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ABSTRACT
Particle approximations are used to track a maneuvering signal given only a noisy, corrupted sequence of observations,
as are encountered in target tracking and surveillance. The signal exhibits nonlinearities that preclude the optimal use
of a Kalman filter. It obeys a stochastic differential equation (SDE) in a seven-dimensional state space, one dimension
of which is a discrete maneuver type. The maneuver type switches as a Markov chain and each maneuver identifies
a unique SDE for the propagation of the remaining six state parameters. Observations are constructed at discrete
time intervals by projecting a polygon corresponding to the target state onto two dimensions and incorporating the
noise.

A new branching particle filter is introduced and compared with two existing particle filters. The filters simulate
a large number of independent particles, each of which moves with the stochastic law of the target. Particles are
weighted, redistributed, or branched, depending on the method of filtering, based on their accordance with the
current observation from the sequence. Each filter provides an approximated probability distribution of the target
state given all back observations.

All three particle filters converge to the exact conditional distribution as the number of particles goes to infinity,
but differ in how well they perform with a finite number of particles. Using the exactly known ground truth, the
root-mean-squared (RMS) errors in target position of the estimated distributions from the three filters are compared.
The relative tracking power of the filters is quantified for this target at varying sizes, particle counts, and levels of
observation noise.
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1. INTRODUCTION
1.1. Tracking Filters
We consider a single target tracking problem of the form

dX = (Xe) + (X)dB, (1)

where X is the unobserved signal to track and Xt is a finite-state Markov chain indicating the maneuver type, and

kH(XtkHk, (2)

where Ytk 5 a sequence of observations of the signal that are corrupted by noise given by Vk . Tracking filters are
useful in a variety of problem areas, such as surveillance, aeronautics, and search-and-rescue. In the case in which
A, B, and H are linear, Xt is constant, and Vk i5 Gaussian, the conditional distribution can be efficiently computed
by the Kalman filter. For our case, it is a assumed that A, B, and H are nonlinear and that there are no exact finite
or infinite-dimensional filters applicable to the problem.

Exact filtering loosely refers to those filtering problems that degenerate into the evolution of finite-dimensional
sufficient statistics or into FFT-based convolution with a known kernel. That is, a difficult, infinite dimensional
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equation degenerates into a known, readily implementable computer algorithm without need for approximation. For
general nonlinear problems where there is no exact filter, the theoretical solution requires the use of Fokker-Plank
density evolution combined with Bayes' rule,' which is computationally intractable when the dimension of the signal
state space is large, and is often difficult even in small dimension spaces. In response, suboptimal methods such as
the extended Kalman filter and interacting multiple models2 have been developed.

1.2. Particle Filters
Another class of nonlinear filter techniques are the particle filters. A particle filter approximates the conditional
distribution of the signal, given the observations, by a finite sum of Dirac densities. Each particle represents a
Dirac density in the space of the signal. For each new observation, all particles are evolved forward to account for
the stochastic dynamics of the signal and then the set of particles is adjusted to account for the information from the
observation. In this manner, the particles can function as an adaptive Monte-Carlo method for the filtering problem.

The set of particles then approximates the full data of the distribution of the signal conditioned on the set of all
back observations. The approximated conditional probability that the signal lies within a given area is computed by
dividing the number of particles in that area by the total number of particles.

Particle filters require an appropriate algorithm for the adjustment phase such that the filter provably converges
to the exact conditional distribution as the number of particles approaches infinity. Numerous algorithms have been
devised which fulfill these requirements. However, despite the theoretical convergence of each such filter, the particle
filters have different performance characteristics in practical implementations with a finite number of particles. This
paper compares the empirical efficacy of three particle filters applied to a simulated search-and-rescue tracking
problem.

2. TRACKING PROBLEM
In this problem, we simulate a dinghy lost at sea that is observed from over the ocean surface by, for example,
a helicopter using a digitized camera. The helicopter obtains a sequence of images of the ocean surface that are
corrupted and distorted by spatial noise and sensor truncation effects. This noise is large enough that the position of
the boat cannot be accurately estimated from a single image. However, knowledge of the stochastic law of the boat
along with a sequence of observations over time enables a close tracking of the state of the target over a range of
possible dinghy sizes. No image preprocessing is applied before the observations are provided to the filter algorithms.

2.1. Target Description
The lost dinghy has seven state parameters: Xt,Yt, Ot, Ot, and Xt. Parameters Xt and Yt indicate the x- and
y-coordinates of the boat at a given time t, and O indicates the orientation of the boat in the plane at time t.
Parameters 't and 6, indicate the rate of change of x, lit, and Ot, respectively, at time t. The seventh component
of the dinghy state is .xt, a discrete variable that indicates the current maneuver type. We will use the notation
xt = (Xt , Yt , 9t ,Xt , Yt , 6t). Thestochastic behaviour of the dinghy is described by nonlinear systems whose parameters
evolve with time according to a finite state-space Markov chain in which each possible maneuver type is a state. In
this simulation, the Markov chain has three states representing the maneuvers adrift, rowing, and motoring. The
dinghy switches from each state to the other two at equal rates, that is, it is equally likely to switch to either of the
other states from the current one when a transition occurs. This transition rate is 0.15 per time unit for each alternate
state. While rapid transitions are not usually the best strategy to use when lost, this switching does increase the
difficulty of the tracking problem and highlights any differences between the three filters in their capacity to function
well under such stress.

For each value of Xt , the dinghy is simulated using Euler approximations according to the following formulae:

1. Adrift (Xt 1) In this case,

it 1 0 0
d it = 0 1 0 dB+ F(±,i,O,9) dt, (3)

Ot 0 0 0.5
where B is three-dimensional standard Brownian motion. To make the simulation more realistic, friction
J(.,.,.,.) is included in the equation. The calculation of this friction is identical for each motion type and is
described below.
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2. Rowing (Xt 2) In this case,

1±t = If.tcoset (4)
Ii;'t Lftsin9t

where jt represents scalar velocity in the forward direction, with

d = (3.5—It) dt+ /(4—/)(I—3) 0 dB+ dt, (5)et 0 0 0.4 Fe(xt,yt,et,Ot)

where B is a two-dimensional standard Brownian motion. This simple Ito equation is designed to maintain
the speed of the boat between three and four pixels per time unit. Of course, the dinghy could attain this
speed while adrift also.

3. Motorized (Xt 3) In this case,

Vt
If.tcosot (6)lt ftsin9t

where ft represents scalar velocity in the forward direction, with

d = (9.5—Jr) dt+ /(1O—It)(Jt—9) 0 dB+ 1(xt,y,0,9)
dt, (7)et 0 0 0.4 Je(xt,yt,Ot,Ot)

where B is a two-dimensional standard Brownian motion.

Friction is calculated according to the following model:

1_ fii2 . if±'LO
.:7:±(th,,é,O) = .' 7- ,y

, (8)
10 if±==O
(_ .f ifO

:-1(th,,Ô,9) = .cos9+.sin9)2+.(.cos9_.sino)2 J 7 ,1J ()
(0 if±==O

(±,,&e) =V.(thoe)2 +(,Ô,9)2, (10)

and = —Of9, (11)

where ft and fg are constant parameters indicating the magnitude of the planar velocity and change-in-orientation
frictions, and equal to 0.6 and 0.5 respectively. These formulae have the effect of increasing the planar velocity
friction when the dinghy velocity vector lies in a direction towards the sides of the boat, and decreasing this friction
as the velocity vector is more aligned with or directly opposite the forward orientation of the boat. In simulation,
the equations are approximated using Picard iterations to improve the accuracy. This method is much like iterated
Newton or secant methods and involves recursively calculating a value and reusing it in the calculation until it
converges to the extent that the change in each iteration is less than some accuracy threshold.

At the start of each simulation, the dinghy is positioned at a random location in the observation area. It has a
one third probability to be exhibiting each motion type and the initial velocity is randomly determined based on this
motion type. The initial change in orientation is zero.

2.2. Observations
The observations consist of a discrete sequence Yk of images, each of which is a two-dimensional raster of pixels in
a 192 by 192 square. These images are constructed by superimposing a figure based on a projection of the dinghy
state, Xtk, onto the raster R = {(, m)} and adding noise by the formula

y(lm) = h(lm)(Xtk) + vlm), (12)

279

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/13/2013 Terms of Use: http://spiedl.org/terms



where Vtm) jS pixel-by-pixel zero-mean independent Gaussian noise, the variance of which is a parameter to the
simulation. Here,

h(tm)(X) = 10 if (,m) Sx
, (13)

110 . (tk _ tk_1) jf (,m) E S

where S is the set of points contained in the polygon representation of the x, y, and 6 dimensions of X. In
particular, for a given size parameter s, Sx is formed as follows:

I Place a box with sides of length 2s perpendicular to the raster grid and centred at the point (x, y).

. Add a triangle of height s to the right side of the box so that the base of the triangle is the side of the box.

S Rotate the resulting polygon by the angle 0 about (x, y).

The time period for the observations is set to a constant (tk —tkl) = 0.05 time units. Each of the filter methods
being compared is provided with the same noisy observation sequence for any one simulation. The observations are
not preprocessed; the information from the raster pixels is used directly in the filter algorithms.

2.3. Objective
The problem is to estimate the conditional distribution of the dinghy state based on the observations, that is,

P(Xtk E dx,xt = aIY,O < i � k). (14)

Note that the particle filters are asymptotically mean-square optimal in determining the maneuver type in addition
to the position and the velocities. Since we are using approximated distributions, the intent is to provide the closest
possible approximation to the optimal conditional distribution. The closeness of the approximation is meant in the
loose sense that some combined root-mean-square (RMS) error between the approximated conditional mean and the
signal, as well as other approximate conditional statistics to functions of the signal, is small. In this case, the optimal
filter is effectively intractable, so the three particle methods are compared by calculating the mean squared error
between each approximated conditional mean and the actual simulated dinghy position.

3. FILTER TECHNIQUES
To our knowledge, particle methods were first introduced by Del Moral and Salut.3 We use an interacting particle
method developed by Del Moral and Miklo,4 a weighted particle method discussed in the work of Kurtz and Xiong,5
and a novel branching particle method introduced by Kouritzin and developed by Kouritzin and Blount.6

All three methods are initialized with N particles uniformly distributed in the domain of X . At each
observation, the three methods progress through the following stages: evolution of the particles, particle selection or
weighting, and the approximation of the conditional distribution of the dinghy state.

3.1. Evolution
In all three methods the evolution stage is the same. Each of the particles is evolved independently for the time period
between observations (tk —tk_1 = 0.05 time units) according to the stochastic differential equation and Markov chain
transitions of the dinghy, as described in Equations (3) to (11): k1

3.2. Particle Adjustment
3.2.1. Interacting particle method4
By Bayes rule,

PXtkIY1 Yk_l(X) PYkIXtk(YkIx)
PXtJYi Yk(XI 1,••• ,Yk) = r f,.\ . (15)

J PXtkIY1 Yk..1c) PYkIXtkZk
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Given the particle approximation for PXtk_l 1 Yk1 (x) from the previous step, the interacting method replaces the
factor PXtk IY1 Yk1 (x) in approximation by the evolution of the particles W}1 Given observation Yk consisting
of values assigned to the points (,m) in the raster R, weights W are then assigned to each particle by

1.' t\ 1—1 ;iy(tm) h(,m)(i\\w = PYkIXtk1k k) = 11(t,m)ERJ k ' sk))
(16)k

PYkIXtk(Yk ) Z:l PYktXtk (Yk I)

where f(y, x) is the probability of obtaining an observation pixel intensity of y at a raster point given that the value
of h(t,m) for the pixel (t, m) and for that particle is x, that is, given that the pixel is either inside or outside ofthe
polygon representation of the state of that particle. This probability is also determined by the noise distribution Vk
as described in Sect. 2.2.

The particles e are then redistributed among the previous particle sites according to the multinomial distri-
bution

P(ni particles at , . . . , N particles at ) ( ThN) ()fl1 . . . (W)nN . (17)

This is equivalent to each particle e'k being relocated to site . at time tk with probability W independent of all
other particle relocations.

3.2.2. Weighted particle method5
This method approximates the estimated probability density with a set of N particles with associated time-varying
weights M . The particle weights are governed by the stochastic equation

Ml = M + f >: M h(tm)(e) (lm)(ds) (18)
[o,t} (t,m)ER

where the running accumulation of continuous observation data. Since the observations in this case occur at
discrete times, we approximate the integral as a sum:

M M + M. h(m)() ( (t,m)
i=1 (t,m)ER

M + : Ml h(m)(e_) (ç,m) r(&m)) (19)
(t,m)€R

= M1 + M_ : h(tm)() (?(&m)k
(t,m)ER

k

for k � 1, and use the simulation raster Yk = (2 — 2_ ) as the observation at time tk as in the interacting case.

Initially M = 1, 1 < j < N. The particles are evolved independently for the time period of each observation,
as for the interacting method, and the weights are then recalculated according to the above formula to account for
each observation. These weights are retained to be used in the approximation of the conditional distribution and for
the next time step when the subsequent observation arrives.

3.2.3. Branching particle method6
For this method, a varying number rltk of unweighted particles {} are used (with = N), and the particles
are duplicated or removed based on their agreement with each observation. Given the observation, the evolved
particles are each assigned a value ( according to a calculation on Yk and h(k). A method is used to control the
total number of current particles tk to be close to the initial number of particles N. Then, a uniform-(O,1) random
variable U is determined for each particle and

• if (( � Ui), a new particle = is added,
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. if (( � —U) , is removed,

. in the most frequent case where I(I < U , the particle is not branched and and is left in the state that it
evolved to,

with the attendant renumbering, and the setting of k to equal the total number of current particles, after the entire
process.

3.3. Estimation
By independence and the law of large numbers,

N1 N—ocIk— 5j (A) — I P (x)dx, (20)
j=1

tk JA

where k (x) is the conditional probability density of the state of the target dinghy at time tk given observations
Y1,... ,Yk.

For the weighted particle filter the estimation of the density is approximated according to

N

NMj M6(A) "--°I pk(x)dx (21)i:j=1 tk j1 A

A graphical presentation of the simulations has been constructed, as depicted in Fig. 1. This is one frame of
an animation sequence that follows the observation sequence. The top left panel indicates the simulated dinghy
position. The upper middle panel is the observation raster, as it is presented to the filter algorithms. The bottom
three panels display the current estimates of the three particle-based filter methods, the interacting method at the
left, the weighted method in the middle, and the branching method at the right. In each filter panel, the box indicates
the filter extimate of the dinghy state, with the centre of the box at the estimated (x, y) location and the size of the
box indicating the variance in the location distribution. The arrow points in the direction of the estimated dinghy
orientation 9, with a longer arrow indicating a more certain estimate.

3.4. Computation Simplifications
A number of simplifications of the calculations have been implemented in the filters such that the computational
complexity is directly proportional to the number of particles and is also proportional to the pixel area of the dinghy
polygon. Specifically, simplifications have been exploited so that major calculations on the entire raster are only
performed once for each observation, and then each subsequent particle calculation references only those raster pixels
that are within the target polygon of that particle.

For example, in the interacting method, [T(1,m)ER f(y(tm) hlm(e)) can be calculated as

fI(t,m)ES f(y(&m) h(tm)())
[J f(y(tm)j). (tm) , (22)

(t,m)ER fl(t,m)ES f(k , h)

where it is the value of h(tm)(e) when the point (,m) is not contained in the polygon representation S of the
particle . The product over all raster points is then calculated only once when the observation first arrives, or in
the interacting case, not at all since the term cancels out in all later relative weight computations. Each particle
then need only compute over the observation values of those pixels within the associated polygon representation, S.
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4. FILTER COMPARISONS
Three dinghy tracking scenarios are simulated corresponding to three differently sized dinghy targets a large
target with s 5 and an average dinghy area of 125 pixels. a medium target with s = 3 and an average area
of 45 pixels, and a small target with s = 1 and an average area of 5 pixels. The s parameter is as described in
Sect. 2.2. Using the situation of 125, 45, or 5 independent, noisy observations as a reference, one would estimate that
the difficulty of filtering would decrease with the square of the number of these observations, that is, in the ratio

/: = 5 3 1. While this is not the exact case here, since the filter does not know a priori which of
the 125, 45, or 5 pixels are associated with the signal, it suffices as an approximation. Based on this, the standard
deviation of the noise V(,m) on a pixel-by-pixel basis, is set to 60/Vtk —tk_1, 36/,/tk — tk—1, and 12/' tk_j
in the large, medium, and small target cases. Using a signal strength of 10. (tk —tk_1) as described in Sect 2.2, these
correspond to SNR of -28.57dB, -24.14dB, and -14.59dB respectively.

Because of the computation simplifications, the algorithms execute more quickly when the assumed target size
is small. This is accounted for in the simulations by allowing more particles to the smaller target cases so that
the execution times are approximately equivalent. The number of particles used is N = 10000 for the large target.
N = 17500 for the medium target, and N = 30000 for the small target.

The weighted and branching filters execute approximately three times faster than the interacting filter in our code
using the same number of particles. However, the following results were obtained using the identical initial number of
particles, as given above, for each method. Given the code timings and the direct proportionality of the algorithmic
complexity of the filters with the number of particles, it would be fair to provide the weighted and branching filters
with approximately three times the number of particles, which would tend to decrease their mean-squared errors.
Though the data do not include such an adjustment, the conclusions regarding the branching method would only he
strengthened if these adjustments were made.
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Graphs of the average RMS error in the position estimate of the three filters over the simulation time are provided
for the large target case in Fig. 2, for the medium target case in Fig. 3, and for the small target case in Fig. 4.

Note that the dinghy has an initial position that is randomly and uniformly selected from the area of the
observation raster, and that all of the particles have similarly uniformly distributed initial states. Because of this,
each of the particle filters begins with an estimated position of the dinghy in the centre of the observation area,
and thus there is an average RMS error at the start of the simulation that all of the filters will share. However, it
is possible that during the course of the simulation a poor filter will, on average, return an average RMS error in
conditional mean dinghy position which is larger than this initial error. Because of this, some filters will seem to
perform worse over time as they approach their long-term behaviour.

5. CONCLUSIONS
There are a number of advantages to particle-based nonlinear filters. The filters have demonstrated effectiveness and
efficiency at tracking problems. It is simple to scale the power of the filter to the power of the available processor
by increasing the number of particles. As well, further computational gains are easily obtained by distributing the
required processing power among multiple processors.

However, there are considerable differences evident in the practical power of the various particle filter types. For
this tracking problem, the weighted method has considerable difficulty, especially with smaller targets. The inability
to adapt the particle placement to optimally cluster particles near suspected dinghy locations renders the weighted
filter ineffective without a very large number of particles relative to the observation area.

The branching method exhibits superior performance in all three scenarios of this simulation. By neither du-
plicating nor removing most particles, but rather leaving them as they are, the branching method gains a speed
advantage and also is more cautious in its particle adjustment. It is less likely, in its approximation of the distribu-
tion, to immediately cluster all of the particles near to suspected target positions, and thus, with a practical number
of particles, is less likely to make erroneous particle adjustments that hamper the long-term adaption.
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RMS Error in Dinghy Position (pixel units)

Figure 3. Error in dinghy position estimate for the MEDIUM dinghy scenario.
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RMS Error in Dinghy Position (pixel units)

Figure 4. Error in dinghy position estimate for the SMALL dinghy scenario.

287

f') 0) Co

(7

(3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/13/2013 Terms of Use: http://spiedl.org/terms


