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Abstract

Understanding interactions between charged entities with electronically responsive

structures embedded in an electrolytic environment is important because of the di-

verse range of practical applications. This study was motivated by the technique

where single stranded DNA was used to separate carbon nanotubes (CNTs) with

different electronic properties (metallic or semiconducting).

The objective of this study was to create theoretical models which improve the

understanding of the DNA-assisted separation technique for CNTs. In the course

of this study four models with different levels of complexity at the continuum level

were developed, with the electrostatic interaction being the main focus. In each of

these models, with certain simplifications on geometry the boundary value prob-

lems for the electric potential were formulated using equations of electrostatics and

in particular the Debye-Hückel theory for electrolyte. Using mathematical tech-

niques, semi-analytical solutions for the electric potential were obtained and its im-

plication for the DNA-CNT interaction and the property of the DNA-CNT hybrid

were discussed. It was found that the electric potential due to a metallic CNT-DNA

hybrid is weaker than that for a semiconducting CNT-DNA. In addition to that based

on the proposed models, it was observed that the obtained results are applicable to

a larger class of problems involving charged entities interacting with responsive

structures. For example, it was studied how the phenomenon of counterion conden-

sation on a polyelectrolyte (PE) is affected by the presence of a responsive cylinder.

It was shown that counterions gradually release from the surface of the PE as it

approaches a metallic cylinder, whereas more counterions are condensed on the PE

as it approaches a dielectric cylinder where the dielectric constant of that cylinder

ia smaller than that of the electrolyte solution.



Results from this dissertation clearly demonstrate that in order to model the

interaction between a charged entity and an electronically responsive structure, it is

crucial to account for the response of the structure. Therefore, the models developed

here have implications for modeling interactions between other charged entities

near responsive structures. For example, cells adhering to an implant’s surface and

biosensors detecting a specific DNA sequence.
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Here, ā = 10−2, r̄0 = 0.1, and ε21 = 0.1. . . . . . . . . . . . . . . 105

5.7 Normalized binding force F̄x per unit length on the charged wall

due to the PE-dielectric cylinder complex or the PE alone. The solid

line represents the binding force between the charged wall and the

PE alone, and all the others curves correspond to the PE-dielectric

cylinder complex with different ratios of dielectric constants ε21.
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Preface

The seven chapters in this dissertation represent the author’s work on the interaction

of charged entities with electronically responsive structures, and its implication for

the modeling of interactions between carbon nanotubes and DNA. This thesis fol-

lows the mixed format as described by Faculty of Graduate Studies and Research

(FGSR) of the University of Alberta. Chapter 1 is an introduction to the whole the-

sis, and it shows how other chapters are related. In Chapter 2 the description of the

fundamentals of electrostatics are provided. Chapters 3, 4, 5, and 6 were originally

written as separate papers. Therefore, the same symbol in one of these chapters

may have a different physical meaning from that of the same symbol in a different

chapter. The definition of each symbol is consistent within each chapter. Chapter 7

summarizes the results of the whole thesis. Finally, each chapter has its own bibli-

ography. Therefore, the reference numbers in a specific chapter only correspond to

the list at the end of that chapter.



Chapter 1
Introduction

The motivation for this thesis arose from a remarkable phenomenon which is con-

cerned with the separation of “bundles”of carbon nanotubes (CNTs) into individual

tubes. This separation is essential if the CNTs are to be used in practical appli-

cations. The aforementioned phenomenon (of separation) involves the interaction

of singles strands of Deoxyribonucleic acid (DNA) with the CNTs bundles. The

fascination of the author comes from the fact that two seemingly unrelated yet

well-recognized structures could combine together to produce such a remarkable

result of the separation of bundled CNTs. The initial idea behind this thesis was to

try and understand this mechanism of interaction between DNA and CNT bundles

using some form of mathematical model. As all good modelers know, the latter

involves a delicate balancing act between trying to separate the most significant as-

pects of the mechanism without producing an intractable model of the process. We

quickly identified that the initial steps in model development were part of the more

general subject matter dealing with charged entities interacting with electronically

responsive structures, which is where the majority of this thesis is concentrated.

1.1 Carbon nanomaterials

Since the discovery of carbon nanomaterials in the mid 1980s, their use has been

increasing. The reason for this is that they became widely accepted because of

promising potential applications in different areas [1–3]. For example, biomedical,

electronic, environmental and energy industries. In the last two decades the dis-

covery of different carbon nanomaterials (fullerene) was reported [4, 5], such as

buckminsterfullerene C60, carbon nanotubes (CNT), and graphene.

Figure 1.1(a) depicts fullerene, discovered in 1985, which can be imagined as

a hollow carbon sphere. Figure 1.1(b) depicts a carbon nanotube, discovered in
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(a) (b) (c)

Figure 1.1: a) Buckminsterfullerene/buckyball, b) carbon nanotube; and c) piece of
the graphene sheet. In this figure, the black circles represent carbon atoms, and the
lines connecting carbon atoms are covalent bonds.

1991, which resembles a hollow carbon cylinder. Figure 1.1(c) depicts graphene,

discovered in 2004, which is a sheet of graphite of one atom thick. Graphene can

be imagined as atomic-scale “chicken wire”, made of carbon atoms and covalent

bonds (special chemical bonds) between them. To appreciate the dimensions of

these structures note that the atom is incredibly small: it is only one tenth of a

nanometer (1 Å = angstrom is equal to 0.1 nm).

The most interesting structures arising from carbon nanomaterials are carbon

nanotubes (CNTs) due to their unique electronic, mechanical, and thermal proper-

ties [5]. CNTs were discovered by Iijima in 1991 [4, 5] and for the last twenty years,

an extensive amount of studies have been performed to utilize their unique proper-

ties in electronic [6, 7], biomedical [8–10], and many others applications [11–13].

CNTs can have two different forms: single-walled CNTs (swCNTs) depicted in Fig-

ure 1.2(a) and multi-walled CNTs (mwCNTs) depicted in Figure 1.2(b). A single-

walled CNT can be visualized as a seamless cylinder wrapped from a graphene

sheet and, depending on the direction of wrapping of the graphene sheet in the

tube, CNTs can possess different electronic properties (metallic or semiconduct-

ing). Multi-walled CNTs on the other hand can be visualized as several tubes with

different radii placed one inside the other.

The diameter of the experimentally observed single-walled CNTs ranges from

0.7 nm to 2 nm, and the average length is on the order of microns [5], although

CNTs of the order of centimeters in length are produced. CNTs are incredibly
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(a) (b)

Figure 1.2: a) A single-walled carbon nanotube; b) multi-walled carbon nanotube.

light and strong. The stiffness of the material is measured in terms of Young’s

modulus. Different theoretical methods and experimental measurements predict

different values for the Young’s modulus for single-walled CNTs, starting from

around 1 TPa (1TPa = 103 GPa = 109 Pa) to near 5 TPa [12, 14, 15]. This means

that CNTs are between five to twenty five times stiffer than similar structures made

from stainless steel.

1.2 Separating carbon nanotubes via the mechanism
of DNA interactions

CNTs can be manufactured using different techniques: carbon-arc discharge, laser

ablation, or chemical vapor deposition [4, 5]. The outcome of the manufacturing

process is bundled CNTs, with metallic and semiconducting tubes present within

the bundle. To be able to use them in practical applications, the CNTs have to

be dispersed into individual tubes and then separated according to their electronic

properties. This is not trivial, because there is a strong adhesion between CNTs

and the hydrophobicity of CNTs makes it difficult to disperse them in aqueous

solutions. However, this is a necessary step because, as mentioned above, practical

applications require dispersed CNTs with certain electronic properties. Different

techniques for dispersion and separation of CNTs are available to utilize electronic

properties of the CNTs.

One of the successful and remarkable techniques to disperse and separate CNTs

in an aqueous solution is to use single-stranded DNA (ssDNA) molecules as de-

picted in Figure 1.3. DNA molecules are polyelectrolytes (PEs) [16]. PEs are poly-
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mers bearing repeating ionizable groups [17]. These groups are able to dissociate

in an aqueous solution, making DNA molecules charged. When DNA molecules

are immersed in an aqueous solution, their electric neutrality is lost. In an aqueous

solution, DNA molecules become negatively charged because one proton dissoci-

ates from each phosphate group [18]. The separation between two neighboring

phosphorous atoms on DNA backbone is 7 Å.

Figure 1.3: Representation of a single-stranded DNA molecule (ssDNA). It consists
of backbone and bases (Adenine, Guanine, Cytosine, Thymine). The blue ribbon
represents the backbone, which consists of alternating phosphate groups and sugar.
The bases are shown in orange.

In 2003 a group of scientists (Zheng et al.) successfully applied the ssDNA-

assisted CNT dispersion technique to disperse CNTs in aqueous solution and to

separate them according to their electronic properties by the ion exchange chro-

matography (IEC) method [19]. Even though single-stranded DNAs are not the

only polymers that are able to disperse CNTs, they are the most efficient at doing

so [19]. In the process of dispersion, bundled CNTs are sonicated with ssDNA

molecules in an aqueous solution with low salt concentration (0.1 M = moles/litre

for table salt - sodium chloride NaCl). An aqueous solution with a small amount of

salt forms an electrolyte solution, which is a medium with ions capable of conduct-

ing electricity. As a result of sonication, negatively charged ssDNA-CNT hybrids

are formed (See Figure 1.4). Molecular modeling suggests that ssDNA molecules

wrap around CNTs in a helical fashion [19]. The phosphate groups on the ssDNA-

CNT hybrid are negatively charged. Due to the difference in the electronic proper-

ties of metallic and semiconducting CNTs, it is speculated that the surface charge

distribution would be modified differently [19]. This allows the separation of CNTs

into several fractions by IEC, particularly anion exchange chromatography. In the

IEC method an electrolyte solution with dispersed negatively charged ssDNA-CNT
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Figure 1.4: Helical wrapping of ssDNA molecule around CNT, so called CNT-DNA
hybrid.

hybrids is passed through the column packed with the anion exchange resins. The

resin surface gets positively charged upon being introduced in the electrolyte so-

lution so that the negatively charged phosphate groups of DNA bind to it. At this

stage, the separation of the ssDNA-CNT hybrids according to the electronic prop-

erties of the CNT’s core could be done by passing the solution with the increased

salt concentration through the column. As the salt concentration in the solution

increases (from 0.1 M to 0.8 M), the salt ions are able to exchange with the ssDNA-

hybrids. Experiments show that the metallic CNTs elute from the column earlier

than the semiconducting ones. Zheng et al. speculated that this would happen due

to their reduced surface charge [19].

Following the experiments, Zheng et al. conducted molecular statics (MS) cal-

culations of a Poly(T) with semiconducting (10, 0) CNT in vacuum [19]. Poly(T)

is a ssDNA consisting of repeating thymine (T) bases only. By minimizing the

energy of Poly(T) and CNT, favorable configurations of the Poly(T) and CNT are

determined. In the preferred range of the torsion angles of ssDNA molecule, there

are many favorable configurations. Helical wrapping is one of the favorable con-

figurations, and it is supported by images from atomic force microscopy (AFM)

of CNT-DNA hybrids based on Poly(GT) [20]. Further, Zheng et al. found that

wrapping of CNTs by ssDNA molecules is sequence-dependent [20]. It was iden-

tified that the best separation of CNTs according to their electronic properties and

diameters was obtained by using Poly(GT), i.e. ssDNA molecules consisting of

alternating guanine (G) and thymine (T) bases. Later on, Tu et al. [21] refined

the experiments, and identified the specific DNA sequences which are able to sepa-

rate CNTs with specific chiralities. The efficiency of the dispersion and separation

depends on the DNA sequence, salt concentration and the type of salt [19, 20].
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Although experiments show promising results, it is necessary to understand the

interactions in the hybrid to be able to obtain full control of this method. However,

due to the size of the hybrid, it is impossible to measure the total interactions be-

tween the DNA and CNT experimentally. CNT-DNA hybrids are very complex, and

include many interactions: van der Waals adhesion of the DNA bases to the surface

of the CNT, elasticity of DNA and deformation of the CNT, electrostatic interaction

between DNA charges and the metallic/semiconducting CNT, hydrophobic interac-

tions between DNA bases and the CNT.

Using scaling analyses, Manohar et al. [22] determined that in a dilute elec-

trolyte solution the most important interactions for the formation of CNT-DNA hy-

brids are:

• the electrostatic interaction between DNA charges (charged phosphate

groups) and the metallic/semiconducting CNT;

• the van der Waals adhesion of the DNA bases to CNT.

Electrostatic interaction is one of the long-ranged interactions which occurs be-

tween the charges. For a system consisting of a CNT-DNA hybrid embedded in an

electrolyte solution the electrostatic interaction has several components. The first

component is the interaction of DNA charges with metallic/semiconducting CNT.

The second component is the interaction of ions in the electrolyte solution with a

CNT-DNA hybrid. At the nano scale, the interactions which are negligible in the

macroscopic world become important [23]. One of these interactions is van der

Waals forces (vdW). All atoms have a nucleus and electrons, and the former con-

sists of protons and neutrons. Even though the whole atom is neutral, the location

of electrons and protons do not coincide in the atom. This gives rise to the tempo-

rary dipole. Interaction between any two dipoles of different particles is the origin

of the vdW forces. Compared with covalent interactions, van der Waals forces are

long-range and can be effective from larger distances (greater than 10 nm) down to

interatomic spacings (about 0.2 nm). Depending on the separation distance, vdW

forces may be repulsive or attractive, and play a significant role at short distances.

Essentially vdW interaction is electric in nature.
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The main focus throughout this thesis, therefore, is given to the electrostatic in-

teraction between CNT and DNA in the hybrid. It is proposed that the electric field

induced by DNA charges will be affected differently by the metallic or semicon-

ducting CNTs, and it will explain the difference observed in the IEC experiments.

1.2.1 Charged entities interacting with electronically responsive
structures: phenomena driven by electrostatic interac-
tions

By studying the interaction between charged DNA molecules and CNTs, it became

clear that the CNT-DNA hybrid is a subset of a larger set of problems: that are de-

scribed by the interaction of charged entities with electronically responsive struc-

tures. This broad topic has significance in other areas such as 1) in medicine, cells

adhere to the implants with various electronic properties [24]; 2) in bio-medicine

modeling, DNA based biosensors are used to detect the desired types of DNA

[25, 26].

In this thesis, the focus will remain on the CNTs, so that in this context, the CNT

is the electronically responsive structure, and the DNA molecule is the charged en-

tity. To summarize, in this work the interaction of the charged entities with elec-

tronically responsive structures is examined with the CNT-DNA hybrid being the

motivating factor.

For charged entities interacting with electronically responsive structures embed-

ded in an aqueous solution, there are several important phenomena partially driven

by the electrostatic interaction. These include the electric double layer near the

surface of the charged entity (DNA molecule) and the phenomenon of counterion

condensation on the charged entity embedded in the electrolyte solution.

Electrolyte solution

An electrolyte environment can be described as a liquid substance containing ions

(atoms or molecules with a net positive or negative electric charge). By means of

these ions, the electrolyte solution conducts electricity. One of the simplest exam-

ples of an electrolyte solution is water with table salt (sodium chloride NaCl). In
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water, the salt breaks down into sodium ions (Na+) and chloride ions (Cl−). In

the human body, to maintain a healthy lifestyle, the electrolyte balance of calcium,

potassium and sodium must be preserved, because the body uses ions to conduct

electric impulses between tissues of the body [27].

In mathematical modeling, approaches at different levels of complexity can be

used to represent an electrolyte solution: the explicit [28] and the implicit [29–31]

approaches. Both approaches can be used in molecular dynamics (MD) simula-

tions, depending on the systems under consideration and available computational

resources. In the first approach, each molecule in the electrolyte solution is mod-

eled explicitly. In the latter approach, the electrolyte solution is modeled implicitly.

In continuum modeling, the implicit approach is often used. For example, in a

primitive model of an electrolyte solution [32] at the continuum level the ions are

represented by hard spheres with the charge of the ion located at the center of the

sphere. The solvent is represented by a continuum medium with a certain dielec-

tric permittivity; ions and solvent have the same dielectric permittivity. Usually, the

size of the ions is neglected, and ions are considered as point charges. The dielectric

permittivity or dielectric constant measures the ability of a material to be polarized

by an external field; it is a factor by which the external electric field is reduced

when penetrating the material. In this approach, the fundamentals of classical elec-

trostatics are combined with statistical mechanics and used to study the interaction

between the charged objects in an electrolyte solution. The implicit approach is

less computationally demanding compared to the explicit approach. At a contin-

uum level, it allows one (in some situations) to obtain a closed-form analytical or

semi-analytical solution, which can be tested quicker at the real time scale.

Electric double layer

When an object, such as a solid particle, is embedded in an aqueous solution then

the surface of this object may become charged. This happens due to dissociation

or ionization of the surface groups from the surface of the particle to the aqueous

solution or binding ions from a solution to a previously uncharged surface. Depend-

ing on the sign of the ions (+ or −) leaving the surface or binding to it, the surface
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of the particle gets positively or negatively charged. However, the overall system

(including the particle and aqueous solution) is neutral. Overall electroneutrality is

achieved by the presence of counterions. Counterions are ions with a charge that

is opposite to the charge on the surface of the particle, whereas co-ions are ions

with the same sign of the charge as that of the particle. There could be two types

of counterions close to the particle: 1) ions which are bound to the surface of the

particle within the so-called Stern layer (it is only one atom thick); and 2) diffuse

layer of counterions participating in thermal motion. This structure, consisting of

the charge on the surface of the particle, bounded counterions, and diffused ions, is

called an electrical double layer (EDL) [23, 30]. EDL is depicted on Figure 1.5. Af-

ter the diffuse layer, bulk solution begins. It refers to the part of the solution, where

ions of the solution are influenced only by other ions of the solution, and not by

any other interfaces. To measure the thickness of EDL at the nanometer scale, the

Debye length, 1/k, is used. The Debye length is used to measure how rapidly the

electric potential (caused by the charge on the surface of the particle) falls off from

its value at the surface. For example, at one Debye length away from the surface,

electric potential falls off to about one-third of its value at the surface. At several

Debye lengths away from the surface of the particle, the electric field is effectively

screened by the build-up of a diffuse layer of counterions. Also, the Debye length

is related to the salt concentration c of the electrolyte solution, as 1/k ∼ 1/
√

c. A

more dilute solution corresponds to a larger Debye length compared to a solution

with an increased salt concentration. The Debye length of 1 nm corresponds to an

electrolyte solution with a roughly physiological condition [33]. The Debye length

from 10 to 100 nm corresponds to the dilute electrolyte solution.

The common ways of treating the layer of diffused ions around a charged

molecule is through the Poisson-Boltzmann (PB) equation (implicit approach)

[23, 30]. The PB equation is a non-linear second order differential equation for

the electric potential. The closed-form (analytical) solution is available only for

simple geometries [30], in other cases numerical calculations are required. Another

approach available for treating the layer of diffused ions is the linearized Poisson-

Boltzmann equation, which is called the Debye-Hückel (DH) equation. The DH
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Figure 1.5: Electric double layer on the interface between solid and liquid.

equation can be solved for many geometries. It is valid under the condition that

the electric potential is small, that is, qφ/kBT << 1 [30]. Here, q is the unsigned

charge of an electron, φ is the electric potential, kB is the Boltzmann constant, and

T is the temperature. The DH equation can be used to obtain an analytical solution.

However, for highly charged molecules the validity condition breaks down, and the

PB equation should be used instead [30]. For highly charged molecules, G.S. Man-

ning resolved this difficulty by proposing the theory of counterion condensation

[34]. This theory allows one to apply the DH equation in the remote regions from

the highly charged molecule when the original charge density of the molecule is

replaced by an effectively reduced charge density.

Counterion Condensation

The phenomenon of counterion condensation (CC) occurs near a highly charged

molecule, such as DNA, embedded in an electrolyte solution. This phenomenon is

observed experimentally [35, 36] and also it is supported through MD simulations

[37]. It is analogous to the above mentioned Stern layer [38]. The theory of coun-

terion condensation was developed by G.S. Manning in 1969. This theory allows

one to obtain an analytical expression for the amount of condensed counterions,

θ, per unit charge [34, 39–42]. The condition for the existence of CC is given in

terms of the dimensionless charge density ξ. A dimensionless charge density is
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equal to ξ = lB/b [35], where lB is the Bjerrum length [30], and b is the average

spacing along the contour of a charged molecule. There is a threshold value for

the dimensionless surface charge density ξcrit = 1/z. When ξ > ξcrit, then coun-

terion condensation occurs on the surface of the charged molecule and it partially

neutralizes the charge, where z is the unsigned valence of the counterions. When

ξ ≤ 1/z, then there is no counterion condensation. Also, equivalent conditions for

the existence of CC are derived by Manning [41] in terms of the critical surface

charge density σcrit for the charged molecules of different geometries (sphere-like,

cylinder-like, wall-like). In this formulation, CC occurs on the charged molecule,

when σ > σcrit, where σ is the surface charge density before CC.

According to Manning, the amount of CC can be obtained by considering the

equilibrium between two contributions to the Helmholtz free energy of the charged

molecule: electrostatic and entropic contributions. Hereafter it is referred to as free

energy. The electrostatic contribution is the electrostatic interaction between the

charged molecule and the counterions, which tends to attract the counterions from

the bulk solution to the vicinity of the charged molecule. The entropic contribution

is the entropic effect, which tends to keep the counterions in a more random state,

namely, in the bulk. The competition between these two contributions defines the

amount of CC on the charged molecule. In the theory of CC proposed by Manning,

it says that if the charge on the surface of the molecule is partially reduced by CC,

then the diffused ions are governed by the DH equation. The DH equation can be

solved analytically with a few governing parameters.

1.2.2 Available techniques for modeling systems in electrolyte
solution

To study the interactions between systems in an aqueous solution, the models of dif-

ferent scales have been developed, including: ab initio (“from the first principles”)

and semi-empirical calculations, molecular dynamics, coarse-grained molecular dy-

namics models, and continuum modeling.

The ab initio method uses quantum mechanical calculations to study the be-

havior of the desired materials at the electronic level (an atom being comprised
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of electrons and nucleus). Hartree-Fock method [43], Density Functional Theory

(DFT) [44] are ab initio methods, which are used to obtain electronic behavior of

materials from the first principles using quantum mechanical calculations. Ab ini-

tio methods are extremely accurate. However, the main disadvantage is that these

methods are computationally expensive and allow one to study only systems of a

few hundreds atoms over a short time scale (1 ps, where 1 ps = 10−12s).

The tight binding method [5, 45] is a semi-empirical quantum mechanics

method, which is important for treating molecules such as DNA, where the full ab

initio calculations are computationally expensive. It is based on the Hartree-Fock

method, but it includes many approximations, and some parameters come from

empirical data.

Molecular dynamics (MD) simulations are performed at an atomic level by solv-

ing Newton’s equations of motion for each atom in the considered system until the

time evolution for the desired time period is reached [28, 46]. This allows one to

study the configuration and energetics of the charged molecules in solvents. In MD

simulations, force fields are used to describe the potential energy of a system of

atoms [28, 46]. Force fields are developed using data from the experiments and

from ab initio methods. This implies that MD is empirical in origin. MD simu-

lations give a unique insight into the intermolecular interactions and they can be

very accurate, although computationally expensive. Comparing MD with ab initio

methods [47], it can be seen that the former is more computationally affordable.

However, the simulated time and the size of the model are still small. MD methods

allow one to study systems at short time scales (on the order of a few microseconds),

and the number of atoms in the system is of the order of 106 [47, 48].

The coarse-grained MD method improves the computational affordability by re-

ducing the number of independently modeled atoms. Instead of explicitly modeling

each atom of the system, a collection of atoms is modeled as a single coarse grained

particle, and the whole system is modeled using MD simulations. This modeling

greatly reduces the number of degrees of freedom compared with MD calculations

and are performed for all the atoms of the system, allowing one to simulate larger

systems in microsecond time scale; however, it comes with the risk of losing some
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atomistic details.

At the continuum level, the solvent has been represented implicitly by an ef-

fective dielectric medium [29], and the screening effect of the ions in the solution

can be characterized using the Poisson–Boltzmann (PB) or Debye-Hückel (DH)

equation for the electric potential [30].

1.2.3 Literature review of past modeling works on CNT-DNA
hybrids

Theoretical approaches at different levels have been developed to shed light on

the interactions between CNT-DNA hybrids. Meng et al. [49] take a combined ap-

proach to calculate the interaction energy between a DNA base and semiconducting

(10, 0) CNT. Using molecular mechanics (MM) with CHARMM force field [50],

the energetically favorable configurations of the base on the CNT are found. Then to

further optimize the structure ab initio calculations are used. Afterwards, the inter-

action energy is calculated for the optimized configurations. Two groups of authors

[51, 52] have utilized ab initio calculations to study interactions of DNA base with

CNTs. In [51], the authors found that five DNA/RNA bases exhibit different in-

teraction strengths with (5, 0) CNT. In [52], the authors studied the adsorption of

adenine on the surface of metallic (6,6) swCNT and thymine on the surface of semi-

conducting (8,0) swCNT. It should be noted that in [51, 52], the charges on the DNA

backbone are not taken into consideration, and therefore, the electronic response of

the CNT is not reflected. Rotkin et al. using tight binding calculations performed

semi-empirical quantum modeling for the electronic structure of the CNT-DNA hy-

brid in vacuum [45]. The CNT-DNA hybrid is modeled by considering Poly(T)

helically wrapped around semiconducting (7,0) CNT. The polarization component

of cohesion energy of the CNT-DNA hybrid is calculated. The results confirm that

the CNT-DNA hybrids are highly stable. However, all these quantum mechanics

calculations lack one main feature. Their analysis was performed in the absence

of an aqueous solution, which is an important factor because in the experiments

dispersion and separation of CNT-DNA hybrids occur in the dilute electrolyte solu-

tion. It will be difficult to add an aqueous solution to the system, because ab initio
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calculations can only be used for small systems.

Johnson et al. conducted a series of MD simulations [53] in an aqueous en-

vironment. In this work, the detailed analysis of CNT-DNA hybrid can be found.

It includes possible configurations of CNT-DNA hybrids, the dynamical process

of self-assembly of the hybrids and energetic properties of the hybrids. The ma-

jor benefit of MD simulations is that they give valuable insights into dynamics

and molecular details of the CNT-DNA hybrids. However, these simulations re-

main computationally expensive. They can be performed on systems with smaller

dimensions with time scales between ten and several thousand nanoseconds. In ad-

dition, MD simulations rely on the molecular mechanics force field, but a reliable

force field that can reflect the electronic response of the CNT is not yet available.

In other words, in the above mentioned MD simulations [53], the interactions be-

tween the CNT atoms and all other atoms of the system (DNA, water and ions) is

modeled mathematically using the Lennard-Jones potential [54]. CNTs with dif-

ferent chiralities differ only in structure, but not in their electronic properties. Zou

et al. used coarse-grained MD modeling of DNA-CNT hybrid [55]. Modeling at

the atomic scale is provided for CNT, whereas DNA bases and backbones are mod-

eled using coarse particles. This modeling greatly reduces the number of degrees of

freedom compared with MD calculations, allowing one to simulate larger systems

in microsecond time scale. Zou et al. tested their results against the results from

MD simulations, and the results were similar. At the continuum level, Lustig et al.

proposed a simplified analytical model to the described IEC method for CNT-DNA

hybrids in an electrolyte solution [56]. In their work, DNA is modeled as a heli-

cal line of discrete charges, CNT is modeled locally as a half-space (pure metallic

or pure dielectric), and the electrolyte solution is modeled implicitly through the

Debye-Hückel (DH) equation. Their model predicts that the metallic CNT-DNA

hybrids elute from the column earlier than the semiconducting CNT-DNA hybrids.

The continuum modeling is less computationally demanding compared with calcu-

lations mentioned above, because it significantly reduces the degrees of freedom of

the electrolyte solution. This allows one to study larger systems than could be done

using molecular simulations.
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Currently, none of the methods mentioned above incorporate all the details for a

CNT-DNA hybrid in an aqueous solution. For example, due to the restrictions of the

existing computational resources, an aqueous environment was omitted in the works

employing quantum mechanics calculations [19, 45, 49]. These calculations would

be able to capture the difference in the electronic responses from different types of

CNTs (metallic or semiconducting) due to DNA charges. However, because they

are computationally expensive, it is impossible to implement them on systems with

more than a few hundred atoms. Whereas, even though MD simulations are able to

employ aqueous solutions in the desired systems and provide the full atomic picture

of them, due to the nature of the force fields used in MD, it is impossible to capture

the difference due to the electronic properties of CNTs. The continuum approach,

on the other hand, allows one to trade the atomic details of CNT-DNA hybrids with

the opportunity of incorporating electronic response due to CNT’s core of a CNT-

DNA hybrid in an electrolyte solution.

1.3 Overview of dissertation

This dissertation is devoted to the understanding of the electrostatic interaction be-

tween charged entities with electronically responsive substrates in an aqueous so-

lution at a continuum level. In particular, it is devoted to the understanding of

the interaction between DNA molecules (representing charged entities) and carbon

nanotubes (representing electronically responsive structures). In this dissertation, it

will be shown through a series of chapters, the importance of considering the elec-

tronic response of the electronically responsive substrate when the charged entity is

located nearby. This understanding has significance not only for the understanding

of the separation mechanism of the CNTs using DNA molecules, but also it has

crucial importance in other areas as well [24–26]. From the very beginning, the

main attention was given to the development of theoretical models, which would

provide us with a better understanding of the interaction of CNT-DNA hybrids. To

do this, fundamental studies for an initial model of the interaction between CNT

and DNA are conducted at the continuum level. Compared with full atomic simu-
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lations, the continuum approach allows a reduced degree of freedom of the system

and closed analytical or semi-analytical solutions, which could be tested quicker

at real time scales. From molecular simulations, one can make a judgment as to

which interactions to consider [22], and then build a continuum model. Based on

the results by Manohar et al. [22] and Lustig et al. [56], it can be seen that in a

dilute electrolyte solution electrostatic interaction is most important for formation

of CNT-DNA hybrids, as well as for separating CNT-DNA hybrids based on the

electronic properties of the CNT. Here, it is proposed that due to the fact that CNTs

have different electronic properties, the electric field induced by DNA charges will

be affected differently depending on the CNTs core.

This dissertation is organized as follows, general preliminaries are presented in

Chapter 2. Several models for the charged entities with electronically responsive

structures (CNT-DNA hybrids) with an increasing level of complexity are consid-

ered in Chapters 3, 4, 5, and 6. The common feature for all models is the electro-

static interaction between a charged entity (a charged particle or a PE/DNA) and

an electronically responsive substrate/cylinder (representing CNT) embedded in a

dilute electrolyte solution.

The main body of the thesis is described as follows. The first attempt towards

understanding the electrostatic interaction between the charged entity and the re-

sponsive structure is provided in Chapter 3. The main goal of this chapter is to

show that there is a difference in the electronic response caused by a charged en-

tity near an electronically responsive structure. The system, considered in Chapter

3, consists of a charged particle above the electronically responsive substrate em-

bedded in a dilute electrolyte solution. The substrate can be metallic, dielectric

or semiconducting. In a dilute electrolyte solution, our results demonstrate a dis-

tinct electronic response of the charged particle to a different substrate. Also, using

the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory [23], the equilibrium sep-

aration between a charged particle and a charged responsive substrate is obtained.

According to the DLVO theory, the total contribution to the energy of the system

consists of electrostatic and van der Waals contributions. The equilibrium separa-

tion between the particle and the substrate is determined by minimizing the sum of
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Gibbs free energy consisting of electrostatics and vdW contributions. Our results

demonstrate a distinct equilibrium pattern of the charged particle to a responsive

substrate.

It should be mentioned that the system, considered in Chapter 3, can be viewed

as the most simplified model to study the interaction of DNA molecule and CNT

in the CNT-DNA hybrid. The charged particle represents the DNA charge, and

the electronically responsive substrate, locally, represents CNT. In Chapter 3, it

has been shown that the electrostatic interaction has crucial importance for such

models. We also note that the model developed in this chapter has implications in

cell adhesion, because the cells adhere to implants with diverse electronic properties

[24]. In the area of cell adhesion, it is not only important to find a bio-compatible

material (for example, in the field of joint replacement or in dentistry), but it is also

necessary to know how well the implant integrates into the body. Cell adhesion

to the implant surface is crucial to wound healing, tissue regeneration and many

other applications [24, 57]. In orthopedic procedures, ceramic, metallic, or plastic

implants are used [58, 59]. Whereas, in dentistry, titanium or zirconia (ceramic

material) implants are preferred [60, 61].

The next attempt towards the understanding of the electrostatic interaction be-

tween a charged entity and an electronically responsive substrate is presented in

Chapter 4. In this chapter, the charged entity is a polyelectrolyte (PE), and the

primitive model of the PE is utilized. The PE is modeled as a uniformly charged

long rigid cylinder [40, 62]. In the area of polyelectrolytes, the phenomenon of

counterion condensation (CC) is important, and it is widely studied [40, 41]. In

this chapter, the phenomenon of CC on the PE is studied. By utilizing Manning’s

theory mentioned in Section 1.2.1, it is shown how CC on the PE is affected by

the presence of the electronically responsive cylinder (metallic or dielectric). It is

found that the amount of CC on the PE depends on the nature of the electronically

responsive cylinder. The model developed in this chapter, can be considered as a

simplified model for CNT-DNA hybrid. The PE represents a DNA molecule, and

the metallic/dielectric cylinder represents a CNT. It is shown that electrostatically

driven phenomena depend on the electronic nature of the CNT.
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In Chapter 5, a primitive model for a CNT-DNA hybrid and its application in

DNA assisted separation of CNTs is described. In this chapter, we utilize the same

model for a CNT-DNA hybrid that was presented in Chapter 4. By introducing

a positively charged wall near a primitive model for a CNT-DNA hybrid, that is

referred to as a PE-cylinder system, the binding force between the wall and the

system is studied in order to understand the observations seen in DNA assisted

CNT separation using IEC [19]. Our results show that the binding force due to

the PE near a grounded metallic cylinder is weaker than that due to the PE near a

neutral dielectric cylinder. In addition, it is shown that the charge of the metallic

cylinder affects the magnitude and the direction of the binding force.

In Chapters 3, 4, and 5, CNT is modeled as an electronically responsive sub-

strate/cylinder (simple metal, dielectric or semiconductor) and an analytical solu-

tion describing the electrostatic behavior of each system is obtained. In Chapter

6, we move one step closer towards a physically realistic model of CNT-DNA hy-

brid by considering the more exact response of CNT to DNA charges. To do this,

quantum mechanics results for the one-dimensional universal density of states of

the CNT are implemented [63]. The obtained results for the electric potential are in

agreement with experimental observations [19].

Finally, a summary of the thesis along with the recommendations for future

work is given in Chapter 7.
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Chapter 2
Preliminaries

In this chapter the basics for electrostatics are described. The governing equations

(GEs) for the electric potential in different medias are listed. As well as the bound-

ary conditions (BCs) for the electric potential are explained.

2.1 The fundamentals

The simplified Maxwell equations for electrostatics are the following [1]

∇ · E =
ρ

ε0

, (2.1)

and

∇× E = 0, (2.2)

where ρ is the total electric charge per unit volume (charge density), and E is the

electric field, and ε0 is the permittivity of vacuum. Also, Eq. (2.1) can be writ-

ten in terms of the dielectric displacement D. In this case, the constitutive relation

between D and E is the following

D = ε0E. (2.3)

According to Eq. (2.2), the electric field is conservative, therefore there exists a

scalar potential φ such that

E = −∇φ. (2.4)

Therefore, from Eq. (2.1), the electric potential should satisfy the Poisson equation

∇2φ = − ρ

ε0

. (2.5)

If vacuum is replaced by a medium with dielectric constant ε1, Eq. (2.1) becomes

[2]

∇ · E =
ρf + ρp

ε0

, (2.6)
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where ρf is the free-charge density, and ρp is the polarized charged density defined

as

ρp = −∇ · P. (2.7)

Here P is the polarization field defined as P = χε0E, and χ is the electric suscep-

tibility of the medium (χ = 1 − ε1).

Using Eqs. (2.6) and (2.7), the equation for electrostatics in the medium be-

comes

ε0∇ · ε1E = ρf , (2.8)

or

∇ · D = ρf . (2.9)

In a medium, the constitutive relation between D and E is the following:

D =ε0E + P. (2.10)

For a linear dielectric, it becomes D =εE, where ε is the permittivity defined as

ε = ε0ε1.

Using Eqs. (2.4) and (2.8), for a homogenous, linear medium, the Poisson equa-

tion is

∇2φ = − ρf

ε1ε0

. (2.11)

The Poisson equation can be used to obtain the governing equations for the electric

potential in different media.

2.2 Governing equations for electric potential

In this section, the governing equations (GEs) for the electric potential are provided

for different medias. Particularly, for an electrolyte solution, metallic, dielectric and

semiconducting substances.

2.2.1 GE for electrolyte solution

As was mentioned above the electric potential should satisfy the Poisson equation

∇2φ = − ρf

ε1ε0

, (2.12)
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where ρf is the free-charge density produced by ionic concentration [3], and ε1 is

the dielectric constant of an electrolyte solution. There are two competitive forces

acting on the ions in an electrolyte solution. They are diffusive and electric forces.

To maintain the equilibrium the following condition should be satisfied [3]

kBT∇ ln nk + qzk∇φ = 0, (2.13)

where kB is the Boltzmann constant, T is the temperature, µ = kBT ln nk is the

chemical potential of the kth type of ion in the solution, nk is the number densities

of kth type of ion, φ is the electric potential, zk is the valence of the kth type of ion,

and q is the unsigned charge of an electron. The first term represents the diffusive

force, and the latter one represents the electric force. Thus the ions follow the

Boltzmann distribution

nk = n0
k exp

[
−zkqφ

kBT

]
, (2.14)

where n0
k is the bulk number density of kth type of ion. The free-charge density ρf

is equal to the local excess of ionic charges arising from N ionic species, and it is

related to the number density nk by the following expression

ρf =
N∑

k=1

zkqnk. (2.15)

Therefore, the Poisson-Boltzmann (PB) equation describing the electric potential

in an electrolyte solution has the following form

∇2φ = −
∑

k

zqn0
k

ε1ε0

exp

[
−zkqφ

kBT

]
, (2.16)

ε1 is the dielectric constant of the solution.

The PB equation is a non-linear second order partial differential equation, the

analytical solution is only possible for simple geometries [3]. When the electric

potential energy is smaller than the thermal energy, that is∣∣∣∣ qφ

kBT

∣∣∣∣ << 1, (2.17)

the PB equation can be linearized as

∇2φ =
z2

kq
2n0

k

ε1ε0kBT
φ = k2φ, (2.18)

where 1/k is the Debye length of the electrolyte solution [3]. Equation (2.18) is

called the Debye-Hückel equation.
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2.2.2 GE for responsive substances
Semiconducting substance

The governing equation for the electric potential for a semiconductor can also be

obtained from the Poisson equation in the following form [4]

∇2φ = − q

ε2ε0

(p − n + ND − NA) , (2.19)

where ND is the number density of ionized donors, NA is the number density of

ionized acceptors. In semiconductors, at room temperatures and without many im-

purities, the Boltzmann distribution is a good approximation [4], therefore, p =

ni exp(EF /kBT ) is the number density of holes, n = ni exp(−EF /kBT ) is the

number density of electrons, EF is the Fermi level of the electrons, and ni is the

intrinsic carrier density [4] defined as

ni =
√

NCNV exp

(
−EC − EV

2kBT

)
. (2.20)

Here, EC and EV are the bottom of the conduction band and the top of the valence

band, respectively. NC and NV are the effective density of states in the conduction

and the valence band, respectively [4]. For the uniformly doped semiconductor, ND

and NA are independent of position.

Far from the surface the electric potential and all its derivatives are zero, it leads

to the following condition

ND − NA = 2ni sinh
EF

kBT
, (2.21)

and using the definitions of p and n, we have

p − n = 2ni sinh
EF

kBT
. (2.22)

Therefore, Eq. (2.19) becomes

∇2φ =
2niq

ε2ε0

(
sinh

qφ + EF

kBT
− sinh

EF

kBT

)
. (2.23)

Under the assumption that the electric potential is small inside a semiconductor,

qφ/kBT << 1, Eq. (2.23) can be linearized as

∇2φ = k2
2φ, (2.24)
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where 1/k2 is the Debye length in the semiconductor [4] defined as

k2
2 =

2niq
2

ε2ε0kBT
cosh

EF

kBT
. (2.25)

Dielectric and metallic substances

There no free charges inside of a dielectric, that is, ρf = 0. Therefore, Eq. (2.11)

becomes

∇2φ = 0. (2.26)

This means that the electric potential inside the dielectric matter is governed by the

Laplace equation [5].

At equilibrium, the electric field inside of the metallic substance is zero [5].

This implies that the electric potential is constant inside of the metallic substance.

For a grounded metallic substance, the electric potential is zero.

2.3 Boundary conditions

It will be shown below that the Maxwell equations written in the integral form can

be used to derive boundary conditions (BCs) for surfaces between different media.

After applying the divergence theorem to Eq. (2.9), the Maxwell equation can

be represented in the integral form∮
Sρ

D · nda =

∫
V

ρfd3x. (2.27)

where Sρ is the closed surface binding a finite volume V in space, da is an element

of area on the surface, n is a unit vector normal to the surface at da point outward

from V , and ρf is the free-charge density. This equation is Gauss’ law, which states

that the net flux D across a closed surface is equal to the charge contained inside.

The condition of discontinuity of the electric displacement can be obtained from

the Gauss law. Let us consider a very shallow pillbox where the top and bottom

sides are parallel to the surface as depicted in Figure 2.1 . Here, the area of the top

and bottom sides of the pillbox is 4a . By applying Eq. (2.27) to this pillbox, the
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Figure 2.1: Diagram of the surface between two different types of media. The
boundary between the two media carries a uniform surface charge density σ. The
pillbox has volume V , and 4a is the area of the top or bottom sides of the pillbox.
The pillbox is located in the middle of two media. The normal vector n on the
pillbox has direction from medium 1 to medium 2. ABCD is a rectangular contour
partly in both media. E1 and D1 are the electric field and the electric displacement
in the medium 1. E2 and D2 are in medium 2, respectively.

integral on the left side takes the following form∮
Sρ

D · nda = (D2 − D1) · n 4a. (2.28)

Whereas the integral on the right side becomes∫
V

ρfd3x = σ4a. (2.29)

Thus the normal components of D on either side of the boundary surface are related

to

(D2 − D1) · n = σ. (2.30)

This is the condition of discontinuity of the electric displacement across the inter-

face. When σ = 0, it becomes a condition of continuity of the normal component

of the electric displacement.

Another BC can be obtained by using Kelvin-Stoke’s theorem for Eq. (2.2), that

is ∮
C

E · dl =

∫
Sc

∇× E · dA = 0, (2.31)
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where C is a closed contour in space, dl is a length element on the contour, Sc is

an open surface spanning the contour C, and dA is a surface element on Sc with

normal pointing outwards. Consider C to be the boundary of the contour ABCD

(See Figure 2.1). For the infinitesimal contour, the height H shrinks to zero, and

the area of the surface Sc becomes zero. Therefore, we have∮
C

E · dl = 0, (2.32)

which is equivalent to

B∫
A

E · dl +

C∫
B

E · dl +

D∫
C

E · dl+

A∫
D

E · dl = 0, (2.33)

as H → 0, the second and the forth integrals become zero; hence

B∫
A

E · dl +

D∫
C

E · dl = 0, (2.34)

that is,
B∫

A

Etop · dl −
C∫

D

Ebottom · dl = 0, (2.35)

where Etop and Ebottom are the electric field on the top and bottom of the interface,

respectively. From the equation above it follows that

x2∫
x1

(
Etop

x − Ebottom
x

)
dx = 0. (2.36)

This equation needs to be satisfied for any arbitrary path (i.e. ∀ x1, x2); therefore

the integral is zero only if the integrand is zero, resulting in

Etop
x = Ebottom

x . (2.37)

This is the condition of continuity of the tangential component of the electric field.

Also consider the electric potential

φA − φD =

A∫
D

dφ =

A∫
D

∂φ

∂y
dy =

A∫
D

(−Ey) dy =

A∫
D

(−E) ·d`. (2.38)
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Therefore

φA +

A∫
D

(−E) · dl = φD. (2.39)

For a finite electric field, as H → 0, the integral approaches zero, leaving

φA = φD, H → 0. (2.40)

This is the condition of continuity of the electric potential across the interface.
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Chapter 3
Adhesion between a charged particle
in an electrolyte solution and a
charged substrate: Electrostatic and
van der Waals interactions 1

3.1 Introduction

The understanding of the interactions between charged molecules and substrates

is of the utmost importance in both theoretical modeling and practical applications.

For example, DNA biosensors involve immobilization and hybridization of DNA on

surfaces of different electronic and chemical properties [1–5]; conductance change

of nanowire nanosensors due to binding of charged molecules to receptors on a de-

vice surface has enabled ultra sensitive detection of virus and DNA sequences [6, 7];

recently, single-strand DNA (ssDNA) molecules have been found to have the ability

to form a helical wrapping on the surface of a carbon nanotube (CNT) through π-

stacking - the behaviors of the DNA-CNT hybrids vary with the electronic property

of the CNT core (i.e., metal or semiconductor) allowing effective dispersion and

separation of CNTs [8, 9]. In the area of cell adhesion and spreading, the nature of

the substrate, its surface characteristics and charge densities are among the many

factors that influence, for example, cell adhesion to natural or synthetic substrates

which is an important area related to wound healing, tissue regeneration and many

other medical applications [10–12]. Recent work by Hong and Brown [13] studied

the electrostatic behavior of the charge regulated bacterial surface, which plays an

important role in bacterial interactions with other surfaces and for bacterial adhe-

sion. Manohar et al. [14] determined the binding energy between a nucleotide and

1Reprinted from Journal of Colloid and Interface Science, Volume 327, Malysheva O., Tang
T., Schiavone P., “Adhesion between a charged particle in an electrolyte solution and a charged
substrate: Electrostatic and van der Waals interactions”, Pages 251-260, Copyright 2008, with per-
mission from Elsevier.
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graphite by using an AFM tip functionalized with a charged single-stranded DNA

molecule and subsequently pulling the AFM tip from a graphite surface, which

again involves interactions between charged objects and substrate. The majority of

the aforementioned applications occur in an electrolytic environment. It is there-

fore of great interest to understand the interaction between charged molecules and

substrates in electrolyte solutions, in particular when the substrate responds elec-

tronically to charge.

Approaches at different scales have been used to investigate and model the elec-

trostatics of charged particles and polyions in electrolyte solutions. At the atomistic

level, molecular simulations have enabled the study of the configuration and ener-

getics of charged molecules in explicit solvents [15–22]. At the continuum level,

the solvent has been represented by an effective dielectric medium [23], and the

screening effect of the ions in the solution can be characterized using the Poisson-

Boltzmann (PB) equation for the electric potential [24]

∇2φ = −
∑

i

ziqn
0
i

ε1ε0

exp

[
−ziqφ

kBT

]
, (3.1)

In Eq. (3.1), φ is the electric potential in the solution, q is the unsigned charge of an

electron, zi and n0
i are respectively the valence and bulk number density of the ith

species of ions, ε0 is the permittivity of free space, ε1 is the dielectric constant of the

solution, kB is the Boltzmann constant and T is the temperature. The continuum

approach significantly reduces the degrees of freedom of the solvent and allows

studies on a much larger system than that which could be otherwise achieved by

molecular simulations. Indeed, the PB equation has been widely used to capture the

electrostatic interactions in many biological systems (for example, see the review

by Fogolari et al. [25]).

In the case when the electric potential satisfies the estimate

qφ

kBT
<< 1, (3.2)

Eq. (3.1) can be linearized to the well-known Debye-Hückel (DH) equation

∇2φ = k2φ, (3.3)
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where 1/k is the Debye length given by

k2 = 4πlB
∑

i

z2
i n

0
i , (3.4)

and lB = q2/4πε0ε1kBT is the Bjerrum length. The linearity of the DH equation

means that analytic solutions φ can be obtained in many geometries. This is usually

not possible for the original PB equation. In the case of certain polyions, however

(especially biomolecules), the charge density is so high that the electric potential

cannot be described by the linearized PB equation. To resolve the issue, Manning

[26–28] proposed that the counterions in the solution will condense on the polyion

to effectively reduce its charge density so that the electric potential in the solu-

tion can still be calculated using the DH equation with a modified polyion charge

density. This theory of counterion condensation allows the electric potential to be

represented analytically and has been widely used to characterize the electrostatics

of highly charged molecules in electrolyte solution [29–33].

To date, most of the corresponding studies involving electrostatics in electrolyte

solutions do not take into account the interaction between a charged molecule and a

substrate when the substrate is known to respond to external charges electronically.

To incorporate this effect, Tang et al. [34, 35] studied the counterion condensa-

tion of a line of charges near an uncharged metallic, dielectric or semiconducting

substrate by solving the DH equation analytically. It was found that the behavior

of the line of charges varies significantly depending on the substrate. In particular,

when the line of charges is moved from the bulk solution to a metallic substrate, the

counterions previously condensed on the polyion must all be released. On the other

hand, the counterion condensation can increase, decrease, or remain unchanged

near a dielectric substrate, depending on the value of its dielectric constant.

The van der Waals interaction is another universal interaction that is often con-

sidered significant in a molecule-substrate system. In fact, the interplay between

electrostatic and van der Waals interactions is captured in the classical Derjaguin-

Landau-Verwey-Overbeek (DLVO) theory [36]. In this theory, the total free energy

between a charged molecule and a substrate is taken as the sum of the electrostatic

and van der Waals free energies. The resulting local energy minima correspond to
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equilibrium states of the molecule and determine its separation from the substrate.

The equilibrium separation and the depth of the energy well at those local minima

are both measures of the strength of the adhesion between the molecule and the

substrate, which is an important factor in applications (see, for example, [37]).

In this paper, we consider the adhesion of a charged particle to an electronically

responsive substrate with surface charge. In particular, we are interested in the equi-

librium separation between the particle and the substrate and how this separation is

affected by the surface charge of the substrate. We adopt the idea of the DLVO

theory and incorporate the interplay of the electrostatics and van der Waals inter-

actions. This often results in an equilibrium separation at short range, which we

define as the “attached” state. Also, for sufficiently large separation, the interaction

between the particle and the substrate becomes negligible, and we define this state

as the “detached” state. We demonstrate how the location of the attached state and

the transition from the detached state to the attached state are affected by the nature

of the substrate (metal, dielectric, or semiconductor) and its surface charge.

The paper is organized as follows. In Section 3.2, we describe the physical

problem and the mathematical approach. In Section 3.3, we calculate the electric

potential due to a charged particle interacting with different types of substrates.

We assume that the electric potential is sufficiently small so that the DH equation

applies. This allows us to obtain the electric potential analytically. The electrostatic

free energy between the particle and the substrate is then evaluated in Section 3.4.

In Section 3.5, we derive expression for the van der Waals free energy between the

particle and the substrate by integrating the Lennard-Jones (LJ) potential [38]. The

equilibrium separation between the particle and the substrate is obtained in Section

3.6 using the DLVO theory. Finally, conclusions and discussion are given in Section

3.7.

3.2 Problem description

Consider a substrate with initially uniform charge density σ located in an electrolyte

solution (see Figure 3.1). The substrate occupies the lower half space z < 0, and

38



the electrolyte solution occupies the upper half space z > 0. A particle of charge

Q = nq is located at a distance d above the substrate. Here q is the unsigned charge

of an electron and n is an integer describing the total charge of the particle. The

electrolyte solution has associated dielectric constant ε1 and Debye length k−1
1 . The

substrate can take the form of a metal, a dielectric (with dielectric constant ε2) or

a semiconductor (with dielectric constant ε2 and Debye length k−1
2 ). The electric

potential in z > 0 is governed by the DH equation, while the equation governing

the electric potential in the z < 0 depends on the electronic nature of the substrate

and will be discussed separately in Section 3.3.

σ σσ σ σ σ σ σ σ σ

z

z  > 0

z  < 0

r

d

Q

Figure 3.1: A particle of charge Q above a substrate with initially uniform surface
charge density of σ. The upper half space (z > 0) is an electrolyte solution with
dielectric constant ε1 and Debye length k−1

1 . The lower half space (z < 0) can be
a metal, a dielectric with dielectric constant ε2 or a semiconductor with a dielectric
constant ε2 and Debye length k−1

2 .

As is demonstrated in Section 3.3, the boundary value problem (BVP) for the

electric potential is linear for all three types of substrate (metal, dielectric and semi-

conductor). Consequently, we solve for the electric potential due to the charged

particle and subsequently the electric potential due to the surface charge separately

and then obtain the total solution by superposition. In addition, we make use of the

Hankel transform technique [39] utilizing the axisymmetric nature of the problem

considered (i.e., φ = φ(r, z), r and z being the cylindrical coordinates shown in

Figure 3.1). The electrostatic free energy is then calculated form the electric poten-

tial and the van der Waals free energy is found by integrating the pairwise 6-12 LJ

potential between a particle and a substrate. The total free energy is then used to
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determine the equilibrium separation between the particle and the substrate.

3.3 Electric potential of a charged particle near a
substrate with surface charge

In this section, we establish the necessary governing equations and boundary condi-

tions for the electric potential. This potential, obtained in closed form, is then used

in Section 3.4 to calculate the electrostatic free energy.

3.3.1 Metallic substrate

For a metallic substrate, the differential equation and boundary conditions for the

electric potential φQ in z > 0 due to the charge Q only are given by

∇2φQ(r, z > 0) = k2
1φQ(r, z > 0), (3.5a)

φQ(r, z = 0) = 0, (3.5b)

lim
SQ→0

∮
SQ

(−ε0ε1∇φQ) · ndA = Q. (3.5c)

where SQ denotes a surface enclosing the charge Q, and n is its outer unit normal.

The solution φQ can be obtained by the method of images [40] and is given by

φQ(r, z > 0) =
Q

4πε0ε1

[
e−k1

√
r2+(z−d)2√

r2 + (z − d)2
− e−k1

√
r2+(z+d)2√

r2 + (z + d)2

]
. (3.6)

The differential equation and boundary conditions for the electric potential φσ due

to the initially uniform surface charge σ are given by

∇2φσ(r, z > 0) = k2
1φσ(r, z > 0), (3.7a)

− lim
z→0+

ε1
∂φσ

∂z
=

σ

ε0

. (3.7b)

The solution is found to be

φσ(r, z > 0) =
σe−k1z

k1ε0ε1

. (3.8)

The total electric potential in z > 0 is the sum of Eqs. (3.6) and (3.8)

φ(r, z > 0) =
Q

4πε0ε1

[
e−k1

√
r2+(z−d)2√

r2 + (z − d)2
− e−k1

√
r2+(z+d)2√

r2 + (z + d)2

]
+

σe−k1z

k1ε0ε1

. (3.9)
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It should be noted that the final charge distribution on the surface (z = 0) of the

metal is non-uniform since the charges are allowed to move under the influence of

the point charge Q.

Figure 3.2 plots the contours of the normalized electric potential 4πε0ε1φd/Q

for a fixed value k1d = 1 and three different values of the normalized surface charge

σd2/Q. Figure 3.2 (a) shows that for intermediate σd2/Q, the main contribution to

the electric potential near the charge comes from Q itself, indicated by the nearly

circular contour around Q. As the distance from the charge increases, the effect of

the surface charge becomes stronger. Also, far from the charge, the contours are

almost parallel to the surface, indicating that the contribution from the point charge

is negligible. For very large σd2/Q (see Figure 3.2 (b)) and very small σd2/Q (see

Figure 3.2 (c)), the electric potential is governed by the surface charge and the point

charge, respectively .

3.3.2 Dielectric substrate

In the case of a dielectric substrate, the differential equations governing the electric

potential in z > 0 and z < 0 are, respectively

∇2φ(r, z > 0) = k2
1φ(r, z > 0), (3.10a)

∇2φ(r, z < 0) = 0. (3.10b)

The boundary conditions are

lim
SQ→0

∮
SQ

(−ε0ε1∇φ) · ndA = Q, (3.11a)

lim
z→0+

φ = lim
z→0−

φ, (3.11b)

lim
z→0−

ε2
∂φ

∂z
− lim

z→0+
ε1

∂φ

∂z
=

σ

ε0

, (3.11c)

φ(r, z → ∞) → 0, (3.11d)

φ(r, z → −L) = 0. (3.11e)

Eq. (3.11a) is the condition for the point charge Q. Eq. (3.11b) is the continuity

condition for the electric potential on the interface, and Eq. (3.11c) describes the

surface charge density σ on the interface. Eq. (3.11d) describes the requirement that
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Figure 3.2: Normalized electric potential 4πε0ε1φd/Q of a charged particle Q
above a metallic substrate with initially uniform surface charge density σ. The
three cases correspond to the same k1d = 1 and different values of σd2/Q : (a)
σd2/Q = 0.1, (b)σd2/Q = 1, (c) σd2/Q = 0.0001.
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φ vanishes far away from the charge in the electrolyte solution. Eq. (3.11e) implies

that φ is zero at a distance L below the interface. This condition is necessary since

the electric potential due to a uniform surface charge varies linearly in a dielectric

and it is necessary to define a suitable reference energy. Physically, L is of the order

of the characteristic length of the substrate, e.g., its thickness.

To solve Eqs. (3.10a) – (3.11e), we use the same approach as in [35]. Firstly, we

assume that the electric potential on the interface z = 0 is some unknown function

φ0(r)

φ(r, 0) = φ0(r). (3.12)

With Eq. (3.12), the electric potential φ, which satisfies Eq. (3.11b), in both z > 0

and z < 0 can be found separately in terms of φ0. Finally, φ0(r) is determined using

the boundary condition Eq. (3.11c).

Upper half space, z > 0

Eqs. (3.10a), (3.11a), (3.11d) and (3.12) define the BVP for φ(r, z > 0). Due to

axisymmetry, φ(r, z > 0) can be obtained using the Hankel transform of order zero

[39]. The solution has been obtained in [35] and is given by

φ(r, z > 0) =
Q

4πε0ε1

[
e−k1

√
r2+(z−d)2√

r2 + (z − d)2
− e−k1

√
r2+(z+d)2√

r2 + (z + d)2

]

+

∫ ∞

0

ρΦ0(ρ)e−z
√

ρ2+k2
1J0(ρr)dρ. (3.13)

where Φ0 is the Hankel transform of order 0 in the unknown potential φ0 on the

interface and J0 is the 0th order Bessel function of the first kind.

Lower half space, z < 0

Applying the Hankel transform to r in Eqs. (3.10b), (3.11e) and (3.12) results in

the following transformed BVP in z < 0

∂2Φ(ρ, z < 0)

∂z2
− ρ2Φ(ρ, z < 0) = 0, (3.14a)

Φ(ρ, z → −L) = 0, (3.14b)

Φ(ρ, 0) = Φ0(ρ). (3.14c)
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where Φ(r, z < 0) is the Hankel transform of order 0 in φ(r, z < 0). The solution

to Eqs. (3.14a) – (3.14c) is given by

Φ(ρ, z < 0) = Φ0(ρ)
eρ(z+L) − e−ρ(z+L)

eρL − e−ρL
, (3.15)

which, in turn, gives the solution to the original BVP in z < 0 as

φ(r, z < 0) =

∫ ∞

0

ρΦ0(ρ)
eρ(z+L) − e−ρ(z+L)

eρL − e−ρL
J0(ρr)dρ. (3.16)

Boundary condition

To solve for the unknown function Φ0(ρ) we substitute Eqs. (3.13) and (3.16) into

the boundary condition Eq. (3.11c) and obtain the following equation∫ ∞

0

ρ

[
ε2ρ

1 + e−2ρL

1 − e−2ρL
+ ε1

√
ρ2 + k2

1

]
Φ0(ρ)J0(ρr)dρ =

=
σ

ε0

+
Qde−k1

√
r2+d2

2πε0(r2 + d2)

(
1√

r2 + d2
+ k1

)
, (3.17)

which is an integral equation for Φ0(ρ). After Φ0(ρ) is obtained, the electrical po-

tentials in the upper and lower half spaces are completely determined by Eqs. (3.13)

and (3.16).

The left-hand side of Eq. (3.17) is indeed the inverse Hankel transform (of order

zero) of the function
[
ε2ρ(1 + e−2ρL)/(1 − e−2ρL) + ε1

√
ρ2 + k2

1

]
Φ0(ρ). There-

fore, applying the Hankel transform on both sides of Eq. (3.17) gives[
ε2ρ

1 + e−2ρL

1 − e−2ρL
+ ε1

√
ρ2 + k2

1

]
Φ0(ρ) =

σ

ε0

∫ ∞

0

rJ0(ρr)dr

+
Qd

2πε0

∫ ∞

0

r
e−k1

√
r2+d2

(r2 + d2)

(
1√

r2 + d2
+ k1

)
J0(ρr)dr. (3.18)

The first and second integrals on the right-hand side of Eq. (3.18) are, respectively,

given by δ(ρ)/ρ and e−d
√

ρ2+k2
1/d [41]. Consequently,

Φ0(ρ) =
σδ(ρ)

ε0ρ
[
ε2ρ

1+e−2ρL

1−e−2ρL + ε1

√
ρ2 + k2

1

]
+

Qe−d
√

ρ2+k2
1

2πε0

[
ε2ρ

1+e−2ρL

1−e−2ρL + ε1

√
ρ2 + k2

1

] . (3.19)
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The electric potentials in the upper and lower half spaces can now be obtained

by substituting Eq. (3.19) into Eqs. (3.13) and (3.16), which results in

φ(r, z > 0) =
Q

4πε0ε1

[
e−k1

√
r2+(z−d)2√

r2 + (z − d)2
− e−k1

√
r2+(z+d)2√

r2 + (z + d)2

]

+
Q

2πε0

∫ ∞

0

ρe−(z+d)
√

ρ2+k2
1J0(ρr)[

ε2ρ
1+e−2ρL

1−e−2ρL + ε1

√
ρ2 + k2

1

]dρ +
σe−zk1L

ε0(ε1k1L + ε2)
, (3.20)

φ(r, z < 0) =
Q

2πε0

∫ ∞

0

ρe−d
√

ρ2+k2
1(

ε2ρ
1+e−2ρL

1−e−2ρL + ε1

√
ρ2 + k2

1

)
eρ(z+L) − e−ρ(z+L)

eρL − e−ρL
J0(ρr)dρ +

σ(L + z)

ε0(ε1k1L + ε2)
. (3.21)

The first two terms of the solution in Eq. (3.20) can be identified as the solution for

a point charge Q above a metallic substrate. The third term is due to the nonzero

potential on the interface. Compared with the solution for a substrate without sur-

face charge [35], our solution has an additional factor (1 + e−2ρL)/(1 − e−2ρL)

which multiplies ε2ρ since the potential due to the surface charge is set to zero at

z = −L. If we take L → ∞, then (1 + e−2ρL)/(1 − e−2ρL) → 1, and the first three

terms of Eq. (3.20) reduce to the exact solution of a point charge near an uncharged

half space [35]. The final term of the solution in Eq. (3.20) is the electric potential

due to the charged substrate alone, in the absence of the point charge.

Figure 3.3 shows the plots of the normalized electric potential 4πε0ε1φd/Q of

a charged particle Q above a dielectric substrate with surface charge density σ, for

a series of different normalized surface charges σd2/Q and fixed values of k1d =

1, ε2/ε1 = 0.01 and L/d = 10. Again, for σd2/Q > 1 (see Figure 3.3 (b)), the

contribution from the point charge can be neglected while for σd2/Q << 1 (see

Figure 3.3 (c)), the result is nearly identical to the case of a point charge alone

[35]. For intermediate values of σd2/Q, the influence of the point charge and the

surface charge are both significant (see Figure 3.3 (a)).
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Figure 3.3: Normalized electric potential 4πε0ε1dφ/Q of a charged particle Q
above a dielectric substrate with surface charge density σ for three different val-
ues of σd2/Q : (a) σd2/Q = 0.1, (b) σd2/Q = 1, (c) σd2/Q = 0.0001. For all
cases k1d = 1, ε2/ε1 = 0.01 and L/d = 10.
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3.3.3 Semiconducting substrate

In z > 0, the electric potential satisfies the DH equation

∇2φ(r, z > 0) = k2
1φ(r, z > 0), (3.22)

In z < 0, under the assumption that the electric potential satisfies Eq. (3.2), the

Poisson equation for a semiconductor can be linearized to [34]

∇2φ(r, z < 0) = k2
2φ(r, z < 0). (3.23)

Here k2 is inverse Debye length of the semiconductor defined by

k2
2 =

2q2ni

ε0ε2kBT
cosh

(
Ef

kBT

)
, (3.24)

where ni is the intrinsic carrier density and Ef is the difference between the cur-

rent Fermi level and the intrinsic Fermi level of the electrons. The intrinsic carrier

density, ni, is proportional to exp(−Eg/2kBT ), where Eg is the band gap of the

semiconductor.

The boundary conditions are

lim
SQ→0

∮
SQ

(−ε0ε1∇φ) · ndA = Q, (3.25a)

lim
z→0+

φ = lim
z→0−

φ, (3.25b)

lim
z→0−

ε2
∂φ

∂z
− lim

z→0+
ε1

∂φ

∂z
=

σ

ε0

, (3.25c)

φ(r, z → ∞) → 0, (3.25d)

φ(r, z → −∞) → 0. (3.25e)

Note that the boundary condition Eq. (3.25e) is different from Eq. (3.11e) for the

case of a dielectric substrate, i.e. the characteristic length L is not necessary, since

the electric potential decays exponentially in the semiconductor.

To find the electric potential we use the method described in Section 3.3.2 and

[35]. That is, we first express φ in z > 0 and z < 0 in terms of the potential φ0(r)

on the interface, and then determine φ0 using the boundary conditions.
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Solution for z > 0 and z < 0

The solution for the electric potential in z > 0 in terms of φ0(r) is given by [35]

φ(r, z > 0) =
Q

4πε0ε1

[
e−k1

√
r2+(z−d)2√

r2 + (z − d)2
− e−k1

√
r2+(z+d)2√

r2 + (z + d)2

]

+

∫ ∞

0

ρΦ0(ρ)e−z
√

ρ2+k2
1J0(ρr)dρ, (3.26)

and the solution for the electric potential in z < 0 is [35]

φ(r, z < 0) =

∫ ∞

0

ρΦ0(ρ)ez
√

ρ2+k2
2J0(ρr)dρ. (3.27)

Boundary condition

Using Eqs. (3.26) and (3.27), (3.25c) becomes∫ ∞

0

ρ

[
ε2

√
ρ2 + k2

2 + ε1

√
ρ2 + k2

1

]
Φ0(ρ)J0(ρr)dρ =

σ

ε0

+
Qde−k1

√
r2+d2

2πε0(r2 + d2)

(
1√

r2 + d2
+ k1

)
. (3.28)

Φ0(ρ) can be obtained by applying a Hankel transform on both sides of Eq. (3.28).

We obtain

Φ0(ρ) =
σδ(ρ)

ρε0

[
ε2

√
ρ2 + k2

2 + ε1

√
ρ2 + k2

1

]
+

Qe−d
√

ρ2+k2
1

2πε0

[
ε2

√
ρ2 + k2

2 + ε1

√
ρ2 + k2

1

] . (3.29)

The electric potentials Eqs. (3.26) and (3.27) are therefore given by

φ(r, z > 0) =
Q

4πε0ε1

[
e−k1

√
r2+(z−d)2√

r2 + (z − d)2
− e−k1

√
r2+(z+d)2√

r2 + (z + d)2

]

+
Q

2πε0

∫ ∞

0

ρe−(z+d)
√

ρ2+k2
1J0(ρr)(

ε2

√
ρ2 + k2

2 + ε1

√
ρ2 + k2

1

)dρ +
σe−zk1

ε0(ε2k2 + ε1k1)
, (3.30)

φ(r, z < 0) =
σezk2

ε0 (ε2k2 + ε1k1)
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+
Q

2πε0

∫ ∞

0

ρez
√

ρ2+k2
2−d

√
ρ2+k2

1(
ε2

√
ρ2 + k2

2 + ε1

√
ρ2 + k2

1

)J0(ρr)dρ. (3.31)

The solution φ(r, z > 0) in Eq. (3.30) can be interpreted as the sum of three parts.

The first two terms can be identified as the solution for a point charge Q above a

metallic substrate. The third term represents the solution due to the nonzero poten-

tial on the interface. The last term is due to the surface charge σ.

Figure 3.4 plots the contours of the normalized electric potential 4πε0ε1φd/Q

of a charged particle Q above a semiconductor substrate with surface charge density

σ, for a series of different normalized surface charges σd2/Q and with k1d, k2d and

ε2/ε1 fixed. We note behavior similar to the case of a dielectric substrate in that

as the dimensionless quantity σd2/Q decreases the effect of the surface charge also

decreases. For σd2/Q << 1 the solution converges to the case of a charged particle

only [35].

3.4 Electrostatic free energy

The electrostatic free energy due to the presence of the substrate is given by

Gel = Qφ∗, (3.32)

where φ∗ is the electric potential evaluated at the location of the particle (r = 0, z =

d) excluding the term Qe−k1

√
r2+(z−d)2/4πε0ε1

√
r2 + (z − d)2 due to the charge in

the electrolyte solution alone ( i.e., without the substrate).

To simplify the analysis, let us introduce the following normalization

gel =
Gel

kBT
, k̄1 = k1lB, d =

d

lB
, σ =

4πσl2B
q

,

L =
L

lB
, ε2/1 =

ε2

ε1

, k2/1 =
k2

k1

, ρ = ρd. (3.33)

In Eq. (3.33) k̄1 is the normalized Debye length, which is a measure of the strength

of the electrostatic interaction. σ is the normalized surface charge density. Sub-

stituting φ∗ = φ(r = 0, z = d) − Qe−k1

√
r2+(z−d)2/4πε0ε1

√
r2 + (z − d)2 calcu-

lated from Eqs. (3.9) (metal), (3.20) (dielectric) and (3.30) (semiconductor) into
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Figure 3.4: Normalized electric potential 4πε0ε1dφ/Q of a charged particle above
a semiconductor substrate with surface charge density σ for three different values
of σd2/Q : (a) σd2/Q = 0.1, (b) σd2/Q = 1, (c) σd2/Q = 0.0001. For all cases
k1d = 1, k2d = 1 and ε2/ε1 = 0.01.
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Eq. (3.32), the normalized electrostatic free energies gel in the cases of metallic,

dielectric and semiconducting substrates are respectively given by

Metal:

gel = −n2e−2k̄1 d

2d
+

nσe−k̄1 d

k̄1

. (3.34)

Dielectric :

gel =
n2

2d

−e−2k̄1 d + 4

∫ ∞

0

ρe−2
√

ρ2+(k̄1 d)2dρ

ε2/1ρ
1+e−2ρL/d

1−e−2ρL/d
+

√
ρ2 + (k̄1 d)2

 +

nσe−k̄1 dL

k̄1L + ε2/1

. (3.35)

Semiconductor :

gel =
n2

2d

−e−2k̄1 d + 4

∫ ∞

0

ρe−2
√

ρ2+(k̄1 d)2dρ

ε2/1

√
ρ2 + k2

2/1(k̄1 d)2 +
√

ρ2 + (k̄1 d)2


+

nσe−k̄1 d

k̄1

(
1 + ε2/1k2/1

) .

(3.36)

The first term in Eq. (3.34) and the terms in the brackets of Eqs. (3.35)–(3.36) cor-

respond to normalized electrostatic free energies due to the interaction between the

charged particle and an uncharged substrate. In particular, they have a common

term −n2e−2k̄1 d/2d due to the image charge, and the integrals in Eqs. (3.35)–(3.36)

take into consideration the electronic response of dielectric and semiconductor, re-

spectively. The last terms in Eqs. (3.34)–(3.36) are normalized electrostatic free

energies due to the surface charge of the substrate. They are all proportional to the

normalized surface charge density σ and decays exponentially with the separation

between the charge and the substrate.
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3.5 Van der Waals free energy

To obtain the van der Waals free energy between the particle and the substrate, we

make use of the 6-12 LJ between two atoms [38]

u = −A

r6
+

B

r12
, (3.37)

where r is the distance between the two atoms, and A,B are constants. Eq. (3.37)

can also be written in the form [42]

u = 4c

[(ro

r

)12

−
(ro

r

)6
]

, (3.38)

where c is the depth of the potential well and ro is the distance at which the potential

u = 0. The depth c is related to the constants A and B by the equations 4cr12
o = B,

and 4cr6
o = A.

Assuming the particle contains N atoms and the atom number density in the

substrate is ρ1, the van der Waals free energy Gvdw between the particle and a

substrate of thickness L can now be obtained by integrating Eq. (3.38), i.e.,

Gvdw = 8πNcρ1

[
r12
o

90

(
1

d9
− 1

(d + L)9

)
− r6

o

12

(
1

d3
− 1

(d + L)3

)]
. (3.39)

Therefore, the normalized van der Waals energy gvdw = Gvdw/kBT is given by

gvdw = Nvdw

[
r̄12
o

90

(
1

d
9 − 1

(d + L)9

)
− r̄6

o

12

(
1

d
3 − 1

(d + L)3

)]
, (3.40)

where

Nvdw =
8πNcρ1l

3
B

kBT
, r̄o = ro/lB. (3.41)

In the case of a half space, i.e. L → ∞, Eq. (3.40) reduces to

gvdw = Nvdw

[
r̄12
o

90d
9 − r̄6

o

12d
3

]
. (3.42)

3.6 Equilibrium separation between the particle and
the substrate

In this section, we determine the equilibrium separation between the particle and

the substrate by calculating the corresponding total free energy given by the sum of
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electrostatic and van der Waals free energies. In the normalized form,

g = gel + gvdw, (3.43)

where gel and gvdw are given by Eqs. (3.34) – (3.36) and Eqs. (3.40) – (3.42), de-

pending on the type and geometry of the substrate.

Clearly, g is a function of the normalized separation d and the dimensionless

parameters k̄1, σ, Nvdw, r̄o, L (in the case of the dielectric substrate only), ε2/1

(in the case of the dielectric or semiconducting substrate) and k2/1 (in the case of

the semiconducting substrate only). In the following, we consider an electrolyte

solution of low ionic strength, with Debye length of 100 nm and dielectric constant

of 80. Then, at room temperature T = 300K, k̄1 ≈ 7 × 10−3. The length scale

ro in the LJ potential is usually on the order of angstrom (Å). In the calculations

which follow, we have taken r̄o = 0.1429 and n = N = 1. To get an order of

magnitude estimate for the normalized van der Waals parameter Nvdw, we note that

the number density ρ1 is on the order of 1 Å
−3

, and the energy well depth c is of the

order of 10−22–10−20. Therefore, the range of Nvdw is approximately from 2.1×102

to 2.1 × 104 for N = 1.

3.6.1 Metallic substrate

Figure 3.5 plots the normalized total energy g(d) of a point charge Q above a metal-

lic half space with initial surface charge density σ. In Figure 3.5 (a) the point charge

and the surface charge are of the same sign, while in Figure 3.5 (b) the signs are

opposite. In each plot, the different curves correspond to different surface charge

density, characterized by different values of σ . It can be seen that for each curve,

there is an equilibrium state corresponding to the local energy minimum at short

range (d < 1). Also far from the substrate (d ≥ 103), dg/d(d) = 0 and the inter-

action between the particle and the substrate is negligible. We identify the former

state as the “attached” state and the latter state as the “detached” state.

It is interesting to see that for all situations, the location of the attached state

is similar (with d ≈ 0.1167), that is, it does not vary much with the sign or the

magnitude of the surface charge. Indeed, if one evaluates the van der Waals en-
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Figure 3.5: Normalized total energy g(d̄) of a charged particle Q above a metallic
half space with initial surface charge density σ, (a) σ̄ > 0, (b) σ̄ < 0. For all cases
n = N = 1, k̄1 = 7 × 10−3, Nvdw = 2.1 × 103, and r̄o = 0.1429. Different curves
in each plot correspond to different normalized charge density σ.
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ergy minimum from Eq. (3.42), it is found to be ∼ 0.1226. That is, in all cases,

the location of the attached state is very close to the van der Waals minimum, i.e.,

the primary minimum in the classical DLVO theory. The energy pathway from the

detached state to the attached state, however, is very sensitive to the sign and magni-

tude of the surface charge. In particular, without the surface charge, the interaction

of the charge with the substrate is mainly attractive except when it is very close to

the substrate and the van der Waals interaction becomes repulsive. This is expected

since the point charge and its image charge induced by the metallic substrate at-

tract each other. As the surface charge density of the same sign increases, i.e. as

σ increases in Figure 3.5 (a), the energy barrier between the attached state and the

detached state is raised, and the particle is more likely to stay at the detached state.

If the surface charge density of opposite sign increases, i.e. as |σ| increases in Fig-

ure 3.5 (b), the energy corresponding to the attached state is greatly lowered, and

attachment is much more favored.

3.6.2 Dielectric substrate

Figure 3.6 plots the normalized total energy g(d) of a charged particle Q above a

dielectric substrate with surface charge density σ . For these plots, we have taken

L = 1.43 × 104, i.e. L = 10µm. Also, the dielectric constant ε2 = 10 is used so

that ε2/1 = 0.125. In the absence of the surface charge, the interaction between the

particle and the substrate appears to be repulsive, and there is no local minimum at

short range. That is, the particle stays at the detached state. Increasing the surface

charge of the same sign strongly increases the repulsive force, as can be seen from

Figure 3.6 (a).

The effect of introducing a surface charge of opposite sign on a dielectric sub-

strate is quite different from the case of a metallic substrate. As shown in Figure

3.6 (b), increasing the surface charge not only lowers the total energy, but also

changes the location of the attached state (marked by the dark circles). This change

is sensitive to the magnitude of the surface charge. In particular, as |σ| varies from

2e−3 to 2e−2, the location of the energy minimum decreases by three folds (from

approximately 14 to 5). Overall, the location of the attached state is at a much
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Figure 3.6: Normalized total energy g(d̄) of a charged particle Q above a dielectric
substrate with the surface charge density σ, (a) σ̄ > 0, (b) σ̄ < 0. For all cases,
n = N = 1, k̄1 = 7 × 10−3, L̄ = 1.43 × 104, ε2/1 = 0.125, Nvdw = 2.1 × 103, and
r̄o = 0.1429.
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larger distance (>> 1) from the substrate than in the case of a metallic substrate

(∼ 0.1). This is certainly different from the classical DLVO theory where a primary

minimum is always present near the van der Waals minimum.

3.6.3 Semiconducting substrate

Figures 3.7 and 3.8 show the normalized total energy g(d) of a charged particle Q

above a semiconducting half space with the surface charge density σ. σ > 0 in

Figure 3.7 and σ < 0 in Figure 3.8. In each figure, we show the dependence of

the normalized total energy on the normalized separation for two different Debye

length ratios and four different surface charge densities. By varying the Debye

length ratio k2/k1, the semiconducting substrate can behave in the same way as

either a dielectric or a metallic substrate. Clearly, when the Debye length of the

semiconductor k2 is comparable to that of the electrolyte, as shown in Figures 3.7

(a) and 3.8 (a), g(d) resembles the behavior of a dielectric substrate in Figure 3.6.

When k2 >> k1, modifying the surface charge only changes the energy depth, and

has little effect on the location of the attached state. This is similar to the case of a

metallic substrate. The change in energy depth, however, is much smaller than what

is shown in Figure 3.5. This is because the contribution of the surface charge to the

electrostatic free energy, the last term in Eq. (3.36), is very small for large k2/k1.

3.7 Conclusions and discussion

The electrostatic free energy between a charged particle in an electrolyte solution

and a metallic, dielectric, or semiconducting substrate is obtained by solving exactly

the electric potential based on the DH theory of electrolyte. The van der Waals free

energy is calculated based on the LJ potential between two atoms and is added to

the electrostatic energy to determine the equilibrium separation between the parti-

cle and the substrate. At low ionic strength, our results show that the location of the

attached state and the energy pathway from the detached to the attached state are

quite different for different types of substrate. In particular, for a solution of Debye

length equal to 100 nm, the location of the attached state for a metallic substrate

57



1e−2 1e−0 1e+2 1e+4
−5

0

5

10

15

d̄

g
(d̄

)

(a)

 

 
σ = 0
σ = 2e − 3
σ = 4e − 3
σ = 2e − 2

1e−2 1e−0 1e+2 1e+4
−0.2

−0.1

0

0.1

d̄

g
(d̄

)

(b)

 

 

σ = 0
σ = 2e − 3
σ = 4e − 3
σ = 2e − 2

Figure 3.7: Normalized total energy g(d̄) of a charged particle Q above a semicon-
ductor half space with surface charge density σ and σ̄ > 0 : (a) k2/1 = 1 and (b)
k2/1 = 1000. For all cases n = N = 1, k̄1 = 7 × 10−3, ε2/1 = 0.125, Nvdw =
2.1 × 103, and r̄o = 0.1429.
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Figure 3.8: Normalized total energy g(d̄) of a charged particle Q above a semicon-
ductor half space with surface charge density σ and σ̄ < 0 : (a) k2/1 = 1 and (b)
k2/1 = 1000. For all cases n = N = 1, k̄1 = 7 × 10−3, ε2/1 = 0.125, Nvdw =
2.1 × 103, and r̄o = 0.1429.
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is always close to the van der Waals minimum, and does not vary much with the

sign or the magnitude of the surface charge density. Increasing the surface charge

(of opposite sign to that of the particle), however, significantly lowers the energy

and facilitates the transition from the detached to the attached state. For a dielectric

substrate, the attached state is located at a distance of around two orders of magni-

tude larger than in the case of a metallic substrate, and this equilibrium separation

reduces as the opposite surface charge increases. The behavior of a semiconducting

substrate can resemble that of a dielectric or a metal, depending on its Debye length

relative to the Debye length of the electrolyte solution.

As mentioned before, the total free energy g is a function of the following di-

mensionless parameters: g = g(d, k̄1, σ,Nvdw, r̄o, L, ε2/1, k2/1). For fixed L, ε2/1

and k2/1, the normalized Debye length k̄1 measures the strength of the electro-

static interaction, including the contribution from the response of the substrate to

the charge and that from the surface charge. σ captures the effect of the surface

charge alone. Nvdw and r̄o govern the effect of the van der Waals interaction. It is

the competition of these three effects that contribute to the interesting phenomenon

seen in Section 3.6. The results presented in Section 3.6 are produced using a De-

bye length of 100 nm, which corresponds to low ionic strength, strong electrostatic

interactions and comparable contributions from the three effects. Clearly, larger

Nvdw and r̄o correspond to higher strength and longer range of the van der Waals

interaction. If the van der Waals interaction is much larger than the electrostatic

interaction, the effect of different substrate vanishes. More interesting is the com-

petition between electrostatics due to the surface charge and the response of the

substrate. In particular, with the same values for σ , Nvdw and r̄o as in Section 3.6,

if the Debye length is reduced to 0.01 nm, the behaviors of the metallic substrate

and the dielectric substrate are almost the same. This is because the electrostatic

interaction is highly screened due to such a small Debye length. With Debye length

equal to 0.1 nm, we can still see a significant difference between metallic and di-

electric substrates. However, in this case, the contribution from σ̄ is small enough so

that the electrostatic interaction is governed by the response from the substrate, and

therefore the energy curves for these different σ̄’s converges to one for metal (with
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one energy minimum) and one for dielectric (with no local energy minimum and

completely repulsive interaction). As σ̄ is increased, the same qualitative behavior

as in Section 3.6 is again observed. Increasing σ̄ by over three orders of magni-

tude diminishes the difference between substrates because for sufficiently large σ̄,

the last term in Eqs. (3.34)– (3.36) dominates the electrostatic free energy, which

varies with d in the same way for all substrates. In summary, by varying k̄1 and σ̄,

different equilibrium separation and energy well depth for different substrates can

be obtained. Since these two quantities are measures of the adhesion of the particle

to the substrate, our results provide suggestions as to how to modulate the adhesion

by changing the ionic strength of the solution, the electronic nature of the substrate

and its surface charge density.

In the classical DLVO theory, it is possible to see a secondary minimum far

away. In our calculations, we do not see a secondary minimum except for very

weak electrostatic interaction and strong van der Waals interaction. For example,

with Debye length of 1 nm, σ = 2 × 102, Nvdw = 3.4 × 103 and r̄o ' 0.7, for both

metallic and dielectric substrates, there is one energy minimum located at d ' 0.6

and a second one located at d ' 18. The second minimum corresponds to a very

shallow energy well, i.e. around two orders of magnitude smaller than that of the

first minimum. In addition, in this case, because of the small Debye length and

large σ̄, again the energy profiles for metallic and dielectric substrates approach

each other.

The results presented here are based on the linearized PB equation, and are valid

therefore only for electric potentials satisfying Eq. (3.2). Investigation of the cases

where the electric potential does not satisfy Eq. (3.2) necessitates the solution of the

nonlinear PB equation, which precludes analytical, closed-form solutions instead

requiring numerical computations.

Finally, we mention that the retardation effect of van der Waals interaction is not

considered in this work. Retardation may become important when the separation

between the particle and the substrate exceeds a few nanometers [43] or the size of

the particle is beyond the order of 1µm [44]. Under those situations, the current

method of using the LJ potential may overestimate the van der Waals interaction.
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Two approaches can be taken to include the retardation effect. The first is to use

Lifshitz theory and consider the complete dielectric spectra of the materials. The

second is to introduce a correction factor in the Hamaker constant which includes a

characteristic wave length of the dispersion interaction [44]. For both approaches,

closed-form expression for the van der Waals interaction is only possible for very

simple geometries. Since the focus of this work is on how the electronic response of

the substrate affects its interaction with the charged particle, we have neglected this

effect and simply modeled the particle as a point. In addition, we expect the behav-

iors seen in this work to be present even if retardation is included. This is because

retardation will weaken the van der Waals interaction, and therefore the difference

between substrates due to electrostatic interaction will become more pronounced.
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Chapter 4
Counterion Condensation on a
Polyelectrolyte near an Electronically
Responsive Cylinder 1

4.1 Introduction

The electrostatic interaction between a polyelectrolyte (PE) and a substrate has at-

tracted a lot of attention in theoretical modeling as well as in practical applica-

tions, especially in nano- and biotechnology. For example, nanosensors based on

nanowires have enabled the detection of viruses [1] or mutant DNA sequences [2]

through the measurement of conductance changes in the nanowires; carbon nan-

otubes (CNTs) have been used to deliver drugs into specific areas [3]; immobiliza-

tion and hybridization of DNA on the surface of biosensors [4], where the probe

DNA molecules perform the role of detection elements, provide ways of finding

viruses [5] and diseases [6, 7]. It has also been discovered that a single-stranded

DNA (ssDNA) can form a helical wrapping on the surface of CNTs [8, 9] and ef-

fectively disperse and separate them according to their electronic properties. In

addition, it has been found that DNA as well as small proteins [10] can be encap-

sulated inside a CNT [11, 12], which shows the potential of using CNT in gene

therapy.

One of the models widely used to characterize the behaviors of PEs in a solution

is Manning’s theory of counterion condensation (CC) [13]. In the theory of CC, by

considering the minimization of free energy of the PE in a dilute solution, it is pre-

dicted that if the charge density of the polymer exceeds a certain value, CC occurs

in the vicinity of the PE, effectively reducing its charge density [13, 14]. Exper-

imental evidence [15–18] and supporting computer simulations [19] exist behind

1Reprinted with permission from : “Counterion Condensation on a Polyelectrolyte near an Elec-
tronically Responsive Cylinder”, Oxana Malysheva, Tian Tang and Peter Schiavone, J. Phys. Chem.
C, 2010, 114 (9), pp 3781-3790. Copyright 2010 American Chemical Society.
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the theory of CC. In particular, Gregor and Frederick [17] studied the pH titration

curves for polyacrilic acid when different types of counterions were present. Their

experimental data showed interesting dependence of the pH titration curves on a

dimensionless polymer charge density ξ. Specifically, when ξ was lower than a

critical value ξcrit, these curves did not vary with different types of counterions.

When ξ > ξcrit, however, different pH titration curves were observed for different

counterion types. This can be explained to be a result of condensed counterions on

the polymer [15]. The paper by Young et al. provided visual support of CC from

Monte Carlo simulations: the snapshot depicts condensed and uncondensed coun-

terions [19]. In the recent report by Keyser et al., the authors succeeded in the direct

measurement of electric force on DNA in nanopore [18]. Using the obtained values

for the force acting on the molecule, the effective charge on DNA was deduced for

various salt concentrations. Here, the effective charge is the difference between the

original bare charge and the charge of the condensed counterions [14]. The results

validated the numerical accuracy of the effective charge of the DNA as predicted

by Manning [14]. In addition, they confirmed the invariance of the effective charge

to a wide variation of salt concentrations. Supported by laboratory observations,

the theory of CC is also a mathematically convenient approach to characterize a PE

system, since analytical expressions can often be obtained for the electric poten-

tial, using the linear Debye–Hückel (DH) equation with a reduced charge density,

instead of the non-linear Poisson–Boltzmann formulation [20–23].

In a recent paper by Manning [24], CC on different charged geometrical shapes

is examined. Existence and degree of CC are studied for small and large charged

spheres, on charged walls, as well as on thin and thick charged cylinders. The ter-

minologies “small ”or “thin ”here mean that the radius a of the sphere or cylinder

is small compared to the Debye screening length [21–24] k−1, that is, ka ¿ 1.

Meanwhile, the reference to “large”or “thick ”means that a is comparable with k−1,

that is, ka = O(1). It is found that in a solution with low but nonzero salt con-

centration, CC occurs on all geometrical shapes described above when the surface

charge density of these geometries is beyond a critical value σcrit. In the limit of

zero salt concentration, however, Zimm–Le Bret [25] behavior is captured. In this
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case, no CC exists on a charged sphere whereas all counterions are condensed on a

charged plane, regardless of their surface charge densities. For a charged cylinder,

CC exists to keep the surface charge density of the cylinder at or below σcrit. In all

cases, the charged entity is in a solution alone, and is not interacting with anything

other than the electrolyte solution.

In this work, we explore the phenomenon of CC on a PE when it interacts with

an electronically responsive cylinder. A nearby substrate can have a strong effect

on the electric field of a charged entity in a solution and, therefore, on its overall

behavior. One such example is the different degree of CC on a line of charges when

it is above a metallic, dielectric, or semiconducting half space [26, 27]. Another

example is the strong dependence of the equilibrium separation between a charged

particle and a substrate on the electronic nature of the latter [28]. We are particularly

interested in a PE near a cylinder because many novel nano-materials possess such

a geometry, for example, nanowires, nanosensors, or CNTs. Through this work, we

demonstrate how the CC on the PE can change when it is brought from the bulk

solution to the neighborhood of an electronically responsive cylinder.

This paper is organized as follows. In Section 4.2, we describe the physical

problem and the mathematical approach. In Sections 4.3 and 4.4, we separately

study the cases of a PE near a metallic cylinder and near a dielectric cylinder. The

degree of CC is obtained for each system by solving the boundary value problems

for the electric potential and evaluating the free energy. Distinction between the

two cases is demonstrated. Finally, discussion and conclusion are given in Section

4.5.

4.2 Problem description

The system under consideration consists of a PE and an electronically responsive

cylinder, both embedded in a dilute electrolyte solution. The PE is modeled as a

thin cylinder of radius a and the electronically responsive cylinder is of much larger

radius r0, that is, a ¿ r0. The axes of the PE and the cylinder are parallel and

the distance between their centers is denoted by d. Both the PE and the cylinder
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are assumed to be very long along their axes, so that the problem is essentially two-

dimensional, as shown in Figure 4.1. The exterior region to the PE–cylinder system,

denoted by D0, is occupied by an electrolyte solution with a dielectric constant ε1.

The interior of the electronically responsive cylinder, D1, can either be a metal or

dielectric with dielectric constant ε2; the interior of the PE, D2, is assumed to be a

vacuum. Two sets of coordinates are used for the convenience of the calculations,

as shown in Figure 4.1. (r, ψ) are polar coordinates with the origin located at the

center of the cylinder, whereas (r′, ψ′) are polar coordinates with the origin located

at the center of the PE. These two sets of coordinates can be easily converted using

the following relations

r(r′, ψ′) =
√

(r′)2 + d2 − 2dr′ cos ψ′, ψ(r′, ψ′) = arctan
r′ sin ψ′

d − r′ cos ψ′ . (4.1)

or

r ′

d

r

O

1D

0D

a

ψ 2Dψ ′

Figure 4.1: Geometry of the the metallic or the dielectric cylinder (left) and the PE
(right). d is the distance between their centers, r0 and a are the radii of the cylinder
and the PE, respectively. (r, ψ) and (r′, ψ′) are polar coordinates with the origins at
the centers of the cylinder and the PE, respectively. D0 is the exterior region to the
PE–cylinder system, D1 is the interior region of the cylinder, and D2 is the interior
region of the PE.

We denote by σ the bare surface charge density of the PE before CC occurs

and by θ the number of condensed counterions per bare unit surface charge on the

PE. The total number of condensed counterions per unit length of the PE is Nθ,

if Nq is the total bare charge per unit length, where q is the elementary charge. θ

can be obtained from the equilibrium between two contributions to the free energy

of the system. The first contribution is the electrostatic interaction between the PE
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and the counterions, which tends to attract the counterions from the bulk solution

to the vicinity of the PE. The other is the entropic effect, which tends to keep the

counterions in a more random state, namely, in the bulk. The competition between

these two contributions determines the amount of CC on the PE.

4.3 Polyelectrolyte near a metallic cylinder

In this section, we consider the cylinder, that is, domain D1 in Figure 4.1, to be

metallic. At equilibrium, the electric potential inside a metal must be constant.

In particular, we assume that the metallic cylinder is grounded so that the electric

potential inside is zero:

φmet
in(l) = 0 in D1. (4.2)

Here the superscript “met” indicates the case of a PE near a metallic cylinder, the

subscript “in(l)” is used to indicate the electric potential inside the large cylinder, as

opposed to the electric potential inside the small cylinder representing the PE. The

governing equation for the electric potential φmet
out in the solution, that is, domain

D0, is given by the DH equation [23]

∇2φmet
out = k2φmet

out in D0, (4.3)

where the subscript “out” is used to indicate the electric potential outside the two

cylinders and k is the reciprocal of the Debye length [23]. Since we model the

inside of the PE as a vacuum without any charges, the governing equation for the

electric potential φmet
in(s) in domain D2 is

∇2φmet
in(s) = 0 in D2. (4.4)

Each of the three functions φmet
out , φmet

in(l), φmet
in(s) can be expressed in different sets of

variables (r, ψ) or (r′, ψ′) shown in Figure 4.1. Boundary conditions for the elec-

tric potential may be more conveniently described in one coordinate system than

the other, depending on the boundary. Without loss of generality, we use a single

notation for the same function under different coordinate systems. The boundary

conditions (BCs) are then given by

lim
r→∞

φmet
out = 0, (4.5a)
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φmet
out

∣∣
r=r0

= 0, (4.5b)

φmet
out

∣∣
r′=a

= φmet
in(s)

∣∣
r′=a

, (4.5c)

ε1
∂φmet

out

∂r′

∣∣∣
r′=a

−
∂φmet

in(s)

∂r′

∣∣∣
r′=a

= − σ

ε0

. (4.5d)

Equation (4.5a) states that the electric potential vanishes at infinity. Equations (4.5b)

and (4.5c) are because the tangential component of the electric field has to be con-

tinuous across the interfaces. Equation (4.5d) is due to the condition that the

normal component of the electric displacement is discontinuous on the PE–solution

interface, and the difference is the surface charge density of the PE. Here ε0 is

the permittivity of the vacuum and ε1 is the dielectric constant of the solution

[29]. Equations (4.2)–(4.5d) constitute the boundary value problem (BVP) for the

electric potential in the entire domain.

Due to the presence of the metallic cylinder the electric potential on the surface

of the PE is not uniform, which makes exact analytical solution to the above BVP

difficult if not impossible to obtain. In fact, we have tried to obtain the exact so-

lution for the electric potential in all three domains in terms of series. However,

application of the BCs results in a linear system of infinite dimension for the coef-

ficients in the series, which is not solvable without making additional assumptions.

It should be noted that here we are considering the situation where the radius of the

PE is much smaller than that of the metallic cylinder, namely, a ¿ r0. Indeed, a

PE is often modeled as a line of charges with its size essentially approaching zero.

Using the line of charges model will require solving a three-dimensional problem,

which is analytically more difficult. Hence, we adopt another popular model of a

PE and smear out the charges onto the surface of a cylinder, but with a size much

smaller compared to the other dimensions in the system. Under this condition, the

non-uniformity of the electric potential on the surface of the PE is expected to be

small. Therefore, we can modify the BCs on r′ = a by assuming that the electric

potential on r′ = a is uniform. This assumption, together with Eq. (4.4), implies

that the potential inside and on the surface of the PE is a constant. We take this con-

stant to be the potential in the solution φmet
out evaluated at a particular point, namely,
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(r′ = a, ψ′ = 0) or (ψ = 0, r = d − a). That is

φmet
in(s) = φmet

out

∣∣ψ′=0

r′=a
. (4.6)

With this approximation, the two BCs (4.5c) and (4.5d) are satisfied only at the

point of (r′ = a, ψ′ = 0). That is, the BCs modified from (4.5c) and (4.5d) are

φmet
out

∣∣ψ′=0

r′=a
= φmet

in(s)

∣∣ψ′=0

r′=a
= φmet

in(s), (4.7a)

ε1
∂φmet

out

∂r′

∣∣∣ψ′=0

r′=a
= − σ

ε0

, (4.7b)

Numerical calculations are performed to check the self-consistency of this approx-

imation. In particular, the maximum percentage error for the approximated BCs is

evaluated and the results are provided in Section 4.5.

To solve the above BVP, using the method of separation of variables for Eq. (4.3)

and taking into account BC Eq. (4.5a), the electric potential in D0 can be expressed

using the following series

φmet
out =

∞∑
n=0

amet
n cos(nψ)Kn(kr) + Cmet

0 K0(kr′) in D0, (4.8)

where Kn(x) is the nth-order modified Bessel functions of the second kind. The

unknown coefficients amet
n and Cmet

0 are to be determined using the other BCs. The

second term in Eq. (4.8) is the potential of the PE if it was located in an electrolyte

solution alone, and the first term appears because of the existence of the metallic

cylinder. The approximate solution to φmet
in(s), according to Eq. (4.6), is therefore

φmet
in(s) =

∞∑
n=0

amet
n Kn [k(d − a)] + Cmet

0 K0(ka) in D2. (4.9)

So far the only equations that are not satisfied in the approximated BVP

[Eqs. (4.3)–(4.5b) and (4.7a), (4.7b)] are Eqs. (4.5b) and (4.7b). These are used to

determine the unknown coefficients amet
n and Cmet

0 . Using Eq. (4.5b) and applying

the properties of orthogonal functions, [30, 31] amet
n can be found in terms of Cmet

0

amet
n = −Cmet

0 fmet
n , (4.10)
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where the dimensionless functions fmet
n are defined as follows

fmet
n =



2π∫
0

K0[kaΛ(ψ)]dψ

2πK0(kr0)
, n = 0

2π∫
0

K0[kaΛ(ψ)] cos(nψ)dψ

πKn(kr0)
, n 6= 0.

(4.11)

Here the dimensionless function Λ(ψ) = a−1
√

r2
0 − 2r0d cos ψ + d2. Lastly, Cmet

0

can be obtained from BC Eq. (4.7b), with the utilization of the transformation be-

tween the two sets of coordinates, Eq. (4.1). The result is directly proportional to

the surface charge density σ of the PE in the following form

Cmet
0 =

σ

kε0ε1

× 1

K1(ka) + fmet
0 K1(kd − ka) + 1

2

∞∑
n=1

fmet
n Kn+1(kd − ka)

. (4.12)

Therefore, the expressions for the electric potentials in the region exterior to the

PE–metallic cylinder system and inside the PE are given, respectively, by

φmet
out =

σ

kε0ε1

×
K0(kr′) −

∞∑
n=0

fmet
n cos(nψ)Kn(kr)

K1(ka) + fmet
0 K1(kd − ka) + 1

2

∞∑
n=1

fmet
n Kn+1(kd − ka)

in D0, (4.13)

φmet
in(s) =

σ

kε0ε1

×
K0(ka) −

∞∑
n=0

fmet
n Kn(kd − ka)

K1(ka) + fmet
0 K1(kd − ka) + 1

2

∞∑
n=1

fmet
n Kn+1(kd − ka)

in D2. (4.14)

With the above results for the electric potential, the electrostatic free energy per

unit length of the PE can be obtained by applying the charging procedure [32, 33].

The result, when normalized by kBT , kB being the Boltzmann constant and T the

temperature, is
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gmet
el =

NlB(1 − zθ)2

b
×

K0(ka) −
∞∑

n=0

fmet
n Kn(kd − ka)

kaK1(ka) + kafmet
0 K1(kd − ka) + 1

2
ka

∞∑
n=1

fmet
n Kn+1(kd − ka)

. (4.15)

Here lB is the Bjerrum length defined by lB = q2/4πε0ε1kBT and b is the length

of the cylinder per unit surface charge, that is, σ(2πab) = q. N and b are related

by Nb = 1. The factor of (1 − zθ)2 is introduced to account for CC. Specifically,

z is the unsigned valence of counterions. Since θ is the number of counterions

per charge on the PE, the effective, reduced surface charge density of the PE now

becomes σ(1 − zθ) [24].

To determine CC, we consider the total free energy that consists of gmet
el and

the entropic free energy needed to transfer the counterions from the bulk to the PE.

Normalized by kBT , the entropic energy per unit length is given by [24, 26]

gen = Nθ ln
θ

γνcQ
, (4.16)

where γ is the activity coefficient for the bulk solution, ν is the number of the

counterions in the chemical formula of the salt, c is the bulk salt concentration, and

Q is the internal partition function of the condensed layer. Finally, the normalized

total free energy per unit length of the PE is

gmet = gmet
el + gen. (4.17)

At equilibrium, the amount of CC θ satisfies [34]

∂gmet

∂θ
=

∂gmet
el

∂θ
+

∂gen

∂θ
= 0. (4.18)

In the original work of Manning for a single PE in a dilute solution, as c → 0,

two singular terms appear on the left hand side of the above equation. One is from

gen and is logarithmic in c, which is apparent from Eq. (4.16). The other term

is from the electrostatic energy, which possesses the same logarithmic singularity.

The cancelation of the two singular terms gives the amount of CC [24]. In the cur-

rent formulation, because of the presence of the metallic cylinder, the electrostatic

74



energy is different, and exhibits different asymptotic behaviors in the dilute limit.

We will demonstrate in the following that depending on the distance d between the

PE and the cylinder, different θ can be obtained. In the limit where d approaches

∞, the effect of the metallic cylinder diminishes, and our result reduces to the CC

on a PE in a solution alone. When the two cylinders are close, all the counterions

are released and θ = 0.

To show these results, we first write Eq. (4.18) in the following form

∂gmet

∂θ
= −2zNξ(1 − zθ)

×
K0(ka) −

∞∑
n=0

fmet
n Kn

[
ka

(
d
a
− 1

)]
kaK1(ka) + kafmet

0 K1

[
ka(d

a
− 1)

]
+ 1

2
ka

∞∑
n=1

fmet
n Kn+1

[
ka(d

a
− 1)

]
− 2N ln(ka) + N ln

4πeθlBNAa2
∑

i νiz
2
i

γνQ
= 0, (4.19)

where ξ ≡ lB/b is the dimensionless surface charge density and e is the base of

the natural logarithm. Note that the salt concentration c has been written in terms

of the Debye length using the relation c−1 = 4πlBNAk−2
∑

i νiz
2
i , where NA is

Avogadro’s number, νi is the number of the ith type of ion in the chemical formula

of the salt and zi is its valence [14, 23]. The dimensionless quantity d/a represents

a normalized separation between the two cylinders. In the limit of dilute solution,

ka → 0, and the second term in ∂gmet/∂θ has a logarithmic singularity. The first

term, due to electrostatics, may also be singular as ka → 0, since

K0(x → 0) ∼ − ln x, Kn(x → 0) ∼ 1

2
Γ(n)

(
1

2
x

)−n

, (4.20)

where Γ(n) is the Gamma function of integer n [35]. This singular behavior, how-

ever, can be affected by the normalized separation d/a. This is apparent, since for a

fixed value of ka, if d/a → ∞, then Kn[ka(d/a− 1)] = Kn(x → ∞) = 0, instead

of having the asymptotic behavior shown in Eq. (4.20). In fact, by first holding ka

fixed and taking the limit of d/a → ∞, one would expect the result to correspond

to the CC of the PE in the solution alone, as the metallic cylinder is located in-

finitely far from the PE. This is confirmed by using Kn(x → ∞) = 0 in ∂gmet/∂θ,
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resulting in

−2zNξ(1−zθ)
K0(ka)

kaK1(ka)
−2N ln(ka)+N ln

4πeθlBNAa2
∑

i νiz
2
i

γνQ
= 0. (4.21)

Now in the dilute limit where ka → 0, there are two singular terms in the above ex-

pression, both logarithmic in ka. One comes from the entropic energy −2N ln(ka)

and the other results from K0(ka)/kaK1(ka) ∼ − ln(ka). Cancelation of these

two terms retrieves the amount of CC on a PE isolated from the metallic cylinder

[24]

θ = θ0 =
1

z

(
1 − 1

zξ

)
. (4.22)

If on the contrary, the PE is close to the metallic cylinder in the sense that d/a

remains constant as ka → 0, then using the asymptotic relation, Eq. (4.20), the

equation to determine θ becomes

−2zNξ(1 − zθ)
[

ln(ka)
ln(ka·r0/a)

− 1
]

1 + 1
d/a−1

ln(ka)
ln(ka·r0/a)

− 1
π(d/a−1)

∞∑
n=1

[
n

(
r0/a

d/a−1

)n 2π∫
0

ln [Λ(ψ)] cos(nψ)dψ

]
× ln(ka) − 2N ln(ka) = 0. (4.23)

Detailed procedure to obtain this equation is given in Appendix A. Here the appar-

ent non-singular terms are not included. Since r0/a is a geometric factor that does

not vary as ka → 0, the term ln(ka)/ ln(ka · r0/a) approaches one, and therefore

the first term in Eq. (4.23) is zero. This implies that if there were CC, the only

singular term is from the entropic contribution, and equilibrium cannot be reached.

Therefore, the amount of CC has to be zero when the PE is close to the metallic

cylinder,

θ = 0. (4.24)

At this point, one may wonder whether there exists a smooth transition between

the two limiting cases demonstrated above. In particular, one may ask what happens

when the PE is gradually moved from the bulk solution to the neighborhood of the

metallic cylinder. To be able to see the transition, we introduce a scaling relation

between the dimensionless separation d/a and the dimensionless Debye length ka

d

a
= A (ka)−α , (4.25)
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Figure 4.2: Dependence of the amount of CC θ on α for the PE–metallic cylinder
system, where α is defined from the scaling relation, d/a = A(ka)−α, between the
dimensionless separation d/a and the dimensionless Debye length ka. The solid
line represents the smooth transition between the two limiting cases θ = 0 and
θ = θ0. Here, z = 1 and ξ = 4.2.

where α is a non-negative number, and A is a non-negative constant. The situation

of α ≥ 1 corresponds to a rapid increase of separation d/a during the dilution

(ka → 0), namely, the case of a PE alone. If α = 0, then d/a remains fixed during

the dilution, and the second limiting case above is retrieved. When α ∈ (0, 1), then

the singularity of ln(d/a) is of the same order as that of ln(ka), that is, ln(d/a) ∼

−α ln(ka). Hence, the amount of CC depends on α, which captures the magnitude

of the separation relative to the dilution. A similar approach has been employed

by Ray and Manning to investigate the interaction between two identically charged

rodlike polyions at intermediate separation distances [36]. Applying Eq. (4.25) and

conducting asymptotic analysis (See Appendix A for details) for α ∈ (0, 1), θ is

found to be the solution to the following equation

−2zNξ(1 − zθ)
[
−1 + (1 − α)2

]
ln(ka) − 2N ln(ka) = 0. (4.26)

resulting in

θ =
1

z

[
1 − 1

zξα (2 − α)

]
, α ∈ (0, 1). (4.27)

Figure 4.2 shows the CC θ as a function of α for α ∈ (0, 1). The calculations

are performed for the case of univalent counterions z = 1, and the dimensionless
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surface charge density ξ = 4.2. This value corresponds to the charge density of a

double-stranded DNA (dsDNA) [15]. As expected, as α approaches 1, θ approaches

the value given by Eq. (4.22). As α reduces, θ decreases, indicating that some of the

counterions previously condensed are released. Before α reaches 0, θ has reduced

to 0, corresponding to complete release of the counterions. Further decreasing α in

Eq. (4.27) will result in negative θ, which is not physical. Therefore, θ stays to be 0

after complete release of the counterions.

In the absence of the metallic cylinder, the electric potential on the surface of

the PE is given by [24]

φ0 =
σK0(ka)

ε0ε1kK1(ka)
. (4.28)

In the dilute limit of ka → 0, the electric potential above exhibits logarithmic

singularity. It is this singularity that contributes to the amount of CC given by

Eq. (4.22). With the metallic cylinder, the electric potential is modified to Eq. (4.14)

and the amount of CC is reduced. This reduction implies that the singularity in the

electric potential has become smaller. In other words, the electric potential of the

PE is weakened by the presence of the metallic cylinder.

4.4 Polyelectrolyte near a dielectric cylinder

For a PE near a dielectric cylinder, with the same geometry shown in Figure 4.1,

the governing equation inside the cylinder (domain D1) and the boundary condition

on its surface have changed. In particular, assuming that there are no charges inside

or on the surface of the dielectric cylinder, the governing equations for the electric

potential now become

∇2φdiel
out = k2φdiel

out in D0, (4.29)

∇2φdiel
in(l) = 0 in D1, (4.30)

and

∇2φdiel
in(s) = 0 in D2. (4.31)

Here the superscript “diel” represents the case of the dielectric cylinder, whereas

the subscripts “out”, “in(l)” and “in(s)” represents the domains of the electrolyte
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solution, inside the dielectric cylinder and inside the PE, respectively. The bound-

ary conditions, assuming uniform potential on the surface of the PE (and therefore

inside), are

lim
r→∞

φdiel
out = 0, (4.32a)

φdiel
in(l)

∣∣
r=r0

= φdiel
out

∣∣
r=r0

, (4.32b)

ε2

∂φdiel
in(l)

∂r

∣∣∣
r=r0

= ε1
∂φdiel

out

∂r

∣∣∣
r=r0

, (4.32c)

φdiel
in(s)

∣∣ψ′=0

r′=a
= φdiel

out

∣∣ψ′=0

r′=a
, (4.32d)

ε1
∂φdiel

out

∂r′

∣∣∣ψ′=0

r′=a
= − σ

ε0

. (4.32e)

The difference in BCs here from the case of PE–metallic cylinder system is

Eq. (4.32c), which comes from the requirement that the normal component of

the electric displacement is continuous on the surface of the dielectric cylinder

[29]. As in Section 4.3, Eqs. (4.32d) and (4.32e) are approximated BCs on the

surface of the PE.

We use a similar procedure to solve for the electric potential as introduced in

Section 4.3. Applying the method of separation of variables to Eqs. (4.29) and

(4.30) and using BC (4.32a), solutions for the electric potentials are given by φdiel
out =∑∞

n=0 adiel
n cos(nψ)Kn(kr) + Cdiel

0 K0(kr′) in D0 and φdiel
in(l) =

∑∞
l=0 bdiel

l cos(lψ)rl

in D1, respectively. The unknown coefficients adiel
n , Cdiel

0 , bdiel
l are determined from

the BCs (4.32b)–(4.32e). Finally, we obtain the following expressions for the elec-

tric potential outside the two cylinders and inside the PE

φdiel
out =

σ

ε0ε1k

×
K0(kr′) −

∞∑
n=0

fdiel
n cos(nψ)Kn(kr)

K1(ka) + fdiel
0 K1(kd − ka) + 1

2

∞∑
n=1

fdiel
n Kn+1(kd − ka)

in D0, (4.33)

φdiel
in(s) =

σ

ε0ε1k

×
K0(ka) −

∞∑
n=0

fdiel
n Kn(kd − ka)

K1(ka) + fdiel
0 K1(kd − ka) + 1

2

∞∑
n=1

fdiel
n Kn+1(kd − ka)

in D2, (4.34)
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where

fdiel
n =



1
2πK1(kr0)

2π∫
0

(r0−d cos(ψ))K1[kaΛ(ψ)]
aΛ(ψ)

dψ, n = 0

ε2

π(ε1+ε2)Kn(kr0)

2π∫
0

K0 [kaΛ(ψ)] cos(nψ)dψ

+ ε1kr0

π(ε1+ε2)Kn(kr0)n

2π∫
0

(r0−d cos(ψ))K1[kaΛ(ψ)]
aΛ(ψ)

cos(nψ)dψ,

n > 0.

(4.35)

The electric potential φdiel
in(l) in D1 is not used in further derivations and its final form

is not included here.

The electrostatic free energy per unit length of the PE near the dielectric cylinder

can be obtained by performing the charging procedure. Its normalized value by kBT

is

gdiel
el = Nξ(1 − zθ)2

×
K0(ka) −

∞∑
n=0

fdiel
n Kn(kd − ka)

kaK1(ka) + kafdiel
0 K1(kd − ka) + 1

2
ka

∞∑
n=1

fdiel
n Kn+1(kd − ka)

. (4.36)

To determine θ, the entropic free energy Eq. (4.16) is added to Eq. (4.36) and the

total free energy is minimized with respect to θ. Conducting asymptotic analysis of

the resulting equation, letting ka → 0 while keeping d/a fixed, the expression for

the amount of CC in this case is given by

θ =
1

z

1 − 1

ξz

1 +
ε1

π(ε1 + ε2)

∞∑
n=1

(
r0/a

d/a − 1

)n+1
2π∫
0

tndψ

 , (4.37)

tn =
1

Λ2(ψ)

[
r0

a
cos(nψ) +

d

a

(
ε2

ε1

sin(ψ) sin(nψ) − cos(ψ) cos(nψ)

)]
.

When ε2/ε1 = 1 and d > r0 (this is true since the interiors of the PE and

the dielectric cylinder cannot overlap), the integral in the above expression can be

shown to be exactly zero. Therefore, the amount of CC becomes identical to the CC

on the PE if the dielectric cylinder is removed [14], θ0 in Eq. (4.22), independent

of the separation between the centers of the PE and the dielectric cylinder. When
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ε2/ε1 6= 1, numerical calculation of Eq. (4.37) shows that θ can be smaller or larger

than θ0. Specifically, as shown in Figure 4.3, when ε2/ε1 > 1, as the separation

between the PE and the dielectric cylinder decreases, counterions are gradually

released from the surface of the PE. This is in fact consistent with the results for

the PE–metallic cylinder system, since metal can be considered to have infinitely

large dielectric constant. When ε2/ε1 < 1, more CC is observed (θ > θ0) as

the separation between the PE and the dielectric cylinder decreases. These results

suggest that the electric potential is strengthened by the dielectric cylinder when

its dielectric constant is smaller than that of the solution, while weakened when its

dielectric constant is larger than that of the solution. In all cases, as the separation

between the PE and the dielectric cylinder approaches ∞, the electric potential of

the PE–dielectric cylinder system approaches that of a PE alone in a solution, and

θ → θ0.
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Figure 4.3: Dependence of the amount of CC θ on the dimensionless distance d/a
between the PE and the dielectric cylinder, for different values of ε2/ε1. Here,
z = 1, ξ = 4.2, r0/a = 10 and d/a ∈ [15, 100].

4.5 Conclusion and discussions

In this work, we studied the effect of an electronically responsive cylinder on the

electrostatics of a PE within the framework of CC. Our results show that as the PE

81



is moved from the bulk solution to the vicinity of a metallic cylinder, the amount

of counterions previously condensed on the PE is gradually released and eventually

becomes zero. For a PE near a dielectric cylinder, the amount of CC on the PE

depends on the dielectric constant of the cylinder ε2 relative to that of the solution

ε1. When ε2/ε1 > 1, the counterions are gradually released from the surface of the

PE as the PE approaches the cylinder. When ε2/ε1 < 1, however, more counterions

are condensed on the surface of the PE. Lastly, when ε2/ε1 = 1, the amount of CC

remains constant, independent of the separation between the PE and the dielectric

cylinder.

To facilitate the calculations, we have made the approximation that the electric

potential on the surface of the PE is uniform. We expect this approximation to be

good as long as the size of the PE is much smaller than other dimensions in the

system. In the following, we examine the self-consistency of this approximation.

Specifically, we have assumed that the electric potential inside the PE φin(s) is a con-

stant and is equal to the electric potential in the solution evaluated at the particular

point of (r′ = a, ψ′ = 0), i.e., φin(s) = φout(r
′ = a, ψ′ = 0). Here the superscripts

met and diel have been removed with the reference to the corresponding potential

in each case. Under this assumption, φin(s) 6= φout at any other points on the sur-

face of the PE. In fact, the maximum difference between φin(s) and φout occurs at

(r′ = a, ψ′ = π). Below, we evaluate this difference through the percentage error

defined as

η1 =

∣∣∣∣∣∣∣
φ̄out

∣∣∣ψ′=π

r̄′=ā
− φ̄in(s)

φ̄out

∣∣∣ψ′=π

r̄′=ā

∣∣∣∣∣∣∣ × 100, (4.38)

where the normalized quantities are given by

φ̄out = ε0ε1kφout/σ, φ̄in(s) = ε0ε1kφin(s)/σ, r̄ = kr, r̄′ = kr′,

r̄0 = kr0, ā = ka, d̄ = kd. (4.39)

Expressions for the normalized electric potential are provided in Appendix A.

In addition, the jump condition for the electric displacement is approximated by

(∂φout/∂r′) |ψ
′=0

r′=a = −σ/ε0ε1, i.e.,
(
∂φ̄out/∂r̄′

)
|ψ

′=0
r̄′=ā + 1 = 0. Elsewhere on the

surface of the PE, ∂φ̄out/∂r̄′ + 1 = 0 is not satisfied and the greatest error occurs at
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(r̄′ = ā, ψ′ = π). The following quantity

η2 =

∣∣∣∣∂φ̄out

∂r̄′

∣∣∣ψ′=π

r̄′=ā
+ 1

∣∣∣∣ × 100, (4.40)

is used to quantify the percentage error in the electric displacement.

Commonly used PE radius a ranges from 0.1 Å to 100 Å [37], while the Debye

length is usually taken to be in the range of 0.1 nm to 100 nm. The normalized

quantity ā is hence between 10−4 and 100. In the following, we first calculate η1

and η2 for a dilute electrolyte with dielectric constant ε1 = 80 and Debye length of

100 nm. The radius a of the PE is taken to be 10 Å, and the dielectric constant of

the dielectric cylinder is ε2 = 1. Hence ā = 10−2 and ε2/ε1 = 0.0125. Figures

4.4–4.7 show the contour plots of η1 and η2 for the PE–metallic cylinder and the PE–

dielectric cylinder systems, as a function of the normalized radius of the cylinder

r̄0 and the normalized separation distance d̄ between the PE and the corresponding

cylinder. For the PE–metallic cylinder system, when d̄ > 0.85 and r̄0 > 0.14, η1

is less than 5 percent (See Figure 4.4), while η2 is less than 5 percent when d̄ and

r̄0 are larger than 1.9 and 0.35, respectively (See Figure 4.5). For the PE–dielectric

cylinder system, η1 is less than 0.5 percent when d̄ is beyond 1.08 and r̄0 is beyond

0.42 (See Figure 4.6); when d̄ > 1.55 and r̄0 > 0.5, η2 is within 0.5 percent (See

Figure 4.7). For higher salt concentrations, it is expected that the approximation

will be better due to the stronger screening from ions. This is confirmed through

our numerical calculations. For example, for the dimensions a = 10 Å, r0 = 10

nm, d = 20 nm, we found that: 1) for the PE–metallic cylinder system, η1 =

8.41% and η2 = 9.67% when k−1 = 100 nm, whereas η1 = 7.4 × 10−3% and

η2 = 1.28 × 10−7% when k−1 = 1 nm; 2) for the PE–dielectric cylinder system,

η1 = 0.67% and η2 = 3.33% when k−1 = 100 nm and η1 = 1.03 × 10−6% and

η2 = 5.38 × 10−7 when k−1 = 1 nm.
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Figure 4.4: Percentage error η1 for the PE–metallic cylinder system, where r̄0 is the
normalized radius of the metallic cylinder and d̄ is the normalized distance between
the PE and the metallic cylinder. Here ā = 10−2.
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Chapter 5
Binding Force between a Charged
Wall and a Complex formed by a
Polyelectrolyte and an Electronically
Responsive Cylinder 1

5.1 Introduction

This work is motivated by the recent experiments of DNA-assisted carbon nanotube

(CNT) separation using ion-exchange chromatography (IEC). CNT is a novel mate-

rial that has shown promise in many practical applications [1–3]. However, before

these applications become widely possible, it is necessary to resolve the fundamen-

tal problem of separating as-produced bundled CNTs according to their properties.

In particular, depending on its chirality [4], a CNT can be metallic or semicon-

ducting and the band gap of the latter is inversely proportional to its diameter [4].

Several methods have been proposed for separating CNTs in order to take advan-

tage of their unique electronic properties [5–9]. In particular, Zheng et al. devel-

oped a method to separate CNTs according to their chiralities using single-stranded

DNA (ssDNA) molecules [8, 9]. It was found that in an electrolyte solution ssDNA

molecules form hybrids with CNTs by wrapping around them in a helical way, ef-

fectively dispersing the bundled CNTs. These CNT-DNA hybrids are negatively

charged in an electrolyte solution because of the deprotonated phosphate groups on

the DNA backbones. Applying the method of ion exchange chromatography (IEC),

the CNT-DNA hybrids can be separated according to the electronic properties of

the CNT core. In the IEC method, the negatively charged hybrids are adsorbed on a

positively charged column. With increasing salt concentration, experimental results

1Reprinted with permission from : “Binding Force between a Charged Wall and a Complex
formed by a Polyelectrolyte and an Electronically Responsive Cylinder”, Oxana Malysheva, Tian
Tang and Peter Schiavone, J. of Adhesion, 2011, 87, pp 251-271. Copyright 2011 Taylor&Francis
Group, LLC. http://www.informaworld.com/smpp/title content=t713453635
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show that the metallic CNT-DNA hybrids elute earlier from the oppositely charged

column than the semiconducting CNT-DNA hybrids. Lustig et al. [10] developed

an analytically tractable model for such an observation, where a CNT-DNA hybrid

is presented by a metallic or a dielectric cylinder (representing the CNT) wrapped

around by a helical line of charges (representing the DNA). The binding free energy

of a hybrid to the positively charged column is compared to the energy of a hybrid

suspended in a solution with counterion condensation (CC) [11]. These two quan-

tities, together with the interaction energy between the solution and the column,

define the elution free energy, which governs the elution of the CNT-DNA hybrids

in IEC. It is shown that for the same tube radius and helical wrapping angle, the salt

concentration at which elution occurs is smaller for hybrids with a metallic core

than for those with a dielectric core, indicating that the former should elute earlier

from the column. This is in agreement with experiments [8, 9]. However in [10],

the electronic response of the CNT to the DNA charges is considered only at the

level of image charges, which is approximate, and the CNT is modeled locally as a

half space. A solution to the electric potential from a rigorously defined boundary

value problem (BVP) is not provided.

In this work, we study the binding between a positively charged wall and a com-

plex consisting of a negatively charged polyelectrolyte (PE) and an electronically

responsive cylinder (shortened to PE-cylinder complex), immersed in an electrolyte

solution. We take a different approach from [10] and directly calculate the binding

force between them. The electronically responsive cylinder is again modeled as ei-

ther a metal or a dielectric, but instead of using the image charge method, the field

equations describing the electrostatics of metal or dielectric are rigorously incor-

porated and the corresponding boundary value problem for the electric potential is

solved. We also consider a simpler geometry and model the PE as a thin cylinder

near the electronically responsive cylinder. By thin cylinder we mean that the ra-

dius of the PE is much smaller than that of the responsive cylinder. Such simpler

geometry allows us to obtain an analytical solution for the electric potential and the

binding force. Through this work, we demonstrate how the binding force changes

with the nature of the electronically responsive cylinder.
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This paper is organized as follows, the problem description and applied methods

are presented in Section 5.2. The expressions for the binding force between the PE-

cylinder complexes and the charged wall are shown in Section 5.3. Finally, results

and discussions are given in Sections 5.4 and 5.5, respectively.

5.2 Problem description

The system under consideration consists of a PE-cylinder complex and a charged

wall embedded in a dilute electrolyte solution. The geometrical representation of

the system is depicted in Figure 5.1. The electronically responsive cylinder is mod-

eled as a cylinder with radius r0; whereas, the PE is modeled as a thin charged

cylinder of radius a. The diameter of a single-walled CNT (swCNT) ranges from

0.7 nm to 10 nm [4], and the commonly used radius of a PE ranges from 0.1 Å to

100 Å [12]. Since for ssDNA, its charges are confined in a small region around the

backbone, we consider the case where the radius of the PE is much smaller than

the radius of the responsive cylinder, that is, a << r0. The axes of the PE and the

cylinder are parallel and the distance between their centers is denoted by d. The

charged wall is located parallel to the axes of the PE-cylinder complex at a distance

d2 from the center of the PE (See Figure 5.1). The separation distance between the

center of the responsive cylinder and the wall is denoted as d1 and it is equal to

d1 = d+d2. The PE has a uniform surface charge density denoted as σPE. The wall

has a uniform surface charge denoted as σS, which is of opposite sign to σPE, that

is, σSσPE < 0. The PE-cylinder complex is assumed to be infinitely long and the

charged wall is semi-infinite, so the problem can be considered two-dimensional, as

shown in Figure 5.1. The exterior region to the PE-cylinder complex and the wall,

which is denoted as D0, is occupied by an electrolyte solution with dielectric con-

stant ε1. The interior of the electronically responsive cylinder D1 can be a metallic

substance or a dielectric with dielectric constant ε2. The interior of the PE D2 is

assumed to be a vacuum with dielectric constant equal to 1. We denote by (r, ψ)

and (x, y) the generic polar and Cartesian coordinates, respectively, with the origin

located at the center of the cylinder; (r′, ψ′) are polar coordinates with the origin
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located at the center of the PE. The electric potential is more conveniently described

in one of the two sets of polar coordinates, depending on the domain. The Cartesian

coordinates are used to calculate the binding force. These coordinates can be easily

converted using the following relations

r =
√

x2 + y2, ψ = arctan
y

x
, r′ =

√
(x − d)2 + y2, ψ′ = arctan

y

d − x
. (5.1)

x

'r

'ψ
a

2D
0

PEσ

ψ

r
0r

2d

1D

0D

y
Sσ

1d

Sσ

Sσ

Sσ
d

Figure 5.1: Geometry of the electronically responsive cylinder with radius r0 and
the PE with radius a near the charged wall. d is the distance between the centers of
the cylinder and the PE, d2 is the distance from the center of the PE to the charged
wall, and d1 is the distance between the center of the responsive cylinder and the
wall. σPE and σS are the surface charge densities on the PE and the charged wall,
respectively. (r, ψ) and (x, y) are polar and Cartesian coordinates with the origin
at the center of the cylinder, and (r′, ψ′) are polar coordinates with the origin at the
center of the PE. D0 is the exterior region to the PE-cylinder complex and the wall;
D1 and D2 are interior regions of the cylinder and the PE, respectively.

The BVP for the electric potential in the entire domain is described below. The

governing equation for the electric potential φ0 in D0 is the Debye-Hückle equation

[11, 13]

∇2φ0 = k2φ0 in D0, (5.2)

where k is the inverse of the Debye length [13]. The Debye length defines the

length in the electrolyte solution beyond which the electric potential is screened. It

scales with the salt concentration c as k−1 ∼ c−1/2 [13], which means that as the
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salt concentration increases, the Debye length decreases, and the electric potential

becomes more screened. The governing equation for the electric potential φ2 in D2

is a Laplace equation

∇2φ2 = 0 in D2, (5.3)

where ∇2 is the Laplacian. Equations (5.2) and (5.3) govern the electric potential in

regions D0 and D2, no matter whether the cylinder is metallic or dielectric. In the

following, superscript “met” or “diel” are used to differentiate the cases of metallic

and dielectric cylinders. For example, for the PE-metallic cylinder complex φmet
0

and φmet
2 are the electric potentials in D0 and D2, respectively. The electric potential

φ1 inside the electronically responsive cylinder D1, depends on the nature of the

cylinder. Inside a metallic cylinder the electric field must vanish and therefore the

electric potential is a constant independent of position [14, 15], that is,

φmet
1 = φc in D1, (5.4)

where the superscript “met” stands for the metallic cylinder, and φc is a constant

[14, 15]. The electric potential φdiel
1 inside a neutral dielectric cylinder D1 satisfies

[14]

∇2φdiel
1 = 0 in D1. (5.5)

The boundary conditions (BCs) described below are the same for the PE-

metallic cylinder and the PE-dielectric cylinder complexes. Consequently, the

superscripts “met” and “diel” are omitted.

lim
r→∞

φ0 = 0, (5.6a)

φ0

∣∣
r=r0

= φ1

∣∣
r=r0

, (5.6b)

φ0

∣∣
r′=a

= φ2

∣∣
r′=a

, (5.6c)

ε1
∂φ0

∂r′

∣∣∣
r′=a

− ∂φ2

∂r′

∣∣∣
r′=a

= −σPE

ε0

, (5.6d)

where ε0 is the permittivity of the vacuum. Equation (5.6a) describes the vanish-

ing potential far away from the PE-cylinder complex, Eqs. (5.6b) and (5.6c) are

the conditions of continuous potential across the surfaces of both the PE and the

cylinder, and Eq. (5.6d) is the jump condition for the electric displacement across
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the boundary of the PE [14]. In addition to the above BCs, for the PE-dielectric

complex, another BC is required, that is, the continuity of the electric displacement

on the surface of the dielectric cylinder [14]

ε2
∂φdiel

1

∂r

∣∣∣
r=r0

= ε1
∂φdiel

0

∂r

∣∣∣
r=r0

. (5.7)

Once the electric potential φ0 is solved from the BVP defined above, the ex-

pression for the force F on the charged wall due to the PE-cylinder complex can

be derived. First, the electric field E in the electrolyte solution can be evaluated by

E = −∇φ0, where ∇ is the gradient. Then F can be calculated using

F =

∫
A

σSE
∣∣∣
x=d1

dA,

where A is the surface of the charged wall, and dA is an infinitesimal element on the

surface. It is clear that the y component of the force cancels out due to symmetry,

and the only contribution to the total force is in the x (horizontal) direction, which

we denote as Fx. Therefore, the binding force per unit length on the charged wall

can be found using

Fx = −2

∫ ∞

0

σS
∂φ0

∂x

∣∣∣
x=d1

dy. (5.8)

Due to the presence of the electronically responsive cylinder, the electric poten-

tial on the surface of the PE is not uniform, which makes an exact analytical solution

for the electric potential impossible to obtain [16]. However, because a << r0, it is

appropriate to assume that the potential is uniform on the surface of the PE and is

equal to the value of the electric potential at one particular point (ψ = 0, r = d−a)

[16] . As a result, continuity of the electric potential and jump condition of the

electric displacement (Eqs. (5.6c) and (5.6d), respectively) are satisfied only at that

point, leading to two modified BCs

φ0

∣∣ψ′=0

r′=a
= φ2

∣∣ψ′=0

r′=a
, (5.9a)

ε1
∂φ0

∂r′

∣∣∣ψ′=0

r′=a
= −σPE

ε0

. (5.9b)

The validity of such an approximation has been proven by calculating the maximum

error caused by the modified BCs [16].
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To summarize, the BVP for the PE-metallic complex is defined by Eqs. (5.2),

(5.3), (5.4) and Eqs. (5.6a), (5.6b), (5.9a), (5.9b), and the BVP for the PE-dielectric

complex is defined by Eqs. (5.2), (5.3), (5.5) and Eqs. (5.6a), (5.6b), (5.7), (5.9a),

(5.9b). Following the solution of the BVP, the binding force is calculated using

Eq. (5.8).

5.3 Binding force

In this section, the expressions for the binding force per unit length on the charged

wall are derived for the PE-metallic cylinder and the PE-dielectric cylinder com-

plexes. For the sake of simplicity, the following normalized variables are introduced

r̄ = kr, r̄′ = kr′, x̄ = kx, ȳ = ky, ā = ka, r̄0 = kr0, d̄ = kd, d̄1 = kd1,

d̄2 = kd2, l̄B = klB, φ̄ = − ε0ε1

lBσPE
φ, φ̄c = − ε0ε1

lBσPE
φc, F̄x = − ε0ε1

lBσPEσs
Fx. (5.10)

Here lB is the Bjerrum length [13] defined as the distance at which the electrostatic

interaction between two elementary charges is comparable to the thermal energy

kBT , where kB is the Boltzmann constant, and T is the absolute temperature in

Kelvins. At room temperature (300 K) and in water, the Bjerrum length is approxi-

mately 7Å. Note that in Eq. (5.10), a minus sign is introduced for the normalization

of Fx because σSσPE < 0; the minus sign ensures that the normalized force F̄x has

the same sign as Fx. In addition, in the remainder of this work, we will discuss the

results based on the consideration of σPE < 0, since we are motivated by a nega-

tively charged PE (ssDNA). However, our results are not limited only to the case

of σPE < 0. Such consideration is only meant to facilitate our explanations on the

physics of the results.

Solving the BVP with the above normalization, Eq. (5.10), the normalized elec-

tric potential in the region exterior to the PE-cylinder complex is obtained as [16]

φ̄0 = C̄

[
K0(r̄

′) −
∞∑

n=0

f̄n cos(nψ)Kn(r̄)

]
in D0, (5.11)

where Kn(u) are the n-th order modified Bessel functions of the second kind [17].

f̄n are coefficients in the series; their expressions are given later in the subsections.
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C̄ is a coefficient with different mathematical expressions depending on the nature

of the responsive cylinder. Equation (5.11) describes the electric potential in D0

for both the PE-metallic cylinder and the PE-dielectric cylinder complexes. A su-

perscript “met” will be added to f̄n and C̄ when the PE-metallic cylinder complex

is considered, and “diel” when the PE-dielectric cylinder complex is considered.

They are presented in the following subsections. Using Eqs. (5.8) and (5.11), the

expressions for the binding force per unit length between the PE-cylinder complex

and the charged wall can be derived.

5.3.1 PE-metallic complex

In this subsection the expression for the binding force between the charged wall and

the PE-metallic cylinder complex is calculated. The expressions for the coefficients

f̄met
n and C̄met in Eq. (5.11) are the following [16]

f̄met
n =


f̄ grmet

0 − φ̄c

C̄metK0(r̄0)
, n = 0

1
πKn(r̄0)

2π∫
0

K0

(√
r̄2
0 − 2r̄0d̄ cos ψ + d̄2

)
cos(nψ)dψ, n > 0,

(5.12)

C̄met =

φ̄c

K0(r̄0)
K1(d̄ − ā) − 1

l̄B

K1(ā) + f̄ grmet
0 K1(d̄ − ā) + 1

2

∞∑
m=1

f̄met
m Km+1(d̄ − ā)

, (5.13)

where f̄ grmet
0 =

2π∫
0

K0

(√
r̄2
0 − 2r̄0d̄ cos ψ + d̄2

)
/ (2πK0(r̄0)) dψ. f̄met

0 = f̄ grmet
0

when the metallic cylinder is grounded (φ̄c = 0). Using Eqs. (5.1), (5.8), (5.10),

and (5.11) the expression for the normalized binding force F̄ met
x per unit length takes

the following form

F̄ met
x = 2C̄met

∞∫
0

[
d̄2

K1

(√
d̄2

2 + ȳ2
)

√
d̄2

2 + ȳ2
−

(
d̄2 + d̄

)
f̄met

0

K1

(√(
d̄2 + d̄

)2
+ ȳ2

)
√(

d̄2 + d̄
)2

+ ȳ2

−
∞∑

n=1

f̄met
n

n cos [(n + 1) β] Kn

(√(
d̄2 + d̄

)2
+ ȳ2

)
√(

d̄2 + d̄
)2

+ ȳ2

]
dȳ, (5.14)

where β = ψ(x̄ = d̄1) = arctan
(
ȳ/d̄1

)
.
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5.3.2 PE-dielectric complex

Following the same procedure, the expression for the normalized electric potential

due to the presence of the dielectric cylinder is given by Eq. (5.11) with coefficients

f̄ diel
n and C̄diel in the following form [16]

f̄ diel
n =



1
2πK1(r̄0)

2π∫
0

[r̄0−d̄ cos(ψ)]K1

(√
r̄2
0−2r̄0d̄ cos ψ+d̄2

)
√

r̄2
0−2r̄0d̄ cos ψ+d̄2

dψ, n = 0

nε21

πn(1+ε21)Kn(r̄0)

2π∫
0

K0

(√
r̄2
0 − 2r̄0d̄ cos ψ + d̄2

)
cos(nψ)dψ

+ r̄0

πn(1+ε21)Kn(r̄0)

2π∫
0

[r̄0−d̄ cos(ψ)]K1

(√
r̄2
0−2r̄0d̄ cos ψ+d̄2

)
√

r̄2
0−2r̄0d̄ cos ψ+d̄2

cos(nψ)dψ,

n > 0,

(5.15)

C̄diel = − 1

l̄B

[
K1(ā) + f̄ diel

0 K1(d̄ − ā) + 1
2

∞∑
m=1

f̄ diel
m Km+1(d̄ − ā)

] . (5.16)

Here ε21 = ε2/ε1 is the ratio of the dielectric constant of the dielectric cylinder to

that of the electrolyte solution. The detailed derivation of the above expressions can

be found in [16]. The normalized binding force F̄ diel
x per unit length in this case is

given by

F̄ diel
x = 2C̄diel

∞∫
0

[
d̄2

K1

(√
d̄2

2 + ȳ2
)

√
d̄2

2 + ȳ2
−

(
d̄2 + d̄

)
f̄ diel

0

K1

(√(
d̄2 + d̄

)2
+ ȳ2

)
√(

d̄2 + d̄
)2

+ ȳ2

−
∞∑

n=1

f̄ diel
n

n cos [(n + 1) β] Kn

(√(
d̄2 + d̄

)2
+ ȳ2

)
√(

d̄2 + d̄
)2

+ ȳ2

]
dȳ. (5.17)

5.4 Results

In this section, we provide the results for the normalized binding force F̄x on the

charged wall due to the PE-cylinder complex. As was mentioned earlier, the com-

mon range for the radius of the swCNT is [3.5; 50] Å and we consider the radius a

of the PE to be much smaller than r0, in the range of 0.1 to 10 Å. The Debye length

of the electrolyte solution is usually in the range of 0.1 nm to 100 nm. Therefore,

the ranges for the following normalized quantities are r̄0 ∈ 3.5×10−3 to 50 and ā ∈
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10−4 to 10, respectively. The normalized distance d̄ between the PE and the cylin-

der is taken to be d̄ > 1.5r̄0. The dielectric constant of the electrolyte solution is

taken to be equal to that of water, that is, ε1 = 80. Different values for the dielectric

constant ε2 of the dielectric cylinder are considered, such that the normalized ratio

ε21 ranges from 0.1 to 100.

Figure 5.2 plots the normalized binding force F̄x versus the normalized separa-

tion distance d̄2 between the center of the PE and the charged wall for the following

sets of parameters: ā = 10−2, r̄0 = 0.1, d̄ = 1.5r̄0, and ε21 = 0.1. One of the

curves (solid and labeled as “dielectric”) corresponds to F̄x due to the PE near a

neutral dielectric cylinder. The other curves correspond to F̄x due to the PE near

a metallic cylinder with different electric potential φ̄c. Positive values of F̄x (and

positive value of Fx) indicate that the force on the wall acts to the right (See Figure

5.1), away from the PE. This corresponds to repulsive force between the wall and

the PE-cylinder complex. Similarly, negative values of F̄x mean that the force is

attractive. At the same distance d̄2, the larger the magnitude of the negative force,

the more attractive this force is. Similarly, the larger the positive force, the more re-

pulsive it gets. For each curve on this figure, as the separation distance d̄2 increases,

the magnitude of the normalized binding force decreases. As d̄2 approaches ∞, the

charged wall and the PE-cylinder complex are infinitely far apart and there is no

longer binding force between them.

Let us first compare F̄x due to a dielectric cylinder and that due to a grounded

metallic cylinder (φ̄c = 0). Clearly F̄x in both cases is attractive. However, the

magnitude of F̄x due to the dielectric cylinder is larger than that due to the grounded

metallic cylinder (See Figure 5.2). In fact, in the absence of the electronically

responsive cylinder, the expressions for the electric potential φ̄PE
0 in D0 [16] and the

binding force F̄ PE
x on the charged wall are respectively given by

φ̄PE
0 = − 1

l̄B

K0(r̄
′)

K1(ā)
in D0, (5.18)

F̄ PE
x = − 2d̄2

l̄BK1(ā)

∫ ∞

0

K1(
√

d̄2
2 + ȳ2)√

d̄2
2 + ȳ2

dȳ, (5.19)

where superscript “PE” stands for the PE alone (no electronically responsive cylin-

der nearby). The normalization for φ̄PE
0 and F̄ PE

x is similar to the one introduced in
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Eq. (5.10). Comparing calculation from Eq. (5.19) with those in Figure 5.2 shows

that the magnitude of F̄ PE
x is smaller than that due to the PE-dielectric cylinder com-

plex, and larger than that due to the PE-grounded metallic cylinder complex. This

observation can be explained by the following. The negatively charged PE causes

free charges on the surface of the metallic cylinder to redistribute themselves. These

redistributed charges create an electric field that weakens the original field of the

PE, which in turn results in smaller binding force. The dielectric cylinder con-

sidered here, however, has an opposite influence on the binding force because its

dielectric constant ε2 is less than that of the electrolyte solution ε1. The dielectric

constant measures the ability of a material to be polarized by an external field; it is a

factor by which the external electric field is reduced. Introducing a dielectric cylin-

der with ε2 < ε1 near the PE effectively replaces the electrolyte with a material of

smaller polarization, therefore strengthening the original field of the PE alone and

increasing the binding force. In fact, metal can be considered as having a dielectric

constant approaching ∞, that is, much larger than ε1. This is consistent with the

weakening effect addressed earlier.

If a non-grounded metallic cylinder is located near the PE, then F̄x can be attrac-

tive or repulsive depending on φ̄c, as can be seen from Figure 5.2. Different values

of φ̄c and its sign drastically influence the magnitude and the direction of F̄x. The

metallic cylinder has a positive or a negative potential when the net charge on the

metallic cylinder is positive or negative, respectively [14]. The observed behavior of

the force can be explained by the two effects of the non-grounded metallic cylinder:

the screening effect due to charge redistribution and the effect of the net charge. For

a grounded metallic cylinder only the screening effect plays a role, because the net

charge is zero. For a positively charged metallic cylinder near the PE, F̄x is slightly

attractive or repulsive depending on the magnitude of φ̄c. This happens because at

the location of the wall, the x component of the electric field due to the PE alone

points towards the PE itself. The screening effect of the metallic cylinder weakens

this field. In addition, the net positive charge on the metal introduces an electric

field whose x-component points away from the PE at the wall. This further reduces

the field of the PE and can even cause the binding force to be repulsive. The larger
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Figure 5.2: Normalized binding force F̄x per unit length on the charged wall due
to the PE near the metallic or the dielectric cylinder. The solid line represents the
binding force between the PE-dielectric cylinder complex and the charged wall, and
all the other curves are for the PE-metallic cylinder complex. Different values for
φ̄c correspond to different electric potentials of the metallic cylinder for the PE-
metallic cylinder complex. Here, ā = 10−2, r̄0 = 0.1, ε21 = 0.1 and d̄ = 1.5r̄0.

the magnitude of φ̄c, the more repulsive the force on the charged wall. On the other

hand, due to the presence of a negatively charged metallic cylinder, F̄x is always

attractive, and the strength of attraction increases with the magnitude of φ̄c. This

occurs because although the screening effect of the metal weakens the electric field

of the PE, the net negative charges strengthen it. The overall result is F̄x being more

attractive than the case of a grounded metallic cylinder. The larger the magnitude of

φ̄c, the stronger the attraction becomes. For φ̄c = −0.7, F̄x is even more attractive

than the force in the case of a dielectric cylinder. This manifests the dominance of

the effect of the net charge on the metallic cylinder.

Figure 5.3 plots F̄x versus d̄2 for d̄ = 5r̄0, ā = 10−2, r̄0 = 0.1, and ε21 = 0.1,

that is, the separation distance between the PE and the cylinder has been increased.

As in the previous figure, one curve corresponds to the normalized force due to the

PE near the dielectric cylinder and the other curves correspond to cases of metallic

cylinders with different values of φ̄c. By comparing Figures 5.2 and 5.3, we can see
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Figure 5.3: Normalized binding force F̄x per unit length on the charged wall due
to the PE-metallic cylinder or the PE-dielectric cylinder complexes. The solid line
represents the binding force between the PE-dielectric complex and the charged
wall, and all the other curves are for the PE-metallic cylinder complex. Different
values for φ̄c correspond to different electric potentials of the metallic cylinder for
the PE-metallic cylinder complex. Here, ā = 10−2, r̄0 = 0.1, ε21 = 0.1, and
d̄ = 5r̄0.

that by moderately increasing the separation distance between the PE and the cylin-

der (from d̄ = 1.5r̄0 to d̄ = 5r̄0), the binding force can change its magnitude as well

as direction. Specifically, for the dielectric cylinder, as d̄ increases, the curve shifts

upwards, that is, the magnitude of F̄x reduces, indicating that the binding force is

less attractive. This is expected since as d̄ increases, the influence of the dielectric

cylinder, strengthening the electric field of the PE, becomes smaller. For the metal-

lic cylinder, as d̄ increases from d̄ = 1.5r̄0 to d̄ = 5r̄0, the curves shift downwards,

which corresponds to increased attraction (See φ̄c = −0.7,−0.1, 0, 0.05), reduced

repulsion (See φ̄c = 0.7), or changing from repulsion to attraction (See φ̄c = 0.1).

Interestingly, however, as d̄ is further increased, different change in F̄x is observed

for positively and negatively charged metallic cylinders. This is discussed with the

next two figures.

Each subplot in Figures 5.4 and 5.5 shows F̄x versus d̄2 due to the PE-metallic

cylinder complex with a given φ̄c but with different values of d̄. For these plots,

we have taken ā = 10−2, r̄0 = 0.1, and ε21 = 0.1. In Figure 5.4a, the electric

potential on the metallic cylinder is chosen to be φ̄c = 0.7; whereas φ̄c = −0.7 is
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used in Figure 5.4b. Figure 5.5 corresponds to metallic cylinder of much less net

charge, with φ̄c = 0.1 in Figure 5.5a and φ̄c = −0.1 in Figure 5.5b. It is expected

as d̄ → ∞, the different curves shown in each figure converge to a single one that

is associated with the binding force F̄ PE
x on the charged wall due to the PE alone,

given by Eq. (5.19). Therefore, we also plot F̄ PE
x and it is labeled as “PE”. As can

be seen from Figures 5.4a and 5.5a, when a positively charged metallic cylinder is

present, as d̄ increases, the binding force first changes from repulsive to attractive.

This happens because with d̄ increasing, the influence of the net positive charge

and the screening effect of the metal, both weakening the electric field of the PE,

reduces. As d̄ further increases, the binding force approaches from above to that

of the PE alone, which shows that both effects diminish their influence. For the PE

near a negatively charged metallic cylinder, from Figures 5.4b and 5.5b, it is seen

that as d̄ increases, the binding force first becomes more attractive. However, as d̄

increases further, F̄x becomes less attractive, and approaches from below to that of

the PE alone. That is, F̄x exhibits non-monotonic variation with d̄. As mentioned

earlier, the negative charge on the cylinder strengthens the electric field of the PE

and compete with the screening from the metal. Take Figure 5.5b for example. At

small separation (e.g., d̄ = 1.5r̄0), F̄x is less attractive than that of the PE alone,

indicating that the screening effect is more significant than the effect of the net

charge. As d̄ increases (from d̄ = 1.5r̄0 to d̄ = 5r̄0), the binding force becomes

more attractive, and the curve approaches that of the PE alone. By increasing d̄

further (from d̄ = 5r̄0 to d̄ = 11.5r̄0), F̄x becomes slightly more attractive than that

of the PE alone. This is an indication that at such a separation, the net negative

charge has become the dominant effect.

To further explain the above observations, Figure 5.6 shows F̄x versus d̄ due to

the PE near a grounded or a negatively charged metallic cylinder, calculated at a

particular distance d̄2 = 2r̄0 between the PE and the wall. Different curves on this

plot correspond to the binding force with different values of the electric potential

φ̄c. All the curves exhibit an initial increase in attraction with increasing d̄. Since

the two competing effects of a negatively charged metallic cylinder (screening and

net charge) both decrease with increasing d̄, the initial increase in attraction im-
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Figure 5.4: Normalized binding force F̄x per unit length on the charged wall due to
the PE-metallic cylinder complex or the PE alone (i.e. without the presence of the
responsive cylinder). The metallic cylinder with a particular φ̄c is considered: a)
φ̄c = 0.7 and b) φ̄c = −0.7. The solid line represents the binding force between the
charged wall and the PE alone, and the rest are for the PE-metallic cylinder complex
with the same specified φ̄c but different separation distances d̄ between the metallic
cylinder and the PE. Here, ā = 10−2, r̄0 = 0.1, and ε21 = 0.1. The legends are the
same for the top and the bottom figures.

plies that the screening effect decays faster at short range. For some curves (e.g.

φ̄c = −0.5), F̄x reaches a minimum (maximum attraction) at a certain distance d̄.

Afterwards, the attraction decreases, indicating that the effect of the net charge,

which is strengthening the electric field, decays faster at long range. The com-

petition between these two effects is the reason for the observed non-monotonic

behavior in Figures 5.4b and 5.5b. As the value of the electric potential φ̄c ap-

proaches zero, the observed minimum in F̄x vanishes. This is expected because for

the grounded metallic cylinder, screening is the only effect on the electric field of
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Figure 5.5: Normalized binding force F̄x per unit length on the charged wall due to
the PE-metallic cylinder complex or the PE alone (i.e. without the presence of the
responsive cylinder). The metallic cylinder with a particular φ̄c is considered: a)
φ̄c = 0.1 and b) φ̄c = −0.1. The solid line represents the binding force between the
charged wall and the PE alone, and the rest are for the PE-metallic cylinder complex
with the same specified φ̄c but different separation distances d̄ between the metallic
cylinder and the PE. Here, ā = 10−2, r̄0 = 0.1, and ε21 = 0.1. The legends are the
same for the top and the bottom figures.
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the PE.
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Figure 5.6: Normalized binding force F̄x on the charged wall due to the PE near a
grounded or a negatively charged metallic cylinder versus the separation distance d̄
between the PE and the metallic cylinder. This force is calculated at the distance
d̄2 = 2r̄0 from the center of the PE to the wall. Different curves correspond to
different values of the electric potential φ̄c on the surface of the metallic cylinder.
Here, ā = 10−2, r̄0 = 0.1, and ε21 = 0.1.

Figure 5.7 shows F̄x versus d̄2 for the PE-dielectric cylinder complex with dif-

ferent dielectric constant ratio ε21. Also shown is F̄ PE
x due to PE alone. As can be

seen from Figure 5.7 and its insert, as ε21 increases, the magnitude of the binding

force decreases. This is expected since larger ε2 implies stronger polarization inside

the dielectric cylinder, and therefore weaker electrostatic interaction. As mentioned

earlier, the dielectric cylinder effectively replaces part of the electrolyte solution.

As a result, F̄x due to the dielectric cylinder with ε2 < ε1 is more attractive than

F̄ PE
x . Whereas, F̄x due to the dielectric cylinder with ε2 > ε1 is less attractive than

F̄ PE
x . Nevertheless, the dielectric constant does not seem to have a strong impact on

the binding force.

To summarize, in this paper, we derive the expressions for the binding force

between a PE-cylinder complex and an oppositely charged wall. Our results show

that the binding force due to the PE-metallic cylinder complex is different from that
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Figure 5.7: Normalized binding force F̄x per unit length on the charged wall due
to the PE-dielectric cylinder complex or the PE alone. The solid line represents the
binding force between the charged wall and the PE alone, and all the others curves
correspond to the PE-dielectric cylinder complex with different ratios of dielectric
constants ε21. Here, ā = 10−2, r̄0 = 0.1 and d̄ = 1.5r̄0.

due to the PE-dielectric cylinder complex. This difference depends on the value of

the electric potential on the metallic cylinder. For the PE-grounded metallic cylinder

complex the binding force is weaker than that between the PE-dielectric cylinder

complex and the charged wall. For the PE-positively charged metallic cylinder

complex, the binding force is less attractive or even repulsive compared with the

PE-grounded cylinder complex. For the PE-negatively charged metallic cylinder,

the binding force can be less or more attractive compared with the PE-dielectric

cylinder complex, depending on the magnitude of the net negative charge. This is

due to the two competing effects on the electric field of the PE: weakening from

the metal and strengthening from the net negative charge. The separation between

the PE and the cylinder also has a strong impact on the binding force. Specifically,

as the cylinder is moved away from the PE, both the effects of screening and net

charge decay, but weakening decays faster at short range; whereas, the effect of the

net charge decays faster at long range.
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5.5 Discussions

To discuss our results in connection with experiments, we note that during IEC

[8, 9], the CNT-DNA hybrids associated with metallic CNTs elute from the charged

column before those associated with semiconducting CNTs. This indicates that at

the same salt concentration, the force between the metallic CNT-DNA hybrids and

the column is weaker. Our calculations also show that the existence of a grounded

metallic cylinder weakens the electric field of the PE and results in a smaller bind-

ing force compared with the case of a neutral dielectric cylinder. Of course, in the

experiments, the CNT-DNA hybrids are suspended in a solution and the CNT may

in fact carry a certain amount of charge [18]. Our results show that the binding

force for a negatively charged metallic cylinder can be significantly larger. The fact

that the metallic CNT-DNA hybrids elute first in the IEC seems to indicate that the

metallic tubes in these experiments [8, 9] at least do not carry much stronger nega-

tive charges compared with the semiconducting tubes. We recognize that there are

some differences between the model presented here and the hybrids in the experi-

ments. For example, we have used a dielectric cylinder instead of a semiconductor.

And we have used a simpler geometry in order to obtain analytical expressions for

the binding force. However, with these simplifications, it is encouraging to see that

the results qualitatively agree with experiments.

To review the procedure of calculating the binding force in this work, we first

calculated the electric field of the PE-cylinder complex. This electric field is eval-

uated at the location of the charged wall and the force is calculated by multiplying

the field with the surface charge density and integrating the result over the wall.

Such an approach implicitly assumes that the charged wall does not alter the elec-

tric field of the complex. In addition, self interaction due to the charges on the wall

is not included. The charged wall is brought in only to measure the force due to

the PE-cylinder complex. In other words, by calculating the force, we are essen-

tially addressing the strength of the electric field due to the PE-cylinder complex

and how it is affected by the electronic nature of the cylinder. The above proce-

dure is often used when calculating force/energy between charged entities [10, 19].
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The response of the wall can be included by adding to the boundary value problem

another equation governing the electric potential inside the wall and appropriate

boundary conditions across the wall. But because in this work, we focus on how

the responsive cylinder affects the electric field of the PE, we have neglected this

effect.

In this paper, we use a simplified geometry for the PE-cylinder complex near the

charged wall. This simplification has allowed us to obtain an analytical expression

for the binding force between the PE-cylinder system and the wall, which in turn

has facilitated the demonstration that the binding force strongly depends on the

nature of the responsive cylinder. A better representation of the DNA-CNT hybrid

would be a helix of charges wrapped around the CNT, which would prohibit an

analytical solution. Finite element simulation on this problem is being conducted

and the results will be reported elsewhere.

Usually when a highly charged particle is embedded in an electrolyte solution,

the oppositely charged ions are attracted to the vicinity of this particle, effectively

reducing its charge. This phenomenon is known as counterion condensation (CC)

[11]. Manning developed a comprehensive theory of counterion condensation [20],

which is widely used in modeling the electric field of charged molecules located in

an electrolyte solution. In his theory, the entropic energy required to move coun-

terions to the particle has a term that is singular in concentration in the dilute limit

[20]. The behavior of the electrostatic energy in the dilute limit determines the

amount of CC θ. In our present work, we do not consider CC, since we expect

that counterion release (partial if not total) occurs when the PE-cylinder complex

approaches the oppositely charged wall. Counterion release is a phenomenon that

occurs when two oppositely charged particles embedded in an electrolyte solution

approach each other [21–23]. At the distance at which the electric fields of the

two oppositely charged particles start penetrating each other, counterions leave the

vicinity of the charged particles and counterion release occurs. By considering CC

on two lines of discrete charges of opposite sign and using the result reported by

Ray and Manning [24], we found that there is no CC when the distance between

the two lines is smaller than the Debye length. Quite recently, the first direct ex-
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perimental evidence of counterion release was shown by Harries et al. [21]. These

authors by measuring the conductivity of the solution demonstrated counterion re-

lease on the complex of cationic lipid and DNA. Note also that in [10], the binding

free energy of CNT-DNA hybrid to a positively charged column does not include

the effect of CC.

To incorporate possible CC in our work, we have tried to rigourously apply

Manning’s theory of CC by obtaining an analytical solution for the electrostatic en-

ergy with contributions from both charges σS and σPE in D0. However, applying

the BCs led to a system of equations with infinite dimension for the unknown coef-

ficients in the expression of the electric potential, which cannot be solved without

making further approximations. Another option for incorporating CC is to perform

numerical simulations to calculate the electrostatic energy at different salt concen-

trations. The amount of CC θ can be found by studying the behavior of the electro-

static energy in the dilute limit. This is not trivial, because simulations on a dilute

solution require a very large system, which is computationally expensive. This is

out of the scope of this work. Finally, we mention that we have only considered a

neutral dielectric cylinder in this work. The case of a charged dielectric cylinder

can be studied by modifying the field equation inside the dielectric and the BC on

its surface. We believe it is an interesting problem but leave it to a future work.
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Chapter 6
A model for CNT-DNA Hybrid using
One Dimensional Density of States 1

6.1 Introduction

Carbon nanotubes (CNTs) are a novel nano-material with a number of exceptional

electronic, mechanical, and thermal properties [1, 2]. Depending on their chirality

CNTs have different structures and electronic properties [1, 2], and can be catego-

rized into metallic or semiconducting tubes. CNTs exhibit interesting structure and

behavior when hybridized with single-stranded DNA (ssDNA) molecules [3]. In

the experiments conducted by Zheng et al. it was found that ssDNA molecules can

wrap around CNTs and form CNT-DNA hybrids, allowing the dispersion of poorly

soluble CNT bundles in an electrolyte solution [3, 4]. Utilizing the method of ion

exchange chromatography (IEC), the dispersed CNT-DNA hybrids can be sepa-

rated according to the chirality of the CNT core. Specifically, it was first observed

in experiments that, as the salt concentration of the solution increased [3], metallic

CNT-DNA hybrids eluted earlier from the column than semiconducting CNT-DNA

hybrids. In subsequent work by the same authors, specific DNA sequences have

been identified that are able to separate twelve semiconducting CNTs according to

their chiralities [5].

To understand the experimental observations by studying the interaction be-

tween CNT and DNA as well was the properties of the CNT-DNA hybrids, mod-

els at different scales have been developed, including quantum mechanics calcula-

tions [6–8], molecular dynamics (MD) [4, 9, 10] and continuum modeling [11, 12].

Rotkin et al. studied the electronic structure of the CNT-DNA hybrid in vacuum

[6, 7] using semiempirical tight binding modeling. Specifically, they considered

Poly(T) helically wrapped around the (7,0) CNT. The polarization component of

1A version of this chapter is in preparation for publication.
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the cohesion energy of the CNT-DNA hybrid was calculated [7]. Their results con-

firmed that the CNT-DNA hybrids were highly stable. Enyashin et al. studied

the stability and electronic structure of CNT-DNA hybrids using density-functional

tight-binding method [8]. Also in vacuum, the equilibrium configurations of CNT-

Poly(T) hybrids were determined in the molecular simulations of Zheng et al. via

energy minimization [3]. It was found that Poly(T) ssDNA could take several con-

figurations around CNT, one of which was a helical wrapping, consistent with im-

ages from atomic force microscopy (AFM) [4]. The above analysis are all con-

ducted in the absence of an aqueous solution. This can be an important factor

because in the experiments of Zheng et al., dispersion of the CNT-DNA hybrids

occurred in a dilute electrolyte solution, and their separation was achieved by grad-

ually increasing the salt concentration. Using scaling analysis coupled with molecu-

lar dynamics (MD) simulations in an aqueous solution, Manohar et al. [9] discussed

the important interactions contributing to the hybrid formation. In a dilute solution,

two main contributions were identified: 1) electrostatic interaction between DNA

charges and CNT; and 2) adhesion between DNA and CNT. Subsequent MD sim-

ulations were performed by Johnson et al. [10] in an aqueous environment, where

possible configurations of the CNT-DNA hybrids, the process of self-assembly of

the hybrids, and energetics of the hybrids were studied. The major benefit of MD

simulations is that they give valuable insights into the molecular details and dy-

namics of the hybrids. However, these simulations remain computationally expen-

sive, allowing systems of up to 1.000.000 atoms to be simulated for up to a few

microseconds [10, 13]. More importantly, classical MD simulations rely on the

molecular mechanics force field, and a force field that can truly reflect the electronic

response of the CNTs is not yet available. In the aforementioned MD works, the

CNT atoms are modeled as uncharged particles that interact with DNA, water and

ions only through the Lennard-Jones potential [14]. In other words, in these simula-

tions, CNTs of different chiralities only differ in structure, but not in their electronic

properties. There have also been attempts to model the CNT-DNA hybrids at the

continuum level. Lustig et al. proposed an analytical model to describe the IEC

process for the CNT-DNA hybrids in electrolyte solution [11]. In their work, the
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electrolyte solution was modeled as a continuum medium using the Debye-Hückel

(DH) equation, the DNA was modeled as a helical line of discrete charges, the CNT

was modeled locally as a half-space, and its electronic property was represented as

either a metal or a dielectric. The elution model of the CNT-DNA hybrids in IEC

was developed by considering the free energy difference between the CNT-DNA

hybrid bound to the IEC column and the free hybrid in the bulk solution. Their

model predicted that for a given hybrid dimension, with increasing salt concentra-

tion of the electrolyte solution, the metallic CNT-DNA hybrids would elute earlier

from the column than the semiconducting ones. This is in agreement with the orig-

inal experiments [3, 4]. It should be noted that in this analytical model, several

assumptions were made in order to simplify the analysis. First, the CNT was mod-

eled locally as a half space, that is, its curvature was neglected. Second , the CNT

was modeled as a solid metal or dielectric. Finally, the electronic response of the

metal or dielectric was incorporated using the method of image charge [15], which

is approximate. Malysheva et al. [12], in an attempt to evaluate how the attraction

of the CNT-DNA hybrid to the IEC column depends on the nature of the CNT core,

calculated the binding force between a charged wall and a complex consisting of a

polyelectrolyte (PE) and a metallic or dielectric cylinder. The helical wrapping was

simplified, whereas the governing equations for the electric potential in the solution

and in the interiors of the PE and the cylinder were formulated exactly, in addition

to accurate conditions across the domain boundaries. The results were in part con-

sistent with previous predictions in that the binding force associated with the PE

near a grounded metallic cylinder was found to be weaker than that associated with

the PE near a neutral dielectric cylinder. This trend, however, could be different if

the metallic cylinder was not grounded. In this work the CNT’s response was again

greatly simplified and approximated by a solid metal or dielectric.

The previous works revealed several important elements in modeling the elec-

trostatics of the CNT-DNA hybrids: the charges on the DNA, the electrolyte envi-

ronment and the electronic response of the CNT. Each of the previous works have

captured some of the key elements but none has incorporated all of them. The

quantum mechanical calculations properly considered the DNA charges and the
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electronic response of the CNT, but neglected the electrolyte solution surrounding

the hybrid. The MD simulations included the DNA charges and electrolyte solution,

but the CNT’s response was absent from the force field. The continuum models of-

ten simplified the CNT into solid metal or dielectric. In this work, we attempt to

integrate these elements into a single theoretical frame at the continuum level. We

propose a model system to represent a CNT-DNA hybrid located in an electrolytic

environment. The electronic response of CNT to DNA charges is incorporated us-

ing the density of state (DOS) proposed by Mintmire et al. [16]. This DOS can be

explicitly expressed in terms of the chirality of the CNT, and therefore can be read-

ily integrated into the continuum electrolyte theory. There are two main purposes of

this work. First, as an attempt to include all the elements crucial to the electrostatics

of the hybrid, we want to examine whether this model is able to capture the exper-

imentally observed difference between hybrids with different CNT cores. Second,

it is known that the DOS model [16] has its limitations; hence it is desirable to see

if it is applicable to the CNT-DNA hybrid system considered here.

The paper is organized as follows. In Section 6.2, we describe the model system

and chosen mathematical approach. The boundary value problem (BVP) for the

electric potential is defined in Section 6.3. The results and discussions are given in

Section 6.4. Finally, conclusions are presented in Section 6.5.

6.2 Problem description

The model under consideration consists of a CNT which is wrapped by a DNA

molecule and the hybrid is embedded in an electrolyte solution. The CNT is mod-

eled as a cylindrical surface of radius rCNT . In an electrolyte solution, the backbone

of a DNA molecule becomes negatively charged due to deprotonation, and the neg-

atively charged DNA wraps around CNT in helical fashion [3]. In this work, the

helical wrapping of the DNA is simplified by smearing out the DNA charges onto

a cylindrical surface of radius rDNA > rCNT , which is adopted from the standard

primitive model for a polyelectrolyte [17, 18]. The uniform surface charge den-

sity on the cylindrical surface representing DNA is denoted as σDNA, such that
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σDNA < 0. σDNA depends on the wrapping angle of DNA around CNT. The effec-

tive range for σDNA is estimated in Subsection 6.4.2. The two cylinders, represent-

ing CNT and DNA, are aligned so that their axes coincide. In addition, both cylin-

ders are assumed to be very long along their axes, so that the problem is essentially

two-dimensional, as shown in Figure 6.1. The CNT is assumed to be uncharged be-

fore the introduction of DNA. In the presence of charged DNA, its electric field can

induce positive charges on the surface of the CNT [19]. The induced charge on the

CNT surface is denoted by σCNT , such that, σDNAσCNT < 0. Due to the proposed

geometry for the CNT-DNA hybrid, σCNT is uniform along the circumference of

the CNT (there is no dependency on the polar angle), and it has a constant value

along the axis of the CNT. This means that the surface charge density on the CNT

is one dimensional (1D). Here, r is used to denote the polar radius. This geometry

allows one to calculate the induced charge using the 1D DOS proposed by Mintmire

et al. [16], which has been widely used in calculating charge generation on CNT

[20, 21]. The exterior region to the CNT-DNA hybrid, denoted by D0, is occupied

1D
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CNTσ

DNAσ

1ε
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Figure 6.1: Geometry of the model CNT-DNA system. r is the polar radius, rCNT

and rDNA are radii of the CNT and the DNA, respectively. D2 is the interior region
of the DNA, where electric potential φ2 is defined. D1 is the region between the two
cylindrical surfaces, with the electric potential φ1 and dielectric constant ε1. D0 is
the exterior region to the hybrid, with φ0 and ε0.

by an electrolyte solution with dielectric constant ε0 and the Debye length 1/k [22].

The space between the DNA and the CNT, D1, is assumed to be free of charges and

has the dielectric constant ε1. The region D1 will be referred to hereafter as the ring.
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From MD simulations [9], it is found that a few water molecules are between the

DNA and the CNT. Therefore, it is not known exactly what value for the dielectric

constant ε1 should be taken in the region between the DNA and the CNT. In this

work, two limiting cases for ε1 are considered, that is, ε1 = 1 corresponding to a

region occupied by vacuum (no water molecules in D1) and ε1 = 80 corresponding

to a region fully occupied by water. The interior of the CNT D2 is occupied by

a vacuum, which is a reasonable assumption for a pristine, unoxidized CNT in an

aqueous solution [10]. The electric potential in D0 is denoted as φ0, in D1 as φ1,

and in D2 as φ2. In Section 6.3, the BVP for the electric potential in all regions is

established. Consequently, we solve for the electric potential in all regions. Specif-

ically, we are interested in φ0 and how it changes with the electronic response of

the CNT, because it determines the interaction strength between the hybrid and an

object in its exterior region (that is, the IEC column).

6.3 BVP for the electric potential

The governing equation for the electric potential φ0 in an electrolyte solution is

given by the Debye-Hückel (DH) equation [22]

∇2φ0 = k2φ0 in D0, (6.1)

where ∇2 is the Laplacian, and k is the inverse Debye length. The Debye length 1/k

of an electrolyte solution scales with its salt concentration c as 1/k ∝ 1/
√

c [22].

That is, as the salt concentration increases, the Debye length decreases. Since there

are no free charges in D1 and D2, the electric potential in these regions satisfies the

Laplace equation [15]

∇2φi = 0 in Di, i = 1, 2. (6.2)

The boundary conditions (BCs) are the following:

lim
r→∞

φ0 = 0, (6.3a)

φ1|r=rCNT
= φ2|r=rCNT

, (6.3b)

φ0|r=rDNA
= φ1|r=rDNA

, (6.3c)
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ε0
∂φ0

∂r
|r=rDNA

− ε1
∂φ1

∂r
|r=rDNA

= −σDNA

ε
, (6.3d)

∂φ2

∂r
|r=rCNT

− ε1
∂φ1

∂r
|r=rCNT

=
σCNT

ε
. (6.3e)

Equation (6.3a) is the condition that the electric potential vanishes at infinity. Equa-

tions (6.3b) and (6.3c) are the conditions of continuity of the electric potential on

the CNT and on the DNA, respectively. Equations (6.3d) and (6.3e) are the condi-

tions of discontinuity of the electric displacement on the surfaces of the DNA and

the CNT, respectively. Here, ε is the permittivity of free space.

σCNT in Eq. (6.3e) is the induced surface charge density on the surface of the

CNT. To calculate σCNT , Minmire et al. results for a universal 1D DOS for CNTs

[16] are utilized. The universal expression for the 1D DOS on the CNT is based

on a linear energy dispersion relation for graphene [1, 2, 16]. This result has been

shown to be in good agreement with ab initio calculations for low energies E, that

is, when |E| << |Vppπ| [16], where Vppπ is the nearest-neighbor interaction, and

|Vppπ| = 2.5 eV. The expression for the universal DOS per carbon atom near the

Fermi level is the following [16]

υ(E) =
a

π2rCNT |Vppπ|

∞∑
m=−∞

g (E, γm) , (6.4)

where a = 2.49 Å is the lattice constant of the graphene sheet, and it is related to

the distance between the carbon atoms aC−C = 1.44 Å as a =
√

3aC−C

g(E, γm) =


|E|√

E2−γ2
m

, |E| > |γm|,

0, |E| < |γm|.
(6.5)

and

|γm| =
a|Vppπ (3m − n1 + n2) |

2
√

3rCNT

. (6.6)

Here m is an integer, and (n1, n2) is a pair of integer indices defining CNT’s chiral-

ity. The metallic CNTs are distinguished from the semiconducting CNTs through

γm, which explicitly depends on (n1, n2). For metallic CNTs, n1 − n2 = 3q, where

q is an integer, whereas for semiconducting CNTs, n1 − n2 6= 3q.

The amount of induced charge δρ per carbon atom can be calculated by integrat-

ing the product of the DOS with the Fermi distribution function over all energies
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[21]

δρ = −e

∞∫
−∞

υ(E) sgn(E) F [sgn(E)(E − EF − qφCNT )] dE, (6.7)

where EF is the Fermi level (zero for undoped tubes), sgn(E) is the sign function

which is 1 for E > 0 and −1 for E < 0, and F (E) = 1/ [1 + exp(E/kBT )]

is the Fermi distribution function, e is the unsigned charge of an electron, φCNT

is the electric potential on the CNT, kB is the Boltzmann constant, and T is the

temperature. In this expression for δρ, the integration from −∞ to 0 calculates the

amount of holes per carbon atom and the integration from 0 to ∞ calculates the

amount of electrons per carbon atom.

The surface charge density on the CNT per unit area is defined as σCNT = δρ/A,

where A =
√

3a2/4 is the area per carbon atom. Together with mathematical

manipulations of δρ, the expression for σCNT can be derived in the following form

σCNT = − 4e√
3aπ2rCNT |Vppπ|

(6.8)

×
∞∫

0

sinh
(

EF +eφCNT

kBT

)
cosh

(
EF +eφCNT

kBT

)
+ cosh

(
E

kBT

)g(E, γm)dE.

By examining Eq. (6.8), it can be seen that the amount of charge on the CNT σCNT

is not fixed, but rather it depends on φCNT . In the trivial case when σDNA = 0, the

electric potential is zero everywhere, that is, φCNT = 0. For undoped CNT, Eq. (6.8)

predicts that σCNT = 0, which is expected. A negatively charged DNA (σDNA < 0)

causes φCNT to be negative, and hence σCNT as given in Eq. (6.8) is positive, that

is, σCNT > 0. Since the CNT is assumed to be uncharged before a DNA molecule

is introduced, the total charge on the CNT surface is not maintained when the DNA

charges are present. This means that the CNT is essentially connected to a source of

charges or grounded. Limitations of this approach will be discussed in Subsection

6.4.4.

To simplify the calculations and analysis, let us introduce the following normal-

ization

φ̄0 =
ez

kBT
φ0, φ̄1 =

ez

kBT
φ1, φ̄2 =

ez

kBT
φ2, φ̄CNT =

ez

kBT
φCNT , (6.9)
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σ̄DNA =
aez

kBT

σDNA

ε
, σ̄CNT =

aez

kBT

σCNT

ε
, r̄DNA =

rDNA

a
, (6.10)

r̄CNT =
rCNT

a
, k̄ = ka, r̄ =

r

a
, β =

1

z
, lB =

e2

4πε0εkBT
, l̄B =

lB
a

, (6.11)

Ē =
rCNT 2

√
3

a|Vppπ|
E, α =

|Vppπ|
2
√

3kBT
,

αĒ

r̄CNT

=
E

kBT
, (6.12)

γ̄m = γm
2
√

3rCNT

a |Vppπ|
=


|3m′ − 1| , semiconducting (n1 − n2 6= 3q)

|3m′| , metallic (n1 − n2 = 3q)
(6.13)

where z is the valence of the cation in the solution, and lB is the Bjerrum length

[22]. Here, m′ has been used to replace m − q in Eq. (6.6), m′ is also integer. The

normalized BVP has the following form

∂2φ̄0

∂r̄2 + 1
r̄

∂φ̄0

∂r̄
= k̄2φ̄0 in D0,

∂2φ̄1

∂r̄2 + 1
r̄

∂φ̄1

∂r̄
= 0 in D1,

∂2φ̄2

∂r̄2 + 1
r̄

∂φ̄2

∂r̄
= 0 in D2,

(6.14)

φ̄0(r̄ → ∞) = 0, (6.15a)

φ̄1|r̄=r̄CNT
= φ̄2|r̄=r̄CNT

, (6.15b)

φ̄0|r̄=r̄DNA
= φ̄1|r̄=r̄DNA

, (6.15c)

ε0
∂φ̄0

∂r̄
|r̄=r̄DNA

− ε1
∂φ̄1

∂r̄
|r̄=r̄DNA

= −σ̄DNA, (6.15d)

1

ε0

∂φ̄2

∂r̄
|r̄=r̄CNT

− ε1

ε0

∂φ̄1

∂r̄
|r̄=r̄CNT

= σ̄CNT , (6.15e)

where

σ̄CNT =



metallic: σ̄m
CNT = − 8zl̄B

3πr̄2
CNT

tanh
(

αĒF

r̄CNT
+ βφ̄CNT

)
×

∞∫
0

1

1+
cosh(αĒ/r̄CNT )

cosh(αĒF /r̄CNT +βφ̄CNT )

dĒ/3e−1∑
m′=d−Ē/3e

Ē√
Ē2−(3m′)2

dĒ,

semiconducting: σ̄s
CNT = − 8zl̄B

3πr̄2
CNT

tanh
(

αĒF

r̄CNT
+ βφ̄CNT

)
×

∞∫
0

1

1+
cosh(αĒ/r̄CNT )

cosh(αĒF /r̄CNT +βφ̄CNT )

d(Ē+1)/3e−1∑
m′=d(−Ē+1)/3e

Ē√
Ē2−(3m′−1)2

dĒ.

(6.16)

Here, the superscript “m” stands for σ̄CNT on a metallic CNT, and the superscript

“s” stands for that on a semiconducting CNT.
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6.4 Results and discussions

In this section we provide the expressions for the electric potentials in each region

(D0, D1 and D2) and examine the tendency of their behavior.

6.4.1 Expressions for electric potential

The general solution to the ordinary differential equations, Eqs. (6.14), is

φ̄0 = C1K0

(
k̄r̄

)
+ C5I0(k̄r̄), (6.17)

φ̄1 = C2 + C3 ln(r̄), (6.18)

φ̄2 = C4 + C6 ln(r̄), (6.19)

where Ci (i = 1...5) are integration constants to be determined from the BCs,

K0 (x) and I0 (x) are the 0th order modified Bessel functions of the first and the

second kind, respectively. The asymptotic behavior of K0 (x) and I0(x) is such

that as x → ∞, K0(x) → 0 and I0 (x) → ∞ [23]. According to Eq. (6.15a),

the electric potential φ̄0, Eq. (6.17), should vanish at large distances from the CNT-

DNA hybrid, that is, when r̄ → ∞. Therefore, C5 = 0. The electric potential φ̄2 in

the interior of the CNT, Eq. (6.19), should be finite. Because the logarithmic term

exhibits singularity at r̄ = 0, C6 must be zero.

The unknown coefficients C1, C2, C3 and C4 can be found by utilizing the four

BCs, Eqs. (6.15b)–(6.15e). The final expressions for the electric potential in each

region are

φ̄0 =
r̄DNAσ̄DNA + ε0r̄CNT σ̄CNT

k̄r̄DNAε0K1

(
k̄r̄DNA

) K0

(
k̄r̄

)
in D0, (6.20)

φ̄1 =
r̄DNAσ̄DNA + ε0r̄CNT σ̄CNT

k̄r̄DNAε0K1

(
k̄r̄DNA

) K0

(
k̄r̄DNA

)
+

ε0

ε1

r̄CNT σ̄CNT ln
( r̄DNA

r̄

)
in D1, (6.21)

φ̄2 =
σ̄DNA K0

(
k̄r̄DNA

)
k̄ε0K1

(
k̄r̄DNA

)
+ r̄CNT σ̄CNT

[
ε0

ε1

ln

(
r̄DNA

r̄CNT

)
+

K0

(
k̄r̄DNA

)
k̄r̄DNAK1

(
k̄r̄DNA

)]
in D2. (6.22)
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As was mentioned earlier, σ̄CNT is the induced surface charge density on the CNT

by σ̄DNA and it is coupled with φ̄2 through Eq. (6.16). It is clear from Eq. (6.22)

that the electric potential in the interior of the CNT is a constant independent of

position r, that is, φ̄2 = φ̄CNT , the potential on the CNT surface. Therefore, in

order to determine the actual values of the electric potential, Eqs. (6.20)–(6.22)

need to be solved iteratively with Eq. (6.16).

Eqs. (6.20)–(6.22) also show that the electric potential depends on the following

parameters: r̄CNT (dimensionless radius of the CNT), r̄DNA (dimensionless radius

of the cylindrical surface representing DNA), σ̄DNA (normalized DNA charge den-

sity), k̄ (normalized Debye length of the solution), and ε1 (dielectric constant of the

ring region). Note that ε0 (dielectric constant of the aqueous solution) is fixed at

80 throughout this work. DNA dispersion of the CNTs was performed in a solution

with monovalent salt [3], therefore the region D0 is considered to be filled with a

univalent electrolyte solution (z = 1). In the following, we first demonstrate the

results for rCNT = 5 Å for both metallic and semiconducting CNTs. This value

for the radius rCNT is chosen because in the DNA-assisted CNTs separation exper-

iments, HiPco produced CNTs are used [5]. It is assumed that the mean diameter of

such CNTs is 1 nm [24]. The charges of a ssDNA molecule, when wrapped around

a CNT, are found to be located at a distance of 5 Å away from the circumference of

the CNT [9]. This means that the diameter of the cylindrical surface representing

DNA is 2 nm. Using this geometry, we present the electric potential for different

values of σ̄DNA and 1/k̄, which allows us to study how the electric potential de-

pends on the electronic nature of the CNT (metallic or semiconducting) at different

DNA’s helical angle and concentration of the solution. Because water molecules

have been reported [9] to locate between the CNT surface and DNA charges, there

is some uncertainty about what is an appropriate value for ε1. In the following, we

take the two limiting values: 1 for vacuum fully occupying the ring and 80 for water

fully occupying the ring, and demonstrate how the results can be different for the

two extreme situations. Finally, we will address the results for different CNT sizes.
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6.4.2 Estimation of the range of σ̄DNA

For the above mentioned geometry (rCNT = 5 Å, rCNT = 10 Å), let us estimate

an effective surface charge density σDNA on the cylinder representing the wrapped

ssDNA molecule. To do that let us look at Figure 6.2. The helical angle of the

wrapped ssDNA is defined as the angle between the DNA and the circumference

of the CNT (See Figure 6.2b). The neighboring charges on the backbone of the

DNArπ2

θ

DNAr

-

-

A A

B-

-

-

-
-

B

)(b)(a )(b

Figure 6.2: Geometry of the model CNT-DNA hybrid: a) three-dimensional model
of the CNT-DNA hybrid for a complete helix turn. DNA helix lays on the surface of
the outside cylinder with radius rDNA ; b) expanded view of the cylindrical surface
representing the DNA molecule for a complete helix turn.

DNA are considered to be 7 Å apart [25]. Thus, the charges corresponding to a

complete helix turn are e × (2πrDNA/ cos θ) × 7Å (See Figure 6.2b). The area of

the cylindrical surface corresponding to a complete helix turn is (2πrDNA)2 tan θ.

Therefore the areal density of the smeared charges is

σDNA = − e

7Å 2πrDNA sin θ
. (6.23)

In literature, different values of the wrapping angles for CNT-DNA hybrids are re-

ported. Lustig et al. have reported θ = 40o. Their result is supported by atomic

force microscopy (AFM) measurements [11]. Kilina et al. observed through scan-

ning tunneling microscopy (STM) measurements that very stable CNT-DNA hy-

brids are formed for θ = 26.4o [26]. Note that in these works [11, 26], the reported

helical angle was complementary to θ shown in Figure 6.2, and we have converted
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it to our definition. If we consider a wider range of θ that covers the previously re-

ported data, θ = (10o; 60o), the corresponding surface charge density of the cylinder

representing DNA is in the range of (−0.21;−0.04) C/m2. With the normalization

introduced in Eq. (6.10), the relation between σ̄DNA and σDNA is the following

σ̄DNA = σDNA [aez] / [εkBT ], where e = 1.6 × 10−19 C, kB = 1.38 × 10−23 J/K,

ε = 8.85 × 10−12 F/m, and z = 1. At room temperature T = 300 K, the range for

σ̄DNA is (−227.8;−45.68).

6.4.3 Numerical results

In this subsection, the numerical results are provided for the normalized electric

potential in all regions due to the CNT-DNA hybrid. Because the fundamental

difference between metallic and semiconducting CNTs is reflected through the in-

duced σ̄CNT , it will also be discussed in detail. Using the symbol φ̄, without any

subscripts, we define the combined electric potential in all regions (D2, D1 and

D0), that is, φ̄2 ∪ φ̄1 ∪ φ̄0. When it is needed to emphasize the type of the CNT

a certain subscript, “m” or “s”, will be added to σ̄CNT and φ̄. In Figures 6.3–6.8,

calculations are conducted for metallic and semiconducting CNT-DNA hybrids of

the same geometry as specified earlier. The Bjerrum length lB is taken to be 7 Å

[22]. Intrinsic CNT is considered, therefore the Fermi level is taken to be zero,

EF = 0. The normalized parameters which correspond to the mentioned fixed pa-

rameters are the following: α = 27.89, β = 1, r̄CNT = 2.01, r̄DNA = 4.02, and

l̄B = 2.81,which are fixed during the following discussion. We study a range of

the Debye length of the electrolyte solution, from 1 to 100 nm, and the normalized

values are 1/k̄ in the range (4.02; 402). σ̄DNA will be specified from the defined

range in Subsection 6.4.2, and ε1 will be taken as 1 or 80 to capture the limiting

situations.

As the first example, we use Figure 6.3 to describe the electric potential in each

region, and to compare φ̄ for the metallic CNT-DNA and for the semiconducting

CNT-DNA hybrids. Calculations are performed for the Debye length 1/k̄ being

equal to 402 (corresponding to 1/k = 100 nm), and the dielectric constant of the

ring ε1 = 80. The normalized surface charge density is taken to be σ̄DNA = −80
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corresponding to the wrapping angle of 29.7o. Figure 6.3(a) plots the normalized

electric potential φ̄ versus the normalized distance r̄. Each region has a certain range

for r̄, which is displayed on Figure 6.3(a), r̄ from the range [0; 2.01] belongs to D2;

r̄ from the range [2.01; 4.02] belongs to D1; and r̄ from the range [4.02; 80.32] be-

longs to D0. The black dashed line represents φ̄m due to the metallic CNT-DNA

hybrid, and the black solid line represents φ̄s for the semiconducting CNT-DNA hy-

brid. The general trend of φ̄(r) is the same for metallic and semiconducting CNTs.

Specifically, a negative source charge, σ̄DNA < 0, causes the normalized electric

potential in all regions to be negative, φ̄ < 0, with the largest magnitude at the loca-

tion of the DNA, that is r̄ = 4.02. In D0, as r̄ increases going away from the DNA,

the magnitude of the electric potential decreases. This is because the influence of

the DNA charge diminishes due to the screening from the electrolyte solution. In

D1, as r̄ decreases going away from the DNA to the CNT, the magnitude of the

electric potential also decreases, but the decrease is much more gradual due to the

absence of the ions. Finally, in D2, the electric potential is a constant independent

of position.
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Figure 6.3: a) the normalized potential φ̄ in all domains versus the normalized dis-
tance r̄ for the metallic and semiconducting CNT-DNA hybrids; b) the difference δφ̄
versus r̄. Here, α = 27.89, β = 1, EF = 0, l̄B = 2.81, r̄t = 2.01, ε0 = 80, r̄DNA =
2r̄CNT , σ̄DNA = −80, ε1 = 80 and 1/k̄ = 402.

As can be seen in Figure 6.3(a), the qualitative behavior is the same for both

curves. But there is a visible quantitative difference between them. For the same

normalized distance r̄, the magnitude of φ̄m is smaller than φ̄s in all three regions.

We are motivated by experiments done by Zheng et al. [3], therefore the main at-
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tention is given to the electric potential φ̄0 in D0. For any fixed r̄ from D0, the

magnitude of φ̄m
0 is smaller than that of φ̄s

0, that is,
∣∣φ̄m

0

∣∣ <
∣∣φ̄s

0

∣∣. This means that

the binding energy of the metallic CNT-DNA hybrid to the charged column will

be smaller. Therefore, as the salt concentration increases, the metallic CNT-DNA

hybrids will be eluting earlier. This fact is consistent with the experiments. The

quantitative difference between the two curves is plotted in Figure 6.3(b), where

δφ̄ is defined as δφ̄ = φ̄m − φ̄s. The largest difference appears to be in region D2.

Whereas in regions D1 and D0, as r increases, δφ̄ decreases. As was mentioned

before δφ̄ in D0 governs the difference in the electrostatic interaction with charged

objects in a solution, therefore we define the relative percentage difference in D0

as η0 =
∣∣φ̄m

0 − φ̄s
0

∣∣ /
∣∣φ̄m

0

∣∣ × 100%. Our calculations show that η0 ' 17.8% ev-

erywhere in D0 for the set of parameters 1/k̄, ε1 and σ̄DNA used here. Thus, the

electrostatic interaction of a charged object in solution with a metallic CNT-DNA

hybrid is approximately 20% weaker than that with a semiconducting CNT-DNA

hybrid, irrespective of it separation from the hybrids. This is a considerable differ-

ence, and it is consistent with the earlier observed elution of metallic CNT-DNA

hybrids in experiments [3].

In the above calculations, ε1 has been fixed at 80 corresponding to water fully

filling the gap between the CNT and the DNA. This may not be a case, as was

shown in previous MD simulations [9], where the space between them was ob-

served to be occupied only partially by water. In such a case, it is expected that this

ε1 can be much smaller than 80. To see how a smaller value for ε1 can affect the

results, let us to consider the other limiting situation where ε1 = 1 corresponding to

D1 free of water molecules. Figure 6.4 plots φ̄ versus r̄ for the same 1/k̄ = 402 and

σ̄DNA = −80, but ε1 = 1. As in the previous figure, the dashed black curve cor-

responds to the metallic CNT-DNA hybrid, and the solid black curve corresponds

to the semiconducting CNT-DNA hybrid. The same variation of φ̄ versus r̄ is ob-

served in all domains (See Figures 6.3(a) and 6.4(a)). In addition, the magnitude for

the electric potential φ̄m is still smaller than that of φ̄s in all regions. However, their

difference, δφ̄ as shown in Figure 6.4(b), is very different from the case of ε1 = 80.

While δφ̄ in region D2 is much larger in the case of ε1 = 1, being 9.62 compared
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with 2.8 in Figure 6.3(b), it undergoes a drastic drop in region D1, and becomes

significantly smaller than the case of ε1 = 80 in region D0, as shown in the insert

of Figure 6.4(b). The relative percentage difference is approximately η0 = 4.26%

for ε1 = 1 everywhere in D0. This means that with ε1 = 1, the interaction energy

between a charged object in a solution and the CNT-DNA hybrid is only less than

5% weaker in the case of a metallic-CNT core.
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Figure 6.4: a) the normalized potential φ̄ in all domains versus the normalized
distance r̄ for metallic and semiconducting CNT-DNA hybrids; b) the difference
δφ̄ versus r̄. Here, α = 27.89, β = 1, EF = 0, l̄B = 2.81, r̄CNT = 2.01, ε0 =
80, r̄DNA = 2r̄CNT , σ̄DNA = −80, ε1 = 1 and 1/k̄ = 402.

At first, the fact, that as ε1 decreases the difference δφ̄ decreases in D0, ap-

pears to be counterintuitive. The dielectric constant is a factor that characterizes

the polarization of media. Hence intuitively, a smaller ε1 introduces a smaller elec-

trostatic screening from the dielectric media in D1, and may enlarge the difference

between φ̄m and φ̄s. To explain this observation, let us look at the expression for

φ̄0, Eq. (6.20), and identify the factors influencing its behavior as ε1 changes. It can

be seen that the terms due to the DNA, r̄DNA, σ̄DNA do not change as ε1 changes.

After careful consideration, it could be noticed that σ̄CNT in the second term de-

pends on φ̄2, which in turn depends on ε1. Therefore, in order to explain why δφ̄ in

D0 decreases as ε1 decreases, we will examine how φ̄2 and σ̄CNT vary with ε1.

Figures 6.5(a) and 6.5(b) depict φ̄2 versus ε1 and σ̄CNT versus ε1 for both types

of the CNT-DNA hybrids. On both figures, the dashed black curve represents φ̄m
2

or σ̄m
CNT , and the solid black curve represents φ̄s

2 or σ̄s
CNT . From these two figures,

it can be seen that at a given ε1,
∣∣φ̄m

2

∣∣ <
∣∣φ̄s

2

∣∣ and |σ̄m
CNT | > |σ̄s

CNT |, respectively.

These two results are consistent and can be explained by Eq. (6.22). The first term
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in Eq. (6.22) is the electric potential on the CNT surface in D2 due to the DNA

charges only, and is negative because σ̄DNA < 0. The second term in Eq. (6.22)

represents the effect of the CNT induced charges, and being positive, competes with

the first term in determining φ̄2. The larger σ̄CNT , the less negative φ̄2 becomes.

Since at a given ε1, more charges are generated on the metallic CNT than on the

semiconducting CNT, the magnitude for the electric potential on the metallic CNT

is smaller than on the semiconducting CNT.
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Figure 6.5: a) the normalized electric potential φ̄2 on the tube versus ε1; b) the nor-
malized surface charge density σ̄CNT on the tube versus ε1. Here, α = 27.89, β =
1, EF = 0, 1/k̄ = 402, ε0 = 80, ε1 = (1, 80), r̄CNT = 2.01, r̄DNA = 2r̄CNT , l̄B =
2.81, and σ̄DNA = −80.

Eq. (6.22) also shows that the dependence of φ̄2 on ε1 is present only in the

second term. As ε1 increases, the second term decreases, causing φ̄2 to be more

negative, as seen in Figure 6.5(a). Physically, the larger screening associated with a

larger value of ε1 results in a smaller electric field in the ring, and hence less increase

in electric potential from the DNA surface to the CNT surface. The net result of this

is the more negative potential on the CNT and more induced positive charges. This

trend is true for both metallic and semiconducting CNT-DNA hybrids. However,

the increase in σ̄CNT with ε1 is more pronounced for metallic CNT. Consequently,

the difference δσ̄CNT = σ̄m
CNT − σ̄s

CNT is significantly smaller at a small value of

ε1. Since from Eq. (6.20), the electric potential φ̄0 crucially depends on σ̄CNT , the

smaller δσ̄CNT that occurs at smaller ε1 leads to the fact that δφ̄ in D0 decreases as

ε1 is changed from 80 to 1.

In Figure 6.5(b), σ̄DNA = −80, whereas the induced charges σ̄CNT for the two
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types of tubes is less than 0.6 for the entire range of ε1. This represents a very small

fraction of the σ̄DNA. For example, at ε1 = 80, the generated charge on the metallic

CNT σ̄m
CNT is only 0.7% of σ̄DNA and the generated charge on the semiconducting

CNT σ̄s
CNT is only 0.37% of σ̄DNA. Nevertheless, such small amount of induced

charges cause nearly a 20% difference between φ̄m
0 and φ̄s

0. This can be explained

by examining Eq. (6.20). The second term in the numerator captures the effect of

σ̄CNT , and it is amplified by ε0 = 80, the dielectric constant of the solution.

The above results are obtained for fixed values of 1/k̄ = 402 and σ̄DNA = −80.

Now, it is of interest to study how varying the Debye length changes the results

for φ̄0. It is important because in the experiments [3], different CNT-DNA hybrids

were separated according to the electronic properties of CNT’s core by increasing

the salt concentration of the electrolyte solution (decreasing Debye length). Figure

6.6 plots φ̄0 versus 1/k̄ evaluated at an arbitrary point r̄ = 3r̄DNA. The black dashed

curve represents φ̄m
0 , and the solid black curve represents φ̄s

0. For the same value of

the Debye length 1/k̄, the magnitude of φ̄m
0 is smaller than φ̄s

0. For example, for the

metallic CNT-DNA hybrid, as 1/k̄ changes from 400 (corresponding to the Debye

length of 100 nm) to 4 (corresponding to the Debye length of 1 nm), φ̄m
0 at the point

r̄ = 3r̄DNA changes from −10.54 (corresponding to φm
0 = −0.27 V) to −0.22

(corresponding to φm
0 = −5.7 mV). For the semiconducting CNT-DNA hybrid, if

the normalized Debye length is reduced from 400 to 4, φ̄s
0 at the point r̄ = 3r̄DNA

changes from −12.41 (corresponding to φs
0 = −0.32 V) to −0.23 (corresponding

to φs
0 = −5.9 mV). Therefore, as 1/k̄ decreases, the difference between φ̄m

0 and

φ̄s
0 greatly decreases. This happens because the electric potential due to the source,

σ̄DNA, becomes screened.

Before this moment we have studied cases with varying ε1 and 1/k̄. Now, it is

time to fix 1/k̄ and ε1 and vary σ̄DNA. This is important because different helical

angles have been reported [11, 26], and the magnitude for σ̄DNA is influenced by

the helical angle (See subsection 6.4.2). Here, we examine the curves of the elec-

tric potential in all domains for two different values of σ̄DNA corresponding to two

different wrapping angles. Figure 6.7 plots φ̄ versus r̄ for 1/k̄ = 402, ε1 = 80: a)

σ̄DNA = −45.68 corresponding to θ = 60o; and b) σ̄DNA = −227.8 correspond-
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Figure 6.6: The normalized electric potential φ̄0 evaluated at the point r̄ = 3r̄DNA

versus the normalized Debye length 1/k̄ of the solution. For the following pa-
rameters α = 27.89, β = 1, EF = 0, ε0 = 80, ε1 = 80, l̄B = 2.81, r̄CNT =
2.01, r̄DNA = 2r̄CNT , σ̄DNA = −80 and 1/k̄ = (4.02, 402).

ing to the wrapping angle θ = 10o. The black dashed line represents φ̄m due to

the metallic CNT-DNA hybrid, and the black solid line represents φ̄s for the semi-

conducting CNT-DNA hybrid. The general trend of the curves in each domain is

the same as in Figures Figure 6.3(a) and 6.4(a). For σ̄DNA = −45.68, as it can

be seen from Figure 6.7(a), for any r̄,
∣∣φ̄s

∣∣ >
∣∣φ̄m

∣∣ , and the relative difference is

η0 = 37.11%. Whereas, for σ̄DNA = −227.8, the reverse behavior is observed.

That is, for any r̄,
∣∣φ̄s

∣∣ <
∣∣φ̄m

∣∣, and especially for
∣∣φ̄s

0

∣∣ <
∣∣φ̄m

0

∣∣. The relative differ-

ence is η0 = 9.53%. The first result implies that φ̄m
0 is approximately 37% weaker

than φ̄s
0. Whereas, the latter result implies that φ̄m

0 is approximately 10% stronger

than φ̄s
0. To explain why this is the case, let us look at the expression for φ̄0, that

is, Eq. (6.20). This expression depends in σ̄CNT , which in turns depends on φ̄2.

Therefore, in the next figure, let us look how σ̄CNT and φ̄2 vary with σ̄DNA.

Figure 6.8(a) plots σ̄CNT versus σ̄DNA and Figure 6.8(b) plots φ̄2 versus σ̄DNA

for the Debye length of 100 nm, and ε0 = ε1 = 80. As can be seen from Fig-

ure 6.8, when σ̄DNA is in the range from ∼ −171 (corresponding to 13.4o) to

−42 (corresponding to 70o), then σ̄m
CNT > σ̄s

CNT and
∣∣φ̄m

2

∣∣ <
∣∣φ̄s

2

∣∣. σ̄DNA is not

considered to be larger than −42 because it corresponds to a very loose wrapping

of a DNA around CNT. To our knowledge, wrapping angles larger than 700 (con-

sistent with our formulation) were not observed experimentally. As the magnitude

of σ̄DNA increases further, the behavior of σ̄s
CNT with respect to σ̄m

CNT becomes

“wave-like”, as well as, the behavior of φ̄m
2 with respect to φ̄s

2. As shown on Figure
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Figure 6.7: The normalized potential φ̄ in all domains versus the normalized dis-
tance r̄ for the metallic and semiconducting CNT-DNA hybrids: a) σ̄DNA = −45.68
and b) σ̄DNA = −227.8. Here, α = 27.89, β = 1, EF = 0, l̄B = 2.81, r̄CNT =
2.01, ε0 = 80, r̄DNA = 2r̄CNT , ε1 = 80 and 1/k̄ = 402.

6.7, this behavior influences the curves of the electric potential in all domains. It is

known from the experimental results that the metallic CNT-DNA hybrids elute ear-

lier from the charged wall than the semiconducting ones. Therefore, it is expected

that
∣∣φ̄m

2

∣∣ <
∣∣φ̄s

2

∣∣. One of the reason for the “wave-like” behavior observed in Fig-

ure 6.8 could be that the universal DOS is only valid for low energies |E| << Λ =

2rCNT /aC−C [16], that is, low electric potential as well. For higher values for the

electric potential, the results might not be accurate.
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Figure 6.8: a) the normalized surface charge density on the CNT σ̄CNT versus
σ̄DNA; b) the normalized electric potential on the CNT φ̄2 versus σ̄DNA. For
the following parameters α = 27.89, β = 1, EF = 0, ε0 = 80, ε1 = 80, l̄B =
2.81, r̄CNT = 2.01, r̄DNA = 2r̄CNT , and 1/k̄ = 402.

Finally, let us study how the difference between the electric potential in D0 is

influenced by the size of the CNTs. In the above calculations we have considered

rCNT = 5 Å and rDNA = 10 Å (See Figure 6.3). Keeping the distance between the
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CNT and the DNA fixed and equal to 5 Å, let us look at the two cases: a) rCNT = 4

Å (r̄CNT = 1.61) [9] and b) rCNT = 1 nm (r̄CNT = 4.02) [1]. The latter value for

rCNT is chosen because the observed ssCNTs have diameters smaller than 2 nm [1].

As can be seen from Eq. (6.23), σ̄DNA depends on rDNA. Previously σ̄DNA equal

to −80 was considered, it corresponds to the wrapping angle equal to θ = 29.70

(See Figure 6.3). By keeping the same wrapping angle (θ = 29.70): rDNA = 9 Å

(r̄DNA = 3.61) corresponds to σ̄DNA = −88.71, and rDNA = 15 Å (r̄DNA = 6.02)

corresponds to σ̄DNA = −53.23. In this calculations, other parameters are kept

fixed (as in the first example) α = 27.89, β = 1, l̄B = 2.81, 1/k̄ = 402, and

ε1 = 80. Figure 6.9 plots φ̄ versus r̄ for the parameters mentioned above and for

the following geometries of the CNT-DNA hybrids: a) r̄CNT = 1.61, r̄DNA = 3.61

and σ̄DNA = −88.71; and b) r̄CNT = 4.02, r̄DNA = 6.02 and σ̄DNA = −53.23.

As before, the black dashed line represents φ̄m, and the black solid line represents

φ̄s. The general trend of the curves in each domain is the same as in Figures 6.3(a),

6.4(a) and 6.7. Our numerical results show that for a) η0 ' 27.72%, and b) η0 '

2.13%. This shows that as rCNT increases the difference η0 decreases. It is expected

because for a semiconducting CNT, the band gap is inversely proportional to its

diameter [1]. This means that a larger diameter semiconducting CNT have a smaller

gap, which implies such semiconducting CNT behaves more like a metallic one.
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Figure 6.9: The normalized potential φ̄ in all domains versus the normalized
distance r̄ for the metallic and semiconducting CNT-DNA hybrids a) r̄CNT =
1.61, r̄DNA = 3.61 and σ̄DNA = −88.71; and b) r̄CNT = 4.02, r̄DNA = 6.02 and
σ̄DNA = −53.23 . Here, α = 27.89, β = 1, EF = 0, l̄B = 2.81, ε0 = 80, ε1 = 80
and 1/k̄ = 402.
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6.4.4 Limitations

This work has several limitations. First, in this work the helical structure of DNA

molecule is simplified by smearing the charges uniformly onto a cylindrical surface.

This is a standard treatment in continuum theories of polyelectrolyte, and allows us

to obtain the solution in a semi-analytical form. More accurate geometry for the

CNT-DNA hybrid can be incorporated by considering the DNA backbone charges

explicitly via three dimensional modeling.

The main limitation of this model resides in the calculation of σCNT . First

of all, the universal 1D DOS used in σCNT is approximate. It is valid for small

values of energy |E| << |Vppπ|. We identified the range of σDNA; such that the

behavior of the electric potential in D0 is consistent with experimental observations

by Zheng et al. Second, the net charge on the CNT is not zero, and it depends

on φ2. This implies that the CNT is connected to a source of charges, which is

the case when the CNT is grounded. This may not be a good assumption for a

CNT suspended in an electrolyte solution. In the situation where the total induced

charges on the CNT is zero, the CNT surface is most likely composed of positive

and negative “patches”, which is only possible when the helical wrapping geometry

of the DNA is accurately represented. Next, the universal DOS uses rigid band

approximation, where under influence of σDNA; subbands of the CNT can be moved

rigidly up and down without changing υ(E) [21]. This assumption is valid for the

coaxial geometry [21]. This is because the cylindrical symmetry generates the same

potential across the circumference of the CNT. Our proposed model for the CNT-

DNA hybrid ensures that the electric potential is uniform across the circumference

of the CNT.

6.5 Conclusions

To summarize, in this paper, we developed a continuum model for the CNT-DNA

hybrids in an electrolyte solution. Different cores of the CNTs were distinguished

using Mintmire et al. expression for the 1D DOS. This model allowed us to ob-

tain an analytical expression for the electric potential in an electrolyte solution for
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the CNT-DNA hybrids. The induced charges on the CNT are found to be 1 − 2

orders of magnitude smaller than the DNA charges, whether the CNT is metal-

lic or semiconducting. Despite the fact that the induced charges are small, for

ε1 = 80 and for rCNT = 5 Å and rDNA = 10 Å, the electric potential φ̄m
0 for

the metallic CNT-DNA hybrid in D0 is weaker than that φ̄s
0 of the semiconducting

CNT-DNA hybrid by 20%. Whereas, for ε1 = 1, φ̄m
0 is weaker than φ̄s

0 by 5%.

As the Debye length of the electrolyte solution decreases, the difference between

φ̄m
0 and φ̄s

0 decreases due to the screening from ions. For the values of σ̄DNA from

the range of (−88.96;−61.54), which corresponds to the range of helical angles θ

measured from the experiments (26.4o; 400), φ̄m
2 is weaker than φ̄s

2. This explains

why in Zheng’s experiments, the metallic CNT-DNA hybrids elute earlier from the

charged column than the semiconducting CNT-DNA hybrids. However, for high

values of σ̄DNA , that is σ̄DNA > −171, the reverse behavior is seen
∣∣φ̄m

2

∣∣ >
∣∣φ̄s

2

∣∣ .

The results may not be correct, because the expression used to calculate σ̄CNT is

approximate. It should be noted that high values of σ̄DNA correspond to unrealistic

wrapping angles for CNT-DNA hybrids. For example, σ̄DNA ' −171 corresponds

to 13.4o. Finally, as rCNT increases the relative percentage error between φm
0 and

φs
0 decreases. This is expected because as the radius of the semiconducting CNT

increases, its band gap decreases, and semiconducting CNT behaves more like a

metallic CNT.
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Chapter 7
Conclusions and Future work

7.1 Conclusions

At the current moment numerous different systems consisting of charged objects

interacting with electronically responsive structures exist at the micro/nano scale

level. In practical applications, the mentioned systems are embedded in an elec-

trolytic environment. For example, cells adhering to an implant’s surface, biosen-

sors detecting specific DNA molecules, and DNA molecules which are used to sep-

arate bundled CNTs.

By keeping the focus on the latter example, it was shown that in order to gain

control of the separation technique for the CNT-DNA hybrids, it is necessary to

understand their behavior and identify important integrations for hybrids in an elec-

trolyte solution. Experimentally, it has been observed that the separation of the

CNTs based on their electronic properties depends on many factors such as the

DNA sequence, and the type of ions in the electrolyte solution. However, the rea-

sons for this are not well understood. Ultimately, one would like to know what are

the optimal factors for the separation of the CNTs. A theoretical understanding of

the separation mechanism for CNT-DNA hybrids could help find the optimal fac-

tors without testing all the possibilities. At the current moment, most of the works,

which are available in this field, are performed via experiments or molecular dy-

namics simulations.

In this work, the systematic study at the continuum level is performed and an

analytical solution is obtained for the electrostatic interaction between the CNT-

DNA hybrid embedded in an electrolyte solution. It was shown throughout this

work that the electrostatic interaction has to be considered not only because a DNA

molecule becomes charged in an electrolyte solution, but also because the CNT

responds electronically to the electric field created by the DNA charges. In addition,
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a CNT-DNA hybrid exhibits an influence from the electrolyte solution, therefore, it

also has to be considered.

To the author’s knowledge, this is the only work, where at the continuum level,

the boundary value problems for the electrostatic interaction for the simplified mod-

els of CNT-DNA hybrid were rigorously solved. In the presented models, the re-

sponse of the electrolyte solution to the CNT-DNA hybrid is incorporated using

the linear Poisson-Boltzmann equation. Simplified models for DNA molecules are

used. These models allowed us to obtain an analytical solution for the electric po-

tential for the CNT-DNA hybrid. This provides an opportunity to test systems with

different conditions at a real time scale. In the first three models, the response of

the CNT to a DNA was incorporated by considering electronically responsive struc-

tures. In the last model, a more realistic response of the CNT to the DNA charge

was used. That is, the expression for the DOS derived by Mintmire et al. was incor-

porated in order to distinguish semiconducting and metallic CNTs. The obtained

analytical solution allows one to test different conditions (such as salt concentra-

tion, DNA charge) at a real time scale. In addition to that the obtained results shed

light on the experimental observations by Zheng et al. Also, the author believes

that these results should encourage the development of physically realistic models

for the CNT-DNA hybrids.

The obtained understanding from this dissertation can be applied to modeling

other systems involving charged particles interacting with electronically responsive

structures. As was shown in this work, the response of the electronically responsive

structure has to be considered when the charged particle is located nearby.

7.2 Future Work

In this work, the primary goal was to obtain analytical or semi-analytical solutions

from the continuum point of view for the CNT-DNA hybrids embedded in an elec-

trolyte solution and to use these results for understanding DNA-assisted separation

of the CNTs.

As an extension of this work, it could be interesting to look at the phenomenon
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of counterion condensation on the DNA molecule and how it would be influenced

by metallic and semiconducting CNTs. To do that the model developed in Chapter

6 could be considered. This model includes key elements in the modeling of elec-

trostatics of the CNT-DNA hybrid: the effect of an electrolyte solution, the charges

of a DNA, and the response of the CNT to the DNA charges. To the author’s knowl-

edge, at the current moment, this is the only work where these key elements in the

modeling of electrostatics are considered in a rigorous way. Therefore, it would

be of a great interest to apply Manning’s theory of counterion condensation to this

model in order to obtain the semi-analytical expression for the amount of condensed

counterions. Also, it would be interesting to study how this amount depends on the

distance between a CNT and a DNA molecule.

As a further extension of the present work, a three-dimensional model for the

CNT-DNA hybrid embedded in an electrolyte solution can be developed by com-

bining all the obtained knowledge from the current work, as well as incorporating

new results. The electrolyte solution can be modeled via the Debye-Hückel or the

Poisson-Boltzmann equation. A more realistic three-dimensional model for a ss-

DNA could be utilized, that is, by modeling ssDNA as a helix of discrete charges.

A new approach for calculating the generated charge on the CNT caused by the

DNA charges has to be used in the three-dimensional model of the CNT-DNA hy-

brid. The method used in Chapter 6 is valid only for the cylindrical symmetry, and

it becomes unapplicable for the three-dimensional model of the CNT-DNA hybrid.

Rotkin et al. developed a model for calculating the induced surface charge density

on the CNT in the framework of the tight binding method in the nearest neighbor

approximation [2]. However, this model has to be tackled using numerical calcula-

tions.

In the CNT-DNA hybrid, other contributions, such as van der Waals forces

should be incorporated. Van der Waals force is a leading factor of adhesion be-

tween DNA and CNT [1]. This contribution can be incorporated by utilizing the

Lennard-Jones potential for the interaction of the CNT atoms with other atoms.

There are many other aspects of the CNT and DNA molecule interactions, such as

the entropic effect, enthalpy change due to deformation of the ssDNA and the CNT,
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hydrogen bonding, and the hydrophobic interaction. In the case of single stranded

DNA—CNT hybrids, through MD simulations [1], it was demonstrated that, at low

ionic strength, electrostatic and van der Waals interactions are two important con-

tributions to the free energy of the hybrid.
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Chapter A
Appendix A: Supportive information
for Chapter 4

A.1 Asymptotic analysis for CC

In the following we give the detailed asymptotic analysis from which we obtained

the equations to determine CC. In all cases, the geometry of the cylinder and the PE

are fixed, that is, r0/a is constant. We consider ka → 0 at a different normalized

separation d/a. Systems of the PE–metallic cylinder and the PE–dielectric cylinder

are considered separately.

A.1.1 PE–metallic cylinder

First we consider the case where the PE is infinitely far from the metallic cylinder.

This is achieved by first holding ka fixed and letting d/a → ∞. In this limit

Kn

[
ka

(
d

a
− 1

)]
→ 0, (A.1.1.1)

and Eq. (4.19) reduces to

− 2zNξ(1 − zθ)
K0(ka)

kaK1(ka)
− 2N ln(ka)

+ N ln
4πeθlBNAa2

∑
i νiz

2
i

γνQ
= 0, (A.1.1.2)

that is, Eq. (4.21).

In the limit of finite separation between the PE and the cylinder irrespective of

the dilution, we fix d/a and set ka → 0, then the asymptotic behaviors of the terms

in Eq. (4.19) are

K0(ka) ∼ − ln(ka), (A.1.1.3)

kaK1(ka) ∼ 1, (A.1.1.4)
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fmet
0 K0

[
ka(

d

a
− 1)

]
∼ −

ln(ka) ln
[
ka(d

a
− 1)

]
ln(ka · r0/a)

−
ln

[
ka(d

a
− 1)

]
2π ln(ka · r0/a)

2π∫
0

ln [Λ(ψ)] dψ, (A.1.1.5)

fmet
n Kn

[
ka

(
d

a
− 1

)]
∼ − 1

π

(
r0/a

d/a − 1

)n

×
2π∫
0

ln [Λ(ψ)] cos(nψ)dψ, n > 0, (A.1.1.6)

kafmet
0 K1

[
ka(

d

a
− 1)

]
∼ 1

(d/a − 1)

ln (ka)

ln(ka · r0/a)

+
1

2π(d/a − 1) ln(ka · r0/a)

2π∫
0

ln [Λ(ψ)] dψ, (A.1.1.7)

kafmet
n Kn+1

[
ka(

d

a
− 1)

]
∼ − 2

π

n

(d/a − 1)

(
r0/a

d/a − 1

)n

×
2π∫
0

ln [Λ(ψ)] cos(nψ)dψ, n > 0. (A.1.1.8)

Substituting these equations into Eq. (4.19), it is clear that the dominating terms

in the numerator are − ln(ka) from K0(ka) and [ln(ka)]2 /ln(ka · r0/a) from

fmet
0 K0 [ka(d/a − 1)]. The second term in (A.1.1.5) is finite in the limit of ka → 0.

All terms in the denominator are finite in the dilute limit, except the second term in

(A.1.1.7), which vanishes as ka → 0. Keeping the leading terms in Eq. (4.19), we

get

−2zNξ(1 − zθ)
[

ln(ka)
ln(ka·r0/a)

− 1
]
ln(ka)

1 + 1
d/a−1

ln(ka)
ln(ka·r0/a)

− 1
π(d/a−1)

∞∑
n=1

[
n

(
r0/a

d/a−1

)n 2π∫
0

ln [Λ(ψ)] cos(nψ)dψ

]
− 2N ln(ka) = 0. (A.1.1.9)

To see the transition between the two above limiting cases, we proposed the

scaling relation d/a = A(ka)−α. This ensures that in the dilution of ka → 0,
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r0/a ¿ d/a ¿ 1/ka. Under this condition, the asymptotic expressions of the

terms in Eq. (4.19) are

fmet
0 K0

[
ka

(
d

a
− 1

)]
∼ −

[
ln (ka) + ln

(
d
a

)]2

ln(ka)
, (A.1.1.10)

kafmet
0 K1

[
ka(

d

a
− 1)

]
∼ 1

d/a

ln (ka)

ln(ka)
+

1

d/a

ln
(

d
a

)
ln(ka)

, (A.1.1.11)

fmet
n Kn

[
ka

(
d

a
− 1

)]
∼ 0, n > 0, (A.1.1.12)

kafmet
n Kn+1

[
ka(

d

a
− 1)

]
∼ 0, n > 0. (A.1.1.13)

Substituting the above expressions into Eq. (4.19) and using d/a = A(ka)−α, we

obtain

−2zNξ(1 − zθ)
[
−1 + (1 − α)2

]
ln(ka) − 2N ln(ka) = 0. (A.1.1.14)

A.1.2 PE–dielectric cylinder

The equation to determine CC for the case of a PE near a dielectric cylinder is the

same as Eq. (4.19) with the coefficients fmet
n replaced by fdiel

n . With fixed d/a and

ka → 0 , the asymptotic expressions of the terms in Eq. (4.19) are given by

fdiel
0 K0

[
ka

(
d

a
− 1

)]
∼ − r0

2πa
ln

[
ka

(
d

a
− 1

)] 2π∫
0

r0 − d cos(ψ)

aΛ2(ψ)
dψ,

(A.1.2.1)

kafdiel
0 K1

[
ka

(
d

a
− 1

)]
∼ r0

2πa (d/a − 1)

2π∫
0

r0 − d cos(ψ)

aΛ2(ψ)
dψ, (A.1.2.2)

fdiel
n Kn

[
ka

(
d

a
− 1

)]
∼ − ε2

π(ε1 + ε2)

(
r0/a

d/a − 1

)n
2π∫
0

ln [Λ(ψ)] cos(nψ)dψ

+
ε1

πn(ε1 + ε2)

(
r0/a

d/a − 1

)n
2π∫
0

r0 [r0 − d cos(ψ)]

a2Λ2(ψ)
cos(nψ)dψ, n > 0, (A.1.2.3)

kafdiel
n Kn+1

[
ka

(
d

a
− 1

)]
∼ 2

π(ε1 + ε2)

(
r0/a

d/a − 1

)n+1
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×
2π∫
0

ε1r0 cos(nψ) + d (ε2 sin(ψ) sin(nψ) − ε1 cos(ψ) cos(nψ))

aΛ2(ψ)
dψ, n > 0.

(A.1.2.4)

Under condition d > r0, the integral
2π∫
0

[r0 − d cos(ψ)] / [Λ2(ψ)] dψ is exactly zero.

Therefore,

fdiel
0 K0

[
ka

(
d

a
− 1

)]
∼ 0, (A.1.2.5)

kafdiel
0 K1

[
ka

(
d

a
− 1

)]
∼ 0. (A.1.2.6)

Keeping only the leading terms in Eq. (4.19), which are logarithmic in ka, we have

the following equation

−2Nξz(1 − zθ)[− ln(ka)]

1 + 1
π(ε1+ε2)

∞∑
n=1

(
r0/a

d/a−1

)n+1 2π∫
0

ε1r0 cos(nψ)+d(ε2 sin(ψ) sin(nψ)−ε1 cos(ψ) cos(nψ))
aΛ2(ψ)

dψ

− 2N ln(ka) = 0. (A.1.2.7)

A.2 Expressions for the normalized potential, the
electric displacement for the PE–metallic and
the PE–dielectric cylinders

With the proposed normalization in Section 4.5, the expressions for the normalized

electric potential in D0 and D2 and for the normalized electric displacement for the

PE–metallic and the PE–dielectric cylinder systems are given, respectively, by

φ̄out =

K0(r̄
′) −

∞∑
n=0

f̄n cos(nψ)Kn(r̄)

K1(ā) + f̄0K1(d̄ − ā) + 1
2

∞∑
n=1

f̄nKn+1(d̄ − ā)
in D0, (A.2.1)

φ̄in(s) =

K0(ā) −
∞∑

n=0

f̄nKn(d̄ − ā)

K1(ā) + f̄0K1(d̄ − ā) + 1
2

∞∑
n=1

f̄nKn+1(d̄ − ā)
in D2, (A.2.2)

∂φ̄out

∂r̄′
= −

K1(r̄
′) +

(
∞∑

n=0

f̄n cos(nψ)∂Kn(r̄)
∂r̄

)
∂r̄
∂r̄′

+

(
∞∑

n=0

f̄n
∂ cos(nψ)

∂ψ
Kn(r̄)

)
∂ψ
∂r̄′

K1(ā) + f̄0K1(d̄ − ā) + 1
2

∞∑
n=1

f̄nKn+1(d̄ − ā)
.
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The superscripts met and diel have been removed from the above expressions

with the understanding that the corresponding coefficients f̄n will be used for each

case. The normalized coefficients f̄n corresponding to the PE–metallic and the PE–

dielectric cylinders are given, respectively, by

f̄met
n =



2π∫
0

K0[āΛ̄(ψ)]dψ

2πK0(r̄0)
, n = 0

2π∫
0

K0[āΛ̄(ψ)] cos(nψ)dψ

πKn(r̄0)
, n > 0

(A.2.3)

and

f̄diel
n =


1

2πK1(r̄0)

2π∫
0

[r̄0−d̄ cos(ψ)]K1[āΛ̄(ψ)]
āΛ̄(ψ)

dψ, n = 0

nε2

2π∫
0

K0[āΛ̄(ψ)] cos(nψ)dψ

πn(ε1+ε2)Kn(r̄0)
+

ε1r̄0

2π∫
0

[r̄0−d̄ cos(ψ)]K1[āΛ̄(ψ)]
āΛ̄(ψ)

cos(nψ)dψ

πn(ε1+ε2)Kn(r̄0)
, n > 0,

(A.2.4)

where Λ̄(ψ) = ā−1
√

r̄2
0 − 2r̄0d̄ cos ψ + d̄2. 4
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Chapter B
Appendix B: Review of calculations
for the energy dispersion relation

In this appendix, the results for the energy dispersion relation for graphene are

repeated from Saito [1] and Reich et al [2]. After that it is outlined how these

results can be used to derive the 1D DOS derived by Mintmire et al. [3].

B.1 Review of calculations of energy dispersion rela-
tions

CNT can be represented as a graphene sheet rolled into a cylinder. As was men-

tioned in Chapter 1, “graphene can be imagined as atomic-scale “chicken wire”,

made of carbon atoms and covalent bonds (special chemical bonds) between them”.

A graphene sheet can be represented by joined hexagons. The distance between

two atoms is denoted as aC−C and it is equal to 1.44 Å. It is possible to construct a

graphene surface by translating the unit cell, consisting of two atoms A and B (See

Figure B.1). There is one basis function per atom. Therefore, there are two basis

A B
CCa −

y

x

1a

2a

yk

xk

2b

1b

Γ

Γ
K

M2R

1R

3R

Figure B.1: a) the unit cell of the graphene and b) Brillouin zone of graphene.
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functions per unit cell. ~a1 and ~a2 are the unit vectors of the hexagonal lattice in the

real space. They could be expressed in terms of a

~a1 =

(√
3

2
a,

a

2

)
, ~a2 =

(√
3

2
a,−a

2

)
. (B.1.1)

Another useful length can be derived knowing the above information: a =
√

3aC−C .

The unit vectors from the reciprocal hexagonal lattice are the following

~b1 =

(
3π√
3a

,
2π

a

)
, ~b2 =

(
3π√
3a

,−2π

a

)
. (B.1.2)

In order to obtain an expression describing the electronic properties of the

CNTs, the Schrodinger equation has to be solved. The matrix form of Schrodinger

equation is the following

HΨ(~k) = E(~k)Ψ(~k), (B.1.3)

where H is Hamiltonian, E(~k) are the eigenvalues at wave vector ~k, and Ψ(~k) are

the eigenfunctions. The eigenfunctions can be expressed by a linear combination

of Bloch functions

Ψ(~k) =
∑

l

ClΦl(~k). (B.1.4a)

The tight binding (TB) method is one of two basic approaches to calculate the

electronic energy bands of a material [2]. It is performed by considering only the

nearest-neighbor interactions. In the TB method, the Bloch functions can be ex-

pressed as linear combination of the atomic wave functions. For the unit cell of

graphene, which contains two atoms A and B, the Bloch function for A and B

sublattices has the following form

Φi =
1√
N

N∑
~R

ei~k·~Riϕ(~r − ~Ri), i = A,B. (B.1.5)

Here, N is the number of unit cells in the solid, and ~Ri is a lattice vector, and ϕ(~r)

is the atomic wave function.

Now, the Schrodinger equation can be written in terms of the Bloch functions,

that is, substitute Eqs. (B.1.4a) and (B.1.5) in Eq. (B.1.3). From here, to obtain for
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eigenvalues E(~k), the so-called secular equation has to be solved

det(H − ES) = 0. (B.1.6)

For graphene, H is Hamiltonian (2x2) matrix. The elements of H (transfer matrix)

and S (overlap between Bloch functions matrix) have the following form:

HIJ(~k) = 〈ΦI |H|ΦJ〉, SIJ(~k) = 〈ΦI |ΦJ〉. (B.1.7)

By considering only the nearest-neighbor interactions, the diagonal terms for H and

S are the following

HAA(~k) =
〈
ϕA(~r − ~RA)|H|ϕA(~r − ~RA)

〉
= ε2p = HBB(~k), (B.1.8)

SAA(~k) = 〈ϕA(~r − ~RA)|ϕA(~r − ~RA)〉 = 1 = SBB(~k). (B.1.9)

For the off-diagonals terms, the interaction of atom A needs to be considered with

three nearest-neighbor interactions B atoms. The distance between them is denoted

as ~R1, ~R2 and ~R3 (See Figure B.1)

HAB(~k) =
1

N

N∑
~RA

N∑
~RB

〈ei~k·~RAϕA(~r − ~RA)|H|ei~k·~RBϕB(~r − ~RB)〉. (B.1.10)

The second sum runs over all three nearest neighbors of a given atom A

~R1 =
1

3
(~a2 − 2~a1) , ~R2 =

1

3
(~a1 − 2~a2) , ~R3 =

1

3
(~a2 + ~a1) . (B.1.11)

For the case in hand, substituting Eq. (B.1.11) in Eq. (B.1.10), the expression

for HAB becomes

HAB(~k) = t(ei~k·~R1 + ei~k·~R2 + ei~k·~R3) = tf(k), (B.1.12)

where t is given by t = 〈ϕA(~r − ~RA)|H|ϕB(~r − ~RB)〉, and f(k) has the following

form

f(k) = exp

(
ikxa√

3

)
+ 2 exp

(
− ikxa

2
√

3

)
cos

(
kya

2

)
, (B.1.13)

f(k) is a complex function, and the Hamiltonian forms a Hermitian matrix, there-

fore HBA = H∗
AB, where ∗ denotes the complex conjugate. The overlap inte-

gral matrix is given by SAA = SBB = 1, and SBA = S∗
AB = sf(k), where

s = 〈ϕA(~r − ~RA)|ϕB(~r − ~RB)〉.
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Therefore, the explicit form for H and S can be written as

H =

(
ε2p tf(k)

tf(k)∗ ε2p

)
, S =

(
1 sf(k)

sf(k)∗ 1

)
, (B.1.14)

The eigenvalues E(~k) can be obtained by solving the secular equation∣∣∣∣ ε2p − E tf(k) − Esf(k)
tf(k)∗ − Esf(k)∗ ε2p − E

∣∣∣∣ = 0. (B.1.15)

The general form for the eigenvalues E(~k) is

Eg2D(~k) =
ε2p ± tw(~k)

1 ± sw(~k)
, (B.1.16)

where w(~k) =

√
f(~k)f(~k)∗ such that

w(~k) =

√
1 + 4 cos

(√
3kxa/2

)
cos (kya/2) + 4 cos2 (kya/2). (B.1.17)

E+ refer to π∗, and E− refer to π bands, respectively.

When the overlap integral s = 0 and ε2p = 0, the expression becomes

Eg2D(kx, ky) = ±t

√√√√1 + 4 cos

(√
3kxa

2

)
cos

(
kya

2

)
+ 4 cos2

(
kya

2

)
.

(B.1.18)

Figure B.2 is used to depict the energy dispersion relation for graphene. The up-

per half space of the energy dispersion curves describes the π∗-energy anti-bonding

band, and the lower half is the π-energy bonding band. The points, where π∗ and

π bands intersect, are called K points. In each hexagon, there is six points at the

locations of the carbon atoms. For the discussed case, K points are the follow-

ing
(
0,±4π

3a

)
,

(
2π

a
√

3
,±2π

3a

)
,

(
− 2π

a
√

3
,±2π

3a

)
. Taylor expansion around K point for

tf(k) is

tf(k) ' tf(kp
x, k

p
y) +

[
∂f

∂kx

]
kp

x,kp
y

(kx − kp
x) +

[
∂f

∂ky

]
kp

x,kp
y

(ky − kp
y)

=

√
3

2
ita (kx − iβy) , (B.1.19)

where βy = ky − 4π/3a.
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Figure B.2: The energy dispersion relation using Eq. (B.1.16), where ε2p = 0, t =
−3.033 eV, s = 0.

Eq. (B.1.16) near K points has the following form

Eg2D(k) = ±
√

3

2
ta

√
k2

x + β2
y , (B.1.20)

which is the so-called linear dispersion relation for graphene.

Consequently, Mintmire et al. have utilized the expression for the linear dis-

persion relation in order to obtain the universal expression for the one-dimensional

(1D) density of states (DOS) for the CNTs. To do that the energy dispersion relation

for graphene was quantized along the circumference of the CNT with radius rt, and

number of states below energy E was calculated.

The following is the expression derived by Mintmire et al. for the universal

DOS for CNT per carbon atom near Fermi level

ρ(E) =
a

π2rt |Vppπ|

∞∑
m=−∞

g (E, γm) , (B.1.21)

where Vppπ is the nearest-neighbor interaction, |Vppπ| = 2.5 eV, a is the lattice

constant of the graphene sheet and

g(E, εm) =


|E|√

E2−γ2
m

, |E| > |γm|,

0, |E| < |γm|,
(B.1.22)
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|γm| =
a|Vppπ (3m − n1 + n2) |

2
√

3rt

, (B.1.23)

where (n1, n2) are the pair of integer indices defining CNTs chirality.

Because the expression for ρ(E) is approximate, it is valid for small values of

the energy, that is, |E| << |Vppπ|. Figure B.3 represents the DOS using the above

equation.
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Figure B.3: Density of states for semiconducting and metallic CNTs.

The expression for summation in g (E, γm) can be expressed in a different way.

|E| > |γm|,

|E| >

∣∣∣∣a|Vppπ (3m − n1 + n2) |
2
√

3rt

∣∣∣∣ .

For a CNT with a pair of indices (n1, n2), metallic CNTs correspond to the

case |n1 − n2| = 3q and semiconducting CNTs correspond to the case |n1 − n2| =

3q + 1, where q is an integer.

Therefore, for metallic CNTs when E/Vppπ > 0

2
√

3rtE

aVppπ

> |3m − 3q| = |3m′| ,

where m′ is an integer. This leads to⌈
−2

√
3rtE

3aVppπ

⌉
≤ m′ ≤

⌈
2
√

3rtE

3aVppπ

⌉
− 1,

where dxe is a ceiling function.
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For semiconducting CNTs when E/Vppπ > 0

2
√

3rtE

aVppπ

> |3m − 3q − 1| = |3m′ − 1| .

Therefore, the condition for m′ is the following⌈
−2

√
3rtE

3aVppπ

+
1

3

⌉
≤ m′ ≤

⌈
2
√

3rtE

3aVppπ

+
1

3

⌉
− 1.

Therefore, υ(E) can be rewritten as

for metallic CNT:

ρ(E) =
a

π2rt |Vppπ|

⌈
2
√

3rtE
3aVppπ

⌉
−1∑

m′=
⌈
− 2

√
3rtE

3aVppπ

⌉
|E|√

E2 − (3m′)2
,

for semiconducting CNT:

ρ(E) =
a

π2rt |Vppπ|

⌈
2
√

3rtE
3aVppπ

+ 1
3

⌉
−1∑

m′=
⌈
− 2

√
3rtE

3aVppπ
+ 1

3

⌉
|E|√

E2 − (3m′ − 1)2
.
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