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AbstractThe discrete-time recursion system un+1 = Q[un] with un(x) avector of population distributions of species and Q an operator whichmodels the growth, interaction, and migration of the species is con-sidered. Previously known results are extended so that one can treatthe local invasion of an equilibrium of cooperating species by a newspecies or mutant. It is found that, in general, the resulting changein the equilibrium density of each species spreads at its own asymp-totic speed, with the speed of the invader the slowest of the speeds.Conditions on Q are given which insure that all species spread at thesame asymptotic speed, and that this speed agrees with the more eas-ily calculated speed of a linearized problem for the invader alone. Ifthis is true we say that the recursion has a single speed and is linearlydeterminate. The conditions are such that they can be veri�ed for aclass of reaction-di�usion models.1 Introduction.Most models for the growth, spread, and interaction of several spatially dis-tributed species can be written in the form of a discrete-time recursionun+1 = Q[un]; n = 0; 1; 2; :::: (1.1)where the vector-valued function un(x) = (u1n(x); u2n(x); :::; ukn(x)) representsthe population densities of the populations of k species or classes at thepoint x at the time n� , with � a �xed generation time. We shall be con-cerned with the spatio-temporal behavior of the invasion by one species ofan unstable spatially uniform state � from which this species is absent, andthe subsequent convergence of the un to a stable spatially uniform state �.Our basic assumption is that the operator Q is order-preserving, whichmeans that increasing all the components of u increases all the componentsof Q[u]. While this implies that all the species cooperate, certain models ofcompetition can be reduced to this form. The more usual reaction-di�usionmodels of species interaction can be put into the form of the recursion (1.1)by de�ning Q[v] to be the solution at some �xed time � of the system withinitial values v.It was shown in Weinberger [21] that many of the properties of a scalarreaction-di�usion equation are also valid for a large class of single-speciesrecursions. In particular, if Q is order-preserving and invariant under trans-lation and direction reversal, then, under some natural conditions on Q, there2



is a spreading speed c� with the properties that for any positive �,limn!1[max jun(x)� �j : fx : jxj � n[c� + �]g] = 0 (1.2)for any initial function u0(x) which lies between � and � and which coincideswith � outside a bounded set, and thatlimn!1[maxfj� � un(x)j : fx : jxj � n[c� � �]g] = 0; (1.3)for any initial function u0(x) which lies above � plus some positive constanton a suÆciently long interval. Equation (1.2) states that if an observerwere to move to the right or left at a �xed speed greater than c�, the localpopulation density would eventually look like �. Equation (1.3) states thatif an observer were to move to the right or left at a �xed speed less thanc�, the local population density would eventually look like �. That is, thepopulation spreads at roughly the speed c�.Moreover, it was shown that c� is bounded below by the spreading speed�c of the recursion in which Q is replaced by a truncation of its linearizationM at �: c� � �c: (1.4)It was further shown that if Q has the additional property thatQ[u]� � �M [u� �]; (1.5)and if for each positive � there is a Æ > 0 such thatQ[u]�� � (1�Æ)(M[u]��)when 0 � u � �, then c� = �c: (1.6)These results extended earlier results for reaction-di�usion models [2]Most models of interest in population ecology involve the interaction ofmultiple species. It was shown by Lui [13] that all the above results can beextended to a cooperative multi-species system which satis�es certain addi-tional conditions. These include the requirements that (i) the linearizationM of Q is irreducible; and (ii) there are no other constant equilibria of therecursion (1.1) in the closed parallelepiped with vertices � and �. Lui gaveapplications of these results to models of epidemics and of population ge-netics [14]. Neubert and Caswell [16] have recently applied the results to amodel of the interaction of stages of a single species.Virtually all models for the interaction of separate species have the prop-erty that a species which is everywhere absent cannot appear spontaneously.3



That is, uk = 0 implies that the kth component of Q[u] is zero, regardless ofthe values of the other components of u. It follows that the partial derivativesof the kth component of Q[u] with respect to all but the kth component of uvanish when uk = 0. Therefore, the linearization of the operator Q about astate in which one of the species is absent is reducible. (The same argumentcan be extended to the case in which the invader has several stages but nospontaneous generation.)While purely cooperative systems are rare in ecology, it is well known thatthe change of variables u = p; v = 1 � q turns the classical Lotka-Volterracompetition system p;t = d1r2p+ r1p(1� p� a1q)q;t = d2r2q + r2q(1� q � a2p) (1.7)into a cooperative system. This trick is equivalent to the fact that the system(1.7) is order preserving with respect to the partial ordering whose positivecone is the fourth quadrant [9]. If one wishes to study an invasion by the�rst species of the equilibrium state p = 0; q = 1 and the motion toward thenew equilibrium (1,0), one notes that the extinction equilibrium (0,0) lies onthe closed rectangle determined by these two equilibria. Thus both of Lui'sadditional conditions are violated in this case. Moreover, Lui's criterion (1.5)would require the restriction of the function q(1� q � a2p) to the line p = 0to lie above its tangent line at q = 1. This is clearly violated at q = 0.The purpose of the present paper is to extend Lui's results in such a waythat they can be applied to invasion processes of certain models for cooper-ation or competition among multiple species, including the model (1.7).The system (1.1) is said to be linearly determinate when the prop-erty (1.6) is valid. A statement of belief that under certain conditions asystem is linearly determinate is called a linear conjecture. See, e.g., vanden Bosch, Metz and Diekmann [20] or Mollison [15].Linear determinacy is heuristically justi�ed by the fact that if u0 = �outside a bounded set, then un is near � for large jxj. Therefore, the behaviorfor large jxj and nmight be expected to be governed by the recursion obtainedby replacingQ by its linearization around �. However, this reasoning dependson an interchange of the limits as jxj and n approach in�nity, and hence doesnot always apply. In fact, Hadeler and Rothe [5] showed that the spreadingspeed of the scalar reaction-di�usion equationu;t = u;xx + u(1� u)(1 + �u) (1.8)4



is given by the formulac� = � 2 for � 1 � � � 2p�=2 +p2=� for � � 2; (1.9)while the linearized speed �c is always 2. Thus linear determinacy is violatedfor � > 2, so that it is not always true. Moreover, the inequality (1.5) is onlysatis�ed for � � 1, while linear determinacy is valid for � � 2. Thus thiscondition is suÆcient but not necessary for the linear determinacy to hold.Okubo, et al. [18] applied the above reasoning to the Lotka Volterra model(1.7) for the invasion of gray squirrels into an existing red squirrel population.Analysis and simulation by Hosono [7] showed that linear determinacy issometimes but not always right for the model (1.7).Because �c is usually much easier to calculate than c�, it is important toknow conditions which are suÆcient for the validity of linear determinacy.We shall obtain such a condition which is less stringent than (1.5) and whichcan be applied to ecological invasion problems.The problem is formulated in Section 2. Lemma 2.2 and Example 2.1show that the presence of an extra constant equilibrium in the rectangu-lar parallelepiped determined by � and � can produce a new phenomenon.Namely, di�erent components of the solution may spread at di�erent speeds,so that there is no single spreading speed, but only a slowest speed c� anda fastest speed c�+. Lemma 2.3 extends Lui's formula for the speed �c of thetruncated linearized recursion to formulas for the slowest speed �c and thefastest speed �c+. Linear determinacy is now de�ned to mean that c� = �cand c�+ = �c+.Our basic results are stated and proved in Section 3. The main resultis Theorem 3.1, which gives a suÆcient condition for the recursion (1.1) tobe linearly determinate and have a single speed. This condition is weakerthan (1.5), and can be satis�ed even when there is an extra equilibrium inthe parallelepiped with corners at � and �. Theorems 3.2 and 3.3 give lessstringent suÆcient conditions for the recursion to have a single spreadingspeed c� = c�+, which may di�er from �c.Theorem 4.1 in Section 4 shows how to transfer any spreading result onrecursions of the form (1.1) to an analogous result for a reaction-di�usionsystem. We then transfer the theorems of Section 3 to this case. Example4.3 presents a reaction-di�usion model for the invasion by a competitor of astable mono-culture in which the extinction of the original species spreadsmore rapidly than the population of the invader. Theorem 4.4 shows that5



this phenomenon does not occur in the Lotka-Volterra model (1.7), and thatevery invasion is successful in this model.There are several reasons for studying the discrete-time model (1.1) ratherthan just reaction-di�usion models. As we shall point out in Section 5, thederivation of reaction-di�usion models, particularly for relatively small popu-lations, is rather shaky. Secondly, a discrete-time model permits one to treattime-periodic variations such as annual reproduction and dispersal. Thirdly,we note that simulation of a continuous-time model is done by discretizingthe time as well as space, so that one is really dealing with a recursion of theform (1.1). As this paper shows, the study of discrete-time recursions alsoprovides a powerful tool for studying reaction-di�usion systems.We shall show in a companion paper [11] that the results obtained herecan be applied directly both to the Lotka-Volterra model (1.7) and to thecorresponding discrete time modelpn+1(x) = R1�1 (1 + �1)pn(x� y)1 + �1(pn(x� y) + �1qn(x� y))k1(y; dy);qn+1(x) = R1�1 (1 + �2)qn(x� y)1 + �2(qn(x� y) + �2pn(x� y))k2(y; dy): (1.10)Here k1(y; dy) and k2(y; dy) are probability measures referred to as dispersalkernels which model migration of the two species after they have grown andcompeted locally. (The fact that the ki may be measures permits one to treatspatially discrete migration models.) The change of variables un = pn; vn =1�qn converts this system to a cooperative system, to which Theorem 3.1 canbe applied. Theorem 3.4 shows that this model always has a single spreadingspeed, and that every invasion is successful in this model.Both [21] and [13] obtained the above-cited results in the more generalsetting of a multidimensional habitat, and without the assumption of rota-tional symmetry. This is done by choosing any unit vector � and restrictingthe recursion (1.1) to sequences un which only depend on the single vari-able x � � to obtain a one-dimensional recursion, for which one de�nes aspreading speed c�(�). One then obtains results analogous to (1.2) and (1.3)where the interval jxj � n(c� + �) is replaced by the set fx : x � � �n[c�(�) + �] for some unit vector �g and the interval jxj � n(c� � �) is re-placed by the set fx : x �� � n[c�(�)� �] for all unit vectors �g, respectively.Since exactly the same procedure works in our more general case, we shallnot carry it out here. 6



It has been noticed since the pioneering work of Fisher [4] and Kol-mogorov, Petrowski, and Piscounov [8] that spreading speeds can often becharacterized as slowest speeds of travelling waves. It will be shown in an-other work [12] that, under some restrictions on Q, both the slowest spread-ing speed c� and the fastest spreading speed c�+ of the components can becharacterized in this fashion.2 Hypotheses and spreading speeds.We begin with some notation. The habitat H will denote either the realline (the continuous habitat) or the subset of the real line which consists ofall integral multiples of a positive mesh size h (a discrete habitat). We shalluse boldface Roman symbols like u(x) to denote k-vector valued functions ofthe single variable x in H, and boldface Greek letters to stand for k-vectors,which may be thought of as constant vector-valued functions. We think ofk as the number of species (or stages) in the recursion (1.1). We de�neu � v to mean that ui(x) � vi(x) for all i and x, and u >> v to mean thatui(x) > vi(x) for all i and x. We use the notation 0 for the constant vectorall of whose components are 0.The operator Q in the recursion (1.1) takes the set C of all continuousvector valued functions on H with nonnegative components into itself. Afunction w(x) is said to be an equilibrium of Q if Q[w] = w, so that ifu` = w in the recursion (1.1), then un = w for all n � `.By introducing the new variable û = u� � if necessary, we shall assumethat the unstable equilibrium � from which the system moves away is theorigin. In particular, Q[0] = 0. We de�ne the maximum normku(x)k := supx ju(x)j:The linear operatorM is said to be the linearization (or Fr�echet derivative)of Q at 0 if for any � > 0 there is a Æ > 0 such that kuk � Æ implies thatkQ[u]�M [u]k � �kuk. The most important property of M is that for everybounded u � 0 M [u] = lim�&0[(1=�)Q[�u]]: (2.1)The operator Q is said to be order-preserving if u � v implies thatQ[u] � Q[v]. This means that an increase in any species is bene�cial toall species. A recursion (1.1) in which Q has this property is said to becooperative. 7



We de�ne the translation and re
ection operatorsTy[v](x) := v(x� y); R[v](x) := v(�x):The habitat is said to be homogeneous if the growth and migration prop-erties are the same at all points, and isotropic if the migration proper-ties are the same in both directions. These properties are equivalent to thestatements that the operator Q is translation invariant in the sense thatQ[Ty[v]] = Ty[Q[v]] for all v and y, and re
ection invariant in the sense thatQ[R[v]] = R[Q[v]] for all v.It is easily seen that if Q has these properties, then so does M . Inparticular, it follows that M has the representation(M [v](x))i = kXj=1 Z 1�1 vj(x� y)mij(y; dy); (2.2)where each mij is a bounded symmetric nonnegative measure. (We permitmeasures rather than just densities in order to include discrete-space migra-tion models.) It is useful to introduce the k� k matrix of two-sided Laplacetransforms B� = �Z 1�1 e�ymij(y; dy)� : (2.3)Note that B�� = M [�e��x]��x=0 for every constant vector �. For the sake ofsimplicity, we shall assume that the entries of B� are �nite for all �.A matrix is said to be reducible if the coordinates can be split into twononempty disjoint subsets with the property that the (ij) element of thematrix vanishes whenever i is in the �rst set and j is in the second. This isequivalent to saying that the matrix can be put into lower block triangularform by reordering the coordinates so that the coordinates in the �rst setcome before those of the second. If this cannot be done, the matrix is saidto be irreducible. Because the mij are nonnegative, the entries of B� arenonnegative, and the ij entry of B� is 0 if and only if mij is identically zero,so that the ij entry of B0 is also 0. Thus either all the B� are irreducible orthey are all reducible.By reordering the coordinates, one can put any matrix into a block lowertriangular form, the so-called Frobenius form, in which all the diagonalblocks are irreducible. (See, e.g.[6].) (An irreducible matrix consists of thesingle diagonal block which is the matrix itself.) We shall suppose thatthis reordering has been done for B0. Because all the B� have the same zero8



entries, it follows that all the matricesB� are in Frobenius form. A theorem ofFrobenius states that any nonzero irreducible matrix with nonnegative entrieshas a unique positive eigenvalue, called the principal eigenvalue, witha corresponding principal eigenvector with strictly positive coordinates.Moreover, the absolute values of all the other eigenvalues are no larger thanthe principal eigenvalue.Let ��(�) denote the principal eigenvalue of the �th diagonal block fromthe top of B�. These are, of course, eigenvalues of B�.For any � >> 0 we de�neC� := fu(x) : 0 � u � �g:We shall make the following assumptions, which are a proper subset of avariant of those used by Lui [13] .Hypotheses 2.1i. Q[0] = 0, and there is a constant vector � >> 0 such that Q[�] = �,which is minimal in the sense there is no constant � 6= � such thatQ[�] = � and 0 << � � �; i.e., 0 and � are equilibria, and there isno constant all-species coexistence equilibrium below �.ii. Q is order-preserving on nonnegative functions, so that if u � v � 0,then Q[u] � Q[v] � 0; i.e., an increase in any species is bene�cial (orat least not detrimental) to all species.iii. Q is translation and re
ection invariant so that Q[Ty[v]] = Ty[Q[v]] forall y, and Q[R[v]] = R[Q[v]]; i.e., the environment is homogeneous andisotropic.iv. Q is continuous in the topology of uniform convergence on bounded sets;i.e., if the uniformly bounded sequence vn(x) converges to v(x), uni-formly on every bounded set, then Q[vn] converges to Q[v], uniformlyon every bounded set. In other words, the values of Q[v](x) are almostindependent of those values of v(y) with y outside a suÆciently longinterval centered at x.v. a. The matrix B� de�ned by (2.3) has �nite entries for all � and is inFrobenius form. The principal eigenvalue of its �th diagonal blockis ��(�). 9



b. �1(0) > 1, so that the equilibrium 0 is invadable; i.e., the popula-tions which correspond to the �rst block grow when all populationsare suÆciently small;c. �1(0) > ��(0) for every � > 1; i.e, at the time of the invasion,the growth rate of the invader is greater than that of the invadees.(Note that if the invaded equilibrium is stable, ��(0) � 1 for � 6= 1,so that this follows from b.)d. B0 has at least one nonzero entry to the left of each of its diagonalblocks other than the uppermost one; i.e, when the populations arevery small, an increase in population of the �rst species increasesthe populations of all the other species in a �nite number of timesteps.vi. There is a family M (�) of bounded linear order preserving operators onk-vector-valued functions with the properties thata. for every suÆciently large positive integer � there is a constant vec-tor ! >> 0 such thatQ[v] �M (�)[v] when 0 � v � !; (2.4)i.e., in a neighborhood of the zero equilibrium, one can boundthe nonlinear operator below by a sequence of linear operators.(Lemma 4.1 will show that these conditions are automatically sat-is�ed by a reaction-di�usion system. For most other biologicalmodels, they are satis�ed with M (�) = (1� ��1)M .)b. For every � > 0 the matrices B(�)� de�ned by B(�)� � :=M (�)[e��x�]��x=0 converge to B� as �!1. This is true for areaction-di�usion system and also when M (�) = (1� ��1)M .Remarks. 1. As we remarked in the Introduction, when a new speciesinvades an equilibrium of other species, the row of the matrix B0 whichcorresponds to the new species has zero o�-diagonal elements. Hence in theFrobenius form the invading species appears �rst, and the �rst diagonal blockis 1� 1. If there were a second invading species, there would be another rowwith only a diagonal element, and this is excluded by the Hypothesis v.d.Thus in most invasion problems, the �rst diagonal block is 1�1. If, as in thework of Neubert and Caswell [16], the population of the invader is subdividedinto cooperating stages, the upper left block will consist of the populationsof these stages. 10



2. We observe that Hypotheses (i) and (ii) show that C� is an invariantset for Q. That is, if u0 is in C�, then the same is true of all the un generatedby the recursion (1.1).3. It is easily veri�ed that Parts (c)and (d) of Hypothesis 2.1.v are equiv-alent to the existence of an eigenvector �(0) >> 0 of B0 corresponding tothe principal eigenvalue �1(0).We recall one of the results of Lui which uses one of his extra conditions.Proposition 2.1 If the Hypotheses 2.1 are satis�ed and if, in addition, theonly constant equilibria on C� are 0 and �, then there is a spreading speedc� with the properties that for every positive �i. if u0 vanishes outside a bounded interval and 0 � u0 << �, thenlimn!1" supjxj�n[c�+�] jun(x)j# = 0; (2.5)andii. for any constant vector ! >> 0, there is a positive number R! with theproperty that if u0 � ! on an interval of length 2R!, thenlimn!1" supjxj�n[c���] j� � un(x)j# = 0: (2.6)This is a special case of Theorems 3.1 and 3.2 of Lui [13]. In order to seewhat may happen when the additional condition of this Proposition is notsatis�ed, we give a brief sketch of the proof. Choose a �xed vector-valuedinitial function a0(x) all of whose components are non-increasing in x andvanish for x � 0, and such that 0 << a0(�1) << �. De�ne the sequencean(c; x) by the recursionan+1(c; x) = maxfa0(x); T�c[Q[an(c; �)]]g: (2.7)The operator on the right is again order preserving. By de�nition, a1 � a0,and an induction argument shows that for all n, an � an+1 � �, and an(c; x)is non-increasing in c and x. Thus the sequence an increases to a limitfunction a(c; x) which is again nondecreasing in c and x and bounded by �.11



Lui also showed that the vectors a(c;�1) are equilibria1 of Q. Parts i, ii,v.a, and vi of Hypothesis 2.1 imply that a(c;�1) = �. It can be shown thata(c;1) = � when c is suÆciently negative. Lui de�nedc� := supfc : a(c;1) = �g; (2.8)and showed that this c� � 1 does not depend on the choice of a0.The monotonicity shows that a(c;1) = � for c < c�. When c� > � > 0,Lui showed how to combine translates of a(c� � �; x) and a(c� � �;�x) toproduce a nonnegative vector-valued function s0(x) whose components arestrictly below those of �, which vanishes outside a bounded interval, andsuch that the sequence sn(x) obtained by solving the recursion (1.1) withthis initial function has the property that the maximum of j� � sn(x)j onthe interval jxj � n(c� � �) converges to zero as n goes to in�nity. It followsfrom parts (ii), (v.b), and (vi) of Hypotheses 2.1 that if u0 = ! >> 0, thenthe constants un converge to �. By part (iv) of Hypotheses 2.1 there are aninteger N and a positive R! such that if u0 � ! for jxj � R!, then uN � s0,so that (2.6) is valid. By translating if necessary, one obtains the same resultif u0 � ! on any interval of length 2R!. (Of course, when c� � 0, theproperty (2.6) is meaningless.)Suppose that c� is �nite. Since, by the extra hypothesis of the Proposition,the only other equilibrium in C� is 0, we conclude that a(c;1) = 0 for c > c�.A semi-continuity argument then shows that the equality is still true atc = c�, so that a(c;1) = 0 for c � c�. For any initial function 0 � u0 << �,which vanishes outside a bounded interval, let T� be a translation which takesthis interval into a subset of the negative x-axis, and choose an admissiblefunction a0 such that a0 � T�[u0]. Then u0(x) � a0(c�; x+�), and thereforeu1(x) � Q[T��[a0(c�; �)]] = T��+c�[T�c�[Qa0]] � T��+c�[a1(c�; x)]:By induction we see thatun(x) � an(c�; x� nc� + �) � a(c�; x� nc� + �):1There is an easily �xed gap in the proof of Lemma 2.6 of [13]. The inequality a(c;1) �Q[a(c;1)] is proved under the assumption that Q[a(c; s)] is de�ned, but the limit functiona may not be continuous. However, because a(c; s) is nonincreasing and bounded, one canconstruct a continuous piecewise linear function ~a � a with the same limits at �1. Iteasily follows that a(s) � Q[~a(x + s + c)](0) for s � 0, and the desired inequality followsby letting s approach in�nity. 12



Thus when x � n(c� + �), we haveun(x) � a(c�; n�+ �);which approaches zero as n goes to in�nity. Since un(�x) also satis�es therecursion, we obtain the same result for un(�x), and this gives (2.5). Thusthe Proposition is established.We now examine what happens when the extra assumption that 0 and� are the only equilibria in C� is dropped. One can still de�ne the functiona(c; x) as above, and follow Lui in de�ning c� by (2.8). The only di�erenceis that a(c�;1) may be an equilibrium � other than 0. The property (2.6)of a solution of (1.1) which becomes suÆciently large on a suÆciently largeinterval is proved as before. It is natural to de�ne a second speedc�+ := supfc : a(c;1) 6= 0g: (2.9)If c�+ = c�, we shall say that the recursion (1.1) has a single speed.We can extend Proposition 2.1 to the case where extra equilibria arepresent. We de�ne the projection operator P� by saying that P�[v] has thesame coordinates as v in the directions corresponding to the �th diagonalblock of B0, and zero components in the other directions. We �rst state asimple algebraic fact, which will be proved in the Appendix.Lemma 2.1 Let the Hypotheses 2.1 be satis�ed. Then for every constantequilibrium � in C� other than �, P1[�] = 0.This fact helps prove the following extension of Proposition 2.1.Lemma 2.2 Let un be a solution of the recursion (1.1). Then for any posi-tive �i. if 0 � u0 << � and u0 = 0 outside a bounded interval, thenlimn!1[ supjxj�n[c�++�] jun(x)j] = 0; (2.10)and limn!1[ supjxj�n[c�+�] jP1[un(x)]j] = 0; (2.11)13



ii. for any constant vector ! >> 0, there is a positive number R! with theproperty that if u0 � ! on an interval of length 2R!, thenlimn!1[ supjxj�n[c���]fj� � un(x)jg] = 0; (2.12)and there is a � > 1 such that when c < c�+, all the components ofa(c;1) in the directions corresponding to the �th block of B0 are posi-tive, andlim infn!1 [ infjxj�n[c�+��]P�[un(x)] � P�[a(c�+ � 12�;1)]: (2.13)Proof. The equation (2.10) is obtained by applying the proof used toestablish the property (2.5) in Proposition 2.1. Because P1[a(c�;1)] = 0 byLemma 2.1, the same proof applied to P1[un] yields (2.11). The proof of (2.6)in Proposition 2.1 gives the property (2.12).The de�nition (2.9) of c�+ shows that for c < c�+, a(c;1) is nonzeroand nonincreasing in c. Therefore there is at least one � such that all thecomponents of the equilibrium a(c;1) are positive for all c < c�+. The proofof Lemma 2.1 shows that if u0 is uniformly positive on a suÆciently large set,then for jxj � n(c�+��), un(x) becomes larger than a(c�+� 12�;1), and (2.13)follows. Thus the Lemma is established.Remark. The properties (2.10) and (2.12) show that no component of uncan spread more rapidly than c�+ or more slowly than c�. The properties (2.11)and (2.12) state that the �rst component (the invader) spreads at the slowestspeed c�. (2.13) shows that there is at least one component which spreads atthe maximal speed c�+. Thus if c�+ > c�, there is no single spreading speed.If c�+ = c�, the equations (2.10) and (2.12) show that their common value isthe spreading speed of all components of un.EXAMPLE 2.1 Consider the operatorQ[(u; v)] := 0BBBB@ R1�1(4�d1)�1=2e�(x�y)2=(4d1)u(y)[1 + r1(1� 2minfu(y); 1g+minfv(y); 1g)]dyR1�1(4�d2)�1=2e�(x�y)2=(4d2)[v(y) + r2maxf1� v(y); 0g(u(y) + v(y))]dy
1CCCCA(2.14)with d1 and d2 positive, and 0 < r2 < r1 < 1=3: (2.15)14



It is easily veri�ed that the Hypotheses 2.1 with � = (1; 1) are satis�ed. Thepoints 0, �, and (0; 1) are all equilibria, so that Lui's additional hypothesisin Proposition 2.1 is violated. The �rst component Q1 of the operator Q isbounded above by setting v � 1:(Q[(u; v)])1 � ~Q1[u]:= R1�1(4�d1)�1=2e�(x�y)2=(4d1)u(y)[1 + r1(1� 2minfu(y); 1g+ 1]dy:The second component Q2 is bounded below by setting u � 0:(Q[(u; v)])2 � ~Q2[v]:= R1�1(4�d2)�1=2e�(x�y)2=(4d2)[v(y) + r2maxf1� v(y); 0g(0 + v(y))]dy:Thus if un = (un; vn) satis�es the recursion un+1 = Q[un] with u0(x) = 0for large jxj, and if u0 is nonnegative and uniformly less than 1, then un canbe bounded above by the solution ~un of the recursion ~un+1 = ~Q1[~un] with~u0 = u0. The results on scalar recursions in [21] show that ~un spreads withthe speed 2pd1 ln(1 + 2r1). Therefore,limn!1[supfun(x) : jxj � n(2pd1 ln(1 + 2r1) + �)g] = 0:By de�nition, c� � 2pd1 ln(1 + 2r1). A similar argument shows that vn isbounded below by ~vn, which spreads with the speed 2pd2 ln(1 + r2). Hence,limn!1[supf1� vn(x) : jxj � n(2pd2 ln(1 + r2)� �)g] = 0;so that c�+ � 2pd2 ln(1 + r2). Thus ifd2 ln(1 + r2) > d1 ln(1 + 2r1); (2.16)then the second component spreads at a speed c�+ greater than the speed c�of the �rst component. Therefore there is no single spreading speed for thisproblem (Figure 1a).In order to discuss linear determinacy, we need to talk about the spreadingspeeds of a recursion in which the operator Q is a truncated linear operator.Let ~L be a bounded linear order-preserving translation and re
ection invari-ant operator on C, for which there is a constant vector ! >> 0 such that~L[!] >> !. We consider the truncated linear recursionun+1 = minf~L[un];!g (2.17)We suppose that for every � the matrix ~B� de�ned by the fact that~L[e��x�]jx=0 = ~B��15



location(x)

de
ns

ity

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

location(x)

de
ns

ity

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

Figure 1: Numerical simulation of model (2.14) with with r1 = 0:25, r2 = :02,so that (2.15) is satis�ed. The discrete time model (1.1) where Q is givenby (2.14) (u = (u; v)) was simulated numerically on a domain �50 � x � 50with initial data u = v = 0:1 on �10 � x � 10 and u = v = 0 elsewhere.The solution is shown on the right half of the domain for times n = 0 ton = 25. Solid lines indicate u and dotted lines indicate v. (a) d1 = 0:5,d2 = 2 so that (2.16) is satis�ed. Note that, as predicted in Example 2.1, thespreading speed of v is greater than that of u. (b) d1 = 2, d2 = 0:5 so that(2.16) is violated and (3.21) is satis�ed. Note that there is a single spreadingspeed, as will be predicted by Example 3.3.
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for every constant vector � has �nite nonnegative entries. We suppose thecoordinates have been ordered so that these matrices are in Frobenius form.Let ~��(�) denote the principal eigenvalue of the �th diagonal block of ~B�,and de�ne the numbers ~c� := inf�>0f��1 ln ~��(�)g: (2.18)Note that ~c� = �1 when ��(0) < 1. The following Lemma gives explicitexpressions for the two speeds of the recursion (2.17).Lemma 2.3 Suppose that the truncated linear operator minf~L[u];!g satis-�es the Hypotheses 2.1 with � = !. Then the slowest spreading speed ~c ofthe recursion (2.17) is ~c1, and its fastest spreading speed ~c+ is the largest ofthe numbers ~c�.The proof is straightforward, and will be presented in the Appendix.Linear determinacy concerns the particular case when ~L is the lineariza-tion M of Q at 0. By Lemma 2.3 the two speeds for the truncation of thisoperator are the slower speed�c := inf�>0[��1 ln�1(�)]: (2.19)and the faster speed �c+ := max� [inf�>0[��1 ln��(�)]]: (2.20)We shall say that the recursion (1.1) is linearly determinate if c�+ = �c+and c� = �c.3 SuÆcient conditions for linear determinacy and single speed.We �rst generalize Lui's result that �c is a lower bound for c�.Lemma 3.1 If Q satis�es the Hypotheses 2.1, thenc� � �c; (3.1)and c�+ � �c+: (3.2)17



Proof. Let `� be the dimension of the �th diagonal block of B0. For any`�-vector-valued function w(x), we de�ne the k-vector valued function ~w bysaying that its components corresponding to the �th block of B0 are thoseof w, and its remaining components are zero. We now de�ne the auxiliaryoperatorQ�[w] := the `�-vector whose entries are those coordinates of Q[ ~w]which correspond to the �th block:The linearization of Q� at 0 is the �th diagonal block of B0. Because thismatrix is irreducible, Lui's work shows that Q� has the single speed c�, andthat c� � inf�>0[��1 ln��(�)] = �c�: (3.3)(In proving this result, Lui used the special case M (�) := [1 � (1=�)]M ofthe Hypothesis 2.1.vi. His proof is easily extended to one which only usesHypothesis 2.1.vi. As Lemma 4.1 will show, our hypothesis has the advantagethat it is automatically satis�ed by the time 1 map of a reaction-di�usionmodel.)Because Q[P�[v]] � Q[v], the components of Q[v] corresponding to the�th block are bounded below by those of Q� applied to the correspondingcomponents of v. It follows that if un satis�es (1.1), then P�un spreadsat a speed which is at least �c�. This together with Lemma 2.3 proves theinequalities (3.1) and (3.2), so the Lemma is proved.Remarks: 1. It was shown by Lui that ln�1(�) is a convex function of�. The re
ection invariance of Q implies that �1(�) is even in �. Hence theminimum value of ln�1(�) occurs at � = 0. Since �1(0) > 1 by Hypothe-sis 2.1.v.b, we conclude that ��1 ln�1(�) > 0. It follows from (2.19) that�c � 0, so that c� � 0. In fact, a strengthening of Lui's proof of the convexityof ln�1(�) shows that if the support of at least one of the measures mij inthe �rst block of the representation (2.2) of M contains at least one pointother than the origin, then �c > 0 so that c� > 0.2. The inequality (3.2) implies that if the linearized problem does nothave a single speed so that �c+ > �c, then either the recursion (1.1) does nothave a single speed or it is not linearly determinate.Our main result gives a simple condition under which (1.1) has a singlespeed and is linearly determinate. We note that the matrices B� all have18



the same positive elements. In particular, B� again satis�es the Hypothe-sis 2.1.v.d. It follows as in Remark 3 after Hypotheses 2.1 that if for some�, �1(�) > ��(�) for all � > 1, then B� has an eigenvector �(�) >> 0corresponding to the principal eigenvalue �1(�).Theorem 3.1 (Main result) Suppose that Q satis�es the Hypotheses2.1. Let the in�mum in (2.19) be attained at �� 2 (0;1]. Assume thateithera. �� is �nite, �1(��) > ��(��) for all � > 1; (3.4)(i.e., for any initial distribution of the form u0 = e���x� all componentsof the solution of the linearized recursion un+1 = M [un] grow at theasymptotic rate (�1(��))ne���x) andQ[e���x�(��)] �M [e���x�(��)]; (3.5)(i.e., while Q may have an Allee e�ect so that (1.5) is not satis�edfor all u, it does not display this e�ect for the particular functione���x�(��).)orb. there is a sequence �� % �� such that for each ��1(��) > ��(��) for all � > 1 (3.6)and Q[e���x�(��)] �M [e���x�(��)]: (3.7)Then c�+ = c� = �c = �c+;so that (1.1) has a single speed and is linearly determinate.Proof. Suppose condition (a) is valid. By de�nitionM [e���x�(��)] = �1(��)e���x�(��) = e���(x��c)�(��):The hypothesis (3.5) can therefore be written in the formQ[e���x�(��)] � e���(x��c)�(��): (3.8)19



Let 0 � u0(x) << � and let u0 = 0 for all suÆciently large x. Theinequality �(��) >> 0 shows that there is a � such that u0 � e���x+��(��).Because Q is translation invariant, (3.8) shows that the sequence of functionsvn = e���(s�n�c)+��(��) satis�es the recursive inequalities Q[vn] � vn+1. Wenote that if un � vn, then un+1 = Q[un] � Q[vn] � vn+1. Since u0 � v0,induction shows that un � vn for all n. Thus for any positive �supfun(x) : x � n(�c+ �)g � e�n���+��(��): (3.9)This, together with the same inequality for u(�x), immediately implies theproperty (2.5). Therefore �c+ � � c�+: (3.10)Since � is arbitrary, this inequality and (3.1) show that �c � c� � c�+ � �c, sothat c�+ = c� = �c. (3.4) shows that �c� < �c1 for all � > 1, so that �c+ = �c.If condition (b) holds, the above argument gives the inequality (3.8) with�� replaced by �� and �c replaced by ln�1(��)=��. Thusc�+ � ln�1(��)=��: (3.11)By de�nition, the limit of the right-hand side as �!1 is �c. As above,�c+ = �c. Thus we again have the inequalities �c � c� � c�+ � �c which implythat c�+ = c� = �c. As above, �c+ = �c, and the Theorem is established.Remark: Because c� only depends on the behavior of Q[u] on functionswhich satisfy the inequalities 0 � u � �, we may replace Q by the smallesttranslation invariant order preserving operator which agrees with Q on thisset. We de�ne the function minfu;�g by saying that its ith component atx is minfui(x); �ig. Then the condition (3.5) can be replaced byQ[minfe���x�(��);�g] � M [e���x�(��)]: (3.12)This condition is useful if Q is unde�ned for functions which are not boundedby �. In principle, the criterion (3.12) is less stringent than (3.5), but it maybe harder to verify.EXAMPLE 3.1 As in Example 2.1, we look at the system (2.14) with theconditions (2.15) on the parameters. An easy calculation shows thatB� = � ed1�2(1 + r1) 0ed2�2r2 ed2�2(1 + r2) � : (3.13)20



This matrix is already in block diagonal form with 1� 1 blocks, and �1(�) =ed1�2(1 + r1). Thus ��1 ln�1(�) = d1�+ ��1 ln(1+ r1) and we �nd that that�� =p[ln(1 + r1)]=d1 (3.14)and �c = 2pd1 ln(1 + r1): (3.15)The Hypotheses 2.1 are satis�ed. The condition (3.4) is(1 + r1)2 > (1 + r1)(d2=d1)(1 + r2):A suÆcient condition for (3.5) isp[1 + r1(1 + minfq; 1g � 2minfp; 1g)] � (1 + r1)pq + r2maxf1� q; 0g(p+ q) � q + r2(p+ q)when (p; q) = e���x�(��). The second inequality is satis�ed for any nonneg-ative (p; q). The �rst inequality is satis�ed when either q � 2p or p � 1=2.Thus the condition is valid when �2(��) � 2�1(��). We see from (3.14) and theform (3.13) of B� that �(��) is proportional to�(1 + r1)2 � (1 + r1)d2=d1(1 + r2); (1 + r1)d2=d1r2� :Therefore (3.5) is satis�ed when(1 + r1)2�(d2=d1) � 1 + (3=2)r2: (3.16)Since this condition is stronger than the above form of condition (3.4), theinequality (3.16) implies both conditions of Theorem 3.1. That is, when thisinequality is valid, c�+ = c� = �c+ = �c = 2pd1 ln(1 + r1).Theorem 3.1 gives conditions which are so strong that not only is c�+ = c�so that there is a single spreading speed, but also linear determinacy is valid.It is useful to have a weaker set of conditions which still implies that c�+ = c�.Such conditions will require the following additional Hypothesis.Hypotheses 3.1 The operator Q has one of the two propertiesa. the family of functions Q[v] with v in C� is equicontinuous; orb. if the nondecreasing sequence vn in C� converges to v, then Q[v] isde�ned, and Q[vn] converges to Q[v].21



Remark. This Hypothesis is always satis�ed when H is discrete.To obtain suÆcient conditions for having a single speed, we shall makeuse of the following lemma.Lemma 3.2 Suppose that Q satis�es the Hypotheses 2.1 and 3.1. Let � 2C� be a constant equilibrium other than 0 or �. If there exists an operatorQ(�) which satis�es Hypotheses 2.1 and has the additional propertiesi. Q(�)[u] � Q[u] for all u in C�;ii. Q(�)[u] = Q[u] when u � �;iii. the recursion (1.1) with Q replaced by Q(�) has a single speed c� .Then a(c�;1) cannot be equal to �.Proof. Suppose for the sake of contradiction that a(c�;1) = �. By (i)the a(�)n de�ned by (2.7) with Q replaced by Q(�) and with a(�)0 = a0 are atleast as large as the an, and hencec�+ � c� :If the Hypothesis 3.1.b is valid, we can take limits of both sides of thede�ning equation (2.7) to see that a(c�; x) satis�es the equationa = maxfa0; T�c�[Q[a]]g: (3.17)If, instead, the Hypothesis 3.1.a holds, it is easily seen that a(c�; x) is con-tinuous. Then Dini's theorem shows that the an converge to a uniformly onbounded sets, and (3.17) follows from (2.7) and Hypothesis 2.1.ivSince a(c�; x) is non-increasing in x and has the value � at in�nity, weconclude that a � �. Then (ii) shows that Q(�)[a] = Q[a], so that a(c�; x) =maxfa0(x); T�c�[Q(�)[a]](x)g. We see from the recursion for a(�) and theorder-preserving property of Q(� ) that if a(� )n (c�; x) � a(c�; x), thena(�)n+1 � maxfa0; T�c�[Q(�)[a]]g = a:Since a(�)0 = a0 � a, induction shows that all the a(�)n , and hence alsoa(�)(c�; x), are bounded by a(c�; x). Therefore a(�)(c�;1) � �, and hencec� � c�. Thus we have the inequalities c� � c� � c�+ � c� . This shows that22



c�+ = c�, which implies that a(c�;1) = 0. This contradicts the assumptionthat a(c�;1) = �, and hence proves Lemma 3.2.Since Theorem 3.1 gives a suÆcient condition for a recursion to have asingle speed, combining it with Lemma 3.2 immediately gives a suÆcientcondition for c�+ = c�. We recall that P1[�] is the projection of the vector �which replaces those components which do not correspond to the upper leftblock of the matrix B0 by zeros.Theorem 3.2 Suppose that Hypotheses 2.1 and 3.1 are satis�ed and thatfor every constant solution � of Q[�] = � in C� other than 0 and � theoperator Q(�)[v] := P1Q[maxfv;�g] + (I � P1)Q[v]satis�es the conditions of Theorem 3.1. Then c�+ = c� so that the recursion(1.1) has a single speed.Proof. Theorem 3.1 shows that Q(�) has a single speed, so that it satis�esthe conditions of Lemma 3.2. Therefore a(c�;1) cannot be any equilibriumother than 0. Therefore c�+ = c�, and the Theorem is proved.EXAMPLE 3.2 As in Examples 2.1 and 3.1, we consider the recursion forthe operator (2.14) with the conditions (2.15). There is an extra equilibriumat � = (0; 1). The matrix B(�)� of the operatorQ(�)[(u; v)] = R1�1(4�d1)�1=2e�(x�y)2=(4d1)u(y)[1 + r1(1� 2minfu(y); 1g+ 1)]dyR1�1(4�d2)�1=2e�(x�y)2=(4d2)[v(y) + r2maxf1� v(y); 0g(u(y) + v(y))]dy!(3.18)is B(�)� = � ed1�2(1 + 2r1) 0ed2�2r2 ed2�2(1 + r2) � :The requirement that Q(�) satisfy the conditions of Theorem 3.1 again re-duces to �2 � 2�1, where now � is the principal eigenvector of B(�)� at�� =pd�11 ln(1 + 2r1). This condition can be written as(1 + 2r1)2�(d2=d1) � 1 + r2: (3.19)This is less stringent than the condition (3.16). Of course, this conditionalso implies less. Namely it implies the property c�+ = c� but not lineardeterminacy. 23



Note that because 2�(d2=d1) � d1=d2, the condition (3.19) is not satis�edwhen d2 ln(1 + r2) > d1 ln(1 + 2r1), which was shown in Example 2.1 to leadto a violation of the property c�+ = c�.The following alternative to Theorem 3.1 can also be used to prove thesingle-speed linear determinacy in some cases.Lemma 3.3 Suppose that Q satis�es the Hypotheses (2.1) and (3.1), andthat there is an order preserving translation and re
ection invariant linearoperator ~L which satis�es the conditions of Lemma 2.3 and has the additionalpropertiesi. Q[u] � ~L[u] for all u in C�.ii. P1[ ~L[u]] = P1[M [u]] where M is the linearization of Q at 0 and P1 is theorthogonal projection onto the coordinates corresponding to its upperleft diagonal block.iii. ~c1 � ~c� for all �, where ~c� is de�ned by (2.18).Then c�+ = c� = �c = �c+, so that the recursion (1.1) has a single speed andis linearly determinate.Proof. By Lemma 2.3 and (iii), the truncated operator minf~L[u]; �~�(0)igwhere �~�(0) � � has the single speed ~c1. By (ii), this value is the same as�c. Since (i) implies that M [u] � ~L[u], we have �c+ � ~c1 = �c � �c+, so that�c+ = �c. Also by (i), c�+ � ~c1 = �c � c�, so that c�+ = c� = �c = �c+. This provesthe Lemma.The conditions (i) and (ii) of this lemma imply that the components ofQ[a] which correspond to the �rst block of B0 are independent of the remain-ing components of a, which is rarely true of a biological model. However,combining Lemma 3.3 with Lemma 3.2 yields another suÆcient condition forthe existence of a single speed.Theorem 3.3 Suppose that Q satis�es the Hypotheses 2.1 and 3.1, and thatfor each constant equilibrium � in � other than 0 or � the operator Q(�)[u] =P1Q[maxfu;�g] + (I � P1)Q[u] satis�es the conditions of Lemma 3.3.Then the recursion (1.1) has a single speed.24



EXAMPLE 3.3 The system (2.14) in Examples 2.1, 3.1 and 3.2 has theextra equilibrium � = (0; 1). The operator Q(�) is given by replacing vn by1 in the �rst equation. It certainly satis�es the Hypotheses 2.1 and 3.1. Theconditions (i) and (ii) of Lemma 3.3 are satis�ed for this operator when~L[(u; v)] :=  R1�1(4�d1)�1=2e�(x�y)2=(4d1)(1 + 2r1)u(y)dyR1�1(4�d2)�1=2e�(x�y)2=(4d2)[r2u(y) + (1 + r2)v(y)]dy ! :(3.20)We easily see that ~c1 = 2pd1 ln(1 + 2r1), while ~c2 = 2pd2 ln(1 + r2). Thuscondition (iii) is satis�ed so that c�+ = c� whend2 ln(1 + r2) � d1 ln(1 + 2r1): (3.21)Thus Theorem 3.3 shows that this inequality implies the existence of a singlespeed.This inequality just says that (2.16) is violated. Thus for this particularsystem we have obtained the precise parameter set where there is a singlespreading speed.We can use Theorem 3.3 to show that the model (1.10) for the invasionof an equilibrium population of the second species by a competing speciesalways has a single speed. In fact, we �nd a simple condition on the migrationkernel which produces a hair-trigger e�ect, in the sense that every invasionis successful. We assume that �1 < 1, so that the original equilibrium isinvadable.Theorem 3.4 Let 0 < �1 < 1 and let all the other parameters in the sys-tem (1.10) be positive. Then the cooperative systemun+1(x) = R1�1 (1 + �1)un(x� y)1 + �1(�1 + un(x� y)� �1vn(x� y))k1(y; dy)vn+1(x) = R1�1 vn(x� y) + �2�2un(x� y)1 + �2(1� vn(x� y) + �2un(x� y))k2(y; dy); (3.22)which is obtained by making the substitution un = pn, vn = 1 � qn in themodel (1.10), has a single speed c�.Moreover, if either the habitat H is the real line and there is an openinterval on which the measure k1 has a positive density or H is discrete andevery number in H can be written as a sum of �nitely many numbers towhich k1 assigns positive weights (with repetitions allowed), then there is a25



hairtrigger e�ect in the sense that the property (2.6) holds as long as u0 isnot identically zero.Proof. The dominated convergence theorem for measurable spaces [19]implies Hypothesis 3.1.b.The equilibria of the system (3.22) are (0,0), (1,1), (0,1), and ((1��1)=(1��1�2); �2(1 � �1)=(1 � �1�2)). When �2 < 1, the latter point is strictlybetween (0,0) and (1,1). Therefore it is the point �, and there is no extraequilibrium in C�. Thus the result follows from Proposition 2.1.If �2 = 1, the fourth equilibrium coincides with the third, while if �2 > 1,the q-coordinate of the fourth equilibrium is negative so that it no longerrelevant. In these cases, � = (1; 1) and the equilibrium � = (0; 1) lies in C�.The operator Q(� ) is obtained by replacing vn by 1 in the right-hand sideof the �rst equation (3.22). We note that for (u; v) in C� the numerators ofthe two fractions in (3.22) are nonnegative and the denominators are at leastequal to 1. Therefore the linear operator~L[(u; v)] := � R1�1(1 + �1)un(x� y)k1(y; dy)R1�1[vn(x� y) + �2�2un(x� y)]k2(y; dy) � (3.23)has the property (i) of Lemma 3.3 with Q replaced by Q(�). It is easilyveri�ed that it also has the property (ii).To verify property (iii), we note that because k1(y; dy) is re
ection invari-ant, ~�1(�) = (1+ �1) R1�1 cosh�y k1(y; dy) > 1, so that ~c1 � 0. On the otherhand, ~�2(�) = R1�1 cosh �y k2(y; dy). This function is even and has the value1 at 0. Therefore ��1 ln ~�2(�) has the limit 0 as � approaches 0. It followsthat ~c2 = 0 � ~c1. Thus property (iii) of Theorem 3.3 is also satis�ed, andthe equation c�+ = c� is established.To prove the hairtrigger e�ect, we note that for 0 � u � (1� �1)=2 and0 � v � 1, the operator Q determined by the right-hand sides of (3.22)satis�esQ[(u; v)] � 0BBB@ minf(1� �1)=2; 1 + �11 + �1(1 + �1)=2 R1�1 u(x� y)k1(y; dy)g�2�21 + �2[1 + �2(1� �1)=2] R1�1 u(x� y)k2(y; dy) 1CCCA :(3.24)If the kernel k1 satis�es the additional properties in the last paragraphof the statement of the Theorem, then Theorem 6.5 of [21] applied to the26



�rst equation shows that if u0 is positive somewhere, the solution of therecursion (1.1) with Q replaced by the right-hand side of (3.24) converges to((1 � �1)=2; �2�2(1 � �1)=[2 + 2�2 + �2�2(1 � �1)]), and the convergence isuniform on every bounded interval. Since this solution is a lower bound forthe solution of (3.22) with the same initial values, we see that for suÆcientlylarge n, (un; vn) lies above a �xed constant vector on an arbitrarily large set,so that the last statement of Theorem 3.4 follows from Lemma 2.2.EXAMPLE 3.4. To see the importance of the extra condition for thehairtrigger e�ect, choose the measures k1 = k2 withZ 1�1 �(y)ki(y; dy) := �h�2[�(h) + �(�h)] + (1� 2�h�2)�(0);and ri = �si, where h > 0 and 0 < 2�h�2 < 1. Then the system (3.22) is asomewhat unusual �nite-di�erence approximation with time step � and spacestep h to a reaction di�usion system. The �rst statement of Theorem 3.4 isvalid. If H is the set of integral multiples of h, the additional condition isalso satis�ed, so that there is a hairtrigger e�ect. If, on the other hand, Hcontains all the multiples of h=2, the extra condition is violated. In fact, wesee that if u0 vanishes at all the odd multiples of h=2, then un has the sameproperty for all n, which shows that there is no hairtrigger e�ect.4 Applications to reaction-di�usion systemsIn this section, we shall show how to apply the results of the previous sectionsto a weakly coupled reaction-di�usion system of the form[ui];t = di[ui];xx + fi(u); i = 1; 2; :::; k;u(t; x) = u0(x); (4.1)where each di is a nonnegative constant, and f = (f1; f2; :::; fk) is independentof x and t. This model can be put into the form (1.1) by letting Q be its time� map. That is, Q� [u0] is de�ned to be the value u(x; �) of the solution of thisinitial value problem at time � . The sequence of functions un(x) := u(x; n�)clearly satis�es the recursion (1.1) with Q replaced by Q� .The following theorem shows that the spreading speed of the time 1 mapof a weakly coupled parabolic system also gives the spreading speed for so-lutions of the system itself. Note that this theorem is valid without theassumption that the system is cooperative. It is, of course, only useful if theexistence of a single spreading speed can be established.27



Theorem 4.1 Suppose that f(0) = 0, f(�) = 0, � >> 0, and f(�) iscontinuous on the set 0 � � � �. Let Q� be the time � map of the weaklycoupled, possibly degenerate, parabolic system (4.1) with constant coeÆcients.Suppose that the set C� = fu(x) : 0 � u � �g is an invariant set of (4.1) inthe sense that any solution which starts in C� remains there. Also supposethat for each � the recursion (1.1) with Q = Q� has a single speed c�� withthe properties (2.6) and(2.5). If c� is de�ned to be c�1, then c�� = �c�, andfor any initial function u0(x) in C� which vanishes outside a bounded set thesolution of (4.1) has the properties that for each positive �limt!1 � maxjxj�t(c�+�) ju(x)j� = 0; (4.2)and for any strictly positive constant vector ! there is a positive R! withthe property that if u0 � ! on an interval of length 2R!, thenlimt!1 � maxjxj�t(c���) j� � u(x)j� = 0: (4.3)The proof of this Theorem is given in the Appendix.Remark. If the time one map Q1 has the speeds c�+ > c�, a similar proofgives the analogs of formulas (2.10) to (2.13).We wish to show how Theorem 3.1 can be applied to the special case whereQ is the time 1 map of the reaction di�usion model (4.1). For this purpose,we need hypotheses on f which imply that Q satis�es the Hypotheses 2.1.Note that a constant equilibrium � is now a vector such that f(�) = 0.We observe that if a square matrix A is irreducible and has nonnega-tive o�-diagonal elements, then there is a constant � such that A + �I isirreducible and has nonnegative entries. Hence this matrix has a positiveprincipal eigenvalue Æ with a positive eigenvector. We shall call the eigen-value Æ � � of A, which has the same positive eigenvector, the principaleigenvalue of A. .Hypotheses 4.1i. f(0) = 0, and there is a � >> 0 such that f(�) = 0 which is minimal inthe sense there are no � other than 0 and � such that f(�) = 0 and0 << � � �.ii. The system (4.1) is cooperative; i.e., fi(�) is nondecreasing in all com-ponents of � with the possible exception of the ith one.28



iii. f does not depend explicitly on either x or t, and the coeÆcients di areconstant and nonnegative.iv. f(�) is continuous and piecewise continuously di�erentiable in � for 0 �� � � and di�erentiable at 0.v. The Jacobian matrix f 0(0) is in Frobenius form. The principal eigenvalue
1(0) of its upper left diagonal block is positive and strictly larger thanthe principal eigenvalues 
�(0) of its other diagonal blocks, and there isat least one nonzero entry to the left of each diagonal block other thanthe �rst one.It is obvious from elementary properties of parabolic systems that the �rstfour Hypotheses 4.1 imply the corresponding Hypotheses 2.1. It is easily seenthat the linearization M at 0 of the time 1 map Q1 is the time 1 map of thelinearized system vi;t = divi;xx + (f 0(0)v)i (4.4)Separation of variables shows that if the initial data are of the form e��x�,then the solution of this system has the form e��x�(t), where the vector-valued function � is the solution of the system of ordinary di�erential equa-tions with constant coeÆcients �;t = C�� (4.5)with �(0) = �. The coeÆcient matrix is given byC� = diag �di�2�+ f 0(0); (4.6)where f 0(0) is the Jacobian matrix with entries fi;uj (0). The o�-diagonalentries of C� are nonnegative because the system is cooperative.By de�nition, the matrix B� for the time 1 map M of (4.5) is given bythe formula B� = exp [C�] : (4.7)It is easily seen that ��(�) = e
�(�) where 
� is the principal eigenvalue of the�th diagonal block of the matrix C� de�ned by (4.6). Thus Hypothesis 4.1.vimplies Hypothesis 2.1.vThe following Lemma, whose proof appears in the Appendix, states thatHypothesis 2.1.vi is automatically satis�ed by the time 1 map of the sys-tem (4.1). 29



Lemma 4.1 If f satis�es the Hypotheses 4.1, then there exists a family M (�)of linear maps which satis�es the Hypothesis 2.1.vi.The following theorem is thus an immediate corollary of Theorem 3.1.Because �1(�) = e
1(�), the formula (2.19) for �c becomes�c := inf�>0[
1(�)=�]:(There is an analogous formula for �c+.) Let �� 2 (0;1] again denote thevalue of � at which this in�mum is attained, and let �(�) be the eigenvectorof B� which corresponds to the eigenvalue �1(�).Theorem 4.2 Suppose that f satis�es the Hypotheses 4.1. Assume that ei-ther(a) �� is �nite, 
1(��) > 
�(��) for all � > 1; (4.8)and f(��(��)) � �f 0(0)�(��) (4.9)for all positive �;or(b) There is a sequence �� % �� such that for each � the inequalities (4.8)and (4.9) with �� replaced by �� are valid.Then c�+ = c� = �c = �c+, so that the problem (4.1) has a single speed and islinearly determinate.Proof. The inequality (4.9) implies that e
1(��)t��x�(��) is a supersolutionof (4.1). The comparison principle for parabolic systems then implies thatQ1[e���x�(��)] � e
1(��)e���x�(��), and the result follows from Theorem 3.1.Remark: Just as the condition (3.5) can be replaced by the condition (3.12)which depends only on the behavior of Q in C�, the condition (4.9) can bereplaced by the conditionf(minf��(��);�g) � �ff 0(0)�(��)g; (4.10)which depends only on the values of f in C�. This inequality implies thatw := minfe���(x��ct)�(��);�g is a supersolution. Note that when ��i(��) �30



�i, the monotonicity of fi shows that (4.9) implies the ith component ofthis condition. On the other hand, when ��i(��) � �i, the monotonicityof fi implies that fi(minf��(��);�g) � 0, so that the ith component of theinequality (4.10) is automatically satis�ed. Thus the condition (4.10) is moreeasily satis�ed than (4.9).EXAMPLE 4.1 The competition systemp;t = p;xx + p(4� 4p� q)q;t = d2q;xx + q[(1� q)(4q � 3)� 8p] (4.11)is transformed into the cooperative systemu;t = u;xx + u(3� 4u+ v)v;t = d2v;xx + (1� v)[v(4v � 1) + 8u]: (4.12)by the change of variables u = p; v = 1� q. An easy calculation shows thatC� = � �2 + 3 08 d2�2 � 1 � (4.13)The Hypotheses 4.1 are clearly satis�ed. We �nd that �� = p3, �c = 2p3,and the conditions (4.8) and (4.10) are satis�ed whend2 � 2=3: (4.14)Thus c�+ = c� = 2p3 whenever d2 � 2=3.We recall that P1 is the orthogonal projection to the coordinates whichcorrespond to the �rst block of C0 = f 0(0). By applying Lemma 3.1 tothe operator Q(�) which is the time one map of the equations obtained byreplacing f(u) by P1f(maxfu;�g+ (I � P1)f(u) and using Theorem 4.2, weobtain the following analog of Theorem 3.2.Theorem 4.3 Suppose that the Hypotheses 4.2 are satis�ed. If every zero� of f in C� other than 0 or � has the property that the system obtainedfrom (4.1) by replacing the argument u of f in the equations which corre-spond to the upper left block of B0 by maxfu;�g satis�es the conditions ofTheorem 4.2, then c�+ = c�, so that the system (4.1) has a single speed.EXAMPLE 4.2 As in Example 4.1, we consider the cooperative sys-tem (4.12), which comes from (4.11) by the usual change of variables. The31



system now has four equilibrium states: (0,0), which corresponds to the pre-invasion state p = 0; q = 1; (0,1), which corresponds to the extinction statep = q = 0; (1,1), which corresponds to p = 1; q = 0, so that the invaderhas driven the invaded species to extinction; and (0,1/4). Thus � = (1; 1),and there are two extra equilibria (0,1) and (0,1/4) in C�. In order to applyTheorem 4.3 we need to check for what values of d2 the two operators Q(�)satisfy the conditions (4.8) and (4.10) of Theorem 4.2. The operator Q(0;1) isthe time-one map of the system which is obtained from (4.12) by replacing vby 1 in the �rst equation. The calculations which gave the condition (4.14)now give the condition d2 � 1.The operator Q(0;1=4) is the time-one map of the system obtained from(4.12) by replacing v by maxfv; 1=4g in the �rst equation. This leads to thecriterion d2 � 10=13. The conditions of Theorem 4.3 are thus satis�ed whend2 � 10=13: (4.15)This condition, which is less stringent than (4.14), implies that c�+ = c�, sothat the system (4.11) has a single speed.We can also apply Lemma 3.2 to Q(�) to obtain the following analog ofTheorem 3.3.Lemma 4.2 Suppose that for each zero � of f in C� other than 0 or � thereis a constant matrix E(�) with the propertiesi. E(�) � P1f 0(�) + (I � P1)f 0(0) componentwise;ii. P1E(�) = P1f 0(�);iii. The spreading speeds ~c(�)� of the time one map ~L of the system (4.1)with f replaced by E(�) have the property that their maximum is ~c(�)1 .Then the system (4.1) has a single speed.Proof. By Lemma 2.3 ~c(�)+ = ~c(�) = ~c(�)1 . By (i) and (ii), c�+ � ~c� = �c �c� � c�+, which proves the Theorem.The �rst component of the function P1f(maxf(u; v); (0; 1=4)g)+(I�P �1)f(u; v) in the de�nition of Q(0;1=4) in Example 4.2 is u(3�4u+maxfv; 1=4g),which is strictly increasing in v when u 6= 0 and v � 1=4. Hence thereis no matrix E(0;1=4) with the properties (i) and (ii) of Lemma 4.2. We32



can, however, obtain information about the Lotka-Volterra system (4.11) byapplying this lemma. As in Theorem 3.4, we also obtain a hair-trigger e�ecthere.Theorem 4.4 If all the parameters are nonnegative, r1(1 � a1) > 0, andr2a2 > 0, then the cooperative systemu;t = d1u;xx + r1u(1� a1 � u+ a1v)v;t = d2v;xx + r2(1� v)(a2u� v); (4.16)which is obtained from the Lotka-Volterra competition model (1.7) by intro-ducing the new variables u = p, v = 1� q, has a single speed c�.If, in addition, d1 > 0, there is a hairtrigger e�ect in the sense that theproperty (4.2) is valid as long as u0 = u(0; x) is not identically zero.Proof. We must only �nd a matrix E(�) which satis�es the conditions(i){(iii) of lemma 4.2.The system (4.16) has the equilibria (0,0), (0,1), (1,1), and ((1�a1)=(1�a1a2); a2(1 � a1)=(1 � a1a2)). If a2 < 1, the last equilibrium lies in theinterior of the biologically interesting region C(1;1). In this case, � is thislast equilibrium, and there is no extra equilibrium in C�. Thus c�+ = c� byProposition 2.1.If a2 = 1, the last equilibrium is just (1,1), while if a2 > 1 it is outsideC(1;1). Thus if a2 � 1, we have � = (1; 1), and � = (0; 1) lies in C�. Itis easily seen that for (u; v) in C� the inequalities r1u(1 � u) � r1u andr2(1 � v)(a2u � v) � r2a2u for the function P1f(maxf(u; v); (0; 1)g) + (I �P1)f(u; v) are valid. Moreover, the right-hand side of the �rst inequality isthe linearization of the left-hand side at (0,0). Therefore the matrixE(�) = � r1 0r2a2 0 � (4.17)satis�es the �rst two conditions of Lemma 4.2.To verify the Hypothesis (iii), we observe that ~c1 = 2pd1r1, while ~c2 = 0.Thus ~c2 = 0 � ~c1, and the statement c�+ = c� follows from Lemma 4.2.If d1 > 0, we note that since v � 0, the solution u of (4.16) is boundedbelow by the solution û of the Fisher equationû;t = d1û;xx + r1û(1� a1 � û)33



with the same initial conditions. Since û converges to 1 � a1 uniformly onany bounded interval as t!1, we �nd that for any interval �s � x � sthere is a ts such u � (1 � a1)=2 for jxj � s and t � ts. Then for t � tsthe solution v of (4.16) on [�s; s] is bounded below by the solution v̂ of theFisher equation v̂;t = d2v̂;xx + r2[a2(1� a1)(1� v̂)=2� v̂]which is zero at t = t0 and on the boundaries x = �s. v̂ approaches thefunction a2(1� a1)2 + a2(1� a1) (1� coshpr2[2 + a2(1� a1)]=2xcoshpr2[2 + a2(1� a1)]=2s)uniformly in x. Because cosh z is a convex function, we �nd that cosh(z=2) <[1 + cosh z]=2 for z > 0. Therefore the term in braces is bounded below by[1� sechpr2[2 + a2(1� a1)]=2s]=2 for jxj � s=2. Thus the limit function isbounded below by a2(1� a1)=f4[2 + a2(1� a1)]g for �s=2 � x � s=2, whens is suÆciently large. For such s there is a value t̂s of t such that u(x; t̂) �(1� a1)=2 and v(x; t̂) � a2(1� a1)=f8[2 + a2(1� a1)]g for �s=2 � x � s=2.Since s is arbitrarily large, the last statement of Theorem 4.4 follows fromTheorem 4.1 with the initial time t̂.The following example shows that for large values of d2, the model (4.11)for the invasion of the stable mono-culture (0,1) by a competing species doesnot have a single speed.EXAMPLE 4.3 As in Examples 4.1 and 4.2, we consider the system (4.12).An upper bound for the spreading speed of the �rst component is obtainedby replacing v by 1 in the �rst equation. The result is a Fisher equation, forwhich linear determinacy is known to be valid, so that its spreading speed is4. Thus c� � 4: (4.18)In order to obtain a lower bound for the spreading speed c�+ of v, wenote that the right-hand side of the second equation of (4.12) is reduced byreplacing u by 0. Thus if w is a solution ofw;t = d2w;xx + (1� w)w(4w� 1) (4.19)and v � w at some time, then v � w for all larger times. It was shownin Theorems 3.3 and 4.5 of Aronson and Weinberger [1] that this equations34



displays a threshold e�ect. That is, if w(x; 0) is uniformly below 1/4, thesolution tends to 0. On the other hand, the fact that R 1=20 w(1 � w)(4w �1)dw > 0 implies that if w(x; 0) � 1=2 on a suÆciently long interval, thesolution approaches 1 uniformly on every bounded set. In the second case,there is a unique number C such that there exists a traveling wave solutionW (x � nC) of speed C, and this speed is also the spreading speed. Bygeneralizing the ideas of Hadeler and Rothe [5], Lewis and Kareiva [10] gavea formula for C which shows that C =pd2=2.Choose any c <pd2=2, and de�ne the sequence an by the recursion (2.7)with Q the time 1 map of the system (4.12). Since a(c;�1) = (1; 1), we can�nd an n0 so large that an0(c;�1) >> (1=2; 1=2). If we set w(x; n0) equal tothe second component of an0(c; x), we see that it is above 1/2 on an in�nitelylong interval. By the above comparison, the second component of an(c; x)lies above w(x+(n�n0)c; n) for n � n0. Since c <pd2=2, this lower boundapproaches 1 uniformly on bounded sets. We conclude that a(c;1) 6= 0, sothat c�+ � c. Because c is any number below pd2=2, we conclude thatc�+ �pd2=2:This inequality combined with (4.18) shows that ifd2 > 32; (4.20)then c�+ > c�, so that there is no single spreading speed.Figure 2 plots approximations to the speeds �c, c�, and c�+ obtained fromnumerical simulations of (4.11) as functions d2. As predicted by (4.14), thesystem has a single speed and is linearly determinate when d2 � 2=3. In fact,this seems to hold for d2 � 4. As predicted by (4.15), (4.11) has a singlespeed c�+ = c� when d2 � 10=13 but this equality seems to be true for d2 � 8.As predicted by (4.18), c�+ > c� for d2 > 32, but this also seems to happenfor d2 � 16. Thus all our bounds are suÆcient but not necessary.5 Discussion.We have shown how to extend the results of Lui [13] in such a way thatthey can be applied to ecological invasion processes. This has involved notonly the elimination of Lui's assumptions of irreducibility and nonexistenceof extra equilibria, but also the weakening of his condition (1.5) in such away that it can hold in the case of invasion by a competitor. This weakening35
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Figure 2: Numerical calculation of wave speeds for the reaction di�usionequation (4.11). The parameter d2 varies on a log scale. The solid line shows�c = 2p3, diamonds show numerically calculated values for c� and trianglesshow numerically calculated values c�+. The numerical solution method usesthe method of lines and Gear's method with 1000 spatial grid points.can be understood intuitively by applying the (not always correct) heuristicargument that near the head of the spreading population the solution of therecursion (1.1) should look like the most rapidly spreading solution of the lin-earization of this recursion. That is, it should behave roughly like e���x�(��).Thus it makes sense that Theorem 3.1 only requires the inequality (1.5) tohold for this function. Note that the replacement of (1.5) by (3.12) improvesLui's result on single speed and linear determinacy when his extra conditionsare satis�ed.As Examples 2.1 and 4.3 show, the existence of an extra equilibrium onthe parallelepiped with corners at 0 and � can make di�erent componentsspread at di�erent speeds. In Example 4.3 the mono-culture v = 1 is a stableequilibrium as long as the invader is absent. We have shown that if themobility d2 of the original species is suÆciently large, then the extinction ofthe �rst species spreads at a greater speed than the growth of the invading36



species. Thus an observer who is far from the original point of invasion willsee the extinction of the �rst species long before the invading species whichcaused the extinction appears. The origin of this apparently paradoxicalbehavior is the fact that when p � 0, the stable state q � 1 can be drivento extinction by a suÆciently large die-o� on a suÆciently long boundedinterval.Theorem 4.4 shows that such a phenomenon never occurs in the Lotka-Volterra model. Thus a small change in the details of the model can in
uencethe asymptotic behavior profoundly.The trick of converting a competition model to a cooperative system by achange of dependent variables can be generalized to more than two species,provided the species can be broken into two \teams" such that each speciescooperates with the species of the same team and competes with those ofthe other team. In particular, one can treat the invasion of an equilibriumof cooperating species by an invader which competes with all these species.Since \fat" migration tails occur in some models, it of interest to weakenthe condition in Hypothesis 2.1.v.a, which requires that the entries of B�are �nite for all �. If, instead, we only assume that the entries of B� are�nite for j�j < � for some positive �, we de�ne B� for all � by replacing anyintegral in (2.3) which diverges by +1. If the entries of the �th diagonalblock of B� are all �nite for � < �̂� but not for � > m̂�, then ��(�) is �nitefor � < �̂� and +1 for � > �̂�, and its logarithm is still convex. Thus thein�mum in the de�nition (2.18) of �c1 is taken on at a point �� of the interval(0; �̂�] where �1 is �nite. The eigenvector �(��), which is required for theconditions of Theorem 3.1 is not de�ned unless all entries of B�� are �nite. Ifwe interpret the conditions to include this �niteness assumption, the proof ofTheorem 3.1 goes through without change. Since our other results are basedon Theorem 3.1, they remain true when Hypothesis 2.1.v.a is weakened torequire the entries of B� to be �nite only on some interval of which 0 is aninterior point.We have de�ned the concept of linear determinacy as c� = �c and c�+ = �c+.A stronger de�nition would be that each species spreads at a speed which isequal to that of the same species under the recursion with Q replaced by atruncation of the linear operator M . It is easily seen that for this truncatedlinear recursion the spreading speed of the species in the �th block is thelargest of the numbers �c� among those � � � with the the property thatsome power of the matrix B0 has a positive ij entry with i in the �th block37



and j in the �th block.Although our analysis includes the assumption of re
ection symmetryin the operator Q, the results can be extended to cover the case with nore
ection symmetry. In this case, we de�ne the rightward spreading speedsc�(+1) and c�+(+1) by the formulas (2.8) and (2.9) with the function a de�nedas before. If R is the re
ection operator R[u](x) := u(�x), then the leftwardspeeds c�(�1) and c�+(�1) are de�ned by replacing the operator Q by RQRin the de�nition (2.7) of the sequence an. When there are single speeds inboth directions, the properties (2.5) and (2.6) are replaced bylimn!1" supx�n(c�(+1)+�) ju(x)j# = limn!1" supx��n(c�(�1)+�) ju(x)j# = 0 (5.1)and limn!1" sup�n(c�(�1)��)�x�n(c�(�1)��) j� � u(x)j# = 0: (5.2)The obvious adjustments in (2.10) to (2.13) are made if c�+(+1) > c�(+1)or c�+(�1) > c�(�1). In two or more dimensions one can de�ne spreadingspeeds c�(�) and c�+(�) in the direction of any unit vector by essentially thesame formulas. (See [21], [13], [22]). One can then de�ne the concepts ofhaving a single speed in the direction � or of being linearly determinate inthe direction �As promised in the introduction, we shall say a few words about theadvantage of a discrete-time model (1.1) over a reaction-di�usion model.The derivation of a reaction-di�usion equation from a stochastic model as-sumes that the system is in statistical equilibrium at every instant, whilethe purpose of the model is to treat non-equilibrium situations. This inher-ent contradiction manifests itself by requiring the possibility of arbitrarilyfar migration in arbitrarily small time. Another manifestation of this con-tradiction is the fact that the derivation of a reaction-di�usion model as alimit of a family of stochastic models with a small parameter, as in Durrettand Neuhauser [3], requires the migration rate to become very large, whichmay or may not be biologically reasonable. It was shown by Neuhauser [17]that under a di�erent assumption the limit is an integro-di�erential equationmodel.Discrete-time models, on the other hand, permit one to wait until somekind of statistical equilibrium is established before measuring the input-output function. Our results show that the spreading properties of reaction-38



di�usion systems are shared by a more general class of discrete-time recur-sions. Thus the fact that one gets qualitatively correct spreading propertiesdoes not, in itself, justify the use of reaction-di�usion models.6 AcknowledgmentsWe thank the two referees for helpful suggestions for improving this paper.7 AppendixIn this Appendix we shall present proofs of Lemmas 2.1 and 2.3, Theorem 4.1,and Lemma 4.1, in that order.Proof of Lemma 2.1. By Hypothesis 2.1.i, any constant equilibrium �in C� other than � must have at least one zero component. The orderpreserving property shows that if 0 � v � �, then 0 � Q[v] � �. That is,C� is an invariant set of Q. It follows that if �i = 0, then (B0[�])i = 0. Thisproperty shows that if �i = 0 and �j 6= 0, then the ij entry of B0 must bezero. If �i = 0 for some but not all of the coordinates i of the �th block ofB0, then writing the coordinates i with �i = 0 before the others would putB� into a lower block triangular form, which would contradict the fact thatit is irreducible. Thus the components of an equilibrium � correspondingto any diagonal block are either all zero or all nonzero. Suppose that thecomponents of � which correspond to the �th diagonal block vanish. If� > 1, the Hypothesis 2.1.v.d shows that there are nonzero elements to theleft of the �th diagonal block. That is, unless � = 1, there is an earlierdiagonal block on whose coordinates � also vanishes. We conclude that thecoordinates of � corresponding to the �rst (upper left) diagonal block of B0are 0, which is the statement of the Lemma.Proof of Lemma 2.3. Because the equations corresponding to theupper left block ~B0 depend only on the components in these directions andbecause ~B0 is irreducible, the results of Lui [13] show that the componentsof un which correspond to this �rst block spread at exactly the speed ~c1.Therefore the slowest spreading speed must be ~c1.Let ~��(�) >> 0 be an eigenvector of the �th diagonal block of ~B� corre-sponding to its principal eigenvalue ~��(�). Let ~�� 2 (0;1] denote the valueof � at which the in�mum in (2.18) is attained. Let ~P� denote the coordinate39



projection to the coordinates corresponding to the �th diagonal block of B0.Because of the Frobenius form, ~P�[ ~L[v]] only depends on the ~P� [v] with� � �. Assume for the moment that the ~�� are all �nite, and that the num-bers ~�� (~��) are distinct for all � � �. In order to construct a supersolutionof the recursion (2.17), we note that for any positive �1 the functionw1(x; n) := �1e�~�1(x�n~c1)~�1(~�1) (7.1)is positive and satis�es the inequalityw1(x; n+ 1) � ~P1[ ~L[w1(x; n)]]: (7.2)(Here we think of w1 as the k-vector-valued function obtained by de�ningthe unde�ned coordinates to be 0.)We next construct a vector w2(x; n) corresponding to the components ofthe second diagonal block such thatw2(x; n+ 1) � ~P2[ ~L[w1(x; n) +w2(x; n)]]: (7.3)We observe that ~P2[ ~L[w1]] is e�~�1(x�n~c1) times a nonnegative constant vector.Since ~�2(~�1) >> �, there is a positive �21 such that this constant vector isbounded above by �21�2(~�1). It is easily veri�ed that for any positive �2 thevectorw2 := maxf�2e�~�2(x�n~c2)~�2(~�2) + �21[~�1(~�1)� ~�2(~�1)]�1e�~�1(x�n~c1)~�2(~�1); 0g(7.4)satis�es the inequality (7.3).Since w2 is bounded above by a linear combination of two exponentials,we can use the same method to �nd a function of the formw3 = maxf�3e�~�3(x�n~c3)~�3(~�3) + �31[~�1(~�1)� ~�3(~�1)]�1e�~�1(x�n~c1)~�3(~�1)+�32[~�2(~�2)� ~�3(~�2)]�1e�~�2(x�n~c2)~�3(~�2); 0g (7.5)which satis�es the inequalityw3(x; n+ 1) � ~P3[ ~L[w1(�; n) +w2(�; n) +w3(�; n)]]: (7.6)We inductively de�ne w� for all � in this way, and de�new =X� w�40



to be the k-vector such that ~P�[w] = w� for all �. By construction,w(x; n+ 1) � ~L[w(x; n)]: (7.7)If u0 is bounded and vanishes outside a bounded set, we can choose�1 so large that ~P1[u0] � w1(x; n), then choose �2 so large that ~P2[u0] �w2(x; n), and so forth until u0 � w(x; 0). Since un+1 � ~L[un], we �nd thatun(x) � w(x; n) for all n. Since w is bounded above by a linear combinationof the exponentials e�~��(x�n~c�), no component of un can spread at a speedgreater than the largest of the ~c�. On the other hand, by looking at thecomparison problem with the initial value ~P�[u0], we see that the componentscorresponding to the �th block spread at at least the speed ~c�. We concludethat the fastest spreading speed is the largest of the ~c�.We have established the Lemma under some additional hypotheses. Wesee from the the second term on the right of formula (7.4) that somethinggoes wrong when ~�2(~�1) = ~�1(~�1). This term is e�~�1x times a particularsolution of the recursion�n+1 = ~�2(~�1)�n + �21~�1(~�1)n: (7.8)When ~�2(~�1) = ~�1(~�1), this recursion has the solution �n = �21n~�1(~�1)n,so that the singular factor must simply be replaced by n. In this way, wesee that if coincidences occur, one obtains formulas for the w� in whichthe coeÆcients ��� may be replaced by polynomials in n. This leaves theasymptotic speeds unchanged, so that the proof is still valid.Finally, we observe that if one or more of the ~�� is in�nite, we can replacethe in�nite ones by very large values. This increases the spreading speedsby arbitrarily small amounts, and the argument can be carried through asbefore. Thus the Lemma is established.Proof of Theorem 4.1. Because C� is closed and bounded and f is con-tinuous, there is a number � such that jf(u)j � � for u 2 C�. As before, let�(0) be a positive principal eigenvector of B0. Choose any positive numbers� and Æ, and an integer ` so large that�=` � (Æ=4)j�(0)j: (7.9)The properties (2.5) and (2.6) applied to the time 1 map Q1 and the time 1=`map Q1=` of the system (4.1) show that c�1=` = c�1=` := c�=`. Property (2.5)for Q1=` with � replaced by �=2 shows that there exists a number NÆ such41



thatu(x; n=`) � (Æ=2)�(0) when jxj � n(c�=`+ �=2) and n � NÆ: (7.10)Because jf(u)j � �, ui;t � diui;xx � �for all i. Standard results for the heat equation show that if u(x; n=`) �(Æ=2)�(0) for jxj � R and u(x; n=`) � � for all x thenui(0; t) � [t�n=`]�+(Æ=2)�i(0)+j�j(2�di[t�n=`])�1=2e�R2=(4di [t�n=`]): (7.11)We choose R = RÆ so large that the last term on the right is also bounded by(Æ=4)�i(0) when 0 � [t � n=`] � 1=`. Thus we �nd that the inequality (7.9)implies thatu(x; t) � Æ�(0) when jxj � t(c� + �=2) +RÆ; n=` � t � (n+ 1)=`;and n � NÆ: (7.12)We note that if t � maxfNÆ=`; 2RÆ=�g, the inequality for jxj is implied bythe inequality jxj � t(c� + �). Thus we have shown thatlimt!1 � maxjxj�t(c�+�) ju(x; t)j� � Æj�(0)j:Since Æ is arbitrary, this is exactly the statement (4.2). The statement (4.3) isproved by applying the same method to the function ��u, and the Theoremis proved.We remark that if c�+ > c�, the same proof gives the analog of Lemma 2.2.Proof of Lemma 4.1. Choose � � 0 such that the diagonal elements ofthe matrix f 0(0) + �I are strictly positive. Hypothesis 4.1.ii shows that allthe entries of this matrix are nonnegative. For any � > 1 we de�ne M (�)[v]to be the time one map of the linear systemw;t = (diag(di))w;xx + (1� ��1)f 0(0)w � ��1�ww(x; 0) = v(x): (7.13)That is, M (�)[v](x) := w(x; 1).It is easily seen that when v = e��x�, the solution has the separatedform w = e��x�(t), where �0 = [�2diag(di)+(1���1)f 0(0)]����1��. ThusB(�)� = e���1�e�2diag(di)+(1���1)f 0(0);42



and a standard result on ordinary di�erential equations show that this matrixconverges to the matrix B�, which is obtained by replacing ��1 by 0, as �approaches in�nity. This is Property b of Hypothesis 2.1.vi.In order to establish Property a, we de�ne for each i the projectionf�i[�]gj = � �j if ff 0(0) + �Igij > 00 if ff 0(0) + �Igij = 0:Note that by the de�nition of �, f�i[�]gi = �i, and that �i[�] � � when� � 0. Hypothesis 4.1.ii then shows thatfi(�) � fi(�i[�]): (7.14)Moreover, �i[�] � rfi(0) = (f 0(0)a)i (7.15)for all �.Let � be a positive lower bound for all the positive entries of the matrixf 0(0) + �I. By the triangle inequalityj�i[�]j � kXj=1f�i[�]gj � ��1f�i[�] � rfi(0) + ��ig: (7.16)for all � � 0.Let �(0) >> 0 be the eigenvector of B0 mentioned in Remark 3 after theHypotheses 2.1. The di�erentiability of fi shows that for any � � 1 there isa positive number Æ� such that if 0 � � � Æ��(0), then for all irfi(0) � �i[�]� fi(�i[�]) � (�=�)j�i[�]j:By inserting (7.14), (7.15), and (7.16) into this inequality, we �nd that(1� ��1)f 0(0)�� ��1�� � f(�) when 0 � � � Æ��(0): (7.17)We now observe that the solution of the system (7.13) with v = �(0) ise[(1���1)
1(0)���1�]t�(0). Therefore, if0 � v � Æ�e�
1�(0);then 0 � w � Æ��(0) for 0 � t � 1. Then (7.17) shows that w is asub-solution of the system (4.1). Hence, a standard comparison theoremshows that M (�)[v] � Q[v]. This is the Property a of Hypothesis 2.1.vi with! = Æ�e�
1�(0), and the Lemma is established.43
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