ERA

Download the full-sized PDF of Fatigue prediction for strands and wire ropes in tension and bent over sheave wheelDownload the full-sized PDF

Analytics

Share

Permanent link (DOI): https://doi.org/10.7939/R36T0H32H

Download

Export to: EndNote  |  Zotero  |  Mendeley

Communities

This file is in the following communities:

Graduate Studies and Research, Faculty of

Collections

This file is in the following collections:

Theses and Dissertations

Fatigue prediction for strands and wire ropes in tension and bent over sheave wheel Open Access

Descriptions

Other title
Subject/Keyword
Strand
Stress concentration
Wire rope
Fatigue Life
Cable
Type of item
Thesis
Degree grantor
University of Alberta
Author or creator
Wokem, Christian O.
Supervisor and department
Gilbert, Grondin
Samer, Adeeb (Civil and Environmental Engineering)
Tim, Joseph (Civil and Environmental Engineering)
Examining committee member and department
Roger, Hobbs (Civil and Environmental Engineering)
Szymanski, Jozef (Civil and Environmental Engineering)
John, Nychka (Chemical and Materials Engineering)
Department
Department of Civil and Environmental Engineering
Specialization
Structural Engineering
Date accepted
2015-03-25T13:50:17Z
Graduation date
2015-06
Degree
Doctor of Philosophy
Degree level
Doctoral
Abstract
Strands and wire ropes are widely used in many civil and mining engineering applications, such as encountered in cable stays for bridges, suspension bridge elements, mooring structures, cranes, ropes for shovels, draglines, and for elevators and mine shaft cages and skips. These ropes are broadly classified as stationary and running ropes depending on whether they are subjected to predominantly tensile loads or both tension and bending, over a sheave. The primary reason for failure in such strands and wire ropes subjected solely to tension are fretting fatigue scenarios, manifest as individual wires rubbing against each other as a load is cyclically applied. For strands and wire ropes also bent over sheaves, the failure is invariably identified at the top of the sheave where the rope comes into maximum contact with the sheave. To this date, research based prediction of fretting induced fatigue life reduction of strands and wire rope has partially but not wholly been investigated. Feyrer (2007) performed milestone direction work in proposing regression models, established through regression coefficients, that could be used to calculate the anticipated fatigue life of strands and wire ropes for tension only, and tension plus bending over sheave specific configuration cases. The collection of regression coefficients established by Feyrer were limited to the cases he proposed, such that the current research here extends that knowledge base, through investigating the effect of sheave to rope diameter ratio, , applied load, , sheave contact length of rope, , and sheave groove radius, . These results were analyzed in a parametric study generating regression coefficients to permit additional strands and wire rope types not included in Feyrer`s original investigation. Specifically 7, 19, 91 and 92-wire strands in tension, independent wire rope core (IWRC) and 6 19 Seale-IWRC wire rope (usually called 6 19 Seale wire rope) in tension were analyzed, and subsequently their predicted cyclic tension fatigue life is obtained using a stress based approach. The behaviour of 7 and 19-wire ropes subjected to both tension and bending over sheaves fatigue were also investigated. In all cases investigated, S-N fatigue regression models were proposed. Since the stress based method used for fatigue life prediction is dependent on a stress concentration factor or stress correction factor, both prediction routes have been compared with subsequent recommendations for practical application. Finite element analysis of the strand or wire rope models yielded the stress concentration and correction factors necessary for the fatigue life prediction.
Language
English
DOI
doi:10.7939/R36T0H32H
Rights
Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.
Citation for previous publication

File Details

Date Uploaded
Date Modified
2015-06-15T07:08:30.722+00:00
Audit Status
Audits have not yet been run on this file.
Characterization
File format: pdf (PDF/A)
Mime type: application/pdf
File size: 14874341
Last modified: 2015:10:22 06:06:26-06:00
Filename: Wokem_Christian_O_201503_PhD.pdf
Original checksum: f1e1a7854eed502d62606099f336ff08
Activity of users you follow
User Activity Date