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Abstract

The role of interfacial slippage on the deformation and stress fields near an interfacial

crack are investigated in detail. First, the limiting extents of interfacial bonded

friction, defined as the ‘frictionless’ and ‘no-slip’ cases, were modeled as hyperelastic

elastostatic boundary value problems in plane strain. Using ideas similar to a fracture

mechanics cohesive zone model, the ‘finite friction’ case is established as a shear

stress threshold on the bonded surface which if exceeded, allows interfacial slippage.

The solutions of all three of these boundary value problems are found in the near field

of the crack front using asymptotic analysis. Comparison of these solutions confirm

experimental results that the inhibition of interfacial slip in the no-slip case caused

material to contract inward producing a non-vertical surface angle that is shown to

be a ratio of the in-plane stress components. The finite friction and frictionless cases

were found to be related in that they both showed interfacial slippage after loading and

the surface angle was perpendicular to the bonded interface. Further, the frictionless

case is achieved when the finite friction threshold is set to zero, and in the presence

of interfacial friction on the bonded edge there was a reduction in movement and the

crack opening profile became more blunted or sharpened depending on the direction

of slip.

Extensive numerical simulations were performed using commercial finite element

analysis software. Simulations for all three friction cases were studied and the results

showed strong agreement with the analytical near field findings. Using the numerical
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data, the effects of far-field loading conditions on the remaining constants in the

near-field solutions were quantified and discussed. Through the course of these

simulations, it was identified that the direction of loading also plays a significant

role on the deformation and stress fields near the crack front. The blunting effect

occurred when the loading direction was more perpendicular and the interfacial slip

moved to the right. However, when the loading direction was more tangential to the

surface away from the crack the deformation field was sharpened and material in the

slip-zone moved to the left. This direction of transition was also affected by the total

deflection of the far-field loading. Moreover, the amount of blunting was found to be

directly related to the magnitude of the stress threshold, and depending on the shear

stress direction on the bonded edge (linked to the direction of slippage), produces

significantly different normal stress magnitudes and failure modes.

From the results presented in this study, a method of quantifying interfacial friction

through deflection geometry is introduced and design considerations for desired

adhesive tearing mechanisms are provided.
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Part I

Background and Preliminaries





1 - Introduction

1.1 Project Motivation

The total industrial adhesive world market is projected to be worth over forty billion dollars

(U.S.) by the year 2020 with water based adhesives being the most commonly used [4, 5].

Adhesive performance and the physical nature of adhesive detachment are primarily surface

phenomena [6], however the effects of the adhesive material in combination with surface

conditions of the adherand (what the adhesive is bonded to) are not well understood. While

there has been a great deal of research on adhesives to date, much of our understanding

of the surface process of detachment is empirical, requiring researchers to use expensive

laboratory time or equipment and new discoveries are often serendipitous. Also, with insights

mainly coming from numerical or experimental work, an understanding of the physics behind

the true nature of adhesion performance is left undiscovered.

One of the significant findings in recent years was the experimental relation between

surface interfacial slippage between a bonded elastomer and substrates [7, 8, 9, 10, 11].

Newby et al [7] performed peeling experiments of bonded soft elastomers (imagine un-peeling

Scotch R⃝ tape) at shallow angles to find that the crack front moved in the opposite direction of

pulling and a “finger tip” was formed due to material contraction [11]. A visualization of this is

1



2 Introduction
1

(a) (b)

φ

Pull Direction

Figure 1.1: Visualization of Pre and Post Peel Test of a Soft Elastomer Bonded to a
Substrate. (a) Unloaded Interface Crack (b) After Loading

shown in Figure 1.1 where the soft elastomer adhesive bulk material is depicted by the light

gray shading, the darker gray shading represents the tape backing, the substrate is shown as

a hatch pattern and the interfacial free edge (the unbonded portion) is depicted by a dashed

line. In Figure 1.1a, the unloaded geometry is shown while Figure 1.1b is a visualization of

post loading. When pulled to the left, Newby et al found that the free edge lifted and the

indented finger tip moved material to the right. Even more interestingly, when the substrate

had a pre-applied coating that allowed more interfacial slippage, the required peel strength for

crack tearing was lower even though the calculated adhesion energy was higher [7].

Several works have been published on why and how interfacial slippage affects the wedge

angle and the peeling force (and more generally, the loading force). The most common idea

is that interfacial slippage causes energy dissipation at the interface (essentially, the work of

some ‘frictional’ force over a displacement) leading to less energy available for debonding

[8, 9, 12, 13, 14, 15, 16, 11]. This seems to be contradictory to Newby et al’s findings, and few

usable closed form solutions exist for bonded soft elastomers which would allow designers

to utilize interfacial slippage to their advantage in a quantitative way. The purpose of the

research presented in this dissertation is to provide further insights on the deformation and

stress field near the crack front of a soft elastomer bonded to a rigid adherand with interfacial

slippage. To this end, the primary goal is to quantify a tearing mechanism in the form of a
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convenient, algebraic, deformation field near the front of a crack from which stresses can be

derived, allowing others to make informed and quantitative decisions when designing bonded

joints. With a closed form mechanism defined, it is hoped that design decisions for bonded

interfaces can be made with less physical testing. Hence, reducing the overall cost of new

discoveries and meet the increasing demands of the growing market for soft adhesives [4].

1.2 Background and Literature Review

When a crack resides between two materials with different properties that are bonded

together, we refer to this as an interface crack [17, 18, 19]. For example, Figure 1.1a shows an

example of a soft elastomer material (light gray) adhered to a rigid substrate (hatch pattern) in

the unloaded configuration where the dashed line represents the interfacial crack edge. Upon

loading, deflection of the bulk elastomer occurs (see Figure 1.1b) and the stresses near the

crack front along the interface are found mathematically to have stress singularities as the

distance from the crack tip r → 0 [20, 21, 22]. To deal with these singularities and understand

the nature of the debonding process of a soft adhesive from a more rigid adherand requires

fracture mechanics methods [20, 21, 23, 24] where a localized separation zone near the

crack tip is expected to form and these stress singularities are adjusted. Inside this small

zone, often referred to as a ‘cohesive zone’ [20, 21], we can impose finite stress fields of

various forms [25, 26] which can be interpreted as material hardening so that the crack will

open smoothly [27, 28] and the cusps that were previously present are blunted [20, 27] by

the local modification of the stress field near the crack tip. This method requires analysis on

the entire perimeter of the bonded edge [29, 30], however very near the crack front is of most

interest because this is where delamination is expected. In fact, many adhesion performance

problems can be analyzed as interface cracks. Kinloch [31, 32] discussed various aspects

of surface phenomena and reviewed different types of epoxy bonded joints that can be

modeled as interfacial cracks. Baldan [6] also reviewed adhesion of bonded joints utilizing
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analytical models and concluded that adhesion is purely a surface phenomenon and that the

physical properties of an adhesive joint depend strongly on how the adhesive and adherand

interact. Kendall [33] discussed a basic theory to evaluate the stresses (more specifically

crack propagation) in lap shear joints. Some notable examples of bonded joints utilized in

industry are shown in Figure 1.2.

First, recall the tape peeling experiments by Newby et al [7]. To model the tape peeling

problem (Figure 1.2a) we define the peel angle or loading angle as α, which is typical

measured from the negative Ê1 axis. Here, the tape backing (cross hatch pattern) is typically

much stiffer than the adhesive elastomer material (light gray) and the rigid adherand of the

tape is denoted by the lined hatch pattern. The crack front then lies on a line parallel to the

Ê3 axis and denotes the edge of the bonded interface with the adherand. Similar to the tape

peeling example, a butt joint is depicted in Figure 1.2b. Here, the loading angle (Pull Direction)

and geometrical orientation is chosen such that the interfacial crack is the connected plane

between either of the two (relatively) rigid blocks and the adhesive material. The interfacial

crack problem for lap joints is depicted in Figure 1.2c. With carefully chosen geometry, the

problem for most bonded joints can be modeled using the same approach by describing

the bulk material of the bonded adhesive and surface conditions which are described by the

geometry and properties of the adherand surface. It must be noted that while the peel angle

depicted in Figure 1.2a is not identically the same concept as the pull direction depicted in

Figures 1.2b and 1.2c, the variable α is used interchangeably in the proceeding chapters to

more generally describe some far field loading angle.

Market research shows that more than half of industrial adhesives in use are made up of

chemically bonded or water based adhesives [4, 5]. While these types of adhesive materials

are often much less stiff than the adherends being bonded, they can also have stretch more

than five times their original length before debonding or detachment occurs [34]. Given this,

the bulk adhesive materials are often modeled as soft elastomers. Like industrial applications,
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Ê1

Ê3
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Figure 1: Visualizations of Loading Examples That Use Soft Elastomer
Adhesives. (a) Tape Peeling from a Rigid Flat Surface (b) A Loaded Butt

Joint (c) A Loaded Lap Joint.

Figure 1.2: Visualizations of Loading Examples That Use Soft Elastomer Adhesives. (a)
Tape Peeling from a Rigid Flat Surface (b) A Loaded Butt Joint (c) A Loaded Lap Joint.
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similar processes and mechanisms exist in nature where wet and sticky secretions that allow

slip with adhesion have been published. Gravish et al [35] determined that the external

frictional loss is analogous to a viscous internal dissipation during detachment of PSAs.

Endlein et al [36] studied tree frog adhesion where the detachment of hanging frogs hands and

feet were analogous to a slippery bonded joint, most resembling the lap joint from Figure 1.2c.

For example, tree frogs excrete a liquid adhesive [36] which enable them to stay attached to

overhanging surfaces. Endlein showed that changing the loading angle α (due to the angle of

the wall the tree frog was attached to) caused the tree frog to detach. This and other works

show that the pulling angle α affects the detachment force required for bonded soft elastomers

[33, 37] and that lubrication between the bonded surface will affect interfacial friction and is

related to the detachment force [38, 7].

To achieve a closed form solution with materials that can undergo large strains, hyperelastic

materials by definition have an equation for material strain energy density and may undergo

large strain [39, 34, 40, 41]. Using algebraic methods, the hyperelastic strain energy density

function is then used to derive the governing bulk material differential equation through a force

or momentum balance [34, 39, 40]. While there is a great deal of literature on hyperelastic

material models of soft elastomers [42, 43, 44, 42, 45, 46, 47], choosing an appropriate

strain energy function for the present study requires an understanding of the various physical

properties that can affect interfacial crack growth and performance. For example, some soft

materials can undergo strain hardening, which can be simply defined for the purposes of this

work as an increase in material stiffness after loading [48, 49, 50, 51, 52]. Also, while many

elastomers can be well modeled as incompressible [34], the degree of compressibility can

also affect the deformed geometry [34, 47] and should be considered. For quantitative values

of these material properties, various collections can be utilized [53, 54].

In a study on rheological properties of hot-melt and PSAs, Gibert et al [55] determined

that interfacial fracture is dependent on cure time and that fracture occurs in a ‘stick-slip’ way
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related to the material viscoelasticity as well as the glassy transition, another interpretation of

hardening in the bulk adhesive. Early work on the physics behind the dynamics of the stick-slip

[56] phenomena was laid out by Schallamach [57] where it was concluded that frictional sliding

of rubbery materials happens in waves of detachment along the bonded front due to the

viscoelastic process of rubber friction [58]. While Shallamach’s work was on compressive

(not bonded) friction, this idea may explain some of the physical results from Newby et al [7]

and is evidence that interfacial slippage may act in a ‘stick-slip’ manner.

Nase et al determined through experiments that higher viscoelasticity tended to produce

a finite wedge angle φ ̸= π/2 after loading [59]. However, with higher polymer cross-linking,

which should result in a stiffer adhesive material with less interfacial deflection, they found that

these test samples showed a more vertical wedge angle (φ ≃ π/2) [59]. They concluded that

the energy required to separate the bonded elastomer from substrates is a function of pulling

speed [60] and that more energy is required to propagate an interfacial crack of the adhesive

if the samples are thicker, or if the material stiffness is lower - indicating that ductility may also

play a role. Nase et al also found that more air pockets formed in the adhesive material [59]

with weaker cross-linking. Ghatak et al [61] concluded that as the amount of cross-linking

increases, the shear stress versus pulling velocity curve had a reduced scale; while Allegra

and Raos [62] predicted a dramatic reduction of the sliding friction of higher versus lower

cross-linked polymers. Using energy models [63], they determined that the frictional force

is a function of sliding velocity and the effective friction coefficient is always a decreasing

function of the material strain rate. Momozono et al [64] reviewed various models of adhesive

friction and found that the frictional strength depends not only on surface parameters, but also

concluded dependence on the material bulk viscoelasticity, elastic modulus, and the ratio of

critical velocity and viscoelastic relaxation rate. Since viscoelasticity is a dissipative process

which is a speed dependent parameter [37, 60], this evidence implies that the deformation

and stress field near the crack front depends highly on the loading speed [33]. Other evidence
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shows that high crack propagation velocities cause more dissipation [13] and nominal stresses

increase as deformation rate increases [65].

In another work, Livne et.al [14] used modeling with linear and nonlinear elastic zones

where energy dissipates differently. They found that dissipation was confined to a region

smaller than ∼ 20µm and the blunting amount was found to correlate with the energy flux

and this blunting distance increased more than linear as tearing speed increased. Through

experiments, Liechti and Wu [66] found that slower pulling speeds caused more blunting

and vertical wedge angle, where as faster pulling produced a finite wedge angle which

resembled the ‘fingertip’ indent published by Newby et al [7]. These findings indicate that

time dependence enters via the cohesive zone itself and that the failure mode process zone

(the small amount of material near the crack front) is one of shear rather than tension which

suppresses crack growth, so that the shear friction is dissipative (more on this below) [66].

Ondarcuhu [67] concluded that at higher separation rates, the failure is more interfacial and

also notes the possibility of viscoelasticity effects happening on the bonded layer.

Sun et al [68] described interfacial fracture of PSAs and found that viscoelastic properties

are related to pressure sensitive adhesion which is reflected in surface shear (as well as other

properties). Wu and Huang [16] described crack expansion through shear as a distribution of

moving dislocations on the bonded surface and inertial effects of the bulk material was found

to be the most significant factor with nominal loading. When moving fast enough, the required

tearing stress was larger than the yield stress [16], however, for lateral loading the applied

stress required for tearing was lower than the actual yield stress.

Various works show that an increase in surface roughness will actually reduce adhesion

strength on the bonded surface of an interfacial crack [69, 70, 71, 64]. Recall the conclusion

of Newby et al [7, 8, 9] that various surface coatings on substrates were used before bonding

to show that different degrees of interfacial slippage changes the deflection geometry due to

energy dissipation through material movement along a surface friction (shear traction). Begly
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et. al [72] noted that fracture toughness is made up of adhesion energy, but also work due to

friction; and without slip, then shear will contribute to detachment, but with slippage it should

not. Lu et al [11] also found through peel tests that the length scales of a slip zone (the

amount of material near the crack front which moves due to loading) and contact angle φ

are the most significant contributors to total fracture energy. These findings imply that the

peel force is reduced with the occurrence of interfacial slippage. Collino et al [12] determined

that peel force is a function of the wedge angle φ (see Figure 1.1b) which affected frictional

slippage near the crack tip and implies that sliding influences deformation over scales larger

than the asymptotic field [73] scale. Hui et al [15] explained that energy is dissipated from

blunting in an interfacial crack, increasing the required energy for detachment. An implication

here could be that the dissipation of blunting in an interfacial crack is similar to dissipation of

a frictional surface force over some distance. So, due to dissipation the more interfacial slip

allowed by the surface should predict a stronger pulling or peeling strength.

With the continuum approach, the surface part of any modeling can be defined by

boundary conditions (BCs) which are derived from either a constraint or force balance on

the interface [39, 40, 34]. Interfacial fracture can be affected by various surface properties

which can change the types of BCs. Even though most cohesive models deal with separation

in the normal direction [21, 20], we are most interested in how interfacial slippage changes

adhesion strength deflection geometry and insight into a lateral cohesive zone could be

taken from these many works for modeling BCs. In their recent review of cohesive zone

models, Park and Paulino [74] compared and contrasted several methods of approximating

the fracture process and note that mixed-mode (loading in both normal and lateral directions)

cohesive fracture should be modeled with great care.

Once all of the material and surface properties are taken into account, a material model can

then be chosen and a boundary value problem (BVP) can be formulated and solved. For small

deflections with a linear elastic fracture mechanics (LEFM) [20] approach, interfacial crack
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problems show oscillatory singularities in the form of complex exponents of r as r → 0 [75,

76] which imply inter-penetration of the bulk material and the adherand that were determined

to be ‘unphysical’ [17] due to the incorrect modeling of the problem as linearized strain. We

can account for large strains in our continuum mechanics models by keeping our geometric

non-linear strain terms in the bulk governing equations and BCs [34, 21]. A great deal of

work has been done in non-linear elastostatics with some interesting results. To determine

solution fields that are viable in a small range of interest, then asymptotic analysis [73, 27,

28] techniques can be used. This method lends itself nicely to many crack tip problems of

interest and there are many examples [48, 77, 78, 79, 80, 50, 51, 52, 27, 28, 81, 82] of

how to use asymptotic analysis to determine ‘near field’ solutions which are finite, local fields

and are typically not viable far away from the point of interest unless many terms are found

[73]. Unfortunately, finding unique, analytical solutions for non-linear problems using anything

other than very simple material models and geometry can be difficult. Therefore, interface

conditions and bulk materials must be chosen carefully in order to achieve usable results.

Knowles introduced the Generalized Neo-Hookean (GNH) model [83], which is for a soft,

incompressible, rubbery elastomer with strain stiffening which has been used in several

works to model soft elastomers [50, 51, 52, 49, 84]. Krishnan et al [84] used the GNH

model to study interface cracks between the adhesive and a rigid flat substrate. Krishnan

noted that while the oscillations from LEFM interface cracks mentioned above produced

oscillatory inter-penetration, these singularities disappear using the non-linear terms with the

incompressible GNH model. However, after an extensive search, no asymptotic solution could

be found for a plane strain interface crack problem using an incompressible elastomer material

adhered to a rigid substrate. This is possibly due to the fact that Krishnan’s simulations

showed an almost flat wedge angle (φ ≃ 0), leading to oscillations in the normal stress field

on the bonded interface near the crack front. It was speculated that these oscillations were

numerical error given that the solutions yielded almost infinite contraction. Long et al [81]
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noted that one reason asymptotic solutions do not exist for many of the problems studied is

because several incompressible material models (while they are well tested) may produce

asymptotic deformation fields that are not separable functions of r (the distance from the

crack front) [50], where r is the asymptotic variable; in other words, a mathematical modeling

issue. This is more evidence that the loaded wedge angle φ of an interface crack is strongly

related to the stress fields [27, 28] and without blunting, a cusp (quantified by a very small

wedge angle, φ ≃ 0) is formed between the adhesive and surface leading to instability of the

stress fields there.

Other insights of hyperelastic models and asymptotic solution techniques can come from

work on general crack problems. Given the symmetry of solutions [80, 85, 27] above and

below the full plane lateral axis, then the general problem is assumed to be analogous to an

interface crack with the material bonded to a rigid substrate and no interfacial slip resistance.

Given this, if results are found using a finite friction slip model, the works of Knowles and

Sternberg [85, 48, 77], Geubelle et al [50, 51, 52] and Stephenson [80] for general cracks

should be compared with zero friction. We can also employ finite element analysis [86, 87,

88, 89] to verify any analytical formulations or solutions found from any BVP to ensure the

computed solution fields match or show similar trends for any solutions found.

1.3 Structure of Manuscript

Using what we now know, the goal is set to explore tearing mechanisms that take into account

bonded interfacial slippage. The ideas presented in the chapters henceforth are in the pursuit

of this goal and this dissertation is broken up into parts I through V.

Part I begins with the current chapter which outlines the motivation and background of

the problem at hand. Then, in Chapter 2, the mathematical foundations are formulated in a

general manner. Section 2.1 is a basic review of the continuum mechanics formulations for

hyperelastic materials and the general plane strain interface crack problem for hyperelastic
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materials is outlined in Section 2.2.

Using the preliminaries from Chapter 2, a plane strain interface crack problem for

generalized hyperelastic materials is formulated in Section 3.1 and all but the bonded BC

are discussed. Three BCs to model the bonded surface are derived in Section 3.2, being the

‘frictionless’ case (where interfacial slippage is unencumbered along the bonded edge), the

‘no-slip’ case (perfect bonding where no interfacial slippage may occur) and a simple finite

friction case where interfacial slip is allowed but is encumbered by a finite, constant interfacial

shear stress. The results from Sections 3.1 and 3.2 are summarized in Section 3.3. To

use these formulations, in Section 3.4 a list of viable material strain energy formulations are

discussed and a specific form of a compressible Blatz-Ko strain energy function is chosen.

With the material model and the other formulations, the BVPs of interest are fully worked out

and summarized in Section 3.5.

Part II begins with Chapter 4 where asymptotic analysis [73] is utilized to determine the

near field displacement and stress fields for the three states of interfacial bonding friction.

The solutions of the frictionless and no-slip cases are worked out in Sections 4.1 and 4.2

respectively and Section 4.3 outlines the solution of the finite friction case.

Evaluations of the near field solutions for all three cases is the subject of Chapter 5.

First, the solutions for the no-slip and the frictionless cases (the extents of interfacial friction)

are compared in Section 5.1, where closed form expressions are introduced for tearing

mechanisms of both extents of friction. A comparison of the analytical solutions for the no-slip

and finite friction cases is reviewed in Section 5.2 where it was confirmed that the frictionless

problem is a special case of the finite friction problem.

Part III highlights the numerical methods and procedures used in order to validate the

insights from the near field solutions, and Chapter 6 outlines the finite element model to be

used for simulations of the problems summarized in Section 3.5. Section 6.1 outlines the

software, material model, mesh geometry and loading conditions. How to utilize the finite
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element solutions with the near field solutions from Chapter 4 and validation methods are

subjects of Sections 6.2 and 6.3 respectively.

In Chapter 7, finite element analysis is performed using the no-slip and frictionless

cases with various loading conditions. In Section 7.1, the finite element model is validated

using normal loading and the effect of loading on the deformed geometry and stresses are

discussed. Finally, a special stress state is discovered and quantified in Section 7.2 which is

utilized to determine a starting point with the finite friction simulations in Chapter 8. Section

8.1 outlines the iteration method used to determine the slip zone lengths and outlines two

examples to validate this technique proceeding to Section 8.2 for an extensive study of normal

loading on interfacial slippage with finite interfacial friction. The effects of lateral loading with

finite friction is discussed in Section 8.3 where the implications of the transitional loading

angle are reviewed and two separate forms of interfacial friction are quantified.

A final discussion portion is the subject of Part IV, beginning with Chapter 9 which outlines

a summary of the insights and potential issues of the interfacial slippage model proposed.

Previous experimental results are compared to the findings in the earlier sections in Section

9.1 leading to more insights on how the deformation state may transition from the no-slip

to the finite friction cases, discussed in Section 9.2, and some basic design considerations

are provided in Section 9.3. Finally, a summary of thoughts and ideas are wrapped up in

Chapter 10, where in Section 10.1 the notable findings are summarized, concluding with a

brief discussion of avenues of future studies in Section 10.2.

For a list of all the references used in the creation of the results presented, see the

bibliography in Part V.





2 - Problem Preliminaries

2.1 Hyperelastic Elastostatics

The Hyperelastic class of materials is defined through a strain energy density function and

may undergo significant elongation [34]. Here, the mathematical framework for hyperelastic

elastostatics is reviewed and standard continuum mechanics rules [39, 40, 34] are assumed.

Einstein summation notation is assumed everywhere, meaning that summation of indices is

required even if the summation symbols


are not shown. All vector bases in this work are

assumed linear and Cartesian [40]. Before loading, the material coordinates X are described

in the referential basis Ê1, Ê2 and Ê3. Once loaded, deformation occurs where the deformed

coordinate x is described in the spatial basis ê1, ê2 and ê3. Displacement is defined as the

difference between these two coordinates [39, 40] so that

u (X)≡ x (X)−X, or x(X) = u(X) +X. (2.1)

The mapping of deformation between the referential and spatial configurations can be

expressed through the deformation gradient F, which is a mixed basis tensor defined as

[39, 40]:

15
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F(X, t)≡∇Xx= Grad (x) =
∂ x
∂ X
=
∂ x i

∂ XA
êi ⊗ ÊA, (2.2)

where the ratio between the volume in the spatial and referential configurations is the

determinant of the deformation gradient, defined as J , and

J(X, t)≡ dV
dV0
= detF. (2.3)

Note that in the special case of incompressible materials, V = V0 and it is required that J = 1.

To avoid the possibility of infinite contraction, note that J must be positive and non-zero (J > 0)

and so the deformation gradient F must be invertible so that

F−1 =∇X= grad (X) =
∂ X
∂ x
=
∂ XA

∂ x i
ÊA⊗ êi. (2.4)

Also note that the inverse of F requires [39, 40, 34]

F−1F= I, (2.5)

where I is the referential identity tensor and is defined as

I≡ δABÊA⊗ ÊB, (2.6)

and the Kronecker delta function [39, 40] is defined as

δi j ≡











1, i = j,

0, i ̸= j.
(2.7)

From this and Eqn. (2.5), the inverse and transpose-inverse of the deformation gradient (which

will be useful later) can be worked out to be [40, 39]
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F−1 =
�

1
2ϵi jkϵABC J−1 F jBFkC

�

ÊA⊗ êi, (2.8a)

so that F−T =
�

1
2ϵi jkϵABC J−1 F jBFkC

�

êi ⊗ ÊA. (2.8b)

The Levi-Civita alternator function is defined as the ‘box product’ [39] of any vector basis

combination

ϵi jk ≡ êi ·
�

ê j × êk

�

and ϵABC ≡ ÊA ·
�

ÊB × ÊC

�

, (2.9)

so that

ϵabc ≡



























+1, if a, b, c are even permutations of 1, 2,3,

−1, if a, b, c are odd permutations of 1,2, 3,

0, otherwise.

(2.10)

Deformation is defined using the referential deformation tensor C [40, 39]

C≡FTF= FiAFiBÊA⊗ ÊB =
∂ x i

∂ XA

∂ x i

∂ XB
ÊA⊗ ÊB. (2.11)

Note that C is a symmetric tensor, so C = CT . From Eqns. (2.1) and (2.11), the referential

deformation tensor also has the form:

C= (∇Xu+ I)T (∇Xu+ I) =
�∇Xu

T + I
�

(∇Xu+ I)

= I+∇Xu+ (∇Xu)
T + (∇Xu)

T (∇Xu) = I+ 2E+ (∇Xu)
T (∇Xu) ,

where E is defined as the linear referential strain tensor:

E≡ 1
2

�∇Xu+∇Xu
T
�

. (2.12)
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For small deformations, the non-linear term in C, being (∇Xu)
T (∇Xu), can be discarded

[40]. However, since hyperelastic materials can have larger deformations, the geometric

nonlinearity must be kept in our modeling thus deviating from linear mechanics. To deal

with this non-linearity, a mixed basis approach can be used. To define the resultant differential

force element dF on a body in both the referential and spatial configurations, the force balance

must satisfy

dF= tdA= TdA0, (2.13)

where A and A0 are areas in the spatial and referential configurations respectively, t and T

are the Cauchy and first Piola-Kirchoff stress traction vectors, so that

t≡ σn= σi jn jêi, (2.14)

and T ≡PN= PiANAêi. (2.15)

n and N are defined as the outward unit normal vectors of the spatial and referential

surfaces respectively. The Cauchy and first Poila-Kirchhoff tensors are defined as σ and

P respectively, and using Eqn. (2.13) these stress components are related by:

σndA=PNdA0. (2.16)

The change in area between the referential and spatial configurations can be found through

Nanson’s Formula [39, 40, 34]:

ndA= JF−TNdA0. (2.17)

Using this, the relation between the first Piola-Kirchoff stress tensor and the Cauchy stress

tensor is found to be
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P= JσF−T = PiAêi ⊗ ÊA. (2.18)

The second Piola-Kirchhoff stress tensor S is symmetric and represents the stress tensor field

in the referential basis where:

S=F−1P= JF−1σF−T = SABÊA⊗ ÊB. (2.19)

All isotropic hyperelastic materials can be defined using a strain energy density function

ψ=ψ(I1, I2, I3),

where Ii (i = 1, 2,3) are the invariants of the referential deformation tensor C [39, 40] and

I1 ≡ tr {C}= I: C, (2.20a)

I2 ≡ 1
2

�

[tr {C}]2 − tr
�

C2
	�

= 1
2

�

[I: C]2 − I: C2
�

, (2.20b)

and I3 ≡ detC= [detF]2 . (2.20c)

The second Piola-Kirchhoff stress tensor is related to the strain energy density function by

[39]:

S= 2
∂ψ

∂C
, (2.21)

which can be evaluated by using the standard definition of the chain rule [90],

∂ψ

∂C
=
∂ψ

∂ I1

∂ I1

∂C
+
∂ψ

∂ I2

∂ I2

∂C
+
∂ψ

∂ I3

∂ I3

∂C
,

and each portion can be evaluated separately. The trace derivative becomes:
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∂ I1

∂C
=
∂

∂C
(I: C) =

∂ I1

∂ CAB
ÊA⊗ ÊB =

∂ CDD

∂ CAB
ÊA⊗ ÊB = δADδBDÊA⊗ ÊB.

Therefore:

∂ I1

∂C
= I. (2.22a)

Using similar logic:

∂ I2

∂C
=
∂

∂C

�

1
2

�

[I: C]2 − I: C2
��

=
∂

∂ CAB

�

1
2 (CDD)

2 − 1
2 (CEF)

2
�

ÊA⊗ ÊB

= [δADδBD CDD−δAEδBF CEF] ÊA⊗ ÊB = tr {C} I−C.

Therefore:

∂ I2

∂C
= I1I−C. (2.22b)

The derivative of the third invariant is shown by Chadwick [39] to be:

∂ I3

∂C
= [detC]C−1 = I3C

−1. (2.22c)

Putting this all together yields:

S= 2
�

∂ψ

∂ I1
+ I1

∂ψ

∂ I2

�

I− 2
∂ψ

∂ I2
C+ 2I3

∂ψ

∂ I3
C−1. (2.23)

Also, using (2.2) and (2.19), the first Piola-Kirchhoff can be expressed as a function of the

deformation gradient F, the invariants of C, and the strain energy density function:

P= 2
�

∂ψ

∂ I1
+ I1

∂ψ

∂ I2

�

F− 2
∂ψ

∂ I2
FFTF+ 2I3

∂ψ

∂ I3
F−T (2.24)
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The expression in Eqn. (2.24) can now be used to furnish the bulk material governing

equations through a static force balance in the referential basis with no external body forces

[39, 40, 34, 41]

Div (P) =∇X ·P= 0, or
∂ PiA

∂ XA
= 0. (2.25)

The boundary conditions are also required, which are either a constraint or force balance (see

Eqn. (2.15)) on each surface. The specifics of boundary conditions are discussed in more

detail in Sections 3.1 and 3.2.

2.2 General Plane-Strain Hyperelasticity

Figures 1.2a through 1.2c show visualizations of bonded soft elastomers in loading where

for each figure the soft elastomer adhesive is shown inlight gray. In the loaded case, the

bonding material is assumed to be hyperelastic and given that the bonded surfaces (see the

hatch and line patterned components) are typically much stiffer than the bonded material [34],

they shall for all intents and purposes be considered rigid bodies for any problem modeling

in this manuscript. While Hooke’s Law suggests that the elastomer in tension is expected to

contract [41, 34], if the width in ê3 direction is larger than the microscopic scale and the bulk

of the material of interest resides well inside this thickness, then the strain in the ê3 direction

is assumed negligible, and the displacement u3 ≃ 0. This condition is known as plane strain

[48, 34], and it is assumed that x3 = X3. Using Eqn. (2.2), the deformation gradient F has

the properties:

[F] =











F11 F12 0

F21 F22 0

0 0 1











, ∴
�

F−1
�

=
1
J











F22 −F12 0

−F21 F11 0

0 0 1











,
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so that the planar components of F−1 and F−T (i, A= 1,2) become

�

F−1
�

Ai
= ϵ̃i j ϵ̃ABJ−1

�

F jBδiA+FiAδiB

�

, (2.26a)

and
�

F−T
�

iA
= ϵ̃i j ϵ̃ABJ−1 F jB, (2.26b)

where ϵ̃i j represents the planar form of the Levi-Civita alternator ϵi jk from Eqn. (2.10) with

k = 3 so that

ϵ̃i j ≡ ϵi j3 =



























1, if i = 1, and j = 2,

−1, if i = 2, and j = 1,

0, if i = j.

(2.27)

From this and Eqn. (2.11), the referential deformation tensor C has special plane strain form:

C=











C11 C12 0

C21 C22 0

0 0 1











.

It is now convenient to introduce I as the trace of the sub-tensor of C, then

I ≡ tr





C11 C12

C21 C22



= C11+C22= F2
11+F

2
12+F

2
21+F

2
22, (2.28)

and the three principal invariants of the tensor C reduce to two plane strain invariants [48]:

I1 = I + 1, I2 = J2 + I , and I3 = J2, (2.29)

so that the strain energy density function in plane strain can be represented as a function of

the two plane strain invariants
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ψ(I1, I2, I3) =W(I , J). (2.30)

These plane strain invariants also have the form:

I(X1, X2) =
�

∂ x1

∂ X1

�2

+
�

∂ x1

∂ X2

�2

+
�

∂ x2

∂ X1

�2

+
�

∂ x2

∂ X2

�2

(2.31a)

and J(X1, X2) =
∂ x1

∂ X1

∂ x2

∂ X2
− ∂ x1

∂ X2

∂ x2

∂ X1
. (2.31b)

Recalling that J > 0 and re-arranging, we find

I =
�

∂ x1

∂ X1

�2

+
�

∂ x1

∂ X2

�2

+
�

∂ x2

∂ X1

�2

+
�

∂ x2

∂ X2

�2

=
�

∂ x1

∂ X1

�2

− 2
∂ x1

∂ X1

∂ x2

∂ X2
+
�

∂ x2

∂ X2

�2

+
�

∂ x1

∂ X2

�2

+ 2
∂ x1

∂ X1

∂ x2

∂ X2
+
�

∂ x2

∂ X1

�2

=
�

∂ x1

∂ X1
− ∂ x2

∂ X2

�2

+
�

∂ x1

∂ X2

�2

+ 2
∂ x1

∂ X2

∂ x2

∂ X1
+
�

∂ x2

∂ X1

�2

+ 2
�

∂ x1

∂ X1

∂ x2

∂ X2
− ∂ x1

∂ X2

∂ x2

∂ X1

�

=
�

∂ x1

∂ X1
− ∂ x2

∂ X2

�2

+
�

∂ x1

∂ X2
+
∂ x2

∂ X1

�2

+ 2J .

Then for any plane strain problem the constraints on the invariants I and J are

I ≥ 2J , where J > 0. (2.32)

Using Eqns. (2.24) and (2.29), the first Piola-Kirchhoff stress tensor for plane strain becomes

P= 2F
∂W

∂C
= 2F

�

∂W

∂ I
∂ I
∂C
+
∂W

∂ J
∂ J
∂C

�

,

which yields:

P=
�

2
∂W

∂ I

�

F+
�

J
∂W

∂ J

�

F−T . (2.33)
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Using Eqns. (2.2) and (2.26b), the planar components of the first Piola-Kirchhoff stress tensor

are (i, A= 1, 2):

PiA=
�

2
∂W

∂ I

�

FiA+ϵ̃i j ϵ̃AB

�

∂W

∂ J

�

F jB. (2.34)

Using Eqn. (2.18), then

σ = J−1PFT = J−1
�

PiAêi ⊗ ÊA

� �

F jBÊB ⊗ ê j

�

= J−1 PiAF jAêi ⊗ ê j. (2.35)

Finally, utilizing (2.34) then the in-plane components of the Cauchy stress tensor are (i, j =

1,2):

σi j = J−1
��

2
∂W

∂ I

�

FiAF jA+ϵ̃ikϵ̃AB

�

∂W

∂ J

�

F jAFkB

�

. (2.36)

If it is required to know the out of plane stresses, note that Fi3= F3A= 0 in plane strain unless

i = 3 and A= 3 in plane strain. Further, P33 can be computed using Eqn. (2.33). Recalling

that [F]33 = 1 and [F−T ]33 = J−1, then

P33= 2
∂W

∂ I
+
∂W

∂ J
. (2.37)

The out of plane Cauchy stress σ33 can be found by using Eqns. (2.33) with (2.35) directly,

so that

σ33 = J−1
�

2
∂W

∂ I
+
∂W

∂ J

�

. (2.38)
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3.1 A General Interface Crack Problem

The visualizations in Figures 1.2a, 1.2b and 1.2c can each be formulated to represent plane

strain interface crack problems. Also, recall from Section 2.2 that if the bond dimensions along

the Ê3 axis is much smaller than the length in the Ê1 axis then displacement in the Ê3 axis can

be assumed negligible. Since failure after loading is expected to happen near the crack tip

(defined as the place where the bonded and free edges meet), the problem geometry can be

approximated as a semi-infinite plane shown in Figure 3.1. The undeformed material, shown

in light gray, resides in the entire upper half plane (−∞ < X1 <∞ and X2 ≥ 0) and the

lower half (−∞< X1 <∞ and X2 ≤ 0) is assumed to be rigid and impenetrable. The origin,

where X1 = X2 = 0 and labeled as ‘O’, is the interfacial crack tip location and the positive Ê1

axis (X1 > 0) is the defined as the bonded edge. The negative Ê1 axis (X1 < 0), denoted by

a dashed line, is the crack edge and is assumed to be traction free.

While keeping Cartesian coordinates in the plane, a useful polar transformation can be

utilized which lends to the ability to define the problem in Cartesian, but allow for near-field

solutions with separable functions of the radial coordinates, namely the radial distance from

the crack tip. The Cartesian coordinates each have the polar form

25
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1

O

r

θ

(X1,X2)

Ê1

Ê2

Figure 3.1: The Undeformed Configuration of a Plane Strain Interface Crack Between an
Infinite Soft Elastomer and a Rigid Substrate

XA(r,θ )≡ rC̃A(θ ), (3.1)

where the directional alternator function is defined as

C̃A(θ )≡











cosθ , A= 1,

sinθ , A= 2.
(3.2)

Note that the direction alternator has the derivatives

C̃′A(θ ) = −ϵ̃ABC̃B(θ ). (3.3)

Using this polar transformation, the elastomer in the upper half plane has the range r ≥ 0

and 0 ≤ θ ≤ π, while the interface crack tip resides at r = 0. In polar coordinates, the plane

strain components of the referential gradient operator become (A= 1,2)

[∇X]A ≡
∂

∂ XA
=
∂ r
∂ XA

∂

∂ r
+
∂ θ

∂ XA

∂

∂ θ
.
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Using this and taking the divergence of the referential coordinate we see

∇X ·X=
∂ XB

∂ XA
= δAB =

∂

∂ XA

�

rC̃B

�

=
∂ r
∂ XA
C̃B + r

∂ C̃B

∂ XA
,

and
∂ C̃B

∂ XA
=

dC̃B

dθ
∂ θ

∂ XA
= ϵ̃DBC̃D

∂ θ

∂ XA
.

Combining leaves the following equation set (A= 1,2)

δAB = C̃B
∂ r
∂ XA

+ ϵ̃DBC̃Dr
∂ θ

∂ XA
.

Solving this set of equations yields the plane strain components of the referential gradient

operator ∇X in polar coordinates (A= 1,2)

[∇X]A =
∂

∂ XA
= C̃A(θ )

∂

∂ r
− ϵ̃ABC̃B(θ )

1
r
∂

∂ θ
. (3.4)

From this, the deformation gradient components become (i, A= 1,2)

FiA(r,θ ) = C̃A(θ )
∂ x i

∂ r
− ϵ̃ABC̃B(θ )

1
r
∂ x i

∂ θ
, (3.5)

which extended yields the polar form of the planar invariants I and J . Therefore

I = F2
11+F

2
12+F

2
21+F

2
22

=
�

C̃1
∂ x1

∂ r
− C̃2

1
θ

∂ x1

∂ θ

�2

+
�

C̃2
∂ x1

∂ r
+ C̃1

1
θ

∂ x1

∂ θ

�2

+
�

C̃1
∂ x2

∂ r
− C̃2

1
θ

∂ x2

∂ θ

�2

+
�

C̃2
∂ x2

∂ r
+ C̃1

1
θ

∂ x2

∂ θ

�2

, and

J = F11F22−F12F21

=
�

C̃1
∂ x1

∂ r
− C̃2

1
r
∂ x1

∂ θ

��

C̃2
∂ x2

∂ r
+ C̃1

1
r
∂ x2

∂ θ

�

−
�

C̃2
∂ x1

∂ r
+ C̃1

1
r
∂ x1

∂ θ

��

C̃1
∂ x2

∂ r
− C̃2

1
r
∂ x2

∂ θ

�

,
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so that

I(r,θ ) =
�

∂ x1

∂ r

�2

+
�

∂ x2

∂ r

�2

+
�

1
r
∂ x1

∂ θ

�2

+
�

1
r
∂ x2

∂ θ

�2

, (3.6a)

and J(r,θ ) =
1
r

�

∂ x1

∂ r
∂ x2

∂ θ
− ∂ x1

∂ θ

∂ x2

∂ r

�

. (3.6b)

To get the general plane strain polar form of the governing equations from (2.25), use the

polar form of the gradient operator again to get

�

∂ P11

∂ r
+

1
r
∂ P12

∂ θ

�

cosθ +
�

∂ P12

∂ r
− 1

r
∂ P11

∂ θ

�

sinθ = 0, (3.7a)

and
�

∂ P21

∂ r
+

1
r
∂ P22

∂ θ

�

cosθ +
�

∂ P22

∂ r
− 1

r
∂ P21

∂ θ

�

sinθ = 0. (3.7b)

The plane strain gradient components in polar coordinates of the first Piola-Kirchhoff tensor

simply require the derivatives of the deformation gradient. Recall Eqn. (3.5), so that (i, A =

1,2)

∂ FiA

∂ r
= C̃A

∂ 2 x i

∂ r2
− ϵ̃ABC̃B

�

1
r
∂ 2 x i

∂ r∂ θ
− 1

r2

∂ x i

∂ θ

�

, (3.8a)

1
r
∂ FiA

∂ θ
= C̃A

�

1
r
∂ 2 x i

∂ r∂ θ
− 1

r2

∂ x i

∂ θ

�

− ϵ̃ABC̃B

�

1
r
∂ x i

∂ r
+

1
r2

∂ 2 x i

∂ θ 2

�

. (3.8b)

The governing equations can not be solved without the boundary conditions. First, recall the

edge at θ = π (so that N= −Ê2) is traction free, and an equilibrium force balance requires

0=PN=
�

PiAêi ⊗ ÊA

� �−Ê2

�

= −Pi2êi,

so that P12(r,π) = P22(r,π) = 0. Using Eqns. (2.34), (3.5) then (i = 1,2)

0=
�

2
∂W

∂ I

�

Fi2(r,π)− ϵ̃i j

�

∂W

∂ J

�

F j1(r,π).
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Finally, the two boundary conditions at the traction free edge become (i = 1, 2)

�

�

2
∂W

∂ I

��

1
r
∂ x i

∂ θ

�

− ϵ̃i j

�

∂W

∂ J

�

�

∂ x j

∂ r

��

θ=π

= 0,

which yields

��

2
∂W

∂ I

��

1
r
∂ x1

∂ θ

�

−
�

∂W

∂ J

��

∂ x2

∂ r

��

θ=π
= 0, (3.9a)

and
��

2
∂W

∂ I

��

1
r
∂ x2

∂ θ

�

+
�

∂W

∂ J

��

∂ x1

∂ r

��

θ=π
= 0. (3.9b)

The boundary condition on the bonded edge requires deeper consideration. A detailed

discussion is given in Section 3.2.

3.2 Bonded Boundary Conditions

The bonded surface is shown on the positive Ê1 axis in Figure 3.1, and corresponds to the

planar polar coordinates θ = 0 and r ≥ 0. For the geometry shown in Figure 3.1, the in-plane

surface traction vectors t and T on the bonded surface have the form (i = 1, 2)

t(r, 0) =
�

σi jêi ⊗ ê j

�

(−ê2) = −σi2êi, ∴ t i = −σi2,

and T(r, 0) =
�

Pi jêi ⊗ ÊA

� �−Ê2

�

= −Pi2êi, ∴ T i= −Pi2,

where i = 1 and i = 2 represent lateral and normal tractions respectively. Using Eqn.

(2.36), the form of t1 and t2 can be imposed using any of the available traction-separation

relationships [20, 21, 74] where the opening displacement in the lateral and normal cases

in the near field are equivalent to the displacements u1 and u2. In most cases, the

traction-separation is only expressed in the normal direction u2 and u1 = 0. However,

since the main theme of this work is to determine the effect of interfacial slippage we shall

assume the reverse, and for all cases considered let u2 = 0 on the bonded edge (θ = 0) so
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that

x2(r, 0) = 0. (3.10)

With this condition, note that it is also required that

�

∂ x2

∂ r

�

θ=0
= 0, and F21(r, 0) = cos(0)

�
���

��*
0

�

∂ x2

∂ r

�

θ=0
− sin�

�>
0

(0)
�

1
r
∂ x2

∂ θ

�

θ=0
= 0.

To model interfacial slip, the first major case to consider is the highest extent of interfacial

friction so that zero in-plane displacements on the bonded surface are allowed. With infinite

maximum friction, we define the ‘no-slip’ case where u1(r, 0) = u2(r, 0) = 0. Utilizing Eqns.

(3.1) and (3.2) this boundary condition simplifies to

x1(r, 0) = r. (3.11)

With the no-slip case, the traction components t1 and t2 are unknown and will be resultant

stresses from the displacement constraint u1(r, 0) = u2(r, 0) = 0.

If interfacial slip is allowed but not encumbered, we have the opposing extent of interfacial

friction to the no-slip case and call this the ‘frictionless’ case. Here, the interfacial traction

condition in the Ê1 direction is defined as PN · Ê1 = 0, so that P12(r, 0) = 0 and using Eqn.

(3.5):

0=
�

2
∂W

∂ I

�

F12(r, 0)−
�

∂W

∂ J

�

�����:0
F21(r, 0) =

�

2
∂W

∂ I

��

1
r
∂ x1

∂ θ

�

.

Therefore, without a loss of generality the frictionless case boundary condition becomes

�

∂ x1

∂ θ

�

θ=0
= 0. (3.12)
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1

δ

τ

r

σ12

No-Slip Case
Resultant σ12 From Slip Condition

Figure 3.2: Visualization of a constant finite friction threshold boundary condition and slip
zone region

In the finite friction case, slippage is allowed to occur as in the frictionless case, however the

condition must have some non-zero, finite stress along the bonded edge. Park and Paulino

[74] discussed several traction-separation relationships for cohesive zone models that are

commonly utilized to describe fracture, notably being some polynomial, exponential or linear

expression between the induced traction and opening displacement. Taking the simplest form

of traction-separation relationships, we can assume this interface traction is a constant value

τ with opening displacement inside of some ‘slip zone.’ This basic form of a ‘slip-zone’

model (an interfacial slip cohesive zone) has multiple interpretations. The first being the

similarity to the Dugdale-Barenblatt model [91, 21, 92, 93] using a constant stress, but in

the lateral direction as opposed to the normal direction. Another interpretation of this idea is

that interfacial slippage is allowed only if the shear stress magnitude on the bonded edge is

exceeded, or when

|σ12(r, 0)| ≤ |τ|. (3.13)

A visualization of this idea is shown in Figure 3.2, where inside of some arbitrary finite
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slip-zone length δ, the no-slip case result is re-adjusted (lowered) to the maximum threshold

value τ. The sign of τ here is not restricted and can be positive or negative, but is assumed

to be a real constant. Using a force balance in the deformed configuration inside the slip zone

region, then σ12(r, 0) = τ and using Eqns. (3.5), (3.6b) and (2.36)

τ= J−1

�

�

2
∂W

∂ I

�

�

F11�
��>

0
F21 +F12F22

�

+
�

∂W

∂ J

�

(����F21F22 −����F22F21 )

�

θ=0

= J−1
�

2
∂W

∂ I

��

1
r2

∂ x1

∂ θ

∂ x2

∂ θ

�

, and

J(r, 0) =
1
r
∂ x1

∂ r
∂ x2

∂ θ
− 1

r
∂ x1

∂ θ �
�
��7

0
∂ x2

∂ r
.

Since J > 0, then

�

1
r
∂ x2

∂ θ

�

θ=0
̸= 0, and

�

∂ x1

∂ r

�

θ=0
̸= 0,

and re-arranging yields the general finite friction boundary condition,

��

2
∂W

∂ I

��

1
r
∂ x1

∂ θ

�

−τ∂ x1

∂ r

�

θ=0
= 0. (3.14)

3.3 Summary of Plane-Strain Interface Crack Problems

The general plane strain bonded interface crack eigenvalue problem requires Eqns. (3.7),

(3.9), and the required bonded edge conditions for each of the three bonding cases, which

were: no-slip, frictionless and finite friction. The generalized problems are summarized in

Table 3.1. It should be noted that the finite friction problem (the third column) collapses to

the frictionless problem (the second column) when the bonded friction threshold τ → 0 as

expected.

It must also be noted here that the far-field boundary conditions (as r → ∞) are not
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shown in the problem summary in Table 3.1. Without the far-field conditions, we are left with

an eigenvalue problem which will be shown in Chapter 4 to be approximated analytically near

a point of interest. The far-field conditions are discussed in more detail in Chapter 6.

Table 3.1: Summary of the three plane strain interface crack eigenvalue problems.

No-Slip Case Frictionless Case Finite Friction Case

General Governing Eqns. (3.7a) & (3.7b): in r ≥ 0, and 0≤ θ ≤ π.
�

∂ P11

∂ r
+

1
r
∂ P12

∂ θ

�

cosθ +
�

∂ P12

∂ r
− 1

r
∂ P11

∂ θ

�

sinθ = 0
�

∂ P21

∂ r
+

1
r
∂ P22

∂ θ

�

cosθ +
�

∂ P22

∂ r
− 1

r
∂ P21

∂ θ

�

sinθ = 0

Traction Free Boundary Condition Eqns. (3.9a) & (3.9b): on θ = π.
�

2
∂W

∂ I

��

1
r
∂ x1

∂ θ

�

−
�

∂W

∂ J

��

∂ x2

∂ r

�

= 0
�

2
∂W

∂ I

��

1
r
∂ x2

∂ θ

�

+
�

∂W

∂ J

��

∂ x1

∂ r

�

= 0

Bonded Boundary Condition: on θ = 0.

Eqns. (3.11) & (3.10) Eqns. (3.12) & (3.10) Eqns. (3.14) & (3.10)

x1 = r
∂ x1

∂ θ
= 0

�

2
∂W

∂ I

��

1
r
∂ x1

∂ θ

�

−τ∂ x1

∂ r
= 0

x2 = 0 x2 = 0 x2 = 0

3.4 A Class of Hyperelastic Rubber

Water based and chemically bonded adhesives are well modeled as soft elastomers [94].

Knowles introduced the generalized Neo-Hookean (GNH) material model [83] for an incompressible

(J = 1) soft elastomer. This model, which has been used to model soft elastomers with

various crack problems [49, 50, 51, 52], utilizes a ‘stiffening’ parameter η and has a strain

energy density function in the form
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ψ=
µ

2b

��

1+
b
η
(I1 − 3)

�η

− 1
�

. (3.15)

Here, b is a material parameter, µ represents the linear small strain shear modulus. The

material parameters µ, b and η must be positive and non-zero. When η = 1, Eqn. (3.15)

reduces to the Neo-Hookean material strain energy density function [34, 41]

ψ(I1, I2, I3) =
µ

2
(I1 − 3) . (3.16)

The states of stiffening represented by the GNH model in Eqn. (3.15) depend on the value

of η; for example η > 1 represents a positive ‘shear stiffening’ and 0 < η < 1 is a state of

‘shear softening’ [83].

For biological tissue, the Ogden model [95, 34] is also an incompressible elastomer that

has the strain energy density function

ψ=
N


i=1

µi

αi

�

3


j=1

λ
αi
j − 3

�

, (3.17)

where µiαi > 0, λ1, λ2, and λ3 are the principal stretches, and N is a positive integer

representing the number of material correlations used. These principal stretches are related

to the three principal invariants by [95, 39, 40, 41, 34]

I1 ≡ λ2
1 +λ

2
2 +λ

2
3, (3.18a)

I2 ≡ λ2
1λ

2
2 +λ

2
2λ

2
3 +λ

2
3λ

2
1, (3.18b)

and I3 ≡ λ2
1λ

2
2λ

2
3. (3.18c)

When N = 1, Eqn. (3.17) also results in the Neo-Hookean material strain energy function

from Eqn. (3.16).

The ‘Power Law Material’ introduced by Stephenson [80], is presented using the plane
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strain asymptotic relationship of the first plane strain invariant I defined in Eqn. (2.28), with a

stiffening parameter η (power):

ψ= AIη + BIη−1 + O

�

Iη−1
�

, as I →∞. (3.19)

This incompressible material model is a more theoretical take on the GNH model, and

again with the stiffening parameter η = 1, A = µ/2 and taking B = −µ we arrive at the

Neo-Hookean model [80].

Given the connections and simplicity, the Neo-Hookean material model from Eqn. (3.16)

showed potential. Unfortunately, solutions (using the techniques outlined in Chapters 4 and 5)

attempted with this model did not yield useful results. The details are omitted here, however

due to the incompressibility requirement (J = 1 in Eqn. (2.31b)), it was not possible to

furnish a solution that satisfies both the bulk material governing Eqn. (2.25) and the boundary

conditions on the free bonded from Eqn. (3.11). A partial explanation for the inability to yield

a near-field deformation field in separable functions of the polar coordinates r and θ [81] is

that it is expected that the wedge angle φ (recall Figure 1.1b) for the GNH, an incompressible

material, was nearly flat (i.e. θ ≃ 0) which could mean infinite compression inside and near

the crack front.

Blatz and Ko introduced a class of compressible foam rubber [47, 96] with the strain energy

density function

ψ=
µ

2

�

f I1 + (1− f )
I2

I3
− 3

�

+
µ

2β

�

I−β3 − 1
�

. (3.20)

The parameter f represents the void content (for example, air bubbles) in the rubber material.

The parameter β is a measure of material compressibility and is related to the Poisson’s ratio

ν by the expression
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β ≡ ν

1− 2ν
. (3.21)

Eqn. (3.20) can be simplified if we assume that there is negligible dilation in the material after

loading from voids (i.e. we assume there are no air bubbles in our adhesive material), then let

f = 1 [47] to get

ψ=
µ

2
(I1 − 3) +

µ

2β

�

I−β3 − 1
�

. (3.22)

Using the relations from Eqn. (2.29), the Blatz-Ko strain energy density function has the plane

strain form

W(I , J) =
µ

2

�

I − 2+
1
β

�

J−2β − 1
�

�

. (3.23)

While the expression in Eqn. (3.23) is for plane strain, for the special case when β = 1 we

find the same relation to the the plane stress formulation of the GNH material model from

Eqn. (3.15) with the stiffening parameter η = 1 [83, 50]. Also, if we assume that for ‘nearly

incompressible’ materials that J ≃ 1 (hence I3 ≃ 1) and ν → 1/2, then β →∞ and the

second terms in Eqns. (3.22) and (3.23) vanish so that we converge to the Neo-Hookean

case from Eqn. (3.16). While insight from Stephensons ‘power-law’ [80] could be utilized to

model a strain stiffening parameter, none was found in literature and the Blatz-Ko model from

Eqn. (3.20) does not inherently incorporate strain stiffening. However, the compressibility

material parameter β may account for effects worth studying. Given the relation of this model

to the Neo-Hookean, which is commonly used as a simple model for most other elastomers

mentioned here, it is of interest to continue with this material model and we shall proceed with

the plane strain, compressible Blatz-Ko strain energy function given by Eqn. (3.23).
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3.5 Bonded Interface Problems with Blatz-Ko Material

The derivatives with respect to the planar invariants I and J of the Blatz-Ko strain energy

function W from Eqn. (3.23) are

∂W

∂ I
=
µ

2
, and

∂W

∂ J
= − µ

J2β+1
,

so that the in-plane components of the first Piola-Kirchhoff and Cauchy stress tensors from

Eqns. (2.34), and (2.36) respectively become (i, A= 1, 2)

PiA= µ
�

FiA−ϵ̃i j ϵ̃ABJ−(2β+1)F jB

�

, (3.24)

σi j = µJ−1
�

FiAF jA−ϵ̃ikϵ̃ABJ−(2β+1)F jAFkB

�

. (3.25)

The components of the deformation gradient F are computed using Eqn. (3.5), from which

the in-plane components of the Cauchy stress tensor can be determined, where

σ11 = µJ−1
�

F2
11+F

2
12−J−2β

�

, (3.26a)

σ12 = σ21 = µJ−1 [F11F21+F12F22] , (3.26b)

and σ22 = µJ−1
�

F2
21+F

2
22−J−2β

�

. (3.26c)

Also, using Eqn. (3.8) the gradient terms of the first Piola-Kirchhoff tensor are:

∂ PiA

∂ r
= µ

�

∂ FiA

∂ r
− ϵ̃i j ϵ̃AB

�

J−(2β+1)
∂ F jB

∂ r
− (2β + 1)J−2(β+1)∂ J

∂ r
F jB

��

,

1
r
∂ PiA

∂ θ
=
µ

r

�

∂ FiA

∂ θ
− ϵ̃i j ϵ̃AB

�

J−(2β+1)
∂ F jB

∂ θ
− (2β + 1)J−2(β+1) ∂ J

∂ θ
F jB

��

,

and the governing material Eqn. (3.7) becomes
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0= C̃A

�

∂ FiA

∂ r
− ϵ̃i j ϵ̃AB

�

J−(2β+1)
∂ F jB

∂ r
− (2β + 1)J−2(β+1)∂ J

∂ r
F jB

��

− ϵ̃AB
C̃B

r

�

∂ FiA

∂ θ
− ϵ̃i j ϵ̃AB

�

J−(2β+1)
∂ F jB

∂ θ
− (2β + 1)J−2(β+1) ∂ J

∂ θ
F jB

��

= C̃2
A

∂ 2 x i

∂ r2
− ϵ̃ABC̃BC̃A

�

1
r
∂ 2 x i

∂ r∂ θ
− 1

r2

∂ x i

∂ θ

�

− ϵ̃i j ϵ̃ABJ−(2β+1)C̃AC̃B

∂ 2 x j

∂ r2

+ ϵ̃i j ϵ̃ABϵ̃BDJ−(2β+1)C̃AC̃D

�

1
r

∂ 2 x j

∂ r∂ θ
− 1

r2

∂ x j

∂ θ

�

+ (2β + 1)ϵ̃i j ϵ̃ABC̃AJ−2(β+1)∂ J
∂ r

�

C̃B

∂ x j

∂ r
− ϵ̃BDC̃D

1
r

∂ x j

∂ θ

�

− ϵ̃ABC̃AC̃B

�

1
r
∂ 2 x i

∂ r∂ θ
− 1

r2

∂ x i

∂ θ

�

+ C̃2
B

�

1
r
∂ x i

∂ r
+

1
r2

∂ 2 x i

∂ θ 2

�

+ ϵ̃i jC̃BJ−(2β+1)

�

C̃B

�

1
r

∂ 2 x j

∂ r∂ θ
− 1

r2

∂ x j

∂ θ

�

− ϵ̃BDC̃D

�

1
r

∂ x j

∂ r
+

1
r2

∂ 2 x j

∂ θ 2

��

− ϵ̃i jC̃B(2β + 1)J−2(β+1)1
r
∂ J
∂ θ

�

C̃B

∂ x j

∂ r
− ϵ̃BDC̃D

1
r

∂ x j

∂ θ

�

.

Using the definition from Eqn. (3.2), then

ϵ̃ABϵ̃BDC̃AC̃D = ϵ̃ABϵ̃BAC̃2
A = −C̃2

A, C̃2
A = C̃

2
B = C̃

2
1 + C̃

2
2 = 1,

and ϵ̃ABC̃AC̃B = ϵ̃12C̃1C̃2 + ϵ̃21C̃2C̃1 = 0,

so that

0=
∂ 2 x i

∂ r2
−

����������������

ϵ̃i jJ
−(2β+1)

�

1
r

∂ 2 x j

∂ r∂ θ
− 1

r2

∂ x j

∂ r

�

+ (2β + 1)J−2(β+1)ϵ̃i j
∂ J
∂ r

�

1
r

∂ x j

∂ θ

�

+
1
r
∂ x i

∂ r
+

1
r2

∂ 2 x i

∂ θ 2
+

����������������

ϵ̃i jJ
−(2β+1)

�

1
r

∂ 2 x j

∂ r∂ θ
− 1

r2

∂ x j

∂ r

�

− ϵ̃i j(2β + 1)J−2(β+1)
�

1
r
∂ J
∂ θ

�

∂ x j

∂ r
,

and finally, the two governing equations (i = 1, 2) simplify to
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∇2
X

x1 + (2β + 1)J−2(β+1) |∇XJ ×∇X x2|= 0, (3.27a)

and ∇2
X

x2 − (2β + 1)J−2(β+1) |∇XJ ×∇X x1|= 0, (3.27b)

where the operators are defined as

∇2
X

x i ≡∇X · (∇X x i) =
∂ 2 x i

∂ r2
+

1
r
∂ x i

∂ r
+

1
r2

∂ 2 x i

∂ θ 2
, (3.28a)

and
�

�∇XJ ×∇X x j

�

�≡ 1
r

�

∂ J
∂ r

∂ x j

∂ θ
− ∂ J
∂ θ

∂ x j

∂ r

�

. (3.28b)

Using the Blatz-Ko strain energy density function from Eqn. (3.23), the boundary conditions

on the free edge from Eqn. (3.9) are

�

1
r
∂ x1

∂ θ
+ J−(2β+1)∂ x2

∂ r

�

θ=π
= 0, (3.29a)

and
�

1
r
∂ x2

∂ θ
− J−(2β+1)∂ x1

∂ r

�

θ=π
= 0. (3.29b)

The boundary condition on the bonded edge (θ = 0) is then found by applying the material

model to the equations in Table 3.1. From this, Eqn. (3.14) has the specific form

�

1
r
∂ x1

∂ θ
− ξ∂ x1

∂ r

�

θ=0
= 0, (3.30)

where the non-dimensional stress threshold ξ is defined as

ξ≡ τ
µ

. (3.31)

The interface crack problems using the Blatz-Ko material model are given by Eqns. (3.27),

(3.29), and the bonded edge conditions are summarized in Table 3.2. Again, as expected

the finite friction problem (the third column) collapses to the Frictionless problem when the

bonded friction threshold τ→ 0 (or ξ→ 0).
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Table 3.2: Summary of the plane strain interface crack problems with the Blatz-Ko material.

No-Slip Case Frictionless Case Finite Friction Case

General Governing Eqns. (3.27a) & (3.27b): in r ≥ 0, and 0≤ θ ≤ π.

∇2
X

x1 + (2β + 1)J−2(β+1) |∇XJ ×∇X x2|= 0

∇2
X

x2 − (2β + 1)J−2(β+1) |∇XJ ×∇X x1|= 0

Traction Free Boundary Condition Eqns. (3.29a) & (3.29b): on θ = π.

1
r
∂ x1

∂ θ
+ J−(2β+1)∂ x2

∂ r
= 0

1
r
∂ x2

∂ θ
− J−(2β+1)∂ x1

∂ r
= 0

Bonded Boundary Condition: on θ = 0.

Eqns. (3.11) & (3.10) Eqns. (3.12) & (3.10) Eqns. (3.30) & (3.10)

x1 = r
∂ x1

∂ θ
= 0

1
r
∂ x1

∂ θ
− ξ∂ x1

∂ r
= 0

x2 = 0 x2 = 0 x2 = 0



Part II

Analytical Solutions





4 - Asymptotic Analysis
The three BVPs summarized in Table 3.2 do not show all the boundary conditions required to

solve them globally. However, since we are looking only for solutions close to the crack tip it is

possible to determine a solution near r → 0, bypassing the need for far field conditions. Each

BVP then becomes an eigenvalue problem where the geometry of the general equations for

the deformed coordinates are found, however undetermined constants remain. Asymptotic

analysis [73] is used to determine a local near-field solution for each BVP in the following

sections.

4.1 The Frictionless Bonding Case

Recall the frictionless case is governed by Eqns. (3.27), (3.29), (3.10) and (3.12), being

∇2
X

x1 + (2β + 1)J−2(β+1) |∇XJ ×∇X x2|= 0, in 0≤ θ ≤ π,

∇2
X

x2 − (2β + 1)J−2(β+1) |∇XJ ×∇X x1|= 0, in 0≤ θ ≤ π,

1
r
∂ x1

∂ θ
+ J−(2β+1)∂ x2

∂ r
= 0,

1
r
∂ x2

∂ θ
− J−(2β+1)∂ x1

∂ r
= 0, on θ = π,

∂ x1

∂ θ
= 0, x2 = 0, on θ = 0.

43
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The solution to the problem of interest is only required near the crack tip, and to determine

the nature of deflection, first look for near field deflection in the form (i = 1,2)

x i(r,θ ) = x̄ i + rmvi(θ ) + O(rm) , as r → 0, (4.1)

where v1 and v2 are arbitrary functions of θ . The term O(rm) represents ‘Little-O’ notation

[73], meaning that O(rm) converges to a value which is less dominant than rm as r → 0.

Conversely, Little-O is different than ‘Big-O’ notation O(rm), which indicates an expression

which is equally dominant to rm as r → 0. To ensure the deflection field is finite [27, 79] and

non-oscillating [79, 76, 75, 97, 22, 17, 98], then it is required that the constant m be positive

and real. To ensure finite contractions (recall that J > 0), then it is also required that the

constant m< 1 [27] so that the range of the exponent m is

0< m< 1. (4.2)

Taking the derivative of Eqn. (4.1) yields

∂ x i

∂ r
= mrm−1vi(θ ) + O

�

rm−1
�

,
1
r
∂ x i

∂ θ
= rm−1v′i (θ ) + O

�

rm−1
�

,

and ∇2
X

x i =
�

v′′i (θ ) +m2vi(θ )
�

rm−2 + O

�

rm−2
�

.

From this, the plane strain invariants from Eqns. (3.6a) and (3.6b) become

I(r,θ ) =
�

m2
�

v2
1 + v2

2

�

+
�

v′1
�2
+
�

v′2
�2�

r2(m−1) + O

�

r2(m−1)
�

,

and J(r,θ ) = m
�

v1v′2 − v′1v2

�

r2(m−1) + O

�

r2(m−1)
�

.

Since ∇X x i = O
�

rm−1
�

and J = O
�

r2(m−1)
�

, then the boundary conditions from Eqns. (3.29),

(3.10) and (3.12) require
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x̄2 = 0, v′1(0) = 0, v2(0) = 0, v′1(π) = 0, and v′2(π) = 0. (4.3)

The∇2
X

x i terms in the governing Eqns. (3.27) are most dominant as r → 0, hence for i = 1,2

vi(θ ) = Ai sin(mθ ) + Bi cos(mθ ), (4.4)

where Ai and Bi are arbitrary constants. From Eqn. (4.3), then A1 = B2 = 0,

B1 sin(mπ) = 0, and A2 cos(mπ) = 0.

Since 0 < m < 1, it is determined that B1 = 0, hence v1(θ ) = 0, m = 1/2 and without a

loss in generality

v2(θ ) = a sin(θ/2), (4.5)

where a is an arbitrary constant. Then the near-field displacement components are

x1(r,θ ) = x̄1 + O

�

r1/2
�

,

and x2(r,θ ) = ar1/2 sin(θ/2) + O

�

r1/2
�

.

Since the shear traction is zero on the bonded edge, then slippage is expected and the

arbitrary constant x̄1 represents the lateral deflection of the crack tip after loading. Here, there

is not yet enough information to be useful given that this leads to a degenerate expression for

J because J(r,θ ) = O

�

r2(m−1)
�

. Given this, further terms are required, and so an expanded

form of the deformed coordinates are assumed to be

x1(r,θ ) = x̄1 + rnw1(θ ) + O(rn) , (4.6a)

and x2(r,θ ) = ar1/2 sin(θ/2) + rnw2(θ ) + O(rn) , (4.6b)
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where w1 and w2 are arbitrary functions of θ and the constant n > 1/2. The derivatives

become

∂ x1

∂ r
= nrn−1w1(θ ) + O

�

rn−1
�

, (4.7a)

1
r
∂ x1

∂ θ
= rn−1w′1(θ ) + O

�

rn−1
�

, (4.7b)

∂ x2

∂ r
= 1

2 ar−1/2 sin(θ/2) + nrn−1w2(θ ) + O

�

rn−1
�

, (4.7c)

1
r
∂ x2

∂ θ
= 1

2 ar−1/2 cos(θ/2) + rn−1w′2(θ ) + O

�

rn−1
�

, (4.7d)

and ∇2
X

x i =
�

w′′i (θ ) + n2wi(θ )
�

rn−2 + O

�

rn−2
�

. (4.7e)

Using this, the most dominant first terms of J as r → 0 become

J(r,θ ) = χ(θ )rn−3/2 + O

�

rn−3/2
�

, (4.8)

where χ(θ )≡ 1
2 a
�

nw1(θ ) cos(θ/2)−w′1(θ ) sin(θ/2)
�

. (4.9)

Note that∇X x1 = O
�

rn−1
�

,∇X x2 = O
�

r−1/2
�

, J = O
�

rn−3/2
�

, and therefore∇XJ = O
�

rn−5/2
�

.

It is not clear at this point which terms in the governing body equations (3.27) or the free end

conditions in (3.29) are most dominant. To determine this, consider the difference in the power

of r in each term from Eqn. (3.27a) as

η≡ −2(β + 1)(n− 3/2) + (n− 5/2) + (−1/2)− (n− 2). (4.10)

In the event that η < 0, then the right hand term of Eqn. (3.27a) is most dominant and

recalling that J > 0 then

(n− 3/2)χ(θ ) cos(θ/2)−χ ′(θ ) sin(θ/2) = 0,

which implies
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1
2 a sin(π/2)

[χ(π)]2β+1
= 0 =⇒ ∴ −1

w′1(π)
= 0.

This is not physically reasonable because it results in an infinite deflection on the free edge,

therefore this case is rejected and it must be that η ≥ 0. If η = 0, both terms in the first

governing body Eqn. (3.27a) have the same dominance as r → 0, leading to the non-linear

ordinary differential equation (ODE)

d2w1

dθ 2
+ n2w1 +

a(2β + 1)
2χ2(β+1)

�

(n− 3
2)χ cos(θ/2)− dχ

dθ
sin(θ/2)

�

= 0. (4.11)

Eqn. (4.11) with the boundary conditions in Eqns. (3.29a) and (3.12) has no apparent

analytical solution and was found numerically to have no solution for any positive β [1]. Given

this, it is required that the left hand term in Eqn. (3.27a) is most dominant and since η > 0,

then

1
2
< n<

3β + 2
2β + 2

, (4.12)

so that (for i = 1, 2)

wi(θ ) = Ai sin(nθ ) + Bi cos(nθ ), (4.13)

where Ai and Bi are arbitrary constants. Using the boundary conditions from Eqns. (3.29),

(3.12) and (3.10)

w2(0) = 0, w′1(0) = 0, w′1(π) = 0, and w′2(π) = 0.

Immediately, we see A1 = B2 = 0 and with the range from Eqn. (4.12) then A2 = 0 and

n = 1. By assuming b is a real constant, then the deflected coordinates in the frictionless

case as r → 0 are



48 Asymptotic Analysis

x1(r,θ ) = x̄1 + br cosθ + O(r) , (4.14a)

and x2(r,θ ) = ar1/2 sin(θ/2) + O(r) . (4.14b)

The stress field for the frictionless bonded case can be computed from Eqns. (4.14) by utilizing

Eqn. (3.25). Recall the deformation gradient components from Eqn. (3.5)

F11 = cosθ (b cosθ )− sinθ (−b sinθ ) + O(1) ,

F12 = sinθ (b cosθ ) + cosθ (−b sinθ ) + O(1) ,

F21 = cosθ
�

1
2 ar−1/2 sin(θ/2)

�− sinθ
�

1
2 ar−1/2 cos(θ/2)

�

+ O(1) ,

F22 = sinθ
�

1
2 ar−1/2 sin(θ/2)

�

+ cosθ
�

1
2 ar−1/2 cos(θ/2)

�

+ O(1) ,

which becomes

F11(r,θ ) = b+ O(1) , (4.15a)

F12(r,θ ) = O(1) , (4.15b)

F21(r,θ ) = −1
2 ar−1/2 sin(θ/2) + O(1) , (4.15c)

and F22(r,θ ) =
1
2 ar−1/2 cos(θ/2) + O(1) . (4.15d)

Using Eqns. (3.6a), (3.6b) and (4.28) with the result in (4.15), the plane-strain invariants have

the form

I = b2 + O(1) + 1
4 a2r−1 + O

�

r−1/2
�

,

J = (b cosθ )
�

1
2 ar−1/2 cos(θ/2)

�− (−b sinθ )
�

1
2 ar−1/2 sin(θ/2)

�

+ O

�

r−1/2
�

,

where
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I(r,θ ) = 1
4 a2r−1 + O

�

r−1/2
�

, (4.16a)

and J(r,θ ) = 1
2 abr−1/2 cos(θ/2) + O

�

r−1/2
�

. (4.16b)

With Eqns. (4.16a) and (4.16b), the strain energy density function from (3.23) has the

near-field form

W= 1
2µ

�

1
4 a2r−1 + O

�

r−1/2
�− 2+

1
β

�

O
�

rβ
�− 1

�

�

,

therefore

W(r,θ ) = 1
8µa2r−1 + O

�

r−1/2
�

. (4.16c)

Also, utilizing the result from Eqns. (4.16a) and (4.16b) with Eqns. (3.26a) through (3.26c)

the stress components are

σ11 = µ
�

1
2 abr−1/2 cos(θ/2)

�−1 �
b2 + O(1) +O

�

rβ
��

,

σ12 = σ21 = µ
�

1
2 abr−1/2 cos(θ/2)

�−1 �−1
2 abr−1/2 sin(θ/2) + O

�

r−1/2
��

, and

σ22 = µ
�

1
2 abr−1/2 cos(θ/2)

�−1 �1
4 a2r−1 + O(1)

�− �1
2 abr−1/2 cos(θ/2)

�−(2β+1)
.

Therefore, for any β > 0

σ11(r,θ ) = µ
�

2b
a

�

r1/2 sec(θ/2) + O

�

r1/2
�

, (4.17a)

σ12(r,θ ) = −µ tan(θ/2) + O(1) , (4.17b)

and σ22(r,θ ) = µ
� a

2b

�

r−1/2 sec(θ/2) + O

�

r−1/2
�

. (4.17c)

This provides the useful part of the near field approximation for the frictionless case, and the

deformation and stress field approximations are summarized in Table 4.1.
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Table 4.1: Summary of the Asymptotic Solution near r → 0 for the frictionless case.

Field Type Near Field Approximation Equations Near r = 0

Deformation: Eqns. (4.14a), x1 ≃ x̄1 + br cosθ

(4.14b): x2 ≃ ar1/2 sin(θ/2)

Stress: Eqns. (4.17a), σ11 ≃ µ
�

2b
a

�

r1/2 sec(θ/2)

(4.17b), σ12 = σ21 ≃ −µ tan(θ/2)

(4.17c): σ22 ≃ µ
� a

2b

�

r−1/2 sec(θ/2)

Scalar Eqns. (4.16a), I ≃ 1
4 a2r−1

Functions: (4.16b): J ≃ 1
2 abr−1/2 cos(θ/2)

(4.16c), W≃ 1
8µa2r−1

Recall that Geubelle et al [50] studied the general crack problem using the GNH material

in plane stress, which is the equivalent problem posed here for the specific case when

the compressibility parameter β = 1 and the hardening parameter is chosen as unity. In

Geubelle’s work, the orders of r matched the solution here and the angular variation (i.e. the

separable functions of θ in the asymptotic analysis) were numerically plotted and confirmed

the solutions of the deformation field from Eqns. (4.14). The general crack problems by

Stephenson [80] and Knowles and Sternberg [79] were shown to have a the same order

O(r) for the second term in x1 (Eqn. (4.14a)), however the angular variation was sin2(θ/2)

instead of cosθ . This difference is attributed to the finding that Stephenson, Knowles and

Sternberg utilized incompressible material formulations (J = 1) which would require in our

case the arbitrary function w1(θ ) = [sin(θ/2)]n/m, and recall it was determined that n = 1

and m= 1/2.
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4.2 The No-Slip Bonding Case

The eigenvalue problem to solve for the no-slip case is defined by Eqns. (3.27), (3.29), (3.10)

and (3.11) is given by

∇2
X

x1 + (2β + 1)J−2(β+1) |∇XJ ×∇X x2|= 0, in 0≤ θ ≤ π,

∇2
X

x2 − (2β + 1)J−2(β+1) |∇XJ ×∇X x1|= 0, in 0≤ θ ≤ π,

1
r
∂ x1

∂ θ
+ J−(2β+1)∂ x2

∂ r
= 0,

1
r
∂ x2

∂ θ
− J−(2β+1)∂ x1

∂ r
= 0, on θ = π,

x1 = r, x2 = 0, on θ = 0.

Like the frictionless case, look for near-field solutions (as r → 0) in the form of Eqn. (4.1)

(i = 1, 2)

x i(r,θ ) = x̄ i + rmvi(θ ) + O(rm) ,

where vi are arbitrary functions of θ , x̄1 and x̄2 are arbitrary constants, and 0 < m < 1. The

first BCs are revealed using Eqn. (4.1) with Eqns. (3.10), (3.11), and (3.29), so that

x̄1 = x̄2 = 0, v1(0) = v2(0) = 0, and v′1(π) = v′2(π) = 0. (4.18)

Similar to the frictionless case, the ∇2
X

x i terms in the body Eqns. (3.27) are most dominant

as r → 0, yielding a solution in the form of Eqn. (4.4). With the boundary conditions, the first

near-field terms are determined and following the same procedure as the frictionless case:

x1(r,θ ) = a1r1/2 sin(θ/2) + O

�

r1/2
�

,

and x2(r,θ ) = a2r1/2 sin(θ/2) + O

�

r1/2
�

.



52 Asymptotic Analysis

This is a slightly different result than the opposing extent shown by the frictionless case and in

general a1 ̸= 0. However, like the frictionless case it is noted that with only the first asymptotic

terms for the deformed coordinates x1 and x2, then J = O

�

r2(m−2)
�

. Given this, it is required

to gain more terms and so we proceed with a proposed solution in the form

x1(r,θ ) = a1r1/2 sin(θ/2) + rnw1(θ ) + O(rn) , (4.19a)

and x2(r,θ ) = a2r1/2 sin(θ/2) + rnw2(θ ) + O(rn) , (4.19b)

where w1 and w2 are arbitrary functions of θ and the constant n > 1/2. Using Eqns. (3.10),

(3.11), and (3.29) the boundary conditions for w1 and w2 are

w′1(0) =











0, if n ̸= 1

1, if n= 1
, w2(0) = 0, w′1(π) = 0, and w′2(π) = 0.

Given the boundary condition for w1(0), it is required that n ≤ 1 in order to obtain a

non-contradictory result so that 1/2< n≤ 1. With this range for n, the ∇2
X

x i terms are most

dominant as r → 0 concluding (for i = 1, 2)

w′′i (θ ) + n2wi(θ ) = 0, (4.20)

which has a solution in the form of Eqn. (4.13). Using the boundary conditions it is concluded

that n= 1 requiring that w1(θ ) = cosθ , w2(θ ) = 0 and the near-field solution becomes

x1(r,θ ) = a1r1/2 sin(θ/2) + r cosθ + O(r) , (4.21a)

and x2(r,θ ) = a2r1/2 sin(θ/2) + O(r) . (4.21b)

Using Eqns. (3.6a) and (3.6b), the plane-strain invariants become
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I =
�

1
2 a1r−1/2 sin(θ/2) + cosθ + O(1)

�2
+
�

1
2 a1r−1/2 cos(θ/2)− sinθ + O(1)

�2

+
�

1
2 a2r−1/2 sin(θ/2) + O(1)

�2
+
�

1
2 a2r−1/2 cos(θ/2) + O(1)

�2

= 1
4

�

a2
1 + a2

2

�

r−1 + a1r−1/2 [sin(θ/2) cosθ − cos(θ/2) sinθ] + O

�

r−1/2
�

, and

J =
�

1
2 a1r−1/2 sin(θ/2) + cosθ + O(1)

� �

1
2 a2r−1/2 cos(θ/2) + O(1)

�

− �1
2 a1r−1/2 cos(θ/2)− sinθ + O(1)

� �

1
2 a2r−1/2 sin(θ/2) + O(1)

�

= 1
4 a1a2r−1 sin(θ/2) cos(θ/2) + 1

2 a2r−1/2 cosθ cos(θ/2) + O

�

r−1/2
�

− 1
4 a1a2r−1 sin(θ/2) cos(θ/2) + 1

2 a2r−1/2 sinθ sin(θ/2),

therefore

I(r,θ ) = 1
4

�

a2
1 + a2

2

�

r−1 − a1r−1/2 sin(θ/2) + O

�

r−1/2
�

, (4.22a)

and J(r,θ ) = 1
2 a2r−1/2 cos(θ/2) + O

�

r−1/2
�

. (4.22b)

The near-field strain energy density function from Eqn. (3.23) is quantified using Eqns. (4.22a)

and (4.22b), where

W= 1
2µ

�

1
4

�

a2
1 + a2

2

�

r−1 − a1r−1/2 sin(θ/2) + O

�

r−1/2
�− 2+

1
β

�

O
�

rβ
�− 1

�

�

,

so that

W(r,θ ) = 1
8µ
��

a2
1 + a2

2

�

r−1 − 4a1r−1/2 sin(θ/2)
�

+ O

�

r−1/2
�

. (4.22c)

Using Eqn. (3.5), the deformation gradient components become

F11 = cosθ
�

1
2 a1r−1/2 sin(θ/2) + cosθ

�− sinθ
�

1
2 a2r−1/2 cos(θ/2)− sinθ

�

+ O(1)

F12 = sinθ
�

1
2 a1r−1/2 sin(θ/2) + cosθ

�

+ cosθ
�

1
2 a1r−1/2 cos(θ/2)− sinθ

�

+ O(1)
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F21 = cosθ
�

1
2 a2r−1/2 sin(θ/2)

�− sinθ
�

1
2 a2r−1/2 cos(θ/2)

�

+ O(1)

F22 = sinθ
�

1
2 a2r−1/2 sin(θ/2)

�

+ cosθ
�

1
2 a2r−1/2 cos(θ/2)

�

+ O(1) ,

which yields

F11(r,θ ) = −1
2 a1r−1/2 sin(θ/2) + 1+ O(1) , (4.23a)

F12(r,θ ) =
1
2 a1r−1/2 cos(θ/2) + O(1) , (4.23b)

F21(r,θ ) = −1
2 a2r−1/2 sin(θ/2) + O(1) , (4.23c)

and F22(r,θ ) =
1
2 a2r−1/2 cos(θ/2) + O(1) . (4.23d)

Combining the deformation gradient components from Eqns. (4.23) with (3.26) and (4.22b),

the Cauchy stress is

σ11 = µ
�

1
2 a2r−1/2 cos(θ/2)

�−1 �1
4 a2

1 r−1 − a1r−1/2 sin(θ/2) + O

�

r−1/2
�

+O
�

rβ
��

,

σ12 = µ
�

1
2 a2r−1/2 cos(θ/2)

�−1 �1
4 a1a2r−1 − 1

2 a2r−1/2 sin(θ/2) + O

�

r−1/2
��

,

σ22 = µ
�

1
2 a2r−1/2 cos(θ/2)

�−1 �1
4 a2

2 r−1 + O

�

r−1/2
�

+O
�

rβ
��

,

which, after some algebra yields for any β > 0

σ11(r,θ ) =
1
2µa1a−1

2

�

a1r−1/2 sec(θ/2)− 4 tan(θ/2)
�

+ O(1) , (4.24a)

σ12(r,θ ) = σ21(r,θ ) =
1
2µ
�

a1r−1/2 sec(θ/2)− 2 tan(θ/2)
�

+ O(1) , (4.24b)

and σ22(r,θ ) =
1
2µa2r−1/2 sec(θ/2) + O(1) . (4.24c)

The near-field deflection and stress field approximations close to the crack tip (r → 0) for the

no-slip case are summarized in Table 4.2

Confirmation of this solution can also be found from Geubelle et al [51] where the GNH
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model in plane stress was used to analyze an interface crack bonded to a rigid substrate

(the same problem presented in this section). With the special case of β = 1 in the present

Blatz-Ko plane strain case and turning off the stiffening effect in the GNH model, the problem

formulations are the same and solutions from Eqns. (4.21), (4.22a), (4.22b) visually matched

the plots of the various numerical solutions produced by Geubelle et al [51].

Table 4.2: Summary of the asymptotic solution near r → 0 for the no-slip Case.

Field Type Near Field Approximation Equations Near r = 0

Deformation: Eqns. (4.21a), x1 ≃ a1r1/2 sin(θ/2) + r cosθ

(4.21b): x2 ≃ a2r1/2 sin(θ/2)

Stress: Eqns. (4.24a), σ11 ≃ 1
2µa1a−1

2

�

a1r−1/2 sec(θ/2)− 4 tan(θ/2)
�

(4.24b), σ12 = σ21 ≃ 1
2µ
�

a1r−1/2 sec(θ/2)− 2 tan(θ/2)
�

(4.24c): σ22 ≃ 1
2µa2r−1/2 sec(θ/2)

Scalar Eqns. (4.22a), I ≃ 1
4

�

a2
1 + a2

2

�

r−1 − a1r−1/2 sin(θ/2)

Functions: (4.22b): J ≃ 1
2 a2r−1/2 cos(θ/2)

(4.22c): W≃ 1
8µ
��

a2
1 + a2

2

�

r−1 − 4a1r−1/2 sin(θ/2)
�

4.3 The Finite Friction Bonding Case

Recall from the third column in Table 3.2 that the eigenvalue problem to for the finite friction

case is defined by Eqns. (3.27), (3.29), (3.10) and (3.30) and is given by

∇2
X

x1 + (2β + 1)J−2(β+1) |∇XJ ×∇X x2|= 0, in 0≤ θ ≤ π,

∇2
X

x2 − (2β + 1)J−2(β+1) |∇XJ ×∇X x1|= 0, in 0≤ θ ≤ π,

1
r
∂ x1

∂ θ
+ J−(2β+1)∂ x2

∂ r
= 0,

1
r
∂ x2

∂ θ
− J−(2β+1)∂ x1

∂ r
= 0, on θ = π,
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1
r
∂ x1

∂ θ
− ξ∂ x1

∂ r
= 0, x2 = 0, on θ = 0.

Again, assume a solution in the form of Eqn. (4.1), being

x i(r,θ ) = x̄1 + rmvi(θ ) + O(rm) .

From here, the technique is identical to the frictionless case from Section 4.1 and using the

boundary conditions from Eqns. (3.10), (3.29), & (3.30)

x̄2 = 0, v′1(0)−mξv1(0) = 0, v2(0) = 0, v′1(π) = 0, and v′2(π) = 0,

so that the governing equations (3.27) yields the form from Eqn. (4.4) (i = 1, 2)

vi(θ ) = Ai sin(mπ) + Bi cos(mθ ).

For i = 1, the boundary conditions require that A1 = ξB1 = tan(mπ), hence ξ = tan(mπ).

However, using i = 2, it is determined that B2 = 0 and A2 cos(mπ) = 0 which yields m= 1/2

and v2 = a sin(θ/2). Since there is no finite value for ξ that satisfies ξ = tan(π/2), it is

required that both A1 = B1 = 0 so that v1(θ ) = 0. Hence, we have the same result as the

frictionless case so far and proceed directly to the same expanded form in Eqn. (4.6):

x1(r,θ ) = x̄1 + rnw1(θ ) + O(rn) ,

and x2(r,θ ) = ar1/2 sin(θ/2) + rnw2(θ ) + O(rn) ,

where w1 and w2 are arbitrary functions of θ and n > 1/2. The derivatives were already

worked out as the set in Eqns. (4.7)

∂ x1

∂ r
= nrn−1w1(θ ) + O

�

rn−1
�

,
1
r
∂ x1

∂ θ
= rn−1w′1(θ ) + O

�

rn−1
�

,
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∂ x2

∂ r
= 1

2 ar−1/2 sin(θ/2) + nrn−1w2(θ ) + O

�

rn−1
�

,

1
r
∂ x2

∂ θ
= 1

2 ar−1/2 cos(θ/2) + rn−1w′2(θ ) + O

�

rn−1
�

,

∇2
X

x i =
�

w′′i (θ ) + n2wi(θ )
�

rn−2 + O

�

rn−2
�

,

and J = χ(θ )rn−3/2 + O

�

rn−3/2
�

,

where the definition for χ is given in Eqn. (4.9),

χ(θ )≡ 1
2 a
�

nw1(θ ) cos(θ/2)−w′1(θ ) sin(θ/2)
�

.

Here, it is again not clear which terms are most dominant in the governing Eqn. (3.27a).

Recall the exponent difference defined in Eqn. (4.10) was

η≡ −2(β + 1)(n− 3/2) + (n− 5/2) + (−1/2)− (n− 2).

When η < 0, we get the same contradiction as the frictionless case where no finite value for

w′1(π) is possible. When η = 0 we are left with the non-linear ordinary differential equation

in the form of Eqn. (4.11). A numerical solution may exist for certain ranges of ξ and β of the

problem defined by Eqns. (4.11), (3.29a) and (3.30) however it does not allow for a closed

form analytical solution. Since a full numerical study is done in Part III, this is not pursued and

we look for a closed form algebraic solution and proceed with the case that η > 0 so that we

have the range given by Eqn. (4.12), where

1
2
< n<

3β + 2
2β + 2

,

and for i = 1, 2, then

wi(θ ) = Ai sin(nθ ) + Bi cos(nθ ),
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where Ai and Bi are arbitrary constants. Using the boundary conditions from Eqns. (3.29),

(3.30) and (3.10)

w′1(0)− nξw1(0) = 0, w2(0) = 0 w′1(π) = 0, and w′2(π) = 0.

For w1, we find A1 = ξB1 so that

ξ= tan(nπ). (4.25)

Note that the expression in Eqn. (4.25) is periodic and provides an infinite number of values

for n, meaning for any arbitrary angle Θ and integer N

tanΘ = tan (Θ± Nπ) . (4.26)

The other set requires that B2 = 0 and either n = 1/2 (a contradiction given the range for n

in Eqn. (4.12)), or A2 = 0, making w2(0) = 0. Also, using the range from Eqn. (4.12), then

for any β > 0, we define the ‘blunting parameter’ n̄ as the unique value of n from Eqn. (4.25)

which is the only viable value that satisfies the eigenvalue problem and assumptions made.

So

n̄(ξ)≡ 1+
1
π

tan−1ξ, (4.27)

and without a lack of generality,

x1(r,θ ) = x̄1 + br n̄w(θ ) + O

�

r n̄
�

, (4.28a)

and x2(r,θ ) = ar1/2 sin(θ/2) + O

�

r n̄
�

, (4.28b)

where b is an arbitrary constant and the angular variation function w(θ ) is defined as
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w(θ )≡ ξ sin(n̄θ ) + cos(n̄θ ). (4.29)

With the definition of n̄ from Eqn. (4.27), then given Eqn. (4.12) the limited allowable range

for ξ is

1
2
< 1+

1
π

tan−1ξ <
3β + 2
2β + 2

=⇒ ∴ −π
2
< tan−1ξ <

π

2

�

β

β + 1

�

,

so that

−∞< ξ < tan
�

π

2

�

β

β + 1

��

. (4.30)

From this, there are a few important details worth noting. First, the limited range for ξ is a

result of the analysis, but means that the solution for the deformation field from Eqns. (4.28)

is viable only in the range given by (4.30). So, with highly compressible materials (which have

low β ) the results here may not be useful. However, for nearly incompressible materials, β

is large and there is a larger admissible range for ξ therefore it should be these cases where

this model is used. The second thing to note here is that the solution in Eqns. (4.28) indeed

converges to the frictionless case when ξ = 0. This is expected given that the formulated

problem for the finite friction case also converged to the frictionless case. However, also note

that when ξ ̸= 0, then the value of n̄ ̸= 1 and can be less than or greater than unity depending

on the sign of the stress threshold ξ.

The sign of ξ depends on the slip threshold induced on the bonded surface. Recall that this

is a threshold value on the bonded surface after loading and therefore this method requires

solving the no-slip condition solved in Section 4.2 first, and noting the sign of the constant a1

from Eqns. (4.24b) and (4.21a). Cases where ξ < 0 indicate that the shear on the bonded

edge has a negative value and threshold since σ12(r, 0) < 0 near r → 0. More discussion

on what the value of n̄ means for the solution and stress fields are found in the later chapters
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of this manuscript.

Using these results, stress fields and invariants can be found by taking the derivatives of

Eqns. (4.28). Recalling the definition for w(θ ) in Eqn. (4.29), then

∂ x1

∂ r
= bn̄w(θ )r n̄−1 + O

�

r n̄−1
�

,
1
r
∂ x1

∂ θ
= bw′(θ )r n̄−1 + O

�

r n̄−1
�

,

∂ x2

∂ r
= 1

2 ar−1/2 sin(θ/2) + O

�

rn−1
�

,

and
1
r
∂ x2

∂ θ
= 1

2 ar−1/2 cos(θ/2) + O

�

rn−1
�

.

Using the definition in Eqn. (4.9), the function χ becomes

χ(θ ) = 1
2 ab

�

n̄w(θ ) cos(θ/2)−w′(θ ) sin(θ/2)
�

= 1
2 abn̄ [[ξ sin(n̄θ ) + cos(n̄θ )] cos(θ/2)− [ξ cos(n̄θ )− cos(n̄θ )] sin(θ/2)] ,

and utilizing the two known identities [90]

sinθ1 sinθ2 + cosθ1 cosθ2 = cos (θ2 − θ1) , (4.31a)

and cosθ1 sinθ2 − sinθ1 cosθ2 = sin (θ2 − θ1) , (4.31b)

then

χ(θ ) = 1
2 abn̄ [tan(n̄π) sin[(n̄− 1/2)θ] + cos[(n̄− 1/2)θ]]

= 1
2 abn̄ [sin(n̄π) sin[(n̄− 1/2)θ] + cos(n̄π) cos[(n̄− 1/2)θ]] sec(n̄π).

Therefore utilizing Eqn. (4.31) once more,

χ(θ ) = 1
2 abn̄ sec(n̄π) cos [(n̄− 1/2)θ − n̄π] . (4.32)
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The invariants can now be computed, where

I =
�

bn̄w(θ )r n̄−1 + O

�

r n̄−1
��2
+
�

bw′(θ )r n̄−1 + O

�

r n̄−1
��2

+
�

1
2 ar−1/2 sin(θ/2) + O

�

r n̄−1
��2
+
�

1
2 ar−1/2 cos(θ/2) + O

�

r n̄−1
��2

= 1
4 a2r−1 + O

�

r n̄−3/2
�

+O
�

r2(n̄−1)
�

,

and because n̄ > 1/2 then 2n̄− n̄ > 2− 3/2, or 2n̄− 2 > n̄− 3/2 making the O
�

r2(n̄−1)
�

term drop off as r → 0. Finally, using Eqn. (4.32) the invariants are

I(r,θ ) = 1
4 a2r−1 + O

�

r n̄−3/2
�

, (4.33a)

and J(r,θ ) = 1
2 abn̄ sec(n̄π) cos [(n̄− 1/2)θ − n̄π] r n̄−3/2 + O

�

r n̄−3/2
�

. (4.33b)

Note that Eqn. (4.33b) shows J > 0 as required for all ξ > 0, 0 ≤ θ ≤ π and r ≥ 0. Using

Eqns. (4.22a) and (4.22b), the strain energy density from Eqn. (3.23) becomes

W= 1
2µ

�

1
4 a2r−1 + O

�

r n̄−3/2
�− 2+

1
β

�

O
�

rβ(3−2n̄)
�− 1

�

�

,

so that

W(r,θ ) = 1
8µa2r−1 + O

�

r n̄−3/2
�

. (4.33c)

Also, with the help of Eqns. (4.31) the in-plane components of the deformation gradient from

Eqn. (3.5) are

F11 = cosθ
�

bn̄w(θ )r n̄−1
�− sinθ

�

bw′(θ )r n̄−1
�

+ O

�

r n̄−1
�

= n̄br n̄−1 [cosθ (ξ sin(n̄θ ) + cos(n̄θ ))

− sinθ (ξ cos(n̄θ )− sin(n̄θ ))] + O

�

r n̄−1
�
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= n̄br n̄−1 [ξ (cosθ sin(n̄θ )− sinθ cos(n̄θ ))

+(cosθ cos(n̄θ ) + sinθ sin(n̄θ ))] + O

�

r n̄−1
�

= n̄br n̄−1
�

sin(n̄π) sin((n̄− 1)θ ) + cos(n̄π) cos((n̄− 1)θ )
cos(n̄π)

�

+ O

�

r n̄−1
�

.

Similarly,

F12 = sinθ
�

bn̄w(θ )r n̄−1
�

+ cosθ
�

bw′(θ )r n̄−1
�

+ O

�

r n̄−1
�

= n̄br n̄−1 [sinθ (ξ sin(n̄θ ) + cos(n̄θ ))

+ cosθ (ξ cos(n̄θ )− sin(n̄θ ))] + O

�

r n̄−1
�

,

= n̄br n̄−1 [ξ (sinθ sin(n̄θ ) + cosθ cos(n̄θ ))

+(sinθ cos(n̄θ )− cosθ sin(n̄θ ))] + O

�

r n̄−1
�

,

= n̄br n̄−1
�

sin(n̄π) cos((n̄− 1)θ )− cos(n̄π) sin((n̄− 1)θ )
cos(n̄π)

�

.

The remaining two components of the deformation gradient have the same form of the no-slip

and frictionless cases, where

F21 = cosθ
�

1
2 ar−1/2 sin(θ/2)

�− sinθ
�

1
2 ar−1/2 cos(θ/2)

�

+ O

�

r n̄−1
�

,

F22 = sinθ
�

1
2 ar−1/2 sin(θ/2)

�

+ cosθ
�

1
2 ar−1/2 cos(θ/2)

�

+ O

�

r n̄−1
�

.

Hence, the deformation gradient components are

F11(r,θ ) = n̄br n̄−1 sec(n̄π) cos[n̄π− (n̄− 1)θ] + O

�

r n̄−1
�

, (4.34a)

F12(r,θ ) = n̄br n̄−1 sec(n̄π) sin[n̄π− (n̄− 1)θ] + O

�

r n̄−1
�

, (4.34b)

F21(r,θ ) = −1
2 ar−1/2 sin(θ/2) + O

�

r n̄−1
�

, (4.34c)

and F22(r,θ ) =
1
2 ar−1/2 cos(θ/2) + O

�

r n̄−1
�

. (4.34d)
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Finally, the Cauchy stress components can be determined. Recall Eqns. (3.26)

σ11 = µ
�

χ(θ )r n̄−3/2
�−1 �

n̄2 b2r2(n̄−1) sec2(n̄π) + O

�

r2(n̄−1)
�

+O
�

rβ(3−2n̄)
��

,

σ12 = µ
�

χ(θ )r n̄−3/2
�−1

��

n̄br n̄−1 cos[n̄π− (n̄− 1)θ]
cos(n̄π)

�

�−1
2 ar−1/2 sin(θ/2)

�

+
�

n̄br n̄−1 sin[n̄π− (n̄− 1)θ]
cos(n̄π)

�

�

1
2 ar−1/2 cos(θ/2)

�

+ O

�

r n̄−3/2
�

�

,

= µ
�
�
�
�

�

abn̄
2

� �

�
�
�
�

�

2
abn̄

�

�����cos(n̄π)
cos[n̄π− (n̄− 1/2)θ]

��

sin[n̄π− (n̄− 1/2)θ]

�����cos(n̄π)

�

+ O(1) ,

σ22 = µ
�

χ(θ )r n̄−3/2
�−1 �1

4 a2r−1 + O

�

r2(n̄−1)
�

+O
�

rβ(3−2n̄)
��

,

which, after recalling the definition for n̄ from Eqn. (4.27) and noting another identity

sec(n̄π) = sec
�

π+ tan−1ξ
�

= −
p

1+ ξ2, (4.35)

then

σ11(r,θ ) = µ
�

n̄2 b2

χ(θ )

�

�

1+ ξ2
�

r n̄−1/2 + O

�

r n̄−1/2
�

, (4.36a)

σ12(r,θ ) = σ21(r,θ ) = µ tan [n̄π− (n̄− 1/2)θ] + O(1) , (4.36b)

σ22(r,θ ) = µ
�

a2

4χ(θ )

�

r1/2−n̄ + O

�

r1/2−n̄
�

. (4.36c)

This concludes the solution of the finite friction case. The near field results are summarized

in Table 4.3. As a final check, note that the stresses given by Eqns. (4.36) collapse to the

frictionless case (when ξ = 0 or n̄ = 1) as shown by Eqns. (4.17). Given this, we can

conclude that the frictionless case is simply a special case of finite friction when the slip

threshold is set to ξ= 0 (or τ= 0).
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Table 4.3: Summary of the asymptotic solution near r → 0 for the finite friction case.

Field Type Near Field Approximation Equations Near r = 0

Deformation: Eqns. (4.28a), x1 ≃ x̄1 + br n̄ [ξ sin(n̄θ ) + cos(n̄θ )]

(4.28b): x2 ≃ a2r1/2 sin(θ/2)

Stress: Eqns. (4.36a), σ11 ≃ µ
�

n̄2 b2

χ(θ )

�

�

1+ ξ2
�

r n̄−1/2

(4.36b), σ12 = σ21 ≃ µ tan [n̄π− (n̄− 1/2)θ]

(4.36c): σ22 ≃ µ
�

a2

4χ(θ )

�

r1/2−n̄

Scalar Eqns. (4.33a), I ≃ 1
4 a2r−1

Functions: (4.33b), J ≃ χ(θ )r n̄−3/2

(4.33c): W≃ 1
8µa2r−1

Other Eqns. (4.32), χ(θ )≡ 1
2 abn̄ sec(n̄π) cos [(n̄− 1/2)θ − n̄π]

Definitions: (4.27), n̄(ξ)≡ 1+
1
π

tan−1ξ



5 - Evaluation of Near-Field Solutions

5.1 A Comparison of the Extents of Friction

From the results for the frictionless (Table 4.1) and no-slip (Table 4.2) cases, we see there

is no direct dependence on the compressibility parameter β , however dependence may be

reside in higher terms. Another possibility is that dependence on β resides in the constants

a, b, a1, and a2 from Eqns. (4.14) and (4.21), which are investigated further in Chapters 7

and 8. For the two limiting cases shown, the shape of the crack front on the free edge is found

by combining the deflected coordinate solutions. Starting with the frictionless case, use Eqns.

(4.14a) and (4.14b) with θ = π so that

x1(r,π)≃ x̄1 − br, and x2(r,π)≃ ar1/2,

which combined show a parabolic curve on deflected the free edge

x1 ≃ x̄1 −
�

b
a2

�

x2
2 . (5.1)

Similarly, on the traction free edge, the deflected shape for the no-slip case from Eqns. (4.21a)

and (4.21b) also has a quadratic shape,

65
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x1(r,π)≃ a1r1/2 − r, and x2(r,π)≃ a2r1/2,

where combining yields

x1 ≃
�

a1

a2

�

x2 −
�

1
a2

2

�

x2
2 . (5.2)

The first notable difference is that at the crack tip, the no-slip case shows a finite slope (φ ̸=
π/2) on the traction free edge after loading and the frictionless case yields a vertical slope.

The finite slope at the crack tip in the no-slip case is the wedge angle φ (as shown in Figure

1.1b) and is quantified by the limit

tanφ ≡ lim
r→0
θ→π

d x2

d x1
. (5.3)

This slope can be worked out by taking the implicit derivative of Eqn. (5.2), or

1≃
�

a1

a2

�

d x2

d x1
−
�

2
a2

2

�

x2
d x2

d x1
.

Re-arranging, and solving for d x2/d x1 yields

d x2

d x1
≃ a2

2

a1a2 − 2x2
=

a2

a1 − 2r1/2
.

Taking the limit, the wedge angle defined in Eqn. (5.3) becomes

tanφ ≃ a2

a1
as r → 0. (5.4)

Noting the coefficient with the x2
2 term from Eqn. (5.2) being −1/a2

2 < 0 indicates that the

opening shape is to the left, however depending on the sign of a1 (it is expected that a2 ≥ 0

given Eqn. (4.28b) and requiring x2 ≥ 0), it would be expected that the vertex of the opening
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1

(a)

φ

Pull Direction
(b) Pull Direction

x̄1

Figure 5.1: Visualization of the Extents of Friction for a Loaded Interface Crack. (a) Loaded
Interface Crack with No-Slip Bonding (b) Loaded Interface Crack with Frictionless Bonding.

shape may reside above or below the ê1 axis, depending on the sign of the constant a1. While

in the absence of friction, the shape of Eqn. (5.1) suggests that the wedge angle φ → π/2
and the crack displacement x̄1 on the bonded edge is the vertex of the parabolic shape. This

makes sense given that it is expected that the frictionless solution is the top half of the full

crack problem, hence symmetric with the horizontal ê1 axis.

Given the visualization shown in Figure 5.1a, there is a physical limitation that 0≤ φ ≤ π
because the elastomer would penetrate the substrate. Using Eqn. (5.4), it is expected the

constant a1 = 0 when φ = π/2 (the vertical wedge angle) and a1 is positive or negative if

the wedge angle ranges are 0 ≤ φ < π/2 and π/2 < φ ≤ π respectively. At this transition

point (when a1 = 0), we see from Eqn. (5.2) a similarly shaped function to the frictionless

case (eqn (5.1)) with no crack tip movement. To model the effect of this transition on the

stresses, let a1 = 0 in Eqns. (4.24) where

σ11 ≃ 0, σ12 ≃ −µ tan(θ/2), and σ22 ≃ 1
2µa2r−1/2 sec(θ/2). (5.5)

Here, the σ11 term loses the singularity as r → 0 and the stress state has a similar form as

the frictionless stresses from Eqns. (4.17), although not enough terms are left to confirm if

σ11 → O
�

r1/2
�

as a1 → 0 in the no-slip case. This transition is of interest and could be a
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link between the two extents of interfacial friction. This transition point is investigated further

in Section 7.2 of this manuscript.

In the frictionless case, the most dominant stress as r → 0 is the normal stress σ22 and

hence it is expected that failure should occur by delamination in the x2 direction. Much has

been published on the general crack problem [85, 48, 79, 80, 50] (which is a full plane problem

of the frictionless case) and cohesive tearing models can be used. The no-slip case has the

same order of singularity as r → 0 for all three in plane stress components and it is then

expected that in this case failure can happen in either x1 or x2 direction. The stresses along

the bonded edge where delamination is expected can be found by making θ = 0 in Eqns.

(4.17) and (4.24) and both cases are summarized below.

No-Slip Stresses

σ11 ≃ µ
�

a2
1

2a2

�

r−1/2,

σ12 ≃ µ
�a1

2

�

r−1/2, and

σ22 ≃ µ
�a2

2

�

r−1/2.

Frictionless Stresses

σ11 ≃ µ
�

2b
a

�

r1/2,

σ12 ≃ 0, and

σ22 ≃ µ
� a

2b

�

r−1/2.

As expected, the frictionless condition P12(r, 0) = 0 implies σ12(r, 0) = 0. Also worth noting

here is the product of the stresses on the bonded edge from Eqns. (4.17a) and (4.17c) yields

a positive, finite, and constant value expressed as a tidy closed form relation

σ11σ22 ≃ µ2 and σ12 ≃ 0, on θ = 0. (5.6)

While all stress terms on the bonded edge in the no-slip case are singular as r → 0, since

they have the same asymptotic order, a tearing mechanism can be expressed as stress ratios.

Using this idea with the finding from Eqn. (5.4), we see a direct relationship between the

stresses, the constants a1 and a2, and wedge angle φ where
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σ22

σ11
≃
�

a2

a1

�2

= tan2φ and
σ12

σ11
≃ a2

a1
= tanφ, on θ = 0. (5.7)

For low wedge angles φ < π/4, then tanφ < 1 and σ11 dominates over the other two stress

components. If the wedge angle increases above φ > π/4, then the opposite is true and σ22

dominates both σ12 and σ11.

Fracture can also occur near the crack tip inside the bulk material away from the bonded

edge (θ ̸= 0) and even along the traction free edge [20]. Unfortunately, due to the degeneracy

of the expressions for J in both cases (Eqns. (4.22b) and (4.16b)) the stress field expressions

near the free edge θ ≃ π are not valid. However, assuming the Blatz-Ko material from Eqn.

(3.23), then the method used by Knowles and Sternberg can be utilized to approximate the

stresses on the free edge [79, 1]. Note that

det
�

FTP
�

= det
�

µFTF−µJ−2β I
�

= µ3 det
�

C− J−2β I
�

. (5.8)

The right hand term can be put into characteristic polynomial form, which for any second order

tensor is [40]

det (A− xI) = −x3 + IA
1 x2 − IA

2 x + IA
3 , (5.9)

where IA
i (i = 1,2, 3) and are the principal invariants of the tensor A. So, for the referential

displacement tensor C, then using Eqns. (2.29) we have the equivalent polynomial form

det
�

C− �J−2β
�

I
�

= − �J−2β
�3
+ (I + 1)

�

J−2β
�2 − (I + J2)

�

J−2β
�

+ J2

= J−2β
�

1− J−2β
� �

J−2β + J2β+2 − I
�

.

Another form of Eqn. (5.8) is
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det
�

FTP
�

= detFdetP= J detP.

Since we imposed P12= P22= 0 on the traction free edge (θ = π) and P32= 0 in plane

strain, then as θ → π the determinant of the first Piola tensor on the free edge detP = 0

and

0= J−2β
�

1− J−2β
� �

J−2β + J2β+2 − I
�

.

Since this material is assumed compressible, then J ̸= 1 identically and it must be assumed

that for any finite J then J−2β ̸= 0 requiring

I = J−2β + J2(β+1). (5.10)

Recall that J > 0 and assuming J = O
�

r ᾱ
�

as r → 0, then ᾱ < 0 so it is assumed that

the J2β+2 term is most dominant. From both Eqns. (4.16a) and (4.22a) it was found that

I = O
�

r−1
�

, therefore we can conclude for any case near r → 0 that

J(r,π)≃ [I(r,π)] 1
2β+2 = O

�

r−
1

2β+2

�

. (5.11)

The implication of the expression in Eqn. (5.11) is that there is a small boundary layer near

θ → π which has an asymptotic field of O
�

r−1/(2β+2)
�

as r → 0. Using the expression in

Eqn. (5.11), then J can be worked out for both cases on θ = π. Using Eqns. (4.16a), (4.16b),

(4.22a), and (4.22b), J for the no-slip and frictionless cases have the asymptotic relations near

the free edge θ = π:

No-Slip Case: J(r,π)≃
�

a2
1 + a2

2

4r

�

1
2β+2

, (5.12)

Frictionless Case: J(r,π)≃
�

a2

4r

�

1
2β+2

. (5.13)
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Using this result, the in-plane stress components on the free edge for the frictionless case are

σ11(r,π) = µ
�

4r
a2

�
1

2β+2 �

b2 + O(1) +O
�

rβ
��

,

σ12(r,π) = σ21 = µ
�

4r
a2

�
1

2β+2
�

−b
�

a
2
p

r

�

+ O

�

r−1/2
�

�

,

and σ22(r,π) = µ
�

4r
a2

�
1

2β+2

�

a2

4r
+ O(1)−

�

4r
a2

�
β
β+1

�

.

Therefore, for any β > 0 the stress field on the traction free edge has the form as r → 0:

σ11(r,π) = µb2
�

4r
a2

�
1

2β+2

+ O

�

r
1

2β+2

�

, (5.14a)

σ12(r,π) = −µb
�

a2

4r

�

β
2β+2

+ O

�

r−
β

2β+2

�

, (5.14b)

and σ22(r,π) = µ
�

a2

4r

�

2β+1
2β+2

+ O

�

r−
2β+1
2β+2

�

. (5.14c)

This result indicates that the normal stressσ22 singularity remains on the free edge, and while

we found zero lateral traction (σ12 = 0) on the bonded edge, there is now a shear singularity

which would indicate a potential scissoring mode of fracture. Also, the nature of singularity

for the normal stress σ22 as r → 0 is increased and depends on the material compressibility

parameter β . However, this result indicates that incompressible materials (as β →∞) will

have singularities in both σ12 and σ22. While the asymptotic order of the stress terms are not

in a form that we can simply show a ratio or product, using some creative algebra a potentially

useful tearing mechanism for the frictionless case on the free edge is

σ2
12σ22

σ11
≃ µ2, on θ = π. (5.15)

Using the same method as the frictionless case with the finding in Eqn. (5.12), the stresses

for the no-slip case on the free edge are
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σ11(r,π) = µ

�

4r
a2

1 + a2
2

�
1

2β+2
�

a2
1

4r
− a1p

r
+ O

�

r−1/2
�

+O
�

rβ
�

�

,

σ12(r,π) = µ

�

4r
a2

1 + a2
2

�
1

2β+2 �a1a2

4r
− a2

2
p

r
+ O

�

r−1/2
�

�

, and

σ22(r,π) = µ

�

4r
a2

1 + a2
2

�
1

2β+2
�

a2
2

4r
+ O

�

r−1/2
�

+O
�

rβ
�

�

.

Defining the constant ā ≡
Æ

a2
1 + a2

2 (for brevity), then the Cauchy stress components on the

free edge for the no-slip case have the final form

σ11(r,π) = µ
a1

ā

 

a1

ā

�

ā2

4r

�

2β+1
2β+2

− 2
�

ā2

4r

�

β
β+1

!

+ O

�

r−
β
β+1

�

, (5.16a)

σ12(r,π) = µ
a2

ā

 

a1

ā

�

ā2

4r

�

2β+1
2β+2

−
�

ā2

4r

�

β
β+1

!

+ O

�

r−
β
β+1

�

, (5.16b)

and σ22(r,π) = µ
�

ā2

4r

�

2β+1
2β+2

+ O

�

r−
β
β+1

�

. (5.16c)

This is an interesting result given that again the singularities as r → 0 all have the same

order like on the bonded edge and these singularities become more severe as the material

becomes more incompressible (β →∞). While all stress terms on the bonded edge in the

no-slip case are singular as r → 0, since they have the same asymptotic order, a tearing

mechanism can be expressed as stress ratios of the most dominant asymptotic terms. Again,

utilizing Eqn. (5.4), then a relationship between the stresses and wedge angle φ for the

no-slip case on the free edge is

σ22

σ11
≃ 1+

a2
2

a2
1

= sec2φ and
σ12

σ11
≃ a2

a1
= tanφ, on θ = π. (5.17)

This result shows finite stress ratios unless the wedge angle is φ = π/2, or when a1 = 0. In

this case, making a1 = 0 in Eqns. (5.16) reveals a reduced singularity as r → 0 on the free

edge in both σ11 and σ12 so that
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σ11 = O

�

r−
β
β+1

�

, σ12 ≃ −
µ

a2

�

a2
2

4r

�

β
β+1

, and σ22 ≃ µ
�

a2
2

4r

�

2β+1
2β+2

.

As a final comparison between the two limiting cases of friction, the J-integral (a path

independent contour integral which is related to the stress intensity factors used in LEFM

[99]) is equivalent to the energy release rate [99, 22, 20] (the ratio of the energy dissipated in

fracture opening and the crack surface area). For finite strain elastostatics, this has the form

[85, 79]

J=



Γ

�

WN1 −PiANA
∂ ui

∂ X1

�

dΓ . (5.18)

Since this integral is path independent, choose the path as a ‘small’ circle around the origin

of radius R so that NA = C̃A(θ ) (A= 1,2) and then take the limit as R→ 0. Using the plane

strain (i = 1, 2) Eqns. (2.1) and (3.4) this integral becomes

J= lim
R→0

 π

0

�

W(R,θ )C̃1(θ )−PiA(R,θ )C̃A(θ )
�

∂ ui

∂ r
C̃1(θ )−

1
r
∂ ui

∂ θ
C̃2(θ )

��

(Rdθ ).

The integral is with respect to the angular coordinate θ , so the limit can be brought inside the

integral. After taking the limit and using Eqns. (3.24) and (4.22a), then the J-Integral for the

no-slip case becomes

J=
µ

8

 π

0

�

ā2 cosθ − 2ā2 sin2
�

θ

2

�

cosθ + 2ā2 cos
�

θ

2

�

sin
�

θ

2

�

sinθ
�

dθ .

The three integrands are worked out to be

 π

0

cosθdθ = 0,

 π

0

sin2
�

θ

2

�

cosθdθ = −π
4

,
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and

 π

0

sin
�

θ

2

�

cos
�

θ

2

�

cosθdθ =
π

4
.

The procedure for the frictionless case is identical, and we find the path independent opening

release rate for the no-slip and frictionless cases to be

No-Slip Case: J= 1
8µπ

�

a2
1 + a2

2

�

, (5.19a)

Frictionless Case: J= 1
8µπa2. (5.19b)

Both J-integral formulations have a similar form and the frictionless case in Eqn. (5.19a) is

confirmed by Knowles and Sternberg [79] for the general crack problem, however their result

is double the value because they used an angle range of −π ≤ θ ≤ π while the interface

crack problem is only from 0 ≤ θ ≤ π. In comparison to the stresses found earlier, the

frictionless case was dominated by normal stresses (σ22 >> σ11,σ12) while the no-slip case

showed stresses of the same order in r as r → 0 and has effects from both normal and

lateral stresses. The expressions in Eqns. (5.19) shows that for the frictionless case, there

is no opening energy from any lateral movement because the constant b is not represented

in Eqn. (5.19b), however the no-slip case has opening energy that takes into account both

lateral and normal movement.

5.2 Between the Extents of Friction

Similar to the no-slip and frictionless cases, the finite friction result (summarized in Table 4.3)

shows no direct dependence on β . Dependence of β on the constants a and b are discussed

in more detail in the numerical study from Chapter 8.

For the present case, the deformed shape of the free edge can be approximated using

Eqns. (4.28) at θ = π, where

x1(r,π)≃ x̄1 + b [ξ sin(n̄π) + cos(n̄π)] r n̄, and x2(r,π)≃ a1r−1/2.
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1

(a)

O

φ

(b)

O x̄1

(c)

O x̄1

Figure 5.2: Visualization of the Three Loaded Interface Crack Deflection Shapes.
(a) No-Slip Case (b) Finite Friction Case (ξ ̸= 0) (c) Frictionless Case (ξ= 0)

Using two more trig identities

sin(π+ tan−1ξ) = − ξ
p

1+ ξ2
, (5.20)

and cos(π+ tan−1ξ) = − 1
p

1+ ξ2
, (5.21)

together with Eqn. (4.27), the free edge for the finite friction case has a deformed shape near

r → 0

x1 ≃ x̄1 −
�

b
p

1+ ξ2

a2n̄

�

x2n̄
2 . (5.22)

Recall that the no-slip and frictionless solutions from Eqns. (5.1) and (5.2) respectively

showed parabolic curves near the crack front. As Eqn. (5.22) shows, unless n̄ = 1 (when

ξ = 0, the frictionless case) the free edge takes either a blunted (ξ > 0 so that n̄ > 1)

or sharpened (ξ < 0, hence n̄ < 1) parabola. A visualization of this blunting effect is

shown in Figure 5.2. Here, Figures 5.2a and 5.2c represent the no-slip and frictionless cases

respectively (also shown in Figure 5.1) and Figure 5.2b represents an interface crack that is

blunted (ξ > 0) from slippage under friction.

It was found in Section 4.3 that the finite friction case converges to the frictionless case
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when ξ→ 0. This case also shows a vertical wedge angle φ like the frictionless case. Both

of these findings imply a direct connection of the finite friction case and the frictionless case.

Given the theoretical range of solution (Eqn. (4.30)) when ξ > 0 (the blunting case), a finite

slip threshold is required which implies no direct connection to the no-slip case. However,

under left induced slippage, ξ < 0 and the range from Eqn. (4.30) allows the case where the

threshold ξ → −∞ so that n̄ → 1/2. Unfortunately, one can not blindly plug in n̄ = 1/2

(and by extension ξ → ∞) into any of the expressions in Table 4.3 because they show

indeterminate limits.

Further insight into a potential connection between the no slip and finite friction cases can

be gained by evaluating the stresses. Recall the tearing mechanism identified for the no-slip

case in Eqn. (5.7) where a ratio of the stresses were given. Using Eqns. (4.36), the same

ratios for the finite friction case yield

lim
n̄→ 1

2

σ22

σ11
≃ lim
ξ→−∞

�

a2

4b2n̄2 (1+ ξ2)

�

r1−2n̄ ≃ lim
n̄→ 1

2

�

a cos(n̄π)
2bn̄

�2

r1−2n̄ = 0,

lim
n̄→ 1

2

σ12

σ11
≃ lim
ξ→−∞

�

1
b2n̄2(1+ ξ2)

��

sin(n̄π− [n̄− 1/2]θ )
cos(n̄π)

�

r1/2−n̄

≃ lim
n̄→ 1

2

�

1
bn̄

�2

cos(n̄π) sin(n̄π− [n̄− 1/2]θ )r1/2−n̄ = 0,

and lim
n̄→ 1

2

σ22

σ12
≃ lim

n̄→ 1
2

� a
2bn̄

�

�

cos(n̄π)
sin(n̄π− [n̄− 1/2]θ )

�

r1/2−n̄ = 0.

In the cases above, as ξ → −∞, each expression is of O(1) as r → 0 and the stress

relations must be σ11 > σ12 > σ22. This result is primarily because both σ11 and σ12 are

singular as n̄→ 1/2, while a constant value for σ22 is found to be

lim
n̄→ 1

2

σ22 ≃ lim
n̄→ 1

2

µ
� a

2bn̄

�

�

cos(n̄π)
cos([n̄− 1/2]θ − n̄π)

�

r1/2−n̄ = µ
�a

b

�

.

This result does not make sense given the comparison to the no-slip result. Further, Eqn.

(4.24c) shows a singularity in r as r → 0 and the fact that none of the ratios found above give
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finite, non-zero values it is then concluded that the finite friction solution does not converge to

the no-slip solution and the direct comparison is not viable.

However, another comparison can be found by considering the stresses on the bonded

edge (θ = 0). The stress field from Eqns. (4.24) (4.32), and (4.36) we find

χ(0) = 1
2 abn̄�����sec(n̄θ )�����

cos(−n̄θ ) =
abn̄

2
,

so that

No-Slip Stresses

σ11(r, 0)≃ µ
�

a2
1

2a2

�

r−1/2,

σ12(r, 0)≃ µ
�a1

2

�

r−1/2, and

σ22(r, 0)≃ µ
�a2

2

�

r−1/2.

Finite Friction Stresses

σ11(r, 0)≃ µ
�

2bn̄
a

�

�

1+ ξ2
�

r n̄−1/2,

σ12(r, 0)≃ τ, and

σ22(r, 0)≃ µ
� a

2bn̄

�

r1/2−n̄.

Similar to the frictionless case, the product of the normal stresses with finite friction yields a

constant value and re-arranging we get

σ11σ22 −τ2 = µ2 + O(1) .

Using this same evaluation for the no-slip case, note that

σ11σ22 −σ2
12 = O

�

r−1/2
�

.

Recalling that σ12(r, 0) = τ in the finite friction case, a direct comparison of the stresses on

the bonded edge applies:
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σ11σ22 −σ2
12 =











O

�

r−1/2
�

, No-Slip

µ2 + O(1) , Finite Friction

on θ = 0. (5.23)

Like the two limiting cases, the stresses from Eqns. (4.36) become unbound as θ → π, again

due to the degeneracy of J from Eqn. (4.33b). In Section 5.1, it was proven that on the free

edge that J has a different form near θ = π in the form of Eqn. (5.11) and utilizing Eqn.

(4.33a) we arrive at Eqn. (5.13). The stresses on the free edge become

σ11 = µ
�

4r
a2

�
1

2β+2 �

n̄2 b2r2(n̄−1) sec2(n̄π) + O

�

r2(n̄−1)
�

+O
�

rβ(3−2n̄)
��

,

σ12 = µ
�

4r
a2

�
1

2β+2 ��−n̄br n̄−1 sec(n̄π)
� �−1

2 ar−1/2
�

+ O

�

r n̄−3/2
��

,

σ22 = µ
�

4r
a2

�
1

2β+2 �
1
4 a2r−1 + O

�

r2(n̄−1)
�

+O
�

rβ(3−2n̄)
��

,

which for any β > 0 yields

σ11(r,π) = µb2n̄2
�

1+ ξ2
�

�

2
a

�
1
β+1

r
4(n̄−1)(β+1)+1

2β+2 + O

�

r
4(n̄−1)(β+1)+1

2β+2

�

, (5.24a)

σ12(r,π) = −µ
�

bn̄
p

1+ ξ2
�
�a

2

�
β
β+1

r
(2n̄−3)(β+1)+1

2β+2 + O

�

r
(2n̄−3)(β+1)+1

2β+2

�

, (5.24b)

and σ22(r,π) = µ
�a

2

�
2β+1
β+1

r−
2β+1
2β+2 + O

�

r−
2β+1
2β+2

�

. (5.24c)

Another important finding is that the near-field order (as r → 0) of the Cauchy stress

expressions in Eqns. (4.36) and (5.24) depend on the value of n̄ and by proxy ξ. As a

counterpart to the blunting and sharpening discussed previously in this section, when post

loaded frictional blunting is imposed on the bonded edge, then n̄ > 1 (and ξ > 0) the

normal stress σ22 = O
�

r1/2−n̄
�

which is of higher asymptotic order than both the no-slip

and frictionless cases. Correspondingly, this blunting results in the other normal stress

component σ11 = O
�

r n̄−1/2
�

which has lower asymptotic order than the frictionless case.
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The shear stress component with finite friction is of the order σ12 = O(1). Defining the

difference between the finite friction and frictionless shear stress magnitudes as χ̄ , then

using Eqns. (4.36b) and (4.17b)

χ̄ ≡ |σ12|ξ ̸=0 − |σ12|ξ=0 = | tan[n̄π− (n̄− 1/2)θ]| − | tan(θ/2)|.

In the range 0 ≤ θ ≤ π, we find that for any real values of n̄ > 1 that χ̄ < 0. However, using

the same arguments we see that in the sharpening case (n̄< 1, and ξ < 0) has the opposite

effects.

So, compared to the frictionless case: when blunted, the presence of interfacial slip friction

reducesσ11, nominally decreases the shear stressσ12 and dramatically increases the normal

stresses σ22. However, and more interestingly, we can also conclude that slip friction when

pulled to the left actually increases the overall magnitude of the imposed shear σ12 and

dramatically reduces the order of the normal stress σ22 while increasing σ11. Compared

to the no-slip case, it can be concluded that the same effect occurs with σ22 that increases or

decreases when interfacial friction blunts or sharpens respectively. From an adhesive strength

perspective, this result indicates that interfacial slippage can increase or decrease depending

on which direction the material is pulled. Recall from Section 5.1 that the transition happens

when the no-slip constant a1 = 0 and further discussion of how this transition happens is

quantified in Sections 7.2.

From Eqns. (5.24), the dependence on n̄ disappears in the σ22 term but resides in the

σ11 and σ12 terms. For σ22, the order of singularity depends only on β and indicates that for

incompressible materials (β →∞) that σ22(r,π) = O
�

r−1
�

and has the same order as the

no-slip case on the free edge (recall Eqn. (5.16c)). While away from the free edge (θ ̸= π),

σ11 and σ12 are finite as r → 0, Eqns. (5.24a) and (5.24b) show that asymptotic dominance

increases with σ12 which was always being singular for the range given in (4.12) and when

n̄< (4β + 5)/(4β + 4) the normal stress σ11 is also singular.
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Finally, it must be noted that the J-integral may not be directly used here. Park et al [74]

pointed out that with mixed-mode problems, true path independence is not clearly shown. To

explain this point, a diagram showing how the traction σ versus separation in the tangential

x1 direction may change depending on the stretch of the material in the normal x2 direction,

indicating that linear superposition of traction separation in the normal x2 and tangential x1

directions does not hold. Given the ambiguity here, this analysis not pursued but may be the

subject of future works.



Part III

Numerical Simulations





6 - Finite Element Analysis Model

6.1 Setup and Geometry

In order to compare and utilize the analytical findings from Chapters 4 and 5, an extensive

finite element analysis (FEA) study was done utilizing the commercial software ABAQUS

(versions 6.12 and 6.13, by Dassault Systems Simulia Corp., Providence, RI). For these

simulations, the ABAQUS Hyperfoam model [100] was used, which has the form

ψ=
N


i=1

2µi

ᾱ2
i

�

I1 − 3+
1
βi

�

�

Jth

J

�αiβi

− 1

��

, (6.1)

where ᾱi , βi and µi are material constants which may or may not depend on temperature and

the total value of N allows for fitting for up to six terms. Here, we simply use N = 1 and note

that βi ≡ β , µi ≡ µ, and Jth is the ratio of the material volumetric expansion due to thermal

effects so that

Jth ≡
�

1+ Ẽth

�3
, (6.2)

with Ẽth being the linear coefficient of thermal expansion. With the thermal effects turned off,

then Jth = 1. In plane strain I1 = I + 1, and choosing the material constant ᾱ1 = 2 then we

83
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Figure 6.1: FEA Setup Geometry

are left with the Blatz-Ko strain energy density function given by Eqn. (3.23).

The goal is to model something resembling the three examples of plane strain shown

in Figures 1.2, which also has geometry similar to the half-plane problem shown in Figure

3.1 and requires a reasonably large geometry (thick and long) with finely sized elements

near an interface crack tip. The undeformed geometry used for all simulations discussed in

this manuscript is shown in Figure 6.1 with a dimensional characteristic length L. The point

“O” represents the origin (and crack tip, where r = 0) with triangular mesh elements sized

0.0001L increasing radially outward to 0.05L-sized quad-dominated elements on faces AC,

AB and BD. The sides OD and CO (the dashed line) represent the bonded edge (θ = 0) and

the traction free edge (θ = π) respectively. Since these edges are of most interest near the

crack tip O, the mesh sizes along OD and CO increase from 0.0001L to 0.05L sized elements

from O toward points D and C. The mesh described here was found through refinement and

validated at various stages as described in Sections 6.3, 7.1 and 8.1

To simulate far-field pulling and tearing loads, the traction is applied across the entire top

face (AB) in the form of nominal and lateral displacement, with ∆X and ∆Y being positive in

the directions shown in Figure 6.1. The far left and right edges (AC and BD respectively) had

varied conditions depending on the study and date of simulation. See the remarks in the other

studies found in the later sections for specific conditions.

To explore solutions that most resemble an incompressible material, it was intended to
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make β as large as possible. However, with simulations using values β > 25, numerical

instabilities occurred. The reason for these instabilities can be understood when considering

that as β → ∞, we approach the incompressible case where J → 1. Consider the body

Eqns. (3.27), where evaluation requires numerical integration of each term and evaluation

of J (a number very close to unity) to a large negative power. While the J−2(β+1) term

should remain close to unity, the numerical error in this term can become quite large. Values

up to β = 24.5 (ν = 0.49) were used in each study to determine the effects of nearly

incompressible materials.

It must also be noted here that in the cases of pure lateral strain to the left (∆Y = 0 and

∆X < 0), the material deflection away from the crack tip on the traction free edge displaced

below the Ê1 axis, meaning the material had self contact with the substrate. This result is not

by any means unreasonable, as experimental studies showed that with large lateral strain a

similar result where the free edge had self contact with the substrate to which the elastomer

was bonded [66]. The numerical model utilized was not designed with surface contact in mind,

mainly because we used a traction free condition without displacement constraints when θ =

π. Due to this, all numerical studies discussed in later sections utilized at least a small amount

of positive normal loading (∆Y > 0) to ensure material contact would not occur at reasonable

distances from the crack tip.

6.2 Tie in with Near Field Solutions

Recall from Chapters 4 and 5 that the shape of the traction free edge (θ = π) after loading

was determined for the no-slip and finite friction cases to be

No-Slip Case: x1 ≃
�

a1

a2

�

x2 −
�

1
a2

2

�

x2
2 ,

Finite Friction Case: x1 ≃ x̄1 −
�

b
p

1+ ξ2

a2n̄

�

x2n̄
2 .
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Defining the point estimates

â1 ≡
a1

a2
, â2 ≡

�

1
a2

�2

, and b̂ ≡ b
p

1+ ξ2

a2n̄
, (6.3)

then the expressions can be curve fit with the shapes of the traction free edge deflection at

θ = π, which have the form

No-Slip: x1 ≃ â1 x2 − â2 x2
2 , (6.4)

Finite Friction: x̄1 − x1 ≃ b̂x2n̄
2 . (6.5)

Note that x̄1 is found directly from the data (i.e. is not a point estimate) and that with b̂ alone

it is not possible to determine both a and b uniquely. However, the finite friction case allows

for slippage on the bonded edge where

x1(r, 0)≃ x̄1 + br n̄.

Noting that X1(r, 0) = r, then the finite friction data can also be curve fit

x1 − x̄1 ≃ bX n̄
1 . (6.6)

So, we can determine the no-slip constants a1 and a2 at different loading conditions by curve

fitting the point estimates â1 and â2 from Eqn. (6.4) using FEA data along the traction free

edge CO (or when θ = π). For the finite friction simulations the constant a can be determined

by curve fitting the point estimates b̂ on the edge CO (or θ = π) and b on the edge OD (or

θ = 0) from Eqns. (6.5) and (6.6) respectively. Once b and b̂ are obtained, the value for a

can be found by re-arranging the definition of b̂ from Eqn. (6.3), therefore

a =
�

b

b̂

p

1+ ξ2

�
1

2n̄

. (6.7)
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Note that x2 ≥ 0 because we do not allow inter-penetration of the substrate material, and

sin(θ/2)≥ 0 for 0≤ θ ≤ π, then a must be positive and the negative root is discarded.

Given the geometry from Figure 6.1 and noting that Abaqus provides non-dimensionalized

data, each point estimate must be scaled according to it’s dimensions. Given this, the

dimensional length L is used as a scaling reference for the coordinate variables x1 and x2 as

well as the constant x̄1. From this, the constants a1, a2 and a all have the units L1/2, while b

and b̂ have the units L1−n̄ and L1−2n̄ respectively.

Each point estimate described in this section was found using the Least Squares method

[101]. By starting with the first few points near r = 0 along the edge of interest, then the

number of points used were increased until the coefficient of determination, also known as

the R2 value and is a measure of how well the data fits the tested curve [101], dropped below

a value of R2 = 0.999. Validation methods of the analytical and FEA models are discussed

in Section 6.3.

6.3 Numerical Validation Methods

Several other measures of validation of the analytical model were also used on top of mesh

refinement and evaluating the coefficient of determination for the point estimates which were

described in the previous section. For example, recall the Cauchy stresses on the bonded

edge (θ = 0 in Eqns. (4.17) and (4.36)), where

No-Slip Stresses

σ11 ≃ µ
�

a2
1

2a2

�

r−1/2,

σ12 ≃ µ
�a1

2

�

r−1/2, and

σ22 ≃ µ
�a2

2

�

r−1/2.

Finite Friction Stresses

σ11 ≃ µ
�

2bn̄
a

�

�

ξ2 + 1
�

r n̄−1/2,

σ12 ≃ τ, and

σ22 ≃ µ
� a

2bn̄

�

r1/2−n̄.

For each case, the slope of stress versus the crack tip distance (a log-log plot is required

for this) should directly match the powers in the equations shown above. Meaning that when
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θ = 0 as r → 0, for each case below:

No-Slip: σ11, σ12, and σ22→ O
�

r−1/2
�

,

Finite Friction: σ11→ O
�

r n̄−1/2
�

, σ12→ τ, and σ22→ O
�

r1/2−n̄
�

.

For further validation, the constants a1, a2, a and b found from the point estimates from Eqns.

(6.4), (6.5), and (6.6) can be used to compute the stresses on the bonded edge (θ = 0) and a

direct comparison to the FEA data on the bonded edge can then be made. As the FEA mesh

was being refined, the number of elements were increased until the stress magnitudes on the

bonded edge showed reasonable agreement with the expected values. Validation plots and

details for each specific simulation are described in the upcoming sections.
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7.1 Extents of Friction with Normal Loading

A series of no-slip and frictionless FEA studies were done using the geometry from Figure

6.1, as described in Section 6.1. For the simulations in this section, the far right and left

edges (AC and BD) were allowed to slide freely in the vertical direction but constrained in the

horizontal direction. The reason for this choice was because the wedge angle φ was of most

interest and by constraining horizontal deflection on the edges AC and BD it was anticipated

that through lateral material contraction (i.e. Hooke’s Law), larger ranges of the wedge angle

φ could be observed.

Recall from Section 4.3 that the wedge angle was shown analytically to be φ = π/2 in

finite friction and had interfacial slippage of the interface crack tip denoted by the quantity x̄1

from Eqn. (4.28a). To best visualize this effect with finite friction, the edges AC and BD were

set as traction free edges and movement was not restricted so that these edges resembled

the same traction free conditions as edge CO. So, in order to understand and compare the

transition process between no-slip and finite friction, the studies from Section 7.2 also used

this condition. For the comparison between the extents of friction with normal loading, the

top edge (AB) was deflected upwards with no lateral movement (∆Y > 0 and ∆X = 0).

89
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The vertical far-field displacement was then increased (in steps) as necessary for numerical

convergence to reach 100% normal strain, or ∆Y → 2.0L.

A validation example with∆Y = 2.0L can be seen in Figure 7.1 with β = 4.5. Figure 7.1a

shows the crack opening shape along the traction free edge (θ = π) of the FEA data together

with the curve fit of Eqn. (5.2). This data set produced a wedge angle φ < π/2 and showed

excellent agreement with the near the crack tip (r → 0) opening shape. However, these plots

quickly deviate from each other beyond the values used for point estimates. The FEA data

of the stresses on the bonded edge (θ = 0) are plotted in Figure 7.1b along with curves

with O
�

r−1/2
�

for comparison. The slopes of these log-log plots also show good agreement

with the expected values. Using the values determined from the deflection in this example,

the coefficients were determined to be a1 ≃ 0.5918L1/2 and a2 ≃ 2.2545L1/2 so that the

stresses near r → 0 on the bonded edge (θ = 0) are

σ11
p

r
µ
≃ 0.0777,

σ12
p

r
µ
≃ 0.2959, and

σ22
p

r
µ
≃ 1.1273. (7.1)

We can also approximate the stress coefficients using the first two data points for each stress

field in Figure 7.1b. For example, assuming the form for each Cauchy stress σi j∝ σ̄i j r
−1/2,

then

σ̄11

µ
≃ 5.0520− 7.1469
(0.000202)−1/2 − (0.0001)−1/2

= 0.0706,

σ̄12

µ
≃ 20.88− 29.595
(0.000202)−1/2 − (0.0001)−1/2

= 0.2940,

and
σ̄22

µ
≃ 86.499− 122.7
(0.000202)−1/2 − (0.0001)−1/2

= 1.221.

When comparing these approximations with the ones computed in Eqn. (7.1), we see

agreement within 10%.

For comparison, the same parameters as the series in Figure 7.1 (∆Y = 2.0L and
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Figure 1: No-slip with nominal loading (∆X = 0) with β = 4.5 and ∆Y/L = 2.0.
(a) Deflected shape on θ = π, (b) Cauchy Stresses on θ = 0.

Figure 7.1: No-slip with nominal loading ∆X = 0 with β = 4.5 and ∆Y = 2.0L.
(a) Deflected shape on θ = π, (b) Cauchy stresses on θ = 0.
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β = 4.5) were used and with the frictionless boundary condition, we see in Figure 7.2a

the expected opening geometry given by a vertical wedge angle (φ = π/2) and the presence

of interfacial slippage with a crack tip displacement of x̄1 ≃ 0.9787L. The constants a and b

for this example can not be computed directly without curve fitting for b using the deformation

along the bonded edge (recall Eqn. (5.1)), however further validation of finite friction cases is

more completely covered in Section 8.1. As expected via Eqns. (4.36), the stresses on the

bonded edge (see Figure 7.2b) show the expected order (the slope of the log-log plots) in r

so that σ11 ∼ O
�

r1/2
�

and σ22 ∼ O
�

r−1/2
�

at θ = 0 near r → 0.

Proceeding with the conclusion that everything is in order, an extensive set of simulations

with normal loading was performed using the no-slip boundary condition and various values

of β . The wedge angle φ was computed from each data set using Eqn. (5.4). The effect

of applied normal loading ∆Y on the wedge angle φ with various values of β is shown in

Figure 7.3. At small applied displacements (∆Y < 0.1L), the wedge angle φ dramatically

decreases from φ = π (the undeformed wedge angle) to φ < π/2. As the applied normal

displacement∆Y increases further, the wedge anglesφ for each value of β tend towardφ→
π/2. The wedge angle φ consistently decreases as material becomes less compressible (or

β increases). For example, with β = 1, the wedge angle was determined to be φ ≃ 1.4321

(less than π/2) radians at ∆Y = 1.0L.

Using the same data, the effect of compressibility on the wedge angle φ is shown in

Figure 7.4 with various applied normal displacements ∆Y . Since we are most interested in

soft elastomers with large strain, the plots where∆Y < 0.1L were omitted here. The effect of

compressibility on the wedge angle φ diminishes as β increases and the larger the applied

normal loading ∆Y , the wedge angle φ saturates (meaning ∂ φ

∂ β → 0 as β increases).

The data here implies that the wedge angle φ → π/2 as ∆Y increases, even for the

incompressible Neo-Hookean material (β → ∞). Also, since the effect of β on the

wedge angle φ diminishes for large β , it is assumed that any flat portion ( ∂ φ∂ β = 0) from
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Figure 7.4 indicates insensitivity to β and should therefore approximate the incompressible

Neo-Hookean case.

7.2 Lateral Loading and The Transition Angle

For the simulations described in this section, the mesh and geometry from Figure 6.1 and the

far left and right sides (AC and BD) were left traction free. Here, the effect of lateral loading

(∆X ̸= 0) on the top face AB with no-slip conditions on OD are discussed. In each simulation

run, a small amount of positive normal loading (∆Y > 0) was needed to ensure material

inter-penetration did not occur along the free edge CO.

Recall from Section 5.1 that when a1 = 0, the no slip case solution outlined in Table 4.2

yields a wedge angle φ = π/2 and the corresponding stress σ12→ 0 on the bonded surface

(θ = 0). Given that the numerical runs with only normal loading (∆X = 0) all showed positive

shear on the bonded surface, it is logical to look for some loading angle less than α < π/2

where this transition occurs. Recall that the load angle α was defined in Section 1.2 from the

negative horizontal axis (from the left) so that

tanα≡ −∆Y

∆X
, 0≤ α≤ π, (7.2)

and we expect the transition to happen at some critical loading angle α̃ somewhere in the

range 0 ≤ α < π/2 so that the loading on the top face AB produces a vertical wedge angle

φ = π/2. The total loading displacement is represented as ∆ and is defined as

∆≡
q

∆2
X +∆

2
Y . (7.3)

Numerically, this critical loading angle α̃ can be iteratively found by applying the no-slip

conditions at various load angles α until the induced shear stress on the bonded edge yields

σ12 = 0.
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An example of this method is outlined in Figure 7.5, where various loading angles were

imposed on the top face AB using β = 24.5. Figures 7.5a and 7.5b show the near-field

deformed geometry and stresses using ∆X = 1.002L and ∆Y = 0.5L (∆ = 1.12L and

α = 0.463 rad). In this case, negative shear stress is induced on the bonded edge and

corresponding to a finite wedge angle φ > π/2, which matches the expected deformed

shape in the form of Eqn. (5.2). Also, the asymptotic order of the in-plane Cauchy stresses

all showed σ ≃ O
�

r−1/2
�

. From this point, the lateral loading ∆X can be increased (or the

magnitude reduced). However, it is also possible to determine the effects of total loading

∆. Keeping this loading displacement the same as Figures 7.5a and 7.5b (∆ = 1.12L) and

increasing the load angle α until the critical loading angle α̃ is reached, shown in Figures 7.5c

and 7.5d, the critical loading angle was found to be α̃ ≃ 1.103 rad. From Figure 7.5d, it is

confirmed that the normal stresses σ11 = O
�

r1/2
�

and σ22 = O
�

r−1/2
�

and the no-slip case

takes the form of the frictionless case with no interfacial slippage ( x̄1 = 0); a result previously

found by making a1 = 0 in Eqn. (5.5). If the loading angle α is increased with the same total

deflected loading (∆ = 1.12L), then the deflection and stress state revert back to the no-slip

result (Figures 7.5e and 7.5f) with a finite wedge angle φ and all three stresses again showed

the asymptotic order σ = O
�

r−1/2
�

.

The critical angle α̃ with respect to loading magnitude ∆ is shown in Figure 7.6a. As the

total loading∆ increases, the critical angle appears to approach α̃→ π/2. For loading above

∆ ≃ 0.7L, the data fit nicely with a quadratic as shown in Figure 7.6b and for the range and

geometry used it was determined

α̃(∆)≃ π
2
− L2

∆[0.405∆+ 1.50L]
, where ∆≥ 0.7L. (7.4)

From this, we can conclude that the imposed stress on the bonded edge depends on the total

material stretch ∆. This also clearly shows a link between material stretch and the induced

slippage direction. If a material can not undergo a large amount of stretch or if the load is
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minimal (i.e. ∆ is small), then the corresponding critical angle α̃ will be much smaller than if

the material can undergo more stretch. The same data set can be shown in a different way by

defining the critical lateral loading ∆c as the corresponding ∆X value with respect to normal

loading ∆Y . In Figure 7.6c, we find that the magnitude of critical lateral loading ∆c sharply

increases when normal loading∆Y ≤ 0.7L, then reaches a minimum value near∆Y ≃ 0.7L.

Beyond a normal deflection load of ∆Y > 0.7L, the compressibility parameter β has little

effect and ∆c → 0 where the curve fit from Eqn. (7.4) is viable.

From these results, we now have a good starting point for determining the sign of the

induced shear on the bonded edge, hence the sign of ξ for each finite friction simulation

described in Chapter 8.
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8.1 Finite Friction - Methods and Validation

For the simulations with a non-zero, finite slippage threshold ξ ̸= 0, the boundary condition

in Eqn. (3.10) was used from the crack tip inwards (from point O toward point D in Figure

6.1) inside the length of the slip-zone (defined as δ). The value of δ for each data point was

determined using an iterative process. Starting with the no-slip condition (Eqn. (3.11)) across

the entire bonded edge OD, a finite stress was imposed starting at point O (where a shear

stress singularity occurs in the no-slip case) some finite length to the right (towards point D).

With a finite stress imposed inside the slip-zone length δguess, it was simultaneously ensured

that beyond the range r > δguess the material remained bonded following the no-slip

condition from Eqn. (3.11). Given that we have imposed a stress boundary condition when

r < δguess and a displacement condition when r > δguess, a natural stress concentration

will occur at r = δguess if the value of δguess is not set to the correct slip zone length.

To visualize this, see the shear stress output σ12 plot in Figure 8.1 for several iterations

of δguess which were increased until the stress concentration at r = δ was no longer

measurable in the output data. For the particular plot in Figure 8.1, the far-field strain was

imposed on the top edge AB with ∆Y = 2.0L and ∆X = 1.0L, and a slip threshold was

101
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chosen to be ξ= 0.5 (n̄= 1.1476). In this particular example, δ ≃ 1.8758L

In all numerical exercises with non-zero, finite slippage, the stress concentration between

the slip-zone and beyond (r > δ) disappeared and the corresponding value of δ was then

recorded. As shown in Figure 8.1, the implied condition σ/µ = ξ = 0.5 within the slip-zone

(r ≤ δ) was arrived at, hence the near-field form of deflection from Eqns. (4.28) is assumed

viable in this range. Note that it was also apparent if a slip-zone length guess was too large

(δguess > δ) because concentrations in shear stress at the transition re-appeared with

spikes in both the positive and negative directions on the right and left sides of the chosen

value of r = δguess.

For numerical runs, the constants a and b from Eqns. (4.28) were found using the point

estimates described in Section 6.2, which allow for curve fitting on both the free and bonded

edges (θ = π and θ = 0 respectively). With the point estimates b̂ and b, the constant a can

be determined from Eqn. (6.7).

Two more examples are outlined below for evaluation of this method. In the first example,

shown in Figure 8.2, we chose a material with β = 7.83 in mixed mode loading with ∆Y =

1.0L, and ∆X = −1.0L (lateral strain to the left). From the findings in Figure 7.6 and using

Eqn. (7.2), the loading angle α = π/4 which is less than the critical angle so that negative

shear σ12 is expected on the bonded edge, resulting in a negative slip threshold value on the

bonded edge of ξ= −0.75 (n̄= 0.7952). As seen in Figure 8.2a, the shear stress outputσ12

shows excellent agreement with the imposed stress ofσ12 = −0.75µ using a slip-zone length

δ to be 0.159L (found iteratively). The estimated crack tip displacement was determined to

be x̄1 ≃ −0.057L by recording the displacement of the first node along the bonded surface.

Here, x̄1 is negative because the lateral stress σ12 on the bonded edge points to the left.

For further validation with this example, the natural log plots of the other stress outputs σ11

and σ22 (shown in Figure 8.2b) near the crack tip along the bonded edge showed reasonable

agreement with the expected slopes as per Eqns. (4.36a) and (4.36c). Figure 8.2c shows the
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opening shape of the free edge along with a near-field plot of Eqn. (5.22) using the fitted FEA

data near the crack tip where it was determined that b̂ ≃ 0.475L−0.590, b ≃ −0.9561L0.205,

and using Eqn. (6.7) the constant a ≃ 1.786L1/2. Notice the strong correlation close to the

crack tip in the two plots inside the range r ≤ δ. As predicted by the value of n̄ = 0.7952,

the opening shape indicated a vertical wedge angle and resembles a sharpened parabola

(x1∝ x1.59
2 ).

For the second validation example (shown in Figure 8.3), the same material with β = 7.83

was used with pure normal loading so that ∆Y = 4.0L and ∆X = 0. Since this corresponds

to a loading angle α = π/2, then the stress threshold is a positive value and in this case

it is assumed ξ = +1.5 (∴ n̄ = 1.3128). Figure 8.3a shows the shear stress output σ12

on the bonded edge using an applied slip-zone of δ ≃ 0.0816L. In this example, the point

estimates b̂ and b were determined to be 0.0237L−1.626 and 0.660L−0.313 respectively, and

the constant a ≃ 4.447L1/2. The FEA output for the slopes of the natural log of the nominal

stresses σ11 and σ22 (shown in Figure 8.3b) also show reasonable agreement inside the

slip-zone. In Figure 8.3c, the constant x̄1 ≃ 0.0523L (the crack tip moves to the right with

this example) as well as the data plotted with the curve fit function using the point estimates

with Eqn. (5.22). Here we again see the opening shape has a vertical angle but this time, due

to n̄ > 1 and given the sign of the shear stress threshold, it resembles a more obtuse and

blunted parabola (x1∝ x2.626
2 ).

From both examples presented, it is concluded that the iterative technique for finding δ

yields reasonable results and that the near field form of the deformation and stress fields from

Table (4.3) correlate well with the FEA solutions found for each case. We move forward to the

next sections where the techniques outlined in this section are utilized. An extensive normal

loading study is discussed in Section 8.2 and an investigation of lateral loading is found in

Section 8.3.
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8.2 Finite Friction With Normal Loading

In the investigation of a tearing mechanism with finite friction, the numerical case with pure

normal external loading was extensively explored. Using the geometry and numerical model

described in Section 8.1, with ∆X = 0 and external loading in the range 0 ≤ ∆Y ≤ 4.0L in

increments of 0.1L, materials with β = 7.83, 16.0 and 24.5 were evaluated. Throughout this

case study, every FEA data set was used to determine the constants from Eqns. (4.28a) and

(4.28b), being x̄1, a and b as well as the value of the slip-zone length δ.

How compressibility affects x̄1, a, b and δ can be seen through a comparison of the three

different values of β . Results using various values of ξ are highlighted in Figures 8.4 through

8.7. In Figures 8.4a, 8.5a, 8.5b, 8.6a, 8.6b, 8.7a, and 8.7b, we see that x̄1 and δ converge

for each values of β with loading values ∆Y > 1.2L. Note that since Figure 8.4b represents

the frictionless case, the slip zone length δ encompasses the entire bonded edge which for

these runs was δ = 5L, and this plot is shown only for completeness. Note that in each

study, the interfacial slip (expressed quantitatively through x̄1 and δ) increases sharply for

low normal deflection until saturating in the approximate range ∆Y < 0.7L and then reduces

when loading is increased further. A connection between this finding and the transition angle

α̃ described in Section 7.2 is shown in Figure 7.6c, where the largest slippage tends to be

be near the maximum value of the critical normal loading values ∆c. When ∆Y > ∆c , the

reduction in δ and x̄1 show that with this model some of the material points return to their

previous unloaded values. From Figures 8.4c, 8.4d, 8.5c, 8.5d, 8.6c, 8.6d, 8.7c, and 8.7d, we

see that the constants a and b did not show dependence on the compressibility parameter β

in the range tested. The constant a showed a monotonically increasing value with ∆Y , which

makes sense because this constant is related to opening in the x2 direction. The constant b,

which is related to the opening deflection in the x1 direction, appears to decrease from some

large value at low loading, and tends to a constant value when ∆Y > ∆c for each value of β

tested.
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To determine the effect of the slip threshold value, the same data from Figures 8.4 through

8.7 was utilized and re-plotted into Figures 8.8 through 8.10. Here, we evaluated the normal

loading cases with interfacial slippage threshold values ξ = 0.0, 0.5, 1.0 and 1.5 given

that most material shear bond strengths τ of various rubber based or pressure-sensitive

adhesives (for example, see Table 27.4 of [54] from the Physical Properties of Polymers

Handbook [102]) versus material tensile modulus µ (see Table 24.6 of [53]) have an ultimate

material strength on the order of σu/µ < 1. Therefore, no simulations with slip threshold

values larger than ξ = 1.5 were performed. From Figures 8.8a, 8.8b, 8.9a, 8.9b, 8.10a,

and 8.10b, we see a clear dependence on ξ on the material slippage constants x̄1 and δ,

as expected. As the slip threshold is increased, the slip zone length δ and the crack tip

slippage x̄1 are both reduced. Again, this is an expected result because a higher ξ should

impede slippage. Interestingly, as seen in Figures 8.8c, 8.9c, and 8.10c, the constant a is

also insensitive to the slip threshold ξ. The constant b showed moderately reduced values

(see Figures 8.8d, 8.9d, and 8.10d) as ξ was increased.

Using the data from the twelve different runs discussed in this section, the constant a fit

well with a quadratic curve, and assuming b is constant when ∆X > ∆c, dependence on ξ

and ∆Y was found to have the correlations for the geometry from Figure 6.1

b ≃ [−0.1727ξ+ 0.8276] L1−n̄ (8.1)

and a ≃ [−0.1445∆Y + 1.648L]∆Y L−3/2. (8.2)

In the above expressions, recall that n̄ is a function of ξ given by Eqn. (4.27). Note that with

geometry different than 10L × 2L, these estimates will have increasing error away from the

crack tip at r = 0 and we assume large strains above ∆Y > 1.2L for the correlation of b in

Eqn. (8.1).
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8.3 Finite Friction With Lateral Loading

A series of FEA simulations were performed using various values of lateral loading displacement

∆X . Each simulation required using a small, constant, normal displacement of ∆Y = 0.1L

in order to avoid distortion and self contact of the free edge. The lateral loading was varied

through the range −0.8L ≤ ∆X ≤ 0.7L. Figure 8.11 shows these simulations using a

compressibility parameter of β = 16.0 and a slip threshold magnitude of |σ12|/µ ≤ 0.5.

Recall that in order to determine the sign of ξ for each run, first a no-slip simulation was

performed. From this, the direction of shear on the bonded surface was applied and the

appropriate slip zone length was determined through the iterative method described in

Section 8.1. In this example, the critical lateral loading (denoted by a vertical dashed line)

where no-slippage occurs was determined to be ∆c ≃ 0.3L. As confirmation, this point falls

precisely between the two plots (the average of the β = 7.83 and β = 24.5 runs) in Figure

7.6c where ∆Y = 0.1L.

From Figure 8.11a, we see that as lateral loading is increased from ∆X = −0.3L, the

crack tip displacement x̄1 grows more than a linear slope with ∆X . When the lateral loading

magnitude was increased to the left so that ∆X < −0.3L, a similar trend occurred but the

crack tip moving to the left making x̄1 < 0. Also, we see that with loading angles α < α̃ (or

∆X <∆c for a corresponding∆Y ) the magnitude of the crack tip displacement | x̄1| increases

much more for the same |∆X | than when α > α̃. The effect of lateral loading on the slip zone

length δ is shown in Figure 8.11b which also shows an increase in both directions from the

critical lateral loading ∆X = −0.3L.

Figures 8.11c and 8.11d show the effect of lateral loading on the constants a and b

respectively. When lateral loading ∆X increases we find that the constant a decreases and

tends to transition smoothly through the critical lateral loading ∆X = −0.3L, meaning the

points on the left and right of the dashed vertical line tend to line up. This implies that in both

positive and negative shear traction, as the lateral loading ∆X increases the displacement
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in the x2 direction is reduced. The constant b does not transition smoothly through the

critical lateral loading point, however appears to remain constant either direction away from

∆X = −0.3L. It is not understood at this time why b shows such deviations near the critical

lateral loading point, however one possibility is that since the slip zone length δ is very small

near this point, reducing the range of validity in the solution from Eqns. (4.28).

Insight into the differences when lateral loading ∆X is above and below the critical lateral

loading ∆c can be found by reviewing the shear stress along the entire bonded surface. For

example, using the same data set from Figure 8.11, the shear stresses are shown in Figure

8.12. When ∆X < ∆c (Figure 8.12a), negative shear is imposed all the way across the

bonded surface resulting in the slip zone length δ growing rapidly once the average imposed

shear stress increases above (or in the negative case, decreases) the threshold limit value of

τ/µ = −0.5, then slippage is imposed over the entire surface. Correspondingly, by plotting

the shear stress σ12 for the last several data points when ∆X > ∆c (shown in Figure 8.12b)

we see that the slip zone length δ increases marginally. As the lateral loading is increased

further, it is not expected to suddenly slip across the entire surface like the cases when ξ < 0.

Clearly, we have two distinct failure modes and responses to increasing load when the load

angle α is less than or greater than the transition angle α̃.
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Discussion and Results





9 - A Finite Friction Tearing Mechanism

9.1 Interpretation of Experimental Results

The peel tests by Newby et al [7] highlighted the unexplained result that when adhesive tape is

peeled away from a substrate at low pull angles (loosely interpreted as small loading angles,

α), the bonds with higher adhesion energy slipped more but broke free of the surface with

less pull force. With the idea that energy is dissipated through interfacial slippage, this lower

slip resistance requiring higher peel forces [8, 9, 12, 13, 14, 15, 16, 11] is clearly not always

shown to be the case. Partly, the results from this work can explain this. Consider the stress

fields from Eqns. (4.36), which have the asymptotic order as r → 0:

σ11 = O
�

r n̄−1/2
�

, σ12 = O(1) , and σ22 = O
�

r1/2−n̄
�

,

where n̄ is defined by Eqn. (4.27) as a function of the normalized interfacial slip threshold ξ

so that

n̄(ξ) = 1+
1
π

tan−1ξ.

123
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This implies that when ξ > 0 (a consequence of a loading angle α, depicted in each example

of Figure 1.2), the normal stress σ22 increases in asymptotic order from the no slip case. So,

as ξ→ 0+, more slippage is allowed and we should see a reduction in the magnitude of the

induced value of σ22. This matches qualitatively with the idea that energy from slippage is

traded from tearing to dissipate along the surface through slippage and resulting in blunting

[15]. However, as discussed in Section 7.2 when the loading direction has a lower angle than

the transition angle (α < α̃), then ξ < 0 and we find that σ22 shows a lower asymptotic order

as r → 0 than the no-slip case. In this realm, with increased slippage (and higher adhesion

energy [7]), then as ξ → 0−, we see an increase in the magnitude of σ22. Hence, it is a

logical hypothesis that the reason Newby et al found stronger bonding with higher interfacial

friction is a result of the peeling direction and the stress state at low loading angles (α < α̃).

To further demonstrate this hypothesis, consider two more examples. First, Figure 9.1

shows several runs together all in the range where ξ→ 0+. Figure 9.1a shows this transition

effect on the imposed shear σ12 on the bonded surface from the no-slip to frictionless cases.

In each case we see the expected result and a growing slip zone length δ as the stress

threshold |ξ| is reduced. The corresponding deflected shapes of the free edge for each case

are shown in Figure 9.1b and as the slip threshold ξ is lowered, the crack tip moves from

the origin progressively to the right. In each case with finite friction, we see a vertical wedge

angle φ, however a transition from the no-slip case to finite friction is not apparent; recall the

discussion in Section 5.2 where this difficulty is explained by the analytical limit of our solution

from Eqn. (4.12). We can further see this disconnect from no-slip to finite friction in Figure

9.1c where the corresponding normal stresses σ22 are shown. In this plot, we see that from

the no-slip condition the normal stress σ22 on the bonded interface abruptly jumps with finite

friction and is then progressively lowered when the slip threshold magnitude decreases (i.e.

as ξ→ 0+).

In the second example, shown in Figure 9.2a, we see that when loaded in the opposite
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Figure 1: Loading example with ∆Y = 1.0, ∆X = 0.5, β = 16.00 and various ξ.
(a) σ12, (b) Crack opening shape, (c) σ22.

Figure 9.1: Loading example with ∆Y = 1.0, ∆X = 0.5, β = 16.00 and various ξ.
(a) σ12, (b) Crack opening shape, (c) σ22.
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direction (α < α̃), as the slip threshold is reduced (ξ → 0−) the slip zone length δ again

increases. In Figure 9.2b, the no-slip case shows a sharpened wedge angle on the free

edge (φ > π/2) and while the transition to the vertical wedge angle is still not apparent,

the transition moves smoothly to the left as ξ is reduced. In this direction there is a large

shift in surface slippage below ξ < 0.55 which can be attributed to the fact that the slip zone

length increases much faster due to the negative overall stress across the surface (recall the

discussion of Figure 8.12 from Section 8.3). When ξ < 0, the normal stresses σ22 on the

bonded edge abruptly decreases when transitioning from no-slip to finite friction, and as the

surface slip threshold is further lowered (or as slippage is allowed), the normal stress σ22

imposed on the bonded interface increases.

Another recent experimental work was done by Bhuyan et al [3]. In this study, a type

of normal loading experiment called the ‘sticky wedge test’ was used, where a long strip of

incompressible adhesive material with thickness of approximately 100 ± 15µm was slowly

lifted from a rigid substrate. In one of the figures presented, a scaled binary plot was provided

to highlight the shape of the free edge near the crack tip with a vertical displacement of

approximately 60µm. Using Matlab data processing tools, data was extracted from this binary

plot (see Figure 9.3a) and scaled using the a characteristic length of H = 100µm as specified

by Bhuyan et al. With the assumption that this experiment can be modeled similarly to either

of the two bonded joints in Figures 1.2b and 1.2c, and further assuming the bonded elastomer

tested by Bhuyan et al can be modeled as a ‘nearly incompressible’ Neo-Hookean material,

then the near field solutions from Table 4.3 should apply, and with this data a least squares

fit can be done for the parameters b̂ and n̄ in Eqn. (6.5). Starting with the points closest to

the tip of the crack and by maximizing the points used such that R2 > 0.99 (see the log plot

in Figure 9.3b), it was found that b̂ ≃ 1.5357L−1.32 and n̄ ≃ 1.161, hence ξ ≃ 0.552. For

comparison, Figure 9.3c shows the extracted data plotted with the curve fit and given that

n̄> 1 we see the opening geometry in this example is strikingly similar to a blunted parabola
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and more resembles the shape in Figure 5.2b than either of the two extents in Figures 5.2a

or 5.2c, which were both determined to have a parabolic near-field shape [1] near r → 0.

Note that the measurement process used here with Bhuyan et al’s data to determine

the slip threshold ξ (and n̄) is provided as an example. In order to use this technique

experimentally, it is also recommended to provide a measurement for the crack tip displacement

x̄1 and slip zone length δ along with measurements of displacement along the the slip zone.

With this additional data, direct comparisons could be made with the normal loading study

from Section 8.2 such that the friction threshold ξ could be read directly (or interpolated) from

any one of Figures 8.8a, 8.8b, 8.9a, 8.9b, 8.10a, or 8.10b.

9.2 The Transition from No-Slip to Finite Friction

In every case, when applying the sticky-wedge test, Bhuyan et al observed a near vertical

wedge angle (φ ≃ π/2) [3]. However, they also noted that the wedge angle may depend

on material parameters such as viscoelasticity, and in these cases softer materials with less

cross-linking deviated more from a vertical wedge angle (like what Newby saw) while the

stiffer materials (larger µ) remain more like the perpendicular wedge angle and suggest that

the wedge angle may be more finite at smaller than measured scales. We find insight into the

phenomena of a finite wedge angle φ with interfacial slippage (unfortunately, not something

shown in the model derived in this manuscript) by considering experiments in debonding of

soft elastomers by Liechti et al [66], where a wedge angle φ ≃ π/2 was found at slow strain

rates, and a correlation was observed where the wedge angle φ decreased from π/2 as the

strain rate increased.

Given these experimental findings at slow tearing, it is proposed that the elastostatic model

from this study is viable in these cases. However, due to the viscoelastic nature of the

soft elastomers tested (a characteristic not incorporated in the model presented here), the

finger tip indent due to a finite wedge angle is also a velocity dependent result. So, as load
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Figure 9.4: Visualization of the transition from no-slip to finite friction. (a) No-slip (b) Partial
transition (c) finite friction.

speed increases, there will be a deviation from the results shown here which result in stiffer

material and potentially larger ξ. In short, the results here are from a static case and therefore

represent an equilibrium result only. A proposed idea is that the slip zone can grow radially

resulting in a transition between the no-slip case in Figure 9.4a and the finite friction case from

Figure 9.4c. A visualization of this is shown by Figure 9.4b, where φ̄ is an adjusted wedge

angle at the edge of the slip zone. In these figures, the hatched pattern represents a growing

slip zone in the deformed configuration (denoted δ̃) that may have velocity dependence, or

something similar to viscoelastic effects on the interfacial layer itself. This is a reasonable

conclusion because the imposed stress threshold τ (and ξ) always acts in an opposing way

to displacement. This is similar to coulomb friction which has analogies to a linear dash-pot in

dynamic systems [103, 104, 105], then the finite friction boundary condition should be function

of loading speed with a dissipative effect like viscoelasticity.

Given the range found for validity of the solution (Eqn. (4.12)), it is implied that our findings

can not work for large values of slip threshold ξ. However, Newby et al proposed a model for

interfacial slip in the form [7]

tan φ̄ =
2ξ
ξ2 − 1

. (9.1)
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Using Newby’s proposed model shown in Eqn. (9.1) with small values of ξ we find

tan φ̄ ≃ lim
ξ→0

2ξ
ξ2 − 1

= 0, =⇒ ∴ φ̄ ≃ 0,

which does not agree at all with the vertical slope found in the finite friction result in Eqn.

(5.22). However, for very large values of interfacial slip threshold our results are only viable

inside a small slip zone (such as the small shaded region in Figure 9.4b) and it is expected

that the solution should not deviate much from the no-slip solution, summarized by Table 4.2.

Using Newby’s result and recalling Eqn. (5.3), the wedge angle φ̄ can be approximated at

r = δ by

tan φ̄ = lim
r→δ
θ→π

d x2

d x1
≃ a2

a1 − 2δ1/2
=

a2

a1





1

1− �1
2 a1δ−1/2

�−1



 .

Using the shear stress result from the no-slip case on the bonded edge (θ = 0) from Eqn.

(4.24b) and with a very small slip zone, then

σ12(δ, 0)≃ 1
2µa1δ

−1/2.

Hence, we have an approximation for δ versus ξ by rearranging to get

ξ= τ/µ≃ 1
2 a1δ

−1/2. (9.2)

Also recall the no-slip wedge angle is defined as φ where

tanφ ≡ a1

a2
,

then using Eqn. (9.2), the adjusted wedge angle becomes
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tan φ̄ ≃
�

1
1− ξ−1

�

tanφ. (9.3)

For large values of ξ >> 1, then ξ−1 << 1 and the first term in Eqn. (9.3) has a Maclaurin

series [90] expansion

1
1− ξ−1

=
∞


N=0

�

1
ξ

�N

≃ 1+
1
ξ

, (9.4)

and finally we arrive at

tan φ̄ ≃
�

1+
1
ξ

�

tanφ. (9.5)

Recall that the expression tanφ (the slope of the no-slip wedge angle) was determined by

the far field loading conditions and is the ratio of the no-slip stresses from Eqn. (5.4). The

expression in Eqn. (9.5) shows how the wedge angle with minimal interfacial slippage φ̄ may

transition from the no-slip case (with ξ →∞) to the finite friction case for large ξ. In this

case, we assume a range beyond that shown by Eqn. (4.30) for compressible materials where

tan
�

π

2

�

β

β + 1

��

> ξ >∞.

A final note with this transition. If the material is incompressible, then β →∞ and this range

of ξ shrinks to zero and the analytical result in Eqn. (4.28) is viable, implying that the model

from Eqn. (9.5) does not apply, or represents another possible branch of solution.

9.3 Other Design Considerations From This Study

While the results here show how interfacial friction can dramatically affect the stress state and

the delamination mechanism of bonded elastomers, there are multiple other aspects worth

considering when designing a bonded interface. How to use the results depend on what is
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desired from the bonded joint. This section is a highlight of some considerations for design,

and focus mainly on the desired type of failure mode in the bonded joint.

The direction of loading α in conjunction with the transition angle α̃ (which is a function of

total stretch ∆) can significantly change the stress state near the crack tip. Assuming a high

slip threshold τ, the bonded joint will be significantly stronger if the loading is more tangential

to the bond. To visualize this, compare the magnitudes of normal stress σ22 from Figures

9.1c and 9.2c. Given this, a lap joint shown in Figure 1.2c where the two adherands are

pulled apart in the ±Ê1 directions would be recommended. However, if failure at a particular

lower strength is desired then a lower slip threshold τ can be achieved by adding various

lubricants on the bonded surface before bonding [7].

The transition angle α̃ findings in Figure 7.6b show that more flexible materials (for

example rubbery elastomers with less polymer cross-linking), the transition angle α is

somewhere close to pure normal loading (α ≃ π/2). Conversely, for more brittle elastomers

that can not undergo a large amount of stretch before delamination, the transition angle

α̃ is much smaller. Depending on how ductile the adhesive is and the desired result, it is

recommended to either keep the loading angle well below (α < α̃) or above (α > α̃) the

transition angle α̃.

Also, consider the scaling model from Eqn. (9.5) for large interfacial slip thresholds

(adjusted slightly from the no-slip case) was linked to the effects found in the FEA study

shown in Figures 7.3 and 7.4. Note that the wedge angle φ increases from zero with small

stretch to φ ≃ π/2 with large stretch. It was shown analytically by Eqns. (5.7) and (5.17) (on

the bonded and free edges respectively) that this wedge angle is also found to be related to

the stresses. From this, we see that as the material stretches, the dominance of the stresses

transitions from σ11 > σ12 > σ22 to the opposite state σ22 > σ12 > σ11.
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10.1 Conclusions

In this work, several bond types were generalized as a near field interface crack problem

(shown in Figure 3.1). Near field solutions were found for all three friction cases and are

summarized in Tables 4.1, 4.2 and 4.3. From these closed form solutions, it was confirmed

that the frictionless case is related to the finite friction case when slip threshold τ is set to

zero.

The near-field solutions for the no-slip case produced a tidy expression between the ratio

of various plane strain Cauchy stress σ components. However, a small boundary layer

adjustment (discussed in Chapter 5) was required for evaluation of stresses on the free edge.

Assuming a finite (non vertical slope) wedge angle φ, then the stress ratios for the no-slip

case are

Bonded Edge (θ = 0) :
σ22

σ11
≃ tan2φ and

σ12

σ11
≃ tanφ,

Free Edge (θ = π) :
σ22

σ11
≃ sec2φ and

σ12

σ11
≃ tanφ.

The no-slip and finite friction near-field solutions, which have remaining arbitrary constants,

135
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were validated to show the same solutions near the points of interest as the extensive

numerical study from Part III. The stress fields in both no-slip and finite friction cases also

showed agreement with the numerical results. From the numerical studies, the relationship

between normal deflection loading ∆Y and the wedge angle φ was compared and it

was concluded that for fixed loading values of ∆Y and large values of β (the material

compressibility parameter), the no-slip wedge angle saturates to a constant value. While

normal loading ∆Y was increased, the no-slip wedge angle increased toward the vertical

angle φ → π/2. It is then concluded that the dominant stress depends on the amount of far

field loading (material stretch) and is related to the wedge angle φ.

When lateral loading was introduced, it was found at particular loading directions (when

α= α̃) that the no-slip shear stress imposed on the bonded surface was zero. When deviating

from this transition angle α̃, the sign of the shear stress σ12 also changed.

With a validated numerical method for iteratively quantifying the slip zone length δ, the

finite friction case showed a vertical wedge angle for every simulation described in this

manuscript and it was found that the product of the normal stresses has a constant value,

being

σ11σ22 = τ
2 +µ2, in the range 0≤ θ < π.

The finite friction solutions also revealed that the asymptotic order of the deflection and stress

fields were functions of the bonded stress threshold τ. Even more interesting was that two

different stress states exist depending on whether σ12 < 0 or σ12 > 0 on the bonded edge -

which is linked to the load angle α with respect to the transition loading angle α̃. Notably, the

normal stress σ22 = O
�

r1/2−n̄
�

where

n̄= 1+
1
π

tan−1
�

τ

µ

�

,
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from which we can conclude that bonded interfaces loaded at shallow angles (α < α̃)

with more interfacial slip (i.e. a lower slip threshold τ) will indeed show a higher imposed

normal stress leading to detachment which partially may explain Newby et al’s previously

experimental result [7].

Unfortunately, Newby et al also showed experimentally that there tended to be a wedge

angle φ < π/2 with interfacial slippage to the right ( x̄1 > 0) at shallow loading angles

(α < α̃). While the stress state mentioned above may explain the delamination as an increase

the normal stress σ22, the results for material deflection presented in this manuscript showed

a vertical wedge angle φ = π/2 with material deflected to the left. Also of note is that

the formulations examined here were elastostatic in nature and did not take into account

viscoelasticity, which may also explain why a finite wedge angle (φ ̸= π/2) was not shown

in any finite friction solutions or FEA simulations. It is concluded that the near-field solutions

are merely the equilibrium case after any dissipation in the bulk elastomer or on the bonded

surface has occurred.

Given that the finite slip solution had a range of validity where

−∞<
τ

µ
< tan

�

π

2

�

β

β + 1

��

,

then solutions for values of β and ξ outside this range are not shown with this model and other

forms of solution may exist. Considering the case when τ is very large, utilizing the scaling

model by Newby et al [7] with the no-slip result from Eqns. (4.21) a proposed transition

between no-slip and finite friction was presented in Section 9.2 with in the form

tan φ̄ ≃
�

1+
µ

τ

�

tanφ, for τ >> µ,

where φ̄ is an adjusted wedge angle at the edge of a small slip zone length r = δ.
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10.2 Proposed Future Work

Future problems of interest are listed here. All of the problems shown in the following sections

are appropriate extensions from the findings in this dissertation.

10.2.1 Finite Friction with Incompressible Elastomers

For the special case of material incompressibility, then the volumes in the reference and

spatial configurations (V0 and V respectively) are equivalent, hence J = 1 from Eqn. (2.3)

and the strain energy density function collapses to a function with only one invariant in plane

strain:

ψ(I1, I2, I3) = Ŵ(I). (10.1)

However in this case, a Lagrange multiplier [40] is required so that

ψ(I1, I2, I3) = Ŵ(I)− (J − 1) p̃(X),

where p̃= p̃(r,θ ) is an arbitrary (and unknown) function that in incompressible elasticity

problems is typically interpreted to be a pressure field [39, 40, 34]. Given that the function

p̃(X) is an arbitrary result of incompressibility, then J = 1 from Eqn. (3.6b) which yields the

constraint

1
r

�

∂ x1

∂ r
∂ x2

∂ θ
− ∂ x1

∂ θ

∂ x2

∂ r

�

= 1. (10.2)

The first Piola-Kirchhoff stress tensor becomes:

P= 2Ŵ′(I)F− p̃(X)F−T . (10.3)
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Using Eqn. (2.25), the governing equations in the bulk material are

2Ŵ′(I)∇2
X

x1 + 2Ŵ′′(I) (∇X x1 · ∇XI)− |∇X p̃×∇X x2|= 0, (10.4a)

and 2Ŵ′(I)∇2
X

x2 + 2Ŵ′′(I) (∇X x2 · ∇XI) + |∇X p̃×∇X x1|= 0, (10.4b)

where (i = 1, 2)

∇2
X

x i ≡
∂ 2 x i

∂ r2
+

1
r
∂ x i

∂ r
+

1
r2

∂ 2 x i

∂ θ 2
, (10.5a)

∇X x i · ∇XI ≡ ∂ x i

∂ r
∂ I
∂ r
+

1
r2

∂ x i

∂ θ

∂ I
∂ θ

, (10.5b)

and |∇X p̃×∇X x i| ≡
1
r

�

∂ p̃
∂ r
∂ x i

∂ θ
− ∂ p̃
∂ θ

∂ x i

∂ r

�

. (10.5c)

Recall the boundary condition on the traction free edge (θ = π) requires P12(r,π) =

P22(r,π) = 0. Then

2Ŵ′(I)
1
r
∂ x1

∂ θ
+ p̃(X)

∂ x2

∂ r
= 0, (10.6a)

and 2Ŵ′(I)
1
r
∂ x2

∂ θ
− p̃(X)

∂ x1

∂ r
= 0. (10.6b)

To determine the generalized form of the finite friction boundary condition on the bonded

surface (at θ = 0), Eqn. (2.18) applies, which re-arranged we find

σ =PFT = 2Ŵ′(I)FFT − p̃(X)̃I, (10.7)

where Ĩ is the identity tensor in the deformed basis. Using Eqn. (3.5) with θ = 0 and assuming

a constant shear σ12(r, 0) = τ, then

2Ŵ′(I)
�

1
r
∂ x1

∂ θ

��

1
r
∂ x2

∂ θ

�

= τ, on θ = 0. (10.8)



140 Conclusions and Future Work

Like the cases previously presented, no vertical opening is assumed, hence x2(r, 0) = 0.

Therefore the constraint J = 1 requires

1
r
∂ x1

∂ r
∂ x2

∂ θ
= 1, on θ = 0. (10.9)

Combining this with Eqn. (10.8) and re-arranging we get a boundary condition for x1 only,

2Ŵ′(I)
�

1
r
∂ x1

∂ θ

�

−τ∂ x1

∂ r
= 0, on θ = 0. (10.10)

The general incompressible BVP is then made up of the governing Eqns. (10.4), the free end

conditions (on θ = π) by Eqns. (10.6), and the bonded boundary conditions (on θ = 0) from

Eqns. (3.10) and (10.10). Anecdotally, in the Neo-Hookean material case, then Ŵ′(I) = µ/2

(recall Eqn. (3.16)) and the boundary condition from Eqn. (10.10) has the same form as the

finite friction bonded condition using the compressible Blatz-Ko material (Eqn. (3.14)), being

1
r
∂ x1

∂ θ
−
�

τ

µ

�

∂ x1

∂ r
= 0, on θ = 0. (10.11)

While the incompressible no-slip case did not allow for a viable solution with separable

functions of r and θ , the case with finite friction should be solvable using the same techniques

from Chapter 4 and using some clever hints from Stephenson [80]. The value in pursuing

this effort would be to confirm (or not) that the solution is the same as outlined in Table 4.3,

i.e. that compressibility does not affect the geometry of the solution away from the free edge.

Also, recall that the compressibility parameter β was found in the asymptotic order of the

stress fields on the traction free edge (θ = π) shown in Eqns. (5.24), which imply that as

β →∞, then

σ11(r,π) = O
�

r2n̄−2
�

, σ12(r,π) = O
�

r n̄−3/2
�

, and σ22(r,π) = O
�

r−1
�

.
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Finally, consider some of the previously mentioned incompressible models utilizing a strain

stiffening factor η. The generalized Neo-Hookean (GNH) model from Eqn. (3.15) has merit

and would be a good starting point to understand how strain stiffening affects interfacial

slippage. As another possible avenue to study strain stiffening effects, recall Stephenson’s

model [80] from Eqn. (3.19). Solving either of these problems with finite interfacial friction can

yield direct comparisons using the general crack problem as the frictionless case.

10.2.2 Opening in Two Directions

To pursue crack opening in two directions there are many failure criteria which can be useful as

boundary conditions, notably: Distortion Energy (von Mises), Maximum Shear Stress Theory

(τ ≥ 1
2σY ), and Maximum Principal Stress for Ductile Materials (σmax ≥ σU ) [20]. To use

these, the constraint boundary condition x2(r, 0) = 0 from Eqn. (3.10) would be replaced

with a force balance. Consider the surface traction t on the bonded edge (θ = 0) from Eqn.

(2.14), then the surface traction is

t(r, 0) =
�

σi j(r, 0)êi ⊗ ê j

�

[−ê2] = − [σ11(r, 0)ê1 +σ12(r, 0)ê2] ,

and ê1 and ê2 terms refer to the directions in the spatial configuration. The total stress t on

the surface is

t ≡ |t|=
q

σ2
11(r, 0) +σ2

12(r, 0), (10.12)

from which any of the stress failure criteria mentioned above can be utilized.

Another method is to impose a traction separation relation for both normal and lateral

directions as done with the finite friction case explained in Section 3.2. Consider the surface

traction t on the bonded edge (θ = 0) from Eqn. (2.14), then the surface traction normal to

the bottom edge is σ22, hence the finite friction boundary condition for the bonded surface
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with opening in normal and lateral directions is

|σ12(r, 0)| ≤ |τ|, and |σ22(r, 0)| ≤ |σ|, (10.13)

where τ andσ are stress thresholds in the x1 and x2 directions respectively. Again, a caution

doing this because Park and Paulino explained that traction separation relationships may not

be independent directionally, and the model presented above does not account for this if τ

and σ are constants.

Given that it is shown throughout this manuscript that interfacial slippage, a traction

separation model in the lateral direction, has a significant effect on bonding strength; and

also considering that the most common analysis in fracture is done using normal traction

separation models, then it must be concluded that both directions account for fracture. It

would then be of interest to utilize a traction-separation model that takes into account of both

separation directions which can be modeled and tested.

10.2.3 Utilize Other Cohesive Zone Models as Boundary Conditions

Many cohesive zone models can be sought from Park and Paulino’s review [74], or from any

general fracture mechanics resources [20, 97, 21]. Many cohesive zone models have the

form of a simple linear expression where the opening traction σ is proportional to the opening

displacement [20, 97, 21] and each can be modeled across the entire cohesive zone using

an approximated cubic function [74], or alternatively an exponential function. A schematic of

the most common models used [20, 74] is shown in Figure 10.1, where Figure 10.1a shows

the Dugdale-Barrenblatt model of constant stress in the cohesive zone. Figure 10.1b is an

example of the exponential representation of traction separation adapted for lateral opening.

However, the linear cohesive zone model (Figure 10.1c) is worth solving first because it is the

next progression from the constant friction case (Figure 10.1a), and is less complicated than

the exponential or polynomial function (Figure 10.1b). The model presented in Figure 10.1c
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Figure 10.1: Visualization of various cohesive zone models reformulated for shear traction
with lateral opening. (a) Dugdale-Barrenblatt model (b) Exponential cohesive zone model (c)

Linear cohesive zone model.

in the range u1 < δ0 represents a simple analogy where interfacial slippage is impeded by

linear, horizontal springs on the bonded surface (θ = 0). Then, the boundary condition is

valid in the range u1 < δ0, and has the form

σ12(r, 0)≡ k̂u1(r, 0), (10.14)

where u1 is the displacement in the x1 direction and k̂ is a positive constant which represents

the slope of the curve, hence k̂ ≡ τ̄/δ0. Recall that:

u1(r,θ )≡ x1(r,θ )− X1(r,θ ) = x1(r,θ )− r cosθ . (10.15)

This boundary condition has the form σ12(r, 0) = k̂u1(r, 0), or

µJ−1
�

∂ x1

∂ r
∂ x2

∂ r
+

1
r2

∂ x1

∂ θ

∂ x2

∂ θ

�

θ=0
= k̂ [x1(r, 0)− r] . (10.16)

Assuming the material remains attached, then x2(r, 0) = 0, hence

∂ x2

∂ r

�

�

�

�

θ=0

= 0, ∴ J(r, 0) =
1
r
∂ x1

∂ r
∂ x2

∂ θ

�

�

�

�

θ=0

.
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Re-arranging gives

1
r2

∂ x1

∂ θ

∂ x2

∂ θ
= k

1
r
∂ x1

∂ r
∂ x2

∂ θ
(x1 − r) , on θ = 0, (10.17)

where k ≡ k̂/µ and has a range of 0< k <∞. Rearranging yields multiple cases, being

�

∂ x2

∂ θ

�

θ=0
= 0,

�

1
r
∂ x1

∂ θ
− k
∂ x1

∂ r
(x1 − r)

�

θ=0
= 0, or both.

Using the second condition for x1 (recall the logic from Section 3.2), then

1
r
∂ x1

∂ θ
− k
∂ x1

∂ r
(x1 − r) = 0, on θ = 0, (10.18)

The rest of the bonded conditions and equations for any compressible material are the same

as the third column in Table 3.2.

This analysis has value because the linear and exponential cohesive zone models are

utilized extensively in literature [22, 20, 21] and may also lead to a solution which bridges the

no-slip and finite friction cases. In the above formulation, it is assumed that taking k → 0

should collapse to finite friction condition and k→∞ should resemble the no-slip condition.

Using other more complicated models may also provide other insights.

10.2.4 Solutions at Other Locations Along the Bonded Interface

Recall that Figures 8.12a and 8.12b showed different failure modes inside the bonded

interface depending on positive or negative shear in the slip zone on the surface near r → 0.

However, the opposite end also shows a stress concentration which can be dealt with by

solving a slightly different problem where the bulk material takes up a quarter of the plane,

shown in Figure 10.2. The same method can again be used here to determine a second

slip zone on the opposite end. Note that this problem is different than the interface crack

problems because the (infinitely) long traction free end in the negative horizontal is now
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Figure 10.2: Visualization of the finite friction problem with origin at some location r → L̃.

traded with a traction free end up the positive Ê2 axis, and the coordinate extents are r ≥ 0

and 0≤ θ ≤ π/2. The bonded boundary condition at θ = 0 again requires x2(r, 0) = 0 and

Eqn. (3.30) (or, eqn (10.10) for incompressible materials). However, the traction free edge

resides on the θ = π/2 face (the vertical dashed line in Figure 10.2). Now, using N = −Ê1,

then P11(r,π/2) = P21(r,π/2) = 0, and using Eqns. (3.24) and (3.5) the new boundary

condition on θ = π/2 has the same form as Eqns. (3.29). The rest of the BVP for the

quarter-plane problem requires Eqns. (3.27) and the bonded edge Eqns. (3.10) and (3.30)

previously derived.

Also of interest, are the stress fields on each side of where the slip zone length ends (i.e.

at r → δ). In this case, a re-formulation of the problem and coordinates must be done where

the new polar coordinates have the constraints

X1 ≡ r cosθ = δ+ R cosΘ, (10.19a)

and X2 ≡ r sinθ = R sinΘ. (10.19b)

Figure 10.3 shows the new geometry which looks similar to the original problem geometry
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Figure 10.3: Visualization of the finite friction problem with origin at the slip zone.

from Figure 3.1, however the dashed line (on Θ = π) remains attached (∴ x2(R,π) = 0) with

a constant shear σ12(R,π) = τ. The bonded edge to the right would follow the conditions for

no-slip where u1 = u2 = 0, such that x2(R, 0) = 0 and x1(R, 0) = R+ δ. These boundary

conditions together with the governing body Eqns. (3.27) (which must be re-furnished using

the coordinates R andΘ, details omitted here) make up the problem for finite friction near r →
δ. While still not a global result, an asymptotic solution at more points on the bonded surface

should provide insight on the entire surface so that global solution can be approximated. Then,

problems like the tree frog detachment or other bonded joints can be directly compared using

the analytical findings.

10.2.5 Other FEA Studies

Legrain et. al [106] outlined a finite element analysis method using the near field result

close to the crack as ’enrichment functions’ in order to aid convergence of the numerical

simulations. The numerical simulations in this manuscript represented a monumental effort

and convergence required a great deal of manual attention. It would be of interest to see if

the near-field solutions for the no-slip and finite friction cases can be used in this way. If this
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idea has merit, more extensive numerical analysis can be done in a much shorter time. For

example, an FEA study which is of interest but time did not allow was to determine the full

effects of β and ξ on a well discretized range of mixed loading conditions∆X and∆Y . Longer

samples and geometry (the ratio was 10L × 2L for simulations in this manuscript) would be

of interest because in some simulations it was found that the opposing end interacted with the

effects along the bonded surface and even near the crack tip.
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