

Approximating Bandwidth by Mixing Layouts of Interval Graphs

 $\mathbf{b}\mathbf{y}$

D. Kratsch and L. Stewart

Technical Report TR 98-06 June 1998

DEPARTMENT OF COMPUTING SCIENCE University of Alberta Edmonton, Alberta, Canada

Approximating Bandwidth by Mixing Layouts of Interval Graphs *

D. Kratsch[†] L. Stewart[‡]

Abstract

In this paper, we examine the bandwidth problem in circular-arc graphs, chordal graphs with a bounded number of leaves in the clique tree, and k-polygon graphs (fixed k). All of these graph classes admit efficient approximation algorithms which are based on exact or approximate bandwidth layouts of related interval graphs. Specifically, we obtain a bandwidth approximation algorithm for circular-arc graphs that has performance ratio 2 and executes in $O(n \log^2 n)$ time, or performance ratio 4 while taking O(n) time. For chordal graphs with not more than k leaves in the clique tree, we obtain a performance ratio of 2k in O(n) time, and our algorithm for k-polygon graphs has performance ratio $2k^2$ and runs in time $O(n^3)$.

1 Introduction

A layout of a graph G = (V, E) is an assignment of distinct integers from $\{1, \ldots, n\}$ to the elements of V. Equivalently, a layout L may be thought of as an ordering $L(1), L(2), \ldots, L(n)$ of V, where |V| = n. We shall use $<_L$ to denote the ordering of the elements in a layout L. The width of a layout L, b(G, L), is the maximum over all edges $\{u, v\}$ of G of |L(u) - L(v)|. That is, it is the length of the longest edge in the layout. The bandwidth of G, bw(G), is the minimum width over all layouts. A bandwidth layout for graph G is a layout satisfying b(G, L) = bw(G).

The problem of finding the bandwidth of a graph has applications in sparse matrix computations. An overview of the bandwidth problem is given in [5]. The minimum bandwidth decision problem (Given a graph G = (V, E) and integer k, is $bw(G) \leq k$?) is known to be NP-complete [25], even for trees having maximum degree 3 [15], caterpillars with hairs of length at most 3 [24] and cobipartite graphs [21]. The problem is polynomially solvable for caterpillars with hairs of length 1 and 2 [1], cographs [18], and interval graphs [19, 23, 28].

^{*}This work was done during a visit of the first author to the University of Alberta in October, 1996. The authors gratefully acknowledge financial support from NSERC.

[†]Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität, 07740 Jena, Germany, e-mail: kratsch@minet.uni-jena.de

[‡]Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2H1, e-mail: stewart@cs.ualberta.ca

Since the problem remains NP-complete for such simple classes of graphs, and since we know of no algorithm for approximating the bandwidth of general graphs, or even trees, to within a constant factor, it is worthwhile to investigate approximation algorithms for this problem on restricted classes of graphs. Some results in this direction have been presented in [21].

To date there was not much known about the approximation hardness of the bandwidth minimization problem for graphs in general. Recently an approximation algorithm with performance ratio $O(\log^{9/2} n)$ has been given in [12]. Furthermore it has been shown in [2] that there is no polynomial time approximation algorithm with performance ratio better than 3/2 for the bandwidth minimization problem.

In this paper, we examine the bandwidth problem in circular-arc graphs, chordal graphs with a bounded number of leaves in the clique tree, and k-polygon graphs (fixed k). All of these graph classes admit efficient approximation algorithms which are based on exact or approximate bandwidth layouts of related interval graphs.

Specifically, we obtain a bandwidth approximation algorithm for circulararc graphs that has performance ratio 2 and executes in $O(n \log^2 n)$ time, or performance ratio 4 while taking O(n) time. For chordal graphs with not more than k leaves in the clique tree, we obtain a performance ratio of 2k in O(n)time, and our algorithm for k-polygon graphs has performance ratio $2k^2$ and runs in time $O(n^3)$.

Finally our approximation algorithm with performance ratio 2 for circulararc graphs is best possible, since there is no polynomial time bandwidth approximation algorithm for unit circular-arc graphs with performance ratio $2 - \epsilon$ for any $\epsilon > 0$ unless P=NP [29].

2 Preliminaries

For G = (V, E), we will denote |V| as n and |E| as m. We sometimes refer to the vertex set of G as V(G) and the edge set as E(G). We let N(v) denote the set of vertices adjacent to v. The *degree* of a vertex v, *degree*(v), is the number of vertices adjacent to v. $\Delta(G)$ denotes the maximum degree of a vertex in graph G. The subgraph of G = (V, E) induced by $V' \subseteq V$ will be referred to as G[V'].

The following well-known lower bound on the bandwidth of a graph is attributed to [6] in [5].

Lemma 1 [The degree bound] [6] For any graph G, $bw(G) \ge \Delta(G)/2$.

The distance in graph G = (V, E) between two vertices $u, v \in V$, $d_G(u, v)$, is the length of a shortest path between u and v in G. For any graph G = (V, E), the dth power of G, G^d , is the graph with vertex set V and edge set $\{\{u, v\} | d_G(u, v) \leq d\}$.

Lemma 2 [The distance bound] [21] (also attributed in part to [6] in [5]) Let G and H be graphs with the same vertex set V, such that $E(G) \subseteq E(H) \subseteq E(G^d)$

or $E(H) \subseteq E(G) \subseteq E(H^d)$ for an integer $d \ge 1$, and let L be an optimal layout for H, i.e., b(H, L) = bw(H). Then L approximates the bandwidth of G by a factor of d, i.e., $b(G, L) \le d \cdot bw(G)$.

Many references, including [17], contain comprehensive overviews of the many known structural and algorithmic properties of interval graphs.

Definition 1 A graph G = (V, E) is an interval graph if there is a one-to-one correspondence between V and a set of intervals of the real line such that, for all $u, v \in V$, $\{u, v\} \in E$ if and only if the intervals corresponding to u and v have a nonempty intersection.

A set of intervals whose intersection graph is G is termed an *interval model* for G. Many algorithms exist which, given a graph G = (V, E), determine whether or not G is an interval graph and, if so, construct an interval model for it, in O(n + m) time (see, for example, [4, 7]). We assume that an interval model is given by a left endpoint and a right endpoint for each interval, namely, left(v) and right(v) for all $v \in V$. Furthermore, we assume that we are also given a sorted list of the endpoints, and that the endpoints are distinct. We will sometimes blur the distinction between an interval and its corresponding vertex, when no confusion can arise.

Polynomial time algorithms for computing the exact bandwidth of an interval graph have been given in [19, 23, 28]. For an interval graph with n vertices, Kleitman and Vohra's algorithm solves the decision problem $(bw(G) \leq k?)$ in O(nk) time and can be used to produce a bandwidth layout in $O(n^2 \log n)$ time, and Sprague has shown how to implement Kleitman and Vohra's algorithm to answer the decision problem in $O(n \log n)$ time and thus produce a bandwidth layout in $O(n \log^2 n)$ time.

The following two lemmas demonstrate that, for interval graph G, a layout L with $b(G, L) \leq 2 \cdot bw(G)$ can be obtained in time O(n), assuming the sorted interval endpoints are given.

Lemma 3 Given an interval graph G, the layout L consisting of vertices ordered by right endpoints of corresponding intervals has $b(G, L) \leq 2 \cdot bw(G)$.

Proof. Let L be the layout of vertices ordered by right interval endpoints. We first observe that, for all $u, v \in V$ such that $\{u, v\} \in E$ and $u <_L v$, all vertices between u and v in L are adjacent to v. Now consider a longest edge in L, i.e., an edge $\{u, v\}$ such that |L(u) - L(v)| = b(G, L). Assume, without loss of generality, that $u <_L v$. From the previous observation, it must be that $degree(v) \geq L(v) - L(u) = b(G, L)$. Now the degree bound (Lemma 1) implies $bw(G) \geq b(G, L)/2$.

Lemma 4 Given an interval graph G, the layout L consisting of vertices ordered by left endpoints of corresponding intervals has $b(G, L) \leq 2 \cdot bw(G)$.

Proof. Consider a set of intervals representing G, and the layout L, ordered by left endpoints. Now, flipping the intervals of the model horizontally results

in another interval representation for G, and the ordering of vertices by right endpoints of these intervals is the reversal of L. Thus, this lemma follows from the previous one.

We will use the following lemma in subsequent sections of the paper.

Lemma 5 Let I be a set of intervals on the real line corresponding to interval graph G = (V, E). Let p_1 be a point on the line such that at least one interval endpoint is to the left of p_1 and only left endpoints are to the left of p_1 . Let p_2 be a point on the line such that at least one interval endpoint is to the right of p_2 and only right endpoints are to the right of p_2 . Let C_1 be the set of all intervals that contain p_1 , and C_2 be the set of all intervals that contain p_2 . If L is a layout for G in which vertices are ordered by increasing left endpoints of corresponding intervals or by increasing right endpoints, or if L is a layout produced by Kleitman and Vohra's bandwidth algorithm [19], then $(i) \forall v \in C_1: \{v, L(1)\} \in E$, and

(*ii*) $\forall v \in C_2: \{v, L(n)\} \in E$.

Proof. Part (i) for the left endpoint ordering follows from the fact that $L(1) \in C_1$ and C_1 is a clique. In the other two layouts, L(1) is the interval with smallest right endpoint. This interval is either in C_1 or is contained in all intervals of C_1 . Thus, (i) holds for the three layouts.

Part (ii) follows immediately for the right endpoint layout, since $L(n) \in C_2$. In the left endpoint order, L(n) is either in C_2 or contained in all intervals of C_2 , implying (ii).

Finally, we prove (ii) for Kleitman-Vohra layouts. Please refer to the algorithm of [19]. Consider the moment when the vertex of C_2 with largest left endpoint, c, is labelled. If only vertices of C_2 remain to be labelled, then the last vertex will be an element of C_2 and we are done. Otherwise, there is an interval i with smaller right endpoint that remains to be labelled. This implies that $c \in S_{j_0}^q$ was chosen in Step 8, and $i \notin S_{j_0}^q$. Since $i \notin S_{j_0}^q$, we have $q + j_0 < n$. Thus, M(c) < n, and there is some vertex already labelled that is adjacent to c but not to i; otherwise, we contradict the current choice of c. Thus, the interval i is properly contained in c and therefore, i is properly contained in all intervals corresponding to vertices of C_2 . This completes the proof.

3 Circular-arc graphs

Circular-arc graphs are the intersection graphs of arcs on a circle. Thus, a graph G = (V, E) is a circular-arc graph if and only if it has a (not necessarily unique) circular-arc model or representation, consisting of a set of arcs on a circle, such that, for all $u, v \in V$, $\{u, v\} \in E$ if and only if the arcs corresponding to u and v have a nonempty intersection. In such a model, we assume, without loss of generality, that the arc endpoints are distinct, and we label the endpoints from 1 to 2n in clockwise order around the circle, starting at an arbitrary endpoint. Thus, each vertex $v \in V$ corresponds to an arc given by its counterclockwise endpoint, ccw(v), and its clockwise endpoint, cw(v). We refer to any segment

of the circle by its two endpoints and the direction of traversal, i.e., $[p_1, p_2]_{cw}$ refers to the closed arc covered by a clockwise traversal beginning at p_1 and ending at p_2 . The arc $[p_1, p_2]_{ccw}$ is the set of all points in a counterclockwise traversal from p_1 to p_2 , and parentheses will indicate that the arc is open at one or both ends. Note that, for any two points (not necessarily arc endpoints) on the circle, p_1 and p_2 , the arcs $[p_1, p_2]_{cw}$ and $[p_1, p_2]_{ccw}$ cover the entire circle, and their intersection is $\{p_1, p_2\}$.

Eschen and Spinrad [11] have given an $O(n^2)$ algorithm which determines whether or not an *n*-vertex graph is a circular-arc graph. If so, the algorithm produces a circular-arc model for the graph. Our algorithms assume that the input circular-arc graph is given as a set of arcs on a circle. We are not aware of any previous results on the bandwidth of circular-arc graphs.

Henceforth, we will refer to a set of 2n scanpoints on the circle, none of which is an arc endpoint, such that exactly one of these points is between each consecutive pair of arc endpoints. We shall label these points from 1 to 2n in clockwise order, beginning at any one.

Our bandwidth approximation algorithm works as follows, for a circular-arc graph G. Roughly speaking, we cut the circular-arc representation in half, to form two equal-sized interval graphs, compute exact or approximate bandwidth layouts for the two interval graphs, and then mix the two layouts to form an approximate bandwidth layout for G.

Let G = (V, E) be a circular-arc graph with corresponding circular-arc representation. The first step is to find a scanpoint p on the circle such that $|C_1 \cup C_2 \cup A| = |C_1 \cup C_2 \cup B|$ where C_1 is the set of arcs that contain scanpoint 1, C_2 is the set of arcs that contain scanpoint p, A is the set of arcs entirely contained in $(1, p)_{cw}$, and B is the set of arcs entirely contained in $(1, p)_{cw}$. Note that $C_1 \cup C_2 \cup A \cup B = V$. We will use scanpoints 1 and p to cut the circle and create two equal-sized interval graphs.

Procedure FINDp

Let $C_1 \leftarrow C_2 \leftarrow$ all arcs that contain scanpoint 1; $A \leftarrow \emptyset$; $B \leftarrow V \setminus C_1$ $a \leftarrow |C_1|; \ b \leftarrow n \ \{ a = |C_1 \cup C_2 \cup A|; \ b = |C_1 \cup C_2 \cup B| \}$ $p \leftarrow 1$ repeat until a = b or p = 2n{ Invariant: a < b} { Variant: 2n-p} $p \leftarrow p+1$ if the endpoint between p-1 and p is a ccw endpoint (say of arc i) then $C_2 \leftarrow C_2 \cup \{i\}$ if $i \notin C_1$ then $B \leftarrow B \setminus \{i\}$ $a \leftarrow a + 1$ if between p-1 and p is a cw endpoint (of arc i) then $C_2 \leftarrow C_2 \setminus \{i\}$ if $i \notin C_1$ then $A \leftarrow A \cup \{i\}$

$$\begin{split} b &\leftarrow b-1 \\ \{ \text{ Now } C_2 \text{ is the set of arcs that contain point } p \} \\ \{ |C_1 \cup C_2 \cup A| = |C_1 \cup C_2 \cup B| \} \end{split}$$

Claim 1 Procedure FINDp will terminate with a = b.

Proof. We leave it to the reader to verify the stated invariant and variant. If the loop terminates with p = 2n then all arc endpoints will have been examined. For all arcs except those of C_1 , a will have been incremented by 1 and b will have been decremented by 1. Let a_i and a_f be the initial and final values, respectively, of variable a, and b_i and b_f the initial and final values, respectively, of variable a, and b_i and b_f the initial and final values, respectively, of variable a, and b_i and b_f the initial and final values, respectively, of variable b. Upon termination of the loop with p = 2n, $a_f = a_i + n - |C_1| = |C_1| + n - |C_1| = n$ and $b_f = b_i - (n - |C_1|) = n - n + |C_1| = |C_1|$. But then $b_f < a_f$ (assuming $C_1 \neq V$), contradicting our invariant.

We may assume that A and B will be nonempty; otherwise G can be partitioned into two cliques, one of which must have size at least n/2, implying (by Lemma 1) $bw(G) \ge n/2 - 1$. Thus, any layout in which the first and last vertices are not adjacent is a 2-approximation.

A set of arcs on a circle and the corresponding graph are shown in Figure 1, along with possible choices of scanpoints 1 and p. In this example, $C_1 = \{a, b, c\}$, $C_2 = \{a, b, g, h\}$, $A = \{d, e, f\}$, and $B = \{i, j, k\}$.

Figure 1: A set of arcs on a circle and the corresponding circular-arc graph

We now describe how to construct two interval subgraphs of G by cutting the circle at scanpoints 1 and p. We wish to cut the circle and the arcs of C_1 and C_2 at scanpoints 1 and p, producing two line segments, each with a set of intervals that correspond to an interval graph. However, if any arc, say v, contains both scanpoints 1 and p then it covers one entire part of the circle (i.e. $[1,p]_{cw}$ or $[1,p]_{ccw}$) and appears as two disconnected pieces in the other part. Thus, this second part of the circle may not correspond to an interval subgraph, as vertex v is represented by two disconnected intervals. We eliminate this problem by shrinking v's arc on the circle so that it no longer contains p and thus v is removed from C_2 . The altered set of arcs might not represent all of the edges of G; specifically, some edges between v and elements of A (or B) may be missing. Let E' denote edges of G that are not represented by the changed arcs. Note that the sets $C_1 \cup C_2 \cup A$ and $C_1 \cup C_2 \cup B$ remain unchanged. These alterations, applied to the circular-arc model of Figure 1, yield the set of arcs shown in Figure 2. After the alterations, C_2 is changed to $\{g, h\}, C_1, A$, and Bremain unchanged, and $E' = \{\{a, f\}, \{b, i\}\}.$

Figure 2: Altering the circular-arc model

Now, we can cut the circle and the arcs of C_1 and C_2 at scanpoints 1 and p, producing two line segments, $[1, p]_{cw}$ and $[1, p]_{ccw}$. The arcs of the circulararc model become intervals on the two lines. Let I_A (respectively I_B) be the resulting set of intervals on the line segment $[1, p]_{cw}$ (respectively $[1, p]_{ccw}$). We may assume that the intervals of $C_1 \cup C_2$ are altered slightly in I_A and in I_B without changing intersections, so that interval endpoints are distinct.

Let $G_A = (V_A, E_A)$ and $G_B = (V_B, E_B)$ be the intersection graphs of I_A and I_B , respectively. Now, G_A and G_B are both interval graphs and (not necessarily induced) subgraphs of G. Furthermore, $|V_A| = |V_B|$, and $E_A \cup E_B \cup E' = E$. Figure 3 illustrates this process for the example of Figures 1 and 2.

Our method for obtaining an approximate bandwidth layout for a circulararc graph is to first compute exact or approximate bandwidth layouts, L_A and L_B , for G_A and G_B , respectively, and then mix the two layouts.

Different methods of computing L_A and L_B yield different approximation bounds and time complexities for our algorithm.

Regardless of how we obtain L_A and L_B , the mixing is done as follows. Let $k = |C_1 \cup C_2 \cup A| = |C_1 \cup C_2 \cup B|$. Given

$$L_A = L_A(1), L_A(2), \dots, L_A(k)$$

Figure 3: Cutting the circular-arc model to form two interval graphs

 and

$$L_B = L_B(1), L_B(2), \dots, L_B(k)$$

we begin by producing

$$L_M = L_A(1), L_B(1), L_A(2), L_B(2), \dots, L_A(k), L_B(k).$$

For convenience, we will refer to elements of L_A as having the colour *red* and elements of L_B as having the colour *blue*. Notice that L_M will contain two copies of each vertex of $C_1 \cup C_2$ – one red and one blue. For each $v \in C_1 \cup C_2$, we shall distinguish between the two copies of v in L_M as follows: the red copy will be referred to as v_{red} and the blue as v_{blue} . Each vertex of $A \cup B$ occurs only once in L_M .

From L_M , we produce L by deleting the leftmost copy of each vertex of C_1 and the rightmost copy of each vertex of C_2 . Recall that we constructed C_1 and C_2 so that no vertex appears in both. Thus, L is a layout for G. We now prove a bound on the width of L in terms of the widths of L_A and L_B .

Let G = (V, E) be a circular-arc graph, and let I_A , I_B , G_A , and G_B be constructed as previously described, from a circular-arc model for G. Let L_A and L_B be layouts for G_A and G_B , respectively, satisfying:

- $\forall v \in C_1: \{v, L_A(1)\}, \{v, L_B(1)\} \in E$, and
- $\forall v \in C_2: \{v, L_A(k)\}, \{v, L_B(k)\} \in E.$

Let L_M and L be obtained from L_A and L_B as previously described.

Lemma 6 $b(G,L) \leq 2 \cdot \max[b(G_A,L_A),b(G_B,L_B)].$

Proof. An edge violating the claim must have length greater than the longest edge in L_M . We will consider an arbitrary edge of G, $\{u, v\} \in E$. We first observe that if u and v have the same colour, say red, then $|L(u) - L(v)| \leq |L_M(u) - L_M(v)| = 2 \cdot |L_A(u) - L_A(v)|$. Such edges, therefore, cannot contradict the claim. We shall refer to such edges as red edges or blue edges, depending upon the colour of the endpoints. Similarly, any edge for which we can find a longer red or blue edge in L_M cannot contradict the claim.

Consider the edge $\{u, v\} \in E$, where $u <_L v$. We must show that $|L(u) - L(v)| \leq 2 \cdot \max[b(G_A, L_A), b(G_B, L_B)].$

Case 1. The intervals corresponding to u and v intersect in I_A or I_B or both. Hence $\{u, v\} \in E \setminus E'$. Suppose, without loss of generality, that the intervals intersect in I_A . If u and v are both red then our earlier observation applies, and we are done.

Next, suppose that u is red and v is blue. When L was formed from L_M , v_{red} must have been deleted. If v_{red} is to the right of v_{blue} in L_M , then there is a longer red edge $\{u, v\}$ in L_M , and this completes the proof. Suppose v_{red} is to the left of v_{blue} in L_M . This implies that $v \in C_1$, since the leftmost copy was deleted from L_M to form L. But then v_{blue} is adjacent to the first blue vertex in L_M , implying that $|L(v) - L(u)| \leq |L_M(v_{blue}) - L_M(2)| \leq 2 \cdot |L_B(v) - L_B(1)|$.

Now, consider the case where u is blue and v is red. The red copy of u has been deleted. If u_{red} is to the left of u_{blue} in L_M , then there is a longer red edge in L_M . Otherwise, we have $u \in C_2$. But then u_{blue} is adjacent to the last vertex of L_M , giving a longer blue edge.

Finally, we consider the case where u and v are both blue. If the corresponding intervals intersect in I_B then we are done by the previous argument. Otherwise, one of u and v is in C_1 and the other is in C_2 . If $u \in C_1$ and $v \in C_2$ then the red edge $\{u_{red}, v_{red}\}$ is longer in L_M than $\{u, v\}$ in L. If $u \in C_2$ and $v \in C_1$ then u_{blue} is adjacent to the last vertex of L_M , giving a blue edge in L_M longer than $\{u, v\}$ in L.

Case 2. The intervals corresponding to u and v intersect neither in I_A nor in I_B .

Hence $\{u, v\} \in E'$. Then it must be that exactly one of the vertices corresponds to an arc which, in the original circular-arc representation, covers all of one side of the circle and extends into the other side covering both scanpoints 1 and p. Assume, without loss of generality, that the arc covers $[1, p]_{cw}$ and appears as two disconnected arcs in $[1, p]_{ccw}$. In constructing I_B , the part of the arc that covered p and extended into $[1, p]_{ccw}$ was removed. This must be the area where the arcs corresponding to u and v intersected in the original circular-arc representation. This implies that the other arc is in B, and therefore occurs as a blue vertex only in L_M and in L.

Suppose that u is the arc that was altered. Then $u \in C_1$ and $v \in B$. Thus, it is the rightmost copy of u that remains in L. The red copy of u in L_M is adjacent to all other red vertices, including $L_M(2k-1)$. Thus, if u in L is red, then there is a red edge in L_M that is longer than the $\{u, v\}$ edge in L. If u in L is blue, then u_{red} has a longer edge in L_M to $L_M(2k-1)$. Now consider the case where v was altered. Then $v \in C_1$ and $u \in B$. The rightmost copy of v from L_M remains in L, and the red copy of v is adjacent to all other red vertices in L_M , including $L_M(1)$. If v in L is red, then the red edge $\{v, L_M(1)\}$ is longer than the edge $\{u, v\}$ in L. If v is blue in L, then v is adjacent to $L_M(2)$ by Lemma 5 and the construction of L_M ; thus, there is a longer blue edge.

Theorem 1 The bandwidth of a circular-arc graph can be approximated to within a factor of four in O(n) time, and to within a factor of two in $O(n \log^2 n)$ time.

Proof. We have three approximation algorithms for approximating the bandwidth of a circular-arc graph, namely, the algorithm previously described in which:

(i) L_A and L_B are layouts of vertices ordered by left endpoints of intervals,

(ii) L_A and L_B are layouts of vertices ordered by right endpoints of intervals, or

(iii) L_A and L_B are layouts computed by Kleitman and Vohra's algorithm.

Algorithms (i) and (ii) have time complexity O(n), provided the sorted arc endpoints are given, and they output a layout L that satisfies:

$$b(G,L) \leq 2 \cdot \max[b(G_A, L_A), b(G_B, L_B)]$$

$$\leq 2 \cdot \max[2 \cdot bw(G_A), 2 \cdot bw(G_B)]$$

$$= 4 \cdot \max[bw(G_A), bw(G_B)]$$

$$\leq 4 \cdot bw(G)$$

Algorithm (iii) requires $O(n \log^2 n)$ time but produces a layout L satisfying:

$$b(G,L) \leq 2 \cdot \max[b(G_A, L_A), b(G_B, L_B)]$$

$$\leq 2 \cdot \max[bw(G_A), bw(G_B)]$$

$$\leq 2 \cdot bw(G)$$

These performance ratios follow from Lemmas 5 and 6, and the fact that any subgraph of graph G has bandwidth not larger than bw(G).

4 Chordal graphs with clique trees having a bounded number of leaves

A graph G is a *chordal* graph if every cycle of length greater than three has a chord. Chordal graphs are exactly the intersection graphs of subtrees in a tree [16]. More precisely, for each chordal graph G = (V, E), there exists a tree T such that

• the vertices of T correspond to the maximal cliques of G, and

• the vertices of T corresponding to cliques of G containing any fixed vertex $v \in V$ form a subtree T_v of T.

Note the consequence that two vertices of G are adjacent if and only if their corresponding subtrees have nonempty intersection. For a given chordal graph G = (V, E), such a tree, called a *clique tree* for G, will have no more than n nodes and can be constructed in O(n + m) time [3, 14].

We use the idea of mixing layouts of interval graphs, as in the previous section. While a circular-arc graph roughly consists of two interval graphs arranged in a circle, a chordal graph may be thought of as several interval graphs arranged in a tree-like structure. We restrict our attention to chordal graphs having a bounded number of leaves in their clique trees. A chordal graph with k leaves in its clique tree may be viewed as a collection of k interval graphs. For a chordal graph G = (V, E) with at most k leaves in the corresponding clique tree, we compute a layout L such that $b(G, L) \leq 2k \cdot bw(G)$.

The method is as follows, assuming a clique tree T has been computed for a given chordal graph G = (V, E).

- 1. Root T at an arbitrary vertex, r.
- 2. Let k be the number of leaves of T (excluding r). For each root-to-leaf path P_i in T, the collection of subtrees, restricted to P_i , form a set of intervals. Let I_i be this set of intervals in which the left endpoint of each interval is taken to be the one closer to r. Let $G_i = (V_i, E_i)$ be the corresponding interval graph.
- 3. for $i \leftarrow 1$ to k do
 - $L_i \leftarrow$ layout for G_i consisting of V_i ordered by increasing left endpoints of intervals (with ties broken arbitrarily, but the same way in all the L_i 's)
- 4. Mix the L_i 's to form L_M , as follows: $L_M \leftarrow L_1(1)L_2(1)L_3(1) \dots L_k(1)L_1(2)L_2(2) \dots L_k(2) \dots$
- 5. For each vertex $v \in V$ that appears in more than one of the G_i 's: delete all but the rightmost copy of v from L_M . The result is a layout L for G.

The following lemmas apply in the context of the previously described method.

Lemma 7 Each G_i is an interval graph.

Proof. This follows from the construction of the G_i 's and properties of the clique tree.

Lemma 8 $E_1 \cup E_2 \cup \ldots \cup E_k = E$.

Proof. If $\{u, v\} \in E$ then u and v occur together in some clique corresponding to a vertex of T. Thus the edge $\{u, v\}$ will occur in every G_i whose corresponding path P_i contains that vertex of T. \Box

Lemma 9 $\forall \{u, v\} \in E$, either $\forall 1 \leq i \leq k : u \in V_i \text{ implies } (v \in V_i \text{ and } \{u, v\} \in E_i), \text{ or}$ $\forall 1 \leq i \leq k : v \in V_i \text{ implies } (u \in V_i \text{ and } \{u, v\} \in E_i).$

Proof. Let $\{u, v\} \in E$. Then T_u and T_v intersect. Let c_{uv} be the vertex of T, closest to r, at which T_u and T_v intersect. c_{uv} is the closest to r vertex for at least one of T_u and T_v ; otherwise, we contradict our choice of c_{uv} , since the path from c_{uv} to r in T is unique and since T_u and T_v are both connected.

Suppose c_{uv} is the vertex of T_u closest to r in T. Then, for any V_i that contains u, the corresponding path P_i must contain c_{uv} , and the conclusion follows.

Similarly, if c_{uv} is the vertex of T_v closest to r then, for every V_i containing v, the corresponding path P_i contains c_{uv} .

Lemma 10 Each G_i is an induced subgraph of G.

Proof. This follows by an argument similar to the previous proof.

Lemma 11 $b(G, L) \leq 2k \cdot bw(G)$.

Proof. Let $\{u, v\} \in E$ and consider the length of $\{u, v\}$ in L, i.e., |L(u) - L(v)|. Assume, without loss of generality, that $u <_L v$. If the copies of u and v remaining in L are from the same interval subgraph G_i , then

$$|L(u) - L(v)| \leq |L_M(u) - L_M(v)|$$

$$\leq k \cdot |L_i(u) - L_i(v)|$$

$$\leq 2k \cdot bw(G_i)$$

$$\leq 2k \cdot bw(G).$$

Suppose the occurrences of u and v in L are from different interval subgraphs, G_u and G_v , respectively. Since $\{u, v\} \in E$, we know by Lemma 9 that: • $v \in G_u$ and $\{u, v\} \in G_u$, or

• $u \in G_v$ and $\{u, v\} \in G_v$.

If $u \in G_v$ then the occurrence of u in G_v is to the left (in L_M) of the occurrence of u in G_u . Thus

$$|L(u) - L(v)| \leq |L_M(u \text{ of } G_v) - L_M(v \text{ of } G_v)|$$

$$\leq k \cdot |L_v(u) - L_v(v)|$$

$$\leq 2k \cdot bw(G_v)$$

$$\leq 2k \cdot bw(G).$$

Otherwise, $u \notin G_v$ and $v \in G_u$, implying that the vertex of T_v closest to r is closer to r than the vertex of T_u closest to r. That is, in I_u , left(v) < left(u) and hence $v <_{L_u} u$.

Let f_{uv} be the last vertex of T (i.e. farthest from the root) that is in both G_u and G_v . The set of left endpoints from r to f_{uv} are identical in both I_u and

 I_v . Suppose there are q of them. Then, in L_M , both occurrences of v appear in the first $k \cdot q$ positions, and the occurrence of u from G_u is to the right. This contradicts that the occurrences of u and v under consideration satisfy $u <_L v$.

Theorem 2 Let G = (V, E) be a chordal graph having a clique tree with at most k leaves. Then a layout L for G satisfying $b(G, L) \leq 2k \cdot bw(G)$ can be computed in O(nk) time.

Proof. The proof follows from the previous discussion.

Since the bandwidth problem remains NP-complete for trees, a subset of chordal graphs, it is worthwhile mentioning how our algorithm handles trees. Each of the P_i 's will be a chordless path, and ordering by left or right interval endpoints will give the exact bandwidth. Thus, our algorithm produces a layout L satisfying $b(G, L) \leq k \cdot bw(G)$ where G is a tree with not more than k leaves. This is the same bound that is produced by the breadth-first search heuristic of Cuthill and McKee [8] (described in [5]).

5 k-polygon graphs for fixed k

We make use of the results of the previous section as follows. We transform any k-polygon graph G into a chordal graph H having a clique tree with at most k leaves, by taking a minimal triangulation of the input graph. We show that there exists such a triangulation which is a subgraph of G^k . Combining these observations with Lemma 2, and the approximation algorithm of the previous section, we obtain an $O(n^3)$ approximation algorithm for the bandwidth of k-polygon graphs which has performance ratio $2k^2$.

A graph G = (V, E) is a k-polygon graph if it is the intersection graph of chords inside a convex k-polygon, where each chord has its endpoints on two different sides of the polygon. A polygon representation, or diagram, for G = (V, E), is a k-sided polygon together with a set of chords such that, for all $u, v \in V$, $\{u, v\} \in E$ if and only if the chords corresponding to u and v cross.

Circle graphs are the intersection graphs of chords inside a circle. Thus, circle graphs are the union of all k-polygon graphs, over all $k \ge 2$. We consider the degenerate case of permutation graphs to be 2-polygon graphs. A circle model, or circle diagram, for circle graph G = (V, E) is a set of chords in a circle such that two vertices are adjacent in G if and only if their corresponding chords cross. There is an $O(n^2)$ algorithm [27] which determines whether or not a given graph is a circle graph and, if so, produces a circle representation for it. Given a graph G = (V, E), it can be determined in $O(|V|^k)$ time whether or not G is a k-polygon graph and, if so, a polygon representation can be constructed [10]. However, the general problem, given a circle graph, determine the minimum k such that G is a k-polygon graph, remains NP-complete [10].

Our algorithm assumes that a k-polygon representation for the input graph is provided.

All of the notation in this section is either identical to that of [21] and [22], or inspired by those two papers.

Definition 2 ([26]) A triangulation of a graph G is a chordal graph H with the same vertex set as G, such that G is a subgraph of H. A triangulation H of a graph G is called a minimal triangulation of G, if no proper subgraph of H is a triangulation of G.

Definition 3 ([9]) Let G = (V, E) be a graph and a, b two nonadjacent vertices of G. The set $S \subseteq V$ is an a, b-separator if the removal of S separates a and bin distinct connected components. If no proper subset of S is an a, b-separator then S is a minimal a, b-separator. A minimal separator is a set of vertices Sthat is a minimal a, b-separator.

Lemma 12 ([9]) Let S be a minimal a, b-separator of the graph G = (V, E)and let C_a and C_b be the connected components of $G[V \setminus S]$ containing a and b respectively. Then every vertex of S has at least one neighbour in C_a and at least one neighbour in C_b .

We denote by $\mathfrak{Sep}(H)$ the set of all minimal separators of a graph H. The following characterization of minimal triangulations is given in [21].

Theorem 3 ([21]) A triangulation H of a graph G is a minimal triangulation of G if and only if the following three conditions are satisfied.

- 1. If a and b are nonadjacent vertices of H, then every minimal a, b-separator of H is also a minimal a, b-separator of G.
- 2. If S is a minimal separator of H and C a connected component of $H[V \setminus S]$, then the vertex set of C induces a connected component in $G[V \setminus S]$.
- 3. $H = G_{\mathfrak{Sp}(H)}$, where $G_{\mathfrak{Sp}(H)}$ is the graph obtained from G by adding edges between every pair of vertices contained in the same set S, for any $S \in$ $\mathfrak{Sep}(H)$.

In [22], an algorithm is presented which, given a circle graph G, finds a minimum triangulation (i.e., one with the minimum number of edges) for G. The algorithm is based on the following results.

Assume that an *n*-vertex circle graph is given as a set of chords in a circle. Between each two consecutive endpoints of chords, add a point called a *scanpoint*. Let Z be the set of 2n scanpoints. A *scanline* is a chord of the circle connecting two scanpoints.

Definition 4 ([22]) Let c_1 and c_2 be two chords of the circle representation. A scanline s is between c_1 and c_2 if every path from an endpoint of c_1 to an endpoint of c_2 along the circle passes through a scanpoint of s.

For any scanline s, we denote by S(s) the set of all vertices v of G for which the corresponding chord intersects s. **Theorem 4 ([20])** Let a and b be nonadjacent vertices of the circle graph G = (V, E). For every minimal a, b-separator S of G, there exists a scanline s between the chords of a and b such that S = S(s).

Note that the above results imply that, for every minimal a, b-separator S of a k-polygon graph G, there is a scanline s with S = S(s), such that the endpoints of s are on two different sides of the polygon.

Let G = (V, E) be a k-polygon graph. Consider a k-polygon model consisting of chords C inside polygon \mathcal{P}_G . Let Z be the set of scanpoints, and let $\mathcal{P}(Z)$ be the convex polygon whose vertices are the points of Z. In [22] Kloks et al. give the following representation theorem for all minimal triangulations of a circle graph in terms of planar triangulations of the polygon $\mathcal{P}(Z)$.

Theorem 5 ([22]) Let G = (V, E) be a circle graph given as a set of chords in a circle, and let Z be the corresponding set of scanpoints. Then for every minimal triangulation H of G there is a planar triangulation T of the polygon $\mathcal{P}(Z)$ such that H = H(T), where H(T) is the graph with vertex set V, and vertices u and v are adjacent in H(T) if there exists a triangle in T that is intersected by the chords corresponding to u and v.

Combining this theorem and our previous observation, we have the following.

Theorem 6 Let G = (V, E) be a k-polygon graph given as a set of chords in a k-polygon, and let Z be the corresponding set of scanpoints. Then for every minimal triangulation H of G there is a planar triangulation T of the polygon $\mathcal{P}(Z)$ such that:

• every diagonal in T has endpoints on two different sides of the k-polygon, and • H = H(T), where H(T) is the graph with vertex set V, and vertices u and v are adjacent in H(T) if there exists a triangle Q in T that is intersected by the chords corresponding to u and v.

Consequently, a minimum triangulation H of a k-polygon graph G can be computed by finding a minimum weight triangulation of $\mathcal{P}(Z)$, in which we consider only chords with endpoints on different sides of the polygon. The $O(n^3)$ dynamic programming algorithm for this computation for circle graphs [22] can be adapted to the domain of k-polygon graphs; the adapted algorithm retains its $O(n^3)$ complexity.

This algorithm also produces a planar triangulation T of $\mathcal{P}(Z)$ such that H = H(T) for the minimum triangulation H. Now we construct a tree model of the chordal graph H as follows. We take the dual of the planar triangulation T (except the exterior face), i.e. two vertices of the tree are adjacent iff the corresponding triangles share a diagonal, and assign to each vertex the set of all chords intersecting the corresponding triangle of T. This tree has at most k leaves since any leaf corresponds to a triangle containing a corner of \mathcal{P}_G . Finally we remove all non-maximal cliques by contracting suitables edges of the tree and obtain a clique tree of H with at most k leaves.

Corollary 1 There is an $O(n^3)$ algorithm to compute for a given k-polygon graph G a clique tree of a minimum triangulation such that this clique tree has at most k leaves.

Thus, our approximation algorithm from the previous section applies to this triangulation H of a k-polygon graph G.

Remark 1 One can show analogously that there is an $O(n^3)$ algorithm that computes for a given minimal triangulation H of a k-polygon graph a clique tree with at most k leaves.

The following definitions and results parallel those of [21].

Definition 5 A minimal separator S is d-good if, for every nonadjacent pair x and y in S, $d_G(x, y) \leq d$.

Definition 6 A triangulation H of G is d-good if, for every edge $\{a, b\}$ in H, $d_G(a, b) \leq d$.

The following theorem is a consequence of the characterization of minimal triangulations given in Theorem 3.

Theorem 7 If every minimal separator of a graph G is d-good then every minimal triangulation H of G is d-good.

Lemma 13 Let G be a graph without chordless cycle of length greater than 2k + 1. Then every minimal separator of G is k-good.

Proof. Assume there is some minimal separator S containing nonadjacent vertices x and y such that $d_G(x, y) > k$. Now, by Lemma 12, we can find an x, y-path in C_x , and one in C_y . If we choose shortest such paths, then their union is a chordless cycle of length at least 2(k + 1), a contradiction. \Box

Lemma 14 Let G be a k-polygon graph. Then G has no chordless cycle of length greater than 2k.

Proof. It is proved in [13] that chordless cycles have unique representations as chords in a circle. Suppose G has a chordless cycle of length at laest 2k + 1 and consider the unique representation as chords in a circle. The number of chord endpoints must be at least 2(2k + 1) = 4k + 2. Each side of the k-polygon can contain at most four chord endpoints; otherwise, the two endpoints a chord would have to be on the same side. Thus there must be at least $\lceil \frac{4k+2}{4} \rceil = k + 1$ sides.

Corollary 2 Every minimal separator of a k-polygon graph is k-good and every minimal triangulation of a k-polygon graph G is k-good.

A triangulation H of the graph G is d-good if and only if H is a subgraph of the graph G^d . Consequently, by Lemma 2, any layout L of a d-good triangulation H of G with $b(H, L) \leq c \cdot bw(H)$ fulfills $b(G, L) \leq d \cdot c \cdot bw(G)$, where $c, d \geq 1$ are constants.

Theorem 8 Let G be a k-polygon graph, H a minimal triangulation of G, and L an approximate bandwidth layout for H with $b(H, L) \leq 2k \cdot bw(H)$, as obtained in the previous section. Then $bw(G) \leq k \cdot bw(H) \leq 2k^2 \cdot b(H, L)$.

Theorem 9 Let G be a k-polygon graph given as a k-polygon representation. Then a layout L satisfying $b(G, L) \leq 2k^2 \cdot bw(G)$ can be computed in $O(n^3)$ time.

6 Conclusion

We have presented polynomial time bandwidth approximation algorithms for circular-arc graphs, chordal graphs whose clique trees have a fixed number of leaves, and k-polygon graphs for fixed k, based on the idea of mixing exact or approximate bandwidth layouts for interval graphs.

Many questions remain unanswered in the area of bandwidth minimization; a few of them are:

- Are there bandwidth approximation algorithms with lower time complexities or lower approximation ratios for these graph classes?
- What is the complexity of bandwidth approximation, in general?
- Can the exact bandwidth be computed in polynomial time for permutation graphs or for circular-arc graphs?
- Can the idea of mixing layouts be used to advantage in other domains?

References

- Assmann, S. F., G. W. Peck, M. M. Syslo and J. Zak, The bandwidth of caterpillars with hairs of length 1 and 2, SIAM J. Algebraic Discrete Methods 2 (1981), 387-393.
- [2] Blache, G., M. Karpinski, J. Wirtgen, On approximation intractability of the bandwidth problem, *Electronic Colloquium on Computational Complexity*, Report No. 14 (1998).
- Blair, J. R. S., B. Peyton, An introduction to chordal graphs and clique trees, in Graph Theory and Sparse Matrix Computation, A. George, J. R. Gilbert, J. W. H. Liu (Eds.), The IMA Volumes in Mathematics and its Applications, Volume 56.

- [4] Booth, K. S. and G. S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J. Comput. System Sci. 13 (1976), 335-379.
- [5] Chinn, P. Z., J. Chvátalová, A. K. Dewdney and N. E. Gibbs, The bandwidth problem for graphs and matrices—a survey, J. Graph Theory 6 (1982), 223– 254.
- [6] Chvátalová, J., A. K. Dewdney, N. E. Gibbs and R. R. Korfhage, The bandwidth problem for graphs: a collection of recent results, Research report #24, Department of Computer Science, UWO, London, Ontario (1975).
- [7] Corneil, D. G., S. Olariu and L. Stewart, The ultimate interval graph algorithm?, Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms—SODA '98 (San Francisco, 1998).
- [8] Cuthill, E. and J. McKee, Reducing the bandwidth of sparse symmetric matrices, Proc. 24th Nat. Conf. ACM (1969), 157-172.
- [9] Dirac, G. A., On rigid circuit graphs, Abh. Math. Semin. Univ. Hamburg 25 (1961), 71-76.
- [10] Elmallah, E. S. and L. K. Stewart, Polygon graph recognition, J. Algorithms 26 (1998), 101-140.
- [11] Eschen, E. M. and J. P. Spinrad, An $O(n^2)$ algorithm for circular-arc graph recognition, *Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms* (Austin, TX, 1993), 128–137, ACM, New York, 1993.
- [12] Feige, U., Approximating the bandwidth via volume respecting embeddings, manuscript, 1998.
- [13] Gabor, C. P., K. J. Supowit and W.-L. Hsu, Recognizing circle graphs in polynomial time, J. Assoc. Comput. Mach. 36 (1989), 435-473.
- [14] Galanier, P., M. Habib and C. Paul, Chordal graphs and their clique graphs, Graph-theoretic concepts in Computer Science-WG'95 (Aachen), 358-371, Lect. Notes Comput. Sci. 1017, Springer, Berlin, 1995.
- [15] Garey, M. R., R. L. Graham, D. S. Johnson and D. E. Knuth, Complexity results for bandwidth minimization, SIAM J. Appl. Math. 34 (1978), 477-495.
- [16] Gavril, F., The intersection graphs of subtrees in a tree are exactly the chordal graphs, J. Comb. Theory, Ser. B 16 (1974), 47-56.
- [17] Golumbic, M. C., Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
- [18] Jiang, S., The bandwidth problem and bandwidth of cographs, unpublished manuscript, 1992.

- [19] Kleitman, D. J. and R. V. Vohra, Computing the bandwidth of interval graphs, SIAM J. Discrete Math. 3 (1990), pp. 373-375.
- [20] Kloks, T., Treewidth of circle graphs, Int. J. Found. Comput. Sci. 7 (1996), pp. 111-120.
- [21] Kloks, T., D. Kratsch and H. Müller, Approximating the bandwidth for asteroidal triple-free graphs, *Algorithms—ESA '95* (Corfu), 434-447, Lect. Notes Comput. Sci. 979, Springer, Berlin, 1995.
- [22] Kloks, T., D. Kratsch and C. K. Wong, Minimum fill-in on circle and circular-arc graphs, Automata, languages and programming (Paderborn, 1996), 256-267, Lect. Notes Comput. Sci. 1099, Springer, Berlin, 1996.
- [23] Mahesh, R., C. Pandu Rangan and A. Srinivasan, On finding the minimum bandwidth of interval graphs, *Inf. Comput.* 95 (1991), 218-224.
- [24] Monien, B., The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete, SIAM J. Algebraic Discrete Methods 7 (1986), 505-512.
- [25] Papadimitriou, C. H., The NP-completeness of the bandwidth minimization problem, *Computing* 16 (1976), 263-270.
- [26] Rose, D. J., R. E. Tarjan and G. S. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput. 5 (1976), 266-283.
- [27] Spinrad, J., Recognition of circle graphs, J. Algorithms 16 (1994), 264-282.
- [28] Sprague, A. P., An O(n log n) algorithm for bandwidth of interval graphs, SIAM J. Discrete Math. 7 (1994), 213-220.
- [29] Unger, W., private communication.