

University of Alberta

Token-based Graphical Password Authentication

by

John Charles Gyorffy

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

© John Charles Gyorffy
Fall 2009

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential
users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or
otherwise reproduced in any material form whatsoever without the author's prior written permission.

Examining Committee

Dr. James Miller, Electrical and Computer Engineering

Dr. Bruce Cockburn, Electrical and Computer Engineering

Dr. Yongsheng Ma, Mechanical Engineering

ABSTRACT

Given that phishing is an ever increasing problem, a better authentication system than the

current alphanumeric system is needed. Because of the large number of current

authentication systems that use alphanumeric passwords, a new solution should be

compatible with these systems. We propose a system that uses a graphical password

deployed from a Trojan and virus resistant embedded device as a possible solution. The

graphical password would require the user to choose a family photo sized to 441x331

pixels. Using this image, a novel, image hash provides an input into a cryptosystem on

the embedded device that subsequently returns an encryption key or text password. The

graphical password requires the user to click five to eight points on the image. From

these click-points, the embedded device stretches the graphical password input to a 32-

character, random, unique alphanumeric password or a 256-bit AES key. Each

embedded device and image are unique components in the graphical password system.

Additionally, one graphical password can generate many 32-character unique,

alphanumeric passwords using its embedded device which eliminates the need for the

user to memorize many passwords.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 SYSTEM BACKGROUND ... 3

2.1 Analysis of Password Stealing URLs .. 3

2.2 Web Site Forgery Countermeasures .. 5

2.3 Malware Detection ... 8

2.4 Text-Based Passwords: A Low-Entropy Solution in Practice ... 10

2.5 Password Vaults: A False Sense of Security ... 12

2.6 Graphical Passwords: The Picture Superiority Effect .. 14

2.7 High Entropy Graphical Passwords ... 20

2.8 Graphical Password Weaknesses ... 23

2.9 Graphical Passwords and Anti-Phishing .. 28

2.10 Some Common Hardware Authentication Schemes .. 28

CHAPTER 3 PROPOSED SYSTEM OVERVIEW ... 32

CHAPTER 4 SOFTWARE SYSTEM .. 35

4.1 Graphical Password Application ... 36

4.1.1 The Proposed Graphical Password Scheme ... 37

4.1.2 Password Space .. 38

4.1.3 Password Communication Resistance ... 39

4.1.4 Hot-Spot Resistance ... 39

4.2 Graphical Password Generation ... 40

4.2.1 Cryptographic Hash ... 41

4.2.2 Histogram Image Hash Algorithm ... 42

4.2.3 Cryptographic Hashing and the Device ... 45

4.2.4 Text Password Generation ... 45

4.3 Screen and Mouse Capture Prevention .. 46

4.4 Secure Web Browser Application .. 47

4.4.1 Device Setup .. 48

4.4.2 Text Password Insertion ... 49

4.4.3 One Graphical Password-Multiple Text Passwords ... 49

4.4.4 Client-Server Encryption Protocol ... 52

4.5 Communicating With the Device .. 55

4.5.1 System Commands and Responses Summary .. 57

4.5.2 Communication Security ... 58

4.5.3 Device Authentication ... 65

4.5.4 Client and Device Malware Countermeasures ... 70

4.6 Flash Storage Map ... 73

CHAPTER 5 EXPERIMENTAL RESULTS ... 75

5.1 Image Hash Randomness and Uniqueness... 75

5.2 Calculated Nonce Uniqueness and Antiviral Efficacy ... 83

CHAPTER 6 DISCUSSION ... 88

CHAPTER 7 CONCLUSION .. 89

BIBLIOGRAPHY ... 90

APPENDIX A ... 95

A.1 Hardware Design .. 95

A.1.1 Microcontroller ... 95

A.1.2 Flash Memory ... 97

A.1.3 Power Supply .. 97

A.1.4 Schematic .. 98

A.1.5 USB Firmware .. 99

A.1.6 Development Environment ... 100

A.2 System Communication .. 101

A.2.1 Byte order of data between client and device ... 101

A.2.2 Commands/Responses and the Payload Summary .. 101

A.2.3 System Command and Response Definitions ... 103

A.3 DOS Header Reference ... 114

A.4 Key Strength and Command/Responses ... 115

A.5 Sector Map and Description .. 116

A.6 Firmware Source Files .. 117

A.7 Quality Function Matrix ... 118

A.7.1 Financial Costs .. 118

A.7.2 Usability .. 118

A.7.3 Functionality ... 119

A.7.4 Maintainability .. 120

A.7.5 Reliability .. 120

A.7.6 Efficiency .. 121

A.7.7 Portability .. 121

A.7.8 Requirements .. 121

A.7.9 Metric Definitions ... 122

A.7.10 Base Measures .. 125

LIST OF TABLES

Table 1: APWG- Statistical highlights for Q1 2008 .. 4
Table 2: APWG-Industries attacked as a percent of all phishing attacks (2008) .. 5
Table 3: Users roles in the Schecter et al. warning indicators efficacy experiment. 7
Table 4: Actions when not presented with a site image (Schecter et al.) .. 7
Table 5: Actions when presented an obvious warning page (Schecter et al.) 7
Table 6: Different distribution areas for 7-character passwords (Yan et al.) ... 11
Table 7: Déjà vu –Percent failed logins (# failed logins/20 participants) .. 15
Table 8: Passfaces™ - Statistics for the number of login attempts ... 15
Table 9: Creating alphanumeric passwords vs. PassPoints ... 18
Table 10: Means/Std. deviation of number of incorrect password submissions .. 18
Table 11: Success rate of PassPoints (Chiasson et al.) .. 19
Table 12: Login effect of size of tolerance square on success rate (Chiasson et al.) 19
Table 13: Login effect of screen resolution on success rate (Chiasson et al.) ... 20
Table 14: Comparison of password space for alphanumeric passwords and PassPoints with different

parameters ... 21
Table 15: Time in seconds of PassPoints versus alphanumeric passwords. .. 24
Table 16: Average correct, ordered entries of a shoulder surfing attacker .. 25
Table 17: Biometric recognition error rates (O’Gorman) .. 30
Table 18: Fill last 7 bytes of AES key by mapping selected text to 180-byte array. 68
Table 19: Intensity Level versus NHD and SSIM with Control (N=1,700). ... 78
Table 20: Normalized to Lowest Mean Value. .. 78
Table 21: Port F (JTAG programming & debugging) ... 96
Table 22: USB pin configuration (http://pinouts.ws/usb-pinout.html) .. 96
Table 23: Port B SPI connection ... 96

LIST OF FIGURES

Figure 1: APWG-URLs with password stealing code in Q1 of 2008. ... 4
Figure 2: APWG-Password stealing malicious code URLs reported in 2007 ... 4
Figure 3: Percent effectiveness of some common heuristic analyzers. ... 9
Figure 4: Percent of Trojan infections discovered with some common anti-malware 9
Figure 5: Password Safe-Master password setup showing text input (open to key-loggers). 13
Figure 6: Password Safe-Copying the password to the clipboard (open to Trojans) 13
Figure 7: Percentage of correct authentications as a function of system and time (De Angeli et al.) 16
Figure 8: Pool Scene- Example locimetric scheme (Chiasson et al.)………………... 19
Figure 9: Car Scene-Example locimetric scheme (Chiasson et al.)……... .. 19
Figure 10: Example of an image hash process used in authentication (Ahmed et al.) 23
Figure 11: Training and login times for PIN vs. graphical passwords (De Angeli et al.). 24
Figure 12: Hot-spot clusters indicated on an image (Van Oorschot et al.) .. 27
Figure 13: Sequence diagram of proposed system. ... 34
Figure 14: System Block Diagram. ... 35
Figure 15: Screen capture of the hybrid alphanumeric-locimetric password scheme. 38
Figure 16: Block diagram of graphical password input to final product. .. 41
Figure 17: Block diagram of histogram image hash generation. ... 43
Figure 18: 128-byte message structure for the cryptographic hash function. .. 44
Figure 19: Screen shot of the embedded browser’s toolbar with graphical password buttons. 48
Figure 20: The same graphical password using different RNG values to form a new password. 51
Figure 21: Building a User’s text password dependant on the root URL. ... 52
Figure 22: Overview of out-of-band client-server communication. .. 53
Figure 23: Sequence of out-band-encryption. ... 54
Figure 24: Client system to device communication block diagram ... 55
Figure 25: Overview of the action the USB device takes when the client saves data. 56
Figure 26: Overview of the action the USB device takes when the client reads data. 57
Figure 27: Command packet sent to the device (file I/O save). .. 58
Figure 28: Response packet read from the device (file I/O read). ... 58
Figure 29: Nonce and calculated nonce authentication scheme. ... 62
Figure 30: AES key stored in PE header with byte offset (Total 20 bytes). .. 67
Figure 31: 256-bit AES key construction. ... 68
Figure 32: Sequence of AES key usage and strength. ... 69
Figure 33: Device logic after decrypting command packet. .. 70
Figure 34: Trojan attached to Windows file subsystem. ... 71
Figure 35: NOP opcodes in executable image at random locations. ... 72
Figure 36: Flash Map of 512-byte Sectors. ... 74
Figure 37: Distribution of bits set in image hashes from 1,700 images. ... 76
Figure 38: NHD Histogram of image hash values from 1,700 images. ... 77
Figure 39: NHD Histogram of image hash values from 1,700 +1 RGB.. 79
Figure 40: NHD Histogram of +1 RGB against 0 RGB. ... 80
Figure 41: NHD Histogram of 256-SHA Message Digest. ... 81
Figure 42: NHD Histogram of 32-Character Password. .. 82
Figure 43: Sample function stack with Random NOP Instructions. .. 84
Figure 44: NHD histogram of whole PE checksum values. .. 85
Figure 45: NHD histogram of PE checksum values for the first 1024 bytes. .. 85
Figure 46: NHD histogram of PE checksum values for the last 1024 bytes. ... 86
Figure 47: NHD histogram of the last 1024 bytes of the PE after a virus attack. .. 87
Figure 48: Device Schematic. ... 98
Figure 49: Data flow between Atmel module and prototype module. ... 99
Figure 50: Compiler output of firmware memory usage. .. 100

GLOSSARY OF TERMS

USB Universal Serial Bus
Character A text value that includes most items on the U.S. keyboard including both

upper and lower case.
Payload The data from the user that is carried with system-level stream of data.

RNG Random Number Generator- A true random number generating application
that produces numbers that are statistically independent from the next.

PRNG Pseudorandom Number Generator- Number generator that may not produce
independent events from the next.

Entropy The random and statistical independence of bits in a stream of bytes or the.
Password Entropy The random and statistical independence of a sequence of items that form a

password.
Hash value A smaller representation of a much larger source of data.
Image hash value A smaller, unique representation of an image.
Cryptographic hash
value

A hash value that is statistically impossible to reverse in order to define the
source data.

Hash message The data input into the cryptographic hash function.
Hash message digest The hash value returned from the cryptographic hash function.
Nonce Cryptographic nonce-Number Used Once- Ensures random encryption output.
Calculated Nonce A number derived from a shared secret between two parties using a nonce

value from the party sending a message. Used to verify the receiving party.
ARP Address Resolution Protocol
DNS Domain Name System
API Application Programming Interface
DLL Injection A method to run code within the address space of an unsuspecting process by

forcing it to load a dynamic-link library.
Brute force Guesing a value based on iterating each possible permutation in a defined set.
Hot-spot An area of common focus on a graphical password image that affects entropy
Out-of-band An alternate secure path to exchange information outside of the main path.
AES Advanced Encryption Standard

1

CHAPTER 1 INTRODUCTION

Given the efficacy of cyber attacks that steal, or phish, a user’s login credentials, it is

imperative to provide a more secure means of safeguarding passwords than what is

common today. Additionally, any useful solution must use the existing Web

infrastructure, be cost effective, and easy to use. Attacks that steal login information fall

into the definition of phishing. As defined by the Anti-Phishing Working Group

(APWG), phishing is a criminal means of stealing a victim’s digital personal identity

such as usernames and passwords that can lead to fraudulent activity [1]. The impetus to

steal a user’s login credentials is frequently financial fraud. A Gartner study estimated

that all varieties of phishing attacks in the U.S. cost $3.2 billion and affected 3.6 million

adults in 2007 [2]. According to APWG, between 92 and 94 percent of phishing activity

is directed toward the financial industry [1, 3]. It appears the trend is getting worse

despite consumer education. Alnajim and Munro found that although users can be better

educated in phishing prevention, finding the most effective way to educate users can be

problematic [4].

One common way to phish is for an attacker to install a key-logging Trojan. A Trojan

can spread itself, like a virus, to other programs or host machines on a network and pose

as a legitimate program [5]. Though key-loggers may be detected by some anti-malware

software, this can only occur if a file or memory signature of the Trojan already exists in

some anti-malware’s database. However, key-loggers themselves have no specific

signature [6]. According to APWG, there was a record 430 unique key-logging

applications detected in malicious code in Q1 of 2008, an increase of 18% recorded

during the same period in 2007 [1]. Key-loggers need not be a software application;

rather, key-presses can be captured with a small piece of hardware purchased at some

retail stores [7].

Phishing usernames and passwords can also occur while using the Internet Public Key

Infrastructure (PKI) cryptography, the de facto standard for encrypting sensitive data

2

between clients and Web servers using the “secure” protocol HTTPS. The encryption

strength used is unarguably quite hard to attack; however, as with any encryption, there is

always a possibility of an attack on the infrastructure. Man-in-the-middle (MITM)

attacks can intercept exchanges of usernames, passwords, credit card numbers, and other

sensitive data by exploiting the Web browser’s trust of public keys. The attack can occur

either by DNS poisoning or ARP spoofing [8-10]. Additionally, a simple MITM attack

can involve tricking victims into using a fake, malicious Web site that has a URL which

is unnoticeably similar to the authentic one. Even though some Web browsers warn users

of a possible MITM attack, Schechter et al. demonstrated that users tend to ignore some

very obvious security warnings [11].

To prevent some common phishing attacks, we propose a system that is resistant to

Trojans and viruses, produces a stronger password for authentication than an 8-character

alphanumeric password, and is easier to use when multiple alphanumeric passwords are

needed. Additionally, we propose that this system can use 256-bit, Cipher Block

Chaining (CBC), AES cryptography, using random, unique symmetric keys, to prevent

MITM attacks. We show a proposed AES key generation scheme and a key exchange

protocol. The crux of the proposed system is a graphical password comprised of a

441x331 pixel image the user chooses from family photos. Using the uniqueness of this

image, a novel, resulting image hash and the click-points gathered from the user, along

with some random numbers from an embedded device, will be the message input into a

256-bit secure hash algorithm (SHA-256). The resulting 256-bit message digest will be

used for either a 256-bit AES key or a 32-character alphanumeric password.

The graphical password system proposed is built directly into a special client Web

browser embedded in a USB device that uses an inexpensive microcontroller and read-

only, protected flash memory. Unlike other embedded systems, we propose a system that

will not store any sensitive information in the device; rather, flash memory is used to

store the graphical password image the user chose and some truly random numbers

generated at a factory. Since no sensitive information is stored in the device, there is no

need for expensive hardware to guard against side channel attacks and other hardware

3

cryptanalysis schemes [12-14]. Therefore, the graphical password must be used with the

device every time an AES key or text password is needed. The embedded device ensures

that the user cannot generate an AES key or text password without it because the device

provides the random numbers to the SHA-256 function in the device. This decreases

fraud because only the owner of the device can obtain their password. All

communication with the device is encrypted by 256-bit, AES, CBC, cryptography using

file I/O. Though the client Web application is deployed from a read-only device, any

viral attack on the client, as it loading, or a Trojan client application run from outside the

device, are prevented by a novel scheme that uses partial executable checksums.

CHAPTER 2 SYSTEM BACKGROUND

2.1 Analysis of Password Stealing URLs

According to APWG, in its Activity Trends Report for Q1 of 2008, password stealing

code downloaded from rogue URLs has been increasing consistently over time (Figure 1)

[1]. Several monthly figures for 2008 were almost double that of 2007 (Figure 2) [3].

An increase in attacks that trick users with fake Web site brands in order to phish

sensitive information, including passwords, has also been on the rise (Table 1). The

password stealing URLs are primarily targeting the financial services sector (Table 2).

This seems to suggest that attackers are phishing sensitive account information so they

can commit fraud.

4

Figure 1: APWG-URLs with password stealing code in Q1 of 2008 [1].

Figure 2: APWG-Password stealing malicious code URLs reported in 2007 [2].

Table 1: APWG- Statistical highlights for Q1 2008 [1].
Months Reported January February March

Number of unique phishing reports received 29,284 30,716 25,630

Number of unique phishing sites received 20,305 36,002 24,908

Number of brands hijacked by phishing campaigns 131 139 141

Country hosting the most phishing websites US US US

Contain some form of target name in URL 28.3% 23.2% 26.1%

No hostname; just IP address 5.5% 13.2% 4%

Percentage of sites not using port 80 .81% .45% .49%

Longest time online for website 31 days 29 days 31 days

0

1000

2000

3000

4000

5000

6000

7000

0

500

1000

1500

2000

2500

3000

3500

5

Table 2: APWG-Industries attacked as a percent of all phishing attacks (2008) [1].
Industries January February March

Financial Services 92.4% 94.2% 92.9%

Retail 1.5% 1.4% 1.4%

ISPs 3.8% 2.2% 1.4%

Government and Others 2.3% 2.2% 4.3%

2.2 Web Site Forgery Countermeasures

A common form of phishing attack, as mentioned by APWG, is when a user is fooled by

an authentic looking Web site forgery of a brand they trust. The unsuspecting user will

type their user name and password into a malicious (and fake) site revealing the

necessary authentication credentials to the attacker for the authentic Web site. One way

to mitigate these attacks is to allow the user to setup a site-authentication image. The

site-authentication image is an image that users configure with their bank, or other

institution, and is their own personal image and shared secret. The user should know that

this image indicates that they are inputting their password into an authentic Web site. If

the user doesn’t see this image, they should not enter their password. Bank of America

uses a patented site-authentication image scheme called SiteKey that will accept a user’s

moniker, display a security question known only to the user, and if correct, displays the

user’s personal image on the password page [16]. The user is instructed by the login

Web page to make sure that the image is correct before entering their final password to

gain entry.

Another security measure to prevent phishing with Web page forgeries is to warn the user

with HTTPS indicators. When using HTTPS, or the PKI secure Web protocol, the URL

will indicate the protocol as part of the Web address. Additionally, many browsers will

display a little icon to indicate a secure session. Warnings can also be brought to the

user’s attention that either the public key is not signed by a trusted certificate authority or

6

the URL does not match the URL hashed in the public key. Mozilla, one such Web

browser, defaults to warn users that the site certificates are either unsigned, expired, or

does not match the intended URL. However, a user can configure the security settings to

reduce or eliminate any warnings [17, 18].

Schechter et al. studied the efficacy of some security indicators that warn users of site-

forgery phishing attacks [11]. The Schechter study measured the responses of three

groups when presented with three increasingly noticeable security indicators while

logging into a bank’s Web page. Three groups were monitored (Table 3):

 One group was given no security focus and knew they were not using a real bank.

 One group was given a security focus but knew they were not using a real bank.

 One group believed they were logging into their own bank account but did not

know that security was the focus of the study.

A proxy Web server was used to intercept users’ requests for a bank login page. The

proxy inserted its own Web pages when capturing users’ actions.

In the study, one test measured the responses of all the groups when presented with no

HTTPS indicators. All participants, 100%, submitted their password when no HTTPS

indicators were present. A slightly more obvious security indicator was removed and the

responses measured (Table 4). Users were presented with a message indicating an

upgrade on the bank’s Web site and no site-authentication image. Additionally, no

HTTPS indicators were present either. Even so, 92% of the users in the group that were

using their own bank account entered their password and 100% of the users in the other

groups did as well. The last experiment used an even more obvious security threat

indicator: a warning page from Internet Explorer 7 that stated that there was a security

certificate problem which could result in the theft of their data. This warning page was

presented before the password page and the user could exit before entering a password

(Table 5). A majority, 71%, of those that were security primed entered their passwords.

Of the users that knew they were entering their password into their real personal account,

36% ignored the warning and entered their password anyway.

7

Table 3: Users roles in the Schecter et al. warning indicators efficacy experiment. [11].
Group Name Characteristic

1 Role playing Played a role, given no indication that security is focus of study

2 Security primed Played a role, told that their role was concerned about security

3 Personal account Used their own account, given no indication that security is focus of study

Table 4: Actions when not presented with a site image (Schecter et al.) [11].
Action Group 1 Group 2 Group 3 Total

Send password 100% 100% 92% 97%

Did not login 0% 0% 8% 3%

Table 5: Actions when presented an obvious warning page (Schecter et al.) [11].

Action Group 1 Group 2 Group 3 Total

Send password 56% 71% 36% 53%

Did not login 44% 29% 64% 47%

This research shows that users will regularly ignore Web browser security indicators.

Additionally, most browsers can be configured to reduce these indicators. Even if users

can learn better anti-phishing behavior, as the attacks become more advanced, identifying

which security indicators are effective in their education can be elusive. A study by

Alnajim and Munro looked at the effectiveness of seven common indicators. Only one

indicator, which was to check the URL carefully, received a 3 out of a scale of 4 in

effectiveness. No indicator received a score of 4 out of 4 [4].

8

2.3 Malware Detection

In addition to users being fooled to give away authentication credentials to attackers,

Trojans and worms, or malware, can deploy identity-theft software. Of the possible

malware investigated by one study, 46% had remote access [19]. This suggests that

malware is uploading user details to the attacker. Software methods can be effective in

detecting malware. Anti-malware can scan files or memory for known malware

signatures; however, malware can change or mutate the signature polymorphically using

various encryption algorithms [20]. Integrity checking files using a checksum can be

effective but this strategy relies on anti-malware software having a current database of

file checksums. Heuristic checking uses a rule-set developed from measuring the normal

operation of a system such as operating system calls and interrupts. Any deviation from a

rule-set would reveal a potential threat. However, it is hard to fully indentify all the

necessary rules leaving a potential hole that can be exploited [21]. How well do these

anti-malware applications perform? The Anti-Malware Test Lab measured the

effectiveness of 10 heuristic analyzers on the market in 2008 (Figure 3). The best vendor

caught 71% of the infected viruses [22]. A comparable study by AV-Comparatives.org

showed a break-down of the virus types and the efficacy of similar vendors. Similarly,

the best vendor caught 73% of worms and 63% of Trojan infections [23]. Clearly, a near

30% chance still exists for undetected viruses either because they are too new or simply

not prolific enough to be known by anti-malware vendors.

9

Figure 3: Percent effectiveness of some common heuristic analyzers [21].

Figure 4: Percent of Trojan infections discovered with some common anti-malware [22].

0%

10%

20%

30%

40%

50%

60%

70%

10

2.4 Text-Based Passwords: A Low-Entropy Solution in Practice

The theoretical strength of an alphanumeric password can be quantified by its password

space: “the total number of distinct passwords that can be created with a given set of

characters” [24]. Using a standard U.S. PC keyboard, there are 10 digits, 26 uppercase

letters, 26 lowercase letters, and 33 symbols giving a total of 95 possible characters to

choose. However, the allowable special characters depend on the authentication system.

With an eight-character alphanumeric password, there are 958, or 6.6x1015, possible

permutations. However, this presupposes an unrelated statistical event in the selection of

each character. How random or unrelated these characters are as an ordered combination

is a measure of password entropy. Because of the limitations of human memory, users

tend to pick easy to remember text-based passwords; consequently, this reduces the

entropy [15, 25].

Attackers can use various ways to crack, or guess, a low-entropy password. A dictionary

style attack uses a database of commonly used words, phrases, or character sequences to

guess the password [26]. For example, dictionary attacks are effective guessing

passwords that include people’s names, birthdates, common calendar dates, phone

numbers, and adjacent keys. Likewise a brute force attack can leverage the weakness of

the password length. A study by Yan found that 86% of passwords are case-insensitive

and without special characters, leaving only 36 characters in practice. Using the

theoretical password space of 367, for a seven-character password, Yan used character

patterns as a weakness of low entropy passwords. With a program called Crack, they

computed the time it took to crack various character patterns. With P representing

password space and P (6a+1n) meaning six letters and one number, the following table

was tabulated (Table 6) [25]. Yan’s study found that dictionary attacks were successful

on password patterns using three or more adjacent repeating letters or more than five

numbers without knowing the semantics of the password. It is clear that users can choose

low-entropy passwords but can users be coached or guided to enter high-entropy, hard-to-

guess, alphanumeric passwords?

11

Table 6: Different distribution areas for 7-character passwords (Yan et al.) [25]
Distribution Cracking Time (hours)

P(all random) 102.31

P(7a) 10.49

P(6a+1n) 28.23

P(5a+2n) 32.57

P(4a+3n) 20.88

P(3a+4n) 8.03

P(2a+5n) 1.85

P(1a+6n) 0.24

P(7n) 0.01

Another study by Yan et al. found that mnemonic-based text passwords were a significant

improvement over easy-to-guess passwords. Mnemonic-based passwords use a

memorable phrase to select one character to represent a word. The idea is that the

resultant password would be random but memorable. Though given instructions on how

to use mnemonic passwords, users still had a ten percent non-compliance rate [26]. Kuo

et al. conducted a study of the strength of mnemonic-based passwords compared to

control passwords that were restricted to eight characters and some special characters

[27]. A mnemonic-password dictionary was created from phrases obtained from movies,

music and famous quotes off the Internet. By using a dictionary password cracker called

John the Ripper’s English dictionary, they vetted out weak passwords from the group of

passwords that did not use mnemonics. Passwords generated from mnemonics were

vetted with their mnemonic dictionary. By comparing the strong passwords in the control

that were non-mnemonic with the mnemonically derived strong passwords, there was no

statistical significance in the graded strength. This suggested that other password

persuasive techniques can be just as strong as mnemonics. However, their study also

suggested that even mnemonic-passwords are susceptible to mnemonic-dictionary attacks

[27]. It seems that it is possible for users to be persuaded into using higher entropy

passwords but there is a constant struggle between unmemorable, high-entropy

passwords and low-entropy but memorable passwords [28]. Not only is it a struggle to

find one good password that is resistant to dictionary attacks, it is also a burden on users

12

to memorize more than one strong password. With an array of login screens on the Web,

many users may prefer to memorize one easy password for all sites.

2.5 Password Vaults: A False Sense of Security

Given that a high-entropy password is difficult to remember and that multiple passwords

may need to be remembered, users tend to write them down [4]. However, what if these

passwords could be stored in encrypted form on some storage media? A possible

solution is a secure password vault. Using a vault managing application, these passwords

can be stored with the Web address of the corresponding login page. When the User logs

into the vault manager, Web addresses can be associated with the encrypted password

[29-31]. This has three advantages:

 The user only needs to remember one password to access the password vault.

 The vault manager retrieves the password so the user does not need to remember

it.

 The effectiveness of some phishing attacks is reduced.

The idea of a password vault that can assist in storing very long and randomized

passwords does help manage stronger passwords. However, there is little reason to

believe that this will prevent a phishing attack from retrieving these protected passwords.

For instance, to gain entry into the vault, one password is used (Figure 5) [31]. During

the setup of the password vault, a key-logger could be actively recording the key strokes.

Since Trojans can mimic valid programs, there is also the possibility that a Trojan could

mimic the vault manager, record the key strokes, decrypt the passwords, and send them

back to the attacker.

13

Figure 5: Password Safe-Master password setup showing text input (open to key-loggers) [31].

Another problem with password vaults is how they inject the text password into the Web

browser during login. It may be true that using the vault manager would negate the need

to press the keyboard; hence, key-loggers would be ineffective. However, some solutions

use the clipboard as a way to transfer the decrypted password to the password field of a

login page (Figure 6) [31]. The clipboard is an area that any application on a user’s

system can access. This communal area can also be accessed by spyware.

Figure 6: Password Safe-Copying the password to the clipboard (open to Trojans) [31].

14

Even how the passwords are encrypted can be of concern. For example, one vendor uses

160-bit encryption instead of a stronger 256-bit AES encryption [30]. Likewise, the

encryption key generation may have a weakness allowing for an attacker to extract the

master key [32]. By having all the user’s passwords concentrated into one area, these

passwords become a high-value target for an attacker. As such, any weakness in the

encryption key, key storage or the application itself is a plausible target. Storing

passwords into one location seems to be quite risky despite the gain in security by using

more robust passwords.

2.6 Graphical Passwords: The Picture Superiority Effect

Given these weaknesses, an important question to consider is: are there other forms of

input that can be unique enough for authentication? Particularly, is there another

mechanism to capture input with current PC-based technology? Users will have a mouse,

keyboard, and on some systems a touch screen, as input devices. One possibility is to

leverage the unique and highly advanced system of visual recognition by humans.

Nelson found that people were better at discriminating between images than words. As

such, Nelson was credited with the concept of the Picture Superiority Effect [33].

Humans possess a strong ability to discriminate between subtle differences in images;

hence, this could be reason to believe a graphical “password” scheme could be effective.

Contrasted with a text-based password scheme, the password space of an image is limited

by how many images exist in a collection of images or how many areas one image can be

subdivided [36-40].

Image processing relies on the visual working memory (VWM) to retain object

information so it can be processed and memorized after the information is removed.

Images can have many shapes and formations that may be less familiar than the symbols

found on a PC keyboard. Would unfamiliar objects prove to be more difficult to

memorize than the alphabet? Research by Chen et al. showed that unfamiliar shapes had

equivalent retention in the VWM as well known shapes [34]. Miller studied the limit of

human memory with visual object recall [35]. Miller reported that short-term memory

15

had a limitation of around seven objects that could be received, processed or

remembered. He noted that if information is organized into a sequences or chunks, this

limited could be stretched.

A study by Dhamija and Perrig used a graphical password scheme they named Déjà vu

[36]. Déjà vu displayed 20 random images, from a database of many images, with 5

images required to compose the password. With trials that compared 4-digit PINs and

Déjà vu passwords, their results showed a better recall of 5 sequential images than with

4-digit PINs (Table 7). A commercial graphical password application called Passfaces™,

developed by Real User Corporation, uses a large selection of images depicting human

faces of various genders, races, ages, and expressions. Passfaces™ requires a user to

learn four faces displayed one at a time with eight random distracter faces [37]. Brostoff

and Sasse conducted a study comparing Passfaces™ with text-based passwords. Though

their study was not very clear on the strength of the text-based passwords used, there was

a significant difference in login attempts. It took nearly a third fewer attempts with

Passfaces™ (Table 8) [38].

Table 7: Déjà vu –Percent failed logins (# failed logins/20 participants) [36].

Failed Logins 4-digit PIN 6-character
Password

Abstract Art Meaningful Photo

Login (immediate) 5% 5% 0% 0%

Login (after 1 week) 35% 30% 10% 5%

Table 8: Passfaces™ - Statistics for the number of login attempts [38].

Group Mean N 95% CI Std Err Std Dev Min Max

Text passwords 33.91 34 27.00/40.83 3.40 19.81 0.00 92.00

Passfaces 12.32 34 9.92/14.73 1.18 6.88 2.00 29.00

Another study, over a longer period of time, by De Angeli et al. suggested a useful

classification of graphical passwords into three areas: cognometrics, locimetrics, and

drawametrics [39]. Cognometrics is an image recognition scheme, like Passfaces™ or

Déjà vu, that challenges a user’s recall of a series of discrete images within a series of

distracter images. Locimetrics is a graphical password that challenges a user’s memory of

16

specific areas or loci on an image. Both cognometrics and locimetrics work with PC

based systems; however, drawametrics are graphical passwords that measure the

uniqueness of touch screen based drawing activity with a stylus. De Angeli et al.

compared two cognometric schemes that used four discrete images with 4-digit PINs in

2,196 authentication attempts over several weeks [39]. In their study, they rejected the

picture superiority effect hypothesis but confirmed that spatial coding is a strong factor in

the memory recall of visual objects (Figure 7). While the De Angeli study illustrated the

fact that cognometic passwords might not be an advantage compared to short numeric

sequences, the study did indicate one advantage of graphical passwords that does not

exist in text-based passwords: spatial coding [39]. Spatial coding would be very

important in locimetric schemes where the user must select unique points on an image as

opposed to a sequence of images.

Figure 7: Percentage of correct authentications as a function of system and time (De Angeli et al.)
(GP=graphical password; PIN= 4-digit password) [39].

17

Locimetric schemes, using an image with clickable areas, require a user to differentiate

and memorize particular areas of an image. One such design, PassPoints, was evaluated

by Wiedenbeck et al. against alphanumeric passwords over a six-week period [40]. In

this study, several questions were proposed:

 Are graphics comparable or better than alphanumerics in the creation, learning,

performance and retention of passwords?

 Can users feel as secure with graphical as with alphanumeric passwords?

Wiedenbeck et al. noted that unlike alphanumeric password recall, locimetric passwords

rely on cued recall. That is, a user might perform better recalling their password by

virtue of remembering adjacent image loci. Other than the Web page address, a user is

confronted with a blank input box and no clues as to what the password might entail

when using an alphanumeric password scheme. However, with locimetric passwords, the

user is presented with a familiar image before clicking a series of discrete regions. The

user could remember the correct series of mouse clicks on the image by remembering

areas of significance on the image. Therefore, it was postulated, that locimetric password

recall could be easier than alphanumeric password recall. These results seem to confirm

the results of De Angeli et al. [39] that spatial encoding with cued recall is a strength of

graphical passwords.

Wiedenbeck et al. [40] compared PassPoints to alphanumeric passwords where the

alphanumeric passwords were restricted to the following:

 Eight characters including at least one uppercase letter and one numeric.

 No special characters.

 No previously used passwords or variations of previous passwords.

 The password system enforced length and character encoding conditions.

 The user could view their password as clear text during the learning phase.

It took the alphanumeric group more attempts than the PassPoints group to create a valid

password. This may have been because there were no restrictions on where PassPoints

users could select areas on the image. Additionally, the alphanumeric group reported

having more trouble thinking of a good password. However, there were more incorrect

18

practice submissions with PassPoints (Table 9). When asking users survey questions, a

scale of 1 to 7 was used where the lowest number indicated strongly agreeing.

Table 9: Creating alphanumeric passwords vs. PassPoints [40].
Metric Mode Mean/ SD

Total attempts to create Alphanumeric 1.70/0.18

 PassPoints 1.10/0.07

I did not have much trouble thinking up a password Alphanumeric 3.30/1.59

 PassPoints 2.35/1.57

It did not take me long to think up a password Alphanumeric 3.15/1.63

 PassPoints 2.60/1.42

Number of incorrect submissions (learning phase) Alphanumeric 0.40 /0.68

 PassPoints 4.80 /7.16

To examine whether PassPoints was easier to remember over time compared to

alphanumeric passwords, the retention of the two groups were measured in three periods:

one week (R1), two weeks (R2), and six weeks (R3). The data recorded over six weeks

seemed to show that PassPoints was only slightly statistically easier to recall in R3.

However, in the first two weeks, PassPoints did not seem to offer any improvement in

recall (Table 10). It seems that PassPoints might be somewhat harder to use than

alphanumeric passwords and only slightly more memorable.

Table 10: Means/Std. deviation of number of incorrect password submissions
(alphanumeric N =20/graphical N = 20) [40].

Metric Mode R1-Mean/ SD R2-Mean/ SD R3-Mean/ SD

Number of incorrect submissions Alphanumeric .25 /0.79 2.20 /2.73 1.75 /2.47

 PassPoints 1.55 /1.57 2.75 /3.88 1.50 /2.80

19

Chiasson et al. studied PassPoints using seventeen different image types classified by

visual clutter, color and content using images with a size of 451x331 pixels and a

clickable resolution of 19x19 pixels [41]. They found that different image scenes could

show modest differences in login success rates (Table 11). Two particular scenes were

investigated: a pool and a car (Figures 8 and 9). The better success rate for the pool

scene could be due to the repetitive nature of similar objects in the car scene versus a

more natural scene. The study also investigated the effect of changing the clickable size

and monitor resolution (Tables 12 and 13). Changing the clickable area tolerance and

screen resolution modestly had little statistical difference in login success. Though this

study did not compare the effectiveness with alphanumeric passwords, it did elucidate the

effect of clickable area tolerance, screen resolution, and image scenes. From the

Chiasson et al. study [41], there does seem to be a variation in recall between natural

scenes and more cluttered repetitive scenes.

Table 11: Success rate of PassPoints (Chiasson et al.) [41],
Metric Pool Car All Image Types

Login 33/33 (100%) 30/32 (94%) 560/598 (94%)

 Figure 8: Pool Scene [41]. Figure 9: Car Scene [41].

Table 12: Login effect of size of tolerance square on success rate (Chiasson et al.) [41].
Scene 13x13 Tolerance 19x19 Tolerance

Pool 790/1018 (78%) 671/862 (78%)

Cars 640/790 (81%) 661/773 (85%)

20

Table 13: Login effect of screen resolution on success rate (Chiasson et al.) [41],
Scene Low Res.

(<= 1 million)
High Res.
(> 1 million)

Pool 1000/1268 (79%) 460/611 (75%)

Cars 725/875 (83%) 575/687 (84%)

Image sequences found in cognometric schemes seem to offer no improved login success

when compared to short, weak text-based passwords or PINs. However, when compared

to stronger text-based passwords, the picture superiority effect may enhance recall using

cognometric passwords, like Passfaces™, but not to a large degree. However, if a

sequence of images is not required when forming a password, the picture superiority

affect is much stronger [52]. Locimetric passwords show a slight improvement in login

success compared to cognometric and alphanumeric passwords because of cued and

spatial recall.

2.7 High Entropy Graphical Passwords

Having a theoretically large password space, however, is not a measure of entropy. An

eight-character alphanumeric password has 6.6x1015 possible permutations using 95

characters and numbers; though, many of these combinations will not be used in practice

[25]. The entropy is a measure of how dispersed and statistically unrelated each

character is in the password space. The higher the entropy, the more dispersed passwords

are in the password space. Low entropy would result if passwords were statistically

dependent events like words or birthdates. As a measure, the password space is often

used as a simple metric for the strength of password schemes. In comparison, can

graphical passwords equal the theoretical password space of an eight-character

alphanumeric password? When considering cognometric passwords, like Déjà vu, a

database of images determines the theoretical password space. Déjà vu used 5 indistinct

shapes out of 20 distracter images for a password space of 15,504 combinations during a

login. Déjà vu had 10,000 images in a database that would be randomly used as

distracter images for the 20-image login display. By using a database of 10,000 distracter

21

images, Déjà vu posited that the password space was considerably more than an 8-

character password; however, only 20 images were shown at a time with the password

images [36]. When considering the password space computation of discrete images in

cognometric schemes, the password space is similar to text-based passwords. However,

in locimetric schemes, the password space depends on images size and clickable regions.

As can be seen from Table 14, a 1024x752 pixel image, divided into 1,925 clickable

regions, can have a password space of 2.6x1016. This demonstrates that a locimetric

password scheme can have a higher theoretical password space than an eight-character

alphanumeric password with possibly less mental effort [40]. With cognometric

password schemes, the password space depends largely on the image database containing

a large selection of dissimilar images. For locimetric schemes, the size of the image and

the clickable accuracy determine the possible clickable regions and hence the password

space.

Table 14: Comparison of password space for alphanumeric passwords and PassPoints with
different parameters

(Image size and square size are in pixels)
Type Image Size Square

Size
Alphabet Size\

Squares

Text
Length\

Clicks

Password Space

(alphabet/squares raised to the
power of text length/clicks)

Text N/A N/A 64 8 2.8x1014

Text N/A N/A 72 8 7.2x1014

Text N/A N/A 96 8 7.2x1015

Graphical 451x331 20x20 373 5 7.2x1012

Graphical 1024x752 20x20 1925 5 2.6x1016

Graphical 1024x752 14x14 3928 5 9.3x1017

Graphical 1024x752 14x14 1964 5 2.9x1016

However, another very important attribute of graphical passwords compared to

alphanumeric passwords is the entropy of the image itself. For alphanumeric passwords,

the entropy is determined by the randomness of the characters in a sequence. If users are

22

allowed to choose words or dates, for example, the entropy is quite low. For images,

there are two possible ways to increase entropy. For cognometric passwords, the image

sequence should be composed of unrelated images. It might be much harder for users to

pick a sequence of images where each image is related to the next compared to picking

unrelated characters in an alphanumeric password. For locimetric schemes, the entropy

depends on points of interest on the image. Additionally, the image itself, in a set of all

possible images, can be a form of entropy. For instance, if users could chose any

personal image, the sample space of images would be the population of all possible

images a user might chose, which would be a very large set. If images can be restricted

to unique occurrences in a population of users, then it follows that it is possible to

compute an image hash that would be unique in a set of images. The image hash would

have a high degree of entropy if images could be any image a user wanted to choose,

such as a family photo. Using a unique hash value, the image hash could be used as part

of an authentication scheme [43-49].

Using a multi-resolution representation of signals based on the theory of wavelets, an

image could be separated into higher and lower frequency spectrums using band-pass

filters [42]. As data integrity and verification of image authenticity became a concern, it

became necessary to protect image theft by creating a digital signature based on

compressing the low-pass region of image data, hashing it, and possibly encrypting the

result. The important step is the low band-pass filter that extracts image features robustly

enough to keep those features during compression and decompression [43, 44]. Because

of the high degree of information encoded in an image, authentication schemes based

around using an image as the input mechanism seem plausible. One design proposed is

illustrated in Figure 10 [49]. The image is divided into a P x P blocks and permutated

with a secret key, put through wavelet decomposition and filtered for the low-pass

coefficients, hashed and then encrypted. The encrypted hash is verified by the

authenticating server.

23

Figure 10: Example of an image hash process used in authentication (Ahmed et al.) [49].

2.8 Graphical Password Weaknesses

Though graphical passwords may show an improvement in recall, there are some

weaknesses that can be exploited. Any scheme relies on the entropy of the unique

identifier that a password produces. The more random and variable a password, the

harder it is to guess. Weaknesses can occur if the image or images lead to easy guesses,

shoulder surfing, or practical implementation problems. Indeed, graphical passwords can

suffer from some of the same weaknesses that plague alphanumeric passwords.

With cognometric graphical passwords, a sequence of images, and the quantity of the

distracter images selected from a large database of discrete images, forms the entropy of

the scheme. With locimetric schemes, a database is needed with many natural scenes that

produce memorable, selectable areas. This implies that cognometric and locimetric

passwords need a large database of dissimilar images. In short, the image database helps

determine the password strength [36-40]. There are several practical problems with these

schemes:

 It could be difficult to find a large selection of images that do not infringe on

copyright law;

 Vetting images to find memorable ones could also be a difficult task.

 In both cases, a database of thousands of images could seem daunting or impractical. An

alphanumeric password authentication scheme only relies on a keyboard of letters,

numbers, and special characters. It might be understandable that Web administrators can

24

implement text-based authentication schemes easier than one that needs a large database

of images.

 Another problem is the extended login time and effort with some graphical passwords.

Passfaces™, for example, needs 16 to 17 screens, of 9 images on each screen, to have the

comparable strength as an eight-character alphanumeric password [37, 50]. This would

present a long series of screens to the user and increase the login time when compared to

input from a keyboard. De Angeli et al. demonstrated that a four-image cognometric

scheme cost the user considerable time compared to a four-digit PIN (Figure 11) [39]. A

study with PassPoints showed a similar increase [40]. Table 15 shows that during

practice and successful logins, there was an increase in login time compared to

alphanumeric passwords. However, thinking of a hard-to-guess alphanumeric password

may have made the creation time higher for alphanumeric passwords.

Figure 11: Training and login times for PIN vs. graphical passwords (GP) (De Angeli et al.). [39].

Table 15: Time in seconds of PassPoints versus alphanumeric passwords [40].

Metric Mode Mean/ SD

Total time to create Alphanumeric 81.10/36.50

 PassPoints 64.03/21.93

25

Total time to practice Alphanumeric 66.08/4.92

 PassPoints 171.89/24.46

Time for correct submission (1st week) Alphanumeric 5.23/1.66

 PassPoints 8.78/4.40

Time for correct submission (6th week) Alphanumeric 9.24 /3.72

 PassPoints 19.38 /17.57

The problem with an increased login time is the increased chance for shoulder-surfing. A

study by Tari et al. compared the susceptibility of Passfaces™ to shoulder surfing when

compared to strong alphanumeric passwords [51]. Experimenters acting as attackers

were allowed optimum positioning and to take notes. Passfaces™ requires five pictures

to be chosen so a 5-character password was required in the comparison. Two types of

text-based passwords were used: one that could easily be attacked by a dictionary attack

and one that was very hard to guess. The results showed that a graphical password could

be more resistant to shoulder surfing when compared to easy to guess text-based

passwords. However, Passfaces™ was fifteen percent easier to shoulder-surf than non-

dictionary passwords but three times harder than dictionary passwords (Table 16). This

could suggest that the movement from screen to screen, when choosing the correct

sequence of images, increases the chance of shoulder surfing because of an increase in

input duration.

Table 16: Average correct, ordered entries of a shoulder surfing attacker [51].

Authentication Type Average Std. Deviation

Non-dictionary password 3.65 1.631

Passfaces™ with a mouse 3.10 1.119

Dictionary password 1.30 0.923

An area of locimetric weakness, not relevant in alphanumeric or cognometric password

schemes, is the effect of guessable regions called hot-spots. Chiasson et al. proposed a

persuasive method that limits predictable choices when clicking on an image [53].

26

Similar to producing stronger alphanumeric passwords using an application that will

monitor and persuade users to enter a more entropic password, images can also enforce

random choices [53, 54]. If no persuasive measure is taken to ensure that users pick

random points, users may pick areas that provide a stronger cued recall. Thorpe and Van

Oorschot conducted a study of 17 different click-based images. Van Oorschot et al.

noted that regions of possible guesses would involve the precision of the click point, or

the area of tolerance, and if the object is distinguishable from its surroundings such as a

white spot on a black hat [55]. Using cluster analysis on an image size of 451 × 331

pixels and a 19×19 pixel square of error tolerance, users clicked on five separate points.

A cluster was defined as one or more clicks in a 19x19 pixel tolerance (Figure 12). The

Van Oorschot et al. study found a strategy that could guess 36% of passwords with a 31-

bit dictionary. The study experimented with an automated image dictionary attack that

guessed 22% of 28-bit dictionaries.

The Van Oorschot study illustrates that locimetric schemes can suffer from decreased

password space and automated dictionary attacks due to areas of common interest.

Because an image can have hot-spots, the size of the images needs to be one that allows

for more clickable regions. The smaller the image size, the higher the probability that

hot-spots will converge onto a guessable password. Some entry screens may not

accommodate a large image size whereas alphanumeric passwords require little space to

input a password. Additionally, images must be chosen that have a high degree of

possible objects so users will not converge on a few clickable areas.

27

Figure 12: Hot-spot clusters indicated on an image (Van Oorschot et al.) [55].

28

2.9 Graphical Passwords and Anti-Phishing

One area where graphical passwords are very useful is in the prevention of phishing

attacks due to key and mouse logging Trojans. Doja and Kumar tested a locimetric

image that had discrete 20x20 pixel clickable areas with an image size of 451×331 pixels.

They proposed that the sequence of clicked squares could be added to a 128-bit MD5

hash to produce the resultant password. Though this study did not test their solution

against spyware, they argued that since locimetric schemes did not use input from the

keyboard that these schemes would be resistant to key-logging attacks. Likewise, they

noted that mouse movements would also not predict anything meaningful because the

image can be in different screen locations that would confuse mouse logging spyware

[56].

2.10 Some Common Hardware Authentication Schemes

Text-based and graphical passwords satisfy one of three ways to identify users: what you

know. However, authentication schemes can incorporate two more: who you are and

what you have. A system that records what you know can be vulnerable to dictionary

attacks or spyware. However, if a password system can use something physical as part of

the authentication, it arguably would be harder to guess or capture by Trojan programs.

A biometric device measures some unique human feature. Common biometric devices

can measure a user’s fingerprints, facial structure, retina, voice, and hand structure, to

name a few. Some commercial applications can incorporate these devices into a special

mouse, keyboard, or as separate capturing devices [57]. Biometric devices are getting

small enough for mobile phones and the cost is decreasing.

Though many government agencies and consumers have embraced biometric devices, a

current UNISYS survey found that the financial industry has been reluctant to use them

as authentication schemes because of negative consumer opinion over privacy, less

29

mature technology, costly implementation, complex installation, cheaper alternatives, and

high consumer cost [58]. At the time of writing, a Microsoft Fingerprint Reader was

found new on Amazon for $130 [59]. A commercial survey of 1,396 adults by

AuthenTec in 2004 found that only 23% of users would pay over $50 for a biometric

device with 43% willing to use a fingerprint in lieu of a password [60]. A survey of

biometric companies found that 35% of potential customers are utterly confused on what

to buy and 36% were not ready to buy any devices at all [61]. As costs continue to

decrease, devices become smaller, and industry standards for implementation and

deployment are better standardized, biometric devices would offer an effective

authentication system for consumers.

However, biometric devices are not immune to error. O’Gorman compared passwords,

tokens and biometric devices to illustrate security strengths and weaknesses [62].

O’Gorman described two types of biometric error: FMR and FNMR. When the device

gives a false match, it is measured by a false match rate (FMR); that is, the signal the

device outputs is the same as another user. If the device gives a false rejection when it

should have accepted, it is a false no-match measured as false no-match rate (FNMR). A

high FNMR is common with biometric devices because of environmental conditions such

as low light, improperly placed fingers, improper use of the device, or an unstable device

signal. Because of the environment, the user’s knowledge, or the device quality,

biometric devices can reject a user repeatedly. O’Gorman surveyed several sources and

collected FNMR and FMR statistics for various biometric devices (Table 17). Biometric

facial scans had a false rejection rate of 16%, as a worse case, and a 16% false acceptance

rate. The iris scan had the best false rejection and false acceptance rate of all biometric

devices in Table 17. Biometric devices may offer a secure way to authenticate users

because of unique signal generation and their resistance to spyware; however, biometric

devices can have a high FNMR, are often difficult to use correctly, and have a cost point

that many users find too high.

30

Table 17: Biometric recognition error rates (O’Gorman) [62].
Biometric Attempts FNMR FMR

Face 1 16% 16%

(1-3 mo. Spaced) 3 6% 6%

Fingerprint 1 2% 0.02%

 3 2% 0.01%

Hand 1 3% 0.3%

 3 1% 0.15%

Iris 1 2% 0.0001%

 3 0.25% 0.0001%

Voice 1 7% 7%

(text dependent) 3 2% 0.03%

There are cheaper hardware authentication schemes that are resistant to spyware attacks

and easier to use. O’Gorman noted that a hardware token with a password would be

quite secure. A token can be a physical device, often removable, such as a USB key or

smart card that aids in authentication by securely storing passwords or a unique identifier

[63]. Sometimes the word token is used to mean an identifier issued from an

authenticating server as a software token [64]. Hardware tokens are a recommended

approach for two-factor authentication with financial institutions according to the

guidelines of the Federal Financial Institutions Examination Council (FFIEC) in the

United States [65]. Some banks authenticate with a debit card number and password

[66]. Presumably, this authentication scheme is considered two-factor: what you have

and what you know. However, having a card with the number visibly printed on the front

is a weak form of two-factor security. By contrast, a smart card can keep a unique

number hidden on a strip but needs a card reader [67]. As with biometric devices, this

requires the user to buy an additional device as either a separate hardware unit or as part

of some special keyboards.

USB hardware tokens, on the other hand, may be a better alternative in two-factor

authentication because of cost, usability, and portability. USB tokens can contain a

tamper-proof, cheap microprocessor that encrypts or aids in secure authentication, along

with a flash memory that maintains a user state. In two-factor authentication methods, a

31

USB hardware token with a password would satisfy what you know and what you have

[68, 69]. Because the USB token is small and portable, security also involves physical

possession of the device separate from a PC. However, many of these solutions suffer

from the same weakness as a password vault mentioned previously: namely, a keyboard

is needed to enter the main password. Though more difficult, a hacker could log the

password with a key-logger while the user enters the device and then steal the device to

have all the passwords. Once access is granted into the device, the attacker can access

any Web site since the device automatically logs the user in. Therefore, with these

solutions, the main security feature is the physical possession of the device. Though

these solutions propose to either use constantly changing passwords [68] or passwords

encrypted by the Advance Encryption Standard (AES) in a tamper-proof system [69], the

fact remains that the device holds all the passwords, and as such, are a high-value target.

Attackers not only can steal the main text-based password that allows entry into the USB

token with a simple key-logger, these devices are also vulnerable to implementation

attacks such as side-channel, fault, and probing attacks [70]. Because a device that holds

passwords would be a high-value target, attackers could buy the product and look for

implementation weaknesses to attack. One example, demonstrated by De Mulder et al.,

found that a popular FPGA public-key cryptosystem circuit leaked information through

electromagnetic radiation [11]. Using a loop antenna surrounding the chip, both simple

electromagnetic attacks (SEMA) and differential electromagnetic attacks (DEMA) where

analyzed. The sudden change in current that occurs when a CMOS gate goes through a

voltage transition causes magnetic flux over the chip, which induces a voltage in the loop

antenna. The resultant voltage can be analyzed by statistical analysis. By changing the

input to the microprocessor and monitoring the induced voltage signal, the RSA key was

extracted after only 1000 measurements. Though this is one example on one kind of

hardware system, there exist several ways hardware can be attacked. Once the attacker

finds a weakness, it could be lucrative to send thieves out to steal these devices and bring

them to the lab. This cannot happen with biometric devices where the actual user must

be present; however, given the fact that USB tokens need no installed drivers, are small,

32

can be carried in one’s pocket, are cheaper than biometric devices, then this might be an

acceptable tradeoff.

CHAPTER 3 PROPOSED SYSTEM OVERVIEW

Due to the prevalence of key-logging spyware and the difficulty users have with creating

high-entropy, text-based passwords, a novel graphical password, token-based scheme is

proposed. Given that spyware can masquerade as legitimate software applications or

infect other applications, a read-only hardware system is necessary. A token-based USB

key system using secure file I/O offers such a solution. Most desktop and laptop

computers using various operating systems support the USB port; therefore, no special

hardware is needed to support USB token keys (alternatively, a Bluetooth based device

could be constructed for smart phones, etc.). Additionally, by using file I/O, most

operating systems will not require the user to install any drivers or configure any settings,

implying that the installation of the device requires no user involvement. This thesis

proposes a novel solution that combines the strength of graphical passwords with a low-

cost USB key hardware system.

Many weaknesses of graphical passwords have been explored. From these weaknesses a

better click-based graphical password has been designed to eliminate hot-spots, guessing,

mouse-logging, screen capturing, and usability issues such as click-accuracy. By

allowing the user to choose meaningful, family photos, or other images that they prefer,

the issue of having a large database of copyright free images is resolved. Superimposed

on the image, are randomly placed letters and numbers to form a virtual keypad. This

virtual keypad reduces the problem of users remembering the exact click-spot when they

recall their password, as well as preventing key-logging spyware. The randomness of the

x-y positions of letters and numbers on the underlying image reduces hot-spots.

Additionally, the underlying image helps provide cued recall of the clicked password. As

33

part of the implementation, persuasion is used to further randomize what a user can select

for letters and numbers when creating a password. By requiring a family photo, or other

desirable images, the probability of two users having the same photo is infinitesimal. The

entropy of the image itself with the randomized virtual keypad superimposed on top will

help form a cryptographic hash. The cryptographic hash will be used as either a 256-bit

AES key for another secure layer of encryption more resistant to man-in-the-middle

attacks or a 32-character alphanumeric password.

The danger of Trojans and other viruses is their ability to attack PC memory, data, or

applications that can possibly lead to password theft. The proposed solution will use an

embedded Web browser on a read-only USB device. With a read-only device, it is

impossible to infect the firmware or flash memory. As far as the user is concerned, the

USB token device looks like a regular file system. The user will access the USB device

like a normal file system and run a Web browser by double clicking on the executable

program. When the Web browser is loaded from the USB device, a novel approach is

used to validate that the binary image of the executable has not been infected or tampered

with by malicious software. All data transferred between the USB device and the user’s

PC is by file I/O using 256-bit AES encryption. The encryption of data will depend on

two graphical passwords. One graphical password will authenticate the user to the device

and encrypt or decrypt data between the device and the main application. The other

graphical password will be used to create an AES key to encrypt Web data or form a

stretched text password. The images will also help identify the device to the user, so they

know if they are using the correct device before entering their password. The following

diagram provides an overview of the operation of the system.

34

Client App USB Device
User

User opens the application

Get first image for G.P.

 Selects 5-8 points

Weak AES encrypted

 click points + image hash
 Strong AES encrypt ion

 Get system AES key and decrypt

 Strong AES encryption

 Send second G.P.

 C lear any login failure counts

(login)

 Selects 5-8 points

(Web password)

 click points + image hash
 Strong AES encryption

 Get system AES key and decrypt

 Get stored RNG values

 Add RNG values + click points + image hash
+ URL root to SHA-256

 Strong AES encryption

32-byte digest

 AES key/password

Figure 13: Sequence diagram of proposed system (G.P. =Graphical Password)

35

CHAPTER 4 SOFTWARE SYSTEM

The client application incorporates two graphical passwords into a secure web browser to

make authentication simple and fast. The first graphical password is used to log the user

into the USB device. The second graphical password helps the USB device return either

an AES key or a long text password for Web authentication. The Web browser also

assists the user in initiating a secure login. That is, the final goal of the client Web

application is to provide a secure password which is more resistant to Trojans than other

available solutions. To provide this security, the main program that the client uses is

loaded from a read-only USB flash device. The USB device is controlled by a

microcontroller that can verify and alter the data sent to the client system. One important

module in the client system, called the Device Manager, handles communications with

the USB device. The Device Manager uses a secure way to transmit data on a USB bus

using simple file input and output (I/O). Since most operating systems support a USB

port and block file I/O with a storage device, the user need not install any drivers for the

device. An overview of the system is illustrated in Figure 14.

Figure 14: System Block Diagram.

36

4.1 Graphical Password Application

Because Trojan key-loggers are a real and significant problem, and because users often

do not select long, random alphanumeric passwords, graphical passwords seem to offer a

better solution. Graphical passwords can prevent key-loggers, mouse-loggers, and image

capturing while the user inputs a password. Therefore, threats from spyware are reduced

or eliminated. If users do not need a keyboard, key logging is impossible. However,

mouse logging and screen capturing might be possible. The proposed solution will

demonstrate that these are not a threat. Additionally, it has been shown that

alphanumeric passwords are vulnerable to dictionary attacks because users often pick low

entropy passwords [25]. By using a graphical password, the proposed solution will

demonstrate that a 32-character, random, password can be created from 5 to 8 mouse

clicks on an image. See Figure 15 for an example.

Wiedenbeck et al. showed that click-based, or locimetric, password schemes, such as

PassPoints, had a lower login error rate over time compared to alphanumeric passwords

[40]. However, PassPoints suffered from an extended learning phase and increased login

time when compared to alphanumeric equivalents. The main difficultly in PassPoints

was that users were not able to accurately recognize their click points. In the extreme

case, if a user had to find their click-point on a completely white screen, it would be hard,

if not impossible. At the other extreme, if the image has a lot of clutter or repeating

objects, the user would find it difficult to remember the correct location. Therefore, the

recall and mouse-click accuracy seem to be highly dependent on the image type [41].

However, the proposed scheme hopes to overcome the problems found in locimetric

schemes while leveraging their strengths.

37

4.1.1 The Proposed Graphical Password Scheme

The proposed scheme is a locimetric scheme that uses an image of the user’s choice.

Because the image seems to be the main reason for varying login success and mouse-

click accuracy, this scheme will moderate the importance of the image and provide

randomly located, well demarcated click-points that the user can easily recognize. By

using well demarcated areas, the user will not have to guess the tolerance and suffer from

mouse-click inaccuracy. Additionally, in each demarcated area, a random letter or

number will be placed. Because users are transitioning from a keyboard and

alphanumeric passwords, putting letters and numbers over the image is likely to help with

recall, especially if mnemonics are used. The image underneath the text will help aid in

cued recall; however, since the user can also remember the text, the image does not have

to be restricted to ones that are the most effective. Additionally, by allowing the user to

choose a personal photo, the recall of their password may be enhanced. Therefore, the

system proposed is a hybrid of an alphanumeric password and a graphical password.

Using the same image-tolerance as PassPoints, the image is restricted to 451x331 with a

click-point radius of 10 pixels. A circle is used to demarcate the allowed clickable

location to the user. The user also has the ability to change the circle color or text color

to allow for better contrast against the image. Additionally, the image intensity can be

reduced, on a graduated scale, so the user can see the text better if required (Figure 15).

38

Figure 15: Screen capture of the hybrid alphanumeric-locimetric password scheme.

4.1.2 Password Space

The password space is determined by how many click-points are allowed on an image.

Additionally, the number of points should be a multiple of 4, as will be discussed. Given

the image size, it was found that 180 points, with a 10 pixel radius, provided the optimal

fit. The user will be required to pick at least 5 points resulting in a password space of:

1805 or 1.9x1011. However, if the user were required to pick as many as an 8-character

alphanumeric password, the password space would increase to 1808 or 1.1x1018 possible

choices. In contrast, an 8-character alphanumeric password only has 6.6x1015 possible

choices using 95 characters. The worst case scenario is that the user will have to

memorize a random sequence of 5 or 8 characters just as with an alphanumeric scheme;

39

however, based on research of locimetric schemes like PassPoints, the picture superiority

effect and cued recall can assist the user to memorize a random password.

4.1.3 Password Communication Resistance

A major problem, as outlined by Sasse and Adams [15], is that users might write down

their password instead of memorizing it. Additionally, the user might verbally

communicate their password when they should not. To help prevent users from

scribbling down the text that comprises their password, a multiple of each character is

placed on the graphical password. First, a random generator picks a subset of upper or

lowercase characters and single digit numbers to form a list of 45 characters. From this

list, each character is replicated to give 4 copies of each character. Even if the user writes

down their password text, there are 4 of copies of each symbol; and hence the password

is still not uniquely defined. If the user’s password were known to an attacker simply by

the text, and given that the password were to be 8 characters long, there would still be a

password space of 48 or 65,536 possible choices. If screen capturing is disabled, the user

would have to manually sketch the password text and their locations. Though this will

not prevent a user from communicating their password, it does make it more difficult

when compared to alphanumeric passwords.

4.1.4 Hot-Spot Resistance

As demonstrated by Chiasson and Van Oorschot et al. [53, 55], users will tend to pick

points that are easy to remember. The type of image highly influences this behavior. For

example, in Figure 15, the text around the astronaut is easy to find and remember

compared to the black space above the moon. An attacker might suspect that the

astronaut is a region of interest when guessing the user’s password. These hot-spots can

be eliminated if the user is persuaded to use more random locations. To accomplish this

persuasion, the client system will darken and disable random click-spots while the user is

40

setting up their password. Some random points may be near hot-spot areas but not all of

them. Heuristic image analysis could be automated to further restrict how many random

points are allowed in image areas with certain features. Additionally, adjacent text on top

of the image could form a hot-spot. For example, adjacent letters might form the word

“cat”. It would be useful, therefore, to have a persuasive method that can look for

dictionary words with adjacent text. For the proposed solution, only half of the points on

the image will be allowed as a password choice. Those areas that are allowed are

randomly chosen and do not account for image features or adjacent text.

4.2 Graphical Password Generation

As was demonstrated, the password space resulting from the choice of 8 out of 180 items,

randomly placed on an image, is larger than an 8-character alphanumeric password.

However, there is more information that can be encoded with each click-point that creates

an even higher source of entropy. Unlike alphanumeric passwords, which only have 95

characters as a source of entropy, an image has a large source of features that can be

captured by decomposition techniques [42-49]. The image, under the text where the user

clicks, will contain pixels of various colors. Additionally, the whole graphical password

with the random text, their random positions, and the image can be unique among a large

population of users, especially if users provide their own image. Using these collective

factors of variability in a graphical password, it will be possible to stretch a 5 to 8 point

selection to a longer password. The goal is to transform the entropy of the graphical

password and chosen click-points to a 256-bit, AES key or long series of text suitable of

most Web login pages. Using 256 bits gives a theoretical password space of 2256 or

1.16x1077 possible combinations. Figure 16 shows a block diagram of the process.

41

User input using
graphical
password

Password
generation

256-bit AES key

32-character
password

Authentication

Figure 16: Block diagram of graphical password input to final product.

4.2.1 Cryptographic Hash

To accomplish a collision-free AES key, a cryptographic hash function, * ()H m , offers a

realistic implementation mechanism given as: * 256() keyH m P where P is the 256-bit

password (message digest) and m represents the graphical password input that comprises

the message. However, this assumes that the combination of what the user selects as a

password, and the graphical password image, can give an input message, m, with no

collisions. That is, a cryptographic hash function requires that the input message be

unique if the resultant message digest, 256
keyP , is expected to be unique: a one-to-one

relationship. Unique message digests derived from all users of the graphical password

system should be resistant against guessing. Additionally, a property of the

cryptographic hash function is to make it hard to find the message, m, given the hash

function, and message digest; therefore, the user’s graphical password click-points and

other components of the message input are hard to attack. This would allow the user to

safely keep the same graphical password image and click-points even if the message

digest were compromised. In summary, two attributes of a cryptographic hash function

that are useful [71]:

• It is extremely difficult to reconstruct the input data from the output.

42

• It is extremely unlikely that the hash function will produce the same output given

different inputs.

One such cryptographic hash function is the Secure Hash Algorithm (SHA) 256 which is

compliant with the FIPS Publication 180-2 specification [72]. The SHA-256 hash

function will give a 256-bit message digest that can be used as a 256-bit AES key.

4.2.2 Histogram Image Hash Algorithm

To provide a unique input message to the cryptographic hash function, the uniqueness of

the user’s family photo will be used to derive a unique image hash. The input to the

cryptographic hash function follows: * 256(()) keyH H image CP P where CP is a stream of

click-point data from the graphical password and H is the image hash function. The

image hash function will offer the largest contribution to uniqueness of the input message

since the click-points only constitute 1.1x1018 possible combinations if 8 click-points are

selected. An image is composed of pixels which are defined by a red, green, and blue

color channel having values from 0 to 255. If each value in the color channel was an

independent event with equal weight, the theoretical combinations would be (256)3*p

where p is the total number of pixels in the image. Given an image composed of

451x331 pixels, that is 256 447843. With such a large number of theoretical combinations,

it is safe to assume that if every user picked their own family photo, the possible

permutations approach a very large set. However, with this system, the image is too large

to form a message into the cryptographic hash function; therefore, a reduction to a

smaller hash value is necessary.

The image hash function will use a histogram composed of counts that represent how

many color value averages in a P x P pixel block that are above a certain color threshold

of any red, green, or blue color channel. This is a simple yet effective low-pass filter.

Added to each histogram value is a corresponding permutation. Figure 17 shows a block

diagram of the process to generate an image hash.

43

Input image Average R,G,B
channels in image

PxP block
histogram

Permutat ion
added to

histogram

Hash (H)

Figure 17: Block diagram of histogram image hash generation.

The graphical password image will be of the dimension W x H pixels and will be

partitioned into non-overlapping P x P pixel blocks for a total of W*H/P2 blocks. The

total histogram values will be the integer value of W/P indicated by L. In this solution,

L = 56 histogram values of one byte each. Each color channel will be represented by

R=red, G=green, and B=blue. The image threshold for each color channel will be:

1 W H

R ij
i jp

T R
N

 ,
1 W H

G ij
i jp

T G
N

 ,
1 W H

B ij
i jp

T B
N

 .

The threshold is defined for red, green, and blue respectively, where Np is the total

number of pixels in the image. Each block will have an average RGB component:

1 P P

lm ij
i j

B C
PxP

 .

The value Cij is composed of values R, G, and B for each pixel at the ith and jth position

with respect to block Blm and l is the index for the block along the length of the image

and m is the block offset along the height of the image. Each histogram value is

computed by:

() () ()
n n n

lm lm lml R G B
m m m

N B T B T B T .

The value Nl is the count at position l of L. If any value is larger than 255, the upper

limit of a byte, the value will be allowed to roll over. However, the mean color for each

channel, as the threshold, keeps the count to a relatively low number compared to 255.

A permutation is added to the final count before moving to the next index in the

histogram. The permutation is computed using only the blocks with a color channel that

have an average equal or greater than the threshold for blocks 1 to m given as:

()l l lmR lmG lmB lmK K B B B B T .

44

If the permutation that is added to the count is over 255, the value in position l of the

histogram will be allowed to rollover. Finally, the histogram image hash is represented

as:

()
L

l l
l

H image N K .

When the user clicks on the graphical password, in the designated areas, both the text and

its location are unique to that graphical password. In addition, the pixels under the text

may also be unique, though not necessarily. For each point the user clicks, a sweep of a

10-pixel radius over the image underneath can be used to find the average color. If the

user chooses an 8 click-point password, that would result in 8 bytes of ASCII text, 32

bytes of X-Y data (each X-Y value pair contains two words of data) resulting in 40 bytes

of data. The average color of the image with a 10-pixel radius about each point adds 8

double words of data or another 32 bytes. Therefore, from an 8-click password there will

be 72 bytes of data. If that is added to the image hash calculated above, the result is now

128 bytes of data as the message for the cryptographic hash function. Though it may be

possible to have a collision, it seems unlikely with 128 bytes of data elements derived

from the uniqueness of both the image and the user’s password (Figure 18).

From the user's click-points

72-127 (Image Hash)40-71 (RGB averages)

Histogram Image Hash

0-7 (Text) 8-39 (X-Y Points)

Figure 18: 128-byte message structure for the cryptographic hash function.

45

4.2.3 Cryptographic Hashing and the Device

For security, it is important that the user create their AES key using the USB device. This

will ensure that only the owner of the device can create the correct AES key or 32-

character text password. Therefore, true, not pseudo, random values stored in the device

will be added to the input of the cryptographic hash function before it returns to the

message digest to the client application. The message digest is represented by:

* 256(()) keyH H image CP RNG P .

Function H(image) produces the histogram image hash and CP is the click-point data that

both come from the client application. The device provides RNG values to the

cryptographic hash function which both reside in the device.

4.2.4 Text Password Generation

The text-based password scheme currently in use on the Web today would be impractical

to replace anytime soon. The weakness of the text-based password scheme is not only

because of key-logging and clipboard directed spyware, but the fact that users tend to use

easy-to-guess passwords. Graphical passwords have typically been used to work with

special infrastructure, such as Passfaces™ [37]. Using the message digest from the

cryptographic hash function in the device, 32 bytes containing values from 0 to 255 can

be mapped to text characters. Although ASCII ranges from 0 to 127 and extended ASCII

up to 255, authentication applications may allow only 26 upper and lowercase text, single

digits and the common special characters found on most keyboards. In some instances,

the single quote, double quote, and back-tick are not allowed because they are used in

some SQL and script injection attacks. If the values in the 32 byte (256-bit) message

digest are random and unique across a large population of users, then the values in each

of the bytes can be considered a good source for choosing text from a set of allowed

characters. Using each byte in the message digest, a mapping function can be derived

46

such that 256 () keyP i allowed ASCII set where P is the cryptographic digest function and

the value at index, i, is mapped to allowed ASCII text. It might be possible to use most

of the ASCII and extended ASCII set; however, if leaving off a few possible blacklisted

characters and using only 90 items, that would leave 9032 or 3.4x1062 theoretical

combinations. Putting that in perspective, if all of the values, ranging from 0 to 255,

could be used then the password space would have 1.16x1077 combinations. Using less

than half of the range reduces the password space significantly but still it is much higher

than an 8-character alphanumeric password and it is derived from random, unique values.

4.3 Screen and Mouse Capture Prevention

Graphical passwords can be attacked by spyware that targets the image of the graphical

password and mouse activity. Each operating system will have various low-level system

calls that can both enable and prevent these attacks. For example, the proposed system

works with Microsoft Windows and, as such, will use APIs specific to Windows. In

Windows processes, Dynamic Link Libraries (DLLs) can “hook” into window messages

on a local or global level. This has security issues in that spyware can hook into the

mouse movements or key presses of any process on the system. A malicious application

might call the SetWindowHook API to log mouse messages [85]. Additionally, a screen

capture of the graphical password dialog could be acquired by an attacker. The attacker

could relate screen locations and mouse activity to the graphical password window. The

system proposed uses DLL injection to take control away from some of these message

hooks while the graphical password is displayed. Any Windows APIs, message hooking

techniques, or other libraries that are purported to function according to the

documentation, are subject to change and will always need careful evaluation. For this

reason, any implementation is ephemeral at best. Constant vigilance and updating the

client application for a particular operating system is necessary.

47

4.4 Secure Web Browser Application

It is not enough to provide only a graphical password to the user. A graphical password

must work with the current infrastructure in a secure manner and provide a more secure

solution than current text-based password schemes. Therefore, the proposed solution

provides a secure Web browser with the following attributes (Figure 19):

 The graphical password is integrated into the Web browser.

 The application helps the user set up a device login graphical password.

 The application provides a login screen to the device.

 A graphical password is provided that can be used to generate a text password.

 A text password is automatically inserted into the password field without the

keyboard, clipboard, or other easily attacked methods.

 The application sets up an AES encrypted communication channel with

supporting Web servers instead of weaker PKI cryptography.

 The application uses frequent AES key exchanges with supporting Web servers.

 Uses stored links in the device as favorite links so the user will not have to type

URLs.

 Inform the user if the client has been attacked by a virus and abort the application.

The current prototyped solution uses a Web browser ActiveX control in a container built

with Visual C++. It should be noted here that there is a danger using outside libraries

installed on the user’s PC since they can be attacked by malware. As mentioned in the

section under malware countermeasures, the ActiveX control would have to be vigilantly

checked by the container before the application could proceed. An open source browser

like Firefox would offer fewer library dependencies. Whether an ActiveX control or an

open source browser is used, there needs to be a container that manages the Web session

and interacts with the USB device. The container would not have to be responsible for

the HTML document implementation. Rather, the container can interact with a prebuilt

Web browser like an ActiveX control, where all document objects in an HTML page are

48

accessible programmatically. That is, as with JavaScript, any form, field or other HTML

object can be manipulated by the container.

Figure 19: Screen shot of the embedded browser’s toolbar with graphical password buttons.

4.4.1 Device Setup

The browser’s toolbar has a menu for the graphical passwords and setup utilities (Figure

19). The user should not have to exert any special effort to input a password. Clicking on

the toolbar to activate the graphical password is all that is required. The user will initially

receive a USB device from some commercial outlet configured with a default password.

Since a graphical password is hard to communicate, unlike a PIN, the user will be given a

pseudo-PIN issued with the device. The pseudo-PIN will be any five letters or numbers

on the graphical password screen without regard to position or case sensitivity. After the

user enters their pseudo-PIN on the graphical password, the user will need to find two

images that they like. One image will be used for the login to the USB device and the

other for their Web passwords. The image, as mentioned before, can help aid in cued

recall. However, it also serves as a security feature. Since the user will pick an image

they prefer, if someone switched their device, the user would know it before entering

their password. Once the image is configured, the user can press a button to randomly

generate the text and associated locations over the image. When ready, the user will

select a password with the appropriate minimum requirement. In contrast, the graphical

password for the Web is never setup (except the image). No Web passwords are stored in

the device for security reasons; therefore, the user must always enter their Web password

every time as needed.

49

4.4.2 Text Password Insertion

After logging into the USB device successfully from inside the Web browser container,

the user can select or type the URL to a login Web page. The user will activate the Web

graphical password within the browser and click their password. Once the Web browser

receives the device-generated message digest and forms a text password, an obvious

indication will notify the user that the password is now ready for insertion into the

password field. The user will then just click the mouse pointer on the password field and

the underlying application will find the HTML document object and programmatically

insert the password into the password field. Any buffers holding the password are inside

the client process and are not accessible to spyware.

4.4.3 One Graphical Password-Multiple Text Passwords

One problem with text-based passwords is the cognitive load on users to maintain many

different passwords and constantly remember new ones. For better security, many

administrators will require a password to expire. With many passwords to remember on

a regular basis, users tend to write them down and put them in insecure locations [15].

With the solution proposed, using the security of the USB device and the cryptographic

hash function, a user will be able to generate many long, random and dissimilar text

passwords from the same graphical password. In addition, for security, there is no need to

store the user’s password in the USB device to accomplish this.

As previously mentioned, both the click-point information of the graphical password and

the image hash are used as one part of the input to a SHA-256 cryptographic hash

function. Additionally, random values in flash memory are added as the device’s

contribution into the hash function which results in a 32-byte (256-bit) digest. True

random (RNG) values that are added in the device are an important part because it

enforces password generation from the user’s own device when generating the correct 32-

byte digest. Additionally, changing the random numbers that are part of the message into

50

the cryptographic hash function can result in a completely different password from the

same graphical password input. Along with the RNG values, more information could be

added to the hash function to create a different password with the same graphical

password input. Specifically, input to the cryptographic hash function in the device could

also include the URL of the Web site login page.

If the user wants to change their password, the user would need to notify the client

system which subsequently would tell the USB device to change the RNG values it

currently uses as the input to the cryptographic hash function. The last RNG value for

the password would be stored in a special place in flash memory and used each time the

password is required. This way, the user would not need to learn a new set of click-

points for a new text password or AES key. Since an important property of the

cryptographic hash function is to change the output dramatically with as little as a one-bit

change, any new RNG values will generate a completely new 32-byte message digest for

either an AES key or text password. This would also be the mechanism used by the

client system to send encrypted messages to the server using many different AES keys.

The device will keep changing the RNG values for each request and a new AES key is

the result. If an AES key and a text password are generated independently, RNG values

must be stored separately as well. It is important to note here that the RNG values used

are created at the factory by a true random generator because the device is only capable

of pseudo random (PRNG) numbers. A PRNG value, however, can be used to index into

a series of factory installed random numbers and to increment from a base RNG number.

That is, an RNG value added to a PRNG value can result in a larger set of numbers than

what can be preinstalled (Figure 20).

51

SHA-256-bit digest

Input same click points
+

 Image hash

Generate PRNG to
index stored RNG

values

Request for new password RNG stored in flash
memory

Create SHA-256-bit digest
with same graphical

password and new RNG
value

New text or AES 32
byte value

Figure 20: The same graphical password using different RNG values to form a new password.

Changing the password is necessary for better security but this does not take into

consideration the need for multiple passwords for multiple logins. One password used

for all Web sites is a potential weakness should it become compromised. A better

solution would be to have a different password for every Web site. The client system

could help the user keep a different password for each Web login using the root URL as

another input to the cryptographic hash function. Once the user chooses a Web site to

login, the password click-points and URL are sent to the device. By definition, a URL is

unique and would result in a different message digest. Now, the URL is added to the

input with RNG values as before. A different 32-byte message digest will result for each

URL and hence, a different text password can be generated without the user changing the

graphical password input (Figure 21). The device can also store the URL so the user will

not have to type it the next time. Storing the URL might preclude mistyping the URL

and landing on a phishing site. The application could also have a heuristic mechanism to

scan suspicious URLs and warn the user. However, any verification of the URL is

vulnerable to DNS poisoning and ARP spoofing.

52

SHA-256-bit digest

Same click points
+

Image hash
+

URL

Generate PRNG to
index stored RNG

values

Request for new password
New RNG stored in

flash memory

Create SHA-256-bit digest
w ith same graphical

password and new RNG
value

New text or AES 32
byte value

Figure 21: Building a User’s text password dependant on the root URL.

4.4.4 Client-Server Encryption Protocol

The public key infrastructure (PKI) cryptography used on the Internet is not as secure as

once thought. Even though RSA encryption is very resistant to cryptanalysis, the transfer

and certification of trusted public keys is vulnerable to man-in-the-middle (MITM)

attacks. The proposed solution will use existing PKI with a second layer of cryptography

to further resist MITM attacks. For this reason, AES-256 Rijndael will be used for the

encryption method with constantly changing symmetric keys. Because a new AES key is

sent from the client to the server at the start of each transfer, an approved key wrapping

and data packaging method might be useful. The Cryptographic Message Syntax (CMS)

standardizes the packaging of encrypted messages and keys with the message [86-87].

Likewise, the server should encrypt data sent to the client with the client’s AES key

stored in its database or the one sent with the last message. The AES key stored in the

server’s database for the next session should be the last AES key sent by the client

(Figure 22).

53

Web ServerWeb client
PKI channel

AES channelCMS Secured
HTML

CMS Secured
data

Figure 22: Overview of out-of-band client-server communication.

The proposed solution uses PKI to open an out-of-band encryption channel using AES.

HTML can be sent on this channel and displayed in a separate area of the Web browser

determined by the container. Since the container has access to the current Web page’s

HTML entities, a seamless integration of the PKI displayed HTML and the more secured

AES HTML can be realized. A lightweight CMS is proposed to describe the AES

encrypted data transferred in the encoded part of an HTML form. The encrypted-data

content type is proposed since it handles any type of encrypted data and encryption keys

to any number of recipients [86]. ASN.1 notation is used to define the structure:

id-encryptedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 6 }

 EncryptedData ::= SEQUENCE {

 version CMSVersion,

 encryptedContentInfo EncryptedContentInfo

 }

The encrypted-data is constructed by modifying the steps in RFC 2630:

1. The encryption key will be derived from the graphical password and will be a 256-

bit AES key formed using the Rijndael algorithm.

2. Key wrapping will be performed as defined in RFC 3394 [87].

54

3. A new AES key derived from a graphical password and SHA-256 in the USB

device will be sent before the data transmission to the server encrypted with the

previous AES key.

4. The server will use the last key to decrypt the new key from the client and use the

client’s new key to decrypt the incoming message.

5. An additional 128 bytes of padding will be added to all plain-text, to a multiple of

the AES block size, and filled with random values. This includes the key wrapping.

6. The enveloped-data type will contain the session id as the recipient info.

Figure 23: Sequence of out-band-encryption.

55

4.5 Communicating With the Device

The Device Manager relies on the operating system’s underlying support of SCSI

devices. The two endpoints for all communications are the Device Manager in the client

application and Crypto Device embedded in the microcontroller of the USB device.

Commands/responses are sent/read in 512 bytes of encrypted data to an input/output file

defined in the File Allocation Table (FAT) of the device’s flash memory (Figure 24).

That is, for the endpoints to communicate, one file is registered in the FAT as 512 bytes

in length. There is, however, no real file. Additionally, the FAT table is formatted for

512-byte sectors of data storage. Therefore, data sent to and from the device fit into one

FAT sector. In this implementation, the operating system must support the FAT

specified by Microsoft [80, 81].

Client System

USB Device

Device Manager

Win 32 File Subsystem

Disk Drivers
(disk.sys,

PartMgr.sys)

Function
Drivers

(usbstor.sys)

USB Hub Drivers (usbhub.sys)

Bus Drivers (usbd.sys)

Hardware (Root Hub)

10 Base-T Transceiver
TECHNOLOGY CORPORATION

P O L

C O L
R X D

T X D
P W R

L N K

USB Bus

AVR USB MCU
with USB controller

Data Flash Memory

SPI Bus

512-Byte Input/Output File

Figure 24: Client system to device communication block diagram [84].

56

The microprocessor intercepts all SCSI commands. If the client application saves data to

a file on the USB device, the SCSI command will be intercepted along with the sectors of

file data. Then, the microprocessor will decide from the sector address what to do with

the data. If the data is in a sector that is allowed, the microprocessor will decrypt and

read the data sent. If the sector is not valid or allowed, the microprocessor will throw the

data into a bit bucket (an area to throw illegal sectors of data). The microprocessor will

always report success for SCSI commands that contain illegal sector addresses but the

microprocessor will silently throw them away which results in a simplified design.

Likewise, if the client application reads a file, the SCSI command to retrieve a sector of

data on the flash drive will be intercepted. If the sector is not an allowed sector, a

warning text message can be sent in what would have been the file’s data (Figure 25-26).

File Save

Are more than
one sector

being saved?
No

Yes

Only one sector allowed.
Force all sectors to bit

bucket.

Bit bucket (gargage sector)

Is sector the
allowed one?

No

Decrypt and inspect
packet

Yes

Force sector to bit
bucket.

Figure 25: Overview of the action the USB device takes when the client saves data.

57

File Read

Is sector(s)
below the FAT

end sector?

Yes

Allow full access to all FAT sectors

No
Is sector(s) part
of the executable
client program?

Yes

Allow full access to data needed to
load the executable program

Output "access denied" in packet(s)

Is sector the
allowed response

sector?
No

No

Yes

Encrypt and store data for retrieval
in the output sector

Figure 26: Overview of the action the USB device takes when the client reads data.

Read-only access to the FAT table must be allowed so the input/output file and the

executable can be accessed. All other sectors in the flash are protected by the

microcontroller. If the input/output file is manually opened, the microcontroller will

detect an invalid access, as discussed in following the sections, and return an “access

denied” warning to the user and increment an internal login failure counter.

4.5.1 System Commands and Responses Summary

As was mentioned, the FAT sector is formatted to 512-byte sectors of file storage. For

this reason, a 512-byte file is used for input/output. Though a file bigger than 512 bytes

could have been used as the input/output, most of the data exchanged fits into 512 bytes.

The exceptions are the image data and the X-Y coordinates for the graphical passwords.

For those data items, multiple exchanges to the same input/output file are used. The

Device Manager module of the client system sends commands to the microcontroller with

58

the data structure in figure 27. Responses are read from the device in a data structure

defined in figure 28.

Figure 27: Command packet sent to the device (file I/O save).

Figure 28: Response packet read from the device (file I/O read).

The first field indicates what action to take on the data. The next three fields are used for

security and data integrity as discussed in sections 4.5.2 to 4.5.4. The last field is the

payload and contains up to 498 bytes of data. Because data is streamed in a series of

bytes, the byte order for the data types must also be defined. Most of the data is streamed

in “Big Endian” format. However, “Little Endian” is used for the X-Y coordinates of the

graphical password text. A summary of all the commands and accompanying data in the

payload is outlined in 2.3 of the appendix.

4.5.2 Communication Security

Given that sensitive data is being communicated between the client application and the

USB device, robust security features must be employed. Data is flowing through the

operating system’s file I/O system and a Trojan could inject itself as part of a system I/O

module and intercept any and all file data. Hence, data from the client process to the

embedded device must be encrypted. In particular, the data should be transmitted by a

strong encryption algorithm, resistant to replay attacks, and resistant to implementation

attacks.

59

AES Cipher

The encryption complies with FIPS PUB 197, AES Data Encryption Standard [73]. Data

is encrypted with 256-bit AES cipher-block chaining (CBC). AES is a block cipher and

the danger is that if the data is the same in each block, the output will be the same. For

this reason, CBC is used so that each successive block of plain-text is XORed with the

previous cipher-block [74]. However, that will not preclude a replay attack. A replay

attack is where the attacker does not need to know the contents of the encrypted data to

cause harm [75]. For example, if the client application sends encrypted data to the device

each time the user logs in, the attacker could capture this stream of data and apply the

same stream of data to the device to get the same response as the legitimate packet of

encrypted data. The attacker could then log into the device merely by stealing the

encrypted packet of data. For this reason, three fields, of four bytes each, have been

added to the command and response data packets and discussed below (Figure 27 and

28):

 Calculated nonce.

 Sender’s nonce.

 Payload checksum.

Replay Attack Prevention and PRNG Generation

To prevent replay attacks, the encrypted data can be made to have varying cipher text

output for the same plain-text. To do this, random values need to be placed in or around

the plain-text data. For this, nonces will are used. A nonce is a random number once

used [76]. Each endpoint will create a nonce value for each plain-text payload before it is

encrypted by AES. No two cipher-data transmissions between the endpoints should ever

be the same. The problem is that the hardware for the USB device can only generate

pseudorandom numbers (PRNG) as opposed to truly random numbers (RNG) [77]. The

problem is finding a “seed” that does not fall into a finite set of values that could be

guessed. Due to constraints in hardware cost, the seed value for the USB device should

60

be stored in flash at the factory using a true RNG. Using this seed, the milliseconds from

the time the device started to the time a nonce is needed can be added as seed for a better

random value. The pseudocode for the PRNG of the client and device is as follows:

Client

srand(time(0)^CPU_ID^timerticks)

prngVal=0

while(!prngVal)

 prngVal = rand() % ((int)pow((float)2,(int)30))

USB Device [78]

RNGarray[256] = { 256 RNG values from factory }

RNGarray [timerticks%255] ^= timerticks

prngVal =RNGarray [timerticks%255]

Here timerticks are the milliseconds elapsed since the device was plugged into the USB

port, and RNG is a true random integer value set in flash memory at the factory. The

client application can use an API that generates a PRNG and can also seed this value

using some hardware ID such as the CPU serial number and the time in milliseconds

since the application was started.

A second layer of randomness is added to each transmission of data. With the exception

of the image data that fills the whole payload, there is always some room in the payload

after all the necessary items are added. In the remainder of the payload, random values

from 0 to 255 are added after the valid data. With a nonce followed by random values in

the remaining parts of the payload, a replay attack is extremely difficult undertake.

However, the attacker could use brute force to find a break in the system. By using an

automated tool and writing various streams of data to the device, it might still be possible

to find an implementation weakness. Hence, there are two more fields in the data packet

61

to further reduce implementation attacks based on brute force. One is the calculated

nonce value and the other is a checksum value.

Checksum of Payload Data

The payload integrity is verified with a sensitive checksum that can find a difference even

if one byte value is increased and another decreased by the same amount. A checksum

should include all valid data and randomized data in the payload in order to catch any

changes anywhere in the payload. If a brute force attack occurred, it would be very

unlikely that the payload would checksum correctly once it was decrypted. The

pseudocode for the checksum is as follows [79]:

len = byte length divided by 2

while len is not 0

 begin

 If len < 16,384 then

 l = len

 else

 l = 16,384

 len = len – l;

 for 0 to l

 begin

 sum = sum + data_value at index

 index = index +1

 end

 sum = (sum and HFFFF)+ (sum shift right 16)

end

 sum = (sum and HFFFF)+ (sum shift right 16)

62

Calculated Nonce Based on Shared Function and Secret

The idea of a calculated nonce is based on a shared secret that is added to part of a

message to return a hard-to-guess value that will authenticate one party to another. If

both system A and system B share the same function and some secret, system B sends a

numeric value, X, to system A; and system A inputs the value into the shared function

along with its secret and gets value Y. System B also inputs value X into its function

with its secret and gets value Y. When system A responds to system B, the value Y is

sent with a reply. System B then compares the calculated value from system A with its

expected value. If those values match, then it is very probable that the reply from system

A is authentic, provided it is hard-to-guess value Y given X. The idea can be applied to a

nonce value and a common secret as an input to a shared function to get a hard to guess

output value (Figure 29).

Client sends nonce to deviceClient App Device

 Calculated nonce of client

Nonce
function

nonce calc nonce.

Nonce
function

client's calc. nonceclient's nonce

Figure 29: Nonce and calculated nonce authentication scheme.

When the client’s nonce is received by the device, the device sends the nonce into its

shared function and returns the calculated nonce with the response data packet. The

client application will then verify that the calculated nonce matches what it expects.

Likewise, the USB device will send its nonce and store a calculated nonce value it

expects to receive in the next command packet from the client. The result is that each

data packet always depends on a state of the last calculated nonce they expect. These

63

values change in every transmission, are random, and enforce a specific order of

command and response. It should be reiterated that the calculated nonce is in an AES

encrypted packet so it will be very hard to eavesdrop. If the calculated nonce values do

not match what is expected by either party, the packet is rejected.

Client Executable and Random Checksums as the Shared Secret

The idea of a calculated nonce is a way to authenticate both parties to each other. What

is required is a shared secret that, with a shared function, will generate a hard-to-guess

output for authentication. For this, the client executable will be used as the shared secret

and the same checksum function that checks the payload will be the shared function.

Using the random nonce value discussed above, the nonce can be used as an index into

the executable file to return a partial checksum (calculated nonce) defined by:

(, executable)=partial checksumcf nonce client . Because the nonce value may be bigger

than the executable size, a modulus of the nonce value and the file size can return a start

index into the executable from which to begin a checksum. The checksum derived from

a random offset into the executable to an endpoint, or end of file, will also produce a

random output but not one that is difficult to guess. That is, since all of the clients run the

same executable code, it might be possible to guess the calculated nonce by trying some

nonce values.

The idea, then, is to not have the same executable code for each client because that would

produce the same checksum. In short, the machine code in the client’s executable can be

modified in random locations that still keep the operation of the executable as expected.

This would produce a completely different calculated nonce value than other clients

because of different executable images. This will, however, require that the

microcontroller in the USB device run the same checksum on the executable file stored

on its flash drive as the client will have to do on itself. For many cheaper

64

microcontrollers, that may require too much processing speed. Therefore, it may suffice

to run the checksum over one or two sectors of the stored executable so processing time

is less.

Using both the calculated nonce and the payload checksum, the integrity of the payload

and the authenticity of the packet can be verified. Any implementation attack would

have to make sure that both the calculated nonce and the checksum are exact. If those

values are not correct, the packet is rejected by the client or the device. Additionally, the

device will monitor how many times it receives a bad packet of data. If the device

receives too many bad packets, it can be programmed to self-destruct after so many bad

packets. Consequently, any implementation attack could not use successive attacks.

Operating System Modules are Better Protected

Another defense against implementation attacks is that SCSI file I/O is a well known

protocol and uses common operating system libraries. The problem with using a

proprietary system is that it might have weaknesses in its implementation that have not

been vetted over an extended period of time in the field. By using a well-tested protocol

and libraries, accidental implementation faults are likely to be minimized. The other

benefit is the exposure to anti-virus and anti-spyware applications. Since an operating

system library is responsible for transferring data on the PC, a Trojan or a virus could

attack it. Anti-virus and anti-spyware rely on databases that contain signatures of

malware and also the correct checksums of operating system libraries. A proprietary

library’s checksum is unlikely to exist in a database and an anti-virus or anti-spyware

program may miss the infection based purely on a checksum of the library code.

65

4.5.3 Device Authentication

As discussed, data packets are verified with a calculated nonce and payload checksum,

however the core of the authentication revolves around the AES encryption and how the

256-bit keys are created. It should be emphasized that there is no standard login with a

username and password scheme. Rather, “login” means that the device successfully

decrypted the data packet and finds the expected command, payload checksum, and

calculated nonce to be correct. A “login failure” is where the device decrypts the data

with the expected AES key but invalid data is the result. If the device detects an invalid

data packet, this is regarded as a login failure. In short, the device is constantly checking

for incorrect packets and will increment the failed login count during any part of the

session if it finds one (Figure 33). Above a predefined threshold of failures, the device

will destroy itself.

There are two AES keys and two encryption levels when transferring data. One key is

considered weak and the resultant encryption is considered unsafe but might be helpful to

keep casual attackers away from the data. The other key is the strong key stored in the

device and is the crucial key for encrypting/decrypting sensitive data packets. It should

be noted here that the AES key stored in the device is the only piece of sensitive data and

has nothing to do with the user’s password for Web authentication. The AES key stored

in the device is only used to encrypt data between the client application and the device.

Weak AES Key

Weak encryption is used when the client application needs the first graphical password to

authenticate with the device. That is, only the graphical password image, text, and X-Y

locations for the text are sent to the client application under weak encryption. In essence,

if the USB device were physically stolen, the attacker would see the first graphical

password screen anyway. The data during weak encryption is encrypted from a 256-bit

66

key that is sent from inside the Portable Executable (PE) of the client application. In the

PE file format, detailed by Microsoft, the first section of the file is called the DOS header

and the structure is defined in 7.3 of the appendix [81].

Since Microsoft states this is a legacy section not used in Windows, the reserved words at

byte offset 40 of every Windows PE can be used to store a 20-byte random value. When

the microprocessor of the USB device gets the request for the first sector of the client

executable file data, it can find the offset to position 40 and stuff a random, temporary

AES key into the DOS header. When the client executable loads, it can check its own

header, which is an offset of 40 bytes from the base address of the process, to extract the

AES key to decrypt the first graphical password being sent by the device. An attacker

could still capture the transferred bytes of the executable and extract the AES key.

Therefore, such a scheme offers a mild form of protection against simple attacks. There

is, however, a stronger security feature from this scheme.

Stuffing an AES key into the DOS header of the client executable, on the fly, creates a

unique executable. No other client executable would have the same value in its header

information. This AES key could also be composed of the first 20 bytes of the message

digest from a SHA-256 hash, where RNG values were the message. Additionally, the

AES key could expire (Figure 30). The desired result is twofold:

 The client executable will only work with the particular device it was run.

 The client executable will only work for a certain period of time before requiring

a restart.

For example, if the user copied the client executable to another storage medium, from the

USB device, the executable would have the temporary AES key in its header. If the user

ran that executable, it would work until the key expired. Restarting the client executable

outside the device would mean the device and the executable would have AES keys that

are now different and hence the device can no longer communicate with the client. This

will help prevent a user from using a Trojan or infected executable from outside the

device.

67

SHA-256(RNG values): 40-59

Figure 30: AES key stored in PE header at byte offset 40 (20 bytes).

Strong AES Key

The second AES key is the one that encrypts the most sensitive information. For

example, encryption with this AES key is used when the user builds their password for

Web authentication. For this reason, encryption with this key is the most important to

prevent attacks. Additionally, this key must be stored in the device. The user clicks on

the first graphical password to build this key within the client application. If it is

enforced that the user will chose a minimum of 5 text items on the graphical password,

then there would be 5 text items and 5 positional values captured. That would mean 15

distinct items are unique to a password:

 5 letters or numbers (one byte each)

 5 x-positional values (two bytes each)

 5 y-positional values (two bytes each)

However, the AES key used for encryption and decryption is 256 bits, 32 bytes, long. If

a minimum of 15 unique values are captured, 10 of which are 2 bytes long (short), then

that provides 25 bytes to fill the AES key. The remaining 7 bytes can be derived by

password stretching using 15 unique values the user selected and the text used for the

graphical password presentation. There are 180 text values presented to the user

involving 10 digits and 26 upper and lowercase ASCII characters. An array of 180 bytes

with random text stored in each byte is used to build the graphical password presentation.

Therefore, an index from 0 to 179 can be used to reference the random text values. The

index to this array can be derived by using what the user selected and subtract a base

value and add an offset to get the index (Table 18).

68

Table 18: Fill last 7 bytes of AES key by mapping selected text to 180-byte array.
ASCII Text Values Subtract Add Index into 180 byte array

0 - 9 48 - 57 48 0 0 - 9

A - Z 65 - 90 65 10 10 - 36

a - z 97 - 122 97 36 37 - 63

As can be seen, password stretching can occur by using the text the user selected and the

mapping into the array of random text. This will result in adding 5 more text items to the

previous 25 leaving 2 more to go. Using the X-Y values, a similar mapping can occur. If

the image resolution is 331x451 pixels, then the remainder from the X and Y positions

divided by 180 to get a zero-based index. Additionally, adding an offset as decribed with

the text will grab the other values in the 180-byte array (Figure 31).

User selected

32 byte AES key

Password Stretch

5 characters 10 bytes X ; 10 bytes Y 7 characters

Figure 31: 256-bit AES key construction.

With two AES keys, a required sequence must take place when transferring data. As

mentioned earlier, there is no distinct login command. Rather, the AES key is switched

from a less secure encryption level to a higher encryption level. Once communications

are switched to a higher encryption level, the level stays in effect until the client

application is terminated. In Figures 32 and 33, a sequence of AES key usage is shown.

Figure 33 shows what action the device will take when it receives 512 bytes of data in the

allowed command file. Appendix 7.4 shows what commands are sent with what AES

key.

69

Client App USB Device
User

User opens the application

Weak AES in EXE header

weak AES: ask first G.P.

weak AES: send first G.P.

 Selects 5-8 points

Strong AES:
send any commands

Strong AES:
send any responses

 Figure 32: Sequence of AES key usage and strength.

70

W rite to I/O sector

Encry pt response data using
AES key that decry pted

com m and

y es

no

Decrypt with strong AES
key

Is com m and
valid?

Decry pt with weak AES
key

Is com m and for
firs t graphical
password?

no

Is log in failure
greater than
thresho ld?

y es

no

Are the ca lc.
nonces and

checksum correct?
no

y es

y es

Increm ent log in failure
count and stop

Format flash w ith a ll zeros.
Destroy all keys and data

Figure 33: Device logic after decrypting command packet.

4.5.4 Client and Device Malware Countermeasures

The USB device is read-only, and hence, it is not possible for malware to infect the

storage medium. This physical security, however, does not protect the executable before

it is actually loaded into a process space and executed (Figure 34). Therefore, there are

two approaches for malware countermeasures:

 Have the client executable check itself for infection.

 Have the device verify that the client executable is unaffected before it accepts

any data from it.

A client checking itself for a virus is a weak form of protection if the virus has modified

the executable significantly or even replaced it. Therefore, this check is only useful to

71

warn the user. A more secure countermeasure is for the device to know if client is

infected and abort or possibly self-destruct.

Client Application

Device

Win 32 Subsystem

File I/O Trojan

Figure 34: Trojan attached to Windows file subsystem.

Self-Checksum

It is possible for the client executable to check itself to see if the Portable Executable

(PE) data has been altered [81, 82]. The checksum algorithm must be very sensitive to

any change that might increment one value in the executable and equally decrement

another. The client would need to compare the self-checksum with a value assumed to be

correct. To find the correct checksum, the client application can query the device. Recall

that the header of the PE was changed when a random 20-byte AES weak key was

inserted. This addition changes the checksum of the executable. In essence, because of

this numeric value, no instance of the same executable would have the same checksum.

This requires that the device also run the same checksum on the executable as it leaves

the device.

72

Client Verification using Random No Operation Instruction Insertions

A Trojan could infect the executable image as it passes through the file subsystem. To

prevent this scenario, recall that calculated nonces are used to perform a packet security

check based on every client executable having a unique checksum. If a virus modifies or

replaces the machine code, the checksum will change and so too will the expected

calculated nonce values. The desired result is that the device can detect when the client is

infected and abort all communication. In order to create executables that will work

exactly the same on every PC but have a unique checksum at random locations in the

executable, a No Operation Instruction (NOP) machine code can be inserted into the

client application source code at random locations before compilation. The NOP

specifically does not change the state of any registers or data but does increase execution

by 0.4-0.5 clock cycles on newer Intel processors (Figure 35) [83]. Additionally,

function offsets are changed which might help obfuscate the code to an attacker looking

for fixed patterns of machine code. Decoy functions could be added in many locations

with unused code and a random number of NOPs. Inserting random NOPs into the

source code can be done at the factory where true RNG values can be generated.

... NOP NOP ... NOP NOP

Checks um for calculated nonce uses
these NOP areas

 Virus inserts here

Figure 35: NOP opcodes in executable image at random locations.

When the device sends a nonce value to the client, a matching calculated nonce value is

expected by the device. If a virus has inserted itself into the executable, the checksum

will change for the calculated nonce. Because the microprocessor may not have the

73

speed, 1024 bytes can be used for a checksum at random locations on the executable. It

would be very difficult for the virus to insert without causing the calculated nonce values

to be incorrect. If the device detects an unexpected calculated nonce, the device can

destroy itself.

4.6 Flash Storage Map

As can be seen from the flash storage map of data, there are no passwords for Web logins

stored in the device. The only semi-sensitive piece of information is the AES key used

for secure communication between the device and the client application. All other data

items are specific to assisting the user in creating a Web password; namely, the graphical

password that the user would select their password from. The 7.5 in the appendix gives a

brief description of each sector and its length. The total usage in this prototype is 775 KB

out of 4 MB of flash (Figure 36).

74

File A llocaton Table

Sectors: [0 - 81] : [41K bytes]
Read-only

Client Application

Sectors: [82 - 1171]:
[600K bytes]

Read-only

Commands/Responses

Sector: [1172]: [512 bytes]
Read/Write

Device Security

Sector: [1173]: [512 bytes]
Hidden

Device ID
First graphical password text

Login Failure Flag
New System Flag

Other Flags
AES Key for communication

First graphical password
180 X-Y points

Sector: [1176]: [512 bytes]
Hidden

Part A

First graphical password
Last 180 X-Y points

Sector: [1177]: [512 bytes]
Hidden

Part B

Second graphical password
180 X-Y points

Sector: [1178]: [512 bytes]
Hidden

Part A

Second graphical password
Last 180 X-Y points

Sector: [1179]: [512 bytes]
Hidden

Part B

Second graphical password
Text

Sector: [1180]: [512 bytes]
Hidden

180 text items

First graphical password
Image

Sectors: [1181-1346]:
[84K bytes]

Hidden

Second graphical password
Image

Sectors: [1347-1512]:
[84K bytes]

Hidden

URL links

Sector: [1513]:
[512 bytes]

Hidden
Trash Bin

Sector: [1514]:
[512 bytes]

Hidden

RNG values

Sector: [1174]: [512 bytes]
Hidden

Values used to secure
communication

Random Text Matrix

Sector: [1175]: [512 bytes]
Hidden

Text used to build a secure
Web login password

Figure 36: Flash Map of 512-byte Sectors.

75

CHAPTER 5 EXPERIMENTAL RESULTS

5.1 Image Hash Randomness and Uniqueness

In evaluating the image hash function, we began by assuming that any bit sequence in the

resultant image hash is an independent event. Additionally, we assumed that any bit has

a 50 percent chance of being a 1 or 0. Using this assumption, we should expect to see a

binomial probability distribution given by the flowing equation:

(; ,) (1)
s n sn

binDist s n p p
s

p

, where s is the number of bits that are set, n is the total

number of bits in the hash, and p is the probability of a bit being set. Therefore, for any

given set of bits in 56 bytes (448 bits) there should be a probability distribution given by

448448
(; 448, .5) 0.5binDist s

s

 if each hash value is independent from each other. Using

1,700 images, the resulting hash values were analyzed to see how the distribution of bits

set compared to a binomial distribution.

76

Figure 37: Distribution of bits set in image hashes from 1,700 images.

To further verify that the image hash function will produce a random, unique hash value

when given unique images as an input, a relatively large set of hash-pairs will be

compared. For comparison of any two image hash values, the Normalized Hamming

Distance (NHD) will be used [88]:

1 2 1 2
1

1
(,) | () () |

hL

kh

NHD H H H k H k
L

 .

Values of .5 or greater are expected for hash values that are different and values near zero

for similar ones [88, 89]. Using 1,700 color jpeg images obtained from family photos,

without any selection criteria, each image was sized to 441x331 pixels. Using the 1,700

images, associated image hash values were computed. To verify uniqueness

(1,700)*(1,699)/2, or 1,444,150 unique hash-pair combinations were used to generate a

histogram of NHD values.

77

Figure 38: NHD Histogram of image hash values from 1,700 images.

Once it was determined that the NHD remained near 0.5 for 1,444,150 hash-pairs, a

measure of how sensitive the NHD was with a minor image change was measured. To

begin, in order to eliminate any variation in measurements, all 1,700 images were saved

with no intentional change using the same software that was used to make minor changes.

This group of images was used as the control to compare the effect on the NHD with

regard to an image change. Subsequently, a new set of images was created with a minor

change. The minor change was applied equally to all pixels in the 441x331 pixel image.

Each pixel has three color channels: red, green, and blue. Each color has a value from 0

to 255 as a quantity of intensity in each channel resulting in a 24 bit value to describe a

78

color. To determine how sensitive the NHD was to an image change, two different

values were added and subtracted equally across each color channel. Using a sensitive

image comparison index called the Structural Similarity Index (SSIM) described by

Bovik et al., NHD changes were measured with the SSIM [90]. The values 1 and 20

were added and subtracted across each color channel and the mean and standard

deviations were recorded (Table 19). Using the lowest mean value in each group, a

normalized percent change was determined (Table 20).

Table 19: Intensity Level versus NHD and SSIM with Control (N=1,700).
Intensity
Level

NHD () SSIM Red () SSIM Green () SSIM Blue ()

-20 0.482 (0.0446) 0.988 (0.0103) 0.988 (0.0116) 0.987 (0.00745)

-1 0.445 (0.0460) 0.691 (0.149) 0.692 (0.141) 0.724 (0.125)

 1 0.454 (0.0463) 0.981 (0.0397) 0.981 (0.0408) 0.976 (0.0411)

 20 0.486 (0.0389) 0.819 (0.118) 0.818 (0.119) 0.817 (0.112)

Table 20: Normalized to Lowest Mean Value.

Intensity Level NHD % SSIM Red % SSIM Green % SSIM Blue %

-1 to -20 8.3 43.0 43.0 36.3

1 to 20 7.0 19.8 19.9 19.5

Arbitrarily choosing the image hash data created by adding one across each color

channel, a histogram was created that shows the NHD of 1,444,150 hash-pairs. The

result seemed similar to the NHD found from the previous histogram.

79

Figure 39: NHD Histogram of image hash values from 1,700 +1 RGB.

As seen in Figure 40, a comparison of the NHD to the control images (the ones with no

change but saved with the same software) showed a slight shift below 0.5 with a mean at

0.454. There were no identical hash values in the sample set.

80

Figure 40: NHD Histogram of +1 RGB against 0 RGB.

The next phase of analysis was conducted to see how unique the output from the 256-

SHA function was given the image hash as an input. The 256-SHA function was

expected to have a mean NHD of 0.5 and it was verified before further analysis. The

NHD from the 32-byte (256 bit) message digest was measured using the same 1,700

images as the initial image hash NHD histogram. There were 1,444,150 combinations of

the 32-byte hash-pairs graphed as a histogram. As expected, the 256-SHA values were

centered on 0.5 (Figure 41).

81

Figure 41: NHD Histogram of 256-SHA Message Digest.

At this point, the message digest from the 256-SHA function can be used as a 256-bit

AES key for secure encryption. However, since the proposed solution offers to work

with existing text-based password infrastructure, a text password is needed. Though

ASCII and extended ASCII have values from 0 to 255, not all characters are allowed for

a text password by some applications. In order to be safe, the ASCII characters from 33

to 126 inclusive, with the 4 characters missing, were used. In total, 90 text characters

were used as the text for password generation. Since the SHA-256 message digest shows

randomness and uniqueness, there will be no reason to randomize the ASCII text used to

map to the message digest. Rather, the value in each of the 32 bytes from the message

digest will be considered as the random index into a fixed, contiguous ASCII sequence

from 33 to 126, inclusive. The text value was mapped to each byte of the message digest

by the modulus of the value and 90 to get the index into an array of allowed ASCII

82

characters. Text passwords were computed from 1,700 images using the same 32-byte

message digest used previously. 1,700 text passwords where used to compute a NHD as

before. Each password was compared in 1,444,150 text password pairs using the NHD

for 32 bytes per password. The histogram showed a mean of 0.426 and no duplicates. As

expected, decreasing the allowable sequence value in each byte from 256 to 90 was a loss

of entropy. However, it appeared the NHD never got below 0.281. A zero value would

mean there were some passwords that were duplicates and a mean or median value much

lower than 0.5 could mean many duplicates might occur in a sample population.

Figure 42: NHD Histogram of 32-Character Password.

83

5.2 Calculated Nonce Uniqueness and Antiviral Efficacy

In order to create a calculated nonce, the USB device will use the read-only exe file

stored in its flash to compute a checksum it will expect from the client. The device will

compute the checksum starting from a random offset into the stored executable file up to

two sectors (1024 bytes) at a time to reduce the computational overhead. The device will

use the random nonce (it will send to the client) as an index into the stored executable

where the checksum should begin. The client will execute the same checksum algorithm

and return the calculated nonce (checksum) to the device for verification before any

command will be recognized. This scheme depends on a unique client executable per

device. Therefore, if a virus attacks the client executable as it passes through the file

subsystem, the checksum will change and so too will the calculated nonces that are

expected by the device.

To begin the evaluation, a simple dialog-based client program was created with five

empty functions in the source file. In each function of the source file, there was a tag to

indicate a point for inserting random NOP assembly instructions by an automated

insertion process. However, we needed a real RNG not a PRNG to generate a random

number for NOP insertion. For the RNG, we used our 1,700 image hash values generated

from the previous evaluation. We needed the five functions to have a random number of

NOPs. Therefore, we arbitrarily chose index 0 to 4 of the image hashes for our RNG

values. Values were expected to range from 0 to 255 in each of the 5 elements of the

image hash. Using these values for how many NOPs to insert, insertion took place in the

source file before compilation by another automated process.

84

Figure 43: Sample function stack with Random NOP Instructions.

Using a shareware version of OllyDbg version 1.10, it is clear that the NOPs were

causing the function addresses to be in random locations. Additionally, the file size

remained close or exactly the same as the original program (Figure 43). We computed

the checksum on the complete portable executable (PE) image and compared the NHD

with the previous evaluation. There were a couple of checksum values that were equal

within the 1,700 samples; however, the mean and median showed that most NHD values

were well above zero (Figure 44). The next part of the evaluation was to see if a

checksum of a 1024-byte section was unique by using the NHD as a measure. For this,

the first 1024 and the last 1024 bytes of the PE file were examined as with the complete

checksum.

85

Figure 44: NHD histogram of whole PE checksum values.

Figure 45: NHD histogram of PE checksum values for the first 1024 bytes.

86

Figure 46: NHD histogram of PE checksum values for the last 1024 bytes.

The reason that the histogram in Figure 46 shows virtually all-zero NHD values is that at

the end of these PE’s, almost all had the same repeating values in the last 1024 bytes.

However, what would happen if a virus attacked the executable and inserted itself into

the last part of the file, as some viruses do? For this, we needed a virus that could infect

all 1,700 executables by inserting its payload at the end of the file. We picked a virus

generator called Phalcon/Skism's Gý 0.70á, The Second Generation in Virus Creation

tool from Dark Angel. We exercised all methods of caution and ethical use of the virus.

Antivirus software was constantly running to contain the spread of any infections and the

test computer was disconnected from any network. The virus infected all files in the

current subdirectory and encrypted its payload at the end. The virus was written in

assembly and compiled and linked using Turbo Assembler (TASM). After the virus

infected all 1,700 files, a NHD was computed using the checksum on the last 1024 bytes

87

of the PE images. Now, the NHD shows mostly unique checksums where the virus

attacked.

Figure 47: NHD histogram of the last 1024 bytes of the PE after a virus attack.

88

CHAPTER 6 DISCUSSION

In analyzing the NHD histogram from Figure 38, the proposed image hash seems to

produce random and unique 56-byte hash values. The image hash also appears to be

sensitive to small changes in pixel values, as demonstrated in Table 19 and 20. This

implies that our image hash should be unique across a population of users if they use a

personal photo as their graphical password. Further analysis verified that the SHA-256

hash, using the image hash as the message, produced a random and unique 256-bit digest

(Figure 41). This should provide a strong AES encryption key. If a text password is

needed, even a reduction of the allowed values from 255 to 90, for each byte in the

message digest (AES key), still showed randomly distributed values and no duplicates

(Figure 42).

The insertion of random NOP assembly instructions in five functions, in a test source file,

did show that the function addresses are random in the executable (Figure 43). This

might make it harder for viruses to find specific attack points in the client executable.

More importantly, the NHD of 1,700 executables that were compiled with random NOP

instructions did show that the checksums had a degree of uniqueness, though a few

duplicates (Figure 44). We probably could improve the NHD results by using more

functions than the five functions used in one source file. Using 1024 bytes at a time for a

checksum seems to show a degree of uniqueness except at the end of the executable,

which is not altered by NOP insertions (Figure 45 and 46). When the virus attacked the

1,700 executables (mostly at the end of the file), it caused unique checksums to show at

the last 1024 bytes. Therefore, using checksums as calculated nonce values based on

various 1024-byte locations of the client executable could help the USB device determine

if the client is infected. It might also be necessary for the device to use some heuristic

analysis of the client. For example, viral insertion and manipulation could increase the

time the device waits to get the first command from the client.

89

CHAPTER 7 CONCLUSION

Research has shown that text passwords can have a large password space but very low

entropy because users tend to pick passwords that can easily be guessed by dictionary

style attacks. Additionally, users tend to stick with one text password that they can

remember as opposed to changing their passwords regularly. Graphical passwords can

also suffer from the same low entropy causes, like hot-spots, but seem to be easier to

memorize. If the image of a graphical password is placed in a personal device, like a

USB key or mobile device, which stays in the possession of the user, the graphical

password image is not stored on the server or transmitted to the client via the network

which may be more resistant to password attacks and little need for hot-spot prevention.

If the entropy of a graphical password is based only on the click-points, it could be a low

entropy solution. However, if the user can pick a family photo that they keep privately in

their personal device, then the entropy is very large. Using the click-points and the

proposed image hash will ensure the password is unique across a very large population of

users. Passing the click-points and image hash into a SHA-256 function ensures that the

image details are kept hidden and a unique 256-bit value with well distributed,

statistically independent bits is the result. Additionally, if the device adds random values

to the SHA-256 function, the password can only be derived with the user’s unique device

and not another. Another advantage of adding random values, and possibly the base URL,

to the SHA-256 function is that the user can change their password output while keeping

the same click-points. Consequenly, the user can change their password but memorize

only one graphical password.

Areas for more research are with the usability of this solution and the resistance to virus

and Trojan attacks. Using NOP instructions to change the checksum may prevent some

viral attacks but not all. Also, further study of the proposed solution should be measured

using a quality function matrix like that proposed in A.7 of the appendix.

90

BIBLIOGRAPHY

[1] APWG; http://www.antiphishing.org/reports/apwg_report_Q1_2008.pdf (accessed Feb. 2009)

[2] Gartner Survey; http://www.gartner.com/it/page.jsp?id=565125 (accessed Feb. 2009)

[3] APWG; http://www.antiphishing.org/reports/apwg_report_dec_2007.pdf (accessed Feb. 2009)

[4] A. Alnajim, M. Munro; An Evaluation of Users' Tips Effectiveness for Phishing Websites Detection,
Department of Computer Science; Durham University, ICDIM 2008, pp. 63-68

[5] T. Chen, F. Jeng, Y. Liu; Hacking tricks toward security on network environments, Department of
Applied Mathematics; National Chiayi University, Taiwan, PDCAT, Dec. 2006 pp. 442-447

[6] Baig, M.M.; Mahmood, W.; A Robust Technique of Anti Key-Logging using Key-Logging
Mechanism, Al-Khawarzmi Institute of Computer Science; University of Engineering &
Technology, Pakistan, DEST, Feb. 2007, pp. 314-318

[7] Key Ghost; http://www.keyghost.com/specifications.htm (accessed Feb. 2009)

[8] Thawatchai Chomsiri; HTTPS Hacking Protection, Faculty of Informatics, Mahasarakham
University, Thailand, AINAW, May 2007, vol. 1, pp. 590-594

[9] Sotirov, Alexander et. al., MD5 considered harmful today Creating a rogue CA certificate,
Technische Universiteit Eindhoven, www.win.tue.nl/hashclash/rogue-ca , Dec. 2008 (accessed Feb.
2009)

[10] F. Callegati, W. Cerroni, M.Ramilli; Man-in-the-Middle Attack to the HTTPS Protocol; IEEE
Security and Privacy; Jan. 2009;pp.78-81

[11] S. Schechter, R. Dhamija, A. Ozment,I. Fischer; The Emperor's New Security Indicators; IEEE
Symposium on Security and Privacy; May 20-23 2007; pp.51-65

[12] Ors, S.B., Gurkaynak, F., Oswald, E., Preneel, B.; Power-Analysis Attack on an ASIC AES
implementation, Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC, Belgium, ITCC, 2004,
vol 2, pp.546-552

[13] De Mulder, E. et. al., Electromagnetic Analysis Attack on an FPGA Implementation of an Elliptic
Curve Cryptosystem, Member IEEE, EUROCON, Nov. 2005, vol. 2, pp. 1879-1882

[14] Wollinger, Paar, How Secure Are FPGAs in Cryptographic Applications?, Horst Görtz Institute for
IT Security; Ruhr-Universität Bochum, Germany, 2003, http://eprint.iacr.org (accessed Feb 2009)

[15] M. Sasse, A. Adams, Users Are Not The Enemy, Communications of the ACM, Dec. 1999, vol. 42,
#12, pp. 40-46

[16] Bank of America SiteKey, http://www.bankofamerica.com/privacy/sitekey (accessed Feb. 2009)

[17] Vedetta, Self-signed SSL certificates vs commercial SSL certificates: How Mozilla is killing self-
signed certificates,
http://www.vedetta.com/self-signed-ssl-certificates-vs-commercial-ssl-certificates-how-mozilla-is-
killing-self-signed-certificates (accessed Feb. 2009)

[18] Mozilla Firefox help, http://support.mozilla.com/en-
US/kb/Options+window#Security_Warnings_Dialog (accessed Feb. 2009)

[19] G. DeLone, L. Hughes; Viruses, Worms, and Trojan Horses: Serious Crimes, Nuisance, or Both?
University of Nebraska at Omaha; Social Science Computer Review; 2007, vol. 25,#1,pp. 78-98

91

[20] P. Ször,P. Ferrie; Hunting For Metamorphic, Symantec, white paper
http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf (accessed Feb. 2009)

[21] Stanford University, CS 201, How Anti-Virus Software Works, http://www-
cse.stanford.edu/classes/cs201/projects-00-01/viruses/anti-virus.html (accessed Feb. 2009)

[22] Anti-malware Test Lab, http://www.anti-malware-test.com/?q=node/39 (accessed Feb. 2009)

[23] Av-comparatives.org, http://www.av-comparatives.org/seiten/ergebnisse_2008_11.php (accessed
Feb. 2009)

[24] A. Forget, R. Biddle; Memorability of Persuasive Passwords, Carleton University, CHI, Apr 5-10,
2008

[25] Jianxin Jeff Yan; A note on proactive password checking, Proceedings of the 2001 workshop on
New security paradigms, Cloudcroft, New Mexico, Session 7, pp.127-135

[26] J. Yan,,A. Blackwell,R. Anderson,A. Grant; The memorability and security of passwords - some
empirical results, University of Cambridge, Sept.2000, Technical Report #500

[27] Kuo, Romanosky, Cranor, Human Selection of Mnemonic Phrase-based Passwords, ACM
International Conference Proceeding Series, 2006, vol.149, pp. 67-78

[28] Forget, Chiasson, Van Oorschot, Biddle, Improving text passwords through persuasion, Carleton
University, 2008, ACM, Proceedings of the 4th symposium on Usable privacy and security, pp. 1-12

[29] Securitas Operandi, Password Safe, http://peterhgregory.wordpress.com/2007/02/27/use-password-
safe-to-manage-passwords (accessed Feb. 2009)

[30] Password Safe Pro, http://www.passwordsafepro.com (accessed Feb. 2009)

[31] Password Safe, http://passwordsafe.sourceforge.net (accessed Feb. 2009)

[32] SecLists.Org, Vulnerability Development: PasswordSafe 3.0 weak random number generator allows
key recovery attack, http://seclists.org/vuln-dev/2006/Mar/0013.html (accessed Feb. 2009)

[33] D. Nelson, U. Reed, and J. Walling – Picture Superiority Effect, Journal of Experimental
Psychology; Human Learning and Memory, 1977, vol. 2, No. 5, pp. 523-528

[34] Chen, Eng, Jiang, Visual working memory for trained and novel polygons, Harvard University,
VISUAL COGNITION, 2006, 14(1), pp.37-54

[35] G. A. Miller, The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for
Processing Information, The Psychological Review, 1956, vol. 63, pp. 81-97

[36] R. Dhamija, A. Perrig, Déjà vu: A User Study Using Images for Authentication, Proceedings of the
9th USENIX Security Symposium, 2000, pp. 45-58

[37] Passfaces™, www.passfaces.com (accessed Feb. 2009)

[38] S. Brostoff, M. Sasse, Are Passfaces ™ more usable than passwords? A field trial investigation,
Proceedings of HCI, Sept. 2000, pp. 405-424

[39] De Angeli, et al., Is a picture really worth a thousand words? Exploring the feasibility of graphical
authentication systems, University of Glasgow, International Journal of Human-Computer Studies,
Jul. 2005, vol. 63, pp. 128-152

[40] Susan Wiedenbeck et al., PassPoints: design and longitudinal evaluation of a graphical password
system
International Journal of Human-Computer Studies, Jul. 2005, vol.63, pp. 102-127

[41] Chiasson,Biddle,Oorschot, A Second Look at the Usability of Click-Based Graphical Passwords,
ACM International Conference Proceeding Series, 2007, Vol.229, pp. 1-12

92

[42] Treil, Mallat, Image Wavelet Decomposition and Applications, University of Pennsylvania,
Technical Reports (CIS), Department of Computer & Information Science,1989

[43] Bhattacharjee, S.; Kutter, M., Compression Tolerant Image Authentication, ICIP, Oct. 1998, vol.1,
pp. 435-439

[44] Wu, Min; Mao, Yinian; Swaminathan, Ashwin; A Signal Processing and Randomization Perspective
of Robust and Secure Image Hashing, SSP, Aug. 2007, pp. 166-170

[45] General Purpose Hash Function Algorithms,
http://www.partow.net/programming/hashfunctions/index.html#HashingMethodologies (accessed
Feb. 2009)

[46] Digital Watermarking Alliance, http://www.digitalwatermarkingalliance.org (accessed Feb. 2009)

[47] Microsoft, System and Method for Hashing Digital Images,
www.wipo.int/pctdb/en/wo.jsp?wo=2002037331 (accessed Feb. 2009)

[48] P.W. Wong, "A Watermark for Image Integrity and Ownership Verification", 1997, Proc. IS&T PIC
Conf

[49] Ahmed, F., Siyal, M.Y.,A, Secure and Robust Hashing Scheme for Image Authentication,
ICICS.2005, pp. 705-709

[50] Patrick Elftmann, Secure Alternatives to Password-based Authentication Mechanisms, RWTH
Aachen University, Diploma Thesis, Aachen, Germany, Oct. 2006

[51] Tari, Ozok, Holden, A Comparison of Perceived and Real Shoulder-surfing Risks between
Alphanumeric and Graphical Passwords,ACM,2006, vol.149,pp. 56-66

[52] Komanduri,S.,Hutchings,D, ACM International Conference Proceeding Series, Bowling Green State
University, 2007,vol.229, pp.20-28

[53] Chiasson, Forget, Oorschot, Influencing Users Towards Better Passwords: Persuasive Cued Click-
Points, ACM, 2008, pp. 1-12

[54] Forget, Chiasson, Oorschot, Improving Text Passwords Through Persuasion, ACM, 2008, pp. 1-12

[55] Thorpe, Van Oorschot, Human-Seeded Attacks and Exploiting Hot-Spots in Graphical Passwords.
USENIX
Security, 2007

[56] Doja, Kumar, Image Authentication Schemes against Key-Logger Spyware, ACIS, Aug. 2008, pp.
574-579

[57] Beyond If Solutions, http://www.beyondifsolutions.com (accessed Feb. 2009)

[58] UNISYS: European Biometrics Portal Biometrics in Europe Trend Report 2007,
http://www.eubiometricsforum.com/pdfs/TrendReport2007.pdf (accessed Feb. 2009)

[59] Microsoft Fingerprint Reader, http://www.amazon.com/Microsoft-DG2-00002-Fingerprint-
Reader/dp/B0002WPSB2 (accessed Feb. 2009)

[60] AuthenTec 2004 Consumer Biometrics Survey, http://www.authentec.com/docs/consumersurvey.pdf
(accessed Feb. 2009)

[61] Biometric Survey Results, Oct. 2002, http://www.biometrie-
online.net/dossiers/generalites/Results10-02%5B1%5D.pdf (accessed Feb. 2009)

[62] Lawrence O'Gorman, Comparing Passwords, Tokens, and Biometrics for User Authentication, IEEE
Fellow, Proceedings of the IEEE, Dec 2003, vol.91, No.12

[63] Hardware token, http://en.wikipedia.org/wiki/Security_token

93

[64] Software token, http://en.wikipedia.org/wiki/Software_token

[65] Federal Financial Institutions Examination Council,
http://www.ffiec.gov/pdf/authentication_guidance.pdf (accessed Feb. 2009)

[66] Easy Web login, TD Canada Trust, https://easyweb.tdcanadatrust.com (accessed Feb. 2009)

[67] Smart card readers, http://www.nextag.com/usb-smart-card-reader/search-html (accessed Feb.
2009)

[68] IronKey USB Token, http://www.ironkey.com (accessed Feb. 2009)

[69] Yubico USB Token, http://yubico.com/products/review/ (accessed Feb. 2009)

[70] SCA Analysis,
http://www.iaik.tugraz.at/content/research/implementation_attacks/introduction_to_impa
(accessed Feb. 2009)

[71] http://en.wikipedia.org/wiki/Cryptographic_hash_function (accessed Feb. 2009)

[72] http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf (accessed Feb. 2009)

[73] http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf (accessed Feb. 2009)

[74] http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29
(accessed Feb. 2009)

[75] http://en.wikipedia.org/wiki/Replay_attack (accessed Feb. 2009)

[76] http://en.wikipedia.org/wiki/Cryptographic_nonce (accessed Feb. 2009)

[77] http://en.wikipedia.org/wiki/Pseudorandom_number_generator (accessed Feb. 2009)

[78] http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexc.pdf (accessed Feb. 2009)

[79] http://www.faqs.org/rfcs/rfc1071.html (accessed Feb. 2009)

[80] http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx (accessed Feb. 2009)

[81] http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx (accessed Feb. 2009)

[82] http://msdn.microsoft.com/en-us/library/ms679281(VS.85).aspx (accessed Feb. 2009)

[83] http://developer.intel.com/design/pentiumii/manuals/243191.htm (accessed Feb. 2009)

[84] http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3879 (accessed Feb. 2009)

[85] http://msdn.microsoft.com/en-us/library/ms644990(VS.85).aspx (accessed Feb. 2009)

94

[86] http://www.ietf.org/rfc/rfc2630.txt (accessed Feb. 2009)

[87] http://www.faqs.org/rfcs/rfc3394.html (accessed Feb. 2009)

[88] A.Swaminathan, Y. Mao, M.Wu; Robust and Secure Image Hashing; IEEE TRANSACTIONS ON
INFORMATION FORENSICS AND SECURITY, VOL. 1, NO. 2, JUNE 2006

[89] S. Xiang, H. Kim, J. Huang; Histogram-Based Image Hashing Scheme Robust Against Geometric
Deformations; ACM, pp: 121-128, 2007

[90] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image quality assessment: From error
visibility to structural similarity," IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-
612, Apr. 2004.

95

APPENDIX A

A.1 Hardware Design

An Atmel 8-bit AVR MCU with an on-chip USB controller was selected to simplify

design and allow for small circuit size [84]. Atmel was chosen because of plenty of

supporting documentation and firmware source code to support fast design and

implementation. Additionally, Atmel provided free serial flash memory samples. The

constraining requirements of the project were program and data memory size, processor

speed, and cost.

A.1.1 Microcontroller

 An Atmel AT90USB128 8-bit microcontroller with 128K bytes of ISP flash and on-chip

USB controller running on an 8 MHz clock was used. The design had a clock frequency

of 8 MHz because the data sheet specifies a clock frequency based on Vcc. The

AT90USB128 is a RISC CPU with in-system programmable flash. The device was

programmed and debugged in circuit with an IEEE 1149.1 standard JTAG interface using

an AVR® JTAGICE mkII from Atmel. Firmware was small enough to fit into 64K bytes

but 128K ISP flash was used for the design. Programming was accomplished via a 4-pin

JTAG port using TCK, TMS, TDI, and TDO on the PF port of the MCU (Table 21). The

USB controller was connected to a modified A-male USB connector with the following

pin layout, wire color, and MCU connections as described in table 22. The serial

peripheral interface bus was used to communicate between the MCU and the flash

memory storage as defined in table 23.

96

Table 21: Port F (JTAG programming & debugging)

PIN Function

PF7 TDI JTAG Test Data Input

PF6 TDO JTAG Test Data Output

PF5 TMS JTAG Test Mode Select

PF4 TCK JTAG Test Clock

Table 22: USB pin configuration (http://pinouts.ws/usb-pinout.html)
PIN Signal Color Description MCU Pin

1 Vcc Red +5V UVCC,AVCC,DVCC,
UVCON,VBUS, JTAG

2 D- White Data - D-

3 D+ Green Data + D+

4 Gnd Black Ground PCB ground plane

Table 23: Port B SPI connection
PIN Function

PB1 SCK (SPI Bus Serial Clock or Pin Change Interrupt 1)

PB2 PDI (Programming Data Input or SPI Bus Master Output/Slave Input or Pin Change
Interrupt 2)

PB3 PDO (Programming Data Output or SPI Bus Master Input/Slave Output or Pin Change
Interrupt 3)

PB4 OC2A (Output Compare and PWM Output A for Timer/Counter2 or Pin Change Interrupt
4)

Using JTAG, on-chip flash can be verified, programmed, and locked. The MCU can be

secured programmatically by setting the correct value in the SPMCSR register to lock or

prevent the boot loader and application sections from any software changes. However,

because this paper uses a test design, none of the lock bits were set and the program

contents can be easily extracted.

97

A.1.2 Flash Memory

One Atmel AT45DB321C, 2.7 volt, serial flash was used as the mass storage device. The

34,603,008 bits, 4 MB, of memory are organized into 8192 memory pages of 528 bytes

each. For this reason, the minimum cluster size for the FAT 32 mass storage was set to

512 bytes for better memory storage efficiency. Because pages of flash memory can hold

a cluster of mass storage data, operations such as page-erase, opcode 81H, allows the

flash to destroy data quickly. Quick data removal is necessary for tamper detection and

data destruction. Though it is possible for data bits to be detected by cryptanalysis

methods, data-remanence will be mitigated by applying some periodic bit-flipping of

stored bits in data sensitive pages. It may be necessary to design a mechanical means of

tamper proofing memory using a metal shield, strong epoxy, and chemical zeroization. In

this solution, no passwords are stored in flash memory so cryptanalysis will yield little

data.

A.1.3 Power Supply

The Atmel AT90USB128 was configured to use +5 volts from the USB bus to UVCC,

AVCC, DVCC, UVCON, VBUS, and JTAG. Though the voltage from the PC’s USB

port is highly regulated, bypass electrolytic capacitors were used to filter any ripple on

Vcc. For bypassing ripple, 100 nF capacitors were placed as near as possible to Vcc. A

LP3982 CMOS linear voltage regulator from National Semiconductor was used to

provide a regulated +3.3 volts to the SPI bus via port B and the serial flash memory

device. The LP3982 is an 8-Pin surface mount device with a 33 nF noise bypass capacitor

to stabilize the voltage when the USB device is first plugged in. No debouncing circuitry

was used for power-on. When the USB device is plugged into the port, software handles

any debouncing. No reset switch was needed because the JTAG programming device can

reset the microcontroller. In effect, the circuitry is minimal to reduce cost.

A.1.4 Schematic

98

99

A.1.5 USB Firmware

The USB firmware is based on an Atmel mass storage application using SCSI commands

developed as part of the AVR273 Application Note. Because most operating systems

support mass storage with USB drivers, there would be no need for users to install any

software or drivers to support the security token proposed. AVR273 states that the

firmware is supported by all Microsoft OS from Windows® 98SE or later, Linux kernel

2.4 or later, and Mac OS 9/x or later. This should satisfy a majority of users.

The firmware is a bundled as part of the USB flash microcontroller software suite with a

license to distribute the firmware only as part of an Atmel microcontroller product. For

this reason, most of the firmware source was left intact with the addition of one module

named cryptodev.c. This prototype module performs all the secure storage and data

manipulation as outlined in this document. Cryptodev.c provides a layer between Atmel’s

firmware and the flash memory device. As such, in the event another microcontroller

vendor is needed, this c module could be reused with another firmware bundle and

minimal reprogramming. The Atmel module interaction with the prototype is illustrated

in Figure 49. In the appendix is a list of all the modules that comprise the prototype’s

firmware.

Figure 49: Data flow between Atmel module and prototype module.

100

A.1.6 Development Environment

All firmware was compiled using AVR Studio 4, version 4.15, IDE. The binary was

downloaded to the USB device using the built-in JTAGICE mkII programmer module

that the IDE supports. Debugging was also accomplished using the JTAGICE mkII

module integrated in AVR Studio when the USB device was plugged into both the USB

port and the JTAGICE mkII. The memory footprint for the code and data was 13.2% and

30.3% respectively (Figure 50). For this reason, the 64K MCU would be adequate.

Figure 50: Compiler output of firmware memory usage.

The client application was developed with Microsoft Visual Studio 2005 with service

pack 1. For debugging purposes, the firmware module, cryptodev.c was incorporated into

a USB device simulator. The USB device simulator was created to handle file I/O

transfers of data to the embedded microcontroller and the flash unit.

101

A.2 System Communication

A.2.1 Byte order of data between client and device

Data type Position Byte Stream Offset

Short data type used in X-Y values
Low Byte 0

High Byte 1

Short data type used in command values

Low Byte 1

High Byte 0

Integer representation used for nonce values and color values

24-31 0

16-23 1

8-15 2

0-7 3

A.2.2 Commands/Responses and the Payload Summary

Command Description

DEVICEID A 16-byte unique value to identify the device to a server.

Additionally, 180 text characters for the login graphical password
are returned.

GETTEXT2
SAVETEXT1
SAVETEXT2

There is no GETTEXT1 because space was used during the
DEVICEID command to send them. As with the the device login,
the Web password requires 180 text values for the graphical
password.

102

GETXY1A
GETXY1B
GETXY2A
GETXY2B

SAVEXY1A
SAVEXY1B
SAVEXY2A
SAVEXY2B

There needs to be X-Y locations for each character in the
graphical password. There are 180 characters giving 360 values.
The order of data is the x-coordinate followed by the
corresponding y-coordinate for each matching character index.
Because these values are a short datatype, or two bytes, 720 bytes
are needed to transmit all the values. However, the data payload
allowed is 498 bytes. Therefore, two batches of coordinates are
sent or received with 180 X-Y positions at a time.

GETIMAGE1
GETIMAGE2
SAVEIMAGE1
SAVEIMAGE2

Two images are used as the background for the graphical
passwords: one for the login and one for the Web password.
These images are limited to JPEGs of an allowable size. Since an
image will span many payloads, image saving or retrieval must be
done in repeated sequence. The image size is stuffed in front of
the first payload. A state of what has been send or received and
the image size determines when the transfer is complete.

GETLINKS
SAVELINKS

The URL that the user considers a favorite for secure login can be
saved or retrieved. The “http://www.” part is removed for brevity.
An “*” before the URL means the HTTPS protocal and no “*”
means the HTTP protocol. Each URL is separated by one white
space.

CHANGEKEY The 256-bit, AES key used to encrypt and decrypt data packets
during file I/O is stored in the device. When the user logs into the
device, this key is used for all sensitive data transmission.

GETSAMPLEPTS The flash memory holds X-Y coordinates determined by the
issuer of the device. These points are sent to the application to
request the pixel color at those locations. There are 32 points
sampled for a total of 64 values needed. Each value is a short
datatype requiring 128 bytes of payload data.

SENDHASHPARTS Once the user password comprising text, X-Y positions, and the
sample color have been collected, these items are packaged and
sent to the device so a calculated hash value for the password can
be received. The text is one byte, the X-Y positions are 4 bytes
and the color is 4 bytes. The maximum space is the payload area.
The first byte of the payload tells the device how long is the
password. From this, the device knows how long the data is in the
payload.

GETHASH If the MCU is finished mathematically computing the 32-byte
value needed as a password, this value is sent back to the
application.

GETFILECRC For security, the portable executable CRC value for the
application is stored in the device. The application will query this
value to validate if the login was a success. An incorrect CRC
should prevent further communication.

103

A.2.3 System Command and Response Definitions

Get the Device ID

 Data Communicated

Item Description

Device ID 16 unsigned bytes each byte can have the value of 0 to 255

Graphical Password Text 180 characters excluding special characters

 Command

Command Value Device Action

CMD_DEVICEID 0x6255 Initialize state variables

 Command Payload

Offset Length Contents

14 498 Randomized data

 Response Status

Status Value Meaning

STATUS_OK 0x8000 Payload contains valid data

STATUS_FAILED 0x0000 System failed. Payload contains random garbage.

 Response Payload

Offset Length Contents

14 16 16 byte ID unique to the USB device

30 180 All the text for the graphical password to login to the USB device

Get the X-Y Part 1 for USB and Web Login

 Data Communicated

Item Description

Password X-Y coordinates 360 short values in the form of X then Y for each point

 Command

Command Value Description

CMD_GETXY1A 0x6256 Get the first part of the X-Y values for the USB login password.

CMD_GETXY2A 0x6357 Get the first part of the X-Y values for the Web password.

104

 Command Payload

Offset Length Contents

14 498 Randomized data

 Response Status

Status Value Meaning

STATUS_OK 0x8000 Payload contains valid data

STATUS_FAILED 0x0000 System failed. Payload contains random garbage.

 Response Payload

Offset Length Contents

14 360 360 unsigned bytes that represent 180 short values

Get the X-Y Part 2 for USB and Web Login

 Data Communicated

Item Description

Password X-Y coordinates 360 short values in the form of X then Y for each point

 Command

Command Value Description

CMD_GETXY1B 0x6257 Get the last part of the X-Y values for the USB login password.

CMD_GETXY2B 0x6358 Get the last part of the X-Y values for the Web password.

 Command Payload

Offset Length Contents

14 498 Randomized data

 Response Status

Status Value Meaning

STATUS_OK 0x8000 Payload contains valid data

STATUS_FAILED 0x0000 System failed. Payload contains random garbage.

 Response Payload

Offset Length Contents

14 360 360 unsigned bytes that represent 180 short values

105

Get the Image for USB and Web Login

 Data Communicated

Item Description

Image raw data Image data of the JPEG file.

 Command

Command Value Description

CMD_GETIMAGE1 0x7070 Get the image for the USB login in blocks that fit the payload.

CMD_GETIMAGE2 0x7072 Get the image for the Web password in blocks that fit the payload.

 Command Payload

Offset Length Contents

14 498 Randomized data

 Response Status (STATUS_OK can be added to STATUS_FIRST)

Status Value Meaning

STATUS_OK 0x8000 Payload contains valid data

STATUS_FIRST 0x0001 Payload contains first part of image data

STATUS_FAILED 0x0000 System failed. Payload contains random garbage.

 First Response Payload

Offset Length Contents

14 4 Total image size stored in the device

18 494 Image raw data

 Second to N Response Payload

Offset Length Contents

14 14 to remainder Raw image data up to the last image byte – following data is invalid

Get the Password Text for the Web Password

 Data Communicated

Item Description

Graphical Password Text 180 characters excluding special characters

 Command

Command Value Description

106

CMD_GETTEXT2 0x6355 Get the text for the Web password.

Command Payload

Offset Length Contents

14 498 Randomized data

 Response Status

Status Value Meaning

STATUS_OK 0x8000 Payload contains valid data

STATUS_FAILED 0x0000 System failed.

 Response Payload

Offset Length Contents

14 180 Password text

Save the X-Y Part 1 for USB and Web Login

 Data Communicated

Item Description

Password X-Y coordinates 360 short values in the form of X then Y for each point

 Command

Command Value Description

CMD_SAVEXY1A 0x6258 Save the first part of the X-Y values for the USB login password.

CMD_SAVEXY2A 0x6359 Save the first part of the X-Y values for the Web password.

 Command Payload

Offset Length Contents

14 360 360 unsigned bytes that represent 180 short values

 Response Status (STATUS_OK can be added to STATUS_PPPOINTS)

Status Value Meaning

STATUS_OK 0x8000 No system errors

STATUS_FAILED 0x0000 System failed.

STATUS_PPPOINTS 0x0020 Text coordinates saved ok

 Response Payload

Offset Length Contents

107

14 498 Randomized data

Save the X-Y Part 2 for USB and Web Login

 Data Communicated

Item Description

Password X-Y coordinates 360 short values in the form of X then Y for each point

 Command

Command Value Description

CMD_SAVEXY1B 0x6257 Save the second part of the X-Y values for the USB login password.

CMD_SAVEXY2B 0x6358 Save the second part of the X-Y values for the Web password.

 Command Payload

Offset Length Contents

14 360 360 unsigned bytes that represent 180 short values

 Response Status (STATUS_OK can be added to STATUS_PPPOINTS)

Status Value Meaning

STATUS_OK 0x8000 No system errors

STATUS_FAILED 0x0000 System failed.

STATUS_PPPOINTS 0x0020 Text coordinates saved ok

 Response Payload

Offset Length Contents

14 498 Randomized data

Save the Image for USB and Web Login

 Data Communicated

Item Description

Image raw data Image data or the JPEG file.

 Command

Command Value Description

108

CMD_SAVEIMAGE
1

0x7071 Save the image for the USB login in blocks that fit the payload.

CMD_SAVEIMAGE
2

0x7073 Save the image for the Web password in blocks that fit the payload.

 First Command Payload

Offset Length Contents

14 4 Total image size to store. Will be checked by device for size limit.

18 494 JPEG raw data.

 Second to N Command Payload

Offset Length Contents

14 14 to remainder Raw image data up to the last image byte – following data is invalid

 Response Status
Status Value Meaning

STATUS_OK 0x8000 Image saved ok.

STATUS_FAILED 0x0000 System failed.

 Response Payload

Offset Length Contents

14 498 Randomized data

Save the Password Text for Login and Web

 Data Communicated

Item Description

Graphical Password Text 180 characters excluding special characters

 Command

Command Value Description

CMD_SAVETEXT1 0x6260 Save the text for the login password.

CMD_SAVETEXT2 0x6356 Save the text for the Web password.

 Command Payload

Offset Length Contents

109

14 180 Password text

 Response Status

Status Value Meaning

STATUS_OK 0x8000 Saved text ok.

STATUS_FAILED 0x0000 System failed.

 Response Payload

Offset Length Contents

14 498 Randomized data

Save the URL Links

 Data Communicated

Item Description

URL links Several URLs seperated by a space. Must fit into the payload.

 Command

Command Value Description

CMD_SAVELINKS 0x6969 Saves URL links in the device

 Command Payload

Offset Length Contents

14 498 Text

 Response Status

Status Value Meaning

STATUS_OK 0x8000 Saved text ok.

STATUS_FAILED 0x0000 System failed.

 Response Payload

Offset Length Contents

14 498 Randomized data

110

Get the URL Links

 Data Communicated

Item Description

URL links Several URLs seperated by a space. Must fit into the payload.

 Command

Command Value Description

CMD_GETLINKS 0x7069 Retrieves a block of URL links in the device

 Command Payload

Offset Length Contents

14 498 Randomized data

 Response Status

Status Value Meaning

STATUS_OK 0x8000 Payload contains valid data.

STATUS_FAILED 0x0000 System failed. Payload contains garbage data.

 Response Payload

Offset Length Contents

14 498 Text

Change Login AES Key

 Data Communicated

Item Description

AES Key 32 unsigned chars of data formed from the Graphical password.

 Command

Command Value Description

CMD_CHANGEKEY 0x7074 Change the login key in the device

 Command Payload

Offset Length Contents

14 32 unsigned chars

111

 Response Status (STATUS_OK can be added to STATUS_KEYOK)
Status Value Meaning

STATUS_OK 0x8000 No System error

STATUS_KEYOK 0x0002 AES key was saved and will be used for the next command

STATUS_FAILED 0x0000 System failed.

 Response Payload

Offset Length Contents

14 498 Randomized data

Send the Hash Parts for Return AES Key

 Data Communicated

Item Description

Values to create a Hash and Key The complete payload reserved for data used by the MCU to form a hash

 Command

Command Value Description

CMD_SENDHASHPARTS 0x7076 Process the data to find a 32-byte hash value

 Command Payload

Offset Length Contents

14 1 How many items in the password. Limit is 70.

15 497 Color data from the image, text, and X-Y coordinates of the click points.

 Response Status (STATUS_OK can be added to STATUS_HASHPWD)

Status Value Meaning

STATUS_OK 0x8000 No System error

STATUS_HASHPW
D

0x0008 AES key was saved and will be used for the next command

STATUS_FAILED 0x0000 System failed.

 Response Payload

Offset Length Contents

14 498 Randomized data

112

Get Hash value for Web passwords

 Data Communicated

Item Description

Hash value A 32-byte character string

 Command

Command Value Description

CMD_GETHASH 0x7075 Get the computed a 32-byte hash value the MCU should have finished.

 Command Payload

Offset Length Contents

14 498 Randomized data

 Response Status (STATUS_OK can be added to STATUS_HASHPWD)

Status Value Meaning

STATUS_OK 0x8000 No System error. If only STATUS_OK then hash not ready

STATUS_HASHPW
D

0x0008 Hash value computation finished and ready.

STATUS_FAILED 0x0000 System failed.

 Response Payload

Offset Length Contents

14 32 32-byte hash value

Get the X-Y Points to Sample for Hash Value

 Data Communicated

Item Description

X-Y coordinates to sample 64 short values (32 X positions and 32 Y positions) in X then Y format

 Command

Command Value Description

CMD_GETSAMPLEPTS 0x7077 Get 32 X-Y points stored in the device by the factory.

 Command Payload

Offset Length Contents

14 498 Randomized data

113

 Response Status (STATUS_OK can be added to STATUS_HASHPWD)

Status Value Meaning

STATUS_OK 0x8000 No System error.

STATUS_FAILED 0x0000 System failed.

 Response Payload

Offset Length Contents

14 128 64 short values or 128 bytes

Get the X-Y Points to Sample for Hash Value

 Data Communicated

Item Description

PE CRC 4 byte integer representing the CRC hash of the portable executable

 Command

Command Value Description

CMD_GETFILECRC 0x7078 Get PE CRC

 Command Payload

Offset Length Contents

14 498 Randomized data

 Response Status (STATUS_OK can be added to STATUS_HASHPWD)

Status Value Meaning

STATUS_OK 0x8000 No System error.

STATUS_FAILED 0x0000 System failed.

 Response Payload

Offset Length Contents

14 4 integer

114

A.3 DOS Header Reference

DOS Header found in PE format [82]

Data Type Field Definition

WORD e_magic Magic number

WORD e_cblp Bytes on last page of file

WORD e_cp Pages in file

WORD e_crlc Relocations

WORD e_cparhdr Size of header in paragraphs

WORD e_minalloc Minimum extra paragraphs needed

WORD e_maxalloc Maximum extra paragraphs needed

WORD e_ss Initial (relative) SS value

WORD e_sp Initial SP value

WORD e_csum Checksum

WORD e_ip Initial IP value

WORD e_cs Initial (relative) CS value

WORD e_lfarlc File address of relocation table

WORD e_ovno Overlay number

WORD e_res[4] Reserved words

WORD e_oemid OEM identifier (for e_oeminfo)

WORD e_oeminfo OEM information; e_oemid specific

WORD e_res2[10] Reserved words

LONG e_lfanew File address of new exe header

115

A.4 Key Strength and Command/Responses

Key strength during file I/O (Note all encryption is 256-bit Rijndael AES)

Encryption Key Command/Response

Weak AES key until communications are switched to higher
encryption.

CMD_DEVICEID

CMD_GETXY1A

CMD_GETXY1B

CMD_GETIMAGE1

Always uses strong AES key. CMD_SAVEXY1A CMD_SAVEXY1B

CMD_SAVEXY2A CMD_SAVEXY2B

CMD_SAVETEXT1 CMD_SAVETEXT2

CMD_GETTEXT2 CMD_GETXY2A

CMD_GETXY2B CMD_SAVELINKS

CMD_GETLINKS CMD_SAVEIMAGE1

CMD_SAVEIMAGE2 CMD_GETIMAGE2

CMD_CHANGEKEY CMD_GETHASH

CMD_SENDHASHPART
S

CMD_GETSAMPLEPTS

CMD_GETFILECRC

116

A.5 Sector Map and Description

Sector Bytes Contents

0 41,984 FAT for the file system of the device.

82 557,568 The client executable file.

1172 512 This is the input and output area. In the FAT table it looks like a file of 512 bytes. The client
application saves encrypted data to the file for commands and the device stores encrypted data
here as a response.

1173 512 Device ID: 16 bytes, text for first GP (180 bytes), Flags (4 bytes), AES key (32 bytes). This
sector includes all data for secure device communication.

1174 512 This contains an array of seed values generated with a true RNG at the factory. The device can
use these values to seed nonces for secure communication.

1175 512 This contains an array of text values that were generated by a true RNG at the factory. When
the user picks items on the graphical password for Web login, a mapping to this text items will
help password stretch and return a very random text string for authentication on the Web.

1176 512 The first 180 X-Y coordinates for the text for the first graphical password (360 bytes).

1177 512 The second 180 X-Y coordinates for the text for the first graphical password (360 bytes).

1178 512 The first 180 X-Y coordinates for the text for the second graphical password (360 bytes).

1179 512 The second 180 X-Y coordinates for the text for the second graphical password (360 bytes).

1180 512 The text for the second graphical password. The first graphical password used part of the sector
that held the Device ID.

1181 84,480 These sectors store the first image as JPEG file.

1347 84,480 These sectors store the second image as JPEG file.

1513 512 This sector holds the URL favourites for a secure Web site.

1514 512 This is where bad file accesses are directed. For example, if the user tried to store many sectors
of data onto the disk, all would be thrown into the trash bin.

117

A.6 Firmware Source Files

Firmware source files (AVR329: USB Firmware Architecture)
Source Function Created By

config.h USB: SBC_VENDOR_ID, SBC_PRODUCT_ID,
SBC_REVISION_ID

Atmel

df.c Contains the low-level dataflash routines. Has the FAT format table. (
modified slightly to add a new memory routine)

Atmel
Author

df_mem.c Contains the interface routines of Data Flash memory. (modified
slightly to add a new memory routine)

Atmel
Author

dower_drv.c Contains the Power management driver routines. (software
debouncing)

Atmel

scheduler.c Manages the routine to call the tasks. Each task will be called
following the order specified in conf_scheduler.h

Atmel

scsi_decoder.c Contains routines to decode and to manage the SCSI commands Atmel

spi_lib.c Provides a minimal function set for the SPI. Atmel

storage_task.c Manages the mass storage task. Atmel

usb_descriptors.c Parameters/values of the enumeration descriptor structures defined
inusb_descriptor.h. This file is important for the user to make his own
application

Atmel

usb_device_task.c Manages the mass storage task. Atmel

usb_drv.c Interface between the user and the USB hardware, it contains all the
USB drivers routines

Atmel

usb_specific_request.c Contains the specific request decoding for enumeration process Atmel

usb_standard_request.c USB endpoint 0 management routines corresponding to the standard
enumeration process.

Atmel

usb_task.c Performs all USB requests (Standard and Specific). It manages the
USB enumeration process and all asynchronous events (Suspend,
Resume, Reset, Wake up...)

Atmel

wdt_driv.c Contains the Watchdog low level driver definition. Atmel

ctrl_access.c Access Memory Control (not important refer to cryptodev.c) Atmel

aes.c AES encryption algorithm based on:

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

Atmel Finland

cryptodev.c The driver that handles all the security implementations at the file
sector level.

Author

Sha256.c SHA-256 Security Hash module GNU:
Christophe
Devine

118

A.7 Quality Function Matrix

A.7.1 Financial Costs

What effort and financial cost are users willing to expend to implement a better solution?

What are users willing to pay for added security? Should users or the authenticating

institutions incur the cost - or both? If the system were strictly deployed on the server,

then authentication costs might be borne by companies than clients. If the solution is PC

or device based, would clients pay for it or would institutions pay to create and deploy it

to clients? What materials are involved and man-hours needed to create and deploy the

solution? How will the solution be deployed: in software or in a physical device. What

liabilities will this solution incur if it fails? In short, what is the value of the assets it

protects? For example, what financial losses could be lost relative to the cost of the

solution? What is the cost to engineer a very trusted system? For example, will engineers

and manufacturers need thorough, high-level background screening and clearance? Cost

is usually very tightly coupled to risk aversion: as the risk of failure goes down, the cost

will go up. How quickly the cost will increase when there are further security features is a

function of quality and design.

A.7.2 Usability

 It is clear that statistical evidence points to large financial losses by both institutions and

consumers due to phishing and maybe less so by password theft. However, how much is

the effort worth for users to adapt to a better system? The current system in use today is a

text-based password system. Users are very familiar with a user name and password

scheme and most secure Web sites employ this means of authentication. Can users and

institutions adapt easily to a different system and if so, to what degree? Can another

authentication system be easy to learn, remember and feel secure? Any new system

119

would also suffer if it were too slow or require the user to do too many tasks. Are there

any installation issues or complexities? Those systems that require a user to have

enhanced memory or handle complex tasks may be a problem for individuals with less

education or reduced cognition. If some users are visually impaired or color blind, would

they be able to use the system? How does the solution handle international users and

languages? The success of any system is not only if it “really” is secure but if users “feel”

secure. If the user can’t trust the company, the documentation, the deployment, or the

degree that they might be attacked, they might feel it is not a useable solution.

A.7.3 Functionality

Though security may seem to be the main feature above all, there is a continuum of

required security relative to the existing text-based password system. On one end, if the

security of a solution is less or equal to the current text-based password system, there is

no compelling reason to implement one. On the extreme end of the continuum, the

usability and cost features may become an aggregate negative weight on the total solution

evaluated. When analyzing the current text-based password system, it should be realized

that passwords need to be highly randomized and hard to guess or predict. The password

space must be large enough to ensure that the possibility of a correct guess is low enough.

However, there are theoretical password spaces and a practical password spaces. For

example, with text-based passwords, users may pick easy names even if 8 characters are

used. If randomized, long passwords are not enforced, the practical password space may

be much smaller than the theoretical space. Unarguably, any solution that can enforce a

better password space is required. Additionally, how effective is any solution against

Trojans and specifically against key and mouse loggers? Is there any protection against

pirated or bad URLs? In finding the right continuum of security solutions that work, one

should measure the efficacy in preventing attacks in metrics that can relate to a risk

factor. Since cost is a concern, the risk of any solution failing should be associated with

the cost of production.

120

It is important to know if the solution will be Web deployed, installed as an executable,

or run on a separate device. Each of these deployments carries their own risk and

usability issues. A Web deployment would have to solve the MITM attack or be able to

assess that risk. An installed binary could be attacked by viruses. Likewise, any hardware

device can have vulnerabilities due to poor understanding of the device or device failure.

In essence, deployment definitions help define a security risk, cost or usably.

A.7.4 Maintainability

The ability to setup a test case with measurable, distinct metrics verifies the design and

efficacy. If the source code is obfuscating the logic, it makes the solution hard to evaluate

strengths and quantify risks. For example, what encryption is being executed and what

tokens are inputs or outputs? If all possible inputs and outputs can’t be analyzed, then that

solution has a higher potential risk.

If the software code is not analyzable, then metrics to measure branch and conditional

coverable would be incomplete. If data communication used non-standard protocols, then

there must be an oracle that can adequately verify it. Without a testable design, there is

less likelihood to properly assess the risk of a better solution.

A.7.5 Reliability

Tantamount to a secure solution is how reliable it is in executing its design. How many

faults does it have over a period of time? If the solution fails, could there be a security

breach? Would the user find the failure a burden and abandon the solution? How mature

is the technology it uses? A mature technology has more history to better assess risk.

How effective is the solution against attack?

121

A.7.6 Efficiency

How long will the new solution increase or decrease the login time? A longer login time

might increase the change of shoulder surfing. Will the user recall the password better

which might reduce login errors? Are there any extra setup steps such as plugging in a

device or downloading an application? Will the user’s productivity be affected by

installation and activation issues?

A.7.7 Portability

In viewing portability, a question to ask might be can the solution work on different

operating systems? It is possible to use this solution across different languages and

cultures? How will does this solution conform to other standards? For example, in the

United States, one guideline for authentication is the Electronic Authentication Guideline

written by the National Institution of Standards and Technology.

A.7.8 Requirements

In using the SQM to define requirements and evaluating a better, secure Web

authentication system, there will be the need to weight some characteristics more than

others. To do this, it would be advisable to poll industry leaders and end-users to

determine an appropriate weight. If only cost and security were the only two important

characteristics, a simple ratio of two metric aggregate scores could be used to determine a

better solution. However, there are other characteristics such as usability and efficiency,

to name a few, that would need to be factored into an overall score. Each characteristic is

itself an aggregation of sub scores. For a security score, the score would depend on the

risk of attack. For a cost score, the financial cost of the assets that can be breached

relative to the total retail cost of the solution. Using a scale of 1 to 100, a rollup score of

all the attributes according to weight can determine the better solution.

122

Table 1: Characteristic requirements by weight (ISO/IEC 9126-1)

Characteristic Weight Description
Functionality 0.50 This includes the security attributes that define risk. A score would be based on the risk

of attack.
Cost 0.30 This is the score based on the cost of the assets protected to the retail cost of the solution.

This score could be a simple ratio or a weighted average.
Reliability 0.10 How failsafe the device will be over time. The number of faults or errors measured. The

risk of a security breach if the device fails.
Usability 0.025 The score related to login time, the time it takes to learn the system and the overall

feeling of the whole system. The percent of users that can use the system (level of
education or visual disabilities)

Maintainability 0.025 The ability to patch the system to fix security holes easily or upgrade the system to meet
further security requirements.

Efficiency 0.025 The time it takes to start the application and authenticate the user.
Portability 0.025 The ability to work on other operating systems, cultures and languages.

A.7.9 Metric Definitions

Table 2: Financial Average Costs
Characteristic Metrics Description
Manufacturing 1. Equipment & materials The amount spent on manufacturing.

Development 2. Man-hours engineering The development cost is needed.
Deployment 3. Shipping & installing The deployment cost.
End-user 4. Retail cost The cost the end user might pay.
Assets 5. Replacement cost The cost of the assets if stolen due to a login breach.

Table 3: Usability
Characteristic Metrics Description
Understandability 6. Learning time during

practice session.
Time is used to measure the difficulty to learn the new solution
during practice login sessions.

Learnability 7. Number errors in
practice session.

The number of login errors during a practice session.

Operability 8. Errors per logins.
9. Setup time.

When the user logs in after a period of time, the errors are recorded.
The time to setup the application is also essential.

Attractiveness 10. Scale of satisfaction. Users can be polled on a 1 to 5 questionnaire about their experience
and overall feeling of the system.

123

Table 4: Functionality
Characteristic Metrics Description
Suitability 11. Risk level of attack. A level given to the possibility of being

broken by an attacker.
Accurateness 12. Number of false positive/negatives A measure of allowing the correct user to

authenticate.
Interoperability 13. Works with current text-password system.

14. Number auth. protocols it supports.
Can it work with the previous text-based
system? What protocols does it support?

Compliance 15. Security standards using NIST 800-63. Using the NIST level system.
1 to 4 security levels with 4 the highest.

Security Security Token generation:

 What you have
 16. Stored token is password protected
 17. Stored token requires activation
 18. Stored tokens encrypted
 19. Token issued by trusted authority
 20. Token deployed by trusted method
 21. User verified before token handoff
 22 Token lifetime
 23. Tamper detection and destruction
 24. Token can be copied
 25. Token can be extracted

 What you know
 26. Easy to communicate accidentally
 27. Shared secret to identify the server
 28. Password entropy > 1012
 29. Enforces hard to guess password
 30. Shoulder surfing resistant
 31. Key-logger resistant
 32. Mouse-logger resistant
 33. Activation password needed
 34. Minimum password length>8 objects
 35. Enforces minimum password length
 36. Input time required < 5 seconds
 37. Brute force attack possible

 What you are
 38. False positives possible
 39. Protection against loss of privacy
 40. Protection against loss of body part

Security handshake:

 Uses two factor authentication
 41. What you know + what you have
 42. What you know + what you are
43. Validates by password
44. Validates by encryption key
45. Maintains session with secure token
46. One-time encryption key used
47. Symmetric or asymmetric keys
48. Key exchanges during session
49. Key changes after login and stored

For security risks and scores, if the metric is
a binary value, then 5 or 0 can be used. For
ranges of metric results, then 0 to 1 with
values ranging from 0.001 to 1.000.

124

50. Verified public keys by a CA
51. Replay attack risk
52. Impersonation risk

Data exchange:

53. Key used is 256 bit AES or 1024 RSA
54. IO encryption
55. Randomized nonce used in encryption
56. Hijacking session risk
57. Eavesdropping risk
58. Man-in-the-middle risk

Table 5: Maintainability
Characteristic Metrics Description
Analyzability 59. Code reviewed The source code was code reviewed by a third-party security firm.

Changeability 60. Can a security patch be
applied to fix a weakness?
61. Time to implement a
patch once a security
weakness is discovered.

Is there a way to fix any security flaws?
If so, how long does it take?

Stability 62. How many flaws are
found with each upgrade?

If the design has changed, how many bugs are reported for that
version.

Testability 63. Can the system be
verified when a change
occurs?

If the system submits encrypted data, this may be hard to do.

Table 6: Reliability

Characteristic Metrics Description
Maturity 64. Number system failures.

65. Number of security failures.
A measure of all failures.
A measure of security failures.

Fault tolerance 66. Can the system lock out the
user upon failure?

Any unrecoverable failure should lock the user from the
authentication system.

Recoverability 67. Does system recovery return
the system to a secure one?

If the system can recover, can it guarantee a return to a secure
state?

Table 7: Efficiency
Characteristic Metrics Description
Time behavior 68. Login time How much time does it take on average to authenticate?

Resource behavior 69. Requires keyboard IO
70. Requires mouse IO
71. Requires disk storage
72. Requires touch screen
73. Requires sound
74. Requires camera
75. Requires biometric scan

Certain IO ports are vulnerable to attacks. Also, how the
application communicates with any IO ports is a point of risk.
Does the solution communicate with IO in encrypted format
(see security)? Also, the more complex IO, the more risk of
failure. A biometric device can be more complex than a
mouse or keyboard.

125

Table 8: Portability
Characteristic Metrics Description
Adaptability 76. How many OS platforms

77. How many Web browsers
78. Does not requires other
software

Windows, Mac, Linux?
Microsoft, Mozilla, Safari
Should other software be installed before this?

Installability 79. Any special device drivers
needed?

If proprietary drivers are needed, it may fail on some OS
versions and libraries. Also, a more proprietary driver could
mean more risk than a proven driver.

Conformance 80. Conforms to OS install
policies?

For example, Microsoft wants any device drivers to be
registered and signed by Microsoft.

A.7.10 Base Measures

In order to find a uniform way to rank a better solution, sundry metric values must be

mapped to a reasonable, uniform scale. For this scale, a range of zero to five will be

chosen. Zero denotes that a metric does not apply. One denotes the poorest score and five

the best score. For example, a security attribute score of four would indicate low risk high

security authentication. Additionally, a perfect score, five, would be rare. Any metric that

gives a range of values should be divided into five parts to give a fair weight to assess the

scaled value. However, there may be times when simple division will not weight

properly, such as logarithmic ranges. In non-linear ranges, the scale can be moved

arbitrarily to a best fit.

Using any scale with a minimum and maximum value implies the measured boundaries

must be known in the whole population. However, in many cases, this is not a known.

For example, with cost, it is not known what the cheapest or must expensive cost could

ever be. The best way to determine a scale would be relative to another in the same

sample set. That is, the scale would denote how many multiples of measured units one

solution is in reference to the extreme solution in that set. A tie would mean that the same

score is used, and if only two were in the set, then they could both be given a one. A

wider range in measured values could signal a statistically significant difference but a

minor variation from the extreme may indicate no significant difference.

126

Table 9: Metric score determination chart
Metric # Value Formula Value to Score mapping
1-4 percent attribute cost/ Largest cost in comparison

= % cost
5=20%, 4 = 40%, 3= 60%, 2=80%, 1 = 100%
where 1 is highest cost of all.
NOTE: Up to that percent.

5 percent Retail cost /Asset replacement cost 5=1%, 4 = 10%, 3= 20%, 2=30%, 1 = 100%
where 1 is highest cost of all

6 percent attribute ave. time/ Largest ave. time in
comparison = % time

5=20%, 4 = 40%, 3= 60%, 2=80%, 1 = 100%
where 1 is highest time of all.
NOTE: Up to that percent.

7 percent attribute ave. errors/ Largest ave. errors in
comparison = % errors

5=20%, 4 = 40%, 3= 60%, 2=80%, 1 = 100%
where 1 is highest cost of all.
NOTE: Up to that percent.

8 percent attribute ave. errors/ Largest ave. errors in
comparison = % errors

5=20%, 4 = 40%, 3= 60%, 2=80%, 1 = 100%
where 1 is highest cost of all.
NOTE: Up to that percent.

9 percent attribute ave. time/ Largest ave. time in
comparison = % time

5=20%, 4 = 40%, 3= 60%, 2=80%, 1 = 100%
where 1 is highest time of all.
NOTE: Up to that percent.

10 feeling Average of a survey 5=great, 4=good, 3=no feeling, 2=bad, 1=hate
11 risk Based on the NIST 800-63 and relative to

text-based passwords
5=very low, 4=low, 3=no improvement,
2=slightly worse, 1=much worse

12 percent Average % of false positive ID which allows
successful login.

5=0%, 4=5%, 3=10%, 2=20%, 1=100%

13 bool Works with text-based passwords? 5=yes, 0=no
14 number How many security protocols? 5=>4, 4=>2, 3= only one
15 level Level of security compliance 5=4,3=2,2=1,1=0
16-60 bool Passes or fails 5=yes, 0=no
61 percent attribute ave. time/ Largest ave. time in

comparison = % time
5=20%, 4 = 40%, 3= 60%, 2=80%, 1 = 100%
where 1 is highest time of all.
NOTE: Up to that percent.

62 percent attribute ave. flaws/ Largest ave. flaws in
comparison = % flaws

5=5%, 4 = 10%, 3= 20%, 2=30%, 1 = 100%
where 1 is highest cost of all.
NOTE: Up to that percent.

63 bool Passes or fails 5=yes, 0=no
64-65 percent attribute ave. failures/ Largest ave. failures in

comparison = % failures
5=5%, 4 = 10%, 3= 20%, 2=30%, 1 = 100%
where 1 is highest cost of all.
NOTE: Up to that percent.

66-67 bool Passes or fails 5=yes, 0=no
68 percent attribute ave. time/ Largest ave. time in

comparison = % time
5=20%, 4 = 40%, 3= 60%, 2=80%, 1 = 100%
where 1 is highest time of all.
NOTE: Up to that percent.

69-75 bool Any IO is a risk. To be fair, assign 5 to no IO
and 1 to having IO

5=no, 1=yes

76-77 number The more the better 5=>3, 4=2, 1=1
78-80 bool Passes or fails 5=yes, 0=no

