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ABSTRACT

In this note, we consider the problem of detecting network portscans through the use of anomaly detection.
First, we introduce some static tests for analyzing traffic rates. Then, we make use of two dynamic chi-square
tests to detect anomalous packets. Further, we model network traffic as a marked point process and introduce a
general portscan model. Simulation results for correct detects and false alarms are presented using this portscan
model and the statistical tests.
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1. INTRODUCTION

Hackers often use a four step process for network intrusions: reconnaissance, exploitation, execution and clean
up. Reconnaissance includes a method called portscanning, which is the assessment and identification of listening
network services, used by the malicious Hacker to focus his/her attention on promising avenues. Scanning is
performed by sending a sequence of probing packets to the target network ports and observing its responses.
Inevitably, programs have exploitable weaknesses. Once a system’s weakness is discovered, an intruder exploits
this flaw to enter the system and executes his attack.

Since portscans is one of the most common precursors to network intrusion, detecting them is essential to
ensure a maximum level of information security. Yet, the existing detection tools limit their focus on simple,
predictable portscanning activities. Indeed, currently available intrusion detection systems are based on having a
priori knowledge of attack methods and signatures. Such tools attempt to build upon an existing knowledge-base
set of rules to determine whether potential attacks may be occurring.

In this note, we research detecting portscans from the viewpoint of anomaly detection. The idea is to use
some statistical techniques to compute the departure of current network traffic from the normal traffic and
classify these departure as anomalous. To this end we first introduce some static tests to analyze traffic rates
and help detect non-stealthy portscans such as SYN floods. Then, we make use of two dynamic chi-square
tests to detect slower portscans performed by a more patient hacker. The idea originates from Ref. 5, where
the authors use a chi-square test with simple exponential smoothing to detect independent anomalous events in
information systems. We find that this idea can be further developed to handle our portscan detection problem,
where a smoothing vector is introduced to handle different traffic rates. We also replace the simple exponential
smoothing with double exponential smoothing to handle trends in network traffic. Considering the dependency
of chi-squares, we use windows with a threshold to help decrease false alarms. Moreover, we introduce the
bootstrap method and randomization testing to handle the problems caused by small sample size and more even
stealthier, slower portscans. If we further consider packet types, these tests would provide us with much more
information about network anomaly.

The remainder of this note is organized as follows. In Sect. 2, we introduce the statistical tests for anomaly
detection. In Sect. 3, we model network traffic as a marked point process and introduce a general portscan
model. Moreover, we use a vertical portscan model to test the statistical methods for their performance through
simulations.
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2. STATIC AND DYNAMIC TESTS FOR ANOMALY DETECTION

We model packet traffic as a stochastic process with a state space S. For example, in relation to Ref. 4, S would
be the four dimensional space consisting of the destination port, destination IP, source port, and source IP. Since
the four-dimensional state space S is too large, we split it into the product of the destination space SD and
source space SS . Notice that the traffic information from source port and source IP might be inaccurate because
of many existing stealthy techniques such as idle scanning and source IP spoofing. In this note, we concentrate
on detecting anomaly in SD. To simplify notation, in the sequel, we set S = SD which consists of the destination
port and destination IP.

2.1. Static Tests
Let S′ be a subset of S. Here S′ can be all the computers in a LAN connected with a port; all the 65535
ports associated with a server; or many points of port/IP combination. For concreteness, we let S′ be all the
computers connected with a particular port, e.g. port 23; however, the following static tests can be used for
many other scenarios. Considering traffic rates, we may divide the computers into several classes such that all
the computers in a class have similar levels of rate. Let C be a computer class and t0 = l0ε for some constants
ε > 0 and l0 ∈ IN . Suppose that the packet traffic for a computer IPi ∈ C is a Poisson process with parameter
γi. For a fixed mi ∈ IN , we use Newton’s method to solve the following equation

mi−1∑

j=0

(γiτi)j

j!
e−γiτi = 0.99.

We denote by Ni(0) the number of packets arriving at IPi during the time interval [t0− τi, t0). If Ni(0) > m−1,
we continue to observe the packet traffic for IPi during the time intervals [tj , tj +τi), tj := t0+jε, 0 ≤ j ≤ k1−1,
where k1 ∈ IN is a suitable constant. Denote by Ni(j +1) the number of packets arriving at IPi during the time
interval [tj , tj + τi), 0 ≤ j ≤ k1 − 1. If the cardinality of {0 ≤ j ≤ k1 − 1 : Ni(j + 1) > mi − 1} is greater than
some threshold �1, then we conclude that there are anomalous packets arriving at IPi.

It is possible that Ni(0) < γiτi for each IPi ∈ C while a hacker still has an exploit for port 23. This is a
horizontal scan, which is the common type of portscans at present. To detect this type of scans, we first select
out all the computers satisfying Ni(0) ≥ γiτi. We denote this subclass of computers in C by C ′. Suppose that
the cardinality n of C ′ is not less than 30. We now use the central limit theorem and suggest the following z-test:

P

(
1√
q

q∑

i=1

Ni(0) − γiτi√
γiτi

> 2.33

)
∼ 1%.

We arrange C ′ in a decreasing order according to Ni(0)−γiτi√
γiτi

and do the above z-test n − 29 times. For each
30 ≤ q ≤ n, we use the first q computers to do the z-test. If we find that for some q,

1√
q

q∑

i=1

Ni(0) − γiτi√
γiτi

> 2.33,

we continue to observe the traffic for IPi ∈ C ′, 1 ≤ i ≤ q, during the time intervals [tj , tj + τi), 0 ≤ j ≤ k2 − 1,
where k2 ∈ IN is a suitable constant. If the cardinality of

{
0 ≤ j ≤ k2 − 1 :

1√
q

q∑

i=1

Ni(j + 1) − γiτi√
γiτi

> 2.33

}

is greater than some threshold �2, then we conclude that there are anomalous packets arriving at IPi.

Remark 1 We find that the following z-test sometimes provide us with additional information about network
anomaly.

P





∣∣∣∣∣∣
1√
n

n∑

i=1

(Ni(0)−γiτi)
2

γiτi
− 1

√
2 + 1

γiτi

∣∣∣∣∣∣
> 2.58



 ∼ 1%.
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2.2. Dynamic Tests

In this section, we introduce some dynamic tests for detecting network anomaly. For concreteness, we take
detecting block scans as an example. Suppose that S′ is an arbitrary subset of S and T = Nε for some constants
ε > 0 and N ∈ IN . We arrange S′ in a finite sequence and use |S′| to denote the number of points in S′. For each
packet with destination port/IP i ∈ S′, we assign it a |S′|-dimensional vector with the i-th component being
equal to 1 and the remaining components 0. For each time interval [(k − 1)ε, kε) we denote by Xk the sum of
all vectors associated with those packets visiting S′ during the time interval [(k − 1)ε, kε).

Let {Xk}N
k=1 the vectors associated with a sequence of normal packets visiting S′ during the time interval

[0, T ). We use the following double exponential smoothing technique to get a new sequence {X∗
k}N

k=1:
{

X∗
k = α · Xk + (1 − α) · (X∗

k−1 + bk−1),
bk = β · (X∗

k − X∗
k−1) + (1 − β) · bk−1,

where α, β are two smoothing vectors with 0 ≤ αi, βi ≤ 1 for 1 ≤ i ≤ |S′| and · denotes componentwise
multiplication. In this study, we initialize X∗

1 to X1 and b1 = Xn0−X1

n0
for some constant n0 ∈ IN . Further, we

use the following recursive formula to incrementally update {X∗
k}N

k=1 after each time period ε:

X∗∗
k =

1
k

((k − 1)X∗∗
k−1 + X∗

k).

It is possible that some components of X∗∗
N are equal to 0, or equivalently, some points in S′ are not visited

in the training data. To avoid having a zero value for the denominators of equation (1) below when we apply the
chi-square test, we replace 0 with 0.000001 for these components and denote the resulting vector by YN . Take
another sequence of normal packets visiting S′ during the time interval [T, T + Mε), where M ∈ IN . We first
use the above method to get a sequence of |S′|-dimensional vectors {Zj}M

j=1. Then, we use the following formula
to compute chi-squares:

χ2
j =

|S′|∑

i=1

(Zj(i) − YN (i))2

YN (i)
, 1 ≤ j ≤ M. (1)

2.2.1. Dynamic test 1

If M is sufficiently large, we define the upper limit of chi-squares to be χ2 + 4σχ2 , where

χ2 =
1
M

M∑

j=1

χ2
j ,

and

σχ2 =

√√√√ 1
M − 1

M∑

j=1

(χ2
j − χ2)2.

For a sequence of testing data, we first compute the associated chi-squares and then compare them with the
above defined upper limit. If a chi-square is greater than the upper limit, we take it out and call it an outlier. To
decrease false alarms, we further check the neighbors of each outlier. More precisely, we choose a suitable window
size s1 ∈ IN and threshold �1 ∈ IN . For each outlier χ2

i , we consider its left neighbors χ2
i , χ

2
i−1, . . . , χ

2
i−s1+1. If

the number of outliers among these neighbors is greater than �1, we conclude that there are anomalous packets
arriving.

Remark 2 If M is small, we suggest using the bootstrap method, as shown in Ref. 1, to find the confidence
interval for the chi-squares. First, we define the empirical distribution function

FM (x) =
1
M

M∑

j=1

I(χ2
j < x).

256     Proc. of SPIE Vol. 5429

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/13/2013 Terms of Use: http://spiedl.org/terms



Then, we draw with replacement K new samples {(χ2
1,k, . . . , χ2

M,k)}K
k=1 from this empirical distribution. For

1 ≤ k ≤ K, we define

µk =
1
M

M∑

j=1

χ2
j,k, σk =

√√√√ 1
M − 1

M∑

j=1

(χ2
j,k − µk)2.

We define u99% to be the 99% upper quantile of {µk−χ2

σk
}K

k=1. The bootstrap improved confidence interval is then

[χ2, χ2 + σχ2u99%].

2.2.2. Dynamic test 2

It is possible that χ2
j is smaller than the upper limit or within the confidence interval (Remark 2) for each

1 ≤ j ≤ M , while there are still anomalous packets. To handle this problem, we suggest further using the
randomization test.

Let L < M be a suitable window size and {χ2
j}J

j=1 (J > L) a sequence of chi-squares associated with the
testing data. For each 0 ≤ i ≤ J −L, we consider the subsequence of chi-squares {χ2

1+i, . . . , χ
2
L+i}. We randomly

select a subsequence of chi-squares of length L from {χ2
1, . . . , χ

2
M} and denote it by {χ2,n

1,i , . . . , χ2,n
L,i}. We define

Di =
1
L

L∑

j=1

(χ2
j+i − χ2,n

j,i ).

If Di > 0 then we conduct the randomization test. The procedure is as follows. We first put the above 2L chi-
squares together and randomly divide them into two groups of length L. Such a division is called an arrangement.
Then, we compute the absolute value of difference between the two means of chi-squares associated with the two
groups. Further, we randomly select 10,000 of the possible arrangements and compute the 10,000 differences.
Finally, we determine the proportion pi of these arrangements for which the corresponding absolute values of
difference exceed Di. If pi < 1%, we call the subsequence di := {χ2

1+i, . . . , χ
2
L+i} an outlier. Similar to the

dynamic test 1, for each outlier di, we further check its neighbors. We choose a suitable window size s2 ∈ IN
and threshold �2 ∈ IN . If the number of outliers among {di, di−1, . . . , di−s2+1} is greater than �2, we conclude
that there are anomalous packets arriving.

We feel that the above dynamic chi-square tests will become more powerful if we make use of the packet type
information. Following Ref. 3, we may develop a script to scan each tcpdump data file and extract the packet
type information about the network traffic. For each TCP connection, we check

Class I (direction): 1. out-going, 2. in-coming, or 3. inter-LAN.

Class II (3-way handshake): 1. successful connection, 2. rejected connection, 3. attempted but not established
connection, or 4. unwanted SYN acknowledgment received.

For a successful connection, we further check

Class A (how connection is terminated): 1. normal, 2. abort, or 3. half closed.

Class B (duration): 1. long duration, 2. medium duration, or 3. short duration.

Class C (flags): 1. normal, or 2. one of the recorded connection/termination errors.

Class D (ports): 1. well-known service, or 2. user application.

There are 3 × 3 + 3 × 3 × 3 × 2 × 2 = 117 packet types all together. We may define S to be the state space
consisting of these 117 points and conduct the above chi-square tests.
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3. MODELS AND SIMULATION RESULTS

3.1. General Model

We model packet traffic as a marked point process with marks in a space S. First, we use γ to specify the likelihood
of different packets under normal traffic, giving a benchmark from which we can judge the anomalousness of a
sequence of observed packets. Then, letting Y1(A, t) denote the number of packets having marks with values in
A ⊂ S that have been observed up to tome t under normal traffic conditions, we can write

Y1(A, t) =
∫

A×[0,∞)×[0,t]

1[0,γ(u)](v)ξ1(du × dv × ds),

where ξ1 is a Poisson random measure on S × [0,∞)× [0,∞) having mean measure ν × l× l with ν the counting
measure on S and l the Lebesgue measure on the half real line.

We use the following counting-measure process to keep track of the intrusive port scan packets:

η(A, t) =
∫

A×[0,∞)×[0,t]

1[0,λ(u,ηs−)](v)ξ2(du × dv × ds),

where η0 is some random counting measure with distribution µ0 satisfying E(η0(S)) < ∞ and ξ2 is another
Poisson random measure independent of ξ1. We model the activity of a portscan as a randomly initiated and
growing cluster counting the unfriendly network probes. There is an intensity λ(u, 0) = γ0(u) that gives the
rate at which a new cluster (i.e. portscan) is initiated by a packet with mark u. Once initiated, the scan adds
another point u to the cluster η with intensity λ(u, η).

3.2. Simulation Results

We let S be the state space consisting of the port class and IP class and use a matrix to denote S. For simulation
tests performed, we group 299 ports into 5 classes and group 304 computers into 6 IP classes. Legitimate traffic
rates γ and the maximum number R of malicious packets for vertical scans are shown below.

γ =





5.334500 2.930000 0.505000 1.010000 0.100000 0.340100
0.200000 1.301000 0.505000 0.100000 0.101000 1.930000
0.100000 0.701000 1.183320 0.401000 0.210000 0.200000
0.100000 0.100000 1.163000 0.100000 1.230000 0.100000
0.100000 0.100000 0.100000 3.236000 1.500000 0.640100




,

R =





15 15 15 15 15 15
31 31 31 31 31 31
63 63 63 63 63 63
63 63 63 63 63 63
127 127 127 127 127 127




.

We let the initial distribution µ0 be the uniform distribution on S. At the beginning, the scanner uses µ0 to
randomly select a point ui0j0 ∈ S and send his/her first packet. Once ui0j0 is selected, the scanner begins to use
the following mechanism to scan the 299 ports for his/her target host j0.

λ(uij0 , η) =
{

0, if Rij0 − |ηij0 | = 0,
c, otherwise,

where c is a constant.
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3.2.1. Static tests

We use window sizes

τ =





1.01756 1.19708 1.6302 1.26644 4.36045 1.28211
2.18023 1.37224 1.6302 4.36045 4.31728 1.20736
4.36045 1.17439 1.08095 1.08739 2.07641 2.18023
4.36045 4.36045 1.09983 4.36045 1.03992 4.36045
4.36045 4.36045 4.36045 1.08389 1.19019 1.28613





and packet count thresholds

m =





12 9 4 5 3 3
3 6 4 3 3 7
3 4 5 5 3 3
3 3 5 3 5 3
3 3 3 9 6 4




.

Figures 1-4 are the true positives (true detects) and false positives (false alarms) results for 100 simulation runs.
For each simulation run we have 10 malicious vertical scans to detect, starting at random times.

3.2.2. Dynamic tests

We compute X∗∗ offline using N = 20000 and test both dynamic tests using M = 10000. We use smoothing
vectors

α = 1 − 10−
3
2 γ =





1.000000 0.999960 0.825217 0.969451 0.292054 0.691077
0.498813 0.988819 0.825217 0.292054 0.294495 0.998726
0.292054 0.911182 0.983211 0.749677 0.515828 0.498813
0.292054 0.292054 0.981991 0.292054 0.985711 0.292054
0.292054 0.292054 0.292054 0.999986 0.994377 0.890390





and

β = 1 − 10−
3
4 γ =





0.999900 0.993654 0.581929 0.825217 0.158605 0.444192
0.292054 0.894257 0.581929 0.158605 0.160057 0.964314
0.158605 0.701977 0.870428 0.499678 0.304175 0.292054
0.158605 0.158605 0.865801 0.158605 0.880464 0.158605
0.158605 0.158605 0.158605 0.996259 0.925011 0.668926




.

For the dynamic test 2 we also use the window size L = 50. Figures 5-8 are the true positives (true detects)
and false positives (false alarms) results for 100 simulation runs. For each simulation run we have 10 malicious
vertical scans to detect, starting at random times.
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1. W. Härdle, and L. Simar, Applied Multivariate Statistical Analysis, http://www.quantlet.com/mdstat/

scripts/mva/htmlbook/mvahtml.html, 2003.
2. S. Jha, M.A. Kouritzin, and T.G. Kurtz, “Detecting stealthy port scans, a filtering approach,” Preprint,

2003.
3. W. Lee, and S. Stolfo, “Data Mining Approaches for Intrusion Detection,” in Proceedings of the Seventh

USENIX Security Symposium (SECURITY’98), San Antonio, TX, 1998.
4. S. Staniford, J. Hoagland, and J. McAlerney: “Practical Automated Detection of Stealthy Portscans,” J.

Comput. Sec., 10, pp. 105-136, 2002.
5. N. Ye, and Q. Chen, “An anomaly detection technique based on a chi-square statistic for detecting intrusions

into information systems,” Qual. Reliab. Engng. Int., 17, pp. 105–112, 2001.

Proc. of SPIE Vol. 5429     259

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/13/2013 Terms of Use: http://spiedl.org/terms



Figure 1. True detects for the static Poisson test

Figure 2. False alarms for the static Poisson test
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Figure 3. True detects for the static z-test

Figure 4. False alarms for the static z-test
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Figure 5. True detects for the dynamic test 1

Figure 6. False alarms for the dynamic test 1
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Figure 7. True detects for the dynamic test 2

Figure 8. False alarms for the dynamic test 2
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