
Computing Phylogenetic Roots with Bounded Degrees and Errors

Zhi-Zhong Chen ∗ Tao Jiang † Guohui Lin ‡

May 8, 2001

Abstract

Given a set of species and their similarity data, an important problem in evolutionary biology
is how to reconstruct a phylogeny (also called evolutionary tree) so that species are close in
the phylogeny if and only if they have high similarity. Assume that the similarity data are
represented as a graph G = (V,E) where each vertex represents a species and two vertices are
adjacent if they represent species of high similarity. The phylogeny reconstruction problem can
then be abstracted as the problem of finding a (phylogenetic) tree T from the given graph G such
that (1) T has no degree-2 internal nodes, (2) the external nodes (i.e. leaves) of T are exactly the
elements of V , and (3) (u, v) ∈ E if and only if dT (u, v) ≤ k for some fixed threshold k, where
dT (u, v) denotes the distance between u and v in tree T . This is called the Phylogenetic

kth Root Problem (PRk), and such a tree T , if exists, is called a phylogenetic kth root of
graph G. The computational complexity of PRk is open, except for k ≤ 4. In this paper, we
investigate PRk under a natural restriction that the maximum degree of the phylogenetic root
is bounded from above by a constant. Our main contribution is a linear-time algorithm that
determines if G has such a phylogenetic kth root, and if so, demonstrates one. On the other
hand, as in practice the collected similarity data are usually not perfect and may contain errors,
we propose to study a generalized version of PRk where the output phylogeny is only required
to be an approximate root of the input graph. We show that this and other related problems
are computationally intractable.

Keywords: Phylogeny, phylogenetic root, computational biology, efficient algorithm, NP-hard.

1 Introduction

The reconstruction of evolutionary history for a set of species from quantitative biological data
has long been a popular problem in computational biology. This evolutionary history is typically
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modeled by an evolutionary tree or phylogeny. A phylogeny is a tree where the leaves are labeled
by species and each internal node represents a speciation event whereby an ancestral species gives
rise to two or more child species. Both rooted and unrooted trees have been used to describe
phylogenies in the literature, although they are practically equivalent. In this paper, we will
consider only unrooted phylogenies for the convenience of presentation. 1 The internal nodes of a
phylogeny have degrees (in the sense of unrooted trees, i.e. the number of incident edges) at least 3.
Proximity within a phylogeny in general corresponds to similarity in evolutionary characteristics.

Many phylogenetic reconstruction algorithms have been proposed and studied in the litera-
ture [11]. In this paper we investigate the computational feasibility of a graph-theoretic approach
for reconstructing phylogenies from similarity data. Specifically, interspecies similarity is repre-
sented by a graph where the vertices are the species and the adjacency relation represents evidence
of evolutionary similarity. A phylogeny is then reconstructed from the graph such that the leaves
of the phylogeny are labeled by vertices of the graph (i.e. species) and for any two vertices of the
graph, they are adjacent in the graph if and only if their corresponding leaves in the phylogeny are
connected by a path of length at most k, where k is a predetermined proximity threshold. To be
clear, vertices in the graph are called vertices while those in the phylogeny nodes. Recall that the
length of the (unique) path connecting two nodes u and v in phylogeny T is the number of edges
on the path, which is denoted by dT (u, v). This approach gives rise to the following algorithmic
problem [7]:

Phylogenetic kth Root Problem (PRk):
Given a graph G = (V,E), find a phylogeny T with leaves labeled by the elements
of V such that for each pair of vertices u, v ∈ V , (u, v) ∈ E if and only if
dT (u, v) ≤ k.

Such a phylogeny T (if exists) is called a phylogenetic kth root, or a kth root phylogeny, of graph G.
Graph G is called the kth phylogenetic power of T . For convenience, we denote the kth phylogenetic
power of any phylogeny T as T k. Thus, PRk asks for a phylogeny T such that G = T k.

1.1 Connection to Graph and Tree Roots, and Previous Results

Phylogenetic power might be thought of as a Steiner extension of the standard notion of graph
power. A graph G is the kth power of a graph H (or equivalently, H is a kth root of G) if vertices
u and v are adjacent in G if and only if the length of the shortest path from u to v in H is at most
k. An important special case of graph power/root problems is the following:

Tree kth Root Problem (TRk):
Given a graph G = (V,E), find a tree T = (V,ET ) such that (u, v) ∈ E if and
only if dT (u, v) ≤ k.

If T exists then it is called a tree kth root, or a kth root tree, of graph G.

1But some of our hardness proofs will also use rooted trees as intermediate data structures in the construction.
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The special case TR2 is also known as the Tree Square Root Problem [8]. Correspondingly,
we call PR2 the Phylogenetic Square Root Problem. There is rich literature on graph root
and power (see [2, Section 10.6] for an overview), but few results on phylogenetic/tree roots/powers.
It is NP-complete to recognize a graph power [9], nonetheless, it is possible to determine if a graph
has a kth root tree, for any fixed k, in O(n3) time, where n is the number of vertices in the input
graph [4]. In particular, determining if a graph has a tree square root can be done in O(n + e)
time [8], where e is the number of edges in the input graph. Recently, Nishimura, Ragde, and
Thilikos [10] presented an O(n3)-time algorithm for a variant of PRk, for k ≤ 4, where internal
nodes of the output phylogeny are allowed to have degree 2. More recently, Lin, Kearney, and Jiang
[7] introduced a novel notion of critical clique and obtained an O(n + e)-time algorithm for PRk,
for k ≤ 4. Unfortunately, both algorithms cannot be generalized to k ≥ 5.

1.2 Our Contribution

In the practice of phylogeny reconstruction, most phylogenies considered are trees of degree 3 [11]
because speciation events are usually bifurcating events in the evolutionary process. In such fully
resolved phylogenetic trees, each internal node has three neighbors and represents a speciation
event that some ancestral species splits into two child species. Nodes of degrees higher than 3 are
introduced only when the input biological (similarity) data is not sufficient to separate individual
speciation events and hence several such events may be collapsed into a non-bifurcating (super)
speciation event in the reconstructed phylogeny. Hence in this paper, we consider a restricted
version of PRk where the output phylogeny is assumed to have degree at most ∆, for some fixed
constant ∆ ≥ 3. For simplicity, we call it the Degree-∆ PRk and denote it in short as ∆PRk.
Since in the practice of computational biology the set of species under consideration are more or
less related, we are mostly interested in connected graphs. The main contribution of this paper is a
linear-time algorithm that determines, for any input connected graph G and constant ∆ ≥ 3, if G

has a kth root phylogeny with degree at most ∆, and if so, demonstrates one such phylogeny. The
basic construction in our algorithm is a nontrivial application of bounded-width tree-decomposition
of certain chordal graphs [2].

Notice that the input graph in PRk is derived from some similarity data, which is usually
inexact in practice and may have erroneous (spurious or missing) edges. Such errors may result
in graphs that has no phylogenetic roots. Hence, it is natural to consider a more relaxed problem
where we look for phylogenetic trees whose powers are close to the input graphs. The precise
formulation is as follows:

Closest Phylogenetic kth Root Problem (CPRk):
Given a graph G = (V,E) and a nonnegative integer `, find a phylogeny T with
leaves labeled by V such that G and T k differ by at most ` edges. That is,∣∣∣E(G)⊕ E(T k)

∣∣∣ =
∣∣∣(E(G)− E(T k)

)
∪

(
E(T k)− E(G)

)∣∣∣ ≤ `.

A phylogeny T which minimizes the above edge discrepancy is called a closest kth root phylogeny
of graph G.
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The Closest Tree kth Root Problem (CTRk) is defined analogously. Notice that CTR1
is trivially solved by finding a spanning tree of the input graph. Kearney and Corneil [4] proved
that CTRk is NP-complete when k ≥ 3. The computational complexity for CTR2 had been open
for a while and is recently shown to be intractable by Jiang, Lin, and Xu [3]. In this paper, we will
show that CPRk is NP-complete, for any k ≥ 2. Another closely related problem, the Steiner

kth Root Problem (where k ≥ 1), is also studied.

We introduce some notations and definitions, as well as some existing related results, in the
next section. Our main result on bounded-degree PRk is presented in Section 3. The hardness of
closest phylogenetic root and Steiner root problems is discussed in Section 4. We close the paper
with some open problems in Section 5.

2 Preliminaries

We employ standard terminologies in graph theory. In particular, the subgraph of a graph G

induced by a vertex set U of G is denoted by G[U ], the degree of a vertex v in G is denoted by
degG(v), and the maximum size of a clique in G is denoted by ω(G). First, it is obvious that if a
graph has a kth root phylogeny, then it must be chordal, that is, it contains no induced subgraph
which is a cycle of size greater than 3.

Definition 2.1 A tree-decomposition of a graph G = (V,E) is a pair D = (T ,B) consisting of a
tree T = (U,F ) and a collection B = {Bα | Bα ⊆ V, α ∈ U} of sets (called bags) for which

•
⋃

α∈U Bα = V ,

• for each edge (v1, v2) ∈ E, there is a node α ∈ U such that {v1, v2} ⊆ Bα, and

• if α2 ∈ U is on the path connecting α1 and α3 in T , then Bα1 ∩Bα3 ⊆ Bα2.

The treewidth associated with this tree-decomposition D = (T ,B) is tw(G,D) = maxα∈U |Bα| − 1.

The treewidth of graph G, denoted by tw(G), is the minimum tw(G,D) taken over all tree-
decompositions D of G.

A clique-tree-decomposition of G is a tree-decomposition (T ,B) of G such that each bag in B
is a maximal clique of G.

Lemma 2.1 [5] Every chordal graph has a clique-tree-decomposition.

From the proof of Lemma 2.1 given in [5], it is not difficult to see that a clique-tree-decomposition
D = (T ,B) of a given chordal graph G can be computed in linear time if ω(G) = O(1). We can
further modify D so that degT (α) ≤ 3 for each node α of T [1]. This modification takes linear time
too if ω(G) = O(1).

Hereafter, a tree-decomposition of a chordal graph G always means a clique-tree-decomposition
D = (T ,B) of G such that degT (α) ≤ 3 for all nodes α of T . Furthermore, in the sequel, we
abuse the notations to use D to denote the tree T in it (since we will use T to denote the kth root
phylogeny of graph G), and denote the bag associated with a node α of D by Bα.
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3 Algorithm for Bounded-Degree PRk

This section presents a linear-time algorithm for solving 3PRk. The adaptation to ∆PRk where
∆ ≥ 4 is straightforward and is hence omitted here.

We assume that the input graph G = (V,E) is connected. We further assume that G is not
complete but is chordal; otherwise the problem is trivially solved in linear time. Since every vertex
v ∈ V appears as an external node (i.e. leaf) in the kth root phylogeny, the maximum size ω(G)
of a clique in G can be bounded from above by a constant f(k), where

f(k) =

{
3 · 2

k
2
−1, if k is even,

2
k+1
2 − 1, if k is odd.

So, we can construct a clique-tree-decomposition D of G in linear time. The basic idea behind
our algorithm is to do a dynamic programming on a rooted version of the decomposition D. The
dynamic programming starts at the leaves of D and proceeds upwards. After processing the root,
the algorithm will construct a kth root phylogeny of G if there is any. The processing of a node
α of D can be sketched as follows. Let Uα be the union of the bags associated with α and its
descendants in D. While processing α, the algorithm computes a set of trees T such that (1) T

may possibly be a subtree of a kth root phylogeny of G, (2) all vertices of Uα are leaves of T , and
(3) each leaf of T not contained in Uα is not labeled. The unlabeled leaves of T serve as ports from
which we can expand T so that it may eventually become a kth root phylogeny of G. The crucial
point we will observe is that we only need those ports that are at distance at most k apart from
vertices of Bα in T . This point implies that the number of necessary ports only depends on k and
hence is a constant.

One more notation is in order. For two adjacent nodes α and β of D, let U(α, β) =
⋃

γ Bγ where
γ ranges over all nodes of D with dD(γ, α) < dD(γ, β). In other words, if we root D at node β, then
U(α, β) is the union of the bags associated with α and its descendants in D. A useful property of
D is that for every internal node β and every two neighbors α1 and α2 of β in D, G has no edge
between any vertex of U(α1, β)−Bβ and any vertex of U(α2, β)−Bβ .

3.1 Ideas behind the Dynamic Programming Algorithm

Note that since ∆ = 3, every internal node in a kth root phylogeny T of G has degree exactly 3.

Definition 3.1 Let U be a set of vertices of G. A relaxed phylogeny for U is a tree R satisfying
the following conditions:

• The degree of each internal node in R is 3.

• Each vertex of U is a leaf in R and appears in R only once. For convenience, we call the
leaves of R that are also vertices of U final leaves of R, and call the rest leaves of R temporary
leaves of R.

• For every two vertices u and v of U , u and v are adjacent in G if and only if dR(u, v) ≤ k.
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• Each temporary leaf v of R is assigned a pair (γ, t), where γ is a node of D and 0 ≤ t ≤ k.
We call γ the color of v and call t the threshold of v. For convenience, we denote the color
of a temporary leaf v of R by cR(v), and denote the threshold of v by tR(v).

Intuitively speaking, the temporary leaves of R serve as ports from which we can expand R so
that it may eventually become a kth root phylogeny of G.

Recall that our algorithm processes the nodes of D one by one. While processing a node α of
D, the algorithm finds out all relaxed phylogenies for Bα that are subtrees of kth root phylogenies
of graph G. The following lemma shows that such relaxed phylogenies for Bα have certain useful
properties.

Lemma 3.1 Let T be a kth root phylogeny of G. Let α be a node of D. Root T at an arbitrary
leaf that is in Bα. Define a pure node to be a node w of T such that α has a neighbor γ in D such
that all leaf descendants of w in T are in U(γ, α)−Bα. Define a critical node to be a pure node of
T whose parent is not pure. Let R be the relaxed phylogeny for Bα obtained from T by performing
the following steps of operations:

1. For every critical node w of T , perform the following:

(a) Compute the minimum distance from w to a leaf descendant of w in T ; let iw denote
this distance. (Comment: iw ≤ k or else the leaf descendants of w in tree T would be
unreachable from the outside in graph G.)

(b) Find the neighbor γ of α such that all leaf descendants of w in T are contained in U(γ, α).

(c) Delete all descendants (excluding w, of course) of w, and assign the pair (γ, iw) to w.

2. Unroot T .

Then, the resultant R has the following properties:

• For every temporary leaf v of R, cR(v) is a neighbor of α in D.

• For every two temporary leaves u and v of R with different colors, it holds that tR(u)+tR(v)+
dR(u, v) > k.

• For every neighbor γ of α in D, every temporary leaf v of R with cR(v) = γ, and every final
leaf w of R with w /∈ Bγ, it holds that dR(v, w) + tR(v) > k.

• For every internal node v of R, either at least one descendant of v is a final leaf of R, or
there is a final leaf u of R with dR(u, v) ≤ k − 1.

Proof. Obviously, R is a relaxed phylogeny for Bα. Since T is a phylogeny of G, it follows
immediately that R has the first three properties in the lemma. To prove the fourth property, it
suffices to prove that for every critical node w of T whose parent p in T has no leaf descendant
contained in Bα, there is a vertex u in Bα such that dT (u, p) ≤ k − 1. To this end, let v be a leaf
descendant of p that is closest to p among all leaf descendants of p in T . Let u1, u2, . . . , uq be all
leaves in T that are at distance at most k apart from v in T but are not descendants of p in T . Since
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G is connected, q ≥ 1. We claim that {u1, u2, . . . , uq} ∩ Bα 6= ∅. For the sake of a contradiction,
assume that {u1, u2, . . . , uq}∩Bα = ∅. Then, some connected component G1 of G[V −Bα] contains
all of v, u1, u2, . . . , uq. Let Q be the set of all leaf descendants of p in T that are not contained
in G1. Since p is not pure and no leaf descendant of p in T is in Bα, we have |Q| ≥ 1. Also, no
vertex of G1 can be adjacent to any vertex of Q in G. Now, by the choices of u1 through uq and
the assumption that G1 contains all of u1, u2, . . . , uq, we conclude that G has no edge between any
vertex of Q and any vertex of V −Q. This contradicts the connectivity of G. So, the claim holds.
By this claim, there is a ui ∈ {u1, u2, . . . , uq}∩Bα such that dT (ui, v) ≤ k. Thus, dT (ui, p) ≤ k−1,
establishing the fourth property. 2

Each relaxed phylogeny R for Bα having the four properties in Lemma 3.1 is called a skeleton
of α. The following lemma shows that there can be only a constant number of skeletons of α.

Lemma 3.2 For each node α of D, the number of skeletons of α is bounded from above by a
constant depending only on k and |Bα|.

Proof. First note that the color and the threshold of each temporary leaf can be chosen from a
constant range. Further note that each internal node v in a skeleton S of α satisfies degS(v) = 3.
So, to prove the lemma, it suffices to prove that the number of temporary leaves in a skeleton S of
α is bounded from above by a constant.

Consider a skeleton S of α and root S at an arbitrary final leaf r. We claim that for every
temporary leaf u of S, there is a final leaf w with dS(u, w) ≤ k. To see this, let u be a temporary
leaf and v be the parent of u in S. Since the root of S is a final leaf, v must be an internal node of
S. If there is a final leaf w with dS(v, w) ≤ k − 1, then dS(u, w) ≤ k and we are done. Otherwise,
by the definition of a skeleton, at least one descendant x of v is a final leaf of S. Since dS(x, r) ≤ k,
we have min{dS(x, v), dS(r, v)} ≤ k− 1 and hence min{dS(x, u), dS(r, u)} ≤ k. This establishes the
claim.

Since each pair of final leaves are at distance at most k apart in S and the maximum degree of
a node in S is 3, there are only a constant number of temporary leaves by the claim. 2

By Lemma 3.2, while processing a node α of D, our algorithm can find out all skeletons of α

in constant time. For each skeleton S of α, if possible, the algorithm then extends S to a relaxed
phylogeny for U(α, β) where β is the parent of α in rooted D. The algorithm records these relaxed
phylogenies of α in the dynamic programming table for later use when processing the parent β.
The following definition aims at removing unnecessary relaxed phylogenies of α from the dynamic
programming table.

Definition 3.2 Let α and β be two adjacent nodes of D. Let S be a skeleton of α. The projection
of S to β is a relaxed phylogeny for Bα ∩Bβ obtained from S by performing the following steps of
operations:

1. Change each final leaf v /∈ Bβ to a temporary leaf; Set the threshold of v to be 0 and set the
color of v to be α.
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2. Root S at an arbitrary vertex of Bα ∩Bβ.

3. Find those nodes v in S such that (i) every leaf descendant of v in S is a temporary leaf whose
color is not β, but (ii) the parent of v in S does not have property (i).

4. For each node v found in the last step, if v is a leaf in S then set the color of v to be α;
Otherwise, perform the following steps of operations:

(a) Set mv = minu{tS(u) + dS(u, v)} where u ranges over all leaf descendants of v in S.

(b) Delete all descendants of v in S.

(c) Set v to be a temporary leaf, α to be the color of v, and mv to be the threshold of v.

5. Unroot S.

Obviously, two different skeletons of α may have the same projection to β. For convenience,
we say that these skeletons are equivalent. Among equivalent skeletons of α, our algorithm will
extend only a hopeful one of them to a relaxed phylogeny for U(α, β) and record it in the dynamic
programming table. This motivates the following definition:

Definition 3.3 Let α and β be two adjacent nodes of D. A projection of α to β is the projection
of a skeleton of α to β. Let P be a projection of α to β. An expansion of P to U(α, β) is a relaxed
phylogeny X for U(α, β) such that some subtree Y of X is isomorphic to P , and the bijection f

from the node set of P to the node set of Y witnessing this isomorphism satisfies the following
conditions:

• For every final leaf v of P , f(v) = v.

• For every temporary leaf v of P with cP (v) = β, f(v) is a temporary leaf of X with cX(f(v)) =
cP (v) and tX(f(v)) = tP (v).

• Suppose that we root X at a vertex in Bα ∩ Bβ. Then, for every temporary leaf v of P with
cP (v) 6= β (hence cP (v) = α), all leaf descendants of f(v) in X are final leaves and are
contained in U(α, β)−Bβ, and the minimum distance between f(v) and a leaf descendant of
f(v) in X equals to tP (v).

Note that a projection of α to β may have no expansion to U(α, β). The following lemma shows
that if G has a kth root phylogeny T , then some subtree of T is a projection of α to β and another
subtree of T is its expansion to U(α, β).

Lemma 3.3 Let α and β be two adjacent nodes in D. Let T be a kth root phylogeny of G. Root
T at an arbitrary leaf that is in Bα. Let R be the skeleton of α obtained from T as in Lemma 3.1.
Let P be the projection of R to β. Define a β-pure node to be a node w of T such that all leaf
descendants of w in T are contained in U(β, α) − Bα. Further define a β-critical node to be a
β-pure node of T whose parent is not β-pure. Let X be the relaxed phylogeny for U(α, β) obtained
from T by performing the following steps of operations:

1. For every β-critical node w of T , perform the following:
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(a) Compute the minimum distance from w to a leaf descendant of w in T ; Let iw denote
this distance. (Comment: iw ≤ k or else the leaf descendants of w in tree T would be
unreachable from the outside in graph G.)

(b) Delete all descendants (excluding w, of course) of w, and assign the pair (β, iw) to w.

2. Unroot T .

Then, X is an expansion of P to U(α, β).

Proof. Straightforward. 2

By Lemma 3.3, whenever G has a kth root phylogeny, there is always a projection of α to β

that has an expansion to U(α, β). While processing α, our algorithm will find out those projections
that have expansions to U(α, β), and record the expansions in the dynamic programming table.

3.2 Details of Dynamic Programming for 3PRk

To solve the 3PRk problem for G, we perform a dynamic programming on the tree-decomposition
D as follows. To simplify the description of the algorithm, we add a new node r to D, connect r to
an arbitrary leaf α of D, and copy the bag at α to r (that is, Br = Bα). Clearly, the resultant D
is still a required tree-decomposition of G. Root D at r.

The dynamic programming starts at the leaves of D, and proceeds upwards; After the unique
child of the root r of D is processed, we will know whether G has a kth root phylogeny or not.
The invariant maintained during the dynamic programming is that after each non-root node α has
been processed, for each projection P of α to its parent β, we will have found out whether P has
an expansion X to U(α, β), and will have found and recorded such an X if any.

Now consider how a non-root node α of D is processed. Let β be the parent of α in D. First
suppose that α is a leaf of D. When processing α, we find and record all possible projections of α

to β; Moreover, for each projection P found, we also record a skeleton S of α such that P is the
projection of S to β.

Next suppose that α is neither a leaf nor the root node of D, and suppose that all descendants
of α in D have been processed. To process α, we try all possible skeletons S of α. When trying S,
for each child γ of α in D, we first compute the projection Pγ of S to γ, and then check whether
Pγ is also a projection of γ to α and additionally has an expansion to U(γ, α). If the checking fails
for at least one child of α, we proceed to try the next possible skeleton of α. Otherwise, we can
conclude that the projection Pβ of S to β has an expansion to U(α, β) because such an expansion
can be constructed as follows:

1. For each child γ of α in D, search the dynamic programming table to find the expansion Xγ

of Pγ to U(γ, α), and find the bijection fγ (from the node set of Pγ to the node set of some
subtree of Xγ) witnessing that Xγ is an expansion of Pγ to U(γ, α).
(Comment: To speed up the algorithm, we may have recorded this bijection in the dynamic
programming table when processing γ.)
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2. For each child γ of α in D, root Xγ at an arbitrary vertex of Bγ ∩Bα.

3. Modify S as follows: For each temporary leaf v of S with cS(v) 6= β, replace v by the subtree
rooted at fγ(v) of Xγ , where γ = cS(v).
(Comment: Recall that by Definition 3.2, each temporary leaf v of S with cS(v) = γ is also
a temporary leaf of Pγ .)

One can verify that the above construction indeed gives us an expansion of Pβ . Since Pβ is a
possible projection of α to β, we record this expansion for Pβ in the dynamic programming table.
After trying all possible skeletons of α, if we find no projection of α to β that has an expansion
to U(α, β), then we can conclude that G has no kth root phylogeny; otherwise, we proceed to the
processing of the next node of D.

Finally, suppose that α is the unique child of the root r of D. Further suppose that α has been
successfully processed (for otherwise we already knew that G has no kth root phylogeny). Then,
by searching the dynamic programming table, we try to find a projection P of α to r such that
(i) P has no temporary leaf whose color is r, and (ii) an expansion X of P to U(α, r) has been
recorded in the dynamic programming table. If P is found, we can conclude that X is a kth root
phylogeny for G; otherwise, we can conclude that G has no kth root phylogeny.

The above discussion justifies the following theorem:

Theorem 3.4 Let k be a constant integer larger than or equal to 2. There is a linear-time algorithm
determining if a given connected graph has a kth root phylogeny in which every internal node has
degree 3, and if so, demonstrating one such phylogeny.

We can easily generalize the above discussion to prove the following:

Corollary 3.5 Let ∆ and k be constant integers such that ∆ ≥ 3 and k ≥ 2. There is a linear-time
algorithm determining if a given connected graph has a kth root phylogeny in which every internal
node has degree in the range [3,∆], and if so, demonstrating one such phylogeny.

4 The Hardness of Closest Phylogenetic Root Problems

We introduce some basic concepts (some of them from [4]) that will be used in the hardness proofs.
Consider a set S = {s1, s2, . . . , sn}. Let M be a symmetric matrix with rows and columns indexed
by the elements of S. M is a binary dissimilarity matrix on set S if M(si, sj) ∈ {1, 2} for every
pair (si, sj) of distinct elements of S and M(si, si) = 0 for every element si ∈ S.

A tree T is a 2-ultrametric on set S if T is a rooted tree whose leaves are labeled by the elements
of S and each leaf-to-root path contains exactly two edges. Call a node in T that is neither a leaf
nor the root a middle node, to avoid ambiguity. The half-distance between two leaves si and sj ,
denoted by hT (si, sj), is one half of the number of edges on the unique path in T connecting si and
sj . Clearly, hT (si, sj) ∈ {1, 2} if i 6= j, and hT (si, si) = 0 for every i.
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Given a binary dissimilarity matrix M and a 2-ultrametric T on set S, define

D(T,M) =
∑
i<j

|hT (si, sj)−M(si, sj)| ,

which measures how well T matches the inter-leaf (half-)distances specified by M . 2 The following
Fitting Ultrametric Trees (FUT) problem has been shown to be NP-complete by Křivánek
and Morávek [6].

Fitting Ultrametric Trees (FUT):
Given a binary dissimilarity matrix M on set S and a nonnegative integer `,
decide if there is a 2-ultrametric T on S such that D(T,M) ≤ `.

Kearney and Corneil [4] proved that CTRk is NP-hard when k ≥ 3 by a (polynomial-time)
reduction from FUT (to CTR3). Using a more dextrous reduction, Jiang, Lin, and Xu [3] have
recently proved that CTR2 is intractable too.

4.1 CPR2

Given a binary dissimilarity matrix M on a set S = {s1, . . . , sn}, let S′ = {sn+1, sn+2, . . . , s2n} be
another set of n elements. Define a binary dissimilarity matrix M ′ on set S∪S′, from M as follows:

For every pair of (not necessarily distinct) integers i, j ∈ {1, 2, . . . , n},

• M ′(si, sj) = M(si, sj);

• M ′(sn+i, sn+j) = M(si, sj);

• M ′(si, sn+j) = M(si, sj), if i 6= j;

• M ′(si, sn+i) = 1.

Lemma 4.1 If there is a 2-ultrametric T on set S such that D(T,M) = `, then there is a 2-
ultrametric T ′ on set S ∪ S′ such that D(T ′,M ′) = 4`.

Proof. Given a 2-ultrametric T on set S such that D(T,M) = `, construct a 2-ultrametric T ′

on set S ∪ S′ in the following way: The root and middle nodes of T ′ are the same as those in T ;
If an si ∈ S is adjacent to a middle node u in T , then both si and sn+i are adjacent to u in T ′.
Clearly, for every pair of (not necessarily distinct) integers i, j ∈ {1, 2, . . . , n},

• hT ′(si, sj) = hT (si, sj);

• hT ′(sn+i, sn+j) = hT (si, sj);

• hT ′(si, sn+j) = hT (si, sj), if i 6= j;

• hT ′(si, sn+i) = 1.

2So, here the entries in M are supposed to represent the half-distances between species instead of full distances.
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Thus, D(T ′,M ′) = 4D(T,M) = 4`. 2

Lemma 4.2 Let T be a 2-ultrametric on set S ∪ S′, then there is another 2-ultrametric T ′ on set
S∪S′ such that (1) D(T ′,M ′) ≤ D(T,M ′) and (2) for every i ∈ {1, 2, . . . , n}, si ∈ S and sn+i ∈ S′

are adjacent to a common middle node in tree T ′.

Proof. Suppose that si ∈ S is adjacent to a middle node u and sn+i ∈ S′ is adjacent to another
middle node u′ 6= u in tree T . Let

• S̃ = (S ∪ S′)− {si, sn+i};

• a be the number of s ∈ S̃ adjacent to u in T with M ′(s, si) = 1;

• b be the number of s ∈ S̃ adjacent to u in T with M ′(s, si) = 2;

• a′ be the number of s ∈ S̃ adjacent to u′ in T with M ′(s, sn+i) = 1; and

• b′ be the number of s ∈ S̃ adjacent to u′ in T with M ′(s, sn+i) = 2.

If a′+ b ≤ a+ b′, we can modify T by deleting edge (sn+i, u
′) and adding edge (sn+i, u). Otherwise,

we can modify T by deleting edge (sn+i, u) and adding edge (sn+i, u
′). In either case, D(T,M ′) does

not increase and, si and sn+i are adjacent to a common middle node of the modified T . Repeating
this process results in a desired 2-ultrametric. 2

From now on, we will only consider those 2-ultrametrics on set S ∪ S′ such that for every
i ∈ {1, . . . , n}, si ∈ S and sn+i ∈ S′ are connected to a common middle node.

Lemma 4.3 Given a binary dissimilarity matrix M on set S, there is a 2-ultrametric T on S such
that D(T,M) ≤ ` if and only if there is a 2-ultrametric T ′ on S ∪ S′ such that D(T ′,M ′) ≤ 4`.

Proof. The “only if” part is implied by Lemmas 4.1 and 4.2. The “if” is straightforward
by observing that deleting elements in S′ from T ′ gives a 2-ultrametric T on set S such that
D(T,M) = D(T ′,M ′)/4. 2

Theorem 4.4 CPR2 is NP-complete.

Proof. CPR2 is clearly in NP. The hardness proof is done by a reduction from FUT. Consider
an instance I of FUT, i.e. a dissimilarity matrix M on set S = {s1, s2, . . . , sn} and a nonnegative
integer `. Without loss of generality, we may assume that n ≥ 4 and ` ≤ n(n−1)/2. Construct the
corresponding set S′ and the dissimilarity matrix M ′ on S∪S′, from M as in the above. Construct
a graph G on a set V of 2n vertices as follows. For every si ∈ S ∪ S′, there is a corresponding
vertex vi in V . 3 Two distinct vertices vi and vj are adjacent in G if and only if M ′(si, sj) = 1.

3We use a different name vi instead of si here in order to avoid ambiguity, although they should be viewed as

identical.



The Phylogenetic Roots 13

Let the instance of CPR2 consist of graph G and a nonnegative integer `′ = 4`. We claim that
there is an approximate phylogenetic square root T ′ of graph G with |E(G) ⊕ E(T ′2)| ≤ `′ if and
only if there is a 2-ultrametric T on set S with D(T,M) ≤ `.

To see the “if” part, suppose that there is a 2-ultrametric T on set S such that D(T,M) ≤ `.
This implies there is a 2-ultrametric T ′′ on set S ∪ S′ such that D(T ′′,M ′) ≤ 4` = `′. Recall that
for all i ∈ {1, 2, . . . , n}, si ∈ S and sn+i ∈ S′ are adjacent to a common middle node in tree T ′′.
It follows that every middle node in T ′′ has degree at least 3. Then, replacing every leaf si in T ′′

by vertex vi gives a tree (still denoted by T ′′) whose leaves are the elements of V . So, if there are
three or more middle nodes, then T ′′ is a phylogeny on V and we are done by setting T ′ = T ′′.
If there is only one middle node in T ′′, then we obtain T ′ from T ′′ by deleting the root as well
as its incident edge. If there are exactly two middle nodes in T ′′, then we obtain T ′ from T ′′ by
removing the root and connecting the two middle nodes by an edge. Clearly, the final tree T ′ is a
phylogeny on set V . Moreover, dT ′(vi, vj) ≤ 2 if and only if hT ′′(vi, vj) = hT ′′(si, sj) = 1, for all
distinct i, j ∈ {1, 2, . . . , n}. It follows that edge (vi, vj) is in exactly one of E(G) and E(T ′2) if and
only if either hT ′′(si, sj) = 1 and M ′(si, sj) = 2, or hT ′′(si, sj) = 2 and M ′(si, sj) = 1. That is, the
number of such edges is equal to D(T ′′,M ′). Thus, |E(G)⊕ E(T ′2)| = D(T ′′,M ′) ≤ `′.

To prove the “only if” part, let us assume that T ′ is a phylogeny interconnecting the vertices in
V such that |E(G)⊕E(T ′2)| ≤ `′. If T ′ contains only one internal node, i.e. T ′2 is complete, then
a 2-ultrametric T ′′ on set S ∪S′ can be constructed to have only one middle node with all elements
of S ∪ S′ attached to it. So, suppose in the following that T ′ contains two or more internal nodes.
We obtain a rooted tree T ′′ by modifying T ′ as follows:

1. Select an arbitrary internal edge of T ′, i.e. an edge connecting two internal nodes, and split
the edge into two edges by adding a new internal node, say r, on the edge.

2. Root the new tree at r.

3. Delete all internal edges from the tree. This results in a (possibly empty) set of isolated nodes
and a set of stars whose centers are internal nodes of the original T ′.

4. Connect the centers of the stars to the root r.

Clearly, the leaves of T ′′ are the elements of V , T ′′ is of height 2 and every leaf-to-root path is
of length exactly 2. Furthermore, E(T ′2) = E(T ′′2). Now replacing leaf vi in T ′′ by si gives a 2-
ultrametric (still denoted by T ′′) on set S∪S′. Again, an edge (vi, vj) is in exactly one of E(G) and
E(T ′2) if and only if either hT ′′(si, sj) = 1 and M ′(si, sj) = 2, or hT ′′(si, sj) = 2 and M ′(si, sj) = 1.
Thus, D(T ′′,M ′) = |E(G) ⊕ E(T ′2)| ≤ `′ = 4`. According to Lemmas 4.2 and 4.3, we may easily
obtain a 2-ultrametric T on set S, from T ′′, such that D(T,M) ≤ `. This finishes the proof. 2

4.2 CPRk

We extend the above NP-completeness result to CPRk, for k > 2. In doing so, we need to design
several gadgets that facilitate the proof.
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4.2.1 Gadgets

A critical clique [7] of a graph is a maximal subset of vertices that are adjacent to each other and
have a common neighborhood. As for constructing a phylogenetic root, the vertices in a critical
clique can be identified because they are interchangable in every phylogenetic root. When we say
that one critical clique C1 is adjacent to another C2, we mean every vertex in C1 is adjacent to
every vertex in C2. Consider a graph H = (V,E) consisting of 4k − 7 critical cliques C1 through
C4k−7 such that

• |Ci| = N , for 1 ≤ i ≤ 4k − 7;

• Ci is adjacent to C1, C2, . . ., Ck−2+i, for 1 ≤ i ≤ k − 1;

• Ci is adjacent to Ci−k+2, Ci−k+3, . . ., Ci+k−2, for k ≤ i ≤ 3k − 5;

• Ci is adjacent to Ci−k+2, Ci−k+3, . . ., C4k−7, for 3k − 4 ≤ i ≤ 4k − 7.

Assume that T is an approximate kth root phylogeny of graph H such that |E(T k)⊕E(H)| ≤ ` < N .
We present some enforced structural properties of T below.

Lemma 4.5 In T , no two vertices from different critical cliques can be adjacent to a common
internal node.

Proof. For the sake of a contradiction, assume that vi ∈ Ci and vj ∈ Cj with i 6= j are
both adjacent to an internal node u in T . Then, vi and vj have the same neighborhood in the kth
phylogenetic power T k. On the other hand, by the construction of H, there is another critical clique
Ch with h 6∈ {i, j} such that Ch is adjacent to exactly one of Ci and Cj in H. So, |E(T k)⊕E(H)|
is at least as large as N , a contradiction. 2

Let R be the skeleton obtained from T by deleting all the leaves. In light of Lemma 4.5, a node
of R adjacent to some vertex of Ci in tree T is called a node for Ci or simply a Ci-node. We also call
a vertex in clique Ci a Ci-vertex. Let Ri be the minimal subtree of R that contains all Ci-nodes.
Clearly, Ri can be obtained from R by deleting some nodes and their incident edges. Call Ri the
Ci-subtree.

Lemma 4.6 For every j ∈ {k− 1, k, . . . , 3k− 5} and every i 6= j, there is no Ci-node in Rj. That
is, for every j ∈ {k − 1, k, . . . , 3k − 5}, the Cj-nodes form a subtree of T .

Proof. Fix a j ∈ {k − 1, k, . . . , 3k − 5}. Notice that for every i ∈ {1, 2, . . . , j − 1}, if there is a
Ci-node, say ti, in Rj , then ti must be an internal node in Rj . In tree T , every vertex in Cj+k−2 is
either at distance greater than k − 2 from some Cj-node or at distance at most k − 2 from every
Cj-node. A Cj+k−2-vertex which is at distance at most k − 2 from every Cj-node is at distance
less than k− 2 from ti. Therefore, in T k, each Cj+k−2-vertex is either adjacent to no Cj-vertex, or
adjacent to some Ci-vertex (which is adjacent to ti in T ). This together with the fact that Cj+k−2

is adjacent to Cj but adjacent to none of C1 through Cj−1 implies that |E(T k) ⊕ E(H)| ≥ N , a
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contradiction. Similarly, using Cj−k+2 instead of Cj+k−2, we can show that Rj contains no Ci-node
for every i ≥ j + 1. This proves the lemma. 2

Lemma 4.7 For every i ∈ {k − 1, k, . . . , 3k − 5}, there is exactly one Ci-node, denoted by ti, in
tree T . Moreover, the nodes tk−1, tk, . . . , t3k−5 appear consecutively in this order on a path of tree
T .

Proof. Let t2k−2 be a C2k−2-node. If t2k−2 were within distance k − 2 from all Ck−1-nodes,
then the vertices of C2k−2 adjacent to t2k−2 in tree T would be at distance at most k from every
vertex of Ck−1 in tree T . This would result in at least N edges in E(T k) − E(H), and is thus
impossible. Let tk−1 be a Ck−1-node such that dR(tk−1, t2k−2) > k − 2, and let P denote the path
in R connecting them. It holds that for every i ∈ {k, k + 1, . . . , 2k − 3}, there must be a Ci-node,
say ti, such that dR(ti, tk−1) ≤ k − 2 and dR(ti, t2k−2) ≤ k − 2 (otherwise |E(T k) ⊕ E(H)| would
be at least N because both Ck−1 and C2k−2 are adjacent to Ci in H). Therefore, in tree R, ti is
closer to some node on path P than to either of tk−1 and t2k−2. If subtree Ri contains some node
from the path P , then we choose an arbitrary node in Ri ∩ P as the representative node for Ri.
Otherwise, choose the node on P that is the closest to subtree Ri as the representative node for
Ri. Denote the representative node for Ri by ri.

We claim that ri 6= rj for every pair of distinct i, j ∈ {k, k + 1, . . . , 2k − 3}. To prove the
claim, for every i ∈ {k, k + 1, . . . , 2k − 3}, let t′i be the closest Ci-node to ri in R. Then, dR(ri, t

′
i)

should be less than or equal to both dR(ri, tk−1) and dR(ri, t2k−2). It follows that if Ri and Rj

with i < j share some representative node say ri = r = rj and dR(r, t′i) ≤ dR(r, t′j) (respec-
tively, dR(r, t′i) ≥ dR(r, t′j)), then for every vertex x ∈ Cj+k−2 (respectively, x ∈ Ci−k+2), either
dT (x, t′i) ≤ k − 1 or max{dT (x, t2k−2), dT (x, t′j)} > k − 1 (respectively, either dT (x, t′j) ≤ k − 1 or
max{dT (x, tk−1), dT (x, t′i)} > k − 1). This again contradicts the fact that |E(T k)⊕ E(H)| < N .

A similar argument to the proof of the above claim shows that k ≤ i < j ≤ 2k − 3 if and
only if dR(tk−1, ri) < dR(tk−1, rj). Since some Ck-node should be within distance k − 2 from
t2k−2, we conclude that the representative node rk is in fact a Ck-node. Analogously, for every
i ∈ {k, k+1, . . . , 2k−3}, ri is in fact a Ci-node. It further follows that dR(tk−1, rk) = dR(rk, rk+1) =
. . . = dR(r2k−3, t2k−2) = 1, that is, the path P connecting tk−1 and t2k−2 is tk−1-rk-rk+1-. . .-r2k−3-
t2k−2. It is then easy to argue that there is only one Ci-node, for every i ∈ {k − 1, k, . . . , 2k − 3}.

The lemma is proved by considering analogously the C2k−4-node and a C3k−5-node, and the
index interval [2k − 4, 3k − 5]. 2

By Lemma 4.7, letting ti denote the unique Ci-node, for i ∈ {k − 1, k, . . . , 3k − 5}, we get a
rough structure of R, as shown in Figure 1 (where k = 5 and ti indicates a possible Ci-node, for
i ∈ {1, 2, . . . , k − 2} ∪ {3k − 4, 3k − 3, . . . , 4k − 7}).

4.2.2 Proof of Hardness

Theorem 4.8 CPRk is NP-complete, when k ≥ 3.
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Figure 1: The rough structure of R.

Proof. The proof is also a reduction from FUT, but it is more complicated than that of
Theorem 4.4. To simplify the presentation, we assume that k is even. It is trivial to extend
the proof to odd k. Given a binary dissimilarity matrix M on a set S = {s1, . . . , sn}, let
Sh = {shn+1, shn+2, . . . , s(h+1)n} be another set of n elements for all h = 1, 2, . . . , 2k/2 − 1. For

convenience, let S0 denote the set S. Define a dissimilarity matrix M ′ on set S̃ =
⋃2k/2−1

h=0 Sh,
from M as follows. For every pair of integers i, j ∈ {1, 2, . . . , n} and every pair of integers
h1, h2 ∈ {0, 1, . . . , 2k/2 − 1},

• M ′(sh1n+i, sh2n+j) = M(si, sj), if i 6= j;

• M ′(sh1n+i, sh2n+i) = 1, if h1 6= h2;

• M ′(sh1n+i, sh1n+i) = 0.

Similarly to the proofs of Lemmas 4.1, 4.2 and 4.3, we can show the following:

(i) There exists a 2-ultrametric T on set S with D(T,M) ≤ ` if and only if there exists a 2-
ultrametric T ′ on set S̃ with D(T ′,M ′) ≤ 2k`.

(ii) We can only consider those 2-ultrametrics on set S̃ in which shn+i, h = 0, 1, . . . , 2k/2 − 1, are
adjacent to a common middle node.

Let `′ = 2k` and N = `′ + 1. The instance of CPRk consists of the nonnegative integer `′ and
graph G constructed as follows:

• G takes S̃ as a vertex subset;

• Two distinct vertices si, sj ∈ S̃ are adjacent in G if and only if M ′(si, sj) = 1;

• G also contains the graph H consisting of the 4k − 7 critical cliques as discussed in the last
subsubsection as a subgraph; and

• For every i ∈ {3k
2 − 1, 3k

2 , . . . , 5k
2 − 5}, each vertex in Ci is adjacent to every vertex in S̃.

Lemma 4.7 guarantees that if G has an approximate phylogeny T ′ such that |E(G) ⊕ E(T ′k)| ≤
`′ < N , then the vertices in each critical clique Ci in subgraph H (where i ∈ {k− 1, k, . . . , 3k− 5})
are adjacent to the unique internal Ci-node ti in T ′. Since every vertex in S̃ is adjacent to all
vertices in Ci, for all i ∈ {3k

2 − 1, 3k
2 , . . . , 5k

2 − 5}, and the length of the path consisting of those
k− 3 Ci-nodes has length k− 4, every vertex in S̃ must be within distance k

2 + 1 from the (unique)
C2k−3-node t2k−3 in T ′.



The Phylogenetic Roots 17

Let T ′′ denote the minimal subtree of T ′ that contains all vertices in S̃. The first observation
is that T ′′ contains no vertex outside S̃. Secondly, since every vertex in S̃ is adjacent to neither
vertex in C 3k

2
−2 nor vertex in C 5k

2
−4, we conclude that every vertex in S̃ is at distance exactly k

2 +1

from the C2k−3-node t2k−3. Furthermore, the path connecting any vertex in S̃ to t2k−3 does not
intersect the backbone path formed by the Ci-nodes for i ∈ {k− 1, k, . . . , 3k− 5} (except at t2k−3).

Therefore, if subtree T ′′ does not include node t2k−3, then we can construct a 2-ultrametric tree,
denoted also by T ′′, on set S̃ by connecting all the elements to a single middle node. Otherwise,
rooting T ′′ at t2k−3 and letting every leaf be adjacent to its closest child node of the root, which
serves as the middle node, give a 2-ultrametric, denoted still by T ′′, on set S̃. In any case, the
2-ultrametric T ′′ on set S̃ satisfies D(T ′′,M ′) ≤ `′ = 2k`, which immediately implies that we can
construct a 2-ultrametric T on set S such that D(T,M) ≤ `.

On the other hand, if we have a 2-ultrametric T on set S such that D(T,M) ≤ `, we can easily
construct a 2-ultrametric T ′′ on set S̃ such that D(T ′′,M ′) ≤ 2k` = `′ and in which elements shn+i,
h = 0, 1, . . . , 2k/2 − 1, are adjacent to a common middle node. It is also easy to transform the
subtree of T ′′ under each middle node into a k

2 -height subtree rooted at the middle node so that
every leaf is at distance exactly k

2 from the middle node and every internal node of the whole tree
(except its root), still denoted by T ′′, has degree at least 3. At the same time, we can also easily
build a tree for subgraph H in which all vertices in Ci are adjacent to a single Ci-node ti and
these 4k− 7 Ci-nodes are connected consecutively into a path (such that ti is adjacent to ti−1 and
ti+1). We then identify the root of T ′′ with the C2k−3-node t2k−3. This gives a phylogeny, which is
denoted by T ′, such that |E(G)⊕ E(T ′k)| = D(T ′′,M ′) ≤ `′. 2

4.3 Steiner kth Root Problems

We study another problem closely related to PRk and TRk, which is the Steiner kth Root

Problem [7]. Recall that given a graph G = (V,E), TRk asks for a tree whose node set is exactly
V and PRk asks for a tree whose leaf-set is exactly V . A more general problem is to ask for a tree
T whose node set is a superset of V and whose leaf-set is a subset of V , and such that for every
pair of vertices u and v in V , dT (u, v) ≤ k if and only if (u, v) ∈ E. We call a tree T , whose node
set is a superset of V and whose leaf-set is a subset of V , a Steiner tree on V .

Steiner kth Root Problem (SRk):
Given a graph G = (V,E), find a Steiner tree T on V such that for each pair of
vertices u, v ∈ V , (u, v) ∈ E if and only if dT (u, v) ≤ k.

Such a Steiner tree T (if exists) is called a Steiner kth root or a kth root Steiner tree of G. G is
called the kth Steiner power of T . We also abuse T k to denote the kth Steiner power of T , when
there is no confusion from the context.

Notice that we do not require here a non-leaf node in a Steiner tree to have degree at least
3. This requirement is not necessary from the tree root point of view. But, one may do so as
this requirement is natural from the phylogenetic root point of view. Steiner trees satisfying this
additional requirements are called restricted Steiner trees. Graphs having a restricted Steiner kth
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root, for k = 1, 2, can be recognized in linear time [7]. The recognition algorithm can be extended
to find an ordinary Steiner kth root, for k = 1 and k = 2. However, when k ≥ 3, no polynomial-time
recognition algorithm has been reported yet to find either a Steiner kth root or a restricted Steiner
kth root. In the following, we will only consider ordinary Steiner roots and show that the closest
Steiner kth root problem (CSRk), defined in a straightforward way, is NP-complete when k ≥ 2.

We call the nodes in a Steiner tree T that are not vertices in V Steiner nodes.

For CSR1, we notice that deleting all Steiner nodes from an (approximate) 1st root Steiner
tree T results in a collection of subtrees such that vertices in different subtrees are not adjacent in
T 1. Therefore, for any input graph G, the best way to build the closest 1st root Steiner tree is to
construct a spanning tree for each connected component in G and then connect these spanning trees
together via a Steiner node. That is, a closest 1st root Steiner tree can be computed in O(n) time,
where n is the number of vertices in the input graph. The complexity changes when k marches
from 1 to 2.

4.3.1 Gadgets

Suppose we have an instance of FUT, that is, a set S, a dissimilarity matrix M on S, and a
nonnegative integer `. Let N = ` + 2. Gadget Hu, where u ∈ S, is a graph consisting of N + 1
cliques:

• C0 = {u, u1, . . . , uN},

• Ci = {u, ui, ui1, ui2, . . . , uiN}, i = 1, 2, . . . , N .

Abusing Hu to denote its vertex set, then Hu ∩Hv = ∅ when u 6= v.

The instance of CSR2 corresponding to the instance of FUT consists of the nonnegative integer
` and a graph G = (V,E) which is constructed as follows:

• For each element u ∈ S, there is a vertex u in G (thus, we do not distinguish them as being
either an element or a vertex); These vertices are included in the vertex subset named F ;

• For u, v ∈ F , (u, v) ∈ G if and only if M(u, v) = 1;

• F includes one additional special vertex r, called root; r is adjacent to every other vertex
u ∈ F ;

• G includes gadgets Hu, for all u ∈ F , where vertex u in gadget Hu identifies vertex u in
subset F .

It is easy to check that |V | = (N2 + N + 1)(n + 1), where n = |S|.

Lemma 4.9 If graph G has an approximate square root Steiner tree T such that |E(G)⊕E(T 2)| ≤
`, then in every gadget Hu, each clique Ci ∈ {C0, C1, . . . , CN} induces a subtree Ti of T with
diameter 2.
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Proof. Otherwise there would be at least N − 1 = ` + 1 edges in E(G)− E(T 2). 2

Let us focus on one gadget first, say Hu. Lemma 4.9 tells us that the subtree Ti of T induced by
clique Ci in Hu is a star. Denote the center of Ti by ci. Then, ci cannot be a vertex in Cj −Ci for
any j 6= i. The reason is that otherwise there would be at least N = ` + 2 edges in E(T 2)−E(G).
If ci is a Steiner node, then it cannot be adjacent to any vertex in Cj − Ci with j 6= i either, for
the same reason. Let us turn to check out how these N + 1 stars (induced by the N + 1 cliques in
gadget Hu) are connected in T .

Lemma 4.10 The subgraph of T induced by Hu is a subtree containing no Steiner node. Moreover,
u is the center of the star T0 induced by C0, and ui ∈ C0 is the center of the star Ti induced by Ci,
for 1 ≤ i ≤ N .

Proof. Observe that C0 ∩ Ci = {u, ui} for every 1 ≤ i ≤ N , and Ci ∩ Cj = u, for any pair
1 ≤ i < j ≤ N . It follows that u cannot be the center of star Ti for any 1 ≤ i ≤ N . Therefore, u is
adjacent to center ci of star Ti in T , for every 1 ≤ i ≤ N . Furthermore, since u and ui must present
in both T0 and Ti, ui has to be the center of Ti and u has to be the center of T0. I.e. ci = ui for
0 ≤ i ≤ N . This finishes the proof. 2

For convenience, we call the subtree induced by Hu the u-tree, of which the topology is shown
in Figure 2.
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Figure 2: The topology of the u-trees.

Corollary 4.11 In T , none of the vertices in gadget Hv, where v 6= u, could be adjacent to any
vertex in clique C0 in gadget Hu.

Proof. Otherwise there would be at least N edges in E(T 2)− E(G). 2

4.3.2 Proof of Hardness

Theorem 4.12 CSR2 is NP-complete.

Proof. CSR2 is clearly in NP. The proof is again a reduction from FUT. Given an instance of
FUT, we may construct the corresponding instance of CSR2 as in the above.
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Trivially, if there is a 2-ultrametric T on set S such that D(T,M) ≤ `, then

1. replacing every leaf in T by the corresponding vertex in F ,

2. replacing the root of T by the root vertex r,

3. taking the middle nodes in T as Steiner nodes, and

4. expanding each vertex u ∈ F into the u-tree

would turn T into a Steiner tree T ′ on the vertex set V of graph G. Notice that the u-tree, where
u ∈ F , realizes all the edges in gadget Hu. All edges of form (r, u), where u ∈ F , in graph G are
also realized since dT ′(r, u) = 2. Therefore, |E(G)⊕ E(T ′2)| = D(T,M) ≤ `.

On the other hand, suppose that there is an approximate square root Steiner tree T ′ of G such
that |E(G)⊕E(T ′2)| ≤ `. Then from the fact that N = `+2, Lemmas 4.9 and 4.10, and Corollary
4.11, we know that those N + 1 u-trees, for all u ∈ F , are connected via either Steiner nodes or
edges of form (ui1j1 , vi2j2), where u 6= v and u, v ∈ F . If vertex u and root vertex r are not adjacent
to a common Steiner node, then the edge (r, u) wouldn’t be realized in T ′2. Therefore, starting
from u-trees that are the farthest from r in T ′, cutting them off and re-connecting each u to r via
a Steiner node will realize edge (r, u) in T ′2. This process may un-realize some edge of form (v, u)
(where v is a non-root vertex in F other than u), nonetheless, it does not affect any other edge.
In other words, this process doesn’t increase |E(G) ⊕ E(T ′2)|. Thus we may assume without loss
of generality that those N + 1 u-trees are connected to form into T ′ in a way that every non-root
vertex u ∈ F is at distance exactly 2 from root r and their common neighbor is a Steiner node.

If we delete all vertices in the gadget Hu except vertex u, for every vertex u ∈ F (including
the root vertex r), we will get a tree, denoted by T , in which every non-root vertex u in F is
a leaf whose distance to r is exactly 2. Clearly, T is an approximate square root Steiner tree of
the subgraph F (of graph G) and |E(F ) ⊕ E(T 2)| = |E(G) ⊕ E(T ′2)| ≤ `. Rooting T at r and
replacing every leaf by the corresponding element in S, we obtain a 2-ultrametric, denoted still by
T , on set S. Recall that there is an edge between vertices u and v if and only if M(u, v) = 1.
D(T,M) = |E(F )⊕ E(T 2)| ≤ `.

In summary, we have shown that there is a 2-ultrametric T on set S such that D(T,M) ≤ `

if and only if there is an approximate Steiner tree T ′ on the vertex set of graph G such that
|E(G)⊕ E(T ′2)| ≤ `. This completes the proof of NP-completeness. 2

By employing more gadgets, as in the proof of Theorem 4.8, we can also prove the following.

Corollary 4.13 CSRk is NP-complete, when k > 2.

5 Open problems

Since CPRk is NP-complete for all k ≥ 2, it would be interesting to know how well we can
approximate the closest phylogenetic kth root. Also, it would be nice to extend Theorem 3.4 and
Corollary 3.5 to disconnected graphs.
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