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Abstract

We perform fully nonlinear simulations in two dimensions of a horizontally peri-

odic, vertically localized, anelastic internal wavepacket in order to examine the

effects of weak and strong nonlinearity upon wavepackets approaching a reflec-

tion level in uniform retrograde shear. Transmission, reflection and momentum

deposition are measured in terms of the horizontal momentum associated with

the wave-induced mean flow. These are determined in part as they depend upon

the initial wavenumber vector, ~k = (k,m), which determines the modulational

stability (if |m/k| & 0.7) or instability (if |m/k| . 0.7) of moderately large

amplitude quasi-monochromatic internal wavepackets. Whether modulationally

stable or unstable, the evolution of the wavepacket is determined by the height

of the reflection level predicted by linear theory, zr, relative to the height, z∆, at

which weak nonlinearity becomes significant, and the height, zb > z∆, at which

linear theory predicts anelastic waves first overturn in the absence of shear. If

zr < z∆, the amplitude remains sufficiently small and the waves reflect as pre-

dicted by linear theory. If zr is moderately larger than z∆, a fraction of the

momentum associated with the wavepackets transmits past the reflection level.

This is because the positive shear associated with the wave-induced mean flow

can partially shield the wavepacket from the influence of the negative background

shear enhancing its transmission. The effect is enhanced for weakly nonlinear

modulationally unstable wavepackets that narrow and grow in amplitude faster

than the anelastic growth rate. However, as nonlinear effects become more pro-

nounced, a significant fraction of the momentum associated with the wavepacket

is irreversibly deposited to the background below the reflection level. This is

particularly the case for modulationally unstable wavepackets, whose enhanced
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amplitude growth leads to overturning below the predicted breaking level. Be-

cause the growth in the amplitude envelope of modulationally stable wavepackets

is retarded by weakly nonlinear effects, reflection is enhanced and transmission

retarded relative to their modulationally unstable counterparts. Applications to

mountain wave propagation through the stratosphere in the winter hemisphere

are discussed as well as applications of a fully nonlinear, anelastic wave model to

non-constant buoyancy frequency backgrounds.
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Chapter 1

Introduction

One of the most critical mechanisms for transporting momentum

vertically in the atmosphere is by internal wave propagation and

breaking. The Earth’s atmosphere is characterized by having vari-

able density with height due to the temperature and thermodynam-

ics of the air. Perturbations to the stratified atmosphere can cause

the generation and propagation of internal waves. In situations

where the background density of the fluid does not change signifi-

cantly over the vertical extent of wave propagation, a simplification

known as the Boussinesq approximation is made to the momentum

equations. In the momentum equations, density is taken to be con-

stant except when multiplied by gravity in the buoyancy term. This

is a commonly used approximation when dealing with internal waves

in the stratified ocean where the fluid is nearly incompressible.

The incompressible assumption is not valid for the atmosphere

nor can the assumption be made that background density changes

are insignificant for waves that propagate over vast vertical dis-

tances. Hence, the anelastic approximation, which retains the den-

sity profile as a function of height, of the momentum equations is

used. As a consequence of conservation of momentum, the ampli-

tudes of upward-propagating anelastic waves will increase as they

move into a lower density background. Thus it is important to con-
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sider large-amplitude and consequential non-linear effects of waves

propagating in an anelastic medium.

Internal waves that propagate through a realistic atmosphere do

not encounter a homogeneous background. Background winds can

greatly affect internal wave propagation - especially when consider-

ing propagation through multiple layers of the atmosphere. When

the wind is oriented opposite of the waves’ horizontal phase speed,

the waves may reflect (a linear theory prediction). However, it is

well known that when internal waves reach sufficiently large ampli-

tude, the mean flow induced by the wavepackets may become great

enough to counteract a background wind, thus allowing the waves to

propagate much higher than predicted by linear theory (Sutherland

(2000)). Thus waves may reflect, carrying their momentum back

toward the ground, they may transmit past a reflection level and

deposit momentum where their amplitudes grow so large that the

waves break, or the wavepacket may split where a portion reflects

and the rest transmits.

Knowing the location of momentum deposition is imperative for

accurately modeling atmosphere dynamics on a large scale. While

the magnitude of momentum transport due to internal waves is not

precisely known, it is suggested, according to linear theory, that

these waves, and the momentum associated with wave breaking or

absorption, can substantially alter large-scale mean flow (Booker

& Bretherton (1967)). Unfortunately, internal waves have length

scales far smaller than the resolution of most general circulation

models making the resolution of these waves impractical. The stan-

dard solution to this problem is to parameterize internal wave prop-

agation and breaking in the atmosphere using the waves initial pa-

rameters to estimate where momentum will be deposited.

The intent of this research is to provide an argument for con-
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sidering nonlinear effects of internal waves when they encounter a

region of retrograde shear. It will become apparent that using lin-

ear theory to approximate the reflection height of large-amplitude

waves provides an incomplete picture of actual wave dynamics.

1.1 Motivation

While waves exist in the atmosphere at a variety of length scales,

it was originally thought that only planetary-scale waves (10,000 to

40,000km wavelength) had any significant effect on driving mean

flows in the middle atmosphere (Holton & Lindzen (1972)). How-

ever, it was quickly discovered that these large-scale waves were un-

able to provide sufficient momentum to drive the mean flows they

were thought to be causing (Lindzen (1967); Andrews & McIntyre

(1976); Palmer et al. (1986); McFarlane (1987)). Dunkerton (1981)

found that this momentum deficit was well accounted for when high-

frequency Kelvin waves and internal gravity waves were included in

a simplified mean-flow interaction model at a wave flux of 2-4 times

that of larger-scale Rossby waves. Since then, internal gravity wave

dynamics, especially the transport of momentum associated with

wave propagation and breaking, in the atmosphere are considered

when calculating mean flows in the atmosphere.

Internal waves in the atmosphere can be created by flow over

topography, convective storms, and frontal instabilities (Sutherland

(2010)). These waves can have an appreciable impact on momen-

tum exchange through vertical layers of the atmosphere (McFarlane

(1987)). Since the location of momentum deposition is dependent

on where the waves break rather than where they are generated,

atmospheric flow over topography has non-localized effects on the

mean flow of upper atmosphere layers. Thus, when including these
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dynamics in a general circulation model, it is important to under-

stand the dynamics of wave propagation as well as wave generation.

Unfortunately, it is computationally prohibitive to resolve inter-

nal wave dynamics in general circulation models due to their small

length scales, often on the order of kilometers to tens of kilome-

ters (Hamilton (1996); McLandress (1998); Palmer et al. (1986);

McFarlane (1987)).

As a method to include internal waves without resolving their dy-

namics, the momentum transport and drag associated with internal

waves are parameterized in General Circulation Models (GCMs). In

part, these gravity wave drag parameterization schemes attempt to

capture momentum deposition due to wave breaking at critical lev-

els. In a shear flow, this is where the horizontal phase speed of the

waves matches the background flow speed or, equivalently, where

the Doppler-shifted frequency of the waves is zero (Medvedev &

Klaassen (1995); Hines (1997); Lindzen (1981); Nastrom & Fritts

(1992)). Many of these parameterization schemes ignore much of

the complexity of internal wave generation and propagation - in-

cluding non-linearity and even wave reflection - focusing instead on

”launch site” of the waves, linear propagation, and an estimation of

location of nonlinear wave overturning (McFarlane (1987)).

Internal wave breaking is the essential final step for internal wave

momentum transport. When internal waves break, the turbulence

caused by breaking can, itself, excite waves at smaller scales which

can, in turn break and create smaller and smaller waves (Lindzen

(1981); Staquet & Sommeria (2002)). Eventually the energy cas-

cade leads to waves at such small scales that they dissipate due to

viscosity and thermal diffusion (Hamilton (1996)). Concurrently,

the wave momentum flux divergence results in momentum that is

deposited irreversibly to the background flow providing an acceler-
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ation in the direction of the phase speed relative to the background

wind (Dunkerton (1981)).

As a result of the decreasing atmosphere density with altitude

and of conservation of momentum, the amplitudes of waves grow

as they propagate upward, thus providing another mechanism for

wave breaking. The gravity wave drag parameterization scheme

proposed by Lindzen (1981) used linear anelastic theory to estimate

where wave breaking occurs and, consequently, where momentum

is deposited. This scheme has improved the accuracy of GCMs

(McLandress (1998); Palmer et al. (1986); McFarlane (1987)). Wave

breaking, however, is an inherently nonlinear process and so the

accuracy of linear theory to predict momentum deposition due to

anelastic growth and breaking is questionable.

Sutherland (2006) developed a weakly nonlinear theory of Boussi-

nesq internal waves which, through comparison with fully nonlin-

ear simulations, was shown accurately to model the evolution of

large-amplitude waves (Sutherland (2006)). The onset of nonlinear

dynamics was shown to result from “self-acceleration,” in which

the wavepacket established a wave-induced mean flow which, in

turn, altered the structure of the wavepacket (Fritts & Dunker-

ton (1984); Sutherland (2001)). Even without the presence of a

background flow, the wave-induced mean flow (analogous to the

Stokes drift for surface waves) acted to Doppler-shift the frequency

of an internal wavepacket - a significant effect for sufficiently large-

amplitude waves. In particular, it was observed that when the ver-

tical wavenumber, m, was sufficiently small relative to the horizon-

tal wavenumber, k (specifically |m/k| < 2−1/2) the vertical struc-

ture of the wavepacket envelope narrowed and steepened through

modulational instability. For wavepackets containing larger ver-

tical wavenumber waves, the envelope broadened faster than pre-
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dicted by linear dispersion through modulational stability (Suther-

land (2006)).

The Boussinesq study was followed by the development of weakly

nonlinear theory for internal waves in a non-Boussinesq liquid (Dosser

& Sutherland (2011b)) and in an anelastic gas (Dosser & Sutherland

(2011a)). Consistent with Boussinesq theory, anelastic waves were

found to be either modulationally stable at high vertical wavenum-

bers or unstable at low vertical wavenumbers, with marginal sta-

bility occurring for waves propagating at the fastest vertical group

velocity (Dosser & Sutherland (2011a)).

The weakly nonlinear effects of modulational stability and insta-

bility were shown to change the height of overturning significantly

when compared with linear theory predictions (Dosser & Sutherland

(2011a)): modulationally unstable wavepackets, which narrow and

peak, overturned well below the breaking level predicted by linear

theory; modulationally stable wavepackets, which broaden quickly,

overturned well above the breaking level predicted by linear theory.

In some cases, the difference of observed and linear-theory predicted

breaking heights was tens of kilometers.

These studies were performed for waves with zero or uniform

background wind. There are few studies of large-amplitude internal

waves in non-uniform background flows. Sutherland (2000) pre-

sented a fully nonlinear numerical study of the evolution of Boussi-

nesq internal waves in a uniform shear flow with uniform strat-

ification (Sutherland (2000); Sutherland & Linden (1999)). The

shear flow was oriented with flow speed increasing with height, its

direction oriented opposite to the horizontal phase speed of the in-

cident wavepacket. For a rightward, upward-propagating wave, the

negative shear was established so that, according to linear theory,

at a certain height, wave reflection would occur due to Doppler-
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shifting by the background wind. Explicitly, this occurred where

the Doppler-shifted wave frequency matched the background buoy-

ancy frequency (Sutherland (2010)).

Consistent with linear theory, small-amplitude waves propagated

upward to the reflection level and then propagated downward. How-

ever, for moderately large-amplitude waves, significant momentum

was found to transmit across the reflection level. This was shown

to result from the positive shear associated with the wave-induced

mean flow canceling the negative background shear.

Being restricted to the Boussinesq approximation, the study by

Sutherland (2000) of moderately large-amplitude waves in retro-

grade, uniform shear did not allow for anelastic growth as in Dosser

and Sutherland (2011a), though the latter study did not include

shear. As the next step in developing an understanding of mo-

mentum transport by atmospheric internal waves, in this study we

synthesize Sutherland (2000) and Dosser and Sutherland (2011a)

to study the evolution and momentum transport by anelastic waves

approaching a reflection level in retrograde shear.

Specifically, we assess the proportion of momentum associated

with the incident wavepacket that transmits above, reflects from

or is deposited moderately below the reflection level. Of particular

physical and theoretical interest is the evolution of incident nearly

hydrostatic wavepackets. These are modulationally stable and so

weakly nonlinear effects should retard the wavepacket growth sug-

gesting substantial reflection according to linear theory. However,

when approaching the reflection level the Doppler-shifted wavepacket

becomes modulationally unstable, suggesting the possibility of en-

hanced transmission or overturning. We examine how this behavior

changes as it depends upon the predicted height of the reflection

level relative to the predicted height at which weakly nonlinear ef-
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fects are expected to become important. Work related to this part

of this thesis has been published in Physics of Fluids (Eberly &

Sutherland (2014)).

Of further interest is the study of nonlinear, anelastic wave in-

teraction with a background where the buoyancy frequency is non-

constant. While it is a basic principle of internal waves that waves

may not propagate if their extrinsic frequency is larger than the

buoyancy frequency of the ambient fluid, observations have been

made of waves in the atmosphere which appear to tunnel through

low-buoyancy-frequency regions (Snively & Pasko (2003)). In this

study, internal waves which originated near the ground were ob-

served in the ionosphere even though such propagation would re-

quire traveling through an evanescent region in the mesosphere.

Sutherland and Yewchuk (2004) performed laboratory experi-

ments to examine internal wave propagation through finite-depth

regions of zero, low, and large buoyancy frequency. Analytical

predictions for wave transmission through these tunneling regions

were found to be in agreement with the experimental models. This

provided estimates for transmission of waves through a tunneling

region based on the depth and magnitude of the buoyancy fre-

quency change as well as the incident wave parameters. Brown

et al. (2008) analyzed a fully-nonlinear, numerical model of large-

amplitude Boussinesq wavepackets as they propagated through a

tunneling region. They found that transmission across the evanes-

cent region was enhanced with increased wavepacket amplitude.

Nault and Sutherland (2008) further developed the study of wave

tunneling comparing nonlinear, anelastic models of small-amplitude

waves to predictions made by a Fourier-ray solution for energy loss

through a duct.

Another part of the research presented here examines fully non-
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linear, anelastic, numerical models of small-amplitude internal waves

as they propagate through an evanescent, tunneling region. These

numerical results are compared to an analytical solution for wave

transmission through an evanescent region.
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Chapter 2

Theory

2.1 Governing Equations

For simplicity, we consider an isothermal atmosphere with temper-

ature T0. From the ideal gas law and hydrostatic balance, the back-

ground density, ρ̄, and pressure, p̄, decrease with height, z, expo-

nentially as

ρ̄ = ρ0 exp(−z/Hρ), (2.1)

and

p̄ = p0 exp(−z/Hρ), (2.2)

where ρ0 is the reference density, p0 = ρ0RaT0 is the reference pres-

sure, Ra is the gas constant for air, and Hρ is the density scale

height. In an isothermal atmosphere, the density scale height is

Hρ =
RaT0

g
, (2.3)

in which g is gravity. The background potential temperature is

θ̄ = T̄ (p̄/p0)
−κ, (2.4)

where T̄ is the temperature profile of the atmosphere and κ = 2/7

for an ideal diatomic gas. For an isothermal atmosphere, as is the

assumption made here, the background potential temperature may
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be rewritten in terms of the density scale height by using (2.2) and

(2.3) as

θ̄ = θ0e
z/Hθ , (2.5)

where θ0 = T0 is the potential temperature at z = 0, and

Hθ = κ−1Hρ. (2.6)

The stratification of the atmosphere is represented by the squared

buoyancy frequency,

N 2 ≡ g

θ̄

dθ̄

dz
. (2.7)

In particular, in uniform stratification N 2 = g/Hθ is constant.

2.2 Anelastic Wave Solutions

When viscosity is not considered, the equations of motion for a fully

nonlinear anelastic gas are as follows:

Du

Dt
= − ∂

∂x

(
p

ρ̄

)
(2.8)

Dw

Dt
= − ∂

∂z

(
p

ρ̄

)
+
g

θ̄
θ, (2.9)

Dθ

Dt
= −wdθ̄

dz
, (2.10)

and the continuity equation under the anelastic approximation is

∇ · (ρ̄~u) = 0. (2.11)

The material derivative seen in (2.8) and (2.10) is D/Dt = ∂t +

~u · ∇, where ∇ ≡ (∂x, ∂z). In this case, ~u = (u,w) where u and

w represent the horizontal and vertical velocity components of the

flow, respectively.

11



It should be noted that the Coriolis force is neglected here. An

analysis of the Rossby number confirms that the Coriolis effect has

no significant impact on the flow. The Rossby number is defined as

Ro =
U

fL
, (2.12)

Where U and L are the velocity and length scales respectively and f

is the Coriolis frequency, f = 2Ω sinϕ where Ω is the rotation rate

of the Earth and ϕ is the latitude of interest. Taking the length

scale of internal gravity waves in the atmosphere to be on the order

of tens of kilometers and the time scale, T = L/U , to be on the

order of hundreds of seconds (Fleming et al. (1988)), we find that

the Rossby number is on the order of 102 and is sufficiently high

that the Coriolis terms may be neglected.

For small-amplitude, linear waves without advection, equations

(2.8), (2.9), and (2.10) may be written as,

∂u

∂t
= − ∂

∂x

(
p

ρ̄

)
, (2.13)

∂w

∂t
= − ∂

∂z

(
p

ρ̄

)
+
g

θ̄
θ, (2.14)

and
∂θ

∂t
= −wdθ̄

dz
. (2.15)

Using the continuity equation, (2.11), we write ~u in terms of the

streamfunction, Ψ, as,

~u =

(
−1

ρ̄

∂Ψ

∂z
,
1

ρ̄

∂Ψ

∂x

)
. (2.16)

The spanwise vorticity field may be found by ζ ≡ ∇× ~u giving,

∂ζ

∂t
= −g

θ̄

∂θ

∂x
, (2.17)
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and

ζ = −1

ρ̄

(
∇2Ψ− 1

ρ̄

dρ̄

dz

∂Ψ

∂z

)
. (2.18)

Defining Hρ ≡
(
−1
ρ̄
dρ̄
dz

)−1

simplifies (2.18) to,

ζ = −1

ρ̄

(
∇2Ψ +

1

Hρ

∂Ψ

∂z

)
. (2.19)

Equation (2.15) is recast in terms of Ψ,

∂θ

∂t
= −1

ρ̄

dθ̄

dz

∂Ψ

∂x
. (2.20)

By eliminating θ from (2.17), (2.19), and (2.20), a single equation

for the mass streamfunction may be written:

∂2

∂t2
(
∇2Ψ

)
+

1

Hρ

∂3Ψ

∂z∂t2
+N 2∂

2Ψ

∂x2
= 0, (2.21)

where N 2 =
(
g
θ̄
dθ̄
dz

)1/2

= g
Hρ
−
(
g
cs

)2

, cs =
√
γRaT , γ = 7/5, Ra is

the gas constant for dry air, and T is temperature.

A plane wave solution of the form,

Ψ =
1

2
AΨ exp i(kx+mz − ωt) exp (z/2Hρ) + c.c., (2.22)

is assumed where c.c. is the complex conjugate and ω is the fre-

quency determined by the dispersion relation,

ω2 = N 2 k2

k2 +m2 + 1
4H2

ρ

, (2.23)

with horizontal and vertical wavenumbers, k and m, respectively.

This shows that anelastic internal waves are propagating only if

the intrinsic frequency, ω, is less than N . The vertical group speed,

cgz = ∂ω/∂m, polarization relations, and other properties of small-

amplitude anelastic internal waves are summarized in Table 2.1.
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Table 2.1: The polarization relations for anelastic waves in a uniformly stratified
fluid in terms of the mass streamfunction, Ψ, defined so that ~u = 1

ρ̄
∇ × (Ψŷ).

The phase is represented by φ = kx + mz − ωt and K2 = k2 + m2 + 1/(4H2
ρ).

Derivatives of the dispersion relation used in the Schrödinger equation are given
for anelastic internal waves in a uniformly stratified fluid. The horizontal and
vertical wave numbers are k and m respectively.

Field Relation to Aψ0

Ψ = Re(ρ0AΨ0e
ıφe−z/2Hρ) AΨ0

u = Re(Au0e
ıφez/2Hρ) Au0 =

(
−ım+ 1

2Hρ

)
Aψ0

w = Re(Aw0e
ıφez/2Hρ) Aw0 = ıkAΨ0

ζ = Re(Aζ0e
ıφez/2Hρ) Aζ0 = K2AΨ0

ξ = Re(Aξ0e
ıφez/2Hρ) Aξ0 = −K

N
AΨ0

θ = Re(Aθ0e
ıφez/2Hρ) Aθ0 = θ̄′K

N
AΨ0

ρ = Re(Aρ0e
ıφe−z/2Hρ) Aρ0 = − ρ0

Hθ

K
N
AΨ0

Dispersion relation and m-derivatives
ω = Nk/K
cgz = ωm = −Nkm/K3

ωmm = −N (3m2 −K2) k/K5

Our study focuses upon the evolution of horizontally periodic,

vertically localized, quasi-monochromatic wavepackets whose verti-

cal structure is given in terms of an amplitude envelope, A(z, t).

For example using the solution form (2.22), the vertical displace-

ment field is

ξ = Aξ(z, t)e
i(kx+mz−ωt)ez/2Hρ, (2.24)

where the second exponential captures the anelastic growth pre-

dicted by linear theory and it is understood that the actual dis-

placement is the real part of the right-hand side of (2.24). The

horizontal and vertical velocity fields, u and w respectively, likewise

exhibit exponential growth as exp(z/2Hρ).
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2.3 Momentum Flux and Induced Mean Flow

Because the horizontally averaged vertical flux of horizontal mo-

mentum is defined by

FM = ρ̄〈uw〉, (2.25)

in which the angle brackets denote horizontal averaging, we see that

FM does not grow exponentially.

Because the waves are horizontally periodic, one can attribute

horizontal momentum to the waves (an exception to the “wave mo-

mentum myth” paradigm (McIntyre (1981))). Their momentum is

ρ̄U in which U is the wave-induced mean flow, given explicitly by

U(z, t) ≡ −〈ξζ〉, (2.26)

in which ζ is the spanwise vorticity (Sutherland (2001, 2010); Scinocca

& Shepherd (1992)). Using the polarization relations in Table 2.1,

it can be shown that

U =
1

2
NK|Aξ|2ez/Hρ, (2.27)

in which K2 = k2 + m2 + 1/
(
4H2

ρ

)
. It can also be shown that the

momentum flux is related to the momentum by

FM = cgz (ρ̄U) , (2.28)

which is analogous to the relationship between energy flux and en-

ergy. (This analogy is explained in detail in Fig 3.7 and associated

text of Sutherland (2010).)

2.4 Overturning Condition

Waves overturn where stratification becomes locally unstable when

total potential temperature gradient is negative:

dθ̄

dz
+
∂θ

∂z
< 0, (2.29)
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in which θ is the fluctuation potential temperature. For plane,

anelastic waves with vertical displacement amplitude Aξ0 at z = 0,

(2.29) gives the linear theory prediction for the breaking height

(Dosser & Sutherland (2011a)):

zb = 2Hρ ln

(
1

|mAξ0|

)
. (2.30)

This prediction assumes there is no background shear.

2.5 Doppler-Shifting

As a small-amplitude wavepacket moves vertically through a back-

ground wind, the extrinsic (Doppler-shifted) frequency, Ω, changes

according to

Ω = ω − Ūk. (2.31)

In particular, if Ū decreases with height, the extrinsic frequency in-

creases. Waves reflect where the extrinsic frequency of a wavepacket

matches the background buoyancy frequency, N . In the specific case

of linearly decreasing background horizontal velocity Ū = −s0z, in

which −s0 < 0 is the constant background shear, linear theory pre-

dicts the reflection height is situated at

zr =
N − ω
ks0

. (2.32)

Unlike the background flow, Ū , the wave-induced mean flow, U ,

evolves transiently as the wavepacket evolves. Although the Stokes-

drift of surface waves is relatively small even for waves near breaking

amplitudes, the wave-induced mean flow of the internal waves can

be substantial (Sutherland (2001)). For example, using (2.30) in

(2.27), the value of U at the breaking height is (1/2)NK/m2. This

can exceed the horizontal phase speed of the waves, N/K, and cer-

tainly does so for non-hydrostatic waves with m ≈ 0, which is the

16



case for waves near the reflection height. In reality, below the break-

ing height U acts weakly nonlinearly through Doppler-shifting the

waves, which in turn changes the structure of U .

2.6 The Nonlinear Schrödinger Equation

These nonlinear feedback effects are well-modeled by the nonlin-

ear Schrödinger equation (NLS) that describes the evolution of the

amplitude envelope of anelastic internal gravity waves in zero back-

ground wind (Dosser & Sutherland (2011a)):

At + cgzAz = ı
1

2
ωmmAzz − ıkUA, (2.33)

in which U is given by (2.27) and, for writing convenience, we have

defined A ≡ Aξ to be the amplitude envelope of the vertical dis-

placement field, as in (2.24). The first term on the right-hand side

of (2.33) denotes linear dispersion and the second (nonlinear) term

denotes Doppler-shifting by the wave-induced mean flow, given by

(2.27), which is strictly positive and proportional to |A|2.

2.7 Modulational Stability

In general, the modulational stability or instability of a wavepacket

is assessed by the relative signs of the coefficients of the dispersion

and nonlinear terms (Whitham (1974)). Marginal stability occurs

if ωmm = 0, corresponding to waves moving with the fastest vertical

group velocity. This occurs for vertical wavenumber mc such that

|mc/k| = 2−1/2

[
1 +

1

(2kHρ)2

]1/2

. (2.34)

In the special case of kHρ � 1, the relative vertical wavenumber of

marginally stable anelastic waves is identical to that for Boussinesq

waves (Sutherland (2006)): |mc/k| = 1/
√

2.
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If m < mc < 0 then ωmm > 0 and the wavepacket is modula-

tionally stable. Hence, the wavepacket widens at a rate faster than

that due to linear dispersion and anelastic growth of the amplitude

is reduced. This is because the wave-induced mean flow Doppler-

shifts the waves to larger vertical wavenumbers which move with

faster vertical group speed, causing the wavepacket to spread out.

For mc < m < 0, ωmm < 0 and the wavepacket is modulation-

ally unstable; the Doppler-shifted waves move with slower vertical

group speed where their amplitude is large causing the wavepacket

to narrow and steepen.

Dosser & Sutherland (2011a) estimated the height, z∆, at which

the weakly nonlinear effects become sufficiently large for the effects

of modulational stability or instability to become non-negligible:

z∆ = 2Hρ ln

(
1

Aξ0K2

√
2∆|m|
σ

)
, (2.35)

where ∆ ≈ 1 represents the magnitude of the ratio of the leading

nonlinear term to the advection term in (2.33), and σ is the vertical

extent of the wavepacket. In uniform flow, modulationally unsta-

ble waves were found to overturn between z∆ and zb due to the

accentuated amplitude growth. Modulationally stable waves were

found to propagate well above zb because their anelastic growth

rate was reduced by the enhanced spreading of the wavepacket. In

fact, for larger |m/k|, waves were able to propagate many density

scale heights above the breaking height predicted by linear theory

(Dosser & Sutherland (2011a)).

Sutherland (2000) found that when Boussinesq waves approached

a reflection level, their amplitude doubled as the incident, upward-

propagating waves combined with the reflected, downward-propagating

waves. This in turn quadrupled the wave-induced mean flow which

caused sufficiently large amplitude waves to be Doppler-shifted to
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higher frequencies and thus begin to reflect at heights below zr.

However, as the trailing edge of the wavepacket approached the re-

flection level the amplitude of the incident and reflected waves de-

creased causing a shift to lower frequency and thus a portion of the

wavepacket transmitted through the reflection level. These trans-

mitted waves eventually either reflected or dissipated at high levels

due to continual Doppler-shifting by the background wind. That

study provided criteria for when significant transmission would oc-

cur. But it did not assess relative transmission and reflection of

momentum above and below zr.

2.8 Anelastic Wave Tunneling

Of further interest is the study of internal wave interactions in non-

uniform stratification. Primary research was conducted by apply-

ing a buoyancy frequency profile with a zero-stratification region

according to

N 2(z) =

{
N 2

0 |z| > L/2

0 |z| ≤ L/2
(2.36)

where N0 is a constant buoyancy frequency, L/2 is the height above

z = 0 where N 2 becomes non-zero. Figure 2.1 shows an example of

an N 2 wave tunneling region.

We assume that Ψ = Ψ̂(z) exp [i(kx− ωt)] exp (−z/2Hρ) to sat-

isfy Equation (2.21) such that

Ψ̂′′ +

(
N(z)2

ω2
− 1

)
k2Ψ̂ = 0. (2.37)

Solutions to the initial value problem are then assumed to be of

the form

Ψ(x, z, t) = AΨ exp [i(kx+mz − ωt)] exp (−z/2Hρ). (2.38)
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−L/2
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N2
0

N2

z

Figure 2.1: A theoretical N2 tunneling profile where the buoyancy frequency is
zero in the region −L/2 < z < L/2 and N2

0 otherwise

where AΨ is the mass streamfunction amplitude and ω is given by

the dispersion relation

ω2 = N 2 k2

|K|2
. (2.39)

A piecewise function can be written to represent upward and

downward propagating waves below, in, and above the zero strati-

fication region as,

Ψ̂(z) =


A3 exp (iγz) z > L/2

A2 exp (z/δ) +B2 exp (z/δ) L/2 > z > −L/2
A1 exp (iγz) +B1 exp (−iγz) z < −L/2.

(2.40)

where γ = −
(
N2k2

ω2 − k2 − 1
4H2

ρ

)1/2

= m, and δ =
(
k2 + 1

4H2
ρ

)−1/2

.

Here, A1 and B1, respectively, represent the amplitudes of the up-

ward and downward propagating waves below the tunneling region

and A3 is the amplitude of the upward propagating transmitted

wave.

If it is assumed that the piecewise equation must adhere to the

interface conditions at z = ±L/2 that Ψ̂ must be both continuous
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ω̂
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T (ω̂, k̂)

Hρ = L

Figure 2.2: Transmission contours, T, as defined in (2.41) for a range of k̂ = kL
and ω̂ = ω/N are shown. Here, the density scale height, Hρ is taken to equal the
depth of the tunneling region.

and differentiable. Solving the resulting four equations to find A3

in terms of A1, a relationship for transmission may be found similar

to that found by Sutherland and Yewchuk (2004) for Boussinesq

waves:

T ≡ |A3|2
|A1|2

=

[
1 +

(γ2δ2 + 1)2

(2γδ)2
sinh2(L/δ)

]−1

(2.41)

A graphical representation of Equation (2.41) is shown in Figure

2.2
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Chapter 3

Numerical Methods

3.1 Fully Nonlinear Anelastic Code

The equations used in the code were non-dimensionalized by using

the time scale, N−1. For all cases, N remained fixed. Likewise, the

length scale, k−1, was fixed in all simulations. In what follows, the

equations and analyses are given in units of k and N . All simu-

lations were done using a fully nonlinear, 2D, anelastic code that

implicitly solved for spanwise vorticity, ζ, and potential tempera-

ture, θ. For now excluding viscosity and diffusion, the vorticity

equation is (Dosser & Sutherland (2011a))

Dζ

Dt
= − 1

Hρ
wζ − g

θ̄

∂θ

∂x
, (3.1)

and the internal energy equation is

Dθ

Dt
= −wdθ̄

dz
. (3.2)

Particularly to avoid the exponential growth of small-scale dis-

turbances near the top of the domain, the code solved the equations

of motion written in terms of variables that filtered out the anelas-

tic growth predicted by linear theory. For example, the anelastic-

filtered (“hatted”) variables representing spanwise vorticity, vertical
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displacement, and horizontal and vertical velocity are given implic-

itly by (ζ, ξ, u, w) = (ζ̂ , ξ̂, û, ŵ)ez/2Hρ. The details of the transfor-

mation of (3.1) and (3.2) to anelastic-filtered variables are provided

in Appendix A.

Thus, with the inclusion of diffusion terms, (3.1) and (3.2) are

∂

∂t
ζ̂ = −Ū ζ̂x + ez/2Hρ

[
−ûζ̂x − ŵζ̂z −

3

2Hρ
ŵζ̂

]
+N 2ξ̂x + Cζ∇2ζ̂ ,

(3.3)
∂

∂t
ξ̂ = −Ū ξ̂x+ez/2Hρ

[
−ûξ̂x − ŵξ̂z −

(
1

2Hρ
+

1

Hθ

)
ŵξ̂

]
+ŵ+Cθ∇2ξ̂,

(3.4)

in which the advective terms of the material derivative, including

the background mean flow, have been put on the right-hand side

of the equations. Diffusion terms are included in Equations (3.3)

and (3.4) for numerical stability but are not intended to accurately

reflect the physics of viscous diffusion of waves in the atmosphere.

Also, (3.2) has been recast in terms of the approximate vertical

displacement using ξ ≡ −θ/(dθ̄/dz). The anelastic-filtered mass

streamfunction, ψ̂, is implicitly related to vorticity using (A.3) and

(A.11) to give

ζ̂ = −∇2ψ̂ +
1

4H2
ρ

ψ̂. (3.5)

This is inverted to find ψ̂ for given ζ̂. The anelastic-filtered velocities

are found from (A.1) and (A.2):

û = −∂ψ̂
∂z

+
1

2Hρ
ψ̂, (3.6)

ŵ =
∂ψ̂

∂x
. (3.7)

In order to ensure numerical stability, but not at the expense of

excessive wave damping, the coefficients Cζ and Cθ of the dissipation
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terms Cζ∇2ζ̂ and Cθ∇2ξ̂ were chosen to be zero throughout the do-

main for waves with horizontal wavenumber less than 0.06k as waves

at these wavenumbers would be the result of wave breaking and

would not significantly affect wavepacket propagation. For larger

horizontal wavenumbers, Cζ = Cθ = 10−4N/k2 throughout most

of the domain. Hence, small-scale noise was sufficiently damped

throughout wave propagation and breaking. To inhibit downward

propagating disturbances from the top of the domain, Cζ and Cθ

were enhanced over the top 20% of the domain. This also acted as

a sponge layer to damp out noise that tended to grow more rapidly

where the background density was small. From the bottom of the

sponge layer to the upper bound of the domain, viscosity linearly

increased a hundredfold from its background viscosity. Equations

(3.3) and (3.4) were solved using a mixed spectral, finite-difference

scheme. The code advanced in time by a leap-frog method with Eu-

ler back-steps performed every 20 time steps (Sutherland & Peltier

(1994)) to minimize splitting errors. This is done by averaging the

current fields with the fields from the previous timestep.

The vertical extent of the domain ranged from z = −30k−1 to

between 120k−1 and 300k−1 with larger values chosen in simula-

tions with greater expected height of wave reflection. This ensured

that the wavepacket remained far from both boundaries during its

evolution. Free-slip boundary conditions were used on both the

top and bottom of the domain. The domain was resolved with a

vertical grid spacing of ∆z = 0.02k−1. Horizontally, the domain

was periodic and set to resolve wavenumbers up to 16k. Doubling

the vertical spatial and horizontal wavenumber resolution had no

significant effect on the observed wave dynamics.

The code was initialized with constant background stratification,

exponentially decreasing background density ρ̄ = ρ0e
−z/Hρ, and uni-
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d) Ū

0 0.003
U/cpx

e) U = −〈ξζ〉
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UT /cpx
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f) UT

Figure 3.1: Both a) and b) show a snapshot of anelastic waves for m = −0.4k,
zr = Hρ waves at Nt = 0. The displacement field, ξ is given in a) and the

density-scaled displacement field, ξ̂, is shown in b). Figure c) shows an example
background density profile, ρ̄ and d) a background velocity profile, Ū . The wave-
induced mean flow is shown in e) and the superposition of d) and e), giving UT ,
is shown in f).

form background shear Ū = U0 − s0z with U0 and s0 constant, as

described below. Additionally, simulations were conducted with a

range of background density scale heights ranging from Hρ = 10k−1

to 30k−1. Most simulations examined the case with kHρ = 20, corre-

sponding to mesoscale atmospheric internal waves with a horizontal

wavelength of approximately 2.5km.

Superimposed on this background was an anelastic, horizontally

periodic, vertically Gaussian, quasi-monochromatic wavepacket cen-

tered at z = 0. The amplitude envelope was initialized according
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to

ξ̂(x, z, 0) =
1

2
A0 exp

(
−z2/2σ2

)
ei(kx+mz) + c.c., (3.8)

in which c.c. denotes the complex conjugate. The vertical extent

of the wavepacket was σ = 10k−1 which ensured the wavepacket

was quasi-monochromatic. The initial wavepacket was set to have

amplitude A0 = 0.05k−1, which was small enough that the polar-

ization relations of linear theory could be applied to initialize the

other fields and was large enough that weakly nonlinear effects were

expected to develop shortly after the wavepacket began to move

upward and grow anelastically. Making use of the polarization re-

lations (Table 2.1), the initial anelastic-filtered vorticity was given

as in (3.8) but with A0 replaced by −NKA0. Even at the initial

time step, there was some flow induced by the waves themselves,

U = −〈ξζ〉. However, it was small. The background flow at z = 0

was set to be U0 = −cpx where cpx = ω/k represents the initial

intrinsic horizontal phase speed of the waves. This ensured that

while the waves had small amplitude, their horizontal phase did

not change in time, which helped to visualize Doppler-shifting ef-

fects particularly when examining movies of the simulations.

An example of the initial state is shown in Figure 3.1. The dis-

placement field, ξ, is shown in a). Although these waves are verti-

cally confined to less than one density scale height, it is evident that

the anelastic-filtered ξ̂ field in b) has smaller amplitude at the lead-

ing edge of the wavepacket due to the smaller background density.

Likewise, ξ̂ is larger than ξ at the trailing edge. This difference be-

tween ξ and ξ̂ became more obvious when waves propagated upward

over many density scale heights such that ‖ξ‖ grew exponentially

and
∥∥∥ξ̂∥∥∥ remained constant until weakly nonlinear effects became

important.

Figure 3.1c) shows a typical background density profile and d)
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shows the background wind for a case where reflection occurs at

zr = Hρ. Figure 3.1e) shows the initial wave-induced mean flow,

U = −〈ξζ〉. The total flow, UT = Ū + U , is the superposition of

the wave-induced mean flow and the background shear, as shown

in Figure 3.1 f). The addition of U to Ū is barely distinguishable

from Ū alone (see Figure 3.1d), consistent with the condition that

the initial wavepacket had small-amplitude.

In an effort to investigate the behavior of modulationally stable,

marginally stable, and modulationally unstable waves, our simu-

lations focused primarily upon a range of wavepackets that had

initial wavenumbers of m = −1.4k, −0.7k, and −0.4k respectively.

Waves were allowed to propagate to various reflection heights rang-

ing from zr = Hρ to zr = 8Hρ, as set by the value of the back-

ground shear through (2.32). The initial vertical extent of the

wavepacket was also varied to ensure the wavepacket was initially

quasi-monochromatic. In most cases σ = 10k−1, but we also set

σ = 3k−1 in large |m/k| simulations.

The simulation run time was estimated from the reflection height

and the vertical group speed, cgz. The time for the wavepacket to

reach the reflection level was roughly estimated using tr = zr/cgz

and simulations were run up to time 4tr. Time steps of ∆t =

0.005N−1 were used.

The profile of horizontal momentum associated with the waves

was calculated by multiplying the difference of the total and back-

ground horizontal mean flow by the background density. We denote

the result by ρ̄〈u〉 ≡ ρ̄(UT − Ū). Consistent with Dosser & Suther-

land (2011a), we confirmed that the horizontally averaged flow, 〈u〉,
equals the predicted wave-induced mean flow, U = −〈ξζ〉 for all z

and t up to the point of wave dissipation. When the waves grew

so large that they dissipated, the associated momentum became
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irreversibly deposited to the background.

3.2 Momentum Quantification

Whether or not the waves dissipated, the total momentum

MT =

∫ zmax

zmin

ρ̄〈u〉dz, (3.9)

was conserved.

This fact was used to measure the transmission, reflection, and

deposition of momentum by waves in retrograde shear. We define

the vertically integrated momentum in the upper, middle and lower

parts of the domain by

MU =

∫ zmax

zr

ρ̄〈u〉dz, (3.10)

MM =

∫ zr

Hρ

ρ̄〈u〉dz (3.11)

and

ML =

∫ Hρ

zmin

ρ̄〈u〉dz, (3.12)

respectively.

Here, the lower bound of the upper region is zr (the linear-theory

predicted reflection height) and the upper bound of the lower region

is Hρ, one density scale height above z = 0. The upper bound of

the lower region was chosen to ensure that nearly all the momentum

associated with the initial wavepacket was contained in the lower

region at initial times and that the waves were able to propagate

back into this region at late times. The transmission, reflection,

and dissipation of waves were assessed by evaluating MT , MU , MM

and ML at late times in simulations when they were found to be
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near steady state. It was found that tmax = 4tr was a good as-

sumption for the attainment of steady state as measurements of

transmission and reflection became constant after t ' 2.5tr. These

late-time integrated total, upper-region and lower-region momenta

are denoted by M∞
T , M∞

U , and M∞
L respectively. The transmission

of waves across the reflection level is thus defined in terms of the

transmission coefficient

T ≡ M∞
U

M∞
T

. (3.13)

Similarly, the reflection coefficient is defined to be

R ≡ M∞
L

M∞
T

. (3.14)

The relative deposition of momentum below the reflection level (be-

tween the upper and lower regions) is given by

1− (T +R). (3.15)

3.3 Wave Tunneling

The wave tunneling simulations were performed using the same ba-

sic code as for the wave reflection in retrograde shear study but

with the notable difference of a user-input buoyancy frequency pro-

file. These profiles were generated using MatLab as per the speci-

fications shown in Figure 2.1. The code then solved internally for

background potential temperature according to the following rela-

tion:

θ̄ = θ0 exp

[∫ z

z0

1

g
N 2(z)dz

]
, (3.16)

where N 2(z) is the user-input buoyancy frequency profile. Due to its

negliable change with height, Hρ was assumed to remain constant

with z despite the height dependency of N 2. U was assumed to be

identically zero for this preliminary study.
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3.3.1 Wave Tunneling Momentum Quantification

Measurements of momentum were taken similarly to the procedure

detailed in Section 3.2. However, only total momentum MTT and

momentum above the evanescent region MUT was measured:

MTT =

∫ zmax

zmin

ρ̄〈u〉dz, (3.17)

and

MUT =

∫ zmax

L/2

ρ̄〈u〉dz, (3.18)

where L is defined according to (2.36). The transmission coefficient,

TM , based on momentum rather than energy, was found by dividing

the late-time integrated upper-region momentum, M∞
UT , by the late-

time integrated total momentum, M∞
TT :

TM ≡
M∞

UT

M∞
TT

. (3.19)
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Chapter 4

Qualitative Results

4.1 Small Amplitude Wave Reflection from Uni-

form Retrograde Shear

As a test of the code, simulations are run for the case where waves

are predicted to reflect at zr = Hρ. Because the waves propagated

only one density scale height before reaching the reflection level,

their amplitude is expected to remain sufficiently small that they

should evolve according to linear theory.

The results of simulations with m = −0.4k, m = −0.7k and

m = −1.4k are shown in Figures 4.1, 4.2 and 4.3, respectively. In

all cases, Hρ = 20k−1. The initial state for the simulation results in

Figure 4.1 are shown in Figure 3.1.

In all cases, zr (indicated by the dashed line) is below the height,

z∆ given by (2.35), at which weakly nonlinear effects are expected to

become significant (dotted line). Because z∆ > zr in all simulations

the wavepacket evolution is well-predicted by linear theory.

In the case where m = −0.4k (Fig. 4.1), as the waves approach

the reflection level, the phase lines of the vertical displacement field

tilt upward (Figure 4.1b), and then tilt downward to the right af-

ter reflection (Figure 4.1c). The wave-induced mean flow, U , and

the difference of the horizontally averaged flow and the background,
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〈u〉 ≡ 〈UT 〉−Ū , is shown to the right of each displacement field plot.

Here, U and 〈u〉 are small compared to cpx, indicating that there

is insignificant Doppler-shifting of the waves by the wave-induced

mean flow. That both curves are close to overlapping initially is

consistent with the assertion that 〈u〉 is well represented by the cor-

relations U ≡ −〈ξζ〉. Upon reflection, the profile of 〈u〉 lies moder-

ately above the profile of U because the wavefield is composed of a

superposition of the upward and downward waves. When the waves

propagate well below the reflection level for Nt� 200 (not shown)

the curves come close to overlapping once more. Thus negligible

momentum is irreversibly lost to the background flow. The dis-

crepancy between the wave-induced mean flow and the horizontally

averaged background flow at late times is due to viscosity which,

though small, still dissipated the waves to small degree.

For the case where the wavepacket is moving near its fastest ver-

tical group speed and m = −0.7k, Figure 4.2, where the dotted line

represents z∆ as in Figure 4.1, similar linear behavior is observed.

It can be noted that the time for the wavepacket to reach the re-

flection level is significantly less than in the previous case where

m = −0.4k, Fig. 4.1. Finally, when m = −1.4k (Fig. 4.3) the

wavepacket again reflects linearly as expected.

4.2 Nonlinear Reflection

If the reflection level is situated above the height at which weakly

nonlinear effects become important, the evolution of the wavepack-

ets is qualitatively different. This is illustrated in Figures 4.4, 4.5,

and 4.6 which shows the counterpart of the simulations in Fig-

ures 4.1, 4.2, and 4.3 but with zr = 4Hρ. In all simulations, the

reflection level is located above z∆ but below the overturning level
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Figure 4.1: Wavepacket evolution in a simulation with zr = Hρ, A0 = 0.05k−1,
and kHρ = 20 for m = −0.4k. Results are shown for three times as indicated.
Each plot shows (left) the anelastic-filtered vertical displacement field normalized
by horizontal wavelength, ξ̂/λx (grayscale) and plots (right) of the wave-induced
mean flow, U , (black line) compared with the horizontally averaged flow, 〈u〉
(gray line). The dashed lines indicate the predicted reflection height, zr, and
the dotted lines indicate the height, z∆, at which weakly nonlinear effects are
expected to become important. Explicitly, z∆ = 3.2Hρ. The corresponding
overturning height in the absence of shear as predicted by linear theory is (not
shown) zb = 8.0Hρ.

zb. Explicitly, in Fig. 4.4 for which m = −0.4k, z∆ = 3.2Hρ <

zr = 4Hρ < zb = 8.0Hρ, in Fig. 4.5 for which m = −0.7k,

z∆ = 3.2Hρ < zr = 4Hρ < zb = 6.7Hρ and in Fig. 4.6 for which

m = −1.4k, z∆ = 2.6Hρ < zr = 4Hρ < zb = 5.3Hρ.

As the wavepacket with m = −0.4k approaches the reflection

level (Figure 4.4b), the phase lines tilt somewhat toward the ver-

tical but, because the wavepacket is modulationally unstable, the

wavepacket narrows and grows in amplitude. The magnitude of the

wave-induced mean flow grows substantially, increasing to 0.16 cpx '
0.15N/k over a distance of Hρ. From (2.32), the background shear

in this case is −s0 = −(N − ω)/(4kHρ) ' −0.018N/(kHρ), which

is smaller in magnitude than the characteristic shear, ||dU/dz||, as-

sociated with the wave-induced mean flow. Thus the wave-induced

mean flow partially shields the wavepacket from the influence of the

background shear, permitting it to propagate above the reflection
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Figure 4.2: Wavepacket evolution in a simulation with zr = Hρ, A0 = 0.05k−1,
and kHρ = 20 for m = −0.7k. Plots and lines indicate the same fields as shown
in Figure 4.1. z∆ = 3.2Hρ and zb = 6.7Hρ.
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Figure 4.3: Wavepacket evolution in a simulation with zr = Hρ, A0 = 0.05k−1,
and kHρ = 20 for m = −1.4k. Plots and lines indicate the same fields as shown
in Figure 4.1. z∆ = 2.6Hρ and 5.5Hρ.

level. This becomes clear by time Nt = 600 (Figure 4.4c) when

a relatively small portion of the wavepacket has reflected but the

rest has transmitted across the reflection level. At this time the

horizontally averaged flow, 〈u〉, peaks well above the reflection level

with values comparable to cpx. U is small compared to 〈u〉 at this

time indicating that the difference in the mean horizontal flow from

the background is due to irreversible deposition of momentum from

the wave to the background.

The simulation for a marginally stable wavepacket with m =

−0.7k, and zr = 4Hρ is shown in Figure 4.5. Despite the wavepacket’s

marginal stability, the wave-induced mean flow partially shields
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Figure 4.4: As in Fig. 4.1 but for simulations in which the background shear is
weaker such that zr = 4Hρ. The values of z∆ and zb are the same as those given
in the caption of Fig. 4.1.
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Figure 4.5: As in Fig. 4.2 but for simulations in which the background shear is
weaker such that zr = 4Hρ. The values of z∆ and zb are the same as those given
in the caption of Fig. 4.2.

the wavepacket from the background flow as in the modulation-

ally unstable case (Fig. 4.4). Here the background shear is s0 =

0.0023N/(kHρ) which is small enough when compared to the charac-

teristic shear that the wavepacket partially transmits and continues

to grow to 0.6cpx at its final breaking point of 4.5Hρ.

The corresponding simulation for a modulationally stable wavepacket

is shown in Figure 4.6. Even though the amplitude envelopes of

modulationally stable wavepackets spread and do not grow as fast

as predicted by linear anelastic theory, only a small portion of

the wavepacket reflects and undergoes downward propagation. In-

stead, the shear associated with the wave-induced mean flow peaks
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Figure 4.6: As in Fig. 4.3 but for simulations in which the background shear is
weaker such that zr = 4Hρ. The values of z∆ and zb are the same as those given
in the caption of Fig. 4.3.

just below the reflection level, (Figure 4.6), with a small portion

of the wavepacket transmitting and continuing upward propaga-

tion. The wave-induced mean flow below zr at this time peaks at

0.49 cpx ' 0.28/N/k, changing over half a density scale height. The

shear associated with this is about equal to the background shear of

magnitude s0 ' 0.10N/(kHρ), but not so large that the wavepacket

is shielded from the effects of the background flow as in Fig. 4.4

. Unlike the previous case, the wavepacket does not peak and con-

tinue upward propagation. Long after reflection (Figure 4.6c) the

majority of the momentum associated with the wavepacket is irre-

versibly deposited to the background with an increase to the back-

ground mean flow just below the reflection level due to the leading

portion of the reflected wavepacket combining with the upward-

propagating trailing portion. Superpositioning of the wavepacket

upon itself leads to a checkerboard pattern but the waves do not

exactly cancel. This leads to amplitude growth and wave breaking

where the waves superimpose in phase.

The transport and deposition of momentum is clearly illustrated

by vertical time series 〈u〉, as shown in Figure 4.7. Figure 4.7a-

c) show three simulations for the case in which zr = Hρ < z∆ so
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that weakly nonlinear effects remain insignificant. In particular, the

time series in Figure 4.7a), b), and c) correspond to the simulations

shown in Figures 4.1, 4.2 and 4.3, respectively. Figure 4.7d-f) show

corresponding time series from simulations with zr = 4Hρ > z∆,

with Figures 4.7d), e) and f) corresponding to the simulations shown

in Figures 4.4, 4.5, and 4.6, respectively.

In the simulations with z = Hρ, for which the waves remain small

amplitude while reflecting, the mean flow grows as the wavepacket

approaches zr and then returns approximately to its initial value

after reflecting and returning to its initial height. Some asymme-

try in the mean flow associated with the upward- and downward-

propagating wavepacket is observed in the case with m = −0.4k as

a result of linear dispersion (Fig. 4.7a): because the vertical extent

of the incident wavepacket is σ = 10k−1 = 4|m|−1 the wavepacket

is more broad-banded, as compared to simulations with |m| = 0.7k

and 1.4k.

In the three simulations with zr = 4Hρ, momentum is deposited

to the background resulting in irreversible acceleration of the mean

flow in each case. In the modulationally unstable case with m =

−0.4k (Figure 4.7d), momentum deposition occurs shortly after the

wavepacket crosses the reflection level, though still well below the

predicted breaking level (at zb = 8.0Hρ). The acceleration of the

background increases as the wavepacket continues to propagate up-

ward into the lower-density background until most of its associated

momentum has dissipated. The maximum increase in flow speed

occurs near z = 5.5Hρ.

These results differ from those for simulations with m = −0.4k in

the Boussinesq study of Sutherland (2000), in which large-amplitude

wavepackets deposited their momentum near but below zr. Here,

because the waves grow anelastically, the increasing amplitude of
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the disturbance above the reflection level allows for the continual de-

position of momentum with consequent increasing mean flow speeds

with height.

In the marginally stable case with m = −0.7k (Fig. 4.7e), the

evolution of the mean flow is similar to the modulationally unstable

case except the height of the maximum mean flow deposition occurs

at a moderately lower height, z ' 5Hρ. This is to be expected

because, as the wavepacket approaches the reflection level, the waves

are Doppler-shifted to lower vertical wavenumbers and so become

modulationally unstable.

In the modulationally stable case with m = −1.4k, both momen-

tum deposition and reflection is evident after propagating above z∆

and reflecting at zr, as shown in Figure 4.7f). In this case some

background flow acceleration occurs near the reflection level but

below the predicted breaking height of zb = 5Hρ. Even though this

wavepacket is modulationally stable, as the wavepacket reflects, the

leading edge of the wavepacket is superimposed upon the upward-

propagating trailing edge and thus amplitude is doubled at this lo-

cation. Nonlinear effects are enhanced at the reflection level which

drives the wavepacket to breaking amplitudes.

4.3 Wave Tunneling

Simulations were performed for small-amplitude wavepackets where

A0 = 0.005k−1 which propagate in a zero-shear, variable background

buoyancy frequency according to Equation (2.36) and Figure 2.1

where Hρ = 20k−1 and the evanescent region is either kL = 0.75 or

kL = 1.5.

Figures 4.8, 4.9, and 4.10, display snapshots of these simulations.

In all cases, there is at least partial reflection of the wavepacket off
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the evanescent or mixed region which is in line with linear theory

predictions. Partial transmission of the wavepacket is also seen, to

some extent, in each simulation as predicted by (2.41).

Three values of ω were chosen for Figures 4.8, 4.9, and 4.10 with

ω = 0.5N , ω = 0.75N , and ω = 0.9N respectively. The numerical

code became unstable for ω < 0.5N due to small vertical scales and,

thus, simulations under such parameters are not discussed here.

Additionally, a thin mixed region (kL = 0.75) and a wide mixed

region (kL = 1.5) were considered for each ω given above. In all

cases, stratification resumes at a small distance above the mixed

region thus ducting theory (Sutherland & Yewchuk (2004)) may be

applied.

The wavepackets reflect as they reach the bottom of the mixed

region. Also similar to Figure 4.6, wave superpositioning occurs

just below the mixed region leading to large increases in both the

mean and wave-induced mean flows. After reflection, the portion of

the wave packet which was not transmitted across the mixed region

propagates downward.

In addition to wave reflection, it is very clear that the wavepacket

has partially transmitted through the mixed region. Transmission

across the mixed region is seen weakly for Figs. 4.8, 4.9, and 4.10

(a-c) and strongly for Figs. 4.8, 4.9, and 4.10 (d-f) in accordance

with “leaky” ducts (Walterscheid et al. (2001)). This is a signifi-

cant observation because more computationally cost effective ray-

tracing techniques fail to capture this behavior (Nault & Sutherland

(2008)).
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In all cases kHρ = 20. Dashed and dotted lines represent the heights, zr and
z∆, respectively. The linear theory predicted breaking heights (in the absence of
nonuniform shear) are a,d) zb = 8.0Hρ, b,e) zb = 7.0Hρ and c,f) zb = 5.5Hρ. The
breaking level is shown in f) as the short-dashed line.
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Figure 4.8: Snapshots of wavepacket evolution for a background with Hρ = 20,
s0 = 0, A0 = 0.005k−1, and ω = 0.5N . kL = 1.5 for the top row and kL = 0.75
for the bottom. Dotted lines represent the bottom and top of the N2 = 0 region
- the region is thin compared to the vertical extent of the simulation such that
the lines appear to overlap. The left panels show the scaled displacement field of
the waves while the right plot shows an overlap of the wave-induced mean flow,
U in black, and the horizontally averaged mean flow, 〈u〉 in gray.
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Figure 4.9: As in Figure 4.8 but with ω = 0.75N

−0.5

x/λx

−0.5

0

2

4

z/
H

ρ

−0.001 0 0.001

ξ̂/λx

a) kL = 1.5, ω = 0.9N , Nt = 0

0 0.00015
〈u〉/cpx, U/cpx

0 0.00015 −0.5

x/λx

−0.5

b) kL = 1.5, ω = 0.9N , Nt = 150

0 0.00025
〈u〉/cpx, U/cpx

0 0.00025 −0.5

x/λx

−0.5

c) kL = 1.5, ω = 0.9N , Nt = 300

0 0.00015
〈u〉/cpx, U/cpx

0 0.00015

−0.5

x/λx

−0.5

0

2

4

z/
H

ρ

d) kL = 0.75, ω = 0.9N , Nt = 0

0 0.00015
〈u〉/cpx, U/cpx

−0.5

x/λx

e) kL = 0.75, ω = 0.9N , Nt = 150

0 0.00035
〈u〉/cpx, U/cpx

−0.5

x/λx

f) kL = 0.75, ω = 0.9N , Nt = 300

0 0.0025
〈u〉/cpx, U/cpx

0

z/
H

ρ

Figure 4.10: As in Figure 4.8 but with ω = 0.9N
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Chapter 5

Quantitative Results

5.1 Momentum Calculations for Waves in Ret-

rograde Shear

We crudely characterize the location of momentum deposition in

simulations run with wide-ranging parameters by considering the

vertically integrated momentum measurements in three domain re-

gions according to (3.9), (3.10), and (3.12). Figure 5.1 shows how

these change in time during a simulation in which Hρ = 20k,

m = −1.4k and a) zr = 2Hρ and b)zr = 4Hρ. In all cases,

A0 = 0.05k−1.

As expected from momentum conservation, MT (dotted line) re-

mains constant for the duration of the simulations. In both cases,

the vertically integrated momentum in the lower domain, ML (dashed

line), is initially equal to MT because the entire wavepacket is in

this region. As time progresses and the wavepacket propagates up-

ward toward the reflection level, momentum leaves the lower domain

and ML decreases while the momentum MM in the middle region

increases.

For the simulation results in Figure 5.1a), the wavepacket reaches

the reflection level around Nt = 100. At this time, a portion of the

wavepacket extends evanescently across the reflection level result-
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ing in an increase of the vertically integrated momentum in the

upper region, MU (solid line). During reflection, MU and ML do

not sum to MT . The difference is associated with the momen-

tum between the upper and lower regions (Hρ ≤ z ≤ zr). After

reflection the wavepacket propagates downward into the lower re-

gion once more as evident by the increase in ML and decrease in

MU . After Nt = 300, the vertically integrated momenta in each

domain have reached steady state with MT = M∞
T , ML = M∞

L ,

and MU = M∞
U for the remainder of the simulation. Even after

propagating over only two density scale heights, the waves grow

sufficiently in amplitude that weakly nonlinear effects became im-

portant. The wavepacket mostly reflects (similar to the fully linear

simulation with zr = Hρ, Figure 4.1c). However, at late times some

momentum is permanently deposited above the reflection level as

indicated by the non-zero value of M∞
U = 0.78M∞

T . Furthermore,

M∞
U +M∞

L = 0.84M∞
T is less than M∞

T , indicating that 16% of the

total momentum was deposited between z = Hρ and zr.

For the results in Figure 5.1b (corresponding to the simulations

shown in Figure 4.6 and Figure 4.7f) the wavepacket reflection level

is zr = 4Hρ > z∆, in which case anelastic growth to weakly nonlinear

amplitudes is significant before the wavepacket reaches the reflection

level. As in Figure 5.1a), when the wavepacket reaches the reflection

level, a portion of the wavepacket extends across z = zr. Here, how-

ever, the portion of the wavepacket that has crossed the reflection

level irreversibly deposits its momentum to the background locally

accelerating the background winds. At late times, M∞
U = 0.05MT is

non-zero indicating permanent deposition of momentum above the

reflection level. In the lower region, M∞
L only reaches 25% of its

original value. The non-zero difference, M∞
T − (M∞

L +M∞
U ) = 0.61

is the fraction of incident momentum irreversibly deposited to the
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background flow below the reflection level.

From the values of M∞
U , M∞

L , and M∞
T determined for a wide

range of simulations, we compute the transmission and reflection

coefficients using (3.13) and (3.14) respectively. These are plotted

in Figure 5.2 along with values of 1− (T +R), which is the relative

amount of momentum lost to the background between Hρ and zr.

In all cases where zr = Hρ, T ' 0 and R ' 1. In these low zr/Hρ

cases, both z∆ and zb are significantly higher than the maximum

amplitude reached by the wavepacket, as seen in Figures 4.1 and

Figures 4.7a-c).

5.2 Transmission and Reflection Coefficients

Figure 5.2a) shows that in weaker shear (so that waves propagate

higher before encountering a reflection level and so become increas-

ingly nonlinear due to anelastic growth), less momentum is returned

to the lower domain at late times. Instead, the wavepacket either

transmits above the reflection level or dissipates between z = Hρ

and zr. Whether significant transmission above zr occurs (Fig-

ure 5.2b) or momentum is deposited moderately below zr (Fig-

ure 5.2c) depends upon the initial vertical wavenumber, as indicated

by the different symbols on each curve.

Of the four relative vertical wavenumbers examined, the steepest

decrease in the reflection coefficient with increasing zr/Hρ occurs

for the modulationally unstable case (m = −0.4k), with only a

small amount of reflection occurring for zr & 6Hρ. Up to 60% of

the momentum is transmitted above the reflection level (for zr =

4Hρ), but as the shear weakens and zr increases, the transmission

coefficient decreases and most momentum is deposited below the

reflection level for z & 6Hρ. Similar behavior is observed for the
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marginally stable case with m = −0.7k.

In the simulations with modulationally stable waves (m = −1.4k

and −3k), the reflection decreases less rapidly for m = −1.4k and

much less rapidly for m = −3k. Transmission remains small as

zr/Hρ increases. The enhanced spreading and relative decrease in

the wavepacket amplitude gives a result closer to that predicted by

linear theory. The decrease in reflection coefficient with increasing

zr/Hρ is accounted for by increasing deposition of momentum mod-

erately below zr. In part this occurs because the breaking level, zb,

predicted by linear theory in the absence of shear also occurs be-

low zr if zr/Hρ & 4Hρ. Dosser & Sutherland (2011a) showed that

weakly nonlinear effects result in modulationally stable wavepackets

breaking well above zb. But this effect combined with wave reflec-

tions due to background shear results in momentum deposition and

heights near zr with more reflection and less momentum deposition

occurring as |m/k| increases.

5.3 Varying Horizontal Wavelength

Further simulations were also run to examine how the horizontal

wavelength relative to density scale height affects transmission in

the modulationally stable cases with m = −1.4k and m = −3k. In

the latter case we set the wavepacket width to be σ = 3k−1, which

still ensures the wavepacket is quasi-monochromatic. kHρ ranged

from 25 to 3 corresponding to the relative horizontal wavelength,

λx/Hρ, ranging from 0.3 to 2.

Figure 5.3 shows the computed reflection and transmission coeffi-

cients from simulations with the reflection height fixed at zr = 6Hρ.

Figure 5.3a) shows the reflection and transmission coefficients de-

termined for simulations where σ = 10k−1 and m = −1.4k (as
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indicated by the upward triangles in Figure 5.2 for the specific

case with zr = 6Hρ). As k decreases (λx increases) relative to Hρ,

greater reflection but less transmission is observed. For a narrower

wavepacket with σ = 3k−1 and m = −3k, similar behavior was ob-

served. In these cases the reflection coefficient is smaller indicating

that what does not transmit for the long wavelength cases deposits

momentum near the reflection level.

5.4 Wave Tunneling

Momentum transmitted above the evanescent region was measured

for the six simulations shown in Figures Figures 4.8, 4.9, and 4.10

according to Equation (3.19). These data were then compared to

the analytic prediction for transmission coefficient for anelastic, tun-

neled waves given in Equation (2.41). This comparison is shown in

Figure 5.4

When compared to predictions made by (2.41) measured trans-

mission coefficients (using the momentum-integration method de-

scribed in Section 3.3.1) were found to be within 2% error of theory.

Thus, it is reasonable to conclude that a fully nonlinear anelastic

numerical code may accurately predict small-amplitude, tunneling

wavepackets.
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Chapter 6

Summary and Conclusions

The fully nonlinear anelastic equations were solved to examine the

evolution of quasi-monochromatic internal wavepackets in back-

ground uniform retrograde shear. If the reflection level was situ-

ated at sufficiently low altitude that the wave amplitude remained

small as it approached the level, the wavepacket entirely reflected

as predicted by linear theory. However, if it was situated above

the height, z∆, at which weakly nonlinear effects become important,

then the wavepacket partially transmitted across the reflection level

and some portion of the wavepacket permanently deposited momen-

tum to the background flow below the reflection level. If zr was well

above z∆, all momentum for nonhydrostatic waves with |m| . 0.7k

was deposited below zr even though zr < zb. When waves are

modulationally unstable, the wave-induced mean flow becomes so

large that it effectively shields the wavepacket from the effect of the

background flow which, in turn, allows a significant portion of the

wavepacket to transmit through the reflection level and continue up-

ward propagation until anelastic growth becomes so large that the

wave overturns. Conversely, when waves are stable, the wavepacket

either reflects linearly (when zr < z∆) or deposits a significant por-

tion of momentum to the background flow just below the reflection

level (when z∆ < zr < zb) due to wave superposition. The wave-
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induced mean flow, its influence upon the modulational stability of

the wavepacket, and its transient modification of the background

wind determined the transmission, reflection, and relative momen-

tum deposition coefficients.

Transmission was enhanced for modulationally unstable and marginally

stable wavepackets whose amplitude envelope narrowed and grew

sufficiently to counteract the Doppler-shifting influence of the back-

ground wind. Waves that transmitted continue to be Doppler-

shifted and deposited their momentum over a vertical range above

zr. If zr was very large, though still smaller than zb, anelastic growth

was so significant that waves dissipated before reaching the reflec-

tion level.

While Dosser & Sutherland (2011a) showed that modulationally

stable waves (with large |m/k|) broke well above the breaking level

predicted by linear theory, this study of waves in retrograde shear

showed enhanced reflection and deposition below zb even if zb >

zr. This was due to transient amplitude growth as the leading,

downward-propagating flank of the wavepacket superimposed upon

the trailing, upward-propagating flank.

In order to make a more direct comparison between our numer-

ical results and (more significantly energy-containing) atmospheric

internal waves, we examined the impact of momentum transmis-

sion, reflection and deposition upon increasing relative horizontal

wavelength expressed through decreasing kHρ. For kHρ . 6, corre-

sponding to horizontal wavelengths λx & 8 km, reflection was neg-

ligible with up to 20 % of the momentum transmitting across the

reflection level and the remainder being deposited moderately below

the reflection level.

At mid-latitudes in the northern hemisphere winter the typical

shear and stratification in the stratosphere is |s0| ' 0.0018s−1 and
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N ∼ 0.01s−1 (Fleming et al. (1988)). Taking Hρ = 8.4km and con-

sidering a wavepacket with initial vertical displacement amplitude

approximately 1% of the horizontal wavelength, corresponding ap-

proximations can be made for R and T , and for the altitude, zd,

at which peak acceleration of the background flow occurs due to

momentum deposition from either wave superposition or large-scale

anelastic growth. These results are given in Table 6.1.

For example, first consider an internal wave with m = −3k

(ω ' 0.003) at the tropopause. If the horizontal wavelength is

λx = 25 km, the predicted reflection height is 15 km above. Our

simulations show that the entirety of the wavepacket will be re-

flected back towards the troposphere. Analogous to the simulations

shown in Figs. 4.3 and 5.2, the wavepacket in this scenario has not

undergone sufficient anelastic growth for nonlinear effects to become

significant. Hence it is reasonable to predict that no portion of the

wavepacket will transmit above the reflection level.

Next, consider a wavepacket with m = −1.4k and λx = 84 km.

Here, zr lies above z∆ but below zb - similar to the simulation shown

in Fig. 4.6. Anelastic amplitude growth has become significant and

nonlinear effects are expected to take hold. As seen in Fig. 4.6,

Fig. 6, and Fig. 7, little transmission or reflection is expected

- in this case, only 14 % transmission and 20 % reflection. Major

momentum deposition is expected to take place just below zr due to

superpositioning of the wavepacket as it undergoes reflection. This

can be clearly seen in a similar simulation in Fig. 4.6c). Hence,

it would be expected that 66 % of the wave momentum will be

deposited 34 km above the tropopause, 20% will be reflected back

toward the tropopause and 14% will continue upward propagation

toward the stratopause.

Finally, consider a wavepacket with m = 3k and λx = 101 km.
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In this scenario, zb < zr indicating that the wavepacket will become

unstable well below the expected reflection height of 62 km. Similar

to simulations presented in Fig. 6 where zr = 8Hρ, it is expected

that the wavepacket will become unstable below zr and momen-

tum deposition will take place near zb. In this case, it would be

expected that the wavepacket will deposit its momentum roughly

32 km above the tropopause with only a small amount (1 %) con-

tinuing to propagate upward.

While the reflection of internal waves can well be represented by

2D simulations, wave breaking is an inherently three dimensional

phenomenon. However, 2D simulations have been shown to well-

capture the wave dynamics even during the early stages of wave

breaking (Lund & Fritts (2012)). The results do not attempt to

interpret, in detail, the dynamics of wave breaking but rather wave

dynamics prior to breaking and consequent momentum deposition.

The buoyancy frequency and shear was uniform for all simula-

tions. However, in the atmosphere, these change dramatically over

very large amplitudes. Further research will use a fully nonlinear

numerical code to analyze wavepacket interactions in non-uniform

background shear and with non-uniform stratification. This re-

search aims ultimately to provide more physically justifiable wave

drag parameterization schemes through measurements of momen-

tum deposition heights and strengths determined from fully resolved

simulations of propagation and breaking.

Additionally, preliminary predictive equations were derived for

transmission of anelastic internal waves through an evanescent or

mixed region. When compared to a fully nonlinear model, the mea-

sured transmission coefficients were in good agreement with theoret-

ical predictions. Although research of anelastic waves propagating

through non-uniform backgrounds is still preliminary, it is hoped
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that this research will aid in providing a foundation for fully non-

linear numerical modeling of anelastic waves propagating through

realistic atmospheres where both N 2 and Ū are z dependent. Addi-

tionally, this may provide a framework for predicting the transmis-

sion of internal waves through mixed regions in the atmosphere.
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Table 6.1: Predicted reflection height (zr), predicted breaking height (zb), predicted height at which nonlinear effects are
expected to become significant (z∆), estimated height of maximum irreversible mean flow acceleration due to overturning
(zd), estimated reflection coefficient (R), and transmission coefficient (T ), given for a range of λx and for m = −1.4k
and m = −3k. Values of R and T are estimated by scaling the results plotted Figures 5.2 and 5.3 to match typical
stratospheric conditions in northern hemisphere winter, for which s0 = 0.0018s−1 and N = 0.01s−1. In all cases the vertical
extent of the wavepacket is σ = 3k−1 and the wave amplitude at the bottom of the stratosphere (taken to be z = 0) is
A = 0.05k−1 ' 1%λx. No value of zd is given if no overturning and hence no irreversible mean flow acceleration occurs.

λx (km) m = −1.4k m = −3k

zr (km) zb (km) z∆ (km) zd (km) R T zr (km) zb (km) z∆ (km) zd (km) R T
25 9 45 31 1.0 0.0 15 32 17 1.0 0.0
42 16 45 31 16 0.90 0.01 25 32 17 25 0.78 0.01
59 23 45 30 23 0.61 0.05 36 32 17 32 0.23 0.10
84 35 44 28 34 0.20 0.14 51 32 16 32 0.05 0.03
101 44 44 26 44 0.17 0.05 62 32 16 32 0.0 0.01
118 53 44 26 44 0.05 0.0 73 32 15 32 0.0 0.0
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Appendix A

Here we derive the formulae for the basic state fields solved by the

numerical model. From the anelastic approximation to the continu-

ity equation, ∇ · (ρ̄u) = 0, it follows that one can write the velocity

components in terms of a mass streamfunction, ψ, according to

u = −1

ρ̄

∂ψ

∂z
, (A.1)

and

w =
1

ρ̄

∂ψ

∂x
. (A.2)

The spanwise vorticity is

ζ =
∂u

∂z
− ∂w

∂x
= −1

ρ̄

[
∇2ψ +

1

Hρ

∂ψ

∂z

]
, (A.3)

in which Hρ = −
(
ρ̄′

ρ̄

)−1

is the density scale height.

The fully nonlinear momentum equations for an anelastic gas are

Du

Dt
= − ∂

∂x

(
p

ρ̄

)
, (A.4)

Dw

Dt
= − ∂

∂z

(
p

ρ̄

)
+
g

θ̄
θ, (A.5)

and
Dθ

Dt
= −wdθ̄

dz
. (A.6)
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Taking the curl of the momentum conservation equations, ne-

glecting viscosity, the equation for evolution of vorticity is

Dζ

Dt
= − 1

Hρ
wζ − g

θ̄

∂θ

∂x
. (A.7)

Neglecting thermal diffusion, the internal energy equation is

Dθ

Dt
= −wdθ̄

dz
. (A.8)

Rather than work with θ, we cast the internal energy equation

more intuitively in terms of ξ, defined implicitly by

θ = −dθ̄
dz
ξ. (A.9)

The quantity ξ well approximates the vertical displacement field

if the displacement is much smaller compared with the potential

temperature scale height, Hθ. Likewise, we approximate dθ̄/dz as

locally constant upon substituting (A.9) into (A.8) to give

Dξ

Dt
= w. (A.10)

Due to the exponential decrease of ρ̄, the basic state fields are

expected to change exponentially at leading order in linear theory.

Accounting for this, we work with variables that do not exhibit such

exponential changes. These “hatted” variables are defined implicitly

by

ζ(x, z, t) = ζ̂(x, z, t)ez/2Hρ

~u(x, z, t) = ~̂u(x, z, t)ez/2Hρ

θ(x, z, t) = θ̂(x, z, t)ez/2Hρez/Hθ

ψ(x, z, t) = ψ̂(x, z, t)e−z/2Hρ

ξ(x, z, t) = ξ̂ez/2Hρ.

(A.11)

59



Relationships for the above variables to the streamfunction can

be found in Table 2.1.

By applying the scalings in (A.11) to (A.7) and (A.10), the evo-

lution equations for ζ̂ and ξ̂ are

∂ζ̂

∂t
= ez/2Hρ

[
−ûζ̂x − ŵζ̂z −

3

2Hρ
ŵζ̂

]
+N 2ξ̂x, (A.12)

and

∂ξ̂

∂t
= ez/2Hρ

[
−ûξ̂x − ŵξ̂z −

(
1

2Hρ
+

1

Hθ

)
ŵξ̂

]
+ ŵ. (A.13)

The final step is to include the background flow, Ū in (A.12) and

(A.13) giving

∂

∂t
ζ̂ = −Ū ζ̂x + ez/2Hρ

[
−ûζ̂x − ŵζ̂z −

3

2Hρ
ŵζ̂

]
+N 2ξ̂x, (A.14)

and

∂

∂t
ξ̂ = −Ū ξ̂x + ez/2Hρ

[
−ûξ̂x − ŵξ̂z −

(
1

2Hρ
+

1

Hθ

)
ŵξ̂

]
+ ŵ.

(A.15)

Including diffusion in (A.14) and (A.15) gives (3.3) and (3.4),

which are explicitly solved by the numerical code.

60



Bibliography

Andrews, D. G. & McIntyre, M. E. 1976 Planetary waves

in horizontal and vertical shear: The generalized Eliassen-Palm

relation and the mean flow acceleration. J. Atmos. Sci. 33, 2031–

2048.

Booker, J. R. & Bretherton, F. P. 1967 The critical layer for

internal gravity waves in shear flow. J. Fluid Mech. 27, 513–539.

Brown, G. L., Bush, A. B. G. & Sutherland, B. R. 2008

Beyond ray tracing for internal waves. Part II: Finite-amplitude

effects. Phys. Fluids 20, 106602–1–13, doi:10.1063/1.2993168.

Dosser, H. V. & Sutherland, B. R. 2011a Anelastic internal

wavepacket evolution and stability. J. Atmos. Sci. p. in press.

Dosser, H. V. & Sutherland, B. R. 2011b Weakly nonlin-

ear non-Boussinesq internal gravity wavepackets. Physica D 240,

346–356.

Dunkerton, T. J. 1981 Wave transience in a compressible atmo-

sphere. Part I: Transient internal wave, mean-flow interaction. J.

Atmos. Sci. 38, 281–297.

Eberly, L. E. & Sutherland, B. R. 2014 Anelastic internal

wave reflection and transmission in uniform retrograde shear’.

Phys. of Fluids 26, 026601.

61



Fleming, E., Chandra, S., Shoeberl, M. & Barnett, J.

1988 Monthly mean global climatology of temperature, wind,

geopotential height, and pressure for 0-120km. Tech. Rep. 100697.

NASA.

Fritts, D. C. & Dunkerton, T. J. 1984 A quasi-linear study of

gravity-wave saturation and self-acceleration. J. Atmos. Sci. 41,

3272–3289.

Hamilton, K. 1996 Comprehensive meteorological modelling of

the middle atmosphere: A tutorial review. J. Atmos. Terres. Phys.

58, 1591–1627.

Hines, C. O. 1997 Doppler-spread parameterization of gravity-

wave momentum deposition in the middle atmosphere. Part 1:

Basic formulation. J. Atmos. Terr. Phys. 59, 371–386.

Holton, J. R. & Lindzen, R. S. 1972 An updated theory for

the quasi-biennial cycle of the tropical stratosphere. J. Atmos.

Sci. 29, 1076–1080.

Lindzen, R. D. 1967 Planetary waves on beta-planes. Mon. Wea.

Rev. 95, 441–451.

Lindzen, R. S. 1981 Turbulence and stress owing to gravity wave

and tidal breakdown. J. Geophys. Res. 86, 9707–9714.

Lund, T. & Fritts, D. 2012 Numerical simulation of gravity

wave breaking in the lower thermosphere. J. Geophys. Res. 117,

D21105.

McFarlane, N. A. 1987 The effect of orographically excited grav-

ity wave drag on the general circulation of the lower stratosphere

and troposphere. J. Atmos. Sci. 44, 1775–1800.

62



McIntyre, M. E. 1981 On the wave momentum myth. J. Fluid

Mech. 58, 331–347.

McLandress, C. 1998 On the importance of gravity waves in the

middle atmosphere and their parameterization in general circula-

tion models. J. Atmos. Sol.-Terres. Phys. 60, 1357–1383.

Medvedev, A. S. & Klaassen, G. P. 1995 Vertical evolution of

gravity wave spectra and the parameterization of associated wave

drag. J. Geophys. Res. 100, 25841–25853.

Nastrom, G. D. & Fritts, D. C. 1992 Sources of mesoscale

variability of gravity waves. Part I: Topographic excitation. J.

Atmos. Sci. 49, 101–110.

Nault, J. T. & Sutherland, B. R. 2008 Beyond ray tracing

for internal waves. Part I: Small-amplitude anelastic waves. Phys.

Fluids 20, 106601–1–10, doi:10.1063/1.2993167.

Palmer, T. N., Shutts, G. J. & Swinbank, R. 1986 Alle-

viation of a systematic westerly bias in general circulation and

numerical weather prediction models through an orographic grav-

ity drag parametrization. Quart. J. Roy. Meteor. Soc. 112, 1001–

1039.

Scinocca, J. F. & Shepherd, T. G. 1992 Nonlinear wave-

activity conservation laws and Hamiltonian structure for the two-

dimensional anelastic equations. J. Atmos. Sci. 49, 5–27.

Snively, J. B. & Pasko, V. P. 2003 Breaking of thunderstorm-

generated gravity waves as a source of short-period ducted

waves at mesopause altitudes. Geophys. Res. Lett. 30 (24), 2254,

doi:10.1029/2003GL018436.

63



Staquet, C. & Sommeria, J. 2002 Internal gravity waves: From

instabilities to turbulence. Ann. Rev. Fluid Mech. 34, 559–593.

Sutherland, B. R. 2000 Internal wave reflection in uniform shear.

Q.J.R.M.S. 126, 3255–3287.

Sutherland, B. R. 2001 Finite-amplitude internal wavepacket

dispersion and breaking. J. Fluid Mech. 429, 343–380.

Sutherland, B. R. 2006 Weakly nonlinear internal wavepackets.

J. Fluid Mech. 569, 249–258.

Sutherland, B. R. 2010 Internal Gravity Waves . Cambridge,

UK: Cambridge University Press.

Sutherland, B. R. & Linden, P. F. 1999 An experimen-

tal/numerical study of internal wave transmission across an

evanescent level. In Mixing and Dispersion in Stably Stratified

Flows (ed. P. A. Davies), pp. 251–262. IMA, Oxford University

Press.

Sutherland, B. R. & Peltier, W. R. 1994 Turbulence transi-

tion and internal wave generation in density stratified jets. Phys.

Fluids A 6, 1267–1284.

Sutherland, B. R. & Yewchuk, K. 2004 Internal wave tun-

nelling. J. Fluid Mech. 511, 125–134.

Walterscheid, R. L., Schubert, G. & Brinkman, D. G.

2001 Small-scale gravity waves in the upper mesosphere and lower

thermosphere generated by deep tropical convection. J. Geophys.

Res. 106 (D23), 31825–31832.

Whitham, G. B. 1974 Linear and Nonlinear Waves . New York,

USA: John Wiley and Sons, Inc.

64


