
University of Alberta

An Extensible Query Optimizer Architecture

for the
TIGUKAT Objectbase Management System

by

Adriana Mu�noz

Technical Report TR �����
January ����

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

UNIVERSITY OF ALBERTA

An Extensible Query Optimizer Architecture for the

TIGUKAT Objectbase Management System

By

Adriana Mu�noz

A thesis

submitted to the Faculty of Graduate Studies and Research

in partial ful�llment of the requirements for the degree

of Master of Science

Department of Computing Science

Edmonton� Alberta

Spring ����

ii

Abstract

Objectbase Management Systems are expected to serve data management needs
of a wide range of application domains with possibly di�erent query optimization
requirements� creating the need of extensibility in the query optimizer to be able
to handle the diversity of those requirements�

This thesis describes the development of an extensible query optimizer archi�
tecture for the TIGUKAT Objectbase Management System� which has a uniform
behavioral object model DBMS that represents every system component as a
�rst�class object� Consistent with this philosophy� every component of the opti�
mizer is modeled as a �rst�class object� providing the ultimate extensibility that
the object�oriented paradigm o�ers� This thesis also describes how the optimizer
components are modeled as extensions of the TIGUKAT type system�

Acknowledgements

I would like to thank my supervisor Dr� M� Tamer �Ozsu for suggesting the topic
of this research and for his invaluable guidance and support in writing this thesis�
He provided an excellent research environment for my work�

Thanks are also due to Dr� Duane Szafron for his invaluable counsel about
the object�oriented design of the extensible query optimizer architecture�

I would also like to thank the members of my examining committee� Dr�
Ming Rao� Dr� Duane Szafron� and chair� Professor William Armstrong� for their
valuable criticisms� comments and suggestions that helped me to produce the
�nal version of this document�

I would like to acknowledge with appreciation all those who have helped me
during my graduate studies� Thanks to my friends� Ian Parsons� and Kaladhar
Voruganti� for the time they spent helping me to proofread this thesis� I am
also thankful to my friends� Randal Peters� Yuri Leontiev� and the rest of the
database group for the very constructive discussions that helped me to clarify my
ideas in this �eld�

Finally� I wish to express my gratitude and appreciation to my beloved friend�
Allan� my parents� sisters� brothers and the rest of my family for their constant
support and encouragement throughout the completion of this dream�

Contents

� Introduction �
��� Query Processing Methodology �

����� Relational Query Processing Methodology � � � � � � � � � �
����� Object�Oriented Query Processing Methodology � � � � � � �

��� Characterization of a Query Optimizer � � � � � � � � � � � � � � � 	

� Related Work �
���
Hard�wired� Object�Oriented Query Optimizers � � � � � � � � � �

����� Orion �
����� ObjectStore �
����	 O� �
����� Revelation �

��� Extensible Object�Oriented Query Optimizers � � � � � � � � � � � �
����� Lanzelotte and Valduriez Proposal � � � � � � � � � � � � � �
����� Open OODB Query Optimizer � � � � � � � � � � � � � � � � �
����	 Epoq Architecture �

� TIGUKAT Overview ��
	�� Object Model ��
	�� Query Model ��

	���� The Object Calculus ��
	���� The Object Algebra ��

� Optimizer Architecture ��
��� Functions as Objects ��
��� Queries as Objects ��

����� Query Compilation �
��	 Query Optimizer as an Object ��

� Representation of Search Space �	
�� Object Algebra Processing Trees ��

���� Execution Plan Generation � � � � � � � � � � � � � � � � � � 	�
���� Execution of the OAPT � � � � � � � � � � � � � � � � � � � 	�

�� Algebraic Transformation Rules � � � � � � � � � � � � � � � � � � � 	
���� Speci�cation of Algebraic Transformation Rules � � � � � � 	�

���� Algebraic Transformation Rules as Objects � � � � � � � � � 	�
���	 Rule Application � 	�

 Modeling of Search Strategies ��
��� Search Strategies ��

����� Algebraic Heuristic Search Strategies � � � � � � � � � � � � ��
����� Cost�controlled Heuristic Search Strategies � � � � � � � � � ��
����	 Enumerative Search Strategies � � � � � � � � � � � � � � � � ��
����� Randomized Search Strategies � � � � � � � � � � � � � � � � ��

��� Search Strategies as Objects ��
��	 Customizing the Search Strategy � � � � � � � � � � � � � � � � � � ��
��� Extending the Search Strategy Component � � � � � � � � � � � � � �

� Modeling of Cost Functions ��
��� Cost Model Functions �

����� Total Time Cost Function � � � � � � � � � � � � � � � � � � �
����� Response Time Cost Function � � � � � � � � � � � � � � � �

��� Cost Model Functions as Objects � � � � � � � � � � � � � � � � � �
����� Algebraic Node Cost Functions � � � � � � � � � � � � � � � �
����� Execution of Cost Model Functions � � � � � � � � � � � � � ��

	 Implementation of TIGUKAT Query Optimizer
�
��� Mapping of TIGUKAT Object Model to C�� � � � � � � � � � � � ��

����� Objects ��
����� Types ��
����	 Type Hierarchy ��
����� Collections and Classes ��
���� Behaviors and Functions ��
����� Behavioral and Implementation Inheritance � � � � � � � � ��

��� Mapping of TIGUKAT Query Optimizer to C�� � � � � � � � � � ��
����� Search Space ��
����� Search Strategy ��
����	 Cost Model Functions ��

� Conclusions ��
��� Future Research ��

Bibliography ��

A Walk Through the Optimizer Architecture by Example �

B Extensions to TIGUKAT Type System 	�

ii

List of Tables

��� Summary of optimization features� � � � � � � � � � � � � � � � � �
��� Feature comparison of extensible optimizers� � � � � � � � � � � � � �

	�� Behavior signatures pertaining to example speci�c types of Figure
	�� �

��� Behavioral summary of T function type� � � � � � � � � � � � � � � �	
��� Behavioral summary of T query type� � � � � � � � � � � � � � � � � ��

�� Behavioral summary of T context type� � � � � � � � � � � � � � � 	�
�� Behavioral summary of T algOp type� � � � � � � � � � � � � � � � � 	�
�	 Behavioral summary of T rule type� � � � � � � � � � � � � � � � � 	�
�� Behavioral summary of T algEqRule type� � � � � � � � � � � � � � 	�
� Behavioral summary of T formula type� � � � � � � � � � � � � � � ��
�� Behavioral summary of operations on trees de�ned on T algOp type� ��

��� Behavioral summary of T searchStrat type� � � � � � � � � � � � � ��
��� Behavioral summary of T heurSS type� � � � � � � � � � � � � � � � �
��	 Extensibility behaviors for implementing heuristic and cost�controlled

heuristic search strategies� �
��� Behavioral summary of T CCHeurSS type� � � � � � � � � � � � � � � �

��� Behavioral summary of statistics de�ned on T collection type� � �

B�� Behavioral summary of extended non�atomics primitive types for
optimization purposes� ��

B�� Behavioral summary of extended non�atomics primitive types for
optimization purposes� �	

B�	 Behavioral summary of non�atomics types added to the primitive
type system for optimization purposes� � � � � � � � � � � � � � � � ��

B�� Behavioral summary of non�atomics types added to the primitive
type system for optimization purposes� � � � � � � � � � � � � � � � �

List of Figures

	�� Primitive type system ��
	�� Geographic Information System in TIGUKAT object model� � � � �	

��� Optimizer as part of the type system � � � � � � � � � � � � � � � � ��

�� Collection �L implAlgOp� of implementations for algebraic op�
erators� ��

�� Tree shape of an OAPT� ��
�	 Initial OAPT � 		
�� Transformed OAPT by using Rule �� � � � � � � � � � � � � � � � ��

��� Type hierarchy for T searchStrat� � � � � � � � � � � � � � � � � � ��

��� Cost model functions as instances of T costFunc � � � � � � � � � � �
��� Collection L implAlgOp and class C costFuncAlgOp� � � � � � �
��	 OAPT annotated with algebraic node cost functions� � � � � � � � �
��� Execution of the total time cost model function cf on an OAPT� � ��

A�� Object algebra processing tree ��

Chapter �

Introduction

One of the strengths of the relational database management systems �DBMSs� is
the availability of declarative query capabilities which allow the users to specify

which� data they want retrieved from the database without having to specify

how� that data is accessed� The determination of the most e�cient execution
program to retrieve the requested data is taken over by the DBMS� in partic�
ular the query optimizer� The �rst generation objectbase management systems
�OBMSs�� have been criticized ���� for their lack of declarative query capabili�
ties� The newer systems and research prototypes have started to include these
capabilities� but their optimization is still not very well understood�

These issues have been studied within the context of the TIGUKAT project��
TIGUKAT is an OBMS �	�� under development at the University of Alberta� It
has an extensible object model characterized by a purely behavioral semantics
and a uniform approach to objects� The model is behavioral in that objects are
accessed only by applying behaviors �which replace both the instance variables
and the methods available in other object models� to objects� Behaviors are
de�ned on types and their implementations are modeled as functions� Every
concept� including types� classes� collections� and meta�information� is a �rst�
class object� The uniformity of the object model extends to the query model�
treating queries as �rst�class objects �	��� The query model consists of a calculus�
an equivalent algebra and an SQL�based user query language�

��� Query Processing Methodology

TIGUKAT query processing methodology is similar to relational query pro�
cessing� and follows the proposal for object�oriented query processing by Straube
and �Ozsu ����� There are di�erences in the query models� however� in that

�The term objectbase is used instead of the traditionally used object�oriented database be�
cause the objects that it contains may include not only data� but also code�

�TIGUKAT �tee�goo�kat� is a term in the language of the Canadian Inuit people mean�
ing�objects�� The Canadian Inuits� commonly known as Eskimos� are native to Canada with
an ancestry originating in the Arctic regions of the country�

�

�

TIGUKAT query model is based on the uniform and behavioral features that
its object model provides�

����� Relational Query Processing Methodology

In relational systems� query processing generally follows a straightforward
methodology �	��� decomposition� optimization� and execution� The �rst step�
decomposition� takes a query expressed in relational calculus� checks it for con�
sistency� and translates it into an algebraic query� The query is represented as
a processing tree where the leaf nodes represent base relations and the interme�
diate nodes correspond to relational operators� The second step� optimization�
selects an
optimal� algebraic query among a family of equivalent queries� Opti�
mal� in this context� refers to performance characteristics� The result of this step
is a processing tree� each of whose nodes is annotated with the best execution
algorithm for that particular algebraic operation �called the access path�� Then�
an execution plan is generated that mapps this processing tree to a set of stor�
age system calls� The last step in the methodology executes the execution plan
starting from the leaves up to the root�

����� ObjectOriented Query Processing Methodology

A query processing methodology for object�oriented databases is proposed
by Straube and �Ozsu in ���� that follows closely that for relational systems�
In this methodology� queries� expressed in a declarative query language� are �rst
normalized and converted to an equivalent algebra expression� The expression can
be viewed as a tree whose nodes are algebra operators and whose leaves represent
instances of classes in the database� In the next step� the algebra expression is
checked for type consistency� Then� algebraic optimization is performed which
consists of applying equivalence preserving rewrite rules to the type consistent
algebra expression� These rules are de�ned as part of this work� but they are not
implemented� The last step in query processing� called execution plan generation
�EPG�� produces an ordering of primitive low�level operations from the optimized
algebra expression� This ordering is then passed to an object manager �OM��
An important di�erence of this methodology from relational ones is that the
encapsulation property of an object�oriented system may not allow the optimizer
access to storage information that is needed for optimization� An EPG method
is proposed in ��	� to solve this problem by replacing each individual algebra
operator from the transformed object algebra expression with a
best� subtree
of object manager calls� These object manager calls are part of the set of low
level object manipulation primitives that constitutes the interface to the object
manager� This ordering of object manager calls is then passed to an object
manager for further optimization and execution�

	

��� Characterization of a Query Optimizer

Query optimization can be modeled as an optimization problem whose solu�
tion is the choice of the
optimum� state in a state space� States are con�gurations
of the objects relevant to the problem� Distinguished states are the initial and the
goal states� A class of states de�nes the search space� Actions on states generate
a set of successor states� These actions are controlled by the search strategy� In
the case of a cost�controlled search strategy� a cost function applied to a state is
used to measure the e�ects of the optimizer actions�

In algebraic query optimization� each state corresponds to an algebraic query
execution schedule represented as a processing tree �PT� ��	�� A processing tree
�PT� is a representation of a query� after it has been translated from a TQL
statement to a corresponding algebraic expression� In this research� the process�
ing trees are called object algebra processing trees �OAPT� to di�erentiate them
from the traditional relational PTs�

The state space is a family of equivalent �in the sense of generating the same
result� algebraic que

Chapter �

Related Work

Many existing OBMS query optimizers are either implemented as part of the
object manager on top of a storage system� or they are implemented as client
modules in a client�server architecture� In most cases� the four dimensions that
characterize a query optimizer �states� search space� search strategy and cost
function� are
hard�wired� into the query optimizer� These optimizers focus on
speci�c techniques that solve particular optimization problems� For example� one
highly visible problem in optimization of object�oriented queries is path expres�
sions� Such expressions imply a navigation through objects to �nd the end of
a path� Research in this area includes exploring indexing for paths �e�g�� Ob�
jectStore �	���� optimization in the presence of arbitrary methods along the path
�e�g�� Revelation project ������ and the use of clustering and other storage infor�
mation to determine path accesses �e�g�� O� ����� Some of these query optimizers
are brie�y discussed in Section ����

Given that extensibility is a major goal of OBMSs� one would hope to develop
an extensible optimizer that accommodates di�erent search strategies� di�erent
algebra speci�cations with their di�erent transformation rules� and di�erent cost
functions� Rule�based query optimizers ��� provide a limited amount of exten�
sibility by allowing the de�nition of new transformation rules� However� they
do not allow extensibility in other dimensions� In this chapter� some new pro�
posals for extensibility that look promising for OBMSs are brie�y highlighted in
Section ���� A more detailed discussion of these issues can be found in �		��

��� �Hard�wired� Object�Oriented Query Optimizers

In this section� the following query optimizers� Orion�ObjectStore� O�� and
Revelation� that focus on speci�c techniques to solve particular optimization
problems are highlighted�

Table ��� summarizes the main optimization features that are supported by
these query optimizers� These features were divided into two groups �that are
shown separated by a double line in Table ���� as follows�

� The �rst group lists features about whether or not the query optimizer

�

Optimization features Orion ObjectStore O� Revelation

Respecting encapsulation No No No Yes
Semantic transformation rules Yes � Yes ��
Algebraic transformation rules No No Yes Yes
Factorizing common subexpressions � � Yes �

Method optimization along paths No No No Yes
Indexing for paths Yes Yes Yes �
Clustering for path accesses Yes � Yes Yes

Table ���� Summary of optimization features�

respects the encapsulation of objects as provided by the object�oriented
paradigm� whether or not the optimizer uses semantic and�or algebraic
transformation rules� and whether or not the optimizer factorizes common
subexpressions that can appear in the query� Semantic transformations
are transformation rules that exploit the semantics of the inheritance re�
lationship that the object model provides� Algebraic transformations are
transformation rules that create equivalent expressions based upon pattern
matching and textual substitution�

� The second group illustrate features that are related to the optimization of
path expressions�

For a given row i and column j in the Table ���� an entry with value Yes means
that the query optimizer corresponding to the column j supports the feature that
appears in the row i� The value No means that the query optimizer does not
support that feature� and the value � means that there is no information about
whether that query optimizer supports that feature or not�

����� Orion

The Orion project ���� is the �rst attempt to de�ne a query model for OBMSs
that is consistent with object�oriented concepts� This model of queries is based
on the view that a query model may be de�ned as a subschema of the database
schema graph which is an acyclic graph� The subschema that is called a query
graph includes only the classes �and the hierarchies rooted at them� that partici�
pate in the predicates of the query� In Orion� a class is de�ned as a set of objects
which share the same set of attributes and methods� A class provides the basis
for query formulation� Therefore� a query must be formulated against a class or a
class hierarchy rooted at that class� Orion query model extends the de�nition of
relational operations such as joins and set operators �e�g�� union� to be consistent
with the semantics of object�oriented concepts�

In distributed Orion ����� the query optimizer uses algorithms to traverse trees
and transformation rules that make use of type information� instead of algebraic
transformation rules� This query optimizer takes into account the semantics of
the class hierarchy and of complex objects� It de�nes complex object structures

�

by reference links in a part�of hierarchy that is called a class�composition hier�
archy� Orion uses path expressions to navigate through those complex object
structures� The class�composition graphs are manipulated to �nd e�cient traver�
sals �forward and reverse�� with access techniques such as indexes� applied to
traversals� Orion query optimizer breaks the encapsulation of objects by access�
ing directly information about storage of objects �i�e� clustering� to determine
path accesses�

����� ObjectStore

ObjectStore query model �	�� is not uniform in the sense that a query not
only returns objects� but also boolean and collections which are not considered
objects� In this model� queries are based on selection of instances over a single
collection� The query syntax for requesting a single element of a queried collection
is di�erent from the syntax for requesting a subset of that collection� Nested
queries are allowed and they are existentially quanti�ed� As far as we know� it
does not yet implement join optimization� An essential feature of the language
is that of predicates over paths� In ObjectStore� query processing involves the
following steps� analysis� code generation� strategy selection� and execution� The
�rst two steps are performed at compilation�time and the last two at run�time�
Optimization focuses in comparison operators� ObjectStore has implemented
parametric optimization that is also called dynamic plan selection� Using this
technique� the query optimizer generates multiple execution plans at compile time
and selects an
optimal� execution plan at run�time based on various system
parameters and current database statistics� In this model� query optimization
is based on information on paths and in the existence of indexes over paths
that is obtained by accessing directly the storage structures� This violates the
encapsulation of objects�

����� O�

O� data model ��� is structural and non�uniform �i�e� values are not considered
objects�� The data model has classes and concrete types� The query language�
O�Query� is functional and is a subset of the programming language� It works
in two modes ���� a programming mode which respects encapsulation� and an
interactive mode in which encapsulation can be broken by accessing directly the
state of the objects through their structure� O� queries can return objects as well
as values� but no dynamic creation of objects as a result of queries is allowed�
Another feature of the language is that of providing both universal and existential
quanti�ers� while ObjectStore only provides existential and ORION only provides
universal quanti�er� To tackle query optimization in O�� Cluet and Delobel ��� �
propose a formalism that

�� allows the integration of two existent query optimization approaches� alge�
braic equivalences similar to relational models and the concept of extension
that is speci�c to object models�

�

�� allows an exhaustive factorization of duplicated subqueries� and

	� supports heuristics that make use of information on indexing and clustering
in order to reduce the search space in the rewriting phase�

O� query optimizer does not consider evaluation costs nor the cost of accessing
method code�

����� Revelation

The Revelation project ���� studies the optimization of queries respecting the
encapsulated behavior of the objects� Its main features are the Revealer and the
Annotator components that are preliminary phases to the optimization process
and a special operator to assembly complex objects that is called assembly� The
Revelation architecture has the following components� the Interpreter and the
Schema Manager� the Revealer� the Annotator� the Optimizer and the Query
Evaluator� The Interpreter takes an expression from the user and passes it to the
Revealer component� In queries that contain operations on objects� the Revealer
component is allowed to break the encapsulation of objects to �nd the method
code for that operation which is translated into an algebraic formalism to allow
the query Optimizer to manipulate it without having to break the encapsulation
of objects� In order to expand a node� the Revealer makes requests to the An�
notator which deduces the implementation method for the node by requesting
the Schema Manager for information� and �lls in this information for that node�
This approach can have some problems with inheritance of methods and dynamic
binding of methods because the Annotator may return a collection of values due
to ambiguity arising from multiple implementations of a single operator� After
the expression tree is annotated� it is passed to the Optimizer for optimization
and transformation to a query plan� The Optimizer is generated with the Volcano
optimizer generator ��	�� The Revelation query optimizer has limited extensibility
provided by the Volcano optimizer generator� The algebra and the transforma�
tion rules can be extended without any problem� but more work is required in
developing implementation rules which translates algebra trees into query plans�
and in estimating costs for query plans� The Optimizer produces a query plan�
that is passed to the Query Evaluator� The Query Evaluator is based on the
extensible Volcano query execution software� which performs the plan execution�
Volcano query execution software is extensible in the set of algorithms it employs�
The assembly operator ���� is a special operator whose task is to avoid an object�
at�a�time reading of the di�erent components needed in the evaluation of a query
involving complex objects� This operator is part of the query evaluator routines�
A prototype for this query processor is in the process of implementation�

��� Extensible Object�Oriented Query Optimizers

In this section� the following new proposals for extensible query optimizers
are highlighted� Lanzelotte and Valduriez proposal� Open OODB� and Epoq�

�

Optimization features Lanzelotte et al� Open OODB Epoq

Extensibility of transformation rules Yes Yes Yes
Extensibility of search strategy Yes No Yes
Extensibility of cost model � Yes Yes
Extensibility of algebra Yes Yes �
Extensibility of execution algorithms Yes Yes �

Respecting encapsulation No Yes �
Semantic transformation rules No No �
Algebraic transformation rules Yes Yes Yes
Factorizing common subexpressions Yes � �

Method optimization along paths No No �
Indexing for paths Yes Yes Yes
Clustering for path accesses Yes Yes �

Table ���� Feature comparison of extensible optimizers�

Table ��� summarizes the main optimization features that these optimizers
support� These features were divided into three groups �that are shown separated
by a double line in Table ���� as follows�

� the �rst group lists the di�erent dimensions that can be extended in a query
optimizer� search strategy� transformation rules� and cost model functions�
as well as the algebra and its corresponding execution algorithms�

� the second group contains those features that were listed in the �rst group
for the
hard�wired� query optimizers �that were presented in the previous
section��

� the third group illustrates features that are related to the optimization of
path expressions as those presented in the previous section�

The entries in the Table ��� are interpreted in the same way as done for
Table ����

����� Lanzelotte and Valduriez Proposal

Lanzelotte and Valduriez ���� propose an extensible query optimizer by repre�
senting the search space and the search strategy components as objects and using
the extensibility property that the object�oriented paradigm provides� However
the other components are not modeled as objects and it is not mentioned how
the cost component can be extended� This work considers the optimization of
select� join and implicit join operator �which models path expressions�� Execu�
tions plans are abstracted in terms of processing trees to have a more physical
representation of the query� The leaf nodes of a processing tree are physical
database sets �or subsets� and interior nodes represent joins that are explicit �i�e�
a join predicate is given�� implicit �i�e� a path from an object to an attribute of

�

the object�� or implicit with a path index� Their optimizer manipulates the pro�
cessing tree by applying tree transformation rules� These transformation can be
applied using deterministic and randomized search strategies based on the cost
of the query� The transformations can result in path traversals that can start
from any point in the path �not just the endpoints� and can be interleaved with
other query operations ����� This work is extended to handle recursive queries in
��� by introducing a �xpoint operator that handles the recursion� It makes use
of a cost�controlled search strategy�

����� Open OODB Query Optimizer

The Open OODB project at Texas Instruments concentrates on the de�nition
of an open architectural framework for OBMSs and on the description of the de�
sign space for these systems� The architecture of the system consists of three main
kinds of components� meta�architecture� support modules� and policy performers�
The meta�architecture houses all the mechanisms that provide the infrastructure
for extending the operations of programming languages� It also de�nes the in�
terface conventions to which policy modules must adhere� The support modules
include address space managers �e�g�� virtual memory� object repository�� com�
munications and translation managers for transferring objects among multiple
address spaces� and a data dictionary providing name and type management fa�
cilities� The policy performer modules provide various database functionalities�
one of which is query processing� Query processing in Open OODB �	� is largely
in�uenced by the extensibility goals of the Open OODB project� The query mod�
ule is an example of intra�module extensibility� The query optimizer� built using
the Volcano optimizer generator ��	�� is extensible with respect to algebraic op�
erators� logical transformation rules� execution algorithms� implementation rules
�i�e�� logical operator to execution algorithm mappings�� cost estimation func�
tions� and physical property enforcement functions �e�g�� presence of objects in
memory�� but it is not extensible with respect to the search strategy� Volcano op�
timizer generates an exhaustive search algorithm �with some heuristics to prune
the search space� that is hard�wired into the generated query optimizer�

����� Epoq Architecture

Quite a di�erent approach to extensibility is proposed in the Epoq project
����� where the search space is divided into regions� Each region corresponds to an
equivalent family of query expressions that are reachable from one another� The
regions do not have to be mutually exclusive and di�er in the queries that they can
manipulate� the control �search� strategy that they use or in the objectives that
they want to achieve in query manipulation� For example� one region may have
the objective of minimizing a cost function� while another region may attempt to
put queries in some

Chapter �

TIGUKAT Overview

In this chapter an overview of TIGUKAT is given� Section 	�� outlines the main
characteristics of the TIGUKAT object model� including a description of such
concepts as objects� types� classes� behaviors� functions� and the relationships
among them� Section 	�� describes the TIGUKAT query model which provides
the declarative query facilities to the object model� Two formal languages are
de�ned� an object calculus and an equivalent object algebra�

��� Object Model

The TIGUKAT object model �	� 	�� is de�ned behaviorally with a uniform
semantics� The model is behavioral in the sense that the access and manipulation
of objects is restricted to the application of behaviors �operations� upon objects�
The model is uniform in that every concept within the model has the status of
a �rst�class object� An object is a fundamental concept in TIGUKAT� Every
component of information� including its semantics� is uniformly represented by
objects in TIGUKAT� This means that at the most basic level� every expressible
element in the model incorporates at least the semantics of our primitive notion
for
object��

The model de�nes a number of primitive objects which include� atomic en�
tities �such as reals� integers� strings� characters� etc��� types for de�ning and
structuring features of common objects� behaviors for specifying the semantics
of the operations which may be performed on objects� functions for specifying
the implementation of behaviors over various types forming the support mech�
anism for overloading and late binding� classes for the automatic classi�cation
of objects based on type� and collections for supporting general heterogeneous
user�de�nable groupings of objects�

The primitive type system is shown in Figure 	�� with the T object type as
the root of the lattice and the T null type as the base� T null binds the lattice
from the bottom� It is a subtype of every other type in the system� T null is
introduced in the model to provide an object which can be returned by behaviors
that have no result�

��

��

������������������������������ �����
����
�����
������

����
�����
�

Supertype Subtype

��
��
������

�
��
��������
��

��
��
�����
��
��
��������
��

��
��
������

�
��
��������
��

��
�����
������
�����
�����
������
�����
�����

���������������������������������

����
���
��
��
��
��
��
��
��
���
��
��
��
��
��
�

��
��
�
��
��
�
��
��
��
��
��
�
��
��
��
��
��
�
��
��
�
��

T object

T collection

T type

T behavior

T function

T atomic

T class

T poset

T bag

T list

T class class

T type class

T collection class

T boolean

T character

T string

T real T integer T natural

T null

Figure ���� Primitive type system

Objects are de�ned as �identity� state� pairs where identity represents a unique�
immutable system managed object identity� and state represents the informa�
tion carried by the object� Thus� the model supports strong object identity �����
meaning that every object has a unique existence within the model and is dis�
tinguishable from every other object� On the other hand� the state of an object
encapsulates the information carried by that object� Conceptually� every object
is a composite object in TIGUKAT meaning that every object has references to
other objects�

There is a separation of means for de�ning the characteristics of object �i�e��
a type� from the mechanism for grouping of instances of a particular type �i�e��
class�� A type speci�es behaviors� It encapsulates hidden implementation and
state for all objects that are created by using the type as a template� The set
of behaviors de�ned by a type is referred to as a set of native behaviors� and
it describes the interface of the objects of that type� Types are organized into
a lattice structure using the notion of subtyping� TIGUKAT supports multiple
inheritance� meaning that one type can be an immediate subtype of several other
types�

A class ties together the notion of type and object instance� A class is respon�
sible for managing all instances that are created by using a speci�c type as a
template� Objects of a particular type cannot exists without an associated class
and every class is uniquely associated with a single type� Object creation occurs

��

only through a class using its associated type as a template for the creation�
A collection is another grouping construct in TIGUKAT� It is de�ned as a

general user�de�nable construct� It is similar to a class in that it also represents
an extent of objects� but it di�ers in the following respects� First� no object cre�
ation can occur through a collection� object creation occurs only through classes�
Second� an object may exist in any number of collections� but it is a member of
only one class� Third� the management of classes is implicit in that the system
automatically maintains classes based on the subtype lattice� whereas the man�
agement of collections is explicit� meaning that the user is responsible for their
extents� Finally� a class groups the entire extension of a single type �shallow
extent�� along with the extensions of all its subtypes �deep extent�� Therefore�
the elements of a class are homogeneous up to inclusion polymorphism� On the
other hand� a collection may be heterogeneous in the sense that it can contain
objects which may be of di�erent types�

The subtypes of T class namely� T class�class� T type�class� and
T collection�class� are part of the meta system� Their placement within the
type system itself directly supports uniformity of the model� A full explanation
of these types can be found in �	���

Two other fundamental notions of TIGUKAT are behaviors and functions
that implement the behaviors� In the same way that an object�s speci�cation
�types� is separated from the grouping of its elements �classes�� the de�nition of
a behavior is separated from its possible implementations �function�methods��

The semantics of each operation on an object is speci�ed by a behavior de�
�ned on its type� A function implements the semantics of each behavior� The
implementation of a particular behavior may vary over the types which support
it� Nevertheless� the semantics of the behavior remains constant and unique over
all types supporting that behavior� There are two kinds of implementations for
behaviors� A computed function consists of runtime calls to executable code� A
stored function is a reference to an existing object in the objectbase� The uni�
formity of TIGUKAT considers each behavior application as the invocation of a
function� regardless of whether the function is stored or computed�

The following example illustrates a geographic information system in the
TIGUKAT object model� This example� taken from �	��� will be used as a running
example throughout this thesis�

Example ��� Object�orientation is intended to serve many application areas
requiring advanced data representation and manipulation� A geographic infor�
mation system �GIS� ��� ��� has been selected as an example to illustrate the
practicality of the concepts introduced and to assist in clarifying their semantics�
A GIS was chosen because it is among the application domains which can poten�
tially bene�t from the advanced features o�ered by object�oriented technology�
Speci�cally� a GIS requires the following capabilities�

�� management of persistent and transient data�

�� management of large quantities of diverse data types and dynamic evolution
of types�

�	

T_null

T_date

T_typeT_behavior
T_atomic

T_person

T_house�

T_dwelling

T_object

T_location

T_window

T_displayObject

T_map

T_geometricShape

T_zone

T_land

T_forest T_roadT_river

T_water

T_pond

T_altitudeT_transport

T_developed

T_clear

Figure ���� Geographic Information System in TIGUKAT object model�

	� a seamless integration of sophisticated computer graphic images with com�
plex structured attribute data�

�� handling of large volumes of data and performing extensive numerical tab�
ulations on data�

� management of di�ering views of data� and

�� the ability to e�ciently answer a variety of ad hoc queries�

A type lattice for a simpli�ed GIS is given in Figure 	��� The example is
su�ciently complex to illustrate the advanced functionality of the query model we
present� yet simple enough to be understandable without an elaborate discussion�
The example includes the root types of the various sub�lattices from the primitive
type system in Figure 	�� to illustrate their relative position in an extended
application lattice� The additional types de�ned by the GIS example include�

�� Abstract types for representing information on people and their dwellings�
These include the types T person� T dwelling and T house�

�� Geographic types to store information about the locations of dwellings and
their surrounding areas� These include the type T location� the type
T zone along with its subtypes which categorize the various zones of a
geographic area� and the type T map which de�nes a collection of zones
suitable for displaying in a window�

��

	� Displayable types for presenting information on a graphical device� These
include the types T displayObject and T window which are application
independent and the type T map which is the only GIS application speci�c
object that can be displayed�

�� A type T geometricShape that de�nes the geometric shape of the regions
representing the various zones� For our purposes we will only use this gen�
eral type� but in more practical applications this type would be further
specialized into subtypes representing polygons� polygons with holes� rect�
angles� squares� splines and so on�

��� Query Model

The complete uniform behavioral object model has formed the basis for an
object query model that includes a complete algebra with an equivalent object
calculus de�nition� An underlying characteristic of the TIGUKAT query model
is that it is a direct extension to the object model� In other words� it is de�ned
by type and behavior extensions to the primitive model�

The subsequent sections summarize the formal languages de�ned for the TIGUKAT
query model� The full speci�cation of the query model is given in �	�� 	��� In
the following sections� we �rst present the object calculus� and then the object
algebra� The calculus has �rst�order semantics� Its logical foundation includes
a de�nition of atoms� well�formed formulas� and a function symbol which incor�
porates the behavioral nature of the object model� This allows the use of very
general path expressions in the calculus� The safety of the calculus is based on
the evaluable class of queries de�ned in ����� The object algebra consists of target�
preserving and target�creating algebraic operators and is proven to be equivalent
to the object calculus�

����� The Object Calculus

The alphabet of the calculus consists of object constants �a� b� c� d�� object
variables �o� p� q� u� v� x� y� z�� monadic predicates �C�P �Q�� dyadic predicates ���
�� �� ���� an n�ary predicate �Eval�� a function symbol ���� logical connectives
��� �� �� �� ��� and delimiters ��� �����

Atoms are the building blocks of calculus expressions� The atoms of the
calculus consist of the following�

Range Atom� C�s� is called a range atom for s where C corresponds to a unary
predicate representing a collection and s denotes a term� A range atom
asserts true if and only if s denotes an object in collection C� When C
de�nes a class� C��s� is true if and only if s denotes an object in the
shallow extent of class C�

Equality Atom� s � t is a built�in predicate called an equality atom where s
and t are terms� The predicate asserts true if and only if the object denoted
by s is object identity equal to the object denoted by t�

�

Type Signatures

T location B latitude� T real

B longitude� T real

T displayObject B display� T displayObject

T window B resize� T window

B drag� T window

T geometricShape

T zone B title� T string

B origin� T location

B region� T geometricShape

B area� T real

B proximity� T zone	 T real

T map B resolution� T real

B orientation� T real

B zones� T collectionhT zonei
T land B value� T real

T water B volume� T real

T transport B e�ciency� T real

T altitude B low� T integer

B high� T integer

T person B name� T string

B birthDate� T date

B age� T natural

B residence� T dwelling

B spouse� T person

B children� T person	 T collectionhT personi
T dwelling B address� T string

B inZone� T land

T house B inZone� T developeda

B mortgage� T real

aBehavior was re�ned from supertype T dwelling�

Table ���� Behavior signatures pertaining to example speci�c types of Figure ���

��

Membership Atom� s � t is a built�in predicate called a membership atom
where s and t are terms� and t denotes a collection� The predicate asserts
true� if and only if the object denoted by s is an element of the collection
denoted by t�

Generating Atom� Any equality atom of the form o � t or membership atom
o � t� where o is an object variable and t is an appropriate term for the
atom in which o does not appear� is called a generating atom for o� That
means that the object denotation for o can be generated from t�

The ground atom is an atom that contains only ground terms�
From atoms� well�formed formulas �WFFs� are built to construct the declar�

ative calculus expressions of the language� WFFs are de�ned recursively from
atoms in the usual way ��� ��� using the connectives ����� and the quanti�ers
� and ��

A target�preserving query is an object calculus expression of the form ftj��o�g
where t is a term consisting of a single object variable or an object variable
indexed by a list of behaviors� � is a WFF� and o is exactly the variable in t
and it is the only free variable referenced in �� Indexed object variables are
of the form o��� where � is a set of behaviors de�ned on the type of variable
o� The semantics of this construct is to project over the behaviors in � for o�
meaning that after the operation only the behaviors given in � will be applicable
to o� A target�creating query is of the form ft�� ���� tnj��o�� ���� ong which is simply
a generalization of the target�preserving kind by allowing multiple target terms
t�� ���� tn over the multiple variables o�� ���� on� The result of such a query is a
collection of new object lists created from the cartesian product over ranges of
variables o�� ���� on by following the selection using ��o�� ���� on��

Example ��� Target�preserving query� Return all zones that are part of the
same map� Project the result over B title and B area�

fo�B title�B area�j�p�C map�p� � o � p�B zones�g

o is a free variable generated by the generating atom� o � p�B zones� and t �
o�B title�B area� is a target variable in form of the index variable�

Example ��� Target�creating query� Return all the people and their spouses
such that both of them are older than �� years old

fp� qjC person�p� � q � p�B spouse � p�B age � � � q�B age � �g

Since� there are two target variables in the target list� this is an example of a
target�creating query�

����� The Object Algebra

The operands and results of the object algebraic operators are typed collec�
tions of objects� The algebra maintains the closure property since the results of

��

any operator may be used as an operand of another� The object algebra de�nes
both target�preserving and target�creating operators� The target� preserving op�
erators are de�ned as follows�
Set Operations� The typical set union� di�erence and intersection opera�
tors are de�ned�

Select �denoted P��F � � Q�� ���� Qn ��� Select is a higher order predicate that
accepts the predicate F � and the n���ary collection P�Q�� ���� Qn as argu�
ments� The result collection contains objects from P corresponding to the
p components of each permutation � p� q�� ���� qn � that satis�es F �

Map �denoted Q�
mop� Q�� ���Qn ��� where mop is a mop function �	�� over
the elements of collections Q�� Q�� ���� Qn� meaning it expects arguments
q�� q�� ���� qn and they are type consistent with the membership types of the
collections� For each permutation of objects � q�� q�� ���� qn � form from the
elements of the argument collections mop�q�� q�� ���� qn� is applied and the
resulting object is included in the result collection�

Project �denoted P���� where P is a collection and � is a behavioral projection
set with the restriction that it is a subset of the behaviors de�ned on the
membership type of P � The � collection is automatically unioned with
the behaviors of type T object in order to ensure consistency� The result
collection contains objects of P � but with the membership type coinciding
with the behavior speci�cation of ��

The full object algebra includes target�creating operators in order to provide
necessary object formation operators� The result of these operations is a collec�
tion of new objects that are object identity distinguishable from the ones in the
argument collection� The primary target�creating operator is product�

Product �denoted P � Q�� Product produces a collection containing product
objects created from each permutation � p� q � such that the left compo�
nent is an object from P and the right component is an object from Q�
Product may initiate the creation of a new type along with a new class to
maintain the product objects�

The above collection of operators form the primitive algebra� They are funda�
mental in supporting the expressive power of the calculus and other expressions
can be de�ned in terms of them� The following operators are added to the prim�
itive algebra in order to provide functionality� and increase the expressive power�

Join �denoted P ��F �� Q�� ���� Qn ��� where n � �� Join produces a collection
containing product objects created from each permutation � p� q�� ���� qn �
that satis�es F �

Generate Join �denoted Q��
o
�g� � Q�� ���� Qn ��� where g is a generating atom

of the form o� � 	q � �	b �where � is one of �� or ��� over the elements
of collections Q�� Q�� ���� Qn� Generate join produces a collection of product
objects created from each permutation of the qi�s and extended by an object

��

o in the following way� If � is ��� the result contains product objects of the
form � q�� ���� qn� � q�� ���� qn � �	b � for each permutation of the qi�s� If � is
�� the result contains product objects of the form � q�� ���� qn� o � for each

permutation of the qi�s and o �� q�� ���� qn � �	b�

Reduce �denoted P�p�o�� where P is a collection of product objects 	p� and 	o is a
list representing symbolic reference to the component of the product� The
reduce operator has the e�ect of discarding the 	o components of the objects
in P � That is� product objects of the form � p�� ���� pi� 	o� pi��� ���� pn � are
mapped to � p�� ���� pi� pi��� ���� pn ��

Collapse �denoted P ��� Collapse is a unary operator which accepts a collection
of collections P as an argument and it produces the extended union of the
collections in P �

It is assumed that formulas that are part of operators in the object algebra �i�e�
formula F in the select operator� are propositional formulas that are expressed
in a conjunctive normal form �CNF� with the restriction that none of its atoms
can have the logical connector � �negation�� A propositional form is de�ned in
a similar way as a well�formed formula was de�ned in Section 	����� but it is not
quanti�ed��

The following examples illustrate possible queries on the GIS de�ned in Ex�
ample 	��� Every query is given in the form of an English sentence� then it is
expressed in the object calculus which is followed by the equivalent algebraic ex�
pression� In the algebraic expressions� operand collections are subscripted by the
variable that ranges over them� If the operand consists of product objects� the
variables that make up the components of these objects are listed� The indexed
variables are used as a symbolic reference to the elements of the collection as
described in this section� Furthermore� the arithmetic notation for operations
like o�greaterthan�p� and o�elementof�p� �i�e� o � p and o � p� respectively� is
used instead of boolean behavioral speci�cation �Bspec� equivalents� The exe�
cution of an algebraic expression is from left�to�right� except that parenthesized
expressions are executed �rst�

Example ��� Return land zones valued over !������� or covering an area over
���� units�

Calculus�
f o j C land�o� � �o�B value � ������ � o�B area � �����g

Algebra�
C lando ��o�B value������� � o�B area������

Example ��� Return all zones that have people living in them �the zones are
generated from person objects��

�Quanti�ers � and � does not appear in a propositional formula

��

Calculus�
f o j �q�C person�q� � o � q�B residence�B inzone�g

Algebra��
C personq �

o
o�q�B residence �B inzone

�
o�q
q

Example ��
 Return the maps with areas where citizens over � years of age
live�

Calculus�
f o j C map�o� � �p�C person�p� � �q�C dwelling�q�
� p�B age � � � q � p�B residence � q�B inzone � o�B zones��g

Algebra��
C mapo �F� hC dwellingq�

�
C personp �F�

�
p
i
�
o�q�p

p�q

where F� is the predicate �q � p�B residence � q�B inzone � o�B zones�
and F� is the predicate �p�B age � ��

Example ��� Return the dollar values of the zones that people live in�

Calculus�
f o j �p�C person�p� � o � p�B residence�B inzone�B value�g�

Algebra��
C personp �

o
o�p�B residence �B inzone�B value

�
p�o
p

Note that this has a simpler form using the map operator as follows�
C personp
p�B residence �B inzone�B value

Example ��	 Return the zones that are part of some map and are within ��
units from water� Project the result over B title and B area�

Calculus�
f o�B title�B area� j �p�q�C map�p� �C water�q�

�o � p�B zones � o�B proximity�q� � ���g�
Algebra���

C mapp �
o
F�

�
p�o
�F� C waterq

�
p�o�q

q�p �B title�B name

where F� is a generating atom �o � p�B zones�
and F� is a predicate �o�B proximity�q� � ���

Example ��� Return pairs consisting of a person and the title of a map such
that the person�s dwelling is in the map�

Calculus�
fp� o j �q�C person�p� � C map�q�

� o � q�B title � p�B residence�B inZone � q�B zones�g
Algebra��

C personp �F

�
C mapq �

o
o�q�B title

�
q�o

�
p�q�o

q

where F is a predicate �p�B residence�B inZone � q�B zones�

Chapter �

Optimizer Architecture

TIGUKAT query optimizer models the search space� the transformation rules� the
search strategy� and the cost function independently from each other� allowing
extensibility in all dimensions�

All of the system concepts are represented as objects along the lines of �����
but di�ers from it in that the components of the TIGUKAT query optimizer are
uniformly described in terms of the object model itself� The algebraic operators
are modeled as objects� speci�cally as behaviors over the T collection type� In
the type lattice� they appear as instances of type T algebra which is a subtype
of T behavior �instances are shown as rounded�corner rectangles� drawn with
dashed lines in Figure ��� while types are shown as simple rectangles�� In addi�
tion� the four components of the query optimizer are modeled as objects as listed
below �see Figure �����

�� the states in the search space that are modeled as query expressions which
are represented by OAPTs �OAPTS are objects of type T algOp��

�� the actions that generate the alternative query expressions� These actions
are modeled as transformation rules �which are objects of type T algEqRule��

	� a search algorithm that allows one to move from one state to another in the
search space �search strategies are objects of type T searchStrat�� and

�� the cost function that is applied to each state �that are objects of type
T costFunc��

The incorporation of these components of the optimizer into the type system
provides extensibility via the basic object�oriented principle of subtyping and
specialization� In the following three chapters the modeling of the components
of the optimizer as part of TIGUKAT�s type system is discussed�

Because most of the extensions to the primitive type lattice for query optimiza�
tion purposes are done by subtyping T function �see Figure ����� a description
of functions as objects is relevant to this discussion �presented in Section �����

In TIGUKAT� queries have the status of �rst�class objects and inherit all the
behaviors and semantics of objects� Since queries are so fundamental to this
discussion� a description of modeling queries as objects is given in Section ����

��

��

T_production

T_adHoc

T_algOp

T_heurSS

F_leafAlgOp

T_enumSS

T_randomSS

F_scanSelect

T_costFunc

T_searchStrat

T_formula

T_context

T_query

T_activeRule

T_algEqRule

F_hashJoin

T_function

B_I

B_select

B_join

T_algebra

B_optimize

T_behavior

T_object

T_rule

Figure ���� Optimizer as part of the type system

��

A unique feature of TIGUKAT query optimizer is that not only its compo�
nents� but the optimizer itself is modeled as an object� This is discussed in
Section ��	�

��� Functions as Objects

In TIGUKAT object model� functions implement the semantics of behaviors�
They are modeled by objects of type T function and they have the status of a
�rst�class object as illustrated in Figure ���� Since they are so fundamental to
this discussion� the most important behaviors de�ned on T function are listed
in Table �����

The major bene�ts of modeling functions as objects in TIGUKAT object
model are the following�

�� Functions are �rst�class objects� so they support the uniform semantics
of objects� They are maintained within the objectbase and are accessible
through the behavioral paradigm of the object model�

�� Since functions are objects� behaviors can be applied to them� This is useful
in de�ning a uniform extensible query optimizer�

	� Functions are uniformly integrated with the operational semantics of the
model and thus� functions are used as implementations of behaviors �i�e��
the result of applying a behavior to an object triggers the execution of a
function��

�� Functions as objects allow us to have di�erent implementations for each
object by plugging in a �stored� behavior a reference to a function object
which can be executed later on� In contrast� behaviors restrict us to have
one implementation per type� This is a fundamental feature to be able to
model some of the components of the optimizer as objects as discussed in
the following three chapters�

��� Queries as Objects

An identifying characteristic of the TIGUKAT query model is that it is a
direct extension to the object model� In other words� it is de�ned by type and
behavioral extensions to the primitive model� The query model de�nes a type
T query as a subtype of T function in the primitive type system as illustrated
in Figure ���� This means that queries have the status of �rst�class objects and
inherit all the behaviors and semantics of objects� Moreover� queries are functions

�For every behavior b listed in the table� a functional application notation b�o��p� is used�
where the �rst parameter o corresponds to b�s receiver object and p corresponds to b�s argu�
ments� This applies to all the tables that summarize the native behaviors of an speci�c type
through this thesis�

�	

Native Behaviors Semantics

B name	o
 Returns the name of the function object o�
B argTypes	o
 Returns a list of types which denote the types and ordering

of the argument objects for the function object o�
B resultType	o
 Returns the result type of the function object o�
B comments	o
 Returns the comments that document the function object o�
B source	o
 Returns the source code of the function object o�
B compile	o
 Compiles the function object o and returns an executable

which is also returned by B executable below�
B execute	o
	p
 Executes the function object o using the objects in the list p

as arguments and returns a result object� One of the require�
ments is that the list of arguments in p must be compatible
with the argument type list for the function�

B executable	o
 Returns the executable code of the function argument object
o�

B costFunction	o
	p
 Returns a cost function object whose execution returns an
estimated cost of executing the function o with arguments
p� At the moment� this is defaulted to a cost function that
returns unit cost for all functions other than those of type
T algOp�

B cost	o
	p
 Executes the cost function object that is returned by
B costFunction and returns the estimated cost that results
of this execution�

Table ���� Behavioral summary of T function type�

so they can be used as implementations of behaviors� can be compiled� and can
be executed�

Since T query is a subtype of T function� it inherits all of the behaviors
discussed in Section ��� and de�nes new ones� For a query� B compile is rede�ned
to include translating the query statement into an algebra tree� optimizing it and
generating an execution plan �a more detailed description of the compilation
process is given in section ������� Similarly� B execute is rede�ned to mean that
the execution plan is submitted to the storage manager for processing� There is
the capability to store the result of query execution so that it is returned the next
time the query is posed without re�execution� These details are not described in
this thesis because the execution of a query is not considered in this research�
Furthermore� B costFunction�o��p� is rede�ned to return the cost function that
the optimizer �B optimize� uses when the search strategy �B searchStrat� is cost�
controlled� Otherwise� it returns null� It must be determined externally� before
B optimize is applied �i�e� when the query object o is created��

In addition to the behaviors it inherits from T function� T query has the
native behaviors that are listed in Table ����

Incorporating queries as a specialization of functions is a very natural and uni�
form way of extending the object model to include declarative query capabilities�
The major bene�ts of this approach are�

��

Native Behaviors Semantics

B initialOAPT	o
 Returns the initial Object Algebra Processing Tree 	OAPT

resulting from the calculus to algebra translation� This initial
OAPT constitutes the initial state of the search space used for
the algebraic optimization of the query object o� The initial
OAPT must be complete for heuristic and randomized search
strategies� A heuristic search strategy is used in this thesis to
illustrate an optimization scenario for the Query Optimizer
	see Appendix A
� This behavior is implemented by a stored
function�

B optimizedOAPT	o
 Returns a collection of optimized OAPTs resulting from the
optimization process for the query object o� This behavior is
implemented by a stored function�

B searchStrat	o
 Returns the search strategy that the optimizer 	B optimize

uses to control the optimization of the query object o� It
must be determined externally� before B optimize is applied
	i�e� when the query object o is created
�

B transformations	o
 Returns the list of transformation rule objects used for the
algebraic optimization of the query object o� This behavior
is implemented by a stored function�

B costModelFunc	o
 Returns the cost model function that the optimizer
	B optimize
 uses when the search strategy 	B searchStrat

is a cost�controlled strategy� Otherwise� it returns null� It
must be determined externally� before B optimize is applied
	i�e� when the query object o is created
�

B optimize	o
 Executes the algebraic Query Optimizer over the query ob�
ject o� using the search strategy object o�B searchStrat on
the initial OAPT object o�B initialOAPT and returns the
optimized OAPT o�B optimizedOAPT� This behavior will be
invoked by the behavior B compile 	which is inherited from
T function and rede�ned in T query
�

B genExecPlan	o
 Generates an execution plan 	or a family of execution plans

from the optimized OAPT object o�B optimizedOAPT for
the query object o� The Execution Plan is modeled as a
function object that executes the query object o� As a side
e�ect� B genExecPlan stores the resulting Execution Plan so
that it can be accessed using the B execPlanFamily behavior�
This behavior is invoked by the behavior B compile�

B execPlanFamily	o
 Returns a collection of execution plans that are generated by
B genExecPlan�

B result	o
 Returns the query result that was stored after the query o
was executed by applying a particular type of B execute that
saves its result 	similar to materialization of result relations
in relational systems
�

Table ���� Behavioral summary of T query type�

�

�� Queries are �rst�class objects� so they support the uniform semantics of
objects� They are maintained within the objectbase and are accessible
through the behavioral paradigm of the object model�

�� Since queries are objects� they can be used in queries and behaviors can be
applied to them� This is useful in generating statistics about the perfor�
mance of queries and in de�ning a uniform extensible query optimizer�

	� Queries are uniformly integrated with the operational semantics of the
model and thus� queries can be used as implementations of behaviors �i�e��
the result of applying a behavior to an object can trigger the execution of
a query��

�� The query model is extensible in a uniform way since the type T query can
be further specialized by subtyping� This can be used to dichotomize the
class of queries into additional subclasses� each with its own unique char�
acteristics� and to incrementally develop the characteristics of new kinds of
queries as they are discovered� For example� we can subtype T query into
T adHoc and T production and then de�ne di�erent evaluation strategies
for each� Ad hoc queries may be interpreted without incurring high compile�
time optimization strategies while production queries may be compiled once
and then executed many times�

����� Query Compilation

The behavior B compile that is rede�ned in T query is responsible for imple�
menting
TIGUKAT query methodology that consists of the following steps�

�� Translating the query statement written in TQL language ������ into an
equivalent calculus expression�

�� Translating the calculus expression into an equivalent algebra expression
and checking it for type consistency�

	� Optimizing the algebra expression that is performed by applying the be�
havior
B optimize� Algebraic Optimization consists of applying equivalence pre�
serving rewrite rules to the type consistent algebra expression�

�� Generating an execution plan �or a family of execution plans� which is per�
formed by applying the behavior B genExecPlan� This behavior annotates
each individual algebra operator node from the optimized object algebra
query processing tree with one of the algorithms that implement the oper�
ation represented by the corresponding node� These algorithms use object
manager calls that are part of the low level object manipulation primitives
that constitute the interface to the object manager subsystem�

The implementation of the �rst two steps of the methodology is discussed in
����� This thesis focuses in algebraic optimization �Step �	�� and in the general

��

optimizer architecture� Future research must be done on picking the best algo�
rithms that implement each algebraic node in the OAPT based on information
provided by the OM such as indexes� clustering� and so on �Step ����� Initial
work on this step is reported in ��	��

As side e�ects of the application of the behavior B compile on a query ob�
ject� the values of the following behaviors are set� B executable� B initialOAPT�
B optimizedOAPT� B transformations� B argMbrTypes� B rcvrMbrTypes�
B resultMbrType� B execPlanFamily and B result�

��� Query Optimizer as an Object

TIGUKAT query optimizer is incorporated as a behavior B optimize in the
interface of the type T query� It is� therefore� modeled as an instance of type
T behavior �see Figure ����� This means that the query optimizer has the status
of �rst�class object in the model�

The query optimizer B optimize is responsible for applying a search strategy
B searchStrat to an initial OAPT B initialOAPT in order to produce an
opti�
mal� OAPT B optimizedOAPT for a query object q� In case the search strategy
is a cost�controlled strategy� the cost model B costModelFunc is used to mea�
sure the e�ects of the optimizer actions� All these behaviors are de�ned in the
interface of the type T query �see Section �����

B optimize is de�ned on T query and is inherited by its subtypes� The im�
plementation of B optimize and� therefore� of the query optimizer may vary over
these types� This gives �exibility in providing di�erent implementations for the
optimizer� For example� one implementation may be written in TIGUKAT pro�
gramming language� while another implementation may use some other object�
oriented programming language �i�e� C���� An example of code for the function
object that implements B optimize is illustrated in Algorithm ����� The current
implementation of the query optimizer is discussed in Chapter ��

Algorithm ��� Optimizer��

F optimize	T query q
� T listhT algOpi
f

return		q�B getSearchSS
�B execute	q

 ���
g

Before applying the behavior B optimize to a query object q� the initial OAPT
must have been generated and stored in B initialOAPT� and the query object
must have been annotated with the search strategy �B searchStrat� and the cost
model function type �B costModelFunc� which are selected externally �i�e� when
the query object is created�� The cost model is only required when the search
strategy is cost�controlled�

�In the algorithms that are presented in this thesis� a dot notation o�b�p� is used to illustrate
the application of a behavior b to a receiver object o with arguments p�

��

Each algebraic operator node has a di�erent cost function because the com�
putation of the cost of executing algebraic operations incorporates optimization
issues that potentially vary among the operators� For example� the union op�
erator only needs the cost of accessing the instances of the collections Ci� Cj

involved in the operation� while the select operator requires the cost of accessing
the instances of the collection C� in the presence of a predicate f � Therefore�
the annotation of the OAPT with its algebraic cost function is very important
because each node in the OAPT collaborates with the cost model function by
calculating its algebraic cost itself� This is further explained in Chapter ��

Modeling the building blocks of a cost�based optimizer as objects provides
the query optimizer the extensibility inherent in object models� The optimizer
basically implements a control strategy that associates a search strategy and a
cost function to each query� The database administrator has the option of de�ning
new cost functions and new search strategies or transformation functions for new
classes of queries�

Chapter �

Representation of Search Space

The compilation of a query results in the translation of a TQL query to a cor�
responding algebraic expression represented as an OAPT� The set of equivalent
OAPTs that generate the same result make up the search space �i�e�� each OAPT
corresponds to a state��

While in relational systems� a processing tree is a labelled tree where the leaf
nodes represent relations and the intermediate nodes correspond to relational
algebra operators� in this research� the nodes in the OAPTs uniformly correspond
to functions that model the delayed execution of object algebraic operators�

The modeling as objects of the OAPTs and transformation rules that generate
di�erent OAPTs in TIGUKAT Extended Type System is described in Sections ��
and ��� respectively�

��� Object Algebra Processing Trees

The object algebra operators are modeled as behaviors on type T collection

whose implementations are modeled as instances of T function� Since each al�
gebraic operator has its own characteristics �i�e� predicates� functions to apply�
etc�� objects of type T function are created according to the di�erent existing
operators de�ned in the TIGUKAT algebra� Furthermore� since there may be a
number of di�erent algorithms to implement each algebraic operator �e�g� nested
loop join� merge�sort join� and hash join�� there may be many implementation
functions as instances of T function� For example� F scanSelect is an object of
type T function that models the algorithm that implements the select algebraic
operation B select de�ned as a behavior on T collection� This gives �exibility
in rede�ning algebraic operators and in extending the algebra in future versions of
the query model to deal with new algebraic operators that may be de�ned �e�g��
transitive closure for recursive query processing�� Besides� new algorithms for
existent algebraic operators can be added to the system as they are discovered�

In order to clarify the further discussion in this thesis� we de�ne the collection
L implAlgOp to group all the instances of T function that implement algo�
rithms for algebraic operators as illustrated in Figure ���

��

��

.

..
F_leafAlgOp

F_hashJoin

F_scanSelect

F_indexSelect
T_function

L_implAlgOp

Figure ���� Collection 	L implAlgOp
 of implementations for algebraic operators�

B_outerRcvr: B_innerArg: [,,]

T_algOpoapt

B_outerRcvr: B_innerArg: [,,]

T_algOpoapt 0

B_outerRcvr: B_innerArg: [,,]

T_algOpoapt 1

B_outerRcvr: B_innerArg: [,,]

T_algOpoapt k

Figure ���� Tree shape of an OAPT�

	�

Native Behaviors Semantics

B outerRcvr	o
 Returns a reference to the context object whose evaluation
will serve as the receiver object for the context object o�

B innerArg	o
 Returns a list of references to the context objects that cor�
respond to the arguments for the behavior whose delayed
execution is represented by the context object o�

B rcvrType	o
 Returns the type of the receiver object for the object o�

Table ���� Behavioral summary of T context type�

These implementation functions cannot be used as the nodes of an OAPT�
however� The nodes of the tree should represent execution functions all of whose
arguments have been marshalled �see Figure ���� Therefore� we de�ne T algOp

whose instances are functions with marshalled arguments and they make up nodes
of OAPTs� In this fashion� each node of an OAPT represents a speci�c execution
algorithm for an algebra expression� Instead of de�ning T algOp as an immediate
subtype of T function� we de�ne it as a subtype of T context which� in turn�
is a subtype of T function� In a sense� a T context instance corresponds to de�
layed execution of a function� The reason for the de�nition of T context and the
modeling of T algOp as a subtype of T context is that this allows further opti�
mization possibilities� Since the nodes of OAPTs are instances of T context �due
to subtyping�� we could relax the restriction that they be instances of T algOp

and represent behaviors in predicates of query expressions as nodes in the OAPTs
as well� This would open the possibility of optimizing the execution of behaviors
together with algebraic operators in a query� Commonly called the method opti�
mization problem� this is a serious concern in OBMSs� Even though this research
has not addressed this issue yet� the architecture that we has been developed
lends itself to such extensions in the future� The native behaviors de�ned on
T context are listed in Table ��� and the native behaviors de�ned on T algOp

are listed in Table ���
Since the nodes of OAPTs are instances of type T algOp� to provide unifor�

mity� the object F leafAlgOp is de�ned to model the leaf nodes of the OAPTs�
This object can be thought of as a container that holds a reference to one of the
input collections of the query that the OAPT represents� F leafAlgOp objects
model the delayed execution of the algebraic identity operator B I that is de�ned
as part of the interface of the type T collection� Thus� all the nodes of an
OAPT are uniformly modeled as instances of T algOp rather than making an
exception for the leaf nodes which correspond to collections��

An OAPT is recursively de�ned as an object of type T algOp as follows� the
root node of the OAPT is an algebraic operator of type T algOp whose children
are also of type T algOp with the restrictions that an intermediate node cannot
be an object F leafAlgOp and every leaf node is an object F leafAlgOp�

�This is a conceptual model	 for e
ciency reasons� the optimizer may represent the leaf
nodes directly as collections and handle them as special cases�

	�

Native Behaviors Semantics

B rcvrMbrType	o
 Returns the membership type object of the receiver collection
object for the algebraic operator represented by the node ob�
ject o�

B argMbrTypes	o
 Returns a list whose elements are the membership type ob�
jects corresponding to the argument collection objects for the
algebraic operator represented by the node object o�

B resultMbrType	o
 Returns the membership type object of the collection pro�
duced by executing the algebraic operator represented by the
node object o�

B targetVar	o
 Returns a reference to the target variable object for the al�
gebraic operator represented by the node object o�

B targetColl	o
 Returns a reference to the target collection object that re�
sults from executing the algebraic operator represented by
the node object o�

B constraint	o
 Returns an object that models a constraint on the algebraic
operator represented by the node object o� For example�
a formula that quali�es the select operator� or the list of
behaviors that must be applied to the receiver and argument
collections of the map operator are constraints on the select
and map operators respectively�

B execAlgorithm	o
 Returns a function object that implements an execution algo�
rithm for the algebraic operation that the node o represents�
It is implemented by a stored function�

Table ���� Behavioral summary of T algOp type�

	�

Figure �	 shows the OAPT for the algebra expression corresponding to the
query that is presented in Example ��� The �rst information in the box rep�
resents an object instance reference and the mapping to its type� Then� the
behaviors that are relevant to the subsequent discussion are listed� The f� and
f� in the �gure are the formulas o�B value � ������ � p�B latitude � �� and
o�B area � ����� respectively which are represented as objects of type T formula�

Example ��� Return all the land zones covering an area over ���� units that
are land zones valued over !������� and that are located above the latitude ���

Algebra�
�C lando ��o�B value������� � o�B origin�B latitude�����o ��o�B area������

����� Execution Plan Generation

In relational databases� the execution plan produced by the query optimizer
is a processing tree whose algebraic operators can be directly mapped to low level
implementation primitives of the physical system �i�e�� a tuple can be translated
into a record� a table into a �le and so on�� In contrast� in TIGUKAT object
model� algebraic operators are objects that encapsulate their internal representa�
tion which can only be manipulated by the Object Manager subsystem� There is
no one�to�one mapping between the di�erent components of the database and low
level primitives of the physical system� Although the execution plan generation is
not in the scope of this research� di�erent methodologies that have been proposed
to solve this problem are discussed below� It is important to notice that there is
no agreement among the database community in the set of low level primitives
that an object manager interface should provide�

The execution plan generation method proposed in Straube and �Ozsu ��	�
generates the query execution plan by replacing each individual algebra operator
from the optimized OAPT with a
best� subtree of Object Manager �OM� calls�
These object manager calls are part of the set of low level object manipulation
primitives that constitutes the interface to the OM� This approach respects the
full encapsulation of objects�

The methodology proposed in the Open OODB project �	� proposes to replace
each logical algebra expression by an execution algorithm which is selected by the
optimizer based on implementation rules� These rules use physical information
that is encapsulated in
physical property vectors� �which is an abstract data
type��

This research proposes to create a di�erent instance of T function �e�g��
nested loop join� merge�sort join� and hash join� for each algorithm that im�
plements an algebraic operator of type T algebra �e�g�� join�� Then� there may
be a number of instances of T function� In this fashion� each node of an OAPT
�of type T algOp�� that represents an object algebraic operator� is annotated �in
the behavior B execAlgorithm� with the function object that implements an spe�
ci�c execution algorithm for that algebra operation� For example� an OAPT node

		

B_innerArg: null

B_atoms:

B_CNF:

B_restVar :

B_genVar:

T_formula

B_refVar:

<a1, a2>

f1

<<a1>, <a2>>

null

<o>

<o>

B_atoms:

B_CNF:

B_restVar :

B_genVar: null

B_refVar:

<a0>

<<a0>>

T_formulaf2

<o>

<o>

B_innerArg: B_outerRcvr:

B_targetVar:

B_constraint:

B_resultMbrType:

B_argMbrTypes:

B_rcvrMbrType :

B_argTypes :

B_name :

B_rcvrType :

T_collectionB_resultType :

T_class

B_innerArg: B_outerRcvr:

B_targetVar:

B_constraint:

B_resultMbrType:

B_argMbrTypes:

B_rcvrMbrType :

B_argTypes :

B_name :

B_rcvrType :

T_collection

T_class

B_resultType :

T_land

T_land

T_land

T_land

f1

f2

null

T_algOp

T_algOp

null

null

B_name : F_leafAlgOp

B_targetVar:

B_outerRcvr: null

B_targetColl: C_land

T_algOp2

o

o

o

F_select

F_select

null

B_atoms:

B_CNF:

B_refVar:

B_restVar :

B_genVar:

B_source:

null

null

B_atoms:

B_CNF:

B_refVar:

B_restVar :

B_genVar:

B_source:

null

T_atom

null

B_atoms:

B_CNF:

B_refVar:

B_restVar :

B_genVar:

B_source:

null

T_atomT_atoma0 a1 a2

<a0> <a1>

<o>

<o>

o.B_value>100000o.B_area>1000

<o>

null

<o>

<a2>

<o>

<o>

o.B_origin.B_latitude>10

0

1

oapt

oapt

oapt

null

null

Figure ���� Initial OAPT

	�

F join is annotated with the function object F nestedLoopJoin� The OAPT node
is annotated with default execution algorithms per algebraic operator when the
OAPT node is �rst created�

Algorithm selection can be done by the Execution Plan Generator provided
the OM can derive physical information by the application of special behaviors
that belong to its Object Manager Interface �OMI�� Further research needs to be
done on the OM subsystem and its interface� It is not in the scope of this research
to de�ne a methodology to select the execution algorithms to annotate the OAPTs
with implementation information� This methodology would be implemented by
the behavior B genExecPlan� This is topic of future research�

Each node of the OAPT can also be annotated with information about whether
the intermediate collection must be materialized or pipelined at execution time�
This information is stored in behavior B isMaterial that returns the object true
if it is materialized or false� otherwise� The behavior B targetColl is a reference
to the materialized collection when it is executed�

The Execution Plan is modeled in TIGUKAT Query Optimizer as function
objects �T algOp is a subtype of T function�� Because a function returns its
cost� this approach has the advantage that the cost of the annotated OAPT is
the cost of the execution plan for a query�

As discussed in �		�� a query execution engine for OBMSs must support the fol�
lowing basic� set of algorithms that implement object algebraic operators� scan�
indexed scan� and collection matching� These algorithms operate on collections of
objects to support the closure of the object algebra on collections� Collection scan
is an algorithm that sequentially accesses all objects in a collection� An indexed
scan algorithm allows e�cient access to objects �that satisfy a selection predicate�
in a collection through an index� Collection matching algorithms produce aggre�
gate objects from multiple collections of objects that are given as input to the
algorithm� TIGUKAT query optimizer architecture supports the incorporation
of these algorithms into the query optimizer by the de�nition of function objects
that implement them such as F scanLeaf� F indexSelect� F hashJoin� and so on�
We refer the reader to �		� for a more detailed discussion of query execution since
this topic is out of the scope of this research�

����� Execution of the OAPT

As mentioned in Section ��� an OAPT is an instance of type T algOp which
models the delayed execution of an algebraic expression that represents the query
that is being optimized�

After annotating each node of the OAPT with its corresponding implemen�
tation� and with information about whether the intermediate collection is mate�
rialized or pipelined �B isMaterial�� the optimized OAPT can be passed to the
Object Manager to be executed as described in Section ��� �i�e� by applying the
behavior B execute to the query object��

�To support at least the set of algorithms that is provided by relational query execution
engines that operate on relations�

	

The OAPT is executed bottom�up� where each node consumes operands from
left to right� The left child of a node plays the role of receiver of the algebraic
operation� and the right child is the list of arguments� The execution ends at the
root node� After executing a node� the application of the behavior B targetColl
returns a reference to the resulting collection� We do not give more detail about
the execution of an OAPT since this is not in the scope of this research�

��� Algebraic Transformation Rules

As indicated before� the search space consists of a family of equivalent plans��
each of which is represented as an OAPT� The equivalence of two OAPTs corre�
sponding to the same query is established by means of the equivalence�preserving
algebraic transformation rules and the semantic rules�

Algebraic transformation rules create equivalent expressions based upon pat�
tern matching and textual substitution� These rules are very dependent upon
the speci�c object algebra because they are de�ned as combinations of its al�
gebraic operators� In other words� they are speci�ed by algebraic expressions
which are functional expressions because of the functional basis of the object
algebra ��	���� For example� in ����� the rules are speci�ed using an in�x no�
tation� while in ����� they are speci�ed using a pre�x notation� An important
consideration for de�ning algebraic transformation rules in relational models as
well as in object�oriented models is that an algebraic expression representing a
query expression can be manipulated using the well�de�ned algebraic properties
such as transitivity� conmutativity and distributivity� However� these expressions
di�er between models in that object algebraic expressions are de�ned on collec�
tions of objects which have an inheritance relationship� while relational algebraic
expressions are de�ned on �at relations� This allows object�oriented query op�
timizers to use the semantics of the inheritance relationship in order to achieve
some additional transformations� called semantic transformations� For example�
a semantic transformation rule could be de�ned as follows� if class C� is a sub�
class of C�� the intersection of those two classes� C� and C�� produces the class
C�� This results since the object model restricts each object to belong to only
one class� This research does not deal with semantic transformation rules and
leaves it as a topic of future research�

Algebraic and semantic transformation rules are speci�ed in ���� for a less
powerful algebra than the one described in Section 	����� however� no implemen�
tation is provided for them� Because of the similar nature of that object algebra
and TIGUKAT object algebra� a subset of the algebraic rules speci�ed in ����
are presented in Section ���� in order to help in the discussion of modeling of
the algebraic transformation component as objects and in the discussion of the
application of algebraic rules by the query optimizer �that is discussed in Sec�
tion ���	�� The same rules are used in the current implementation of the query

�These execution plans are equivalent in terms of the results that they generate� but may
potentially di�er in their costs�

	�

optimizer to show the feasibility of our approach� It is not in the scope of this
research to specify new transformation rules for those additional algebraic oper�
ators� such as join� collapse� reduce� and cartesian product that are introduced
by TIGUKAT object algebra� More rules can be added later taking advantage of
the extensibility of the transformation rule component of the optimizer�

In order to provide extensibility� algebraic transformation rules need to be
modeled as objects in the system� Extensibility is essential in OBMSs where
the research into object algebras has not yet matured and new transformation
rules may be uncovered as research continues� These transformation rules are
modeled as objects of type T algEqRule that is discussed in Section ����� which
is a subtype of T rule� Although at this stage TIGUKAT does not have
ac�
tive DBMS� capabilities� we have de�ned type T rule as an abstract type with
subtypes T activeRule and T algEqRule� T activeRule would� in the future�
model ECA�type rules ��� when active capabilities are added� The de�nition of
T activeRule is not in the scope of this research�

The search strategy determines the use of the rules for controlling the search�
There are many alternative strategies� ranging from static priorities to heuristics
that determine which rules would be applied under various conditions� This is
illustrated in Chapter � for an algebraic heuristic search strategy�

����� Speci�cation of Algebraic Transformation Rules

In this section� some of the algebraic equivalence transformation rules that
can be applied during optimization to get equivalent query expressions �OAPTs�
are presented� They are speci�ed as algebraic expressions using the notation
E� � E� which speci�es that expression E� is equivalent to expression E� �e�g��
algebraic rule ���� Some rules are restricted in that they are applicable only
when a condition c is satis�ed� They are written as E�

c
� E� ����� ����� �e�g��

algebraic rule ���� Conditions are conjunction of functions which determine
properties of argument collections� predicates and variables used in a rule� These
functions are de�ned as follows� Function ref�F� �v�� ���� vn�� is true when v�� ���� vn
are the only variables referenced in the predicate F � Function gen�F� v� is true
when the predicate F contains a generating atom� for the variable v� In a similar
way� res�F� v� is true when predicate F restricts values of v� It can be said that
predicate F restricts values of v� when it does not contain a generating atom for
the variable v�

In the algebraic expressions� are introduced as abbreviations for list variables
Qlist� Rlist and Slist to replace Q�� ����� Qk� R�� ����� Rl� and S�� ����� Sm� respectively�
and the symbol ��� is used to denote equivalence between the left and right side
algebraic expressions�

The following examples illustrate possible algebraic rules for TIGUKAT trans�
formation rule component of the optimizer�

Algebraic Rule ��� Commutativity of Select�

�This is de�ned in Section �����

	�

Native Behaviors Semantics

B cond	o
	p
 Returns an object that models the condition that must be
satis�ed by the object p in order to apply the rule o�

B checkCond	o
	p
 Checks if the condition stored in B cond holds for the ob�
ject p� If so� the object true is returned� Otherwise� false is
returned�

B action	o
	p
 Returns the object resulting from applying the action dic�
tated by the rule object o to the argument object p�

Table ���� Behavioral summary of T rule type�

	P �f� � Qlist �
 �f� � Rlist �� 	P �f� � Rlist �
 �f� � Qlist �

Algebraic Rule ��� Distributivity of Union with respect to Select�

	P � Q
 �f � Rlist �
� 	P �f � Rlist �
 � 	Q �f � Rlist �

Algebraic Rule ��� Intersection�Select Exchange Rule�

	P �f� � Qlist �
 �f� � Rlist �
� 	P �f� � Qlist �
 � 	P �f� � Rlist �

Algebraic Rule ��� Conjunctive Select Predicate�

	P �	f��f�
 � Qlist� Rlist �

c
� 	P �f� � Qlist �
 � 	P �f� � Rlist �
 �

c� ref	f��	p� q����qk

 � res	f�� p
 � ref	f��	p� r����rk

 � res	f�� p

����� Algebraic Transformation Rules as Objects

Since T rule is a subtype of T object� it inherits all its behaviors and de�ne
new ones that are listed in Table �	� However� T rule does not implement any
of its behaviors because it is an abstract type� These behaviors are implemented
by its subtypes�

The algebraic transformation rules are modeled as objects of type T algEqRule

that is de�ned as a subtype of T rule� The native behaviors as well as the rede�
�ned inherited behaviors for T algEqRule are described in Table ���

The behavior B algExpression stores the algebraic expression that speci�es the
rule object� The application of the rest of behaviors is illustrated in Section ���	�

����� Rule Application

The application of algebraic equivalence rules involves checking the validity of
applying a rule to an speci�c OAPT and transforming the given OAPT into an
equivalent OAPT as speci�ed by the rule�

The process of checking the validity of applying a rule is know as matching
of rules to OAPTs� This process can be done at di�erent levels or steps� In the
approach presented here� two levels were identi�ed following the nature of the
algebraic rules presented in this research� These two levels are described below�

	�

Native Behaviors Semantics

B leftSideFunc	o
	p
 Returns the function object that implements the matching
algorithm that corresponds to the left side expression of the
rule object o�

B matchLeft	o
	p
 Executes the function object stored in B leftSideFunc passing
p as argument� If the argument object p matches the left side
of the algebraic equivalence rule� the object true is returned�
Otherwise false is returned�

B rightSideFunc	o
	p
 Returns the function object that implements the matching
algorithm that corresponds to the right side expression of
the rule object o�

B matchRight	o
	p
 Executes the function object stored in B rightSideFunc pass�
ing p as argument� If the argument object p matches the
right side of the algebraic equivalence rule� the object true is
returned� Otherwise false is returned�

B condLeft	o
	p
 Returns a function object that implements the condition as�
sociated to the left side expression of the rule object o�

B checkCondLeft	o
	p
 Executes the function object stored in B condLeft� If the ar�
gument object p holds the condition associated to the left side
of the rule object o� the object true is returned� Otherwise�
false is returned�

B cond	o
	p
 Returns a function object that implements for the condition
associated to the right side of the rule object o� 	Inherited
from T rule� but overloaded
�

B checkCond	o
	p
 Executes the function object stored in B cond� If the argu�
ment object p holds the condition associated to the right side
of the rule object o� the object true is returned� Otherwise�
false is returned� 	Inherited from T rule� but overloaded
�

B actionLeftFunc	o
	p
 Returns the function object that implements the transfor�
mation dictated by the left side of the rule object o to the
argument object p�

B actionLeft	o
	p
 Executes the function object stored in B leftSideFunc passing
p as argument� It returns the OAPT object resulting from
applying the transformation dictated by the rule object o to
the argument object p� The resulting OAPT have the shape
of the algebraic expression for the right side of the rule object
o�

B actionRightFunc	o
	p
 Returns the function object that implements the transforma�
tion dictated by the right side of the rule object o to the
argument object p�

B action	o
	p
 Executes the function object stored in B actionRightFunc
passing p as argument� It returns the OAPT object resulting
from applying the transformation dictated by the rule ob�
ject o to the argument object p� The resulting OAPT have
the shape of the expression given in the left side of the rule�
	Inherited from T rule� but overloaded
�

B algExpression	o
 Returns the algebraic expression that speci�es the rule object
o�

Table ���� Behavioral summary of T algEqRule type�

	�

Level �� Matching the right�left side shape to check if the OAPT matches syn�
tactically with the right�left side of the rule� This is implemented by ap�
plying the behaviors B matchLeft � B matchRight�

Level �� Testing the condition that checks if the formula satis�es constraints
given in the condition of the rule� This matching semantics can be consid�
ered computationally more expensive than the level � matching� Testing
the condition is done only if level � matching is satis�ed�

After the matching is found to be valid� the transformation is applied to the
OAPT in order to get its equivalent OAPT according to that speci�c rule�

The application of rules by rule based optimizers such as the EXODUS ����
and Starburst ��� optimizers is done by a pattern matching engine that matches
subexpressions of a query against algebraic rules� Additionally� the �ring of
rules is dependent on the satisfaction of the conditions that involve user de�ned
functions such as res�F� v�� A major di�erence between the rules de�ned for
those systems and the ones de�ned in ���� �which form the basis for specifying
TIGUKAT algebraic rules� is that the rules for the former systems are based on
operators of �xed arity �i�e� two operand joins�� while the rules for the latter � and
for TIGUKAT� are based on algebraic operators which can have varying numbers
of arguments� As pointed out in ����� in order to use those rule based optimizers
for the application of the rules de�ned herein� their pattern matching engine
would have had to be modi�ed to handle algebraic operators which can have
varying numbers of arguments� Considering that TIGUKAT query optimizer is an
extension of TIGUKAT object model which di�ers from those systems� we believe
that there would be problems integrating those systems with the TIGUKAT
query optimizer� Therefore� a pattern matching engine for TIGUKAT algebraic
rule component was built�

The proposed de�nition of OAPT nodes as objects of type T algOp� and the
closure of the algebra on collections enables these operators to be used as a recur�
sive functional symbol for describing OAPTs in a syntactical way� For patterns
that correspond to the algebraic expressions given in an algebraic equivalence
rule� a tree representation is convenient� At the same time that the matching be�
tween the OAPT and the corresponding pattern for a rule is checked� the binding
between them is stored� In this approach� additional structures are needed to
keep the binding between the pattern and the OAPT� One disadvantage is that
in order to allow concurrency in the optimization of queries in a multi�user envi�
ronment� the optimizer may have to create several temporary objects to establish
the bindings between the pattern trees and the OAPT to which the rule is trying
to be applied�

A completely di�erent approach is that each rule provides individualized be�
havior for its matching and transformation steps� For each rule� there are function
objects that implement those steps that may be potentially di�erent among the
rules� The pattern matching may be implemented by several function objects�
instead of having one general pattern matching algorithm and special structures
to represent the pattern as done in the approach presented above� Therefore�

��

the application �matching�transformation� of a rule is done in an object�oriented
fashion as described below� In order to help to clarify this discussion� the appli�
cation of an speci�c rule �Rule ��� is used�

Matching� For a rule object o� matching at the �rst level is performed by the
application of behaviors B matchLeft�B matchRight that execute the func�
tion object returned by B leftSide�B rightSide� respectively� depending on
what side of the rule is applied� For example� if the left side of the rule
is to be applied� the Algorithm �	 that implements B matchLeft executes
the function object returned by B leftSide �line �� whose source code is
illustrated in Algorithm ���

Algorithm ��� Source code for function returned by B leftSide for select�
exchange rule�

F leftSide selExch	T algEqRule o� T algOp p
� T boolean
f

if 	p�B name � �F select�
 then ���
if 	p�B outerRcvr�B name � �F select�
 then ���

return 	true
 ���
else ���

return 	false
 ���
else ���

return 	false
 ���
g

Algorithm ��� Source code for function returned by B condLeft for con�
junctive select�predicate rule�

F condls conj sel	T algEqRule o� T algOp p
� T boolean
f

f � p�B constraint � extracts formula from OAPT ���
CNF� f �B splitRestDisj ���
if 	CNF �� null
 then ���

return 	true
 ���
else ���

return 	false
 ���
g

Matching at the second level is performed by the application of behaviors
B checkCondLeft � B checkCond that execute the function object returned
by B condLeft�B cond� respectively� The source code for these function
objects is expressed in terms of operations that manipulate formulas to de�
termine properties of predicates and variables used in a rule �i�e� gen�F� v���
In TIGUKAT� these operations are modeled as behaviors de�ned in the in�
terface of T formula as illustrated in Table �� For example� for Rule ���
Algorithm �� illustrates the source code for the function object stored in
B condLeft� This behavior is set to null for Rule �� because the speci�ca�
tion for this rule does not establish any restriction�

��

Behaviors Semantics

B atoms	o
 Returns the list of atoms that are referenced in the formula
object o� It is implemented by a stored function�

B CNF	o
 Returns a representation for the formula� which is given in
Conjunctive Normal Form�

B restVar	o
 Returns the list of restricted variables in the atoms that are
referenced by the formula object o� Restricted variables are
variables that are not generated by any atom in the formula
o� It is implemented by a computed function�

B genVar	o
 Returns the variable that is generated by one of more atoms
in the formula object o� A formula can have only one gener�
ated variable because of constraints in the object algebra� It
is implemented by a computed function�

B refVar	o
 Returns the list of variables that are referenced in the atoms
of the formula o� It is implemented by a computed function
that performs the union between the list B restVar and the
list containing the generated variable B genVar�

B splitRestrDisj	o
	p
 Returns the collection of formulas in CNF form that result
from splitting the formula o into p number of parts which
were connected by disjunctions�

B splitRestrConj	o
	p
 Returns the collection of formulas in CNF form that result
from splitting the formula o into p number of parts which
were connected by conjunctions�

Table ���� Behavioral summary of T formula type�

Algorithm ��� Source code for function that implements B matchLeft for
select�exchange rule�

F matchLeft selExch	T algEqRule o� T algOp p
� T boolean
T boolean match

f
match � B leftSide�B execute	p
 ���
return 	match
 ���

g

Transformation� The transformation �action� is performed by the application
of behaviors B actionLeft � B action that execute the function object re�
turned by B actionLeftFunc � B actionRightFunc� respectively� The source
code for these function objects is expressed in terms of operations on trees�

that in TIGUKAT are modeled as behaviors de�ned in the interface of
T algOp as illustrated in Table ��� For example� Algorithms �� and �
illustrates the source code corresponding to the function object that is re�
turned by the application of the behavior B actionLeftFunc for Rules ��
and ��� respectively�

�The operations on trees refered in this research are adapted from the ones presented in
Tarjan �����

��

Native Behaviors Semantics

B splitLeft	o
 Returns the subtree that corresponds to the B outerRcvr of
the OAPT o� As a side e�ect� it sets to null the behavior
B outerRcvr for the node o�

B splitRight	o
 Returns the list of OAPTs that corresponds to the
B innerArgs of the OAPT o� As a side e�ect� it sets to null
the behavior B innerArgs for the node o�

B linkLeft	o
	p
 Links the OAPT p to the node o as o�s left son B outerRcvr�
Returns the node o�

B linkRight	o
	p
 Links the list of OAPTs p to the node o as o�s right son
B innerArgs� Returns the node o�

B assemble	o
	p
	q
 Given the OAPT p� the list of OAPTs q and the node o�
B assemble combines them into a single OAPT with root
o� left son 	B outerRcvr
 p� and right son 	B innerArgs
 q�
Returns the OAPT rooted at o�

B dissassemble	o
 Breaks the OAPT rooted at o into three parts� an OAPT
containing only the node o� and the left and right children of
o� Returns a list containing at most two elements� the �rst
element is the left son 	B outerRcvr
� and the second element
is the right son 	B innerArgs
� As a side e�ect� it sets to null
the behaviors B outerRcvr and B innerArgs for the OAPT
o�

Table ���� Behavioral summary of operations on trees de�ned on T algOp type�

Algorithm ��� Source code for function returned by B actionLeftFunc for
select�exchange rule�

F actionLeft selExch	T algEqRule o� T algOp r
� T algOp
T algOp sl�� sl�

f
sl� � r�B splitLeft	
 ���
sl� � sl��B splitLeft	
 ���
r � r�B linkLeft	sl�
 ���
sl� � sl��B linkLeft	r
 ���
return	sl�
 ���

g

As a result of this discussion� for a rule object o� the algebraic expression
�B algExpression� that speci�es the rule is a theorem� The function code that im�
plements the matching �B leftSide � B rightSide�� the check condition �B condLeft
� B cond�� and the transformation �B actionLeftFunc � B actionRightFunc� to�
gether are the proof of the theorem�

The search strategy determines the use of the rules for controlling the search�
There are many alternative strategies� ranging from static priorities to heuristics
that determine which rules would be applied under various conditions�

The example shown in Figure �� illustrates the resulting OAPT after applying
the Algebraic Rule �� to the OAPT shown in Figure �	�

�	

Algorithm ��� Source code for function returned by B actionLeftFunc for con�
junctive select�predicate rule�

F actionLeft conj sel	T algEqRule o� T algOp oapt
� T algOp
T algOp sl� oaptcopy � oaptroot
T list sr innerArgs
T formula formula

f
sl � oapt�B splitLeft	
 ���
sr � oapt�B splitRight	
 ���
oaptcopy � oapt�B copyComp	
 ���
formula � oapt�B setFormula	o�B CNF�B �rst�B �rst
 ���
formula � oaptcopy �B setFormula	o�B CNF�B �rst�B last
 ���
oapt � oapt�B linkLeft	sl
 ���
oaptcopy � oaptcopy �B linkLeft	sl
 ���
� sr� � select target collections ref by var in formula F� �	�
� sr� � select target collections ref by var in formula F� �
�
oapt � oapt�B linkRight	sr�
 ����
oaptcopy � oaptcopy �B linkRight	sr�
 ����
innerArgs � C list�B new	
 ����
innerArgs�B setFirst	oaptcopy
 ����
oaptroot � C algOp�B new	F union
 ����
oaptroot � oaptroot�B setTargetVar	oapt�B getTargetVar
 ����
oaptroot � oaptroot�B assemble	oapt�innerArgs
 ����
return	oaptroot
 ����

g

��

B_innerArg: null

B_atoms:

B_CNF:

B_refVar:

B_restVar :

B_genVar:

B_source:

null

null

B_atoms:

B_CNF:

B_refVar:

B_restVar :

B_genVar:

B_source:

null

T_atom

null

B_atoms:

B_CNF:

B_refVar:

B_restVar :

B_genVar:

B_source:

null

T_atomT_atom a1 a2

<a0> <a1>

<o>

<o>

o.B_value>100000o.B_area>1000

<o>

null

<o>

<a2>

<o>

<o>

o.B_origin.B_latitude>10

a0

B_innerArg: B_outerRcvr:

B_targetVar:

B_constraint:

B_resultMbrType:

B_argMbrTypes:

B_rcvrMbrType :

B_argTypes :

B_name :

B_rcvrType :

T_collectionB_resultType :

T_class

T_land

T_land

f1

T_algOp

B_innerArg: B_outerRcvr:

B_targetVar:

B_constraint:

B_resultMbrType:

B_argMbrTypes:

B_rcvrMbrType :

B_argTypes :

B_name :

B_rcvrType :

T_collection

T_class

B_resultType :

T_land

T_land

f2

null

T_algOp

null

null

4

5

B_name : F_leafAlgOp

B_targetVar:

B_outerRcvr: null

B_targetColl: C_land

T_algOp

F_select

F_select

null

o

o

o

2

B_atoms:

B_CNF:

B_restVar :

B_genVar:

T_formula

B_refVar:

<a1, a2>

<<a1>, <a2>>

null

<o>

<o>

B_atoms:

B_CNF:

B_restVar :

B_genVar: null

B_refVar:

<a0>

<<a0>>

T_formulaf2

<o>

<o>

oapt

oapt

oapt

f1

null

null

Figure ���� Transformed OAPT by using Rule ���

Chapter �

Modeling of Search Strategies

In traditional optimizers� the search space �usually identi�ed as a set of processing
trees� and the search strategies that control the movement through this search
space are coupled together� However� in an extensible query optimizer� they need
to be decoupled� Consequently� the type T searchStrat is de�ned to model
search strategies as objects� This type is a subtype of the type T function in
the extended TIGUKAT type system�

T searchStrat is an abstract type whose behaviors are implemented in its
subtypes� In other words� its extent is empty� This type is specialized into
heuristics�based optimization strategies T heurSS� enumerated search strategies
T enumSS� and randomized search strategies T randomSS �as shown in Figure �����
Then� search strategies are modeled as �rst�class objects whose type is any of the
types in the T searchStrat type hierarchy�

The search strategy component of the query optimizer can be easily extended
by further subtyping the type hierarchy for T searchStrat when new search
strategies are found useful for the optimization of queries�

Before optimizing a query� the system selects the appropriate search strategy
for the particular type of query under consideration� One criterium involved in
this selection can be to achieve a desirable trade�o� between optimization cost and
execution cost for that query� For example� for ad�hoc queries �of type T adHoc��
a heuristic search strategy may be desired since high cost of optimization may
not be amortized over repeated executions of the query� In contrast� production
queries �of type T production�� may be optimized more elaborately by using
strategies such as exhaustive search since the optimization is done at compile
time and the resulting optimized execution plan is stored and potentially executed
many times�

The �exibility of supporting various search strategies� each one best for a par�
ticular class of queries� and the dichotomization of classes of queries by subtyping
T query enable to associate a default search strategy to each type in the T query

hierarchy that suits better the optimization requirements for that class of queries�
The behavior B searchStrat that is incorporated into the interface of the type

T query returns the search strategy object that was chosen to be used to op�

�

��

timize that query� before the optimization starts� This search strategy can be
executed to control the application of transformation rules to the states �OAPTs�
in the search space during query optimization� This allows experimentation with
di�erent search strategies for optimizing the same query by plugging in a di�er�
ent search strategy object to the behavior B searchStrat in order to identify the
search strategies that are more suitable for a class of queries�

	�� Search Strategies

���� Algebraic Heuristic Search Strategies

An algebraic heuristic search strategy transforms an initial OAPT into an
optimized OAPT by applying algebraic equivalence transformation rules �as those
de�ned in Section ���� The application of the transformation rules is guided by
heuristic query optimization rules�

In the relational model� there are a number of transformations that have
been found to be useful in optimizing an algebraic expression� For example�
pushing a select operation past a join operation is generally accepted to be a useful
transformation� This heuristic assumes that the join operation is an expensive
operation� while the selection operation is straightforward or could even be done
as part of the joining process�

The idea behind these heuristics ������ is to try to reduce as much as possible
the size of relations that are the operands of expensive operations such as join�
union and intersection� This reduction in size is achieved by pushing unary
operations such as selection �to reduce the number of tuples� and project �to
reduce the number of attributes in the relation� past the expensive operations as
far down the processing tree as possible� In addition� operations that generally
reduce the number of tuples in the result� such as join and select� should be
executed before other binary operations that are considered expensive such as
union� and intersection� In order to achieve this� reordering of the leaf nodes of
the tree may be necessary �i�e� commutativity rules��

It is important to notice that in heuristic search strategies only one processing
tree is generated after a transformation has been applied by the optimizer� Other
search strategies� such as a breadth��rst enumerative search strategy� generate a
set of candidate trees to be explored by the search algorithm�

In this research� a heuristic search strategy applied to object�oriented queries is
illustrated for TIGUKAT query model� The heuristics that are used to guide the
search are modeled by a list of transformation rules that is ordered by importance
of applicability of the rule �priority given to the rule�� This is discussed in more
detail in Section ��	�

�When instances of a type in the T query type hierarchy are created� a search strategy may
be associated by default�

��

���� Costcontrolled Heuristic Search Strategies

In order to determine the applicability of these heuristics in object�oriented
query models� it has been found ��	�� ���� that in the presence of methods �be�
haviors in the case of TIGUKAT� in a selection predicate of a query� it becomes
important to determine the cost of applying those behaviors�

In order to solve this problem for object�oriented query models� a cost�controlled
heuristic search strategy that considers the cost of applying algebraic equivalence
rules has been suggested in ���� In order to respect encapsulation� this requires
cost models for high�level expressions� These cost models can be expressed in
terms of costs derived for calls to an OM interface as suggested in ��	�� This is
discussed in more detail in Chapter ��

���� Enumerative Search Strategies

Exhaustive search� whereby the entire search space is enumerated� is the most
straight�forward search strategy that can be used� Then� the cost function can
be applied to all of these equivalent expressions to determine the least costly
one� However� the computational cost of this approach is very high� An im�
provement is to use a dynamic programming approach whereby new expressions
are constructed bottom�up using the previously determined optimal subexpres�
sions� The Volcano optimizer generator uses a top�down� dynamic programming
approach to search with branch�and�bound pruning ��	�� These are called enu�
merative algorithms�

Enumerative search algorithms are based on evaluating the cost of the entire
space�

���� Randomized Search Strategies

Randomized search algorithms start from a random state in the search space
�i�e� the initial OAPT that was obtained from the calculus to algebra translation�
and then
walk� through the search space� evaluating the cost of each state and
stopping either when they estimate that they have found the optimum execution
plan or when a predetermined optimization time expires� The walking between
states is controlled by the transformation rules such as the ones described in
Section �� and a global control strategy� Two versions of these algorithms have
been investigated within the context of relational query optimization� Simulated
Annealing �SA� ���� and Iterative Improvement �II� ���� ��� A combination of
the two algorithms� called two�phase optimization is proposed in ����� Iterative
improvement accepts a move from one state to another only if the cost of the
destination state is lower than the cost of the source state� Simulated annealing�
on the other hand� allows a move to a higher�cost state with a certain probability
which diminishes as optimization time moves along�

Randomized search algorithms have been suggested as one alternative to re�
strict the region of the search space that is analyzed� Since these are heuristic

��

Native Behaviors Semantics

B initSS	o
 Returns the initial OAPT	s
 of the search space from where
the search strategy object o starts the search� As a side
e�ect� it may initialize other variables that are relevant to
the particular search strategy�

B stopCond	o
 Returns the object true if the condition given to stop the
search process o holds� Otherwise false is returned� This is
useful in modeling randomized search strategies�

B setNextState	o
	p
 Returns the next state after p in the search space� It de�
termines the order that the states are investigated in the
search space� For example� in enumerative search strategies�
if the implementation of this behavior chooses the least recent
state� then the search strategy is breadth��rst if it chooses
the most recently generated state� then it implements depth�
�rst search�

B action	o
	p
 Generates a list of successor states for the state p by applying
algebraic equivalence transformation rules on it�

B goal	o
 Returns the collection 	set
 of states that have been chosen
as �good� candidates to be the optimized OAPT�

B optimal	o
 Returns the �optimal� OAPT from the B goal collection�

Table ���� Behavioral summary of T searchStrat type�

algorithms investigating only a portion of the search space� they cannot be guar�
anteed to be optimal� However� it has been shown in ���� �� ��� ��� that the
randomized techniques converge to a state which is fairly close to the optimal
state given su�cient time�

There has not been any study of randomized search algorithms within the
context of OBMSs� However� the architecture de�ned in this thesis is su�ciently
�exible that such strategies can easily be incorporated�

	�� Search Strategies as Objects

Since T searchStrat is a subtype of T function� it inherits all its behav�
iors �which are described in Section ���� and de�ne new ones that are listed in
Table ���� However� T searchStrat does not implement any of its behaviors
because it is an abstract type� These behaviors are implemented by its subtypes�

The search algorithm is modeled as behaviors B source �source code� and
B executable �executable code�� These are part of the interface of a type in the
T searchStrat type hierarchy� This algorithm is expressed in terms of other
behaviors that are part of the interface of the same type as well� This means
that a search strategy object can be considered as a program whose source code
is stored in B source� its local variables are modeled as stored behaviors in the
interface of its type �i�e� B current de�ned in the interface of T heurSS�� and its
actions are modeled as behavioral applications of behaviors that are de�ned in its
interface as well �i�e� B action de�ned in the interface of T heurSS�� Furthermore�

��

T_searchStrat T_enumSS

T_heurSS

T_randomSS

Supertype Subtype

T_object T_function

T_CCHeurSS

Figure ���� Type hierarchy for T searchStrat�

the comments that document the program are stored in B comments �which is
inherited from T function�� Therefore� in this research� programs are modeled
as objects which is an approach that is used in object�oriented programming
languages� but not in databases�

As it was mentioned earlier in this chapter� before the optimizer B optimize
is applied to a query object q �q�B optimize���� the query object q must be an�
notated with an instance of the appropriated search strategy type� For example�
if an algebraic heuristic search strategy is desired to be used to control the op�
timization of a particular query� an instance of type T heurSS must be created
and plugged in the behavior B searchStrat for the query object q�

	�� Customizing the Search Strategy

The customization of the search strategy component is done by subtyping
T searchStrat �i�e� into T heurSS� and overloading its behaviors �i�e� B setNextState�
which are called extensibility behaviors�

The extensibility behaviors capture common aspects of various known search
strategies such as heuristics� enumerative and randomized ones� In order to
illustrate this� a customization for an algebraic heuristic search strategy is shown
in this section�

T searchStrat is subtyped into T heurSS �see Figure ���� which is the type
for a heuristic search strategy� Since T heurSS is a subtype of T searchStrat�
it inherits all its behaviors and de�ne new ones� For a heuristic search strategy�
B execute executes its search algorithm that is stored in B source �see Algo�
rithm ����� The native behaviors that are de�ned on T heurSS are listed in
Table ��� and the customization of the extensibility behaviors is illustrated in
Table ��	�

Algorithm
�� Algebraic Heuristic Search Algorithm��

F heurSS �T heurSS ss� T query q� � T listhT algOpi�

�

Native Behaviors Semantics

B current	o
 Returns the current state of the search space that is being
explored by the heuristic search strategy o�

B acceptAction	o
	p
 Returns true if the OAPT p meets the criteria that is de�ned
for the heuristic search strategy� 	i�e� if the OAPT is a bushy
or a linear tree
� Otherwise� it returns false�

Table ���� Behavioral summary of T heurSS type�

Input� The search strategy object ss that is implemented by this function
A query object to be optimized q

Output� A list with only one element� the �optimal� OAPT oaptf

T algOp oapt� oapt�� oaptf
T list oaptList

f
oapt � ss�B initSS	q
 ���
while not ss�B stopCond	
 ���
f ���

oaptList � ss�B action	ss�B getCurrent	

 ���
oapt� � ss�B setNextState	oaptList
 ���
if ss�B acceptAction	oapt�
 then ���

oapt� � ss�B setCurrent	oapt�
 ���
g �	�
oaptf � ss�B setOptimal	ss�B getCurrent	

 �
�
return	oaptf
 ����

g

The behavior B initSS initializes the current OAPT B current with the initial
OAPT that results from the calculus to algebra translation� The application of
the heuristics that guide the application of transformation rules is controlled by
the behavior B action� The rules are applied in the same order to each node in the
OAPT� The order is determined by B chooseRule in collaboration with B action�
After B action applies a transformation rule to the current OAPT �B current�� it
returns a list that contains only one element " the transformed OAPT� This list
contains only one element because of the particular characteristics of a heuristic
search strategy� Then� B setNextState simply returns the �rst and only OAPT
in the list� Next� the search algorithm checks whether the transformation can
be accepted or not by applying the behavior B acceptAction to the transformed
OAPT� For example� a criteria to determine if a transformed OAPT can be ac�
cepted is that one that restricts the search space to contain OAPTs of a particular
shape �i�e� bushy or linear trees�� This process is repeated until all the rules have
been applied to all the nodes of the OAPT �B stopCond��

�

Extensibility behaviors Heuristic Cost�Controlled Heuristic

ss�B initSS	q

T algOp oapt
oapt � ss�B setCurrent	

	q�B getInitialOAPT	

return oapt

T algOp oapt
oapt � ss�B setCurrent	
�

	q�B getInitialOAPT	

cf � 	q�B getCostModelFunc	

cost � cf �B execute

	ss�B getCurrent	

cost � ss�B setCurrCost	cost

return oapt

ss�B stopCond	

return ss�

B getTransfRules	
�
B isEmpty	

� No more rules
� to apply

return ss�B getTransfRules	
�
B isEmpty	

� No more rules to apply

ss�B action	o

T algEqRule rule
rule � ss�B chooseRule	
�
	ss�B getTransfRules	

return o�B transform	rule

T algEqRule rule
rule � ss�B chooseRule	
�

	ss�B getTransfRules	

return o�B transform	rule

ss�B setNextState	o

return o�B getFirst	
 return o�B getFirst	

ss�B acceptAction	o� q

if 	o satis�es criteria

return true

else
return false

T integer cost�
cost� � 	q�B getCostModelFunc	

�

B execute	o

if 	o satis�es criteria

if 	cost� � ss�B getCurrCost	

f
cost��ss�B setCurrCost	cost�

return true
g
else
return false

else
return false

Table ���� Extensibility behaviors for implementing heuristic and cost�controlled heuris�
tic search strategies�

�

Native Behaviors Semantics

B currCost	o
 Returns the cost of the current state of the search space that is
being explored by the cost�controlled heuristic search strategy
o�

Table ���� Behavioral summary of T CCHeurSS type�

	�� Extending the Search Strategy Component

In order to illustrate the extensibility of the search strategy component of
the optimizer� a cost�controlled heuristic search strategy is incorporated into the
system that is modeled by the type T CCHeurSS� The search algorithm for this
new search strategy is the same as the one given for the non�cost�controlled
heuristic search strategy �see Algorithm ����� However� some of its extensibility
behaviors such as B initSS and B acceptAction are rede�ned in T CCHeurSS� For
this reason� T CCHeurSS is created as a subtype of T heurSS �see Figure �����

The customization of the extensibility behaviors for the cost�controlled heuris�
tic search strategy is illustrated in Table ��	� and the native behaviors that are
de�ned on T CCheurSS are listed in Table ����

The cost�controlled heuristic search strategy is customized from the alge�
braic heuristic search strategy �T heurSS� by incorporating into the semantics
of B acceptAction additional criteria to decide whether or not the transforma�
tion applied to the OAPT B getCurrent is accepted� The goal of this additional
criteria is to keep the OAPT with the lowest cost as the current OAPT� Then�
the cost of the transformed OAPT oapt	 is computed and compared to the cost
of the current OAPT B getCurrent in order to make the decision� A cost func�
tion B costFunction� is used in order to compute the cost of an OAPT� The
application of the behavior B costFunction to an OAPT is explained in Chap�
ter �� The behavior B cost executes the function returned by B costFunction
�o�B costFunction���B execute����

�B costFunction is inherited from T function� but it is re�de�ned in the interface of T algOp

Chapter �

Modeling of Cost Functions

The �nal optimization�related concept that needs to be incorporated into the
model is the cost function� Cost�based optimization strategies apply a predeter�
mined cost function �total time or response time� to an OAPT to calculate the
cost of executing the corresponding query according to that OAPT� The issue is
how these cost functions are modeled�

In TIGUKAT� each function is associated a cost through B costFunction�
Application of this behavior to a function f returns a function object o of type
T costFunc that implements the computation of the cost of executing the func�
tion f � When function o is executed� it returns the actual cost of executing
function f � For this reason� T function is further subtyped into T costFunc�

Algebraic operator context nodes �instances of T algOp� rede�ne the behavior
B costFunction to return a function object of type T costFuncAlgOp� which is a
subtype of T costFunc� This rede�nition is necessary since the cost of execut�
ing algebraic operators requires the incorporation of various optimization issues
into these functions� These issues are typical ones such as the availability of
indexes over the collection on which these operators are de�ned� the statistical
information about these collections� and so on� The function object returned by
B costFunction when it is applied to an OAPT node is called algebraic node cost
function for the remainder of this thesis and is denoted as anc�

For an algebraic operator context node o� the cost of executing the node
o includes the cost of executing the algebraic operator corresponding to that
context node o plus the cost of executing the children of node o� Therefore� this
computation is recursive in nature� The cost of a node is determined in terms
of the cost of its children whose cost in turn depend on the cost of their own
children� Recursion naturally stops at the leaf nodes� Thus� this de�nition of
cost functions is based on graphs� Given an OAPT� its total time is calculated
by summing up the costs of all of its nodes� the calculation of the response time
is dependent upon the shape of the OAPT �i�e�� bushy trees vs� linear trees�
and whether parallel execution is possible �these cost functions are described in
Section �����

Because of the nature of these cost functions� they are modeled as function
objects �of type T costFunc� in TIGUKAT that are passed the root of an OAPT

	

�

�or subtree� as parameter� Consequently� the application of one of these function
objects to the root context of an OAPT calculates the estimated cost of executing
that query according to the execution plan represented by that OAPT� We refer
to the cost of executing an OAPT as the cost model function cf for the rest of
this chapter�

A cost model function cf is selected for each query� before the optimization
starts� and it is stored as the value of the behavior B costModelFunc that is
incorporated into the interface of the type T query� Then� di�erent cost model
functions can be used at di�erent times for optimizing a particular query or type
of queries under consideration� This allows later experimentation by changing
the cost function in order to measure the e�ects of the optimizer actions on the
optimization of a particular query or type of queries�

In order to clarify the discussion� we refer to the cost model function illustrated
in Section ������ that calculates the total time of execution of a query� for the
remainder of the chapter� The concepts developed in this chapter apply to other
cost models �i�e� to compute response time that is described in Section �������
Then� the modeling of cost model functions as objects is discussed in Section ����

�� Cost Model Functions

Cost functions such as total time and response time are traditionally used in
databases to calculate the estimated cost of executing a query according to the
execution plan represented by an equivalent processing tree� We adapt these two
cost functions to calculate the estimated total time and response time of execut�
ing OAPTs �TIGUKAT�s processing trees� as described below in Sections �����
and ������ respectively�

����� Total Time Cost Function

A cost model function tt that calculates the total time of execution for a
particular OAPT rooted at node oapt is de�ned by the equation� given below�

tt�oapt� �

��
�

� if oapt is a leaf node
anc	oapt
 � tt	oapt�B outerRcvr

�
Pk

i�� tt	oapt�B innerArgsi
 otherwise
�����

where anc is the algebraic node cost function� the left son of oapt is the receiver
node �B outerRcvr� and the right son is the list of arguments �B innerArgs� which
has k elements as illustrated in Figure ��� These two behaviors are de�ned in
the interface of T context �see Table ����

The function tt is de�ned recursively� It adds the estimated algebraic cost of
executing a node oapt �by applying anc� to the cost of executing oapt�s children

�When instances of a type in the T query type hierarchy are created� a cost model may be
associated by default�

�A cost model is described by an equation that is implemented by a function object in
TIGUKAT extended model�

which is computed by applying the same function tt to each of them� The total
time is calculated by summing up the costs of all nodes in the OAPT� The cost
of executing leaf nodes is considered negligible �anc�leaf� � �� because leaf nodes
are references to base collections� Then� tt�leaf� � �� Recursion stops at the leaf
nodes�

The algebraic node cost function anc may involve the cost of accessing the
objects in secondary storage� the cost of processing the algebraic operation and
the cost of storing the intermediate results� In the case of a distributed database�
it may also involve the cost of communication between the node and its children
as considered in ���� A discussion of algebraic node cost functions is given in
Section ������

����� Response Time Cost Function

A cost model function rt that calculates the response time of execution for a
particular OAPT rooted at node oapt is de�ned by the equation given below�

rt�oapt� �

����
���

� if oapt is a leaf node
anc	oapt

�max	rt	oapt�B outerRcvr
�

maxki��	rt	oapt�B innerArgsi

 otherwise

�����

where anc� B outerRcvr� and B innerArgs have the same de�nition given in Sec�
tion ������

The function rt is de�ned recursively as well� It �nds the cost of the most
costly path in the OAPT by traversing the tree from root to leaves and computing
the cost of each node in terms of the response time cost of its children� The cost
of executing leaf nodes is considered negligible �anc�leaf�� �� because leaf nodes
are references to base collections� Then� rt�leaf� � �� Recursion stops at the leaf
nodes�

�� Cost Model Functions as Objects

Cost model functions are modeled as recursive functions that take the root
of an OAPT as input �parameter�� and return the cost of the OAPT as result�
after the function has recursively traversed the OAPT calculating the cost of each
node in the tree� In a conventional approach� the code that implements these
functions is a single block that must take into account the characteristics that
are particular to the computation of the cost of each node �e�g�� whether or not
the cost of executing leaf nodes is negligible�� These di�erences among the nodes
are hard�wired into the cost model function� making it di�cult to maintain these
functions when new algebraic operators are extended in TIGUKAT�

In order to avoid this problem� a very di�erent approach using the object�
oriented paradigm is presented in this research� each algebraic operator node
provides individualized behavior for its cost function� This is explained in Sec�
tion ������

�

Supertype Subtype

T_function T_costFunc

F_costTT

F_costRT

C_costFunc

..

.

Figure ���� Cost model functions as instances of T costFunc

In this research� cost model functions are de�ned as instances of T costFunc

�see Figure ����� Since T costFunc is a subtype of T function� it inherits
all its behaviors �which are described in Section ����� For a cost model func�
tion� B execute computes the cost model equation whose algorithm is stored in
B source� For example� for the equation ��� that computes total time of execu�
tion� its corresponding implementation is illustrated in Algorithm ���� B execute
is specialized to return a cost �i�e� an instance of T integer��

For each di�erent cost model equation� a di�erent instance of T costFunc

must be created� For example� for the total time cost model function described in
Section ������ the instance F costTT is created as an object of type T costFunc

in Figure ���� This gives to the cost function component of the optimizer the
extensibility property required to incorporate into TIGUKAT query optimizer
new cost model functions as they are found useful to measure the actions of a
search strategy over the search space� For example� if the response time cost
model described in Section ����� is desired to be incorporated into TIGUKAT
query optimizer� the instance F costRT that implements this cost model is created
in the class C costFunc �see Figure �����

�

Algorithm ��� Total Time Cost Model Function��

F costTT �T costFuncAlgOp cf� T algOp oapt� � T integer
Input� The cost function cf that is implemented by this function

An OAPT oapt
Output� The cost of executing cf on oapt

T algOp oaptTemp
T integer algCost� leftCost� rightCost� totalCost

f
algCost � � leftCost � � ���
rightCost � � totalCost � � ���
if 	oapt �� null
 ���
f ���

algCost� oapt�B cost	
 ���
if 		oapt�B getOuterRcvr	

 �� null
 ���
f ���
leftCost� cf�B execute	oapt�B getOuterRcvr	

 �	�
if 		oapt�B getInnerArgs	

 �� null
 �
�
f ����

oaptTemp � oapt�B getInnerArgs	
�B getFirst�� ����
while not 	oaptTemp �� outOfBound
 ����
f ����

rightCost � rightCost � 	cf�B execute	oaptTemp

 ����
oaptTemp � 	oapt�B getInnerArgs	

�B getNext	
 ����
g ����

g ����
g ��	�

g ��
�
totalCost� algCost � leftCost � rightCost ����
return	totalCost
 ����

g

����� Algebraic Node Cost Functions

Each algebraic operator context node �of type T algOp� has a di�erent cost
function because the algebraic node cost function incorporates optimization issues
that potentially vary among the operators� For example� the union operator
only needs the cost of accessing the instances of the collections Ci� Cj involved
in the operation� while the select operator requires the cost of accessing the
instances of the collection C� in the presence of a predicate f � This means that
for each algebraic operation implementation �an instance of T function�� there is
a corresponding cost function �an instance of T costFuncAlgOp� that computes
the cost of executing that operation� Then� for each instance in the collection
L implAlgOp �that was de�ned in Section ���� there is an instance in the class
C costFuncAlgOp �associated to the type T costFuncAlgOp� that computes its
cost of execution �see Figure ����� Instances of T costFuncAlgOp are the so�called

�

F_leafAlgOp

F_hashJoin

.

.

.

F_scanSelect

F_leafAlgOp

T_function T_costFuncAlgOp

.

F_scanSelect
.
.

F_hashJoin

C_costFuncAlgOpL_implAlgOp

Figure ���� Collection L implAlgOp and class C costFuncAlgOp�

anc objects�
Because OAPT nodes are objects of type T algOp which is itself a subtype

of T function� they inherit the behavior B costFunction from T function� The
application of this behavior to an OAPT node o returns the function object anc of
type T costFuncAlgOp that implements the computation of the cost of executing
the algebraic operation that the node o is representing�

The fundamental advantage of this approach is that each algebraic operator
node provides individualized behavior for its cost function� For example� if the
cost for some algebraic operators is considered negligible� it is easy to make the
cost functions associated to those algebraic nodes to return a constant value �i�e�
zero� without having to modify the implementation of the cost model function
to consider these exceptions� This gives more �exibility to the optimizer to be
able to extend the cost function component for new algebraic operators as they
are incorporated in the object algebra�

In order to provide individualized behavior to each of the nodes in the OAPT
�instances of T algOp�� each node is annotated with a cost function by �lling the
behavior B costFunction with the proper cost function object that computes the
cost of executing its corresponding algebraic operator� This is done when the
OAPT node is �rst created�

Figure ��	 shows an OAPT annotated with cost function ancop� The �rst
information in the box represents an object instance reference and the mapping
to its type� Then� the behaviors that are relevant to the discussion on the cost
component for TIGUKAT query optimizer are listed� In the di�erent nodes�
B costFunction references the ancops that are cost function instances of type
T costFuncAlgOp �that are shown in the bottom of the �gure� below the OAPT��
The L tempi is a reference to a temporary collection object and L A� L B� and
L C are references to base collection objects�

The algebraic node cost function anc is described by equations that are de�ned

�

B_outerRcvr: B_innerArg:

T_algOpleaf

nullnull

2

B_costFunction:

B_name :

B_outerRcvr: B_innerArg:

T_algOpleaf

nullnull

B_targetColl:

4

[]

B_name :

B_outerRcvr: B_innerArg:

T_algOp1o

B_costFunction:

B_name :

B_outerRcvr: B_innerArg:

T_algOpleaf

nullnull

3

B_targetColl:

B_outerRcvr: B_innerArg:

T_algOp0o

[]

B_targetColl:

B_targetColl:

B_targetColl:

L_A L_C

L_BL_temp1

L_temp 0

B_name : B_name :

B_name : F_select

F_select

B_name :

anc ancσT_costFuncAlgOp T_costFuncAlgOp

anc B_costFunction:

B_costFunction:

B_costFunction:

anc

anc ancσ

ancσ

leaf

leaf leaf

leaf

F_leafAlgOp F_leafAlgOp

F_leafAlgOp

F_leafAlgOp F_scanSelect

Figure ���� OAPT annotated with algebraic node cost functions�

Native Behaviors Semantics

B cardinality	o
 Returns an estimated cardinality of the collection object o�
B calcCard	o
 Calculates the cardinality of the collection object o� As a side

e�ect� it updates B card�
B instSize	o
 Returns an estimated size in bytes of an instance in the col�

lection object o�
B calcInstSize	o
 Calculates the size in bytes of an instance in the collection

object o� As a side e�ect� it updates B instSize� If the in�
stances are collections� failure is returned	i�e�� returning ��
�
Then� the behavior applies B calcInstSize to each object in
the collection o 	recursively
 asking for its instance size and
cardinality in order to compute the average size in bytes of
an instance�

Table ���� Behavioral summary of statistics de�ned on T collection type�

��

by combining costs derived by the OM interface for calls to its interface� and
statistics on collections� Because the cost interface that the object manager
must provide has not been de�ned yet� it is not possible in this research to give
examples of equations that describe some of the possible algebraic node cost
functions� Statistics on collections are de�ned as behaviors in the interface of
T collection as listed in Table ����

An OM interface is de�ned in ��	� that provides a lower level of abstraction
than that provided by the object model and object algebra� The access plan
generation is treated as the mapping of object algebra expressions �OAPTs in
TIGUKAT� into the new abstraction interface� One of the primary concerns
in ��	� is to decompose the object algebra operators �i�e� select� map� and so
on� into a sequence of simpler operations provided by the interface of an object
manager system� The other concern is to respect the encapsulation provided
by behaviorally de�ned objects� This means that the object manager is the
only entity that knows how objects are stored� Therefore� ��	� assumes that the
object manager is capable of derive costs for calls to its interface� However� the
operations that can be used to obtain these derived costs are not de�ned�

In this research� we make a similar assumption to that one in ��	� in the
sense that the object manager is capable of derive costs for calls to its interface�
For example� if the OM interface provides a function call accessInstPred�o�p�
that returns the instances of collection o that satisfy the predicate p� it could be
possible to ask to the OM interface to derive the cost for this function call �i�e�
by calling a function such as access cost�o�p�� as de�ned in ����� In order to
derive this cost� the object manager can use information such as the existence of
an index on a behavior of o that is referenced by the predicate p� The existence
of this index helps in selecting the appropriate access method to access instances
of the collection o �i�e� using the index or performing a sequential scan��

Currently� there is no OM interface de�ned for TIGUKAT OODBMS� The
de�nition of this interface for TIGUKAT including derived costs for calls to its
interface is not within the scope of this research�

����� Execution of Cost Model Functions

In order to compute the cost model function cf for a node o� the node o col�
laborates with the function object cf by computing its own cost� This interaction
is described below step by step and the relevant statements in the Algorithm ���
are referenced by number of line in order to clarify the discussion�

�� Execution of the Cost Model Function at the root node of the OAPT� The
search strategy component of the optimizer executes the cost model function
cf passing the root of the tree that is being optimized as a parameter� The
root of the tree is denoted as node o�� This execution is performed by the
behavioral application

cf�B execute�o��
# third line of implementation for B initSS in Table ��	

��

and cf is calculated by the behavioral application

cf� q�B getCostModelFunc��

Next� the execution of cf �res the computation of the cost for the algebraic
operation on node o� �see step ����� and the computation of the cost model
function on the children of node o� �see step �	���

�� Computing the Algebraic Node Cost on node o�� The node o� knows how to
calculate itself the algebraic node cost for the algebraic operation that the
node implements� This cost is calculated by applying B cost to the node
o� as illustrated in line ��� of Algorithm ���� B cost executes the function
object anc� that is returned by applying B getCostFunction to the node o��
This step is performed by the behavioral application

anc��B execute�o��

and anc� is calculated by the behavioral application

anc� � o��B getCostFunction��

The computation of the algebraic node cost on node o� includes di�erent
optimization issues such as statistics on collections�

	� Computing the Cost Model Function for the children of node o��

The cost model function cf recursively computes the cost of node o��s chil�
dren by executing itself passing o��s children as parameters as illustrated in
the path expressions given below�

cf�B execute�o��B outerRcvr���� # line ��� of Algorithm ���
foreachki�� �cf�B execute�o��B innerArgsi���� # line ���� of Algorithm ���

�� Returning the cost of executing a node� The costs obtained in steps ���
and �	� are combined according to the cost model equation implemented
by the function cf� and the result is returned as the cost of executing the
node o�� For example� for the total time cost model function de�ned in
Section ���� the costs calculated in steps ��� and �	� are summed up and
returned by cf as the cost of execution of the node o� �as illustrated in line
���� of Algorithm �����

This process is generalized to be applied to any node o in the OAPT� starting
from the root of the tree� node o�� to the leaf nodes where the recursion bottoms
out �see lines �	� and ���� in Algorithm ����� Then� in a recursive manner� the
cost of executing an OAPT is calculated according to its cost model function�
This approach follows an object�oriented paradigm to compute the algebraic cost
of the individual nodes in the OAPT because the nodes know how to calculate
their cost themselves�

Figure ��� illustrates this process� The cost model function cf that is applied
to the root of this OAPT calculates the total time of execution� The values that

��

31

2

2

2

3

k

k

3B_cost: = 0 3B_cost: = 0
B_costFunction: ancleaf

3B_cost: = 0
B_costFunction: ancleaf

3

1

1

1 = 0

= 02

= 02

3

1 : cf.B_execute(o .B_outerRcvr)

0

0

B_name :

B_outerRcvr: B_innerArg:

T_algOp0o

[]

B_costFunction:

[]

B_name :

B_outerRcvr: B_innerArg:

T_algOp1o

B_costFunction:

B_name :

B_outerRcvr: B_innerArg:

T_algOpleaf

nullnull

3

B_name :

B_outerRcvr: B_innerArg:

T_algOpleaf

nullnull

2

B_name :

B_outerRcvr: B_innerArg:

T_algOpleaf

nullnull

4

Result of behavioral application

: Behavioral application of
i

: cf.B_execute(o .B_innerArgs)
i j

: o .B_costFunction().B_execute()
i

B_costFunction: ancleaf

B_cost: = 50
σ

= 0 + 0 +50 = 50

anc

F_select

F_select

B_cost: = 70

anc σ

0 : cf.B_execute(o)

= 50 + 0 +70 = 120

F_leafAlgOp

F_leafAlgOp F_leafAlgOp

Figure ���� Execution of the total time cost model function cf on an OAPT�

�	

are returned by the cost model function cf after recursively executing itself over
each node of the OAPT �that was illustrated in Figure ��	� are shown on the
arrows�

Chapter �

Implementation of TIGUKAT

Query Optimizer

This query optimizer is de�ned as an extension to TIGUKAT object model by
using the object�oriented concepts of subtyping and specialization� We call
TIGUKAT core object model to the minimum semantically complete object
model� It is intended to be powerful enough to support complex extensions such
as those that the query optimizer requires� There is a current implementation for
the TIGUKAT core object model that consists of libraries of function calls� We
refer the reader to ���� for further details on this implementation�

Di�erent alternatives were considered to implement the TIGUKAT query op�
timizer� A natural way to implement this optimizer is to �rst extend the core ob�
ject model and then use an object�oriented programming language �OOPL� built
on top of TIGUKAT core object model implementation� However� an OOPL
has not yet been de�ned for TIGUKAT� Another alternative to implement the
optimizer is to use an existent OOPL �i�e� C��� to call the functions provided
by the core object model implementation� However� because this current imple�
mentation is a pre�beta version� it is not robust enough to be used as a platform
to implement the query optimizer� Therefore� a third approach that implements
the query optimizer as well as the primitive type system by using an existent
OOPL was chosen in this research� This alternative requires the de�nition of a
mapping between the concepts provided by the conceptual object model and the
type system provided by the OOPL� This mapping is de�ned in Sections ��� and
����

The query optimizer must be able to access information about the objectbase
schema during the optimization process� The conceptual model speci�es that
the objectbase schema is self�contained in the type system� However� because an
interface between an existent OOPL �i�e� C��� and the core object model imple�
mentation does not currently exist� the current query optimizer implementation
de�nes internal structures to store information about the objectbase schema�

C�� was selected as the OOPL to implement TIGUKAT query optimizer�
There were several reasons for this choice as listed below�

��

�

�� C�� is an OOPL that supports the concepts of abstract data types� en�
capsulation� class hierarchies with inheritance and polymorphism� These
features are essential in building an extensible object oriented query opti�
mizer� The components of the TIGUKAT conceptual object model and of
the query optimizer can be mapped to C�� under certain restrictions that
are mentioned later on in this chapter�

�� C�� provides good programming concepts such as information hiding�
modularity� code reusability� and extensibility� These are also important
features for the integration of the di�erent modules in which TIGUKAT
OBMS has been divided such as the TQL parser� the query optimizer� and
the object manager� This constitutes an important reason for the choice of
C�� as the language to implement TIGUKAT subsystems ���� ����

	� C�� implements object�oriented concepts without compromising the e��
ciency of C language� That makes C�� one of the most e�cient object�
oriented programming languages ����� This is a very important considera�
tion when selecting the language to implement the query optimizer where
e�ciency is essential� Besides� C�� retains the portability of C which is a
desired feature for future portability to di�erent platforms�

However� there are some strong di�erences between C�� and TIGUKAT type
system that constrain the implementation of the object model to adhere strictly
to the conceptual model� These di�erences are listed below�

�� TIGUKAT object model supports dynamic schema evolution that allows
changes to existing type de�nitions� creation of new types and classes� and
changes to the class hierarchy at run�time� In contrast� C�� is a staticly
typed language� This means that when class de�nitions are changed� they
must be recompiled� Therefore� using C�� for implementing the query
optimizer leads to a static objectbase de�nition for the optimizer which is
not a problem because the optimizer does not require creation of types or
classes on the �y� Besides� the de�nition of the components of the optimizer
�i�e� T algOp� must not be changed while a query is being optimized�

�� In C��� a class is a template to specify instances of this class� but it is not
available at run�time� In contrast� TIGUKAT clearly separates the concepts
of type and class� It de�nes a class as a container that keep the instances
of a type� and type is a template that contains the speci�cation of objects
�behaviors and their associated implementation�� This type information is
available at run�time� Then� it is clear that C�� programming language
and TIGUKAT OBMS di�er on the dynamics of class and type de�nition�
respectively�

This research is intended to show the viability of an extensible query optimizer
as described in Chapter �� The experimentation consisted in the optimization of
some query examples by giving to the query optimizer the corresponding query

��

object annotated with the equivalent initial OAPT as input� and returning an
optimized OAPT as output�

In order to support these experiments� the subset of the TIGUKAT type sys�
tem that is relevant to the query optimizer as well as the query optimizer archi�
tecture were implemented using C�� �GNU�s C�� implementation called g���
on a Sun SPARC station IPX under UNIX� The query optimizer implementation
contains about ��� lines of C�� code�

The implementation of the query optimizer architecture includes the imple�
mentation of the OAPTs that constitutes the search space� a subset of algebraic
transformation rules� an algebraic heuristic search strategy and a total time cost
model function�

An algebraic heuristic search strategy �de�ned in Section ������ was chosen
to be implemented to control the actions over the search space �OAPTs�� How�
ever� the framework for de�ning search strategies is general enough to allow the
implementation of enumerative or randomized search strategies by extending the
T searchStrat hierarchy�

A total time cost model function �de�ned in Section ������ was implemented
to show the feasibility of modeling the cost function components as objects� For
this implementation� the algebraic cost functions were chosen to return a constant
value because of the lack of an object manager that derives costs for call to
its interface corresponding to those algebraic operators� The search strategy
component was extended to support a cost�controlled heuristic search strategy
�de�ned in Section ������ to illustrate the use of the cost function component by
the query optimizer�

��� Mapping of TIGUKAT Object Model to C��

In C��� a class is a user�de�ned type� The only way to have access to objects
of a class is by a set of functions declared as part of the class� These functions
are called member functions �����

A standard methodology to store the speci�cation of classes in C�� is to keep
the declaration of a class including the declaration of its member functions in a
�le �h and to keep the de�nition of the member functions in a �le �C� These �les
are named with the class� name� For example� the declaration of the class A is
stored in a �le called A�h� while the de�nition of its member functions is stored
in a �le called A�C� We follow this standard when implementing the classes for
the query optimizer�

The mapping of each primitive object in TIGUKAT core object model to
C�� is described below�

	���� Objects

TIGUKAT supports strong object identity �see Section 	��� meaning that every
object has a unique existence within the system that is a feature provided by C��
as well� Conceptually� every TIGUKAT object is a composite object meaning that

��

every object has references to other objects� This concept is implemented in C��
by modeling TIGUKAT references to objects as C�� pointers to objects�

	���� Types

Each non�atomic type relevant to the query optimizer in the TIGUKAT ex�
tended object model is mapped to a corresponding C�� class that is declared
in a �h �le�� These classes are named by T � typename �� For example� for
the TIGUKAT type T object� the C�� T object class is created� On the other
hand� the TIGUKAT atomic types are directly mapped to the corresponding
C�� types� For example� T integer is mapped to int�

	���� Type Hierarchy

The root of the C�� class hierarchy is the T object class which corresponds
to the T object type in TIGUKAT Type System� The C�� class hierarchy fol�
lows the TIGUKAT type hierarchy by using the C�� mechanism of subclassing�
in an analogous way to the TIGUKAT mechanism of subtyping� When member
functions are overloaded in a subclass� the C�� mechanism of declaring vir�
tual member functions is used in the respective superclass� Currently� the type
hierarchy extended by the query optimizer only requires single inheritance�

	���� Collections and Classes

TIGUKAT T collection and T class are implemented by the C�� classes
T collection and T class� respectively�

In TIGUKAT� every type that supports instantiation is associated to a class
object that manages the instances of that particular type� This is implemented by
de�ning the member function B classOf in the interface of the C�� T type class�
This member function is de�ned as a pointer to an instance of type T class�

In TIGUKAT� object creation is done by applying the behavior B new to
the class corresponding to the type of the object� In contrast� in C��� object
creation is done by using special member functions called constructors� Then� in
the current implementation� when a constructor is used� as part of its de�nition�
code is included to make sure that the object is stored in the corresponding class
to adhere to TIGUKAT conceptual model in that objects cannot exist without
an associated class and classes are automatically maintained by the system�

	���� Behaviors and Functions

In TIGUKAT� behaviors specify the semantics of an operation� while functions
implement the semantics of behaviors� A behavior de�ned on the interface of a
type must be explicitly associated with an implementation by the application of
the behavior B associate�

�In general� OBMSs that support C�� use the �h �les as the database schema de�nition�

��

In the C�� implementation� a behavior de�ned in the interface of a TIGUKAT
type is mapped to a member function declaration on the corresponding C�� class
�in �le �h�� while the implementation of the behavior is modeled as the de�nition
of the C�� member function �in �le �C�� Then� in C��� the association of a
behavior with its implementation is implicitly done when the respective mem�
ber function is de�ned� The code in the body of the de�nition of the member
functions is written in C���

	���
 Behavioral and Implementation Inheritance

The query optimizer uses the C�� implementation inheritance mechanism
that makes use of virtual tables to handle overloading of function members� In
contrast� the TIGUKAT core object model implementation uses the cache table
mechanism to solve overloading and late binding of implementations to behaviors
at run�time�

��� Mapping of TIGUKAT Query Optimizer to C��

In order to extend the TIGUKAT base object model for query optimiza�
tion purposes� the C�� mechanisms of deriving classes �for modeling TIGUKAT
subtyping� and de�ning virtual member functions �for overloading of TIGUKAT
behaviors� are used�

The mapping of the components of the TIGUKAT query optimizer to C��
is described below�

	���� Search Space

The class T algOp is de�ned as a derived class of T context� which in turn
is de�ned as a derived class of T function� In order to implement the type
T algEqRule� the C�� class T algEqRule is de�ned as a derived class of T rule

which in turn is a derived class of T object�

	���� Search Strategy

The class T searchStrat is de�ned as a derived class of T function� The
code for the search algorithm and for the behaviors de�ned on this type are
written in C�� in a way that allows a straightforward translation to a behavioral
TIGUKAT OOPL when it is de�ned and implemented� Currently� there is no
programming language for the TIGUKAT system�

	���� Cost Model Functions

The C�� capability of declaring member functions of type function call� al�
lows to manipulate the address of the function to be executed� However� the
declaration of this type of member functions requires a �xed number and type

��

of parameters to be speci�ed because of the static typed nature of C��� This
feature is used in the implementation of the cost functions for algebraic operator
context nodes�

A cost function object of class T costFAlgOp is stored in the member function
B costFunction that is de�ned in the interface of the algebraic operator context
nodes of class T algOp� This cost function must be executed in order to obtain the
cost for that node� Since the executable code that implements these cost functions
may potentially di�er for each algebraic operator� but they have the same number
and type of parameters �T algOp�� and the same return type �T integer�� the
C�� capability of declaring a member function of type function call is used to
declare the behavior B executable for them�

Chapter �

Conclusions

This thesis describes an extensible query optimizer architecture for OBMSs� The
identifying characteristic of this design is the use of the object�oriented philos�
ophy in providing extensibility� The architecture de�nes all components of the
optimizer �search space and transformation rules� cost function� and cost strate�
gies� as well as the queries themselves as �rst�class objects� This is consistent
both with the TIGUKAT object model and the object�oriented design philoso�
phy� In a sense� this is using the medicine that is normally prescribed to others�
The end result� which we believe to be a signi�cant advantage� is that both the
query model and the query optimizer become direct extensions of the TIGUKAT
object model which can be managed �stored� changed� queried� just like any other
object�

In order to implement the query optimizer� a subset of the TIGUKAT core ob�
ject model relevant to it was implemented using C��� This requires a mapping
between TIGUKAT and C�� type systems� The core object model was extended
by using the C�� mechanisms of deriving classes �for modeling subtyping� and
de�ning virtual member functions �for overloading of behaviors� in order to sup�
port the extended object model that is required for query optimization purposes�
implementing in this way the TIGUKAT query optimizer� However� because of
the di�erences between TIGUKAT and C�� in the dynamics of class and type
de�nition� as well as in their dynamic and static type nature� respectively� the
current implementation loses the full uniformity feature provided by TIGUKAT
object model�

This implementation constitutes a prototype for the query optimizer that al�
lowed us to prove that the TIGUKAT query optimizer can be built as an extension
to the TIGUKAT core object model�

�� Future Research

Although the modeling of the cost component of the optimizer is described
in this thesis �Section ������� further research must be done in the cost infor�
mation that the object manager can provide to the optimizer when using cost�

��

��

controlled search strategies� The de�nition of an interface to the object manager
for TIGUKAT object model is required� The work done in ��	� can be used as a
basis for de�ning TIGUKAT object manager interface�

Further research must also be done in de�ning semantic transformation rules
for TIGUKAT query optimizer� For example� a possible semantic transformation
rule could be that if the class C� is a subclass of C�� the intersection of those two
classes� C� and C�� produces the class C� as a result because the object model
restricts each object to belong to only one class�

Future research must be done in de�ning a methodology to select the
best�
execution algorithms that implement each algebraic node in the OAPT based on
physical information provided by the object manager such as indexes� clustering�
and so on� The selection of these algorithms is done by the execution plan
generator� providing the object manager can derive physical information through
function calls that belong to its interface�

Other topics of future research are the exploration of new techniques for op�
timization of behaviors inside queries and the type inferencing mechanism for
transformation rules that involve target�creating algebraic operators�

�The execution plan generator is modeled by the behavior B genExecPlan that is de�ned in
the interface of the type T query�

Bibliography

��� S� Arono�� Geographic Information Systems� A Management Perspective�
WDL Publications� �����

��� F� Bancilhon� S� Cluet� and C� Delobel� A query language for the O� object�
oriented database system� In Proc�
nd� Int� Workshop on Database Pro�
gramming Languages� pages ���"�	�� �����

�	� J�A� Blakeley� W�J� McKenna� and G� Graefe� Experiences building the
Open OODB query optimizer� In Proc� ACM SIGMOD Int� Conf� on Man�
agement of Data� pages ���"���� ���	�

��� S� Cluet� Langages et Optimisation de Requetes pour Systemes de Gestion
de Base de donee oriente�objet� PhD thesis� Universite de Paris�Sud� �����

�� S� Cluet and C� Delobel� A general framework for the optimization of object�
oriented queries� In Proc� ACM SIGMOD Int� Conf� on Management of
Data� pages 	�	"	��� �����

��� E� F� Codd� Relational completeness of data base sublanguages� In Courant
Computer Science Symposium on Data Base Systems� volume �� pages �"
��� Prentice�Hall� May �����

��� U� Dayal� A� Buchmann� and D� McCarthy� Rules are objects too� A knowl�
edge model for an active object�oriented database system� In Proc�
nd Int�
Workshop on Object�Oriented Database Systems� pages ���"��	� �����

��� A� Dominguez� Query optimization in multidatabase systems� Master�s
thesis� University of Alberta� Edmonton� Alberta� Canada� ���	�

��� J�C� Freytag� A rule"based view of query optimization� In Proc� ACM
SIGMOD Int� Conf� on Management of Data� pages ��	"���� �����

���� A�V� Gelder and R�W� Topor� Safety and Translation of Relational Calculus
Queries� ACM Transactions on Database Systems� �������	"���� June �����

���� G� Graefe and D�J� DeWitt� The EXODUS optimizer generator� In Proc�
ACM SIGMOD Int� Conf� on Management of Data� pages ���"���� �����

���� G� Graefe and D� Maier� Query optimization in object�oriented database
systems� A prospectus� In Proc�
nd Int� Workshop on Object�Oriented
Database Systems� pages 	�"	�	� Springer Verlag� �����

��

�	

��	� G� Graefe and W�J� McKenna� The Volcano optimizer generator� In Proc�
�th Int� Conf� on Data Engineering� pages ���"���� ���	�

���� R� Gupta� A quickstart introduction to C��� In R� Gupta and E� Horowitz�
editors� Object�Oriented Databases with applications to CASE� Networks and
VLSI CAD� pages 	��"	��� Prentice Hall� �����

��� W� Hasan and H� Pirahesh� Query rewrite optimization in Starburst� Tech�
nical Report TR RJ �	��� IBM Alamden Research Center� August �����

���� Y� Ioannidis and Y� Cha Kang� Randomized algorithms for optimizing large
join queries� In Proc� ACM SIGMOD Int� Conf� on Management of Data�
pages 	��"	��� �����

���� Y� Ioannidis and E� Wong� Query optimization by simulated annealing� In
Proc� ACM SIGMOD Int� Conf� on Management of Data� pages �"��� �����

���� B�B� Irani� Implementation of the TIGUKAT object model� Master�s the�
sis� Department of Computing Science� University of Alberta� Edmonton�
Alberta� Canada� ���	� Available as University of Alberta Technical Re�
port� TR�	"���

���� B�P� Jenq� D� Woelk� W� Kim� and W�L� Lee� Query processing in dis�
tributed ORION� In Advances in Database Technology � EDBT��� pages
���"���� Springer Verlag� �����

���� T� Keller� G� Graefe� and D� Maier� E�cient assembly of complex objects�
In Proc� ACM SIGMOD Int� Conf� on Management of Data� pages ���"���
�����

���� S�N� Khosha�an and G�P� Copeland� Object Identity� In OOPSLA ��
Conference Proceedings� pages ���"���� �����

���� W� Kim� A model of queries for object�oriented databases� In Proc� 	�th
Int� Conf� on Very Large Data Bases� pages ��	"�	�� �����

��	� R� Krishnamurthy� H� Boral� and C� Zaniolo� Optimization of nonrecursive
queries� In Proc� 	
th Int� Conf� on Very Large Data Bases� pages ���"�	��
�����

���� R� Lanzelotte and P� Valduriez� Extending the search strategy in a query
optimizer� In Proc� 	�th Int� Conf� on Very Large Data Bases� pages 	�	"
	�	� �����

��� R� Lanzelotte� P� Valduriez� and M� Zait� Optimization of object�oriented
recursive queries using cost�controlled strategies� In Proc� ACM SIGMOD
Int� Conf� on Management of Data� pages ��"��� �����

���� R� Lanzelotte� P� Valduriez� M� Ziane� and J��P� Cheiney� Optimization
of nonrecursive queries in OODBs� In Proc�
nd Int� Conf� on Deductive
and Object�Oriented Databases� volume �� of Lecture Notes in Computer
Science� pages �"��� Springer Verlag� �����

��

���� A�P� Lipka� The design and implementation of TIGUKAT user languages�
Master�s thesis� Department of Computing Science� University of Alberta�
Edmonton� Alberta� Canada� ���	� Available as University of Alberta Tech�
nical Report� TR�	"���

���� G� Mitchell� U� Dayal� and S�B� Zdonik� Control of an extensible query
optimizer� A planning�based approach� In Proc� 	�th Int� Conf� on Very
Large Data Bases� pages ��"��� ���	�

���� G� Mitchell� S�B� Zdonik� and U� Dayal� An architecture for query process�
ing in persistent object stores� In Proceedings of the Hawaii International
Conference on System Sciences� volume II� pages ���"���� �����

�	�� G� Mitchell� S�B� Zdonik� and U� Dayal� Optimization of object�oriented
queries� Problems and approaches� In A� Dogac� M� T� �Ozsu� A�Biliris� and
T� Sellis� editors� Advances in Object�Oriented Database Systems� Springer
Verlag� ����� �forthcoming��

�	�� J� Orenstein� S� Haradvala� B� Margulies� and D� Sakahara� Query processing
in the ObjectStore database system� In Proc� ACM SIGMOD Int� Conf� on
Management of Data� pages ��	"���� �����

�	�� M� T� �Ozsu� R� J� Peters� B� Irani� A� Lipka A� Mu$noz� and D� Szafron�
TIGUKAT Object Management System� Initial design and current direc�
tions� In Proc� of CASCON�� Conf�� pages �"���� Oct ���	�

�		� M�T� �Ozsu and J� Blakeley� Query processing in object�oriented database
systems� In W� Kim� editor� Database Challenges in the 	���s� Addison�
Wesley�ACM Press� ����� �forthcoming��

�	�� M�T� �Ozsu� U� Dayal� and P� Valduriez� An introduction to distributed
object management� In M�T� �Ozsu� U� Dayal� and P� Valduriez� editors�
Distributed Object Management� pages �"��� Morgan Kaufmann� �����

�	� R� J� Peters� TIGUKAT� A Uniform Behavioral Objectbase Management
System� PhD thesis� Department of Computing Science� University of Al�
berta� ����� �forthcoming��

�	�� R�J� Peters� A� Lipka� M�T� �Ozsu� and D� Szafron� An extensible query
model and its languages for a uniform behavioral object management system�
In Proc� Second Int� Conf� on Information and Knowledge Management�
pages ��	"���� November ���	� A full version of this paper is available as
University of Alberta technical report TR�	����

�	�� R�J� Peters� A� Lipka� M�T� �Ozsu� and D� Szafron� The query model and
query language of TIGUKAT� Technical Report TR�	���� Department of
Computing Science� University of Alberta� January ���	�

�	�� R�J� Peters and M�T� �Ozsu� Re�ection in a Uniform Behavioral Object
Model� In Proc� 	
th Int� Conf� on Entity�Relationship Approach� pages
	�"��� December ���	�

�

�	�� R�J� Peters� M�T� �Ozsu� and D� Szafron� TIGUKAT� An object model for
query and view support in object database systems� Technical Report TR���
��� Department of Computing Science� University of Alberta� October �����

���� R�E�Tarjan� Data Structures and Network Algorithms� Society for Industrial
and Applied Mathematics� ���	�

���� M� Stonebraker� L�A� Rowe� B� Lindsay� J� Gray� M� Carey� M� Brodie�
P� Bernstein� and D� Beech� Third�generation data base system manifesto�
ACM SIGMOD Record� ���	��	�"��� September �����

���� D�D� Straube and M�T� �Ozsu� Queries and query processing in object�
oriented database systems� ACM Transactions on Information Systems�
�����	��"�	�� October �����

��	� D�D� Straube and M�T� �Ozsu� Query optimization and execution plan gen�
eration in object�oriented data management systems� IEEE Transactions
on Knowledge and Data Eng�� �in press�� ����� �A short version appears in
Proc�
nd Int� Conf� on Deductive and Object�Oriented Databases� 	��	��

���� B� Stroustrup� The C�� Programming Language �
nd� edition�� Addison
Wesley� �����

��� A� Swami� Optimization of large join queries� Combining heuristics and
combinatorial techniques� In Proc� ACM SIGMOD Int� Conf� on Manage�
ment of Data� pages 	��"	��� �����

���� A� Swami and A� Gupta� Optimization of large join queries� In Proc� ACM
SIGMOD Int� Conf� on Management of Data� pages �"��� �����

���� C�D� Tomlin� Geographic Information Systems and Cartographic Modeling�
Prentice�Hall� �����

���� J�D� Ullman� Principles of Database Systems� Computer Science Press�
second edition ���	�

Appendix A

Walk Through the Optimizer

Architecture by Example

The following example illustrates a possible query on the GIS� They are �rst
expressed in TQL� then the corresponding object calculus expression is given� and
�nally� the equivalent algebraic expression is shown� In the algebraic expressions�
we subscript an operand collection by the variable which ranges over it� and use
��� to denote assignment of intermediate and �nal results�

All TQL queries are either submitted from within a programming language
�embedded TQL� or during a user session� Since embedded TQL is not yet
available� only queries submitted during a user session are considered in this
example� A simple session control language called TIGUKAT Control Language
�TCL�� that controls the creation of the appropriate objects and interprets the
optimization commands is de�ned in �	���

Example A�� Return the maps which show the areas where retired people are
living�

TQL statement�
select o
from o in C map
where exists � select p

from p in C person� q in C dwelling
where �p�B age�� � � and q � p�B residence��

and q�B inzone�� � o�B zones����
Calculus formula�
f o j C map�o� � �p�C person�p� � �q�C dwelling�q�

� p�B age � � � q � p�B residence � q�B inzone � o�B zones��g
Algebraic expression�
Result� C mapo �

�
	

p�B age � � �
q � p�B residence �

q�B inzone � o�B zones

�
�
� C personp� C dwellingq �

��

��

Behavioral algebra expression�
resultQ
� C map�B select�f� �C person�C dwelling��

Translation into object algebra processing tree �a context��
oapto � �C map�B select�f� �C person�C dwelling����B context

�� Query object creation� The TCL interpreter creates the query �say q�� and
then sets the TQL statement of the query as the source of this query�

q� � C query�B new
q��B setSource�TQL statement�

Note that in TIGUKAT� for every �conceptual� behavior B behavior whose
value can be changed by users� a pair B setBehavior�B getBehavior �set
value � get value� behaviors are de�ned�

�� Search strategy speci�cation� The architecture allows the user �or the appli�
cation submitting the query� to set the search strategy and the behaviors
associated with it� In this case� we assume that the system defaults are
used�

q��B setSearchStrat�F heurSS�

	� Cost model speci�cation� The architecture allows the user �or the applica�
tion submitting the query� to set the cost model and the behaviors associ�
ated with it� In this case� we assume that the system defaults are used�

q��B setCostModelFunc�F costTT�

The cost model is only required when the search strategy is cost�controlled�

�� Compilation of query object� The query is compiled by applying the be�
havior B compile to query q��

q��B compile��

The side�e�ect of applying the B compile behavior is the following�

�a� Parsing and calculus�algebra translation

oapto�B setName�F selAlgOp� ���
oapto�B setRcvrType�T class� ���
oapto�B setArgTypes��T class�T class�� �
�
oapto�B setResultType�T collection� ���
oapto�B setRcvMbrType�T map� ���
oapto�B setArgMbrTypes��T person� T dwelling�� ���
oapto�B setResultMbrType�T map� ���
oapto�B setTargetVar�o� ���
oapto�B setConstraint�f� �	�

q��B setInitialOAPT�oapto� ����
q��B setResult�null� ����

��

The result of the translation of the calculus query into an algebra
expression is the generation of an OAPT and setting various behaviors
�expressions ��� " ��� above�� By and large these expressions are self�
explanatory� The ones that require some explanation are ���"�����
The f in expression ��� is a reference to an object of type T formula

which represents the predicate of the selection operator� Statements
���� and ���� set the two behaviors of the query object q�� The result
of the query is null at this point since it has not yet been executed�

�b� Algebraic optimization

The second major action resulting from the compilation of a query is
its optimization� This is accomplished by the application of B optimize
to q��

finalOAPT � q��B optimize��

The B optimize behavior carries out plan optimization on
q��B initialOAPT using the search strategy q��B searchStrat� This
behavior implements the control strategy for the plan optimizer� The
result is an optimal OAPT that is saved�

q��B setOptimizedOAPT�finalOAPT �

this OAPT records the optimal execution plan as part of the query�
This is useful both for later executions which do not need to be op�
timized and for being able to implement operators such as
explain�
which informs the requestor of the optimal execution plan that the
optimizer has chosen� These operators are now quite common in state�
of�the�art DBMSs�

The code for the function object that implements B optimize is illus�
trated in Algorithm A���

Algorithm A�� Optimizer��

F optimize	T query q
� T listhT algOpi
f

return		q��B getSearchSS
�B execute	q�

g

�c� Execution plan generation

This is the last step in the TIGUKAT query processing methodology
whereby the algebraically optimized OAPT is submitted to the object
manager for further optimization and execution� This part is not in
the scope of this research� However� it is planned within the frame of
the TIGUKAT OBMS project that this step will follow the execution
plan generation method proposed in ��	� that generates the query ex�
ecution plan by replacing each individual algebra operator from the
optimized OAPT with a
best� subtree of Object Manager �OM� calls�

��

These object manager calls that are part of the set of low level object
manipulation primitives that constitutes the interface to the OM can
be modeled in TIGUKAT as function objects�

The execution plan generation is supported in this architecture by pro�
viding the behavior B genExecPlan� When B genExecPlan is applied
to q��

q��B genExecPlan��

it results in the set of execution plans to be stored as part of the
query� These execution plans can be accessed later by the application
of B execPlanFamily to query q��

� Execution of the query object� The execution of the query may be invoked
by the user explicitly if the query is already optimized� In the case of ad hoc
queries submitted during a user session� the query is executed when it is
compiled and optimized� Thus� the TCL interpreter applies the B execute
behavior to q��

q��B setResult�q��B execute���

��

B_targetColl: C_map

B_outerRcvr: null B_innerArg: null

T_algOpleafMap

B_name : F_leafAlgOp

B_targetVar: o

B_outerRcvr: null B_innerArg: null

T_algOp

B_name : F_leafAlgOp

B_targetColl:

B_targetVar:

C_person

leafPerson

p

B_outerRcvr: null B_innerArg: null

T_algOp

B_name : F_leafAlgOp

B_targetVar:

B_targetColl: C_dwelling

leafDwelling

q

a1 T_atom

B_atoms:

B_CNF:

B_refVar:

B_restVar :

B_genVar:

B_source:

<a1>

null

<p>

null

<p>

(p.B_age).B_greaterThan(65)

B_atoms:

B_CNF:

B_refVar:

B_restVar :

B_genVar:

B_source:

null

T_atoma2

<a2>

<p>

q

<p, q>

q = p.B_residence

B_atoms:

B_CNF:

B_refVar:

B_restVar :

B_genVar:

B_source:

null

T_atoma3

<a3>

<o, q>

(o.B_zones).B_elementOf(q.B_inZone)

null
<o, q>

B_refVar: <o, p, q>

B_atoms:

B_CNF:

B_restVar :

B_genVar:

<a1, a2, a3>

<<a1>, <a2>, <a3>>

q

<o, p, q>

T_formulaf

T_varo

B_atomRef: <a3>

B_algOpRef: <leafMap, oapt >o

T_var

B_atomRef:

B_algOpRef:

p

<a1, a2>

<leafPerson>

T_var

B_atomRef:

B_algOpRef:

<a2, a3>

<leafDwelling>

q

T_algOpoapt 0

B_innerArg: B_outerRcvr: [,]

B_targetVar:

B_constraint:

B_resultMbrType:

B_argMbrTypes:

B_rcvrMbrType :

B_argTypes :

B_name :

B_rcvrType :

o

T_map

[T_person, T_dwelling]

T_map

T_collection

[T_class, T_class]

f

T_class

B_resultType :

F_select

Figure A��� Object algebra processing tree

Appendix B

Extensions to TIGUKAT Type

System

In this appendix� we de�ne the full behavioral speci�cation of the extended type
system of TIGUKAT to model an extensible query optimizer inside the Object
Model� The extended type lattice is shown in Figure ����

In the following speci�cations� we use variables o� p and q in examples as refer�
ences to objects of various particular types� The example behavioral applications
assume left associativity in the absence of qualifying parenthesis� That is� the
behavioral application B something�o��p� is equivalent to �B something�o���p��

The type speci�cations are divided into the following components� The name
of the type� its corresponding class� its supertypes� its subtypes� the native be�
haviors de�ned by the type and the derived behaviors de�ned by the type� Native
behaviors are those which are introduced by the type �i�e�� they are not inherited��
Derived behaviors are those which are de�ned in terms of existing behaviors �i�e��
they are not primitive to the type system� but are de�ned for brevity and ease of
use�� The implementations for some of the inherited behaviors are re�ned in the
subtypes and their extended semantics are given in the re�ned behaviors section�

Besides de�ning new types to model query optimization aspects �i�e�� T algOp��
we have added new native behaviors to some of the existent types in the type
primitive system �i�e�� B card was added to T collection�� and overloaded some
of the inherited behaviors �i�e�� B executable for T query�� These new and over�
loaded behaviors related to optimization are speci�cally shown as separate com�
ponents in the type speci�cation�

A behavioral summary of the primitive types that have been extended together
with the types that have been added to the type lattice for query optimization
purposes is given in tables B��� B��� B�	 and B���

��

��

Type Signatures

T object B self � T object
B mapsto� T type

B conformsTo� T type� T boolean
B equal� T object� T boolean

B notequal� T object� T boolean

T type B interface� T collectionhT behaviori
B native� T collectionhT behaviori

B inherited� T collectionhT behaviori
B specialize� T type� T boolean
B subtype� T type� T boolean
B subtypes� T collectionhT typei

B supertypes� T collectionhT typei
B sub�lattice� T posethT typei

B super�lattice� T posethT typei
B classof � T class
B tmeet� T type� T type
B tjoin� T type� T type

B tproduct� T type� T type

Table B��� Behavioral summary of extended non�atomics primitive types for optimiza�
tion purposes�

T object
Supertypes� none

Subtypes� T type� T collection� T behavior� T function� T atomic

Native Behaviors�
self B self � T object

Example� B self 	o

Symbol� Io

Simply returns the argument object o� This is a mathematical
identity operation for objects�

mapsto B mapsto � T type
Example� B mapsto	o

Symbol� o ��

Returns the singleton type object which was used as a tem�
plate to create the argument object o� Every object in the
system has a mapsto type�

conformsTo B conformsTo � T type� T boolean
Example� B conformsTo	o
	p

Symbol� o� p

If the �rst argument object o conforms to the type argument
object p� the object true is returned� Otherwise false is re�
turned�

�	

Type Signatures

T behavior B name� T string
B argTypes� T listhT typei

B resultType� T type
B semantics� T object
B associate� T type� T function� T behavior

B implementation� T type� T function
B primitiveApply � T object� T object

B apply � T object� T list� T object
B de�nes� T collectionhT typei

B costBehavior� T type� T listhtypei � T real

T function B name� T string
B argTypes� T listhT typei

B resultType� T type
B comments� T string

B source� T object
B primitiveExecute� T object� T object

B execute� T list� T object
B basicExecute� T list� T object

B compile� T object
B executable� T object

B costFunction� T listhobjecti � T costFunc
B cost� T listhobjecti � T integer

T collection B typeof � T type
B I � T collection

B select� T formula� T listhT collectioni � T collection
B generate� T formula� T var� T listhT collectioni �

T collection
B map� T listhT behaviori � T listhT collectioni �

T collection

B project� T collectionhT behaviori � T collection
B union� T collection� T collection

B di�erence� T collection� T collection
B intersection� T collection� T collection

B product� T listhT collectioni � T collection
B join� T formula� T listhT collectioni � T collection

B cardinality � T integer
B calcCard� T integer
B instSize� T integer

B calcInstSize� T integer

Table B��� Behavioral summary of extended non�atomics primitive types for optimiza�
tion purposes�

��

Type Signatures

T query B initialOAPT� T algOp
B optimizedOAPT� T listhT algOpi

B searchStrat� T searchStrat
B transformations� T listhT algEqRulei
B argMbrTypes� T listhT typei

B resultMbrType� T type
B optimize� T listhT algOpi

B genExecPlan� T collectionhT functioni
B execPlanFamily � T collectionhT functioni
B basicExecSave� T list� T object

B basicExecDontSave� T list� T object
B budgetOpt� T integer

B lastOpt� T date

B lastExec� T date
B result� T collection

T context B outerRcvr� T context
B innerArg � T listhT contexti
B rcvrType� T type
B argTypes� T listhT typei

B resultType� T type

T algOp B outerRcvr� T algOp
B innerArg � T listhT algOpi
B rcvrType� T type
B argTypes� T listhT typei

B resultType� T type
B rcvrMbrType� T type
B argMbrTypes� T listhT typei

B resultMbrType� T type
B targetVar� T var
B targetColl� T collection
B constraint� T object

B execAlgorithm� T function
B splitLeft� T algOp

B splitRight� T algOp
B linkLeft� T algOp� T algOp

B linkRight� T algOp� T algOp
B assemble� T algOp� T listhT algOpi � T algOp

B dissassemble� T listhT objecti
T searchStrat B execute� T algOp� T algOp

B initSS� T object
B stopCond� T boolean

B setNextState� T listhT algOpi � T algOp
B action� T algOp� T listhT algOpi
B goal� T collectionhT algOpi

B optimal� T algOp

Table B��� Behavioral summary of non�atomics types added to the primitive type
system for optimization purposes�

�

Type Signatures

T rule B cond� T listhT formulai
B checkCond� T object� T boolean

B action� T object� T object

T algEqRule B leftSideFunc� T algOp� T function
B rightSideFunc� T algOp� T function

B matchLeft� T algOp� T boolean
B matchRight� T algOp� T boolean

B condLeft� T listhT formulai
B cond� T listhT formulai

B checkCondLeft� T algOp� T boolean
B checkCond� T algOp� T boolean

B actionLeftFunc� T algOp� T function
B actionLeft� T algOp� T algOp

B actionRightFunc� T algOp� T function
B action� T algOp� T algOp

B algExpression� T object

T formula B argTypes� T null
B resultType� T type

B source� T string
B compile� T context

B executable� T context
B execute� T null� T boolean

B basicExecute� T null� T boolean
B atoms� T listhT atomi
B CNF� T listhT listhT atomii

B restVar� T listhT vari
B genVar� T var
B refVar� T listhT vari

B splitRestrDisj� T collection
B splitRestrConj� T collection

T atom B argTypes� T null

B resultType� T type
B source� T string

B compile� T context
B executable� T context

B execute� T null� T boolean
B basicExecute� T null� T boolean

B atoms� T listhT atomi
B CNF� T null

B restVar� T listhT vari
B genVar� T var
B refVar� T listhT vari

T var B atomRef � T listhT atomi
B algOpRef � T algOp

Table B��� Behavioral summary of non�atomics types added to the primitive type
system for optimization purposes�

��

equal B equal � T object� T boolean
Example� B equal	o
	p

Symbol� o � p

If the �rst argument object o is identity equal to the second
argument object p� the object true is returned� Otherwise
false is returned�

Derived Behaviors�
notequal B notequal � T object� T boolean

Example� B notequal	o
	p

Symbol� o �� p
Derivation�
�	o � p

If the �rst argument object o is identity equal to the second
argument object p� the object false is returned� Otherwise
true is returned�

��

T collection
Supertypes� T object

Subtypes� none

Native Behaviors�
typeof B typeof � T type

Example� B typeof 	o

Symbol�

Returns the type object associated with the argument collec�
tion object o� Every collection is associated with exactly one
type object� but a type object may be associated with many
collections�

Native Behaviors� Related to Query Optimization�
I B I � T collection

Example� B I	o

Symbol�

Returns the collection object o� This is a mathematical iden�
tity operation for the object algebra because of the closure of
the algebra on collections�

select B select � T formula� T listhT collectioni � T collection
Example� B select	o
	p
	q

Symbol�

Returns a collection object resulting from applying the alge�
braic select operator to the collection object o with formula
p and using the collection objects given in the list q as argu�
ments�

generate B generate � T formula� T string� T list� T collection
Example� B generate	o
	p
	q
	r

Symbol�

Returns a collection object resulting from applying the alge�
braic generate operator to the collection object o with formula
p and using the collection objects given in the list r as argu�
ments� The formula p must contain one or more generating
atoms for target variable q�

map B map � T listhT behaviori � T list� T collection
Example� B map	o
	p
	q

Symbol�

Returns a collection object resulting from applying the se�
quence of behaviors given in the list p to each of the objects
that belong to the collection o using the collection objects
given in the list q as arguments�

project B project � T collectionhT behaviori � T collection
Example� B project	o
	p

Symbol�

Returns a collection object containing the collection of ob�
jects denoted by the collection object o with a new type co�
inciding with the behavioral speci�cation of p�

��

union B union � T collection� T collection
Example� B union	o
	p

Symbol�

Returns a collection object resulting from applying the alge�
braic union operator to the collection objects o and q�

di�erence B di�erence � T collection� T collection
Example� B di�erence	o
	p

Symbol�

Returns a collection object resulting from applying the alge�
braic di�erence operator to the collection objects o 	minuend

and q 	sutrahend
�

intersection B intersection � T collection� T collection
Example� B intersection	o
	p

Symbol�

Returns a collection object resulting from applying the al�
gebraic intersection operator to the collection objects o and
q�

product B product � T listhT collectioni � T collection
Example� B product	o
	p

Symbol�

Returns a collection object containing new object lists
	o�� p�� ���� pn
 resulting from applying the algebraic product
operator to the collection object o using the collection objects
given in the list p as arguments�

join B join � T formula� T listhT collectioni � T collection
Example� B join	o
	p
	q

Symbol�

Returns a collection object containing new object lists
	o�� q�� ���� qn
 resulting from applying the algebraic join oper�
ator to the collection object o with formula p and using the
collection objects given in the list q as arguments�

cardinality B cardinality � T integer
Example� B cardinality	o

Symbol�

Returns an estimated cardinality of the collection object o�
It is implemented by a stored function�

calcCard B calcCard � T integer
Example� B calcCard	o

Symbol�

Calculates the cardinality of the collection object o� As a side
e�ect� it updates B card� It is implemented by a computed
function�

instSize B instSize � T integer
Example� B instSize	o

Symbol�

Returns an estimated size in bytes of an instance in the col�
lection object o� It is implemented by a stored function�

��

calcInstSize B calcInstSize � T integer
Example� B calcInstSize	o

Symbol�

Calculates an estimated size in bytes of an instance in the
collection object o� As a side e�ect� it updates B instSize�
If the instances are collections� the behavior B calcInstSize
returns failure 	i�e�� returning ��
� Then� the collection will
send a message to each instance 	recursively
 asking for its in�
stance size and cardinality� It is implemented by a computed
function�

��

T behavior
Supertypes� T object

Subtypes� T algebra

Native Behaviors�
name B name � T string

Example� B name	o

Symbol�

Returns the signature name of the argument behavior o�
argTypes B argTypes � T listhT typei

Example� B argTypes	o

Symbol�

Returns the list of types that are the argument types of the
signature for the behavior o�

resultType B resultType � T type
Example� B resultType	o

Symbol�

Returns the type that is the result type of the signature for
the behavior o�

semantics B semantics � T object
Example� B semantics	o

Symbol� ��o��

Returns the full semantics of the argument behavior o�
associate B associate � T type� T function� T behavior

Example� B associate	o
	p
	q

Symbol�

Associates the function object of the the third argument q
with the behavior argument object o for the given type object
p� The behavior has the side�e�ect of modifying the behavior
o so that it executes the associated function q when applied
to an object of type p�

implementation B implementation � T type� T function
Example� B implementation	o
	p

Symbol�

Returns the function object associated with the behavior ar�
gument object o for the argument type object p�

primitiveApply B primitiveApply � T object� T object
Example� B primitiveApply 	o
	p

Symbol�

Applies the behavior object o to the argument object p� One
of the requirements is that the type of p must de�ne behavior
o as part of its interface�

de�nes B de�nes � T collectionhT typei
Example� B de�nes	o

Symbol�

Returns the collection of type objects that de�ne the behavior
argument object o as part of their interface�

��

Derived Behaviors�
apply B apply � T object� T list� T object

Example� B apply	o
	p
	q

Symbol�
Derivation�
If the argument list q is null� the apply works the same as
the primitive apply� If there are arguments� they are passed
directly to the execution of the function associated with this
behavior�
Applies the behavior object o to the object p using the objects
in the list q as arguments� The requirements are that the type
of p must de�ne behavior o as part of its interface and the
type of the objects in q must conform to the arguments types
de�ned by the signature of behavior o�

Native Behaviors� Related to Query Optimization�
costBehavior B costBehavior � T type� T listhT typei � T real

Example� B costBehavior	o
	p
	q

Symbol�

It returns a pre�estimated cost of executing the behavior o
on objects of type p with a list of arguments q�

��

T function
Supertypes� T object

Subtypes� T query� T searchStrat� T context

Native Behaviors�
name B name � T string

Example� B name	o

Symbol�

Returns the name of the function object o�
argTypes B argTypes � T listhT typei

Example� B argTypes	o

Symbol�

Returns a list of types which denote the types and ordering
of the argument objects for the function argument object o�

resultType B resultType � T type
Example� B resultType	o

Symbol�

Returns the result type of the function argument object o�

comments B comments � T string
Example� B comments	o

Symbol�

Returns the comments that document the function object o�
source B source � T object

Example� B source	o

Symbol�

Returns the source code of the function argument object o�
primitiveExecute B primitiveExecute � T object� T object

Example� B primitiveExecute	o
	p

Symbol�

Executes the function object o using the object p as an ar�
gument and returns a result object� One requirement is that
the argument p must be compatible with the argument type
of the function�

compile B compile � T object
Example� B compile	o

Symbol�

Compiles the function argument object o and produces an
executable which is returned by B executable below�

executable B executable � T object
Example� B executable	o

Symbol�

Returns the executable code of the function argument object
o�

�	

Derived Behaviors�
execute B execute � T list� T object

Example� B execute	o
	p

Symbol�
Derivation�
Function currying is abstracted as a list of arguments�

Executes the function object o using the objects in the list p
as arguments and returns a result object� One of the require�
ments is that the list of arguments in p must be compatible
with the argument type list for the function�

basicExecute B basicExecute � T list� T object
Example� B basicExecute	o
	p

Symbol�
Derivation�
Function currying is abstracted as a list of arguments�

Executes the function object o using the objects in the list p
as arguments and returns a result object� One of the require�
ments is that the list of arguments in p must be compatible
with the argument type list for the function�

Native Behaviors� Related to Query Optimization�
costFunction B costFunction � T listhT objecti � T costFunc

Example� B costFunction	o
	p

Symbol�

It returns a cost function object that when is executed returns
a pre�estimated cost of executing the function behavior o with
arguments p� It is implemented by a stored function�

cost B cost � T listhT objecti � T integer
Example� B cost	o
	p

Symbol�

Executes the cost function object that is returned by
B costFunction and returns the estimated cost that results
of this execution� It is implemented by a computed function�

��

T query
Supertypes� T function

Subtypes� T adHoc� T production

Overriden Behaviors� Replacement for Query Optimization purposes�
name B name � T string

Example� B name	o

Symbol�

Returns the name of the query object o�

argTypes B argTypes � T listhT typei
Example� B argTypes	o

Symbol�

Returns a list of types which denote the types and ordering
of the argument objects for the query object o� The type of
each of the elements of the list that is returned is either the
object T collection or any of its subtypes 	i�e� T class�
T bag
� 	It is implemented by a stored function

resultType B resultType � T type
Example� B resultType	o

Symbol�

Returns the result type of the execution of the query object o�
The type that is returned is either the object T collection
or any of its subtypes � but T class 	i�e� T bag
� 	It is
implemented by a stored function

comments B comments � T string
Example� B comments	o

Symbol�

Returns the comments that document the query object o�
source B source � T string

Example� B source	o

Symbol�

Returns the source code for a query o which is a TIGUKAT
Query Language 	TQL
 statement�

�

executable B executable � T object
Example� B executable	o

Symbol�

Returns the code that executes the Execution Plan for the
optimized query object o� Following TIGUKAT Query
Model� this Execution Plan which consists of the OAPT
annotated with the algorithms that implement each alge�
braic node in the corresponding optimized OAPT� when
the behavior B execute is applied� Because algebraic nodes
are functions� the source and executable code of the al�
gorithms that implement them are stored in the B source
and B executable behaviors respectively� In some cases�
not only one Execution Plan is generated� but a family of
Execution Plans then� the Object Manager must choose
the �best� Execution Plan based on cost estimations� The
code that is contained in B executable is the following�
	OM�B chooseEP	o�B execPlanFamily	

�B execute	

Additional comments� when specializing T query in ad�hoc
and production� this behavior B executable can have been
optimized or not depending on the type of the query� If it is
an ad�hoc query� then� it is possibly interpreted�

basicExecute B basicExecute � T listhT objecti � T object
Example� B basicExecute	o
	p

Symbol�

Submits the execution plan 	or family of execution plans
 ob�
ject p for the query object o to the Object Manager for pro�
cessing and returns the resulting collection object� In case of
a family is passed to the OM� it must choose the �best� Exe�
cution Plan� before processing it� The code that is executed
is 	OM�B chooseEP	o�B execPlanFamily	

�B execute	

basicExecSave B basicExecSave � T listhT objecti � T object
Example� B basicExecSave	o
	p

Symbol�

Works the same as B basicExecute� Aditionally� it saves the
resulting collection in B result�

basicExecDontSaveB basicExecDontSave � T listhT objecti � T object
Example� B basicExecDontSave	o
	p

Symbol�

If B result is null� it works the same as B basicExecute� Oth�
erwise� it checks the timestamps associated to the resulting
collection stored in B result and to the input collections to
the query to decide whether to re�execute the query 	apply�
ing B basicExecute to the object o
 or to return the collection
stored in B result� B basicExecDontSave does not store the
result in B result in any case�

��

execute B execute � T listhT objecti � T object
Example� B execute	o
	p

Symbol�

Works the same as B basicExecDontSave� Aditionally� it
saves the new resulting collection in B result� when the query
o has been re�executed�

compile B compile � T object
Example� B compile	o

Symbol�

Compiles the source code for a query� The compilation pro�
cess involves the following steps� translating the query state�
ment o written in TQL language into an equivalent calculus
expression then� translating the calculus expression into an
equivalent algebra expression and checking it for type consis�
tency� In the next step� algebra optimization is performed by
the behavior B optimize that consists of applying equivalence
preserving rewrite rules to the type consistent algebra expres�
sion� In the last step� the behavior B genExecPlan generates
an Execution Plan 	or a family of Execution Plans
 by an�
notating each individual algebra operator node from the op�
timized object algebra query processing tree with one of the
algorithms that implement the corresponding node� These
algorithms use object manager calls that are part of the low
level object manipulation primitives that constitutes the in�
terface to the Object Manager subsystem�
Future research must be done on picking the best algo�
rithms that implement each algebraic node in the OAPT
based on information provided by the OM such as indexes�
clustering� and so on� As side e�ects of the application
of the behavior B compile on the query object o� the fol�
lowing behaviors are �lled� B executable� B initialOAPT�
B optimizedOAPT� B transformations� B argMbrTypes�
B rcvrMbrTypes� B resultMbrType� B execPlanFamily and
B result�

Native Behaviors� Related to Query Optimization�
initialOAPT B initialOAPT � T algOp

Example� B initialOAPT	o

Symbol�

Returns the initial Object Algebra Processing Tree 	OAPT

resulting from the calculus to algebra translation� This initial
OAPT constitutes the initial state of the search space used
for the algebraic optimization of the query object o� The
initial OAPT must be complete for the optimization search
strategy that we use� This is especially required when using
randomized search strategies� This behavior is implemented
by a stored function�

��

optimizedOAPT B optimizedOAPT � T listhT algOpi
Example� B optimizedOAPT	o

Symbol�

Returns the optimized OAPT 	or list of optimized OAPTs

resulting from the optimization process for the query object
o� This behavior is implemented by a stored function�

searchStrat B searchStrat � T searchStrat
Example� B searchStrat	o

Symbol�

Returns the search strategy that the optimizer 	B optimize

uses to control the optimization of the query object o� It
must be determined externally� before B optimize is applied
	i�e� when the query object o is created
� 	It is implemented
by a computed function
�

transformations B transformations � T listhT algEqRulei
Example� B transformations	o

Symbol�

Returns the list of transformation rule objects used for the
algebraic optimization of the query object o� This behavior
is implemented by a stored function�

costModelFunc B costModelFunc � T costFunc
Example� B costModelFunc	o

Symbol�

Returns the cost model function that the optimizer
	B optimize
 uses when the search strategy 	B searchStrat

is a cost�controlled strategy� Otherwise� it returns null� It
must be determined externally� before B optimize is applied
	i�e� when the query object o is created
�

argMbrTypes B argMbrTypes � T listhT typei
Example� B argMbrTypes	o

Symbol�

Returns a list whose elements corresponds to the membership
type object for each of the target collections to the query
object o�

resultMbrType B resultMbrType � T type
Example� B resultMbrType	o

Symbol�

Returns the membership type object of the resulting collec�
tion from executing the query object o�

optimize B optimize � T listhT algOpi
Example� B optimize	o

Symbol�

It starts the execution of the algebraic query optimizer
over the query object o� using the search strategy ob�
ject o�B searchStrat� and taking the initial OAPT object
o�B initialOAPT as the initial state of the search space� This
behavior will be invoked by the behavior B compile�

��

genExecPlan B genExecPlan � T collectionhT functioni
Example� B genExecPlan	o

Symbol�

Generates an Execution Plan 	or a family of execution plans

from the optimized OAPT object o�B optimizedOAPT for
the query object o� The Execution Plan is modeled as a
T algOp object that executes the query object o� The Execu�
tion Plan 	or a family of Execution Plans
 is created by an�
notating each individual algebra operator from the optimized
processing tree 	OAPT
 with the algorithm that implements
it� These algorithms use object manager calls that are part of
the low level object manipulation primitives that constitutes
the interface to the Object Manager subsystem�
Since each node of the OAPT might be implemented by dif�
ferent algorithms� a collection of OAPTs might be the result
of applying the behavior B genExecPlan� This behavior is
invoked by the behavior B compile�
As a side e�ect� B genExecPlan stores the resulting Execu�
tion Plan into B execPlanFamily behavior�

execPlanFamily B execPlanFamily � T collectionhT functioni
Example� B execPlanFamily 	o

Symbol�

Returns an Execution Plan 	or a family of execution plans

that are generated by B genExecPlan�

budgetOpt B budgetOpt � T integer
Example� B budgetOpt	o

Symbol�

Returns the optimization budget that has been assigned to
the query object o� B budgetOpt provides an upper bound
for optimization cost which can be used by the search strategy
that controls the optimization of the query o� 	It is imple�
mented by a stored function
� A value is assigned to this
behavior by the �user� or the system 	i�e�� when the query
object is created
�

lastOpt B lastOpt � T date
Example� B lastOpt	o

Symbol�

Returns the last date in that the query object o was opti�
mized� It can be useful for checking consistency between an
optimized query and the characteristics of the target collec�
tions that were used for its optimization 	i�e�� variations in
the cardinality of one of the input collections
�

��

lastExec B lastExec � T date
Example� B lastExec	o

Symbol�

Returns the last date in that the query object o was executed�
It can be useful for checking consistency between the result
stored in B result and changes in the extensions of the target
collections to the query�

Native Behaviors�
result B result � T collection

Example� B result	o

Symbol�

Returns the query result that was stored in B result after the
query o was executed indicating to save the result collection
object by applying either B basicExecSave or B execute to
the object o� Otherwise� it returns null�

���

T adHoc
Supertypes� T query

Subtypes� none

Overriden Behaviors� Replacement for Query Optimization purposes�
source B source � T object

Example� B source	o

Symbol�

It returns the source code for a query o which is a TIGUKAT
Query Language 	TQL
 statement�

executable B executable � T object
Example� B executable	o

Symbol�

It returns the executable code for a query o� This code is pos�
sibly interpreted� It might have not been optimized because
it is an ad�hoc query�

execute B execute � T listhT objecti � T object
Example� B execute	o
	p

Symbol�

It interprets the code�
optimize B optimize � T listhT algOpi

Example� B optimize	o
	p
	q

Symbol�

It starts the execution of the algebraic query optimizer over
the query object o� This behavior will be invoked by the be�
havior B compile�

���

T production
Supertypes� T query

Subtypes� none

Overriden Behaviors� Replacement for Query Optimization purposes�
source B source � T object

Example� B source	o

Symbol�

It returns the source code for a query o which is a TIGUKAT
Query Language 	TQL
 statement�

executable B executable � T object
Example� B executable	o

Symbol�

It returns the executable code for a production query ob�
ject o which has been compiled� This code will be optimized
once and then executed many times� For this reason� the
optimization process of these queries might incurre in high
compile�time optimization strategies�

execute B execute � T listhT objecti � T object
Example� B execute	o
	p

Symbol�

It executes the compiled code�

optimize B optimize � T listhT algOpi
Example� B optimize	o

Symbol�

It starts the execution of the algebraic query optimizer to
optimize the query object o� This behavior will be used by
the behavior B compile�

���

T context
Supertypes� T function

Subtypes� T algOp

Overriden Behaviors� Replacement for Query Optimization purposes�
name B name � T string

Example� B name	o

Symbol�

Returns the signature name of the particular instance o� 	It
is implemented by a stored function

argTypes B argTypes � T listhT typei
Example� B argTypes	o

Symbol�

Returns the list of types corresponding to the argument types
of the signature for the behavior object that the context node
object o is representing� 	It is implemented by a stored func�
tion

resultType B resultType � T type
Example� B resultType	o

Symbol�

Returns the type of the result of applying the behavior ob�
ject that the context node object o is representing� 	It is
implemented by a stored function

comments B comments � T string
Example� B comments	o

Symbol�

An object of type T context models the delayed execution
of a behavior object which is possible part of a composition
of behaviors� also called a path expression� We name this
objects as context nodes�

source B source � T string
Example� B source	o

Symbol�

Returns the source code of the function object o�

execute B execute � T listhT objecti � T object
Example� B execute	o
	p

Symbol�

Executes the function object o using the object p as an argu�
ment� and returns a collection object� This collection results
from executing recursively the context tree for which the node
o is the root� The type of p must be compatible with the ar�
gument type of the function�

basicExecute B basicExecute � T listhT objecti � T object
Example� B basicExecute	o
	p

Symbol�

Works the same as B execute that is de�ned above�

��	

compile B compile � T object
Example� B compile	o

Symbol�

Compiles the function argument object o and produces an
executable which is returned by B executable below�

executable B executable � T object
Example� B executable	o

Symbol�

Returns the executable code for the context node o�
costFunction B costFunction � T listhT objecti � T function

Example� B costFunction	o
	p

Symbol�

Returns a cost function object that when is executed returns
a pre�estimated cost of executing the function o with argu�
ments p� The computation of the cost of a context node
object includes calculating recursively the cost of its children
plus the cost of its own execution� It is implemented by a
computed function�

cost B cost � T listhT objecti � T integer
Example� B cost	o
	p

Symbol�

Executes the cost function object that is returned by
B costFunction and returns the estimated cost that results
of this execution� It is implemented by a computed function�

Native Behaviors� Related to Query Optimization�
outerRcvr B outerRcvr � T context

Example� B outerRcvr	o

Symbol�

Returns a reference to the context node object of type
T context that has the role of receiver object of the action
of applying on it the behavior 	i�e� B select
 that the node
object o is representing� The behavior B outerRcvr might
return a reference to a context subtree�

innerArg B innerArg � T listhT contexti
Example� B innerArg	o

Symbol�

Returns a list of references to the context node objects of type
T context that correspond to the arguments for the behavior
whose delayed execution is represented by the node object o�
Each of the arguments might reference a context subtree�

rcvrType B rcvrType � T type
Example� B rcvrType	o

Symbol�

Returns the type of the receiver object for the function ob�
ject that the context node object o is representing� 	It is
implemented by a stored function

���

T algOp
Supertypes� T context

Instances� F leaf� F select� F generate� F map� F project�
F di�erence� F union� F intersection�
F product� F join

Overriden Behaviors� Replacement for Query Optimization purposes�
name B name � T string

Example� B name	o

Symbol�

Returns the signature name of the particular instance o� 	It
is implemented by a stored function

rcvrType B rcvrType � T type
Example� B rcvrType	o

Symbol�

Returns the type of the receiver object for the algebraic op�
eration behavior that the node object o is representing� The
type that is returned is either the object T collection or
any of its subtypes 	i�e� T class� T bag
� 	It is implemented
by a stored function

argTypes B argTypes � T listhT typei
Example� B argTypes	o

Symbol�

Returns the list of types corresponding to the argument types
of the signature for the algebraic operator that the node ob�
ject o is representing� The types that are returned are either
the object T collection or any of its subtypes 	i�e� T class�
T bag
� 	It is implemented by a stored function

resultType B resultType � T type
Example� B resultType	o

Symbol�

Returns the type object T collection 	or any of its sub�
types� but T class
 that is the type of the result of applying
the algebraic operator that the node object o is representing
because of the closure of the algebra� 	It is implemented by
a stored function

comments B comments � T string

Example� B comments	o

Symbol�

The type T algOp is the type of the node objects of an OAPT
which models the delayed execution of a behavioral compo�
sition of algebraic operators� These algebraic operators are
de�ned as behaviors in the interface of the type T collection
	i�e� B select
�

source B source � T string
Example� B source	o

Symbol�

Returns the source code of the function object o�

��

execute B execute � T listhT collectioni � T collection
Example� B execute	o
	p

Symbol�

Executes the function object o using the objects in the list p
as arguments and returns a collection object� This collection
results from executing recursively the OAPT for which the
node o is the root� As a side e�ect� the resulting collection is
stored in B targetColl� One of the requirements is that the
list of arguments in p must be compatible with the argument
type list for the function�

basicExecute B basicExecute � T listhT collectioni � T collection
Example� B basicExecute	o
	p

Symbol�

It works the same as B execute�
compile B compile � T object

Example� B compile	o

Symbol�

Compiles the function argument object o and produces an
executable which is returned by B executable below�

executable B executable � T object
Example� B executable	o

Symbol�

Returns the code that executes the algorithm that imple�
ments the algebraic operator that the node o is modeling�

costFunction B costFunction � T listhT objecti � T function

Example� B costFunction	o
	p

Symbol�

Returns a cost function object that when is executed returns
a pre�estimated cost of executing the algebraic node o with
arguments p� It is implemented by a stored function�

cost B cost � T listhT objecti � T integer
Example� B cost	o
	p

Symbol�

Executes the cost function object that is returned by
B costFunction and returns the estimated cost that results
of this execution� It is implemented by a computed function�

outerRcvr B outerRcvr � T algOp
Example� B outerRcvr	o

Symbol�

Returns a reference to the algebraic operator node object
of type T algOp that has the role of receiver object of the
action of applying on it the algebraic operation behavior 	i�e�
B select
 that the node object o is representing� The behavior
B outerRcvr might return a reference to an OAP subtree�

���

innerArgs B innerArgs � T listhT algOpi
Example� B innerArgs	o

Symbol�

Returns a list of references to the algebraic operator node
objects of type T algOp that correspond to the arguments
for the algebraic operator that is represented by the node
object o� Each of the arguments might reference an OAP
subtree�

Native Behaviors� Related to Query Optimization�
rcvrMbrType B rcvrMbrType � T type

Example� B rcvrMbrType	o

Symbol�

Returns the membership type object of the receiver collection
object for the algebraic operation behavior that the node ob�
ject o is representing�

argMbrTypes B argMbrTypes � T listhT typei
Example� B argMbrTypes	o

Symbol�

Returns a list whose elements are the membership type ob�
jects corresponding to the argument collection objects for the
algebraic operator that the node object o is representing�

resultMbrType B resultMbrType � T type
Example� B resultMbrType	o

Symbol�

Returns the membership type object of the resulting collec�
tion from executing the algebraic operation behavior that the
node object o is representing�

targetVar B targetVar � T var
Example� B targetVar	o

Symbol�

Returns a reference to the target variable object for the al�
gebraic operator that the node o is representing�

targetColl B targetColl � T collection
Example� B targetColl	o

Symbol�

Returns a reference to the target collection object that re�
sults from executing the algebraic operator that the node o
is modeling�

constraint B constraint � T object
Example� B constraint	o

Symbol�

Returns an object that models a constraint on the algebraic
operator that the context node object o is representing� For
example� a formula that quali�es the select operator� or the
list of behaviors that must be applied to the receiver and
argument collections of the map operator are constraints on
the select and map operators respectively�

���

execAlgorithm B execAlgorithm � T function
Example� B execAlgorithm	o

Symbol�

Returns a function object that implements an execution algo�
rithm for the algebraic operation that the node o represents�
It is implemented by a stored function�

Native Behaviors� Operations on trees�
splitLeft B splitLeft � T algOp

Example� B splitLeft	o

Symbol�

Returns the subtree that corresponds to the B outerRcvr of
the OAPT o� As a side e�ect� it sets to null the behavior
B outerRcvr for the node o�

splitRight B splitRight � T listhT algOpi
Example� B splitRight	o

Symbol�

Returns the list of OAPTs that corresponds to the
B innerArgs of the OAPT o� As a side e�ect� it sets to null
the behavior B innerArgs for the node o�

linkLeft B linkLeft � T algOp� T algOp
Example� B linkLeft	o
	p

Symbol�

Links the OAPT p to the node o as o�s left son B outerRcvr�
Returns the node o�

linkRight B linkRight � T listhT algOpi � T algOp
Example� B linkRight	o
	p

Symbol�

Links the list of OAPTs p to the node o as o�s right son
B innerArgs� Returns the node o�

assemble B assemble � T algOp� T listhT algOpi � T algOp
Example� B assemble	o
	p
	q

Symbol�

Given the OAPT p� the list of OAPTs q and the node o�
B assemble combines them into a single OAPT with root
o� left son 	B outerRcvr
 p� and right son 	B innerArgs
 q�
Returns the OAPT rooted at o�

dissassemble B dissassemble � T listhT objecti
Example� B assemble	o

Symbol�

Breaks the OAPT rooted at o into three parts� an OAPT
containing only the node o� and the left and right children of
o� Returns a list containing at most two elements� the �rst
element is the left son 	B outerRcvr
� and the second element
is the right son 	B innerArgs
� As a side e�ect� it sets to null
the behaviors B outerRcvr and B innerArgs for the OAPT
o�

���

T formula
Supertypes� T function

Subtypes� T atom

name B name � T string
Example� B name	o

Symbol�

Returns the name of the function object o�

argTypes B argTypes � T null
Example� B argTypes	o

Symbol�

Returns the object null because this function does not have
any arguments�

resultType B resultType � T type
Example� B resultType	o

Symbol�

Returns the type T boolean that is the result type of the
function object o�

source B source � T string
Example� B source	o

Symbol�

Returns the expression that speci�es the formula object o�
compile B compile � T context

Example� B compile	o

Symbol�

Compiles the source code of the atom object o and pro�
duces its delayed execution object which is returned by
B executable below�

executable B executable � T context
Example� B executable	o

Symbol�

Returns the delayed execution object� a context object� for
the expression that speci�es the atom object o� When the
context object is executed� it returns a boolean object�

execute B execute � T null� T boolean
Example� B execute	o
	p

Symbol�

Executes the context object that is stored in B executable�
The execution of the context node returns a boolean object�
The context object models the delayed execution of the atom
o� The code that is executed is 	o�B executable	

�B execute�

basicExecute B basicExecute � T null� T boolean
Example� B basicExecute	o
	p

Symbol�

It works the same as B execute�

���

Native Behaviors�
atoms B atoms � T listhT atomi

Example� B atoms	o

Symbol�

Returns the list of atoms that are referenced in the formula
object o� It is implemented by a stored function�

CNF B CNF � T listhT listhT atomii
Example� B CNF	o

Symbol�

Returns a representation for the formula� which is given in
Conjunctive Normal Form� This representation is interpreted
in the following way� the elements of the outer list� which are
list of atoms� are connected by conjunctions the elements of
the inner list� which are atoms� are connected by disjunctions�
Assumption� atoms are assumed to be positive�

restVar B restVar � T listhT vari
Example� B restVar	o

Symbol�

Returns the list of restricted variables in the atoms that are
referenced by the formula object o� Restricted variables are
variables that are not generated by any atom in the formula
o� It is implemented by a computed function�

genVar B genVar � T var
Example� B genVar	o

Symbol�

Returns the variable that is generated by one of more atoms
in the formula object o� A formula can have only one gener�
ated variable because of constraints in the object algebra� It
is implemented by a computed function�

refVar B refVar � T listhT vari
Example� B refVar	o

Symbol�

Returns the list of variables that are referenced in the atoms
of the formula o� It is implemented by a computed function
that performs the union between the list B restVar and the
list containing the generated variable B genVar�

splitRestrDisj B splitRestrDisj � T collection
Example� B splitRestrDisj	o
	p

Symbol�

Returns the collection of formulas in CNF form that result
from splitting the formula o into p number of parts which
were connected by disjunctions�

splitRestrConj B splitRestrConj � T collection
Example� B splitRestrConj	o
	p

Symbol�

Returns the collection of formulas in CNF form that result
from splitting the formula o into p number of parts which
were connected by conjunctions�

���

T atom
Supertypes� T formula

Subtypes� none

Overriden Behaviors� Replacement for Query Optimization purposes�
name B name � T string

Example� B name	o

Symbol�

Returns the name of the function object o�
argTypes B argTypes � T null

Example� B argTypes	o

Symbol�

Returns the object null because this function does not have
any arguments�

resultType B resultType � T type
Example� B resultType	o

Symbol�

Returns the type T boolean that is the result type of the
function object o�

source B source � T string
Example� B source	o

Symbol�

Returns the expression that speci�es the atom object o�

compile B compile � T context
Example� B compile	o

Symbol�

Compiles the source code of the atom object o and pro�
duces its delayed execution object which is returned by
B executable below��

executable B executable � T context
Example� B executable	o

Symbol�

Returns the delayed execution object� a context object� for
the expression that speci�es the atom object o� When the
context object is executed� it returns a boolean object�

execute B execute � T null� T boolean
Example� B execute	o
	p

Symbol�

Executes the context object that is stored in B executable�
The execution of the context node returns a boolean object�
The context object models the delayed execution of the atom
o� The code that is executed is 	o�B executable	

�B execute�

basicExecute B basicExecute � T null� T boolean
Example� B basicExecute	o
	p

Symbol�

It works the same as B execute�

���

atoms B atoms � T listhT atomi
Example� B atoms	o

Symbol�

Returns a list containing only one element that is the atom
object o�

CNF B CNF � T null
Example� B CNF	o

Symbol�

Returns the object null because an atom is the minimal build�
ing block for formulas�

restVar B restVar � T listhT vari
Example� B restVar	o

Symbol�

Returns the list of restricted variables in the atom o� Re�
stricted variables are variables that are not generated by the
atom o� It is implemented by a stored function�

genVar B genVar � T var
Example� B genVar	o

Symbol�

Returns the variable that is generated by the atom o� An
atom can only generate one variable� It is implemented by a
stored function�

refVar B refVar � T listhT vari
Example� B refVar	o

Symbol�

Returns the list of variables that are referenced in the atom
o� It is implemented by a computed function that performs
the union between the list B restVar and the list containing
the generated variable B genVar�

���

T var
Supertypes� T object

Subtypes� none

Native Behaviors� Related to Query Optimization�
atomRef B atomRef � T listhT atomi

Example� B atomsRef 	o

Symbol�

Returns the list of atoms that reference the variable object
o�

algOpRef B algOpRef � T algOp

Example� B algOpRef 	o

Symbol�

Returns the algebraic node that has the variable object o as
its target variable B targetVar�

��	

T rule
Supertypes� T object

Subtypes� T algEqRule

Native Behaviors� Related to Query Optimization�
cond B cond � T listhT formulai

Example� B cond	o

Symbol�

Returns an object that models the condition that must be
satis�ed by the object p in order to apply the rule o�

checkCond B checkCond � T object� T boolean
Example� B checkCond	o
	p

Symbol�

Checks if the condition stored in B cond holds for the ob�
ject p� If so� the object true is returned� Otherwise� false is
returned�

action B action � T object� T object

Example� B action	o
	p

Symbol�

Returns the object resulting from applying the action dic�
tated by the rule object o to the argument object p�

���

T algEqRule
Supertypes� T rule

Subtypes� none

Overriden Behaviors� Replacement for Query Optimization purposes�
cond B cond � T listhT formulai

Example� B cond	o

Symbol�

Returns a function object that implements for the condition
associated to the right side of the rule object o� 	Inherited
from T rule� but overloaded
�

checkCond B checkCond � T algOp� T boolean
Example� B checkCond	o
	p

Symbol�

Executes the function object stored in B cond� If the argu�
ment object p holds the condition associated to the right side
of the rule object o� the object true is returned� Otherwise�
false is returned� 	Inherited from T rule� but overloaded
� It
is implemented by a computed function�

action B action � T algOp� T algOp
Example� B action	o
	p

Symbol�

Executes the function object stored in B actionRightFunc
passing p as argument� It returns the OAPT object resulting
from applying the transformation dictated by the rule ob�
ject o to the argument object p� The resulting OAPT have
the shape of the expression given in the left side of the rule�
	Inherited from T rule� but overloaded
�

Native Behaviors� Related to Query Optimization�
leftSideFunc B leftSideFunc � T algOp� T function

Example� B leftSide	o
	p

Symbol�

Returns the function object that implements the matching
algorithm that corresponds to the left side expression of the
rule object o� It is implemented by a stored function�

matchLeft B matchLeft � T algOp� T boolean
Example� B matchLeft	o
	p

Symbol�

Executes the function object stored in B leftSideFunc passing
p as argument� If the argument object p matches the left side
of the algebraic equivalence rule� the object true is returned�
Otherwise false is returned� It is implemented by a computed
function�

��

rightSideFunc B rightSideFunc � T algOp� T function
Example� B rightSideFunc	o
	p

Symbol�

Returns the function object that implements the matching
algorithm that corresponds to the right side expression of
the rule object o� It is implemented by a stored function�

matchRight B matchRight � T algOp� T boolean
Example� B matchRigth	o
	p

Symbol�

Executes the function object stored in B rightSideFunc pass�
ing p as argument� If the argument object p matches the
right side of the algebraic equivalence rule� the object true is
returned� Otherwise false is returned� It is implemented by
a computed function�

condLeft B condLeft � T listhT formulai
Example� B condLeft	o

Symbol�

Returns a function object that implements the condition as�
sociated to the left side expression of the rule object o� It is
implemented by a stored function�

checkCondLeft B checkCondLeft � T algOp� T boolean
Example� B checkCondLeft	o
	p

Symbol�

Executes the function object stored in B condLeft� If the ar�
gument object p holds the condition associated to the left side
of the rule object o� the object true is returned� Otherwise�
false is returned� It is implemented by a computed function�

actionLeftFunc B actionLeftFunc � T algOp� T function
Example� B actionLeft	o
	p

Symbol�

Returns the function object that implements the transfor�
mation dictated by the left side of the rule object o to the
argument object p� It is implemented by a stored function�

actionLeft B actionLeft � T algOp� T algOp
Example� B actionLeft	o
	p

Symbol�

Executes the function object stored in B leftSideFunc passing
p as argument� It returns the OAPT object resulting from
applying the transformation dictated by the rule object o to
the argument object p� The resulting OAPT have the shape
of the algebraic expression for the right side of the rule object
o� It is implemented by a computed function�

���

actionRightFunc B actionRightFunc � T algOp� T function
Example� B actionRightFunc	o
	p

Symbol�

Returns the function object that implements the transforma�
tion dictated by the right side of the rule object o to the
argument object p� It is implemented by a stored function�

algExpression B algExpression � T object
Example� B algExpression	o

Symbol�

Returns the algebraic expression that speci�es the rule object
o�

���

T searchStrat
Supertypes� T function

Subtypes� T enumSS� T randomSS� T heurSS

Overriden Behaviors� Replacement for Query Optimization purposes�
argTypes B argTypes � T listhT typei

Example� B argTypes	o

Symbol�

Returns a list of types which denote the types and ordering
of the argument objects for the search strategy object o�

resultType B resultType � T type
Example� B resultType	o

Symbol�

Returns the result type of the search strategy object o�

source B source � T object
Example� B source	o

Symbol�

Returns the source code of the search strategy object o�

compile B compile � T object
Example� B compile	o

Symbol�

Compiles the search strategy object o and produces exe�
cutable code which is stored in B executable�

executable B executable � T object
Example� B executable	o

Symbol�

Returns the executable code of the search strategy object o�
execute B execute � T listhT algOpi � T algOp

Example� B execute	o
	p

Symbol�

Executes the search strategy object o using the list of OAPT
objects p as arguments and returns an �optimal� OAPT ob�
ject� One requirement is that the list of arguments p must be
compatible with the argument type list for the function�

basicExecute B basicExecute � T listhT algOpi � T algOp
Example� B basicExecute	o
	p

Symbol�

It works the same as B execute�
costFunction B costFunction � T listhT objecti � T function

Example� B costFunction	o
	p

Symbol�

It returns a cost function object that when is executed returns
a pre�estimated cost of executing the search strategy object o
with arguments p� This information is useful when choosing
the proper search strategy for the algebraic optimization of
a query�

���

Native Behaviors� Related to Query Optimization�
goal B goal � T collectionhT algOpi

Example� B goal	o

Symbol�

Returns the collection of states that have been chosen
as �good� candidates for being returned as the optimized
OAPT�

optimal B optimal � T algOp
Example� B optimal	o

Symbol�

Returns the �optimal� OAPT from the collection B goal�

initSS B initSS � T object
Example� B initSS	o

Symbol�

Returns the initial state	s
 of the search space from where
the search strategy object o starts the search� The result
of applying this behavior are the T algOp objects passed as
arguments to the search strategy�

stopCond B stopCond � T boolean
Example� B stopCond	o

Symbol�

Returns the object true if the condition given to stop the
search process o holds� Otherwise false is returned�

setNextState B setNextState � T listhT algOpi � T algOp
Example� B setNextState	o
	p

Symbol�

Returns the next state in the search space to be applied and
action on� It determines in which way the states are inves�
tigated in the search space� If its implementation chooses
the least recent state� then the search strategy is breadth�
�rst if it chooses the most recently generated state� then it
implements depth��rst search�

action B action � T algOp� T listhT algOpi
Example� B action	o
	p

Symbol�

Generates a list of successor states for the state p by applying
algebraic equivalence transformation rules on it�

���

T heurSS
Supertypes� T searchStrat

Subtypes� T CCHeurSS

Overriden Behaviors� Replacement for Query Optimization purposes�
initSS B initSS � T algOp

Example� B initSS	o

Symbol�

Returns the initial OAPT of the search space from where the
search strategy object o will start the search� As a side ef�
fect� it initializes B current 	B setCurrent
 and B transfRules
	B setTransRules
�

stopCond B stopCond � T boolean
Example� B stopCond	o

Symbol�

Returns the object true if the condition given to stop the
search process o holds� Otherwise false is returned�

setNextState B setNextState � T listhT algOpi � T algOp
Example� B setNextState	o
	p

Symbol�

Returns the next state in the search space to be applied and
action on� It determines in which way the states are investi�
gated in the search space�

action B action � T algOp� T listhT algOpi
Example� B action	o
	p

Symbol�

Generates a list of successor states for the state p by apply�
ing algebraic equivalence transformation rules on p that are
chosen according to heuristics de�ned for the search�

argTypes B argTypes � T listhT typei
Example� B argTypes	o

Symbol�

Returns a list of types which denote the types and ordering of
the argument objects for the heuristic search strategy object
o�

resultType B resultType � T type
Example� B resultType	o

Symbol�

Returns the result type of the search strategy object o�

source B source � T object
Example� B source	o

Symbol�

Returns the source code of the heuristic search strategy ob�
ject o�

���

compile B compile � T object
Example� B compile	o

Symbol�

Compiles the heuristic search strategy object o and produces
executable code which is stored in B executable�

executable B executable � T object
Example� B executable	o

Symbol�

Returns the executable code of the heuristic search strategy
object o�

execute B execute � T listhT algOpi � T algOp
Example� B execute	o
	p

Symbol�

Executes the heuristic search strategy object o using the list
of OAPT objects p as arguments and returns an �optimal�
OAPT object� One requirement is that the list of arguments
p must be compatible with the argument type list for the
function�

basicExecute B basicExecute � T listhT algOpi � T algOp
Example� B basicExecute	o
	p

Symbol�

It works the same as B execute�
costFunction B costFunction � T listhT objecti � T function

Example� B costFunction	o
	p

Symbol�

It returns a cost function object that when is executed returns
a pre�estimated cost of executing the heuristic search strategy
object o with arguments p�

Native Behaviors� Related to Query Optimization�
current B current � T algOp

Example� B current	o

Symbol�

Returns the current state of the search space that is being
explored by the search strategy o� It is generated by the be�
havior B setNextState� 	It is implemented by a stored func�
tion
�

acceptAction B acceptAction � T algOp� T boolean
Example� B acceptAction	o
	p

Symbol�

Returns true if the OAPT p meets the criteria as de�ned for
the heuristic search strategy� 	i�e� if the OAPT is a bushy or
a linear tree
� Otherwise� it returns false�

���

transfRules B transfRules � T list
Example� B transfRules	o

Symbol�

Returns the list of transformation rules that are applied by
the search strategy o� It must be set when the search strategy
object o is �rst created� The list is ordered by priority of the
rule� 	It is implemented by a stored function
�

chooseRule B chooseRule � T algEqRule
Example� B chooseRule	o

Symbol�

Returns the current element in the list B transfRules� The
next element becomes the current one� 	It is implemented by
a computed function
�

���

T CCHeurSS
Supertypes� T heurSS

Subtypes� none

Overriden Behaviors� Replacement for Query Optimization purposes�
current B current � T algOp

Example� B current	o

Symbol�

Returns the current state of the search space that is being
explored by the search strategy o� It is generated by the be�
havior B setNextState� 	It is implemented by a stored func�
tion
�

acceptAction B acceptAction � T algOp� T boolean
Example� B acceptAction	o
	p

Symbol�

Returns true if the OAPT p meets the criteria as de�ned for
the cost�controlled heuristic search strategy� The goal of this
additional criteria is to keep the OAPT with the lowest cost
as the current OAPT�

initSS B initSS � T algOp
Example� B initSS	o

Symbol�

Returns the initial OAPT of the search space from where
the search strategy object o will start the search� As a side
e�ect� it initializes B current 	B setCurrent
� B transfRules�
and B currCost�

stopCond B stopCond � T boolean
Example� B stopCond	o

Symbol�

Returns the object true if the condition given to stop the
search process o holds� Otherwise false is returned�

setNextState B setNextState � T listhT algOpi � T algOp
Example� B setNextState	o
	p

Symbol�

Returns the next state in the search space to be applied and
action on� It determines in which way the states are investi�
gated in the search space�

action B action � T algOp� T listhT algOpi
Example� B action	o
	p

Symbol�

Generates a list of successor states for the state p by apply�
ing algebraic equivalence transformation rules on p that are
chosen according to heuristics de�ned for the search�

��	

argTypes B argTypes � T listhT typei
Example� B argTypes	o

Symbol�

Returns a list of types which denote the types and ordering of
the argument objects for the cost�controlled heuristic search
strategy object o�

resultType B resultType � T type
Example� B resultType	o

Symbol�

Returns the result type of the cost�controlled heuristc search
strategy object o�

source B source � T object
Example� B source	o

Symbol�

Returns the source code of the cost�controlled heuristic search
strategy object o�

compile B compile � T object
Example� B compile	o

Symbol�

Compiles the cost�controlled heuristic search strategy ob�
ject o and produces executable code which is stored in
B executable�

executable B executable � T object
Example� B executable	o

Symbol�

Returns the executable code of the cost�controlled heuristic
search strategy object o�

execute B execute � T listhT algOpi � T algOp
Example� B execute	o
	p

Symbol�

Executes the cost�controlled heuristic search strategy object
o using the list of OAPT objects p as arguments and returns
an �optimal� OAPT object� One requirement is that the list
of arguments p must be compatible with the argument type
list for the function�

basicExecute B basicExecute � T listhT algOpi � T algOp
Example� B basicExecute	o
	p

Symbol�

It works the same as B execute�
costFunction B costFunction � T listhT objecti � T function

Example� B costFunction	o
	p

Symbol�

It returns a cost function object that when is executed returns
a pre�estimated cost of executing the cost�controlled heuristic
search strategy object o with arguments p�

���

Native Behaviors� Related to Query Optimization�
currCost B currCost � T integer

Example� B currCost	o

Symbol�

Returns the cost of the current state of the search space that
is being explored by the cost�controlled heuristic search strat�
egy o�

��

T enumSS
Supertypes� T searchStrat

Subtypes� T SystemR� T AugHeur

Inherited Behaviors�
goal B goal � T collectionhT algOpi

Example� B goal	o

Symbol�

Returns the collection of states that have been chosen
as �good� candidates for being returned as the optimized
OAPT�

optimal B optimal � T algOp
Example� B optimal	o

Symbol�

Returns the �optimal� OAPT from the collection B goal�

Overriden Behaviors� Replacement for Query Optimization purposes�
initSS B initSS � T algOp

Example� B initSS	o

Symbol�

Returns the initial state of the search space from where the
search strategy object o will start the search�

stopCond B stopCond � T boolean
Example� B stopCond	o

Symbol�

Returns the object true if the condition given to stop the
search process o holds� Otherwise false is returned�

setNextState B setNextState � T listhT algOpi � T algOp
Example� B setNextState	o
	p

Symbol�

Returns the next state in the search space to be applied and
action on� It determines in which way the states are inves�
tigated in the search space� If its implementation chooses
the least recent state� then the search strategy is breadth�
�rst if it chooses the most recently generated state� then it
implements depth��rst search�

action B action � T algOp� T listhT algOpi
Example� B action	o
	p

Symbol�

Generates a list of successor states for the state p by applying
algebraic equivalence transformation rules on it�

argTypes B argTypes � T listhT typei
Example� B argTypes	o

Symbol�

Returns a list of types which denote the types and ordering
of the argument objects for the enumerative search strategy
object o�

���

resultType B resultType � T type
Example� B resultType	o

Symbol�

Returns the result type of the search strategy object o�

source B source � T object
Example� B source	o

Symbol�

Returns the source code of the enumerative search strategy
object o�

compile B compile � T object
Example� B compile	o

Symbol�

Compiles the enumerative search strategy object o and pro�
duces executable code which is stored in B executable�

executable B executable � T object
Example� B executable	o

Symbol�

Returns the executable code of the enumerative search strat�
egy object o�

execute B execute � T listhT algOpi � T algOp
Example� B execute	o
	p

Symbol�

Executes the enumerative search strategy object o using the
list of OAPT objects p as arguments and returns an �op�
timal� OAPT object� One requirement is that the list of
arguments p must be compatible with the argument type list
for the function�

basicExecute B basicExecute � T listhT algOpi � T algOp
Example� B basicExecute	o
	p

Symbol�

It works the same as B execute�
costFunction B costFunction � T listhT objecti � T function

Example� B costFunction	o
	p

Symbol�

It returns a cost function object that when is executed returns
a pre�estimated cost of executing the enumerativve search
strategy object o with arguments p�

Native Behaviors� Related to Query Optimization�
prune B prune � T listhalgOpi � T listhT algOpi

Example� B prune	o
	p

Symbol�

Returns the list of states that results after discarding some
�bad� states from the list p of OAPT objects that was gen�
erated by the behavior B action�

���

open B open � T listhT algOpi
Example� B open	o

Symbol�

Returns the open list of OAPTs for the enumerative search
strategy o� These OAPTs are candidate states to be explored
by the search strategy o� 	It is implemented by a stored
function
�

current B current � T algOp
Example� B current	o

Symbol�

Returns the current state of the search space that is being
explored by the search strategy o� It is generated by the be�
havior B setNextState� 	It is implemented by a stored func�
tion
�

���

T randomSS
Supertypes� T searchStrat

Subtypes� T II� T SA

Inherited Behaviors�
goal B goal � T collectionhT algOpi

Example� B goal	o

Symbol�

Returns the collection of states that have been chosen
as �good� candidates for being returned as the optimized
OAPT�

optimal B optimal � T algOp
Example� B optimal	o

Symbol�

Returns the �optimal� OAPT from the collection B goal�

Overriden Behaviors� Replacement for Query Optimization purposes�
initSS B initSS � T collectionhT algOpi

Example� B initSS	o
	p

Symbol�

Returns the of initial state	s
 of the search space that the
search strategy o uses to start the search process For example�
while II is characterized by the choice of several start states�
SA has only one initial state�

stopCond B stopCond � T boolean
Example� B stopCond	o

Symbol�

Returns the object true if the condition given to stop the
search process o holds� Otherwise false is returned� It refers
to the global stop condition for the randomized search strat�
egy o

setNextState B setNextState � T listhT algOpi � T algOp
Example� B setNextState	o
	p

Symbol�

Returns the next state in the search space to be applied and
action on� It determines in which way the states are investi�
gated in the search space� If its implementation generates a
new OAPT object� then the search strategy is Iterative Im�
provement if it changes the temperature parameter� then it
implements Simulated Annealing

action B action � T algOp� T listhT algOpi
Example� B action	o
	p

Symbol�

Generates a list of neighbor states for the state p by applying
algebraic equivalence transformation rules to the complete
OAPT p� Each of the generated neighbors is a complete
OAPT�

���

argTypes B argTypes � T listhT typei
Example� B argTypes	o

Symbol�

Returns a list of types which denote the types and ordering
of the argument objects for the randomized search strategy
object o�

resultType B resultType � T type
Example� B resultType	o

Symbol�

Returns the result type of the search strategy object o�

source B source � T object
Example� B source	o

Symbol�

Returns the source code of the randomized search strategy
object o�

compile B compile � T object
Example� B compile	o

Symbol�

Compiles the randomized search strategy object o and pro�
duces executable code which is stored in B executable�

executable B executable � T object
Example� B executable	o

Symbol�

Returns the executable code of the randomized search strat�
egy object o�

execute B execute � T listhT algOpi � T algOp
Example� B execute	o
	p

Symbol�
Derivation�
Executes the randomized search strategy object o using the
list of OAPT objects p as arguments and returns an �op�
timal� OAPT object� One requirement is that the list of
arguments p must be compatible with the argument type list
for the function�

basicExecute B basicExecute � T listhT algOpi � T algOp
Example� B basicExecute	o
	p

Symbol�

It works the same as B execute�
costFunction B costFunction � T listhT objecti � T function

Example� B costFunction	o
	p

Symbol�

It returns a cost function object that when is executed re�
turns a pre�estimated cost of executing the randomized search
strategy object o with arguments p�

�	�

Native Behaviors� Related to Query Optimization�
localStopCond B localStopCond � T boolean

Example� B localStopCond	o

Symbol�

Returns the object true when a local minimum has been
found� Otherwise false is returned� It refers to the local stop
condition for the randomized search strategy o 	i�e� elapsed
time for II� temperature for SA� and so on

acceptAction B acceptAction � T listhalgOpi � T boolean
Example� B acceptAction	o
	p

Symbol�

Returns true if the criterion for accepting a transformation is
satis�ed by the transformed OAPTs�

nmoves B nmoves � T integer
Example� B nmoves	o

Symbol�

Returns the number of transformations that have been ap�
plied to the current state� when searching for its local mini�
mum� It is implemented by a stored function�

currState B currState � T collectionhT algOpi
Example� B currState	o

Symbol�

Returns the current state	s
 of the search space that is being
explored by the randomized search strategy o� It is generated
by the behavior B setNextState� 	It is implemented by a
stored function
�

