction, that (fj) is not

weakly null. Without loss of generality assume that (fj) is normalized. Fix

0 < c < 1. Since (fn) is p-equiintegrable, by Lemma 3.2.9 there exists C > 0
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so that, for any j, ‖fj − wj‖p < c, where wj = ϕC(fj) (the function ϕC(t)

is defined as min{t, C}). By Hölder Inequality, ‖wj‖p ≤ ‖wj‖1/p1 ‖wj‖
1−1/p
∞ ,

hence

τ(fj) > τ(wj) = ‖wj‖1 ≥ ‖wj‖pp‖wj‖1−p∞ > (1− c)pC1−p.

This contradicts limj τ(fj) = 0.

Proof of Proposition 4. We have to show that any strictly singular positive

T ∈ B(Lu1(τ1), Lu2(τ2)) is compact. First consider 2 ≤ u2 ≤ u1 < ∞.

Without loss of generality, we can assume ‖T‖ ≤ 1. For s ∈ {1, 2}, let vs =

us/(us−1) (that is, 1/us+ 1/vs = 1). Suppose, for the sake of contradiction,

that T (or equivalently, T ∗) is not compact. Note that T maps Lu1(τ1)sa

into Lu2(τ2)sa. Then there exists a weakly null normalized sequence (xk) in

Lu1(τ1)sa, so that ‖Txk‖ > 5c > 0 for any k. By passing to a subsequence

twice, and invoking Corollary 3.2.5, we can assume that the sequences (xk)

and (Txk) are unconditional. Furthermore, by [85, Proposition 5.4], (xk)

((Txk)) is equivalent either to the `2-basis, or to the `u1-basis (respectively,

either to the `2-basis, or to the `u2-basis). As T is bounded, and strictly

singular, only one possibility is open to us: (xk) and (Txk) are equivalent to

the `2-basis, and the `u2-basis, respectively.

Applying Lemma 3.2.15 (and passing to a subsequence again if neces-

sary), we conclude that there exist mutually orthogonal projections pk so

that ‖Txk − yk‖ < 100−kc. where yk = pk(Txk)pk. Find a sequence of pos-

itive norm one elements zk ∈ L∗u2(τ2), so that zk = pkzkpk for any k, and
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|τ2(zkyk)| > 5c/2. Then, by passing to a subsequence, for any j,

‖T ∗zj‖ > |τ1
(
(T ∗zj) · xj

)
| = |τ2(zj · Txj)|

>
∣∣∣|τ2(zjyj)| − |τ2(zj · (Txj − yj)|∣∣∣ > 2c.

Note that the sequence (zj) is equivalent to the `v2-basis (1/ui + 1/vi =

1, i = 1, 2), hence weakly null. The sequence (T ∗zj) is weakly null as well. By

passing to a subsequence if necessary, we can assume (T ∗zj) is unconditional.

However, this sequence has no subsequences equivalent to the `v1-basis since

v2 > v1. By [85, Theorem 5.3], (T ∗zj) is v1-equiintegrable. This contradicts

Lemma 3.2.16.

Now suppose 1 < u1 ≤ u2 ≤ 2. Let vi (i = 1, 2) be such that 1/ui+1/vi =

1. Consider T ∈ SS(Lu1(τ1), Lu2(τ2))+. Note that Lu2(τ2)
∗ = Lv2(τ2) is

subprojective, hence, by [2, Theorem 7.54(ii)], T ∗ is strictly singular. By the

above, T ∗ is compact, hence so is T .

Remark 3.2.17. Corollary 3.2.14 fails for u = 1, even in the commutative

case: there exists a positive non-compact strictly singular operator on L1.

Indeed, let (rn)∞1 be a Rademacher system and e be the identity. Define

xn = e+ rn. Set U : `1 → L1 as Uδn = xn, where (δn) is the canonical basis

for `1. It is easy to check that U is positive, and not compact. By Khintchine

Inequality, span[e, r1, r2, . . .] is isomorphic to `2, hence the same is true for

span[xn : n ∈ N]. Therefore, U is strictly singular. The required operator is

the composition of a positive projection on a copy of `1 with U .

3.2.2 Noncommutative Lp: discrete case

In this section we study some operator ideals on the spaces Cp.
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Strictly singular and weakly compact operators

We start by establishing:

Corollary 3.2.18. Suppose the Banach space X satisfies one of two condi-

tions:

(i) X = Cp, with 1 ≤ p <∞.

(ii) X = Lp(τ), where 1 < p < ∞, and τ is a normal faithful finite trace

on a hyperfinite von Neumann algebra.

Then T ∈ L(X) is strictly singular if and only it is inessential. For 1 < p <

∞, these conditions are equivalent to T being strictly cosingular.

Proof. By [2, Theorem 7.44], any strictly singular or strictly cosingular op-

erator is inessential. Now suppose T ∈ L(X) is not strictly singular. By

Theorem 4 and [9, Theorem 1], there exists E ⊂ X so that T |E is an isomor-

phism, and both E and T (E) is complemented. A well-known description of

inessential operators (see e.g. [2, Section 7.1]) shows that T is not inessen-

tial. Furthermore, such a T cannot be strictly cosingular. Finally, suppose

1 < p <∞, and T is strictly cosingular. By [2, Theorem 7.53], T ∗ is strictly

singular, hence X∗ contains a subspace E so that T ∗|E is an isomorphism, and

both E and T ∗(E) are complemented. Emulating the proof of [98, Theorem

2.2], we conclude that T is not strictly singular.

Remark 3.2.19. Alternatively, one could show that, for operators on Cp,

the ideals of strictly singular and inessential operators coincide by combining

[2, Theorem 7.51] with the subprojectivity of Cp, established in [9].
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Remark 3.2.20. Note that the ideal of cosingular operators acting on C1 sits

properly between the ideals of compact and strictly singular operators. In-

deed, the strictly cosingular operators are contained by the ideal of inessential

operators. Thus, Corollary 3.2.18 yelds SCS(C1) ⊆ SS(C1). By [4, theorem

2.3.1] there exists a surjective operator T : X → Y , where X and Y are com-

plemented subspaces of C1 isomorphic to `1 and `2, respectively. Clearly, T

is a strictly singular operator. At the same, being surjective, it is not strictly

cosingular. This implies that S = TP ∈ SS(C1) \ SCS(C1) where P is a

projection from C1 onto X. Also there is a strictly cosingular non-compact

operator on C1, because such is the canonical embedding of `1 into `2.

From the preceding corollary and the fact that T ∈ IN (X) if and only

if T ∗ ∈ IN (X∗) for every reflexive X, we obtain:

Corollary 3.2.21. Suppose 1 < p <∞, and X is either Cp, or X = Lp(τ),

where τ is a normal faithful finite trace on a hyperfinite von Neumann alge-

bra. Then T ∈ B(X) is strictly singular if and only if T ∗ is strictly singular.

The following two proposition complement Corollary 3.2.21.

Proposition 3.2.22. T ∗ ∈ SS(B(H)) implies T ∈ SS(C1).

Proof. It follows immediately from [98, Theorem 2.2] and [43].

Proposition 3.2.23. T ∈ SS(C∞) if and only if T ∗ ∈ SS(C1).

Proof. By [98, Theorem 2.2], the strict singularity of T ∗ implies the strict

singularity of T . To prove the converse, suppose, for the sake of contradic-

tion, that T is strictly singular, but T ∗ is not. Then there exists an infinite

dimensional X ⊂ C1 so that ‖T ∗x‖ > c‖x‖ for every x ∈ X (here c > 0). By
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[43], X contains either `1, or `2. By Remark 3.2.24, T is weakly compact,

hence so is T ∗. Thus, by passing to a subspace if necessary, we can assume

X ≈ `2. Then T ∗(X) is also isomorphic to `2. Consequently, there exists

c0 > 0 so that, for every z ∈ X ∪ T ∗X, we have c0‖z‖1 ≤ ‖z‖∞ ≤ ‖z‖1, see

[43, Proposition 2 and the proof of Proposition 1].

Now consider the space Y = (J(T ∗X))? ⊂ C∞ (here and below, ? stands

for taking the adjoint, and J is the formal identity from C1 to C∞). We

claim that T is an isometry on Y . Indeed, pick y ∈ Y , with ‖y‖∞ = 1. Then

‖J−1y‖1 ≤ c−10 , and consequently, x = cc0(T
∗)−1J−1y? satisfies ‖x‖1 ≤ 1.

Then

‖Ty‖∞ ≥ Tr((Ty)x) = Tr(y(T ∗x)) = cc0Tr(y(J−1y?)) = cc0‖y‖22 ≥ cc30.

Remark 3.2.24. ) Observe first that SS(C∞, X) ⊆ WK(C∞, X) for any

Banach space X. Indeed, by [74], every non-weakly compact operator from

a C∗-algebra preserves a copy of c0.

Theorem 3.2.25. The following holds:

(i) SS(Cp,Cq) = K(Cp,Cq), if ∞ > p > 2 > q > 1,

(ii) SS(Cp,Cq) ) FSS(Cp,Cq) ) K(Cp,Cq) otherwise.

First, we establish a technical result.

Lemma 3.2.26. Suppose T ∈ B(X, Y ) is non-compact, and X does not

contain a copy of `1. Then there exists a weakly null sequence (xn) ⊂ BX , so

that inf ‖Txn‖ > 0.
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Proof. By the noncompactness of X, there exists a sequence (zn) ⊂ BX , so

that infn6=m ‖Tzn−Tzm‖ > 0. By Rosenthal’s characterization of `1 (see e.g.

[4, Theorem 10.2.1]), we can assume, by passing to a subsequence if necessary,

that (zn) is weakly Cauchy. Then the sequence xn = (z2n − z2n+1)/2 has the

desired properties.

Proof of Theorem 3.2.25. (1) Let p and q be as in the statement of the the-

orem. Suppose T : Cp → Cq is not a compact operator. By Lemma 3.2.26,

there is a weakly null sequence (xn) such that Txn is bounded away from

0. First, consider p 6= ∞. Clearly, (xn) contains a basic subsequence, thus,

from [9, Theorem 3.1] by passing to a subsequence, (xn) can be considered

equivalent to either `2 or `p-basis. Similar (Txn) is equivalent to either `2 or

`q . We recall Pitt’s theorem and the fact that q < 2 to deduce that T is

an isomorphism on a copy of `2. Hence the result follows. We note that the

proof of [9, Theorem 3.1] works for p = ∞, and, thus, every basic sequence

in C∞ contains either an `2 or c0-bases. The rest of the argument is similar

to the one above.

To show that finitely strictly singular operators do not coincide with

strictly singular operators, we note that every Cp contains complimented

copies of (⊕`n2 )p, `2, and `p [9]. Therefore we can proceed as in [81, Exam-

ple 1]. If p > q > 2, we build an operator from (⊕`ni
2 )2 ⊂ Cp to `q ⊂ Cq which

is strictly singular, but not finitely strictly singular. Similar if 2 > p > q,

then we construct such an operator from (⊕`ni
2 )p ⊂ Cp to `2 ⊂ Cq.

To distinguish between the ideals of finitely strictly singular and compact

operators, we note that the embedding of `u into `v is a non-compact finitely

strictly singular operator when u < v, see [90, Proposition 3.3].
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More can be said about positive operators.

These results allow us to prove a “noncommutative Pitt’s Theorem” for

positive operators.

Theorem 3.2.27. For 1 ≤ q < p <∞, B(Cp,Cq)+=K(Cp,Cq)+.

Proof. Suppose, for the sake of contradiction, that there exists a non-compact

T ∈ B(Cp,Cq)+. By Lemma 2.3.5 infn ‖TRn‖ > 0. Then there exists a

sequence (nk), and normalized positive sequence (xk) in Cp, so that xk =

(Pnk
−Pnk−1

)xk(Pnk
−Pnk−1

), and ‖Txk‖ > c > 0 for every k. By polarization,

we can assume that xk ≥ 0 for every k. The sequence (xk) is equivalent to

the standard basis of `p, hence weakly null. Therefore, the sequence (Txk) is

weakly null as well. Proposition 2.3.17 implies the existence of k1 < k2 < . . .

so that the sequence (Txkj) is equivalent to a standard basis of `q. Thus, T

maps an `p-basis to an `q-basis, which contradicts the boundedness of T .

Theorem 3.2.28. For 1 ≤ p <∞, and a positive T ∈ L(Cp)+, the following

are equivalent:

(i) T is compact.

(ii) T is strictly singular.

(iii) There is no a subspace E ⊂ Cp, isomorphic to `p, so that T |E is an

isomorphism, and both E and T (E) are complemented.

Proof. The implications (1)⇒ (2)⇒ (3) are trivial. To establish (3)⇒ (1),

it suffices to show that any T ∈ B(Cp)+\K(Cp)+ fixes a copy of `p.
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Suppose first 1 < p <∞. Proceeding as in the proof of Theorem 3.2.27,

we show that T maps an `p-basis to an `p-basis, hence T is not strictly

singular.

Let p = 1. Then there exists a positive seminormalized sequence (xn)

such that Txn does not contain any convergent subsequences. Since C1 is

sequentially weakly complete, see [3], by passing to a subsequence, we may

assume that (xn) is ether isomorphic to the `1-basis or it is weakly conver-

gent. The later yields (xn) is norm convergent by [70, Theorem 1.4.3], which

contradicts the way we have chosen (xn). Similar we obtain that T (xn) is

equivalent to the `1-basis. Therefore T is an isomorphism on a copy of `1.

Due to [70, Theorem 1.4.3] the following holds.

Proposition 3.2.29. WK(X,C1)+ = K(X,C1)+, where X is an ordered

Banach space with a proper generating cone.

Dunford-Pettis operators

Suppose X, Y are Banach spaces. We say that T ∈ B(X, Y ) is Z-compact

if T |Z′ is compact whenever Z ′ ⊂ X is isomorphic to Z. And it is Dunford-

Pettis if it maps relatively weakly compact sets to relatively compact.

Remark 3.2.30. In [86], H. Rosenthal proved that an operator T ∈ B(L1, Z)

is Dunford-Pettis if and only if it is `2-strictly singular. As `2-compactness

implies `2-strict singularity, we conclude that T ∈ B(L1, Z) is `2-strictly

singular iff it is `2-compact.

The following proposition is of the same spirit.
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Proposition 3.2.31. Suppose Z is a Banach space. Then an operator T ∈

B(C1, Z) is Dunford-Pettis if and only if it is `2-compact.

Proof. Since `2 is a reflexive space any Dunford-Pettis operator is `2-compact.

Suppose T is `2-compact. Then [10, Theorem 2.2 (i)] implies that for any

n ∈ N and ε > 0 there exists N = N(n, ε) so that

‖T |span[Eij :i≤n,j>N ]‖, ‖T |span[Eij :i>N,j≤n]‖ < ε.

Now select a sequence 1 = u1 < v1 < u2 < . . ., so that, for any k,

‖T |Xk
‖, ‖T |Yk‖ < 4−k. For convenience, let u0 = v0 = 0. Here,

Xk = span[Eij : (i, j) ∈ Ak], Yk = span[Eij : (i, j) ∈ Bk],

Ak = {(i, j) : i ≤ uk, j > vk} = [1, uk]× (vk,∞),

Bk = {(i, j) : j ≤ vk, i > uk+1} = (uk+1,∞)× [1, vk].

Note that the spaces Xk and Yk are isomorphic to `2, hence T |Xk
and TYk are

compact. Therefore, T |span[Eij :(i,j)∈∪kAk×Bk] is compact.

Moreover, C = N × N\(∪kAk × Bk) is the disjoint union of the sets

Ck = [uk−1, uk+1]× [vk−1, vk]. Then span[Eij : (i, j) ∈ C] ⊂ C1 is isomorphic

to X0 = (⊕kCak,bk1 )`1 , where ak = uk+1 − uk−1 + 1, and bk = vk − vk−1 + 1.

As X0 is an `1 sum of finite dimensional spaces, it has the Schur property.

Consequently, any operator on X0 is Dunford-Pettis.

Let P be the coordinate projection from C1 onto span[Eij : (i, j) ∈ C],

see [9, Proposition 3]. Note that TP factors through X0, while T (1 − P )

factors through T |span[Eij :(i,j)∈∪kAk×Bk]. Thus, both TP and T (1 − P ) are

Dunford-Pettis. The same property is inherited by T = TP + T (1− P ).
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3.2.3 Operator ideals on C∗-algebras and function spaces

In this section, we investigate the coincidence of operator ideals, when the

domain and/or range space is either a function space, or a C∗-algebra.

We start with a technical lemma. But first, recall that an operator T

from the Banach spaces X to Y is called (p, q)-summing if there is a K > 0

such that ( n∑
k=1

‖Txk‖p
) 1

p
6 K sup{(

n∑
k=1

|x∗(xk)|q)
1
q , x∗ ∈ BX∗},

for any (xi)
n
i=1 ⊂ X. If p = q, then T is p-summing.

Proposition 3.2.32. If 1 ≤ q ≤ p < ∞, and 1/q − 1/p < 1/2, then

any (p, q)-summing operator is finitely strictly singular. Moreover, any p-

summing operator is weakly compact, and Dunford-Pettis.

Proof. The “moreover” statement about p-summing operators is [25, Theo-

rem 2.17]. To prove the first part, note (reasoning as in the proof of [25,

Theorem 10.5]) that it suffices to consider the case of q = 2. Suppose

T ∈ Πpq(X, Y ), and a 2n-dimensional E ⊂ X is such that ‖Tx‖ ≥ c‖x‖

for any x ∈ E. We show that c ≤ 2n−1/pπp2(T ). Indeed, by Dvoretzky-

Rogers Lemma (see e.g. [25, Lemma 1.3]), one can find x1, . . . , xn ∈ E, so

that minj ‖xj‖ ≥ 1/2, yet ‖
∑
αjxj‖2 ≤

∑
j |αj|2 for any sequence of scalars

(αj)
n
j=1. Equivalently, supf∈X∗,‖f‖≤1

∑
j |〈f, xj〉|2 ≤ 1. Thus,

c

2
n1/p ≤

(∑
j

‖xj‖p
)1/p
≤ πp2(T ),

which yields the desired estimate for c.
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As the ideals of finitely strictly singular, weakly compact, and Dunford-

Pettis operators are norm closed, we conclude:

Corollary 3.2.33. Suppose T, Tn,∈ B(X, Y ) are such that limn ‖Tn− T‖ =

0, and Tn is (pn, qn)-summing, with 1 ≤ qn ≤ pn <∞, and 1/qn−1/pn < 1/2.

Then T is finitely strictly singular. If, in addition, each Tn is pn summing,

with 1 ≤ pn <∞, then T is weakly compact and Dunford-Pettis.

Let 1 6 p 6 ∞. A Banach space X is called a Lp,λ-space if every finite

dimensional subspace Y ⊂ X is contained in a subspace Z such that there

exists an isomorphism U : Z → `dimZ
p with ‖U‖‖U−1‖ 6 λ. X is an Lp-space

if it is a Lp,λ-space for some λ ≥ 1. The obvious examples of such spaces are

Lp(µ) and C(K) spaces, see [25, Chapter 3] for details.

Proposition 3.2.34. (1) If X is a L∞ space, and Y has non-trivial cotype,

then B(X, Y ) = FSS(X, Y ) =WK(X, Y ).

(2) If X is a L1 space, and Y is a Lp space with 1 < p < ∞, then

B(X, Y ) = FSS(X, Y ).

Proof. (1) Suppose Y has cotype q ∈ [2,∞). By [25, Theorem 11.14],

B(X, Y ) = Πp(X, Y ) for any p > q (if q = 2, we can take p = 2). To complete

the proof, invoke Corollary 3.2.33 Similarly, (2) follows from [96, Theorem

11.11], stating that πq1(X, Y ) = B(X, Y ), with 1/q = 1− |1/p− 1/2|.

For more pairs (X, Y ) where B(X, Y ) = Πp(X, Y ), see [78, Section 6].

In [68] it was proved that SS(C(K), Y ) =WK(C(K), Y ) and SS(L1(µ)) =

WK(L1(µ)). Bellow we show that this ideals coincide with the ideal of finitely

strictly singular operators.
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Theorem 3.2.35. FSS(C(K), Y ) = WK(C(K), Y ) for any Banach space

Y and a compact Hausdorff topological space K.

Proof. By [25, Theorem 15.2], any T ∈ WK(C(K), Y ) is a norm limit of a

sequence of operators (Tn), which factor through `2. However, the Tn’s are

2-summing. By Corollary 3.2.33, T ∈ FSS(C(K), Y ).

Corollary 3.2.36. Let T : C(K) → X and S : Y → L1, where K is

compact and Hausdorff. Then T and S are weakly compact if and only if

there ultrapowers are weakly compact.

Proof. The weak compactness of ultrapowers, obviously, implies weak com-

pactness of the operators itself. For S, the converse statement follows from

[41, Proposition 5.5]. Assume T is compact then T is finitely strictly singular

by Theorem 3.2.35. Therefore [66, Lemma 4] implies any ultrapower of T is

strictly singular and therefore T is weakly compact, since the ultrapower of

C(K) is C(M) for some compact Hausdorff M , [48, Theorem 3.3].

Theorem 3.2.37. FSS(L1(µ)) =WK(L1(µ)), where µ is σ-additive.

Proof. Let T ∈ WK(L1(µ)). Then Corollary 3.2.36 implies an ultrapower of

T is weakly compact. Since the ultrapower of L1(µ) is L1-space [48, Theorem

3.3] the ultrapower of T is strictly singular by [68, Theorem 4].

Hence, T ∈ FSS(L1(µ)) by [66, Lemma 4].

Proposition 3.2.38. Suppose that Banach spaces X and Y satisfy B(Y,X) =

SS(Y,X), and let Z = X ⊕ Y . Then, for any T ∈ B(X, Y ), the operator

S =

(
0 0
T 0

)
∈ B(Z) is inessential.
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Proof. By [75], S is inessential if and only if, for any A =

(
A1 A2

A3 A4

)
∈ B(Z),

I −AS has finite dimensional kernel. But ker (I −AS) consists of all vectors

x⊕ y (x ∈ X, y ∈ Y ) satisfying x ∈ ker (I −A2T ), and y = A4Tx. However,

A2 ∈ B(Y,X) is strictly singular, hence I−A2T is Fredholm, hence its kernel

is finite dimensional. Thus, ker (I − AS) is finite dimensional.

Corollary 3.2.39. Suppose Y is a separable Banach space, and let Z =

Y ⊕ `∞. Then IN (Z) 6= SS(Z). Moreover, for Y = c0, the ideal IN (Z)

properly contains WK(Z).

Proof. Since `∞ is universal for every separable Banach space, there exists

an isomorphism T : Y → `∞. By [4, Theorem 5.5.5], any operator from

`∞ to Y is strictly singular. By Proposition 3.2.38, the operator

(
0 0
T 0

)
is

inessential. On the other hand, it is clearly not strictly singular. The last

statement follows from the fact that, for Y = c0, SS(Z) =WK(Z).

Theorem 3.2.40. A von Neumann algebra A is of finite type I if and only

if FSS(A) = SS(A) = IN (A) = WK(A). Moreover, if A is not of finite

type I, then all of this classes are different.

Proof. Recall that A is finite type I if it is a direct sum of finitely many

algebras of type In, where n is a positive integer. By [53, Theorem 6.6.5],

any type In algebra is isomorphic to Mn⊗C, where C is a commutative von

Neumann algebra. Therefore it is isomorphic to L∞(µ) which, together with

Theorem 3.2.35, imply FSS(A) = SS(A) = IN (A) =WK(A).

If A is not of finite type I, then (see e.g. [82]) there exists a com-

plete isometry J : B(`2) → A (in fact, J and J−1 are completely positive).

By Stinespring-Wittstock-Arveson-Paulsen Theorem, there exists a complete
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contraction S : A → B(`2), so that S = J−1 on J(B(`2))). Denote by Eij

the matrix units in B(`2), and consider the map T , taking E1j to Ekj (k is

the unique integer satisfying 2k−1 ≤ j < 2k), and Eij to 0 for i > 1. Clearly,

T can be viewed as a “formal identity” from `2 to (⊕k`2
k−1

2 )c0 , thus it is not

finitely strictly singular. Hence, JTS ∈ SS(A) \ FSS(A).

Moreover, B(`2) contains a subspace Z, isometric to `2 ⊕∞ `∞, and

complemented via a projection P . By Corollary 3.2.39, there exists T ∈

IN (Z)\SS(Z). Then JTPS ∈ IN (A)\SS(A).

Finally, note that there is a projection on a copy of `2, which is a weakly

compact but, evidently, not an inessential operator.

Any commutative von Neumann algebra A is of finite type I, hence

FSS(A) = SS(A) = IN (A) = WK(A). Corollary 3.2.39 (together with

Theorem 3.2.35) shows that, for a commutative C∗-algebra A = c0 ⊕∞ `∞,

FSS(A) = SS(A) =WK(A) ( IN (A). However, in many cases, IN (A) ⊂

WK(A).

Proposition 3.2.41. Let A be either a separable C∗-algebra or a von Neu-

mann algebra. Then IN (A) ⊂ WK(A).

Proof. It suffices to show that, for any T /∈ WK(A), there exists an infinite

dimensional subspace M such that T (M) is complemented. Indeed, then

T−1PT |M = IM , where P is a projection on T (M). This witnesses T /∈

IN (A).

As T ∗ is not weakly compact, [74, Theorem 1] yields ε > 0 and a disjoint

normalized sequence of self-adjoint elements xn ∈ A such that supf∈BX∗
|T ∗f(xn)| >

ε for every n. In particular, T ∗|span[xn:n∈N] is not weakly compact. The space
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c0 has Property (V) (see e.g. [4, Theorem 5.5.3]), hence there exists a sub-

space E of span[xn : n ∈ N], isomorphic to c0, so that T |E is an isomorphism.

Using a gliding hump argument, we can assume that E = span[ym : m ∈ N],

where (ym) is a normalized block basis of (xn) (hence the operators ym are

also disjoint, in the sense that y∗myk = ymy
∗
k = 0 if k 6= m).

If A is separable, then M = E works, since c0 is separably injective. If A

is a von Neumann algebra, consider the space F ⊂ A of operators
∑

m ωmym,

with supm |ωm| < ∞. Then F is isometric to `∞, and T |F : F → A is not

weakly compact. By [4, Theorem 5.5.5], F contains a subspace M ≈ `∞, so

that T |M is an isomorphism. By the injectivity of `∞, T (M) is complemented.
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Chapter 4

Summary

This thesis is devoted to operator ideals on various ordered Banach spaces.

In Chapter 2 we considered the following question: what is the rela-

tionship between order and algebraic ideals in L(X), where X is an ordered

Banach space? In other words, assume that two positive operators T and S

act on X, and S is greater then T (i.e. S − T is positive). If S belongs to a

certain operator ideal, does T (or its power) belong to the same ideal? This

question has been extensively studied for various classes of operators, acting

between Banach lattices [5, 34, 38, 39, 40, 42, 54, 99, 100].

In Section 2.2 (which is based on [93]) we looked at the classical dom-

ination problem for compact and strictly singular operators on Banach lat-

tices and established the connection with the inessential operators. Dodds

and Fremlin [34] noticed that compactness of S does not necessary imply

compactness of T . We considered the question whether T will belong to a

’slightly’ larger class of operators, namely, to the ideal of inessential opera-

tors. It seemed natural to consider this ideal since it contains the ideal of

strictly singular operators which, in turn, contains the ideal of compact op-
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erators. At the same time it is not too large since all operators in this ideal

share the same spectral properties as compact operators. We showed that if

S is compact, then T is inessential, and, moreover, if X is order continuous

then T is strictly singular.

In the case X = Y , Flores, Hernandez and Tradacete [42] discovered

that if S is strictly singular then T 4 is strictly singular. They asked whether

the fourth power is optimal. We proved that T 3 must be inessential. This

suggests that the fourth power might not be optimal since inessential and

strictly singular operators coincide on many Banach lattices.

The results of Section 2.3 are based on joint work with T. Oikhberg [70].

We were among the first who considered the domination problem for opera-

tors acting between either C∗-algebras or noncommutative function spaces.

Among the most interesting results of this section are the following state-

ments:

Theorem. Suppose A and B are C∗-algebras. Then the following are equiv-

alent:

(i) At least one of the two conditions holds: A is scattered or B is compact.

(ii) If 0 ≤ T ≤ S : A → B, and S is compact, then T is compact.

Theorem. Let A and B be C∗-algebras and 0 6 T 6 S : A → B. If S is

weakly compact operator then T is weakly compact.

While working on the domination problem, we established a few structural

results on C∗-algebras and noncommutative function spaces of their own

interest. For instance, we characterized the C∗-algebras with compact order

intervals and discovered a new characterization of compact C∗-algebras.
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In Chapter 3 we studied how the geometry of a Banach space X affects

the ideal structure of the operator algebra L(X). How many proper operator

ideals are there? Which classical operator ideals coincide? Can we charac-

terize all operators belonging to a certain ideal? Mostly, we were interested

in the following classes of operators: (weakly) compact, strictly singular,

finitely strictly singular, inessential, Dunford-Pettis, and p-summable opera-

tors. When X is an ordered Banach space, for example a Banach lattice, a

C∗-algebra, or a non-commutative function/sequence space, we also consid-

ered the above questions for positive operators.

Section 3.1 is based on my joint work with A. Kaminska, A. Popov, A.

Tcaciuc, and V. Troitsky [58].

The problem of classifying closed ideals of operators on a given Banch

space is considered of great difficulty. There have been very few advances

since the celebrated result of Gohberg, Markus, Feldman [46], who proved

that there is a unique non-trivial ideal in the algebra of operators on `p

(1 6 p <∞) and on c0. The area has recently been revived by the series of

papers of Laustsen et al. that classified all ideals on (⊕`n2 )0 [60], and (⊕`n2 )1

[61], and the construction of Haydon and Argyros [11] of a special HI-space

with the ideal structure exactly as on `p. Sari, Schlumprecht, Tomczak-

Jaegermann, Troitsky also studied operator ideals on `p ⊕ `q [90].

In this section we presented our progress on ideals on Lorentz sequence

spaces. Even though Lorentz and `p-spaces have similar Banach space ge-

ometries, their operator ideal structures turned out to be quite different. We

identified several proper non-trivial ideals, showed that some classical ideals

coincide, and also proved an interesting result about the factorization of op-
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erators through `1. I also note that, later, Lin, Sari and Zheng [62] produced

several similar results for Orlicz sequence spaces.

Section 3.2 is based on a joint work with T. Oikhberg [71]. We extended

the results of Weis [97], Caselles and Gonzalez [20] and Flores [37] by charac-

terizing the ideals of strictly singular operators on certain noncommutative

Lp-spaces:

Theorem. Suppose τ is a faithful normal finite trace on a hyperfinite von

Neumann algebra A, and 1 < p < ∞. For T ∈ L(Lp(τ)), the following

statements are equivalent:

(i) T is strictly singular.

(ii) Lp(τ) does not contains a subspace E, isomorphic either to `p or `2, such

that T |E is an isomorphism, and both E and T (E) are complemented.

(iii) T is inessential.

Theorem. Suppose τ1 and τ2 are normal faithful finite traces on hyperfinite

von Neumann algebras A1 and A2, respectively. Suppose, furthermore, that

either 2 ≤ u2 ≤ u1 < ∞, or 1 < u1 ≤ u2 ≤ 2. Then all positive strictly

singular operators between Lu1(τ1) and Lu2(τ2) are compact.

To establish these results we had to identify when noncommutative Lp-

spaces have an unconditional subsequence property (USP), that is from every

weakly null seminormalized sequence one can extarct It is well known that

commutative Lp (p > 1) has an unconditional basis and, therefore, the un-

conditional subsequence property (USP), that is, from every basic sequence
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we can extract an unconditional subsequence. Only recently Johnson, Mau-

rey and Schechtman [51] proved that L1[0, 1] fails the USP. We proved that

a noncommutative Lp-space (p > 1) associated with a hyperfinite von Neu-

mann algebra has the USP and that the noncommutative L1 has the USP if

and only if the associated von Neumann algebra is atomic.

Then we presented similar results for discrete noncommutative Lp spaces

(p-Schatten classes). There we also proved various statements on when the

ideals of finitely strictly singular, Dunford-Petis, and weakly compact oper-

ators are the same.

In the last part of this section we studied the structure of operator ideals

on some commutative function spaces and C∗-algebras. In particular, we

complemented the results of Milman [68] by showing that the ideals of weakly

compact and finitely strictly singular operators acting either from the space

of continuous functions into any Banach space or on the space of integrable

functions coincide. For von Neumann algebras we showed the following.

Theorem. Let A be either a separable C∗-algebra or a von Neumann alge-

bra. Then IN (A) ⊂ WK(A).

Theorem. A von Neumann algebra A is of finite type I if and only if

FSS(A) = SS(A) = IN (A) = WK(A). Moreover, if A is not of finite

type I, then all of this classes are different.
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2010.

[32] P. G. Dodds, B. de Pagter. Properties (u) and (V∗) of Pelczynski in

symmetric spaces of τ -measurable operators. Positivity, 15(4), 571–594,

2011.

128



[33] P. G. Dodds, B. de Pagter. The non-commutative Yosida-Hewitt de-

composition revisited. Trans. Amer. Math. Soc., 364(12), 6425–6457,

2012.

[34] P. G. Dodds, D. H. Fremlin. Compact operators in Banach lattices.

Israel J. Math., 34(4), 287–320 (1980), 1979.
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