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Abstract

This paper describes the inner workings of Keyano� a competitive Othello program

that has achieved many top�three �nishes in tournament play over the last �ve years�

The unique features of Keyano�s midgame search routine� evaluation function and

opening book are described in this paper�

� Introduction

Othello� programming is a very interesting �eld� It attracts many programmers interested
in game�tree search because the game has very simple rules and evaluation functions are
relatively easy to construct� Furthermore� it is easy to design a program that will defeat the
programmer�

However� most �rst attempts at writing an Othello program are signi�cantly �awed�
Commonly�held misconceptions include that opening knowledge is unimportant� endgame
solving is vital� and the midgame evaluation can be taken care of by assigning weights to
each type of square on the board �for example� corners are good� and squares beside the
corner are bad��

Opening knowledge is vital for competing in the upper echelons of computer Othello�
Most Othello programs have extensive opening books� allowing the program to play a large
number of their �� moves without using any time on the clock� However� simply having a
large database of games is insu	cient� The games in the database must be good� and the
games should be examined� analyzed for mistakes and corrected before they are placed in
the book for the program to use�

Using the midgame evaluation described above limits the strength of the program� No
matter how well tuned the square evaluations are� the program will lose to a reasonable

�This paper has been accepted for presentation at the �Game Tree Search in the Past� Present and in
the Future� Workshop at the NEC Research Institute� Princeton� NJ� August �����
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evaluation function consisting of a mobility measure and tables of pre�computed pattern
values�

Endgame solving is somewhat important� but only if there is a vast disparity between
when the two players solve the endgame� In top�level play� most programs solve within one
or two moves of one another� At current computer speeds� ���ply to ��ply win�loss�draw
solves are not uncommon� Getting to a position where the computer can solve for a win is
much more important than having a fast endgame solver�

Finally� a database of Othello games played by strong players is vital for training and
testing all phases of the program� the opening� the midgame and the endgame�

This paper will describe the key components of Keyano�� the author�s Othello program�
It has routinely placed in the top six in �
 computer Othello tournaments over the last �ve
years� This includes �nd� �th� �rd and �th place �nishes in the four Paderborn Computer
Othello tournaments� believed to be the toughest �eld of Othello�playing computer programs
ever assembled�

Section � describes the routine used for searching midgamepositions� includingKeyano�s
independent implementation of multiple�level ProbCut� Section � describes the evaluation
function in detail� including detailed descriptions of Keyano�s complex mobility function
and parity approximation� Furthermore� the method of training pattern databases using
adaptive logic networks is described in detail� along with Keyano�s method of generat�
ing evaluation function coe	cients� Section � describes the opening book design used by
Keyano� Finally� Section � gives some games where Keyano plays well against Logis�
tello and Hannibal� the top Othello�playing programs in the world at the time of writing�

� Midgame Searching

Othello and chess belong in the same abstract class of games� two�player zero�sum games
with perfect information� Thus� it is not surprising to discover that the construction of an
Othello search routine is very similar to a chess search routine�

The basis of the search routine is an iteratively�deepened �� search� Variants of the ��
search routine work better in practice� both in terms of time spent executing the search and
the number of nodes explored� NegaScout� as proposed by Reinefeld �
��� is employed in
Keyano� since �� searches �� more nodes than NegaScout in the current version of the
program�

��� Move Ordering

The move ordering within Keyano is led by three heuristics� the transposition table� killer
moves �
��� and the history heuristic �
��� Each of these heuristics are commonly used in
chess programs� and all of them work well in Keyano� We will brie�y mention the key
points where Keyano�s heuristics di�er from the common implementation found in other
game�playing programs�

Most programs generate a ��bit number by combining predetermined random numbers
for the game pieces and their locations on the board� A portion of this ��bit number is used

�Keyano was the mascot of the ���� Commonwealth Games� held in Edmonton�
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Table 
� Keyano� Transposition Table Size and E�ect on 
��ply Fixed�Depth Searches

as the hash key for the transposition table� The rest of the number is used as a hash lock to
determine if the position in the transposition table is the same as the current position in the
game tree� Unlike other programs� Keyano stores the entire position into the hash table
as the hash lock� The board representation within Keyano is only 
�� bits� The author
did not feel that it was worthwhile to map the board representation into � or �� bits� since
this mapping allows for identi�cation of dissimilar positions as identical positions on rare
occasions� The drawback of storing the full board is that the size of each transposition entry
grows from � bytes to �� bytes�

The transposition table in Keyano normally has ��� entries� For searches that take �
seconds on an SGI Challenge �the computer Keyano usually runs on�� this size of trans�
position table is su	cient to guarantee the majority of the bene�ts� We see the results of
varying the transposition table size in Table 
� where we have searched �� typical mid�game
positions to a �xed depth of 
� ply�

The transposition table is not subdivided into a two�level table as advocated by other re�
searchers� The bene�ts of using a two�level transposition table are less than 
� for Keyano�
in terms of nodes searched�

Although the killer moves are used in the standard way� the history heuristic information
is used to determine a static move ordering for a given tree search� Only between iterations
of iterative deepening are the move lists sorted by the history heuristic information�

If we use Keyano to explore the aforementioned series of �xed�depth 
��ply game trees�
we can get some measures of how well the move ordering heuristics combine with one another�
At a Knuth type�� �CUT� node� Keyano searches an average of 
�
� nodes over a series of
�xed�depth 
��ply searches� Furthermore� the best move is searched �rst at any node within
the game tree ������� of the time� Thus� we feel that the move ordering within the game
tree is reasonable�

��� Search Extensions and Reductions

Most methods of search extensions and reductions that work in other domains do not work
in Othello� For example� null moves do not work directly in Othello because it is often
preferable to pass in a given position� Fortunately� there are other methods which do work
in Othello�

ProbCut ��� is the selective reduction algorithm of choice for the game of Othello� and has
dramatically improved the search depth reached along main lines in Keyano� The general
idea behind ProbCut is that we wish to determine if a d�ply search will fail high or low� by
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approximating it with a d��ply search that has a wider search window where d� � d� If the
d��ply search fails low or fails high� then the d�ply search will behave the same way with high
probability� and the appropriate window bound �� or �� is returned back up the tree� The
original implementation of ProbCut used d � � and d� � �� However� it is clear that this
method can be generalized� and used at many levels within the search tree�

In Keyano� we attempt to approximate a d�ply search with a d��ply search where d� �
bd��c� Any non�ProbCut search� from d � � up to d � 
� ply� can be considered for
approximation by ProbCut� Although it is possible to change how the window of the d��ply
search is computed at various stages throughout the game� the window sizing parameters in
Keyano are independent of the stage of the game� The window used for the d��ply search
is translated �rst by the mean of the di�erence between the d� and d�ply values �as done in
single�level ProbCut� and then widened by 
�� times the standard deviation of the di�erence�
The factor of 
�� was chosen because it yielded the best result in self�play matches against
a non�ProbCut version of Keyano� We should note that this factor yields tighter search
windows than Buro�s original bound of 
�� in Logistello�

The mean and standard deviation are determined from the search of 
��� distinct posi�
tions from various stages within the game �moves � to �� in � move increments�� The 
���
positions come from a random sampling of a database of top�level computer Othello games�
Each position is searched to 
� ply� allowing the determination of all necessary statistics for
any selection of d and d� up to 
� ply�

The implementation of multiple�level ProbCut dramatically improves Keyano�s search
depth� Although the maximum pruning possible from the current implementation is �ve
ply� Keyano routinely searches four ply further ahead when multiple�level ProbCut is used
during the search� However� this is somewhat misleading� For example� when Keyano

reports it is searching 
�ply� it is really searching all variations to 

 ply� while extending
important lines up to � ply further�

We would also like to know whether ProbCut increases the playing strength of Keyano�
To measure this�Keyano played ���game self�play matches against other versions of itself on
a private version of the Internet Othello Server �IOS� that has been set up at the University
of Alberta� The openings in the match are taken from the �� starting positions presented
in Buro�s Ph�D� thesis ���� To ensure that the experiment is repeatable and not based on
varying processing loads� the time control is based on the number of nodes searched� If the
program is not playing to a �xed depth� each program must immediately terminate a search
once �
���� nodes have been evaluated� and announce their move choice�

Table � summarizes the results of two self�play matches between versions of �xed�depth
Keyano and Keyano with single�level ProbCut versus Keyano with multiple�level Prob�
Cut� As we can see� there is a signi�cant advantage to be obtained from using multiple�level
ProbCut over both single�level ProbCut and �xed�depth searches� We can compare these
results to �xed�depth self�play matches �Table ��� A comparison shows that the bene�t from
implementing multiple�level ProbCut is equivalent to approximately 
�� ply of additional
search�

Similar methods of implementing multiple�level ProbCut have been developed indepen�
dently by Michael Buro� the author of Logistello� and Martin Piotte and Louis Geo�roy�
the authors of Hannibal�
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Winner Loser Score For Winner
Of Match Of Match �Avg� Disc Di�erential�

multi�ProbCut no ProbCut 
���� �	�� � ����
multi�ProbCut ProbCut 
	��� ��� � ����

Table �� Keyano� Results of ProbCut Self�Play Matches

Winner Loser Score For Winner
Of Match Of Match �Avg� Disc Di�erential�

���ply ���ply 
���� ��� � ����
���ply ���ply 
���� ��
 � ��	�
���ply ��ply ���	� �
�� � �����
���ply ���ply ����� �	�� � ����

Table �� Keyano� Results of Fixed�Depth Self�Play Matches

��� Parallel Search

The author has been investigating methods of parallel search in ���based game�playing
programs for his Ph�D� research� A natural test bed for these approaches is Keyano�

Preliminary versions of APHID ���� a portable parallel game�tree search library� have been
used in Keyano�s tournament appearances over the last two years� APHID is an asynchronous
game�tree search algorithm� Unlike most other published approaches to game�tree search�
APHID does not impose any global synchronization points over the course of a search�

APHID de�nes a frontier a �xed number of moves away from the root of the search
tree� A �manager� process sends all frontier nodes to �worker� processes to be evaluated�
Each worker process is assigned an equal number of frontier nodes to search� The workers
continually search their frontier nodes deeper and deeper� reporting results to their manager�
The manager process repeatedly searches to the frontier nodes to retrieve the latest search
results� After each pass of the tree� the manager reports any changes in the work lists
to the workers� For both manager processes and workers� there is e�ectively no idle time�
ine	ciencies are primarily due to search overhead� APHID�s performance does not rely on
the implementation of a global shared memory or a fast interconnection network between
the processes� which makes the algorithm suitable for loosely�coupled architectures �such as
a network of workstations�� as well as tightly�coupled architectures� APHID uses PVM ��� as
a message passing interface to allow for the maximumportability among available hardware�

APHID is successful inKeyano� because the top of the tree �explored by the manager� is
stable between iterations� In recent testing� the �xed�depth version of Keyano has achieved
speedups of 
��� on a 
�processor SGI Origin ���� system� This compares favourably to
Young Brothers Wait ���� which achieves a speedup of 
��� over the same set of tree searches�
The ProbCut�enhanced version of Keyano has achieved speedups between 
� �when using
local transposition tables� and 
� �when using a shared�memory transposition table accessible
by all processors��
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� Evaluation Functions

In a minimax�based search algorithm� one needs an evaluation function to map a position
into a value that can be manipulated to determine the minimax value of the game tree�

What is the general structure of this evaluation function� In most programs� the evalua�
tion function follows a linear model� We take a series of k features from the position� assign
values to each of the features� and multiply them by prede�ned weights to achieve the evalu�
ation� If fi�p� is the numerical value of the ith feature in position p� and wi is the weight asso�
ciated with the ith feature� the formula for evaluating a position p is eval�p� �

P
�fi�p��wi��

In general� an evaluation function should have a maximal value �such as ��� to represent
a winning position� while a minimal value �such as ��� represents a lost position� However�
these maximal and minimal values are not absolute� For example� Logistello�s former
evaluation function attempts to determine the probability of winning from a position ����
This implies that the evaluation of a position varies between � and 
�� Logistello�s new
evaluation function and the evaluation function within Keyano attempt to approximate
the �nal outcome of the game� returning a value between �� and ���

��� Features of the Evaluation Function

Before we discuss how to generate the feature weights� we must �rst de�ne the features
Keyano uses in the evaluation function� There are many samples of features for an Othello
evaluation function in the literature� One of the obvious features is the number and location
of discs on the board� For example� a beginner quickly ascertains that corners are good� and
an easy feature to implement is the number of corners the player owns minus the number of
corners the opponent owns� This can be generalized to other types of squares on the board�
and has been called a weighted squares evaluation in the literature� However� the game of
Othello is a lot more complicated than this simplistic model� Although the weighted square
model is a reasonable heuristic� there are su	cient occasions in the typical Othello game
where this generalization will yield poor moves� Rosenbloom�s paper on Iago �
��� Lee and
Mahajan�s work on Bill �

�� and Kierulf�s work on Peer Gynt ��� illustrate many di�erent
features that can be used�

Keyano has only two types of features� The �rst is a measure of the mobility in a given
position� The second is a series of patterns from areas around the edge of the board�

����� Mobility

There are many di�erent ways of computing a mobility feature in an Othello position� Each
of the previously mentioned programs proposed a di�erent method for generating the feature�
Iago �
�� used a non�linear combination of the number of moves each player has at a leaf node
to generate the mobility score in a given situation� Bill �

� optimized the computation of
mobility at a leaf node by pre�computing arrays that determined the possibility of �ipping
discs along any of the �� rows� columns or diagonals� The indices to access the correct

�To avoid using �oating�point numbers� the internal representation of the evaluation function is an integer
encoding of the logarithm of the winning probability over the losing probability� log�p����p��� This internal
representation can be translated to the probability of winning when presented to the user�





elements in the �� arrays are generated at the root of the game tree� and are updated for
each disc placed or �ipped on the board� Thus� when we arrive at a leaf node� the mobility
computation at a leaf is a sum of �� values retrieved from arrays at the pre�computed indices�
This makes the mobility computation extremely fast� but does not return the exact mobility
score� Instead� this only returns the number of directions that discs can be �ipped� playing
to one square may �ip discs in all four main compass directions� The number of disc��ipping
directions� also known as Bill�mobility� is an approximation which is only slightly worse
than using exact mobility� but is signi�cantly faster to compute�

Peer Gynt ��� used a knowledge�based approach to the game� as opposed to the brute�
force methods advocated by the authors of Iago and Bill� Parity is introduced in Peer

Gynt as part of the mobility calculation� In brief� the concept of parity is to know who will
likely be the last player to move in the game� White has parity at the start of the game� since
Black must move �rst and there are an even number of squares to be �lled in the game� The
advantage of having parity is very important in Othello� and is widely believed to a decisive
advantage in White�s favour� By removing the ability to play to a region of the board� one
may be able to force parity to swap to the other player� In human Othello matches� the
typical scenario is that a weak player loses access to a region of the board early in the game�
and the stronger player can wait patiently until a pass is forced by avoiding to play into that
region� It is important to note that parity cannot be determined by deep searches near the
beginning of the game� evaluation function knowledge is required to determine the parity�

How exactly is the mobility term computed in Keyano� We take the number of disc�
�ipping directions for each player and transform them to a base feature value� This base
feature value is augmented by the result of evaluating the disc��ipping directions by board
region� Finally� the computation of the number of parity�losing regions is added to generate
the complete mobility feature�

We shall start by discussing how the number of disc��ipping directions for the full board
are transformed into evaluations that can be used to create the base feature value� Using
sample positions� we can determine the value of having k disc��ipping directions over the
entire board� and compute its correlation to the disc di�erential at the end of the game�
This gives a curve that looks logarithmic when viewed with the number of �ipping directions
along the x�axis and the evaluation of that number of �ipping directions on the y�axis� as
illustrated by the full board line in Figure 
� The shape and logarithmic curve of the full
board line is intuitive� since it is more important to increase the number of options available
when you have very little mobility than when you have many moves to choose from�

The full board Bill�mobility evaluations can be stored within the program� and used to
scale both the number of disc��ipping regions for the player and the opponent� Subtracting
the two values from one another gives us the base mobility feature value�

However� this does not do a reasonable job of approximating the location of the moves
over the entire board� If the locations where discs can be �ipped are concentrated in one
region of the board� the disc��ipping regions are likely to interfere with one another� Thus�
we would like to capture whether the moves are spread out over the entire board�

InKeyano� we divide the board into 
�square quarters along the vertical and horizontal
lines through the middle of the board� We can determine an evaluation for the number of
disc��ipping directions in each quarter of the board in exactly the same way that we computed
an evaluation of the disc��ipping directions over the full board� The 
�square line in Figure
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Mobility Correlation
Feature Value Mv �� Mv � Mv 	� Mv ��

Exact ����� ���� ����� �����
Bill ����� ��� ���
 ����


Bill�Parity ����
 ��
� ����� �����

Table �� Keyano� Correlation of Mobility Measures to Final Disc Di�erential at Various
Stages Within an Othello Game


 illustrates the values determined by a linear regression for the value of regional mobility�
Note that since there are four of these regions on the board� the evaluations returned are
approximately one�quarter of the values returned for the full board�

The two parts of the evaluation are then added together to generate a new feature value�
The full board Bill�mobility is assigned an equal weight as the regional Bill�mobility mea�
sure� since experimental evidence showed that any other weighting led to a lower correlation
of the combined feature evaluation with the �nal disc di�erential�

We can follow the same methodology to generate the values for the exact mobility feature
to see whether the correlation to the �nal disc di�erential is su	cient to ignore the speed
bene�ts of the Bill�mobility measure� The �rst and second lines of Table � give us the
correlation of the exact mobility and Bill�mobility measures �including the combination of
the full board and regional evaluations� over various stages within the game� As we can see�
exact mobility has a marginally better correlation to the �nal disc di�erential� In practice� the
di�erence is not su	cient to prevent Keyano from using the faster Bill�mobility measure�

Keyano also has an approximation of parity within the evaluation� We �rst determine
the regions on the board by using a space��lling algorithm� any empty square that is attached
in any of the eight compass directions to an empty square belong in the same region as one
another� Until the empty squares are physically separated� this results in one region at the
beginning of the game� However� the board rapidly separates into many smaller regions�
After these regions are determined� we use the exact mobility generation to determine where
each side is able to play� The algorithm determines whether by playing two consecutive
moves� we can play to new squares that are not in the original mobility list� If a region of
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the board can not be played to by one side� nor can that side force access into the region�
this is considered as a potential parity�losing region�

The computation of potential parity�losing regions is extremely expensive� Thus� the
determination of parity�losing regions is done � ply away from the leaves� Even moving the
computation this far away from the leaves slows down Keyano�s nodes evaluated per second
by 
��� The computation of potential parity�losing regions is really an approximation� since
the situation may change within the �nal � ply of the game tree�

The optimal weight for the addition of parity to the Bill�mobilitymeasure was determined
by the value which led to the best correlation to the �nal disc di�erential� In Keyano� �
is taken away from the mobility evaluation feature when the player to move has lost access
to a potential parity�losing region� The third line of Table � give us the correlation of the
Bill�mobility feature when combined with the parity computation� When Bill�mobility
is combined with parity� we see that the correlation to the �nal disc di�erential improves
slightly�

The addition of the parity feature to the Bill�mobility �computed for both the entire
board and for regions� to generate a single mobility feature gives a signi�cant boost to the
overall strength of Keyano� We ran a ���game match between Keyano without parity and
Keyano with parity in June 
��� Since the program with parity takes about 
�� longer
to search �
���� nodes� the program without parity was allowed to search 
�� more nodes
than the program with parity� Even with the additional nodes given to Keyano without
parity� the match result was ��������� in favour of the version of Keyano with the parity
adjustment enabled� Thus� the author feels that the signi�cant costs associated with the
computation of parity are justi�ed�

����� Patterns

Buro took the concept and implementation of the vectors employed byBill into a generalized
framework of patterns to generate features for Logistello ���� In Buro�s scheme� the
patterns do not necessarily represent simple vectors on the board� the region may be a � by
� square surrounding a corner� a � by � region near a corner� a group of � squares near the
centre of the board� et cetera� The patterns selected for inclusion in the evaluation function
were the ones that did the best job of discriminating between won and lost positions�

Keyano uses a series of vectors as patterns� The ��disc vector along the edge of the
board� the ��disc vector one away from the edge of the board� and all of the � and ��disc
diagonals are relatively important at some stage of the game� Thus� they are all used by the
evaluation function�

Keyano�s set of patterns includes a � by � square around a corner� Keyano also uses
one of two 
��square edge patterns� Figure �a illustrates the squares examined if none of
the squares marked N have discs on them� while Figure �b illustrates the squares examined
if one of the squares marked N from Figure �a does have a disc on it� This approach of
discriminating between the two types of edges was �rst implemented by Colin Springer for
Eclipse� The switch from the �rst to the second pattern takes place during the midgame
search when a square marked N for that edge is occupied�

In the general case� switching features during the middle of a search can be dangerous�
However� allowing the 
��square pattern to change depending on whether the squares marked
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Figure �� Two Di�erent Edge Patterns Used

N are occupied is relatively safe in Keyano� In essence� the �rst 
��square pattern can be
considered as a 
��square pattern� because it can only be used when the four squares marked
N are blank� The second 
��square pattern is the important subset of the full 
��square
pattern� By leaving out c�� d�� e� and f� in Figure �a� the value of the edge pattern will
not change dramatically for the majority of possible edge con�gurations� Only in a few key
situations will the value change dramatically� Fortunately� the majority of these exceptions
occur when none of the squares marked N are occupied �which is evaluated by the �rst

��square pattern� or involve 
 or ��square holes along an edge �which are handled by the
parity approximation in the mobility feature��

Many other patterns have been tried� including a � by � edge pattern extending from a
corner� but only the vectors� � by � corners and the 
� disc edge patterns have been successful
additions to Keyano�s evaluation function�

Once we have de�ned a pattern� one must determine how good every possible con�gura�
tion of the pattern is� One method of doing this is by examining a large database of games
to look for samples of these con�gurations� and compute statistics on how often each of the
con�gurations appeared and correlate this to the probability of winning or the average disc
di�erential�

What sort of database of games would one like to examine� If we use a database that
contains games of suspect quality� the statistics garnered from those games may not be
reliable� In games between poor opponents� the winner is usually the person who makes
the second�to�last game�theoretic mistake� Thus� the ability to determine that a speci�c
con�guration in a pattern leads to a winning position or a good disc di�erential is �awed� If
we only use a database of tournament games� we only see a small sample of the number of
possible patterns� For example� we may only see situations where playing to an X�square �a
square one away from the corner along a main diagonal� yields reasonable results� because
the good players know how to sacri�ce X�squares correctly� We may never see the converse
situation where an X�square is played incorrectly and the player is immediately and swiftly
punished� Thus� the ideal database of games contains a wide variety of random openings and
midgames played by good Othello players� Since it is generally believed that computers are
playing Othello better than most humans� it is better to take a database of good computer
Othello games than human Othello games for this purpose�

When we have more than 
�� samples for a pattern con�guration� Keyano uses the
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average disc di�erential as the con�guration�s value in the evaluation function� However�
even a large database of games may be insu	cient to give 
�� samples for a speci�c pattern
con�guration� The problem is to determine a value for a pattern con�guration that does not
appear frequently in the database�

Buro uses the probability of winning for all pattern con�gurations� and an evaluation
of ��� for any con�guration that does not appear in the database� However� using only a
relatively small number of samples to determine an evaluation of a pattern con�guration is
hazardous� Patterns that have not been seen in regular play may not show up in the database�
but it may be critical to evaluate these patterns correctly in an important tournament game�
No programmer has the time to examine thousands of pattern con�gurations and hand�code
values for each one� Thus� we need an intelligent classi�er to determine an evaluation of
these unseen or rarely�seen pattern con�gurations�

In Keyano� we use neural networks to assist in determining the value of pattern con�g�
urations that do not appear 
�� times within the database� A neural net software package
using adaptive logic networks �ALNs� �
� was used to facilitate the process�

The pattern con�gurations that occurred over 
�� times were used as the training data
for the ALNs� This yielded about ���� distinct pattern con�gurations for each of the ��
� and 
��square patterns during the initial development of Keyano�s evaluation function�
Each pattern con�guration appeared only once in the training data� and was not replicated
based on its frequency�

To use a neural network to determine the rest of the pattern con�gurations� we �rst use
the training data to teach the neural network to determine the values of the pattern con�gu�
rations in the training data� We can then feed the under�determined pattern con�gurations
into the neural network� and use the output to substitute for the unavailable samples from
the database�

For example� a given pattern con�guration has occurred �� times and yields an average
disc di�erential of ����� After training the neural network� we give the pattern con�guration
to the network and it determines that the value of the con�guration should be ����� Thus�
we take the weighted average of the two ��������� �������� to determine an evaluation
for the pattern con�guration of ����� If the pattern con�guration did not appear in the
database of games� it would be assigned a value of �����

One of the interesting curiosities of the ALN package used to determine the values is that
each ALN only returned a single binary output� It was decided that instead of having only
one ALN� there would be 
�� ALNs to be trained� Each randomly�generated ALN would
attempt to discriminate between the pieces of training data that won with an average disc
di�erential of x� as x increased from ��� to ��� Once all of the ALNs were trained� each
pattern was run through the 
�� ALNs� and the sum of the binary outputs of all of the ALNs�
minus ��� became the value used to replace the missing samples for the under�determined
pattern con�gurations�

There are three main pattern features that are used in the evaluation function� the ��
disc and ��disc vectors� the ��disc corner pattern� and the 
��disc edges� The value of all of
the ��disc and ��disc vectors are added together to make a single feature of the evaluation
function� This is due to the method of coe	cient generation� as we shall see in the next
section�







��� Coe�cient Generation

Now that we have discussed each of the features that Keyano examines in an Othello
position� and how each of these features can be turned into a numerical evaluation� we
must now generate an evaluation function from these features by generating multiplicative
constants or weights�

Othello is a wonderful domain for studying how to combine merits and generate an
evaluation function� since the tactics of games such as chess and checkers often tend to hide
the bene�ts and drawbacks of these methods� Bill used a quadratic discriminant function
�
�� in an attempt to improve upon the linear evaluation function� Buro later showed data
that Fisher�s linear discriminant and the quadratic discriminant function are both weaker
than a linear evaluation function determined by logistic regression ����

Despite the advantages of these approaches� Keyano has always used a linear regression
to determine the constants to be used in the evaluation function� The reason behind this is
that the author believes that the expected disc count at the end of the game is a natural
metric for success� rather than the probability of winning� which is encoded by the logistic
regression and the quadratic discriminant function�

The training data for Keyano is generated by a sample from a large database of games�
For generating coe	cients after k moves have been played� representative positions where
k � � to k � � moves have been played are taken from each game�� The primary reason for
taking positions other than at k moves within the game is to smooth out the curves and
yield evaluations that do not leap radically as one increases the depth of search�

One problem with completely automatic weight generation is that linear regressions can
yield negative weights for heuristics that are positively correlated with the expected outcome
or probability of winning� This can occur when two features are correlated� If one has a
much stronger correlation to the expected value than the other feature� the �rst feature may
be overemphasized while the second feature may be given a negative weight� Thus� the �nal
phase of the computation is a check by the author to see whether the generated weights are
all positive� Negative weights are hand�tuned by the author� In general� the weights are
positive� since each of the features are relatively independent from the other features�

The ability of the program to determine negative weights for features that are positively
correlated with the disc di�erential is disturbing� This problem has driven the design of
the four main features currently used in Keyano� For example� the parity� the full�board
mobility and regional mobility features are each correlated to one another and to the �nal
disc di�erential� Thus� they are all combined into one feature to prevent giving one of the
features a negative weight� A similar problem forced the author to combine all � and ��disc
vectors into one feature�

Figure � gives the relative strength of the coe	cients for the mobility� vector patterns�
�x� corner pattern� and the 
��disc edge patterns used within Keyano� All of the lines
have been scaled so that the graph shows how each feature is weighted over each stage of
the game� with respect to its maximal weight� As we can see� mobility rapidly increases in

�The reader may wonder whether taking the representative positions in this asymmetric manner might be
the cause of the odd�even e�ect in Keyano�s evaluation function� The author has experimented with many
di�erent ways of taking the samples from the database� and every method yields an odd�even e�ect when
used within Keyano�
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Figure �� Keyano� Comparison of Coe	cient Weights Over Various Stages in an Othello
Game

importance as the game progresses� while both the vector and 
��disc edge patterns are much
more important near the beginning of the game� The �at lines on the left side of Figure �
represent values that were �xed by the author during the �nal stage of generating weights
for the coe	cients� Finally� the graph ends at move �
 because any position at nine empty
squares or less is handled by a special�purpose endgame solver that does not use Keyano�s
evaluation function�

� Opening Book

Keyano�s opening book is based on the method used in Spock� The method described by
Delteil �� is based on a permanent transposition table structure which contains positions�
best moves and current minimax values� Unlike a standard transposition table� the work
begins when a position is added onto one of the branches in the database� Every time a
new position is added into the database� the parents of that position must be examined to
determine if any of the move choices or minimax values change� This propagation continues
all the way up the tree to the root if necessary� This would be very simple if there was only
a single path up the tree� However� one must follow every path from move transpositions
up the tree� In some positions of the Tiger� the preferred opening in computer Othello play�
there are over �� separate paths to the root from often�played positions�

Delteil notes that the only time we need to do any additional search is when the current
best move from a node drops in value� At that point� we must see if there are any additional
moves �that we have not yet considered� in between the new best value ��� and the old best
value ���� All of the other changes are simple changes to the best move and�or best score�

How does Keyano use Delteil�s method to generate an opening database� A database of
good Othello games is required� and each of the games should have the endings corrected to
a suitable depth� Each game from the game database can be added to the opening database�
For any position not currently in the database� best move alternatives are examined to ensure
that the moves played are reasonable� This prevents mistakes from entering the database
where a player reaches a crushing position and then fails to play optimally� The search that
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is completed when examining best move alternatives is relatively short� Keyano takes the
average of the values returned by 

�ply and 
��ply searches as the evaluation of a position�
The level chosen is not larger because the book was started before the implementation of
multiple�level ProbCut within Keyano� Keyano often takes a long time to test numerous
move alternatives to see if they are worthwhile at 
��ply� If the computation of the opening
book was restarted today� Keyano would use 
��ply and 
�ply multiple�level ProbCut
searches to determine the best move alternatives� since that is the search depth usually
obtained during the search�

The database is stored as a large hash table on disk� with each entry containing �� bytes�
To avoid long delays when loading data� Keyano partitions the database into a series of
bu�ers� each of which can get no larger than 
��� positions� This allows Keyano to load
only the speci�c part of the opening database that is required� The current opening database
consists of 
��� bu�ers� with over ������� positions in total� An index �le� which is loaded
whenever Keyano is started� lists the physical location and the range of hash values that
each bu�er contains�

� Selected Games

Logistello� by Michael Buro� has been the top�performing Othello program for the last four
years� amassing a record of 
� �rst place and � second place �nishes in �
 computer Othello
tournaments� Although Keyano has achieved many draws against Logistello� a game
from the 
�� Paderborn Computer Othello tournament �shown in Figure �� represents the
�rst time that Keyano has achieved a won endgame against Logistello� Unfortunately�
Keyano did not win the game due to an unfortunate blunder on move ��� caused by a
typographical error in the interface between the APHID library and the Othello program�
This mistake allowed Logistello to win the 
�� Paderborn tournament over Hannibal
by a half�point� If Keyano had not blundered� Hannibal would have won the tournament�

Hannibal� by Martin Piotte and Louis Geo�roy� is a new program by the authors of
Brutus that is set to challenge Logistello�s supremacy as the top Othello program in the
world� Hannibal has won or �nished second in the last few tournaments it has entered� and
games between Logistello andHannibal are normally decided by parity� White normally
wins� However� Keyano has been moderately successful against Hannibal� Keyano

knocked Hannibal out of �rst place in the April 
��� IOS Open tournament with two
draws in the �nal round� Although one of the games has been shown to be a won endgame
for Hannibal� the game in Figure � has� to the author�s knowledge� not been proven to be
a win for either player� The two draws allowed Logistello to overtake Hannibal in the
�nal round of the tournament�

� Conclusions

In this paper� we have outlined some of the concepts and design of Keyano� As alluded to
in the introduction� it is the author�s hope that this paper inspires other programmers to
build world�class Othello�playing programs� and build upon the ideas and concepts presented
here�
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It is very interesting to note that the opening book� the search routine and the midgame
evaluation function each used a database of games to train and�or tune parameters� Training
from top�quality Othello games� is vital to the success of any Othello program� This is in
contrast to chess� where very little training based on grand�master games is done� The author
currently has a database of ����� games played on the Internet Othello Server or extracted
from the Thor database� The database currently includes games played by humans that
have been awarded the title of World Othello Champion� along with games played by strong
Othello programs� All of the games have been back�solved or corrected to �� empty squares
or more� Generating or acquiring a database of this type will assist interested readers in
developing a world�class Othello program�

Although programs are still a long way from completely solving the game of Othello�
the best programs are believed to be signi�cantly stronger than World�Champion calibre
tournament Othello players� The Logistello�Murakami match will show whether this
commonly�held belief is true�
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