
University of Alberta

Keyano Unplugged � The Construction of an Othello
Program

by

Mark G� Brockington

Technical Report TR �����
June ����

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada





Keyano Unplugged � The Construction of an Othello

Program �

Mark G� Brockington� brock�cs�ualberta�ca

Department of Computing Science

University of Alberta

Edmonton� Alberta T�G �H�

Canada

July ��� ����

Abstract

This paper describes the inner workings of Keyano� a competitive Othello program

that has achieved many top�three �nishes in tournament play over the last �ve years�

The unique features of Keyano�s midgame search routine� evaluation function and

opening book are described in this paper�

� Introduction

Othello� programming is a very interesting �eld� It attracts many programmers interested
in game�tree search because the game has very simple rules and evaluation functions are
relatively easy to construct� Furthermore� it is easy to design a program that will defeat the
programmer�

However� most �rst attempts at writing an Othello program are signi�cantly �awed�
Commonly�held misconceptions include that opening knowledge is unimportant� endgame
solving is vital� and the midgame evaluation can be taken care of by assigning weights to
each type of square on the board �for example� corners are good� and squares beside the
corner are bad��

Opening knowledge is vital for competing in the upper echelons of computer Othello�
Most Othello programs have extensive opening books� allowing the program to play a large
number of their �� moves without using any time on the clock� However� simply having a
large database of games is insu	cient� The games in the database must be good� and the
games should be examined� analyzed for mistakes and corrected before they are placed in
the book for the program to use�

Using the midgame evaluation described above limits the strength of the program� No
matter how well tuned the square evaluations are� the program will lose to a reasonable

�This paper has been accepted for presentation at the �Game Tree Search in the Past� Present and in
the Future� Workshop at the NEC Research Institute� Princeton� NJ� August �����

�Othello is a registered trademark of Tsukuda Original� licensed by Anjar Co�






evaluation function consisting of a mobility measure and tables of pre�computed pattern
values�

Endgame solving is somewhat important� but only if there is a vast disparity between
when the two players solve the endgame� In top�level play� most programs solve within one
or two moves of one another� At current computer speeds� ���ply to ��ply win�loss�draw
solves are not uncommon� Getting to a position where the computer can solve for a win is
much more important than having a fast endgame solver�

Finally� a database of Othello games played by strong players is vital for training and
testing all phases of the program� the opening� the midgame and the endgame�

This paper will describe the key components of Keyano�� the author�s Othello program�
It has routinely placed in the top six in �
 computer Othello tournaments over the last �ve
years� This includes �nd� �th� �rd and �th place �nishes in the four Paderborn Computer
Othello tournaments� believed to be the toughest �eld of Othello�playing computer programs
ever assembled�

Section � describes the routine used for searching midgamepositions� includingKeyano�s
independent implementation of multiple�level ProbCut� Section � describes the evaluation
function in detail� including detailed descriptions of Keyano�s complex mobility function
and parity approximation� Furthermore� the method of training pattern databases using
adaptive logic networks is described in detail� along with Keyano�s method of generat�
ing evaluation function coe	cients� Section � describes the opening book design used by
Keyano� Finally� Section � gives some games where Keyano plays well against Logis�
tello and Hannibal� the top Othello�playing programs in the world at the time of writing�

� Midgame Searching

Othello and chess belong in the same abstract class of games� two�player zero�sum games
with perfect information� Thus� it is not surprising to discover that the construction of an
Othello search routine is very similar to a chess search routine�

The basis of the search routine is an iteratively�deepened �� search� Variants of the ��
search routine work better in practice� both in terms of time spent executing the search and
the number of nodes explored� NegaScout� as proposed by Reinefeld �
��� is employed in
Keyano� since �� searches �� more nodes than NegaScout in the current version of the
program�

��� Move Ordering

The move ordering within Keyano is led by three heuristics� the transposition table� killer
moves �
��� and the history heuristic �
��� Each of these heuristics are commonly used in
chess programs� and all of them work well in Keyano� We will brie�y mention the key
points where Keyano�s heuristics di�er from the common implementation found in other
game�playing programs�

Most programs generate a ��bit number by combining predetermined random numbers
for the game pieces and their locations on the board� A portion of this ��bit number is used

�Keyano was the mascot of the ���� Commonwealth Games� held in Edmonton�

�



Trans� Avg� Tree Size Increase
Table Size Size over ��� Entry Result

��� ��	
�	 �����
��� ����	
 ��	��
��� ����	� ���	�
��� ����	�� ��
��
��� ������� �����

Table 
� Keyano� Transposition Table Size and E�ect on 
��ply Fixed�Depth Searches

as the hash key for the transposition table� The rest of the number is used as a hash lock to
determine if the position in the transposition table is the same as the current position in the
game tree� Unlike other programs� Keyano stores the entire position into the hash table
as the hash lock� The board representation within Keyano is only 
�� bits� The author
did not feel that it was worthwhile to map the board representation into � or �� bits� since
this mapping allows for identi�cation of dissimilar positions as identical positions on rare
occasions� The drawback of storing the full board is that the size of each transposition entry
grows from � bytes to �� bytes�

The transposition table in Keyano normally has ��� entries� For searches that take �
seconds on an SGI Challenge �the computer Keyano usually runs on�� this size of trans�
position table is su	cient to guarantee the majority of the bene�ts� We see the results of
varying the transposition table size in Table 
� where we have searched �� typical mid�game
positions to a �xed depth of 
� ply�

The transposition table is not subdivided into a two�level table as advocated by other re�
searchers� The bene�ts of using a two�level transposition table are less than 
� for Keyano�
in terms of nodes searched�

Although the killer moves are used in the standard way� the history heuristic information
is used to determine a static move ordering for a given tree search� Only between iterations
of iterative deepening are the move lists sorted by the history heuristic information�

If we use Keyano to explore the aforementioned series of �xed�depth 
��ply game trees�
we can get some measures of how well the move ordering heuristics combine with one another�
At a Knuth type�� �CUT� node� Keyano searches an average of 
�
� nodes over a series of
�xed�depth 
��ply searches� Furthermore� the best move is searched �rst at any node within
the game tree ������� of the time� Thus� we feel that the move ordering within the game
tree is reasonable�

��� Search Extensions and Reductions

Most methods of search extensions and reductions that work in other domains do not work
in Othello� For example� null moves do not work directly in Othello because it is often
preferable to pass in a given position� Fortunately� there are other methods which do work
in Othello�

ProbCut ��� is the selective reduction algorithm of choice for the game of Othello� and has
dramatically improved the search depth reached along main lines in Keyano� The general
idea behind ProbCut is that we wish to determine if a d�ply search will fail high or low� by

�



approximating it with a d��ply search that has a wider search window where d� � d� If the
d��ply search fails low or fails high� then the d�ply search will behave the same way with high
probability� and the appropriate window bound �� or �� is returned back up the tree� The
original implementation of ProbCut used d � � and d� � �� However� it is clear that this
method can be generalized� and used at many levels within the search tree�

In Keyano� we attempt to approximate a d�ply search with a d��ply search where d� �
bd��c� Any non�ProbCut search� from d � � up to d � 
� ply� can be considered for
approximation by ProbCut� Although it is possible to change how the window of the d��ply
search is computed at various stages throughout the game� the window sizing parameters in
Keyano are independent of the stage of the game� The window used for the d��ply search
is translated �rst by the mean of the di�erence between the d� and d�ply values �as done in
single�level ProbCut� and then widened by 
�� times the standard deviation of the di�erence�
The factor of 
�� was chosen because it yielded the best result in self�play matches against
a non�ProbCut version of Keyano� We should note that this factor yields tighter search
windows than Buro�s original bound of 
�� in Logistello�

The mean and standard deviation are determined from the search of 
��� distinct posi�
tions from various stages within the game �moves � to �� in � move increments�� The 
���
positions come from a random sampling of a database of top�level computer Othello games�
Each position is searched to 
� ply� allowing the determination of all necessary statistics for
any selection of d and d� up to 
� ply�

The implementation of multiple�level ProbCut dramatically improves Keyano�s search
depth� Although the maximum pruning possible from the current implementation is �ve
ply� Keyano routinely searches four ply further ahead when multiple�level ProbCut is used
during the search� However� this is somewhat misleading� For example� when Keyano

reports it is searching 
�ply� it is really searching all variations to 

 ply� while extending
important lines up to � ply further�

We would also like to know whether ProbCut increases the playing strength of Keyano�
To measure this�Keyano played ���game self�play matches against other versions of itself on
a private version of the Internet Othello Server �IOS� that has been set up at the University
of Alberta� The openings in the match are taken from the �� starting positions presented
in Buro�s Ph�D� thesis ���� To ensure that the experiment is repeatable and not based on
varying processing loads� the time control is based on the number of nodes searched� If the
program is not playing to a �xed depth� each program must immediately terminate a search
once �
���� nodes have been evaluated� and announce their move choice�

Table � summarizes the results of two self�play matches between versions of �xed�depth
Keyano and Keyano with single�level ProbCut versus Keyano with multiple�level Prob�
Cut� As we can see� there is a signi�cant advantage to be obtained from using multiple�level
ProbCut over both single�level ProbCut and �xed�depth searches� We can compare these
results to �xed�depth self�play matches �Table ��� A comparison shows that the bene�t from
implementing multiple�level ProbCut is equivalent to approximately 
�� ply of additional
search�

Similar methods of implementing multiple�level ProbCut have been developed indepen�
dently by Michael Buro� the author of Logistello� and Martin Piotte and Louis Geo�roy�
the authors of Hannibal�

�



Winner Loser Score For Winner
Of Match Of Match �Avg� Disc Di�erential�

multi�ProbCut no ProbCut 
���� �	�� � ����
multi�ProbCut ProbCut 
	��� ��� � ����

Table �� Keyano� Results of ProbCut Self�Play Matches

Winner Loser Score For Winner
Of Match Of Match �Avg� Disc Di�erential�

���ply ���ply 
���� ��� � ����
���ply ���ply 
���� ��
 � ��	�
���ply ��ply ���	� �
�� � �����
���ply ���ply ����� �	�� � ����

Table �� Keyano� Results of Fixed�Depth Self�Play Matches

��� Parallel Search

The author has been investigating methods of parallel search in ���based game�playing
programs for his Ph�D� research� A natural test bed for these approaches is Keyano�

Preliminary versions of APHID ���� a portable parallel game�tree search library� have been
used in Keyano�s tournament appearances over the last two years� APHID is an asynchronous
game�tree search algorithm� Unlike most other published approaches to game�tree search�
APHID does not impose any global synchronization points over the course of a search�

APHID de�nes a frontier a �xed number of moves away from the root of the search
tree� A �manager� process sends all frontier nodes to �worker� processes to be evaluated�
Each worker process is assigned an equal number of frontier nodes to search� The workers
continually search their frontier nodes deeper and deeper� reporting results to their manager�
The manager process repeatedly searches to the frontier nodes to retrieve the latest search
results� After each pass of the tree� the manager reports any changes in the work lists
to the workers� For both manager processes and workers� there is e�ectively no idle time�
ine	ciencies are primarily due to search overhead� APHID�s performance does not rely on
the implementation of a global shared memory or a fast interconnection network between
the processes� which makes the algorithm suitable for loosely�coupled architectures �such as
a network of workstations�� as well as tightly�coupled architectures� APHID uses PVM ��� as
a message passing interface to allow for the maximumportability among available hardware�

APHID is successful inKeyano� because the top of the tree �explored by the manager� is
stable between iterations� In recent testing� the �xed�depth version of Keyano has achieved
speedups of 
��� on a 
�processor SGI Origin ���� system� This compares favourably to
Young Brothers Wait ���� which achieves a speedup of 
��� over the same set of tree searches�
The ProbCut�enhanced version of Keyano has achieved speedups between 
� �when using
local transposition tables� and 
� �when using a shared�memory transposition table accessible
by all processors��

�



� Evaluation Functions

In a minimax�based search algorithm� one needs an evaluation function to map a position
into a value that can be manipulated to determine the minimax value of the game tree�

What is the general structure of this evaluation function� In most programs� the evalua�
tion function follows a linear model� We take a series of k features from the position� assign
values to each of the features� and multiply them by prede�ned weights to achieve the evalu�
ation� If fi�p� is the numerical value of the ith feature in position p� and wi is the weight asso�
ciated with the ith feature� the formula for evaluating a position p is eval�p� �

P
�fi�p��wi��

In general� an evaluation function should have a maximal value �such as ��� to represent
a winning position� while a minimal value �such as ��� represents a lost position� However�
these maximal and minimal values are not absolute� For example� Logistello�s former
evaluation function attempts to determine the probability of winning from a position ����
This implies that the evaluation of a position varies between � and 
�� Logistello�s new
evaluation function and the evaluation function within Keyano attempt to approximate
the �nal outcome of the game� returning a value between �� and ���

��� Features of the Evaluation Function

Before we discuss how to generate the feature weights� we must �rst de�ne the features
Keyano uses in the evaluation function� There are many samples of features for an Othello
evaluation function in the literature� One of the obvious features is the number and location
of discs on the board� For example� a beginner quickly ascertains that corners are good� and
an easy feature to implement is the number of corners the player owns minus the number of
corners the opponent owns� This can be generalized to other types of squares on the board�
and has been called a weighted squares evaluation in the literature� However� the game of
Othello is a lot more complicated than this simplistic model� Although the weighted square
model is a reasonable heuristic� there are su	cient occasions in the typical Othello game
where this generalization will yield poor moves� Rosenbloom�s paper on Iago �
��� Lee and
Mahajan�s work on Bill �

�� and Kierulf�s work on Peer Gynt ��� illustrate many di�erent
features that can be used�

Keyano has only two types of features� The �rst is a measure of the mobility in a given
position� The second is a series of patterns from areas around the edge of the board�

����� Mobility

There are many di�erent ways of computing a mobility feature in an Othello position� Each
of the previously mentioned programs proposed a di�erent method for generating the feature�
Iago �
�� used a non�linear combination of the number of moves each player has at a leaf node
to generate the mobility score in a given situation� Bill �

� optimized the computation of
mobility at a leaf node by pre�computing arrays that determined the possibility of �ipping
discs along any of the �� rows� columns or diagonals� The indices to access the correct

�To avoid using �oating�point numbers� the internal representation of the evaluation function is an integer
encoding of the logarithm of the winning probability over the losing probability� log�p����p��� This internal
representation can be translated to the probability of winning when presented to the user�





elements in the �� arrays are generated at the root of the game tree� and are updated for
each disc placed or �ipped on the board� Thus� when we arrive at a leaf node� the mobility
computation at a leaf is a sum of �� values retrieved from arrays at the pre�computed indices�
This makes the mobility computation extremely fast� but does not return the exact mobility
score� Instead� this only returns the number of directions that discs can be �ipped� playing
to one square may �ip discs in all four main compass directions� The number of disc��ipping
directions� also known as Bill�mobility� is an approximation which is only slightly worse
than using exact mobility� but is signi�cantly faster to compute�

Peer Gynt ��� used a knowledge�based approach to the game� as opposed to the brute�
force methods advocated by the authors of Iago and Bill� Parity is introduced in Peer

Gynt as part of the mobility calculation� In brief� the concept of parity is to know who will
likely be the last player to move in the game� White has parity at the start of the game� since
Black must move �rst and there are an even number of squares to be �lled in the game� The
advantage of having parity is very important in Othello� and is widely believed to a decisive
advantage in White�s favour� By removing the ability to play to a region of the board� one
may be able to force parity to swap to the other player� In human Othello matches� the
typical scenario is that a weak player loses access to a region of the board early in the game�
and the stronger player can wait patiently until a pass is forced by avoiding to play into that
region� It is important to note that parity cannot be determined by deep searches near the
beginning of the game� evaluation function knowledge is required to determine the parity�

How exactly is the mobility term computed in Keyano� We take the number of disc�
�ipping directions for each player and transform them to a base feature value� This base
feature value is augmented by the result of evaluating the disc��ipping directions by board
region� Finally� the computation of the number of parity�losing regions is added to generate
the complete mobility feature�

We shall start by discussing how the number of disc��ipping directions for the full board
are transformed into evaluations that can be used to create the base feature value� Using
sample positions� we can determine the value of having k disc��ipping directions over the
entire board� and compute its correlation to the disc di�erential at the end of the game�
This gives a curve that looks logarithmic when viewed with the number of �ipping directions
along the x�axis and the evaluation of that number of �ipping directions on the y�axis� as
illustrated by the full board line in Figure 
� The shape and logarithmic curve of the full
board line is intuitive� since it is more important to increase the number of options available
when you have very little mobility than when you have many moves to choose from�

The full board Bill�mobility evaluations can be stored within the program� and used to
scale both the number of disc��ipping regions for the player and the opponent� Subtracting
the two values from one another gives us the base mobility feature value�

However� this does not do a reasonable job of approximating the location of the moves
over the entire board� If the locations where discs can be �ipped are concentrated in one
region of the board� the disc��ipping regions are likely to interfere with one another� Thus�
we would like to capture whether the moves are spread out over the entire board�

InKeyano� we divide the board into 
�square quarters along the vertical and horizontal
lines through the middle of the board� We can determine an evaluation for the number of
disc��ipping directions in each quarter of the board in exactly the same way that we computed
an evaluation of the disc��ipping directions over the full board� The 
�square line in Figure

�



0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35

E
va

lu
at

io
n 

of
 B

ill
-M

ob
ili

ty

Number of Disc-Flipping Directions (Bill-Mobility)

Full Board Bill-Mobility
Regional Bill-Mobility

Figure 
� Evaluation of Bill�Mobility for Entire Board and in 
�Square Regions

Mobility Correlation
Feature Value Mv �� Mv � Mv 	� Mv ��

Exact ����� ���� ����� �����
Bill ����� ��� ���
 ����


Bill�Parity ����
 ��
� ����� �����

Table �� Keyano� Correlation of Mobility Measures to Final Disc Di�erential at Various
Stages Within an Othello Game


 illustrates the values determined by a linear regression for the value of regional mobility�
Note that since there are four of these regions on the board� the evaluations returned are
approximately one�quarter of the values returned for the full board�

The two parts of the evaluation are then added together to generate a new feature value�
The full board Bill�mobility is assigned an equal weight as the regional Bill�mobility mea�
sure� since experimental evidence showed that any other weighting led to a lower correlation
of the combined feature evaluation with the �nal disc di�erential�

We can follow the same methodology to generate the values for the exact mobility feature
to see whether the correlation to the �nal disc di�erential is su	cient to ignore the speed
bene�ts of the Bill�mobility measure� The �rst and second lines of Table � give us the
correlation of the exact mobility and Bill�mobility measures �including the combination of
the full board and regional evaluations� over various stages within the game� As we can see�
exact mobility has a marginally better correlation to the �nal disc di�erential� In practice� the
di�erence is not su	cient to prevent Keyano from using the faster Bill�mobility measure�

Keyano also has an approximation of parity within the evaluation� We �rst determine
the regions on the board by using a space��lling algorithm� any empty square that is attached
in any of the eight compass directions to an empty square belong in the same region as one
another� Until the empty squares are physically separated� this results in one region at the
beginning of the game� However� the board rapidly separates into many smaller regions�
After these regions are determined� we use the exact mobility generation to determine where
each side is able to play� The algorithm determines whether by playing two consecutive
moves� we can play to new squares that are not in the original mobility list� If a region of

�



the board can not be played to by one side� nor can that side force access into the region�
this is considered as a potential parity�losing region�

The computation of potential parity�losing regions is extremely expensive� Thus� the
determination of parity�losing regions is done � ply away from the leaves� Even moving the
computation this far away from the leaves slows down Keyano�s nodes evaluated per second
by 
��� The computation of potential parity�losing regions is really an approximation� since
the situation may change within the �nal � ply of the game tree�

The optimal weight for the addition of parity to the Bill�mobilitymeasure was determined
by the value which led to the best correlation to the �nal disc di�erential� In Keyano� �
is taken away from the mobility evaluation feature when the player to move has lost access
to a potential parity�losing region� The third line of Table � give us the correlation of the
Bill�mobility feature when combined with the parity computation� When Bill�mobility
is combined with parity� we see that the correlation to the �nal disc di�erential improves
slightly�

The addition of the parity feature to the Bill�mobility �computed for both the entire
board and for regions� to generate a single mobility feature gives a signi�cant boost to the
overall strength of Keyano� We ran a ���game match between Keyano without parity and
Keyano with parity in June 
��� Since the program with parity takes about 
�� longer
to search �
���� nodes� the program without parity was allowed to search 
�� more nodes
than the program with parity� Even with the additional nodes given to Keyano without
parity� the match result was ��������� in favour of the version of Keyano with the parity
adjustment enabled� Thus� the author feels that the signi�cant costs associated with the
computation of parity are justi�ed�

����� Patterns

Buro took the concept and implementation of the vectors employed byBill into a generalized
framework of patterns to generate features for Logistello ���� In Buro�s scheme� the
patterns do not necessarily represent simple vectors on the board� the region may be a � by
� square surrounding a corner� a � by � region near a corner� a group of � squares near the
centre of the board� et cetera� The patterns selected for inclusion in the evaluation function
were the ones that did the best job of discriminating between won and lost positions�

Keyano uses a series of vectors as patterns� The ��disc vector along the edge of the
board� the ��disc vector one away from the edge of the board� and all of the � and ��disc
diagonals are relatively important at some stage of the game� Thus� they are all used by the
evaluation function�

Keyano�s set of patterns includes a � by � square around a corner� Keyano also uses
one of two 
��square edge patterns� Figure �a illustrates the squares examined if none of
the squares marked N have discs on them� while Figure �b illustrates the squares examined
if one of the squares marked N from Figure �a does have a disc on it� This approach of
discriminating between the two types of edges was �rst implemented by Colin Springer for
Eclipse� The switch from the �rst to the second pattern takes place during the midgame
search when a square marked N for that edge is occupied�

In the general case� switching features during the middle of a search can be dangerous�
However� allowing the 
��square pattern to change depending on whether the squares marked

�



1

2

3

4

5

6

7

8

a b c d e f g h

X X X X X X

XXXX

N

N N

N

(a)

1

2

3

4

5

6

7

8

a b c d e f g h

X X X X X X

X

X X

X

(b)

Figure �� Two Di�erent Edge Patterns Used

N are occupied is relatively safe in Keyano� In essence� the �rst 
��square pattern can be
considered as a 
��square pattern� because it can only be used when the four squares marked
N are blank� The second 
��square pattern is the important subset of the full 
��square
pattern� By leaving out c�� d�� e� and f� in Figure �a� the value of the edge pattern will
not change dramatically for the majority of possible edge con�gurations� Only in a few key
situations will the value change dramatically� Fortunately� the majority of these exceptions
occur when none of the squares marked N are occupied �which is evaluated by the �rst

��square pattern� or involve 
 or ��square holes along an edge �which are handled by the
parity approximation in the mobility feature��

Many other patterns have been tried� including a � by � edge pattern extending from a
corner� but only the vectors� � by � corners and the 
� disc edge patterns have been successful
additions to Keyano�s evaluation function�

Once we have de�ned a pattern� one must determine how good every possible con�gura�
tion of the pattern is� One method of doing this is by examining a large database of games
to look for samples of these con�gurations� and compute statistics on how often each of the
con�gurations appeared and correlate this to the probability of winning or the average disc
di�erential�

What sort of database of games would one like to examine� If we use a database that
contains games of suspect quality� the statistics garnered from those games may not be
reliable� In games between poor opponents� the winner is usually the person who makes
the second�to�last game�theoretic mistake� Thus� the ability to determine that a speci�c
con�guration in a pattern leads to a winning position or a good disc di�erential is �awed� If
we only use a database of tournament games� we only see a small sample of the number of
possible patterns� For example� we may only see situations where playing to an X�square �a
square one away from the corner along a main diagonal� yields reasonable results� because
the good players know how to sacri�ce X�squares correctly� We may never see the converse
situation where an X�square is played incorrectly and the player is immediately and swiftly
punished� Thus� the ideal database of games contains a wide variety of random openings and
midgames played by good Othello players� Since it is generally believed that computers are
playing Othello better than most humans� it is better to take a database of good computer
Othello games than human Othello games for this purpose�

When we have more than 
�� samples for a pattern con�guration� Keyano uses the


�



average disc di�erential as the con�guration�s value in the evaluation function� However�
even a large database of games may be insu	cient to give 
�� samples for a speci�c pattern
con�guration� The problem is to determine a value for a pattern con�guration that does not
appear frequently in the database�

Buro uses the probability of winning for all pattern con�gurations� and an evaluation
of ��� for any con�guration that does not appear in the database� However� using only a
relatively small number of samples to determine an evaluation of a pattern con�guration is
hazardous� Patterns that have not been seen in regular play may not show up in the database�
but it may be critical to evaluate these patterns correctly in an important tournament game�
No programmer has the time to examine thousands of pattern con�gurations and hand�code
values for each one� Thus� we need an intelligent classi�er to determine an evaluation of
these unseen or rarely�seen pattern con�gurations�

In Keyano� we use neural networks to assist in determining the value of pattern con�g�
urations that do not appear 
�� times within the database� A neural net software package
using adaptive logic networks �ALNs� �
� was used to facilitate the process�

The pattern con�gurations that occurred over 
�� times were used as the training data
for the ALNs� This yielded about ���� distinct pattern con�gurations for each of the ��
� and 
��square patterns during the initial development of Keyano�s evaluation function�
Each pattern con�guration appeared only once in the training data� and was not replicated
based on its frequency�

To use a neural network to determine the rest of the pattern con�gurations� we �rst use
the training data to teach the neural network to determine the values of the pattern con�gu�
rations in the training data� We can then feed the under�determined pattern con�gurations
into the neural network� and use the output to substitute for the unavailable samples from
the database�

For example� a given pattern con�guration has occurred �� times and yields an average
disc di�erential of ����� After training the neural network� we give the pattern con�guration
to the network and it determines that the value of the con�guration should be ����� Thus�
we take the weighted average of the two ��������� �������� to determine an evaluation
for the pattern con�guration of ����� If the pattern con�guration did not appear in the
database of games� it would be assigned a value of �����

One of the interesting curiosities of the ALN package used to determine the values is that
each ALN only returned a single binary output� It was decided that instead of having only
one ALN� there would be 
�� ALNs to be trained� Each randomly�generated ALN would
attempt to discriminate between the pieces of training data that won with an average disc
di�erential of x� as x increased from ��� to ��� Once all of the ALNs were trained� each
pattern was run through the 
�� ALNs� and the sum of the binary outputs of all of the ALNs�
minus ��� became the value used to replace the missing samples for the under�determined
pattern con�gurations�

There are three main pattern features that are used in the evaluation function� the ��
disc and ��disc vectors� the ��disc corner pattern� and the 
��disc edges� The value of all of
the ��disc and ��disc vectors are added together to make a single feature of the evaluation
function� This is due to the method of coe	cient generation� as we shall see in the next
section�







��� Coe�cient Generation

Now that we have discussed each of the features that Keyano examines in an Othello
position� and how each of these features can be turned into a numerical evaluation� we
must now generate an evaluation function from these features by generating multiplicative
constants or weights�

Othello is a wonderful domain for studying how to combine merits and generate an
evaluation function� since the tactics of games such as chess and checkers often tend to hide
the bene�ts and drawbacks of these methods� Bill used a quadratic discriminant function
�
�� in an attempt to improve upon the linear evaluation function� Buro later showed data
that Fisher�s linear discriminant and the quadratic discriminant function are both weaker
than a linear evaluation function determined by logistic regression ����

Despite the advantages of these approaches� Keyano has always used a linear regression
to determine the constants to be used in the evaluation function� The reason behind this is
that the author believes that the expected disc count at the end of the game is a natural
metric for success� rather than the probability of winning� which is encoded by the logistic
regression and the quadratic discriminant function�

The training data for Keyano is generated by a sample from a large database of games�
For generating coe	cients after k moves have been played� representative positions where
k � � to k � � moves have been played are taken from each game�� The primary reason for
taking positions other than at k moves within the game is to smooth out the curves and
yield evaluations that do not leap radically as one increases the depth of search�

One problem with completely automatic weight generation is that linear regressions can
yield negative weights for heuristics that are positively correlated with the expected outcome
or probability of winning� This can occur when two features are correlated� If one has a
much stronger correlation to the expected value than the other feature� the �rst feature may
be overemphasized while the second feature may be given a negative weight� Thus� the �nal
phase of the computation is a check by the author to see whether the generated weights are
all positive� Negative weights are hand�tuned by the author� In general� the weights are
positive� since each of the features are relatively independent from the other features�

The ability of the program to determine negative weights for features that are positively
correlated with the disc di�erential is disturbing� This problem has driven the design of
the four main features currently used in Keyano� For example� the parity� the full�board
mobility and regional mobility features are each correlated to one another and to the �nal
disc di�erential� Thus� they are all combined into one feature to prevent giving one of the
features a negative weight� A similar problem forced the author to combine all � and ��disc
vectors into one feature�

Figure � gives the relative strength of the coe	cients for the mobility� vector patterns�
�x� corner pattern� and the 
��disc edge patterns used within Keyano� All of the lines
have been scaled so that the graph shows how each feature is weighted over each stage of
the game� with respect to its maximal weight� As we can see� mobility rapidly increases in

�The reader may wonder whether taking the representative positions in this asymmetric manner might be
the cause of the odd�even e�ect in Keyano�s evaluation function� The author has experimented with many
di�erent ways of taking the samples from the database� and every method yields an odd�even e�ect when
used within Keyano�


�



0

20

40

60

80

100

17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

%
 o

f M
ax

im
um

 H
eu

ris
tic

 W
ei

gh
t

Move Number

Mobility
Vectors

3 by 3 Corner
10-disc Edges

Figure �� Keyano� Comparison of Coe	cient Weights Over Various Stages in an Othello
Game

importance as the game progresses� while both the vector and 
��disc edge patterns are much
more important near the beginning of the game� The �at lines on the left side of Figure �
represent values that were �xed by the author during the �nal stage of generating weights
for the coe	cients� Finally� the graph ends at move �
 because any position at nine empty
squares or less is handled by a special�purpose endgame solver that does not use Keyano�s
evaluation function�

� Opening Book

Keyano�s opening book is based on the method used in Spock� The method described by
Delteil �� is based on a permanent transposition table structure which contains positions�
best moves and current minimax values� Unlike a standard transposition table� the work
begins when a position is added onto one of the branches in the database� Every time a
new position is added into the database� the parents of that position must be examined to
determine if any of the move choices or minimax values change� This propagation continues
all the way up the tree to the root if necessary� This would be very simple if there was only
a single path up the tree� However� one must follow every path from move transpositions
up the tree� In some positions of the Tiger� the preferred opening in computer Othello play�
there are over �� separate paths to the root from often�played positions�

Delteil notes that the only time we need to do any additional search is when the current
best move from a node drops in value� At that point� we must see if there are any additional
moves �that we have not yet considered� in between the new best value ��� and the old best
value ���� All of the other changes are simple changes to the best move and�or best score�

How does Keyano use Delteil�s method to generate an opening database� A database of
good Othello games is required� and each of the games should have the endings corrected to
a suitable depth� Each game from the game database can be added to the opening database�
For any position not currently in the database� best move alternatives are examined to ensure
that the moves played are reasonable� This prevents mistakes from entering the database
where a player reaches a crushing position and then fails to play optimally� The search that


�



is completed when examining best move alternatives is relatively short� Keyano takes the
average of the values returned by 

�ply and 
��ply searches as the evaluation of a position�
The level chosen is not larger because the book was started before the implementation of
multiple�level ProbCut within Keyano� Keyano often takes a long time to test numerous
move alternatives to see if they are worthwhile at 
��ply� If the computation of the opening
book was restarted today� Keyano would use 
��ply and 
�ply multiple�level ProbCut
searches to determine the best move alternatives� since that is the search depth usually
obtained during the search�

The database is stored as a large hash table on disk� with each entry containing �� bytes�
To avoid long delays when loading data� Keyano partitions the database into a series of
bu�ers� each of which can get no larger than 
��� positions� This allows Keyano to load
only the speci�c part of the opening database that is required� The current opening database
consists of 
��� bu�ers� with over ������� positions in total� An index �le� which is loaded
whenever Keyano is started� lists the physical location and the range of hash values that
each bu�er contains�

� Selected Games

Logistello� by Michael Buro� has been the top�performing Othello program for the last four
years� amassing a record of 
� �rst place and � second place �nishes in �
 computer Othello
tournaments� Although Keyano has achieved many draws against Logistello� a game
from the 
�� Paderborn Computer Othello tournament �shown in Figure �� represents the
�rst time that Keyano has achieved a won endgame against Logistello� Unfortunately�
Keyano did not win the game due to an unfortunate blunder on move ��� caused by a
typographical error in the interface between the APHID library and the Othello program�
This mistake allowed Logistello to win the 
�� Paderborn tournament over Hannibal
by a half�point� If Keyano had not blundered� Hannibal would have won the tournament�

Hannibal� by Martin Piotte and Louis Geo�roy� is a new program by the authors of
Brutus that is set to challenge Logistello�s supremacy as the top Othello program in the
world� Hannibal has won or �nished second in the last few tournaments it has entered� and
games between Logistello andHannibal are normally decided by parity� White normally
wins� However� Keyano has been moderately successful against Hannibal� Keyano

knocked Hannibal out of �rst place in the April 
��� IOS Open tournament with two
draws in the �nal round� Although one of the games has been shown to be a won endgame
for Hannibal� the game in Figure � has� to the author�s knowledge� not been proven to be
a win for either player� The two draws allowed Logistello to overtake Hannibal in the
�nal round of the tournament�

� Conclusions

In this paper� we have outlined some of the concepts and design of Keyano� As alluded to
in the introduction� it is the author�s hope that this paper inspires other programmers to
build world�class Othello�playing programs� and build upon the ideas and concepts presented
here�


�



1

2

3

4

5

6

7

8

a b c d e f g h

1

2

3

4

5

6

7

8

9

10

11

1213

14

15

16

17

18

19 20

21

2223

2425 2627

28

29

30

31

32

33

34 35

36

37

38

39 40

41

42

43

44 45

46

47

48

49

50

51 54

55 5258

59 60 57 56 53

Figure �� Logistello �Black� ����
 Keyano �White�� October 
�� Paderborn Computer
Othello Tournament

1

2

3

4

5

6

7

8

a b c d e f g h

12

1

2

3

4

5

76

11

8

9

14

10

13

15

16

17

18

19

20 21

22

23

24

25

26

48

27

39

40

34

33

28

29

30

31

52

32

36

35

38

4137

42

494445

4346

47

51 54

57 5653

59 60

50 55

58

Figure �� Hannibal �Black� ����� Keyano �White�� April 
��� IOS Open

It is very interesting to note that the opening book� the search routine and the midgame
evaluation function each used a database of games to train and�or tune parameters� Training
from top�quality Othello games� is vital to the success of any Othello program� This is in
contrast to chess� where very little training based on grand�master games is done� The author
currently has a database of ����� games played on the Internet Othello Server or extracted
from the Thor database� The database currently includes games played by humans that
have been awarded the title of World Othello Champion� along with games played by strong
Othello programs� All of the games have been back�solved or corrected to �� empty squares
or more� Generating or acquiring a database of this type will assist interested readers in
developing a world�class Othello program�

Although programs are still a long way from completely solving the game of Othello�
the best programs are believed to be signi�cantly stronger than World�Champion calibre
tournament Othello players� The Logistello�Murakami match will show whether this
commonly�held belief is true�


�



� Acknowledgements

Many people have contributed and assisted with Keyano over the years� The other mem�
bers of the University of Alberta GAMES group have been a valuable resource for lively
discussions and many improvements to Keyano� Yngvi Bj�ornsson� Yaoqing Gao� Andreas
Junghanns� Tony Marsland� Denis Papp� Aske Plaat and Jonathan Schae�er�

I would also like to thank other programmers and members of the Othello community for
their hospitality� games and conversations� Bill Armstrong� Bruno de la Boisserie� Michael
Buro� Jean Delteil� Igor Durdanovic� Louis Geo�roy� Paul Hsieh� David Parsons� Martin
Piotte� Brian Rose� Colin Springer� Vince Sempronio� Marc Tastet� and Jean�Christophe
Weill�

Last� but not least� I would like to thank Jonathan Schae�er� Jennifer Walchuk and the
anonymous referees for suggesting improvements to the presentation of this paper�

This work was supported by the Natural Sciences and Engineering Research Council of
Canada�

References

�
� W� Armstrong and J� Gecsei� Adaptation Algorithms for Binary Tree Networks� IEEE
Transactions on Systems� Man and Cybernetics� ���� ���� 
����

��� M� G� Brockington and J� Schae�er� The APHID Parallel �� Search Algorithm� Techni�
cal Report ����� University of Alberta� Department of Computing Science� Edmonton�
Canada� August 
���

��� M� Buro� Techniken f�ur die Bewertung von Spielsituationen anhand von Beispielen�
PhD thesis� University of Paderborn� Paderborn� Germany� October 
���� In German�

��� M� Buro� ProbCut� An E�ective Selective Extension of the Alpha�Beta Algorithm�
ICCA Journal� 
������
 �� 
����

��� M� Buro� Statistical Feature Combination for the Evaluation of Game Positions� Journal
of Arti�cial Intelligence Research� ����� ���� 
����

�� J� Delteil� A Propos des Bibliotheques d�Ouvertures� FFORUM� ���
� 
�� 
���� In
French�

��� R� Feldmann� Spielbaumsuche auf Massiv Parallelen Systemen� PhD thesis� University
of Paderborn� Paderborn� Germany� May 
���� English translation available� Game
Tree Search on Massively Parallel Systems�

��� A� Geist� A� Beguelin� J� Dongarra� W� Jiang� B� Manchek� and V� Sunderam� PVM�
Parallel Virtual Machine � A User�s Guide and Tutorial for Networked Parallel Com�
puting� MIT Press� 
����

��� A� Kierulf� Smart Game Board� a Workbench for Game�Playing Programs� with Go
and Othello as Case Studies� PhD thesis� Swiss Federal Institute of Technology� Zurich�
Switzerland� 
����

�
�� K��F� Lee and S� Mahajan� A Pattern Classi�cation Approach to Evaluation Function
Learning� Arti�cial Intelligence� ��
 ��� 
����






�

� K��F� Lee and S� Mahajan� The Development of a World Class Othello Program� Arti�
�cial Intelligence� ���
���
 �� 
����

�
�� A� Reinefeld� An Improvement to the Scout Tree�Search Algorithm� ICCA Journal�
����� 
�� 
����

�
�� P� S� Rosenbloom� A World�Championship�Level Othello Program� Arti�cial Intelli�
gence� 
����� ���� 
����

�
�� J� Schae�er� The History Heuristic and Alpha�Beta Search Enhancements in Practice�
IEEE Transactions on Pattern Analysis and Machine Intelligence� PAMI�

�

��
��� 

�
�� 
����

�
�� D� J� Slate and L� R� Atkin� Chess ��� � The Northwestern University Chess Program�
In P�W� Frey� editor� Chess Skill in Man and Machine� pages �� 

�� Springer�Verlag�
New York� 
����


�


