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Abstract 

The structural dynamics of proteins and nucleic acids play a vital role in 

biochemical reactions. We employed novel optical tweezers to study the 

programmed -1 ribosomal frameshifting, where the conformational plasticity of a 

SARS pseudoknot with a bound ligand is shown to be correlated to the 

frameshifting efficiency. We also investigated a mechanical model for 

components involved in optical tweezers, and tested their validity through a 

series of measurements. 
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1 Conformational Dynamics of Bio-
molecules using SM Spectroscopy 

1.1 Introduction 

The conformation of complex macromolecules in cells, such as proteins and 

nucleic acids, is one of the most studied areas in the field of biochemistry. Nucleic 

acids (DNA and RNA) and proteins form the basis of an information transfer 

network which is one of the most important biochemical reaction chains in cells. 

DNA encodes genetic information that is essential for the assembly and 

reproduction of every living cell. Proteins perform important functions that are 

vital to cellular survival, such as catalyzing reactions and serving as building 

blocks. RNA is involved in protein synthesis and gene regulation (Nelson et al., 

2013). Proteins, synthesized by joining amino acid blocks into a single chain, can 

fold into a highly specific, three dimensional geometric structure through a self-

assembly mechanism known as folding. Structural biologists can successfully 

determine the three dimensional structure of proteins using high-resolution 

molecular structure tools, including x-ray crystallography and nuclear magnetic 

resonance (NMR) imaging. 

In the early days, a lot of research was focused on the static structure of 

proteins. For example, the well-known “lock and key” model proposed by Fischer 

stated that molecular recognition is a result of the complementary 

conformational geometry between the enzyme and the substrate. The “lock and 

key” model was an attempt to explain why enzymes are highly specific, but it fails 

to account for the apparent increase in stability of the enzyme/substrate complex. 
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Koshland (Koshland, 1995) later suggested a different “induced fit” model, where 

the enzyme acts as a flexible site that will continue to reshape itself to find the 

best fit for the conformation of the substrate. Scientists now realize that the 

conformational dynamics are just as important. Hence, understanding the 

dynamics of protein structural changes in response to external factors, such as 

ligand binding and mechanical forces, is important for us to understand the 

problem of protein folding.  

 

1.2 Energy Landscape 

The conformational dynamics of proteins are well described by a framework 

known as the Energy Landscape Theory (Dill and Chan, 1997). The Energy 

Landscape Theory was originally developed as a way to understand the problem 

of how proteins fold (Bryngelson et al., 1995). Anfinsen had previously showed 

that a protein can spontaneously fold into its native structure after losing its 

tertiary structure by denaturation (Anfinsen, 1973). Anfinsen conjectured that the 

protein’s amino acid sequence uniquely determines its tertiary structure, and that 

the protein’s native structure represents the lowest free energy state. Landscape 

theory was inspired by the so called Levinthal’s paradox (Levinthal, 1968), a 

thought experiment estimating the astronomical number of conformations a 

protein can have. Levinthal showed that it would be impossible for a protein to 

find its native structure within biologically-meaningful timescales if the folding 

mechanism involves a random searching process. 

As an attempt to resolve Levinthal’s Paradox, Bryngelson and Wolynes 

incorporated the notion of a molecular Hamiltonian, where energy levels are 
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assigned to the conformational states of each amino acid residue and their 

mutual interactions. From a statistical mechanics viewpoint, the folding process 

favors the equilibrium state of the system that maximizes its microstate 

multiplicity while minimizing the enthalpy of interactions (Bryngelson and 

Wolynes, 1987). The energy landscape view of protein folding is, therefore, a 

geometric visualization of a free energy surface as a function of conformational 

coordinates. The collection of coordinates describing each residue forms a multi-

dimensional phase space, such that the topology of the protein in three 

dimensional space is completely encoded. 

Leopold and colleagues (Leopold et al., 1992) speculated on the geometry 

of the free energy surface by proposing a funnel-shaped landscape that mandates 

the protein folding trajectory to eventually reach its native state (Figure 1.1a). The 

funnel landscape was successful in explaining Anfinsen’s experiment: the 

denatured protein will fold into its native structure regardless of its initial 

conditions, but with an exponentially quicker timescale compared to a random 

search, due to the free energy surface gradient. However, a smooth folding funnel 

fails to account for the existence of metastable intermediate states with energy 

barriers. Modern theory generally favors a more rugged funnel with bumpy 

kinetic traps and energy barriers (Figure 1.1b), so that the protein is continuously 

sampling a wide range of conformation along its rather rough and uneven energy 

landscape until it reaches an equilibrium. At the finest level, the energy landscape 

is riddled with many local minima (Bryngelson et al., 1995). These local minima 

are usually connected to local changes at the atomic level, such as the rotation of 

side chains. 
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Figure 1.1: A three dimensional projection of the hypothetical free energy surfaces. 
Vertical axis shows the free energy value as a function of two conformational 
coordinates such as dihedral angle. (Top) A smooth funnel. (Bottom) A rugged 
energy landscape with bumpy kinetic traps and energy barriers. Figure adapted 
from (Dill and Chan, 1997) 
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Several works (Bryngelson and Wolynes, 1989; Zwanzig, 1988) have 

modeled protein folding as a diffusive search for the native structure over a rough 

energy landscape. The surface roughness directly affects the lifetimes and rates of 

the transition states, and consequently changes the apparent coefficient for 

conformational diffusion over the landscape. We are interested in extracting 

information that characterizes the energy landscape, such as the barrier 

properties and the conformational diffusion coefficient, from single molecule 

measurements, in order to fully understand the conformational dynamics of 

proteins. 

 

1.3 Single Molecule Spectroscopy 

Single molecule (SM) experiments provide invaluable insight into the dynamics 

of molecules by measuring the properties of individual molecules instead of 

ensembles of many molecules. Ensemble measurements can only provide the 

average behavior of the molecule, therefore the details of the stochastic 

fluctuations are lost. On the other hand, SM spectroscopy can be used to observe 

rare or transient events and can distinguish different populations of behavior, 

allowing for example on or off pathway intermediates that would normally be lost 

in ensemble measurements to be characterized (Weiss, 1999). Due to the ability 

to probe extremely fast dynamics, typically down to the sub-millisecond regime, 

SM spectroscopy allows us to monitor the real time motion of molecules instead 

of their time-averaged movements. 

The literature of SM experiments is mainly divided according to the 

methods used to probe individual molecules, most commonly fluorescence and 



6 

 

force spectroscopy. Each method has advantages and disadvantages. For example, 

force spectroscopy allows one to manipulate the system under non-equilibrium 

conditions, but requires the molecule to be connected to a large force probe. No 

such invasive probe is involved in fluorescence spectroscopy, allowing more 

subtle internal dynamics of the molecule to be probed, but it is harder to 

manipulate the conformation of the molecule actively as in force spectroscopy.  

 

1.3.1 Fluorescence Spectroscopy 

One of the most widely used fluorescence techniques is the Single Pair Förster 

Resonance Energy Transfer (spFRET). This technique involves the distance 

dependent transfer of energy from a donor fluorophore to an acceptor 

fluorophore. The excited donor transfers its 

energy non-radiatively to a nearby acceptor 

fluorophore. The spFRET technique is a 

sensitive tool used to probe conformational 

changes in a characteristic distance scale, 

known as the Förster radius (Ha et al., 1996) 

and  has been used to study conformational 

changes occurring during processes such as 

ligand binding to a receptor, enzyme-substrate 

catalysis, and diffusive motion (Weiss, 1999).  

 

 

Figure 1.2: spFRET. 

Molecules are labeled by a 

pair of donor-acceptor 

fluorophores. The FRET 

efficiency is directly related 

to the inversed sixth-squared 

power of the distance 

between them. 
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1.3.2 Force Spectroscopy 

Force spectroscopy, the technique used in this thesis, probes the molecule by 

applying force and measuring the change in length as the protein structure 

unfolds and refolds. For example, a common approach in force spectroscopy is to 

study the relationship between the force applied to the molecule and the 

extension of the polymer chain, known as the force-extension curve (FEC) 

(Neuman and Nagy, 2008). Conformational dynamics information such as the 

lifetime and transition rates of states can be extracted from the FECs and used to 

reconstruct the energy landscape. 

Atomic Force Microscopy (AFM) is the most widely used single molecule 

instrument, with numerous applications in a variety of disciplines. In biophysical 

studies of protein folding, AFMs are used to apply force to a single molecule, by 

tethering it at one end to a surface and the 

other end to the tip of a cantilever, and then 

pulling the cantilever up vertically. The force on 

the molecule deflects the tip of the cantilever, 

and when the molecule experiences an 

unfolding or bond breaking event, there is a 

sudden change in the cantilever position. 

Therefore, AFMs are used to probe structural 

changes in biomolecular systems as diverse as 

polysaccharides (Rief et al., 1997), muscle 

protein titin (Rief et al., 1998), and biotin-

avidin interactions (Lee et al., 1994).  

 

Figure 1.3: AFM. Molecules 
are anchored to a flat surface 
on one end and connected to 
the tip of a cantilever on the 
other end. The cantilever 
position will be deflected 
when a folding/unfolding 
event occurs. 
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Another way to apply force to molecules uses magnetic tweezers. Magnetic 

tweezers employ magnetic fields as means to manipulate paramagnetic particles 

attached to the molecule of interest. The particle can also be subjected to a torque, 

so that experiments can be designed relatively easily to accommodate rotational 

measurements (Greenleaf et al., 2007). Magnetic tweezers serve as a great tool to 

study structural changes, such as the behavior of DNA under twisting conditions 

(Mosconi et al., 2009; Zlatanova and Leuba, 2003) and dissociation of ligand-

receptor complexes (Danilowicz et al., 2005). 

 

Figure 1.4: Magnetic tweezers. Molecules are tethered between a paramagnetic 
bead and a surface. The bead will experience force and torque when a magnetic 
field is applied. 

 

A third method commonly used to apply force to molecules is optical 

trapping. Optical trapping is based on the principle that light exerts force on a 

dielectric particle, such as a polystyrene bead. This bead is then typically 

connected to the molecule of interest via a DNA handle, to allow the molecule to 

be manipulated. Optical tweezers can measure molecular movements with sub-

nanometer accuracy and sub-millisecond time resolution (Neuman and Nagy, 

2008). They have been employed to study conformational dynamics of 
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biomolecules, such as prion protein (Yu et al., 2012, 2013), RNA pseudoknots 

(Ritchie et al., 2012), and adenine riboswitch (Frieda and Block, 2012). This 

thesis focuses on using optical tweezers as a tool to probe conformational 

dynamics of biomolecules.  

 

1.4 Outline 

The main focus of this thesis is to investigate how dynamical information can be 

found from a single molecule using optical tweezers. Chapter 2 discusses the 

experimental setup of optical tweezers, the various types of measurement modes 

available, and how to analyze data. Chapter 3 applies the data analysis methods 

to the RNA pseudoknot from the Severe Acute Respiratory Syndrome (SARS) 

coronavirus, demonstrating how the pseudoknot conformational dynamics affect 

programmed frameshifting, a mechanism that is vital for the virus life cycle. 

Chapter 4 discusses how to understand the mechanics of each component in an 

optical trapping measurement in more detail by using the Dynamical 

Deconvolution Theory developed by Hinczewski and colleagues (Hinczewski et al., 

2010). Chapter 5 discusses the application of Hinczewski’s theory to constant 

force measurements of beads, handle and prion protein. Finally, chapter 6 

provides a summary and discusses possible future work. 
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2 Force Spectroscopy with Optical Traps 

2.1 Principle of Operation 

In 1970, Ashkin showed that by using focused laser beams, the dynamics of a 

transparent, micron-sized particle in fluid can be affected significantly from the 

scattering and gradient force of the light (Ashkin, 1970). Optical trapping in fluids, 

as required for studies of biological molecules, was first demonstrated in 1986 

(Ashkin et al., 1986). With rapid advancement over the following years, optical 

traps are now used to study many questions in biophysics, probing the 

mechanical and elastic properties of bio-molecules via pulling experiments 

(Ashkin, 2000). 

Optical trapping relies on the principle that a photon exerts momentum 

when it scatters from a dielectric object. A photon carrying momentum p = h/λ, 

where h is the Planck’s constant and λ is the wavelength of the light, transfers its 

momentum and exerts a net force when it scatters off of a particle. The net force 

exerted by light can be decomposed into two components: the scattering and the 

gradient force. The scattering force, which is in the direction of light propagation, 

comes from the absorption and re-radiation of photons. The scattering force 

strength depends on the refraction index of medium (nm), laser intensity (I), the 

scattering cross section (C), and the speed of light in a vacuum (c). 

𝐹𝑠𝑐𝑎𝑡 =
𝑛𝑚𝐶𝐼

𝑐
     [2.1] 

The scattering force does not give rise to stable trapping. Instead, trapping is due 

to the gradient force, which arises from the gradient in the electromagnetic field 
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strength within the tightly-focused laser beam. The energy of the polarizable 

dielectric particle in the laser beam is lowest at the most intense part of the beam 

the focal point, hence the gradient in the light intensity produces a force directed 

to the focal point (Figure 2.1) (Harada and Asakura, 1996). The scattering force 

will act to push the particle away from the 

focal point, but if it is sufficiently small, it 

can be overcome by the gradient force, 

producing a stable trap close to the focal 

point, at the location where the two forces 

are in balance. For small displacements 

from the center of the trap, the optical trap 

behaves like a Hookean spring: the trapped 

object will experience a linear restoring 

force, F = -kr, where r is the displacement 

from the trap center, and k is the trap 

stiffness, typically ranging from 0.1 to 1 

pN/nm.  

Our laboratory employs a 1064-nm Nd:YVO4 diode-pumped solid state 

laser as the trapping laser. The laser beam is split into two beams with orthogonal 

polarization to create two traps. The position of each trap is controlled in two 

axes using acousto-optic deflectors (AODs) and/or electro-optic deflectors 

(EODs), depending on the instrument, which allow the beam deflection to be 

controlled precisely. In addition to trapping lasers, our dual-trap optical tweezers 

system utilizes a second laser at a different wavelength (633 nm or 830 nm, 

depending on the instrument), again split into two beams with orthogonal 

 

Figure 2.1: Illustration of an 
optical trapping. The force 
acting on a trapped bead can be 
decomposed into two 
components: the scattering 
force (red arrow) and the 
gradient force (green arrow). 
Stable trapping will occur when 
the two forces are in balance. 
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polarization (one for each trap), to probe the bead in each of the two traps. The 

light from the detection beams is scattered by the trapped beads; this light is 

captured by position sensitive detectors (PSD), which are used to determine the 

position of the beads in the traps. 

Optical tweezers do not apply force directly to the molecule of interest. 

Experiments are usually done by first preparing constructs in which the molecule 

of interest is attached to long double stranded DNA handles, then attaching each 

handle to a micron-sized dielectric bead (Figure 2.2. The handles are needed 

because the two optical traps have to be separated by approximately one 

wavelength apart to avoid significant interference and cross talk. Force can be 

applied to the construct by moving the traps apart and causing a bead to move 

out of the trap center, thus exerting a restoring force on the bead. 

 

Figure 2.2: Schematic of optical trapping measurement. The molecule is 
connected to a pair of polystyrene beads via DNA handles. Note that the figure is 
not drawn to scale. 

 

2.2 Measurement Modes 

Measurements using optical tweezers can be divided into two broad categories: 

the force-ramp and the force-clamp. In force-ramp measurements, the force is 
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ramped up and/or down by moving the traps apart, usually at a constant speed. 

Often the force is changed rapidly compared to the folding and unfolding rate for 

the molecule, such that the molecule is not in equilibrium during the 

measurement. In force-clamp measurements, on the other hand, the molecule is 

held at a constant force, for example by using a feedback loop (Liphardt et al., 

2001). As a result, the molecule is probed under equilibrium conditions. In both 

of these cases, the observable being measured is the position of the two trapped 

beads. Knowing the location of each trap, the radius of the beads, and the 

stiffness of each trap, we can calculate the end-to-end extension of the construct 

being measured (handles plus molecule of interest) as well as the force being 

applied to it. 

2.2.1 Force-Ramp Measurements 

Force-ramp measurements are made 

by pulling on the bead-handle-

molecule construct with a force that 

changes with time, for example 

ramping the force up to unfold the 

molecule then bringing it back down to 

allow the molecule to refold. This will 

result in a set of force-extension curves 

(FECs), obtained by repeatedly pulling 

and relaxing the molecule (Figure 2.3). 

The force is usually changed by moving 

the traps apart with a constant velocity. 

 

Figure 2.3: A collection of FEC 

curves showing unfolding of a RNA 

molecule. The molecule unfolds at 

different force each time due to the 

stochastic nature of the unfolding 

process. 
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As the molecule is being pulled, 

mechanical unfolding can be observed as 

a sudden increase in the molecular 

extension, with a simultaneous decrease 

in the force (Figure 2.4, black line). The 

extension increases because the polymer 

chain of the unfolded molecule is 

stretched out under tension, while the 

force decreases because the increase in 

the length of the molecule allows the 

beads to move back towards the center of 

the traps. 

From FECs like the one in Fig 2.4, the change in extension can be used to 

determine the length of the polymer chain forming the structure that was 

unfolded, by fitting the 

FECs to a model of 

polymer elasticity such as 

the extensible worm-like 

chain (WLC) model. The 

WLC model treats the 

molecule as an elastic rod 

that can bend (Figure 

2.5). The relationship 

between force and 

 

Figure 2.4: WLC fits to the folded 

(red dashed line) and the unfolded 

(blue dashed line) part of the FEC. 

The green region shows the range 

where constant force 

measurements are made. 

 

Figure 2.5: Worm-like chain polymer model. Lc is 
defined as the length of the backbone of the 
polymer chain, while Lp is the length over which 
correlations between tangent vectors decay 
exponentially. Figure adapted from (diploma 
thesis of Steve Pawlizak, University of Leipzig, 
2009). 
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extension expected for the WLC model is given by Equation 2.2 (Marko and 

Siggia, 1995): 

𝐹(𝑥) =
1

𝛽𝐿𝑃
[
1

4
(1 −

𝑥

𝐿𝑐
+

𝐹

𝐾
)

−2

−
1

4
+

𝑥

𝐿𝑐
−

𝐹

𝐾
]     [2.2] 

Here Lc denotes the contour length of the polymer (the length along the backbone 

of the polymer chain), Lp denotes the persistence length (the length over which 

correlations in the tangent vector decay), and K denotes the enthalpic elasticity of 

the molecule (reflecting the bending of molecular bonds under tension). β = 

1/kBT is the inverse thermal energy, where kB is the Boltzmann’s constant and T is 

the temperature. 

To determine the change in the contour length of the molecule upon 

unfolding, we first fit the part of the FEC before the “rip” where unfolding occurs 

to Equation 2.2 (Figure 2.4, red dashed line). Equation 2.2 is seen to describe the 

data very well. This part of the curve, where the molecule is folded, involves the 

extension of the DNA handles only. We next fit the part of the FEC after the 

unfolding “rip”, where the extension includes both the handles and the unfolded 

molecule (Figure 2.4, blue dashed line). Here we model it as two WLCs in series, 

one for the DNA handles and one for the molecule being unfolded. We use the 

same parameters for the DNA handle WLC as from the fit before the molecule 

unfolds. We also simplify the fitting by using literature values for Lp and K of the 

molecule being unfolded, so that the only remaining free parameter is the contour 

length change of the molecule during the unfolding transition ΔLc. The contour 

length change of the molecule indicates how many nucleotides (for nucleic acids) 

or amino acids (for proteins) unfolded, hence providing us with information 

about the structure involved in the unfolding process.  
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 Apart from contour length changes, there are a lot of interesting 

properties of the conformational dynamics than can be extracted from force-

ramp measurements. For example, rates can be derived from the unfolding force 

distributions, and they can be analyzed to characterize the energy landscape for 

the molecule (as described below in section 2.3). One limitation of force-ramp 

experiments is that energy is dissipated because the measurements are out of 

equilibrium, making it harder to extract equilibrium information. However, 

fluctuation theorems can be used to recover the equilibrium properties. For 

example, the total free energy change can be found by using either the Jarzynski 

equality or Crook’s Theorem (Crooks, 1999; Jarzynski, 1997). Hummer and Szabo 

also showed that the profile of the free energy landscape can be reconstructed 

from non-equilibrium pulling experiments (Hummer and Szabo, 2001).  

2.2.2 Force-Clamp Measurements 

In force-clamp measurements, the molecule is held under equilibrium conditions 

by maintaining a constant applied force. These experiments are essentially 

exploiting the region of the FECs around the unfolding force where the molecule 

can exist in different 

extensions at a given force 

(Figure 2.4, green area). In 

this range of forces, the 

molecule can hop between 

different states, changing 

extension as it unfolds or 

refolds (Figure 2.6). The 

 

Figure 2.6: A sample data trace from constant 
force measurements, showing fluctuations in the 
extension as a function of time. Different states 
are identified by the extension along the pulling 
axis: red is the unfolded state and blue is the 
folded state. The extension also fluctuates rapidly 
within each state. 
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corresponding contour length change can be calculated using the extensible WLC 

model (Equation 2.2). In addition to monitoring transitions between states, for 

example folded (blue) and unfolded (red) in Figure 2.6, force-clamp 

measurements can also measure the fluctuation of the extension within each state. 

As we will see in Chapter 4, these fluctuations can be analyzed to determine the 

coefficient for conformational diffusion in each state. 

Force-clamp experiments can be further subdivided into two categories 

depending on how the constant force is maintained: the active clamp, in which 

constant force is maintained by employing a feedback mechanism, and the 

passive clamp, which makes use of the anharmonic part of the trapping potential 

to maintain a constant force (Greenleaf et al., 2005). To understand the passive 

clamp, note that as the bead is moved away from the trap center, eventually the 

Hookean spring approximation is no longer valid. The gradient force becomes 

non-linear, causing the force-displacement curve to roll over and creating a 30-50 

nm region where the force remains 

approximately constant (to within 

a few percent). If one pulls the 

bead onto the maximum of the 

force-displacement curve, where 

the trap stiffness is effectively zero 

(Figure 2.7, red area), then motion 

of the bead as the molecule unfolds 

and refolds doesn’t lead to any 

change in force, thereby achieving 

a constant force. The desired force 

 

Figure 2.7: The bead is pulled out of the 
center of the trap to the zero-stiffness 
region (red box), where the force is 
approximately constant over a window 
roughly 50nm wide. 
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can be applied simply by increasing the laser intensity on the other end, such that 

it is still in the linear region of the force-displacement curve. This technique can 

lead to a significant increase in bandwidth as it is relaxed from the stricter 

position range of traditional feedback loops. In constant trap separation 

measurements, the instantaneous force of the system changes according to end-

to-end extension fluctuations. 

Force-clamp experiments are especially useful to detect very rare or short-

lived states because each state is represented by a unique extension and they can 

be observed for a long time (Neupane et al., 2011; Yu et al., 2012). Several 

methods based on correlation analysis have been developed in order to extract 

the conformational dynamics of a molecule under constant force experiments 

(Hinczewski et al., 2010; Hoffmann and Woodside, 2011). Further details will be 

addressed in Chapter 4. 

 

2.3 An Approach to Energy Landscape Analysis 

As motivated in chapter 1, understanding the dynamics of a molecule and how it 

responds to changes in external factors such as force will provide us with a more 

complete picture of the mechanics of folding. As it happens, both types of force 

spectroscopy measurements allow us to extract the same kind of information, just 

under different conditions. This equivalency was confirmed by Dudko and 

colleagues, when they showed how the results from force-ramp measurements 

can be mapped onto the results from constant force measurements via the force-

dependent rate (Dudko et al., 2008).  
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As discussed in section 1.2, the energy landscape can in principle be 

reconstructed if we know the energy of the molecule as a function of all possible 

orientations of the bond angles in the peptide chain. However, this is unrealistic 

due to experimental and computational limitations. As an alternative, we can 

project the hyper-dimensional free energy surface onto a single axis, known as 

the reaction coordinate, which we use to follow the progress of the folding 

reaction. The reaction coordinate is usually chosen to be the experimental 

observable; in the case of force spectroscopy measurements, this is the extension 

along the pulling axis (Gupta et al., 2011). It is important to keep in mind that 

there are still controversies on whether the projection along the pulling axis fully 

captures the energy landscape (Dudko et al., 2011). 

In any given force-ramp measurement, the molecule unfolds at a 

particular value of applied force, but this value can be different each time the 

molecule is pulled because the unfolding is driven by thermal fluctuations (Figure 

2.3). Repeated force-extension curves therefore give a probability distribution for 

the unfolding force, p(F).  

𝑝(𝐹) =
𝑘(𝐹)

𝑟
exp [

𝑘0

Δ𝑥‡𝑟
−

𝑘(𝐹)

Δ𝑥‡𝑟
(1 −

𝑣𝐹Δ𝑥‡

Δ𝐺‡ )

1−1/𝜈

]     [2.3] 

Here 𝑘(𝐹) is the force-dependent unfolding rate, k0 is the unfolding rate at zero 

force, 𝛥𝑥‡ is the distance from the folded state to the energy barrier (or transition 

state) for unfolding, 𝛥𝐺‡ is the height of the energy barrier from the folded state, 

r is the force loading rate, and 𝜈 is a scaling factor related to the functional form 

of the underlying free energy profile (ν = 2/3 for a linear-cubic potential as shown 

in Figure 2.8, ν = ½ for a cusp-shaped barrier). This distribution depends on 
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various factors, such as the force loading rate (rate of change of force) and the 

unfolding rate of the molecule (Dudko et al., 2008). It can be modeled as a 

function of the key parameters of the energy landscape (Figure 2.8) (Dudko et al., 

2006): 

 

Figure 2.8: A typical one dimensional projection of the energy landscape (a) in 
the absence and (b) in the presence of force. The key parameters characterizing 

the landscape is the barrier height (𝛥𝐺‡), the distance to barrier (𝛥𝑥‡) and the 
rate of escape from the folded state (𝑘). Figure adapted from (Dudko et al., 2006). 

  

A simple functional form of the force-dependent unfolding rate, k(F), was 

proposed by Evans and Ritchie (Equation 2.4) (Evans and Ritchie, 1997), based 

on earlier work by Bell (Bell, 1978) estimating reaction rates for membrane 

bound reactants. It is a purely phenomenological equation that describes some 

data fairly well: 

𝑘(𝐹) = 𝑘0𝑒−𝛽𝐹Δ𝑥‡
     [2.4] 
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The Bell-Evans equation was derived based on the assumption that force only 

changes the barrier height, which is known to be inaccurate because the barrier 

position changes according to force as well (Dudko et al., 2006). To address these 

limitations, Dudko and colleagues proposed a modified functional form for k(F) 

(Equation 2.5). Equation 2.5 was derived based on the generalization of Bell’s 

formula in Kramers’ theory (Dudko et al., 2008), under the assumption of 

specific functional forms for the profile of the energy landscape.  

𝑘(𝐹) = 𝑘0 (1 −
𝜈𝐹Δ𝑥‡

Δ𝐺‡ )

1−1/𝜈

𝑒
−𝛽Δ𝐺‡[1−(1−𝑣𝐹Δ𝑥‡/Δ𝐺‡)

1/𝜈
]
     [2.5] 

Here 𝜈 parameterizes the landscape profile as in Equation 2.3 (Dudko et al., 

2006). In the case of 𝜈 = 1, Equation 2.5 reduces to Bell’s equation (Equation 2.4). 

Using Equations 2.3 and 2.5, we can readily extract the energy landscape 

parameters from fitting the unfolding force histogram obtained from force-ramp 

measurements. Since the precise shape of the barrier is often unknown, we can 

average the landscape parameters extracted from both cases (ν = 2/3 and ν = 1/2). 

A caveat to keep in mind, however, is that while k0 is the reaction rate at 

zero force, measurements can never be done in the absence of force. It is 

therefore necessary to extrapolate the non-zero rates to obtain the reaction 

lifetimes. However, due to the exponential relationship between the stretching 

force and the lifetimes, the error of estimation can be significant. Careful error 

analysis is required before k0 can be interpreted as the effective reaction rate at 

zero force. 

Dudko et. al. also demonstrated a mapping between force-clamp and 

force-ramp experiments (Dudko et al., 2008). The expected lifetime of a molecule 
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in a particular state at a given force, τ(F), as measured in force-ramp experiments, 

can be calculated by using equation 2.6. Here Ḟ(F) denotes the force loading rate. 

𝜏(𝐹) = ∫ 𝑝(𝑓)𝑑𝑓/[𝐹̇(𝐹)𝑝(𝐹)]
∞

𝐹

     [2.6] 

This relation essentially provides a framework for transforming the rupture force 

distribution into lifetimes (or rates, which are the inverse of the lifetimes) at a 

constant force. 
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3 Dynamics of the SARS Pseudoknot 

RNA plays a vital role in facilitating a wide variety of cell functions. While DNA is 

primarily involved in the encoding of genetic information, RNA plays many 

different roles, including the regulation of protein synthesis, catalyzing 

biochemical reactions, and sensing cellular signals, to name a few. Due to its 

single stranded nature, RNA can fold into more versatile structures than can 

double stranded DNA. For example, one interesting structure that is found in 

RNA is the pseudoknot, a conformation of RNA in which the loop of a hairpin 

structure is base-paired to another part of the RNA strand. This chapter will 

apply the data analysis techniques discussed in chapter 2 to investigate the 

conformational dynamics of pseudoknots as revealed by force extension curves. 

The biological importance of this study and its relevance to the field of drug 

design will also be discussed.1 

 

3.1 Ribosomal Frameshifting 

Ribosomes synthesize proteins by reading messenger RNA (mRNA) in 3-

nucleotide (nt) steps, maintaining a specific reading frame until a stop codon is 

reached. In programmed −1 ribosomal frameshifting (−1 PRF), the ribosome 

skips backward on the mRNA by 1 nt, typically resulting in the bypass of a stop 

codon and the translation of a new reading frame specifying a different amino 

acid sequence (Brierley et al., 2010; Giedroc and Cornish, 2009). Many RNA 

                                                           
This chapter has been published as Dustin B. Ritchie, Jingchyuan Soong, William K. A. Sikkema, and Michael 

T. Woodside, “Anti-frameshifting Ligand Reduces the Conformational Plasticity of the SARS Virus 

Pseudoknot”, Journal of the American Chemical Society 2014 136 (6), 2196-2199. 
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viruses make use of −1 PRF to produce structural and enzymatic proteins in 

tightly regulated ratios (Dinman and Wickner, 1992; Dulude et al., 2006; Telenti 

et al., 2002). For example, the Severe Acute Respiratory Syndrome coronavirus 

(SARS CoV) uses −1 PRF to regulate production of RNA-dependant RNA 

polymerase and other replicase proteins (Thiel et al., 2003). Altering the −1 PRF 

efficiency can greatly reduce SARS virus infectivity (Plant et al., 2010, 2013); a 

similar effect has also been demonstrated for HIV (Dulude et al., 2006; Shehu-

Xhilaga et al., 2001; Telenti et al., 2002). The importance of −1 PRF efficiency to 

virus replication has motivated efforts to develop new anti-viral therapeutics that 

target the frameshifting mechanism in viruses such as HIV (Brakier-Gingras et al., 

2012) and SARS (Ahn et al., 2011; Park et al., 2011). 

Frameshifting depends on two specific components in the mRNA: a 7-nt 

“slippery sequence” at which −1 PRF occurs, and a stimulatory structure, usually 

a pseudoknot, located 6–8 nt downstream (Brierley et al., 2010; Giedroc and 

Cornish, 2009). Efforts to reduce viral infectivity by modulating frameshifting 

efficiency have primarily focused on identifying small molecules that bind to the 

stimulatory structures or developing anti-sense oligonucleotides to alter them. 

Small molecules that modulate frameshifting efficiencies for SARS CoV (Ahn et 

al., 2011; Park et al., 2011) and HIV-1 (Brakier-Gingras et al., 2012) have indeed 

been found, but interpreting the effects of such molecules can be complicated. 

The mechanism of binding is not always known, nor are the effects of binding on 

the stability and structure of the stimulatory RNA, and the interactions with the 

stimulatory RNA may not be specific. Most importantly, the mechanisms by 

which the compounds regulate −1 PRF are unclear. For example, some 

compounds with promise against HIV-1 likely bind RNA in general, rather than 
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specific stimulatory structures, suggesting that they may modulate frameshifting 

efficiency via interactions with ribosomal RNA (the RNA contained within the 

ribosome itself) (Brakier-Gingras et al., 2012; Marcheschi et al., 2011).  

A complicating factor in efforts to develop drugs that target frameshifting 

is the fact that the mechanism of −1 PRF is still incompletely understood, 

especially the role of the stimulatory structure in determining −1 PRF efficiency. 

Models have been proposed with −1 PRF occurring at various steps in the 

elongation cycle (Brierley et al., 2010; Giedroc and Cornish, 2009; Jacks et al., 

1988; Namy et al., 2006; Plant and Dinman, 2005; Plant et al., 2003). The 

tension generated in the mRNA as the ribosome unwinds the stimulatory 

structure plays a key role in several of these models. For example, one commonly-

cited model posits that the pseudoknot acts as a mechanical roadblock to 

ribosome translocation, weakening the codon-anticodon base pairing when the 

ribosome is over the slippery sequence and thereby promoting a −1 shift in 

reading frame (Kontos et al., 2001; Namy et al., 2006). Direct measurements of 

translocating ribosomes do show that tension in the tRNA-mRNA linkage is used 

by the ribosome to promote unwinding of structured RNAs at the mRNA entry 

site (Qu et al., 2011).  

However, −1 PRF efficiency is not determined by the thermodynamic 

stability of pseudoknots (Chen et al., 1995; Kang et al., 1996; Napthine et al., 

1999), nor is it correlated with pseudoknot-induced ribosomal pausing(Kontos et 

al., 2001) as would be expected from this picture. Early studies using mechanical 

tension to mimic how the ribosome unwinds RNA structure suggested a 

correlation with resistance to mechanical unfolding (Chen et al., 2009; Hansen et 

al., 2007), but recently a more comprehensive survey of pseudoknot unfolding  
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Figure 3.1: The SARS CoV pseudoknot consists of 3 stems (S1–S3) and 3 loops 
(L1–L3), indicated on the secondary structure. Base-pairs are shown in blue, 
unpaired nucleotides in red. 

 

showed that −1 PRF efficiency was not, in fact, determined by any characteristic 

of the mechanical unfolding (Ritchie et al., 2012). Instead, −1 PRF efficiency was 

unexpectedly found to correlate with the conformational plasticity of the 

pseudoknot, as reflected in its ability to form alternate structures.  

To confirm the notion that pseudoknot conformational dynamics is a 

factor determining −1 PRF efficiency and test whether it provides a useful basis 

for designing anti-frameshifting drugs, we focused on the binding of an anti- 

frameshifting ligand to the SARS CoV pseudoknot. The SARS CoV pseudoknot 

has an unusual three-stemmed structure (Figure 3.1) (Baranov et al., 2005; Plant 

et al., 2005; Su et al., 2005), in contrast to the two-stemmed hairpin-type 

pseudoknots more commonly employed by viruses to stimulate −1 PRF (Giedroc 

and Cornish, 2009).  

Recently, in silico screening for 

compounds that bind the SARS CoV 

pseudoknot, based on calculations of 

the energy of the ligands docked against 

the pseudoknot, found a small molecule 

referred to as MTDB (Figure 3.2), that 

 
 
Figure 3.2: Structure of the ligand, 
2-{[4-(2-methyl-thiazol-4ylmethyl)-
[1,4] diazepane-1-carbonyl]-amino}-
benzoic acid ethyl ester (MTDB). 
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suppresses −1 PRF in both cell-free and cellular translation systems (Park et al., 

2011) . The effect was specific to the SARS pseudoknot, as no reduction in −1 PRF 

was observed for two other pseudoknots tested as negative controls. 

 

3.2 Single Molecule Experiments 

The effect of MTDB binding on the mechanical stability and structural dynamics 

of the SARS CoV pseudoknot was tested using optical tweezers. The RNA was 

held near zero force for 3 s in 50 mM MOPS, pH 7.0, 130 mM KCl, 4 mM MgCl2, 

0.3% DMSO to permit folding and ligand binding, then the traps were separated 

at constant velocity to apply force while measuring molecular extension, thereby 

generating force-extension curves (FECs) as described in Chapter 2 (Figure 3.3). 

With or without ligand present, unfolding occurred most commonly as a two-

state process without intermediates (Figure 3.3, black). The change in contour 

length during such unfolding events, ΔLc, was found by fitting the folded and 

unfolded branches of the FECs (Figure 3.3, red and purple, respectively).  

The result, ΔLc = 33 ± 1 nm (all errors represent standard error on the 

mean), agrees well with the value 34 nm expected from the predicted secondary 

structure,(Plant et al., 2005; Su et al., 2005) assuming an end-to-end distance in 

the folded structure of 6 nm similar to the infectious bronchitis virus pseudoknot 

(Green et al., 2008) and consistent with the tertiary structure proposed from 

computational work (Park et al., 2011). The pseudoknot was thus natively folded 

in these curves. However, without ligand present, a substantial minority 

(30 ± 3 %) of the curves displayed unfolding at a lower force and with an 

unexpectedly short ΔLc, 21 ± 1 nm, indicating that the pseudoknot was folded into  
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Figure 3.3: A single SARS CoV pseudoknot molecule was tethered between two 
beads held in optical traps (inset). The RNA contour length changes abruptly 
upon unfolding, causing a “rip” in the FEC. Most FECs showed a length change, 
found from WLC fits to Equation 2.2 (dashed lines), consistent with the native 
structure (black), but some (blue) revealed a smaller, alternate structure. 

 

an alternate structure at the start of those pulls (Figure 3.3, blue; WLC fit: green). 

The distributions of ΔLc and unfolding force suggest only a single alternate 

conformation is present. Increasing the waiting time between pulls to 10 s did not 

change the extent of alternate structure formation noticeably, suggesting that any 

inter-conversion between the structures is very slow. 

We can quantify the resistance of the pseudoknot to mechanical unfolding 

from the distribution of unfolding forces, p(F). The average unfolding force for 

the native structure without ligand bound was 42 ± 1 pN. Additionally, the height 

of the energy barrier for unfolding, ΔG‡, the distance to the barrier from the 

folded state, Δx‡, and the unfolding rate at zero force, k0, were found by fitting p(F) 
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to the kinetic theory as mentioned in chapter 2 in Figure 3.4a (Equation 2.3). The 

unfolding rate as a function of force, was also well fit by Equation 2.5 (Figure 

3.4b). Data were analyzed by both methods and the results averaged, yielding 

log k0 = −4.4 ± 0.3 s−1, Δx‡ = 1.6 ± 0.1 nm, and ΔG‡ = 41 ± 3 kJ/mol for the 

pseudoknot without ligand.  

 

Figure 3.4: (a) The distribution of unfolding forces for the native pseudoknot in 
the absence of ligand (black) was fit to Equation 2.3 to determine the energy 
landscape parameters for mechanical unfolding. The alternate structure unfolded 
at a significantly lower force (blue). (b) The force-dependent unfolding rate was 
fit to Equation 2.5. 
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We repeated these measurements with three concentrations of MTDB: 75, 

250, and 500 μM. Qualitatively, the behavior of the pseudoknot was similar in all 

cases; there were no additional sub-populations in the pulling curves, such as 

curves in which the RNA did not unfold (a possible result of covalent cross-

linking by the ligand) or refold (a possible result of binding to the unfolded RNA). 

The average unfolding force and landscape parameters for the native structure 

were found to remain the same, within error; any changes were too subtle to 

detect (Figure 3.5, Table 3.1). Hence the ligand did not significantly change the 

mechanical stability of the pseudoknot. The average force for unfolding the 

alternate structure (~16 pN) was also unchanged within error, as was the ΔLc for 

the alternate structure (all results listed in Table 3.1). 

 

Figure 3.5: The average unfolding force (upper panel, black) and zero-force 
unfolding rate (upper panel, red), as well as the position (lower panel, black), and 
height (lower panel, red) of the barrier for unfolding, were all unchanged by 
ligand binding.  
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[MTDB] (µM) 0 75 250 500 

Number of curves 881 624 1295 1171 

% alternate 30 ± 3 24 ± 3 13 ± 1 8 ± 1 

∆Lc native (nm) 33 ± 1 34 ± 1 33 ± 1 32 ± 1 

F alt. (pN) 42 ± 1 44 ± 2 43 ± 1 38 ± 3 

log k0 (s-1) −4.4 ± 0.3 −4.7 ± 0.5 −4.2 ± 0.3 −3.6 ± 0.4 

∆x‡ (nm) 1.6 ± 0.1 1.8 ± 0.2 1.5 ± 0.1 1.5 ± 0.1 

∆G‡ (kJ/mol) 41 ± 3 42 ± 3 39 ± 3 37 ± 3 

∆Lc alt. (nm) 21 ± 1 22 ± 1 21 ± 1 20 ± 1 

F alt. (pN) 16 ± 1 16 ± 1 14 ± 1 17 ± 1 

Table 3.1: Summary of results 

However, the fraction of FECs showing unfolding from the alternate 

structure was progressively reduced at increasing ligand concentrations, from 

30 ± 3 % without ligand to 8 ± 1 % at 500 μM. Representative unfolding force 

distributions are shown in Figure 3.6 at 250 μM MTDB, for the native (black) and 

alternate (blue) structures.  

 

Figure 3.6: The unfolding force distribution in the presence of 250 µM ligand 
showed a reduction in the extent of alternate structure formation. 
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Figure 3.7: The extent of alternate structure formation dropped linearly with the 
fraction of pseudoknots that were bound by ligand. 

 

Inferring from Kd= 210 μM the fraction of ligand-bound pseudoknots 

(Ritchie et al., 2014), we found that the prevalence of the alternate structure 

varied linearly with the fraction of pseudoknot bound (Figure 3.7). From the 

linear fit, the incidence of alternate structures goes to zero when 96 ± 8 % 

pseudoknots are bound, indicating that ligand binding effectively eliminates the 

formation of alternate structures. This reduction in alternate structure formation 

mirrors the suppression of −1 PRF efficiency caused by the ligand, which was 

found to reduce −1 PRF to near-background levels (Park et al., 2011). 

 

3.3 Discussion 

A model for MTDB binding to the SARS pseudoknot was proposed previously 

based on docking calculations (Park et al., 2011). In this model, MTDB forms 

hydrogen bonds with nucleotides in loop 3, which bridges the junction between 
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stems 2 and 3 (Figure 3.1). Only a few bonds to the RNA were proposed in the 

model, consistent with the relatively weak binding we found. Interestingly, the 

junction where binding is thought to occur contains nucleotides that are 

susceptible to cleavage by probes sensitive to both double- and single-stranded 

RNA, indicating that the junction is flexible and exists in a dynamic 

conformational equilibrium (Su et al., 2005).  

Such a picture is also consistent with our results, which suggest that 

MTDB binds to a flexible region of the SARS pseudoknot, thereby stabilizing it 

conformationally. Analogous behavior is seen in riboswitches, where ligand 

binding greatly reduces the conformational flexibility of the RNA (Serganov and 

Patel, 2012), although in the case of riboswitches the ligand binding usually 

enhances the mechanical stability of the structure significantly, as well (Greenleaf 

et al., 2008; Neupane et al., 2011). A crucial contrast here is that the ligand does 

not significantly increase the mechanical stability of the pseudoknot structure. 

Indeed, the observation that a pseudoknot-binding ligand that suppresses −1 PRF 

does not significantly alter the mechanical stability of the pseudoknot, but does 

suppress its ability to sample multiple structures, provides further evidence 

against the view that pseudoknot mechanical stability determines −1 PRF 

efficiency (Chen et al., 2009; Hansen et al., 2007). Instead, it reinforces the 

notion that the conformational plasticity and dynamic characteristics of the 

pseudoknot play an important role (Houck-Loomis et al., 2011; Ritchie et al., 

2012; Wang et al., 2002). We thus propose a mechanism whereby MTDB binding 

reduces SARS CoV −1 PRF efficiency by reducing the conformational plasticity of 

the SARS pseudoknot, consistent with our previous work highlighting an under-
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appreciated role for pseudoknot structural dynamics in regulating −1 PRF levels 

(Ritchie et al., 2012). 

How might pseudoknot structural dynamics help determine −1 PRF 

efficiency? The ribosome actively generates tension in the mRNA as structure is 

unfolded (Qu et al., 2011), suggesting that a dynamic conformational equilibrium 

could cause fluctuations in this tension which, when communicated to the tRNA-

mRNA complex, lead to a frameshift (Ritchie et al., 2012). This picture is 

consistent with a previous proposal that refolding of a partially-unfolded 

pseudoknot during accommodation might induce a frameshift by pulling back on 

the mRNA (Plant and Dinman, 2005). It is also supported by evidence of dynamic 

structural fluctuations in pseudoknots that stimulate −1 PRF efficiently: 

pseudoknot structures with a relatively high frequency of base-pair breathing at 

the junction of the two stems have been found to be more efficient −1 PRF 

stimulators than more conformationally rigid pseudoknots (Wang et al., 2002). 

Given the many elements involved in −1 PRF, MTDB could also modulate 

frameshifting through effects other than changes in the pseudoknot structural 

dynamics. For example, the ribosome interacts with the pseudoknot during 

frameshifting in a variety of ways, which might be affected by MTDB binding. 

Structural and functional studies suggest that triplex structures and exposed loop 

nucleotides may make or direct specific contacts to the ribosome that affect −1 

PRF efficiency, possibly explaining why the efficiency can be reduced by 

removing or altering these structures  (Chen et al., 2009, 1995; Cornish et al., 

2005; Kim et al., 1999; Liphardt et al., 1999; Olsthoorn et al., 2010; Shen and 

Tinoco, 1995).  
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MTDB binding might prevent such specific interactions needed to 

promote −1 PRF via protection, steric clash, or stabilization of a non-functional 

pseudoknotted conformation, or it might create new interactions leading to 

increased proofreading. The ribosomal helicase also interacts generically with the 

mRNA structures it unwinds, to facilitate the melting process (Qu et al., 2011), 

possibly biasing the dynamic equilibrium in favor of certain structures or 

speeding up equilibration rates. MTDB binding to the pseudoknot might 

modulate the interactions mediating this active unwinding of mRNA structure, 

thereby affecting the coupling of structural dynamics and interactions with the 

ribosome that are important for regulating −1 PRF efficiency. 

However, the fact that −1 PRF efficiency is correlated with conformational 

plasticity when varying two completely independent aspects of the measurement 

(anti-frameshifting ligand binding, in contrast to identity of the pseudoknot used 

to stimulate frameshifting (Ritchie et al., 2012)) is highly suggestive that the 

correlation reflects an actual mechanistic feature of −1 PRF common to all the 

measurements, rather than some artifact. Moreover, using ligand binding to alter 

−1 PRF efficiency as we have done here, as opposed to making mutations in the 

pseudoknot (Chen et al., 2009, 1995; Cornish et al., 2005; Kim et al., 1999; 

Liphardt et al., 1999; Olsthoorn et al., 2010; Shen and Tinoco, 1995) or 

comparing pseudoknots from different species (Ritchie et al., 2012), allows a 

more controlled study of the relationship between these structures and −1 PRF 

efficiency, since comparisons can be made for identical RNA molecules. 

It is interesting to note that one of the challenges in building models of −1 

PRF has been reconciling, within a single mechanistic framework, the seemingly 

disparate characteristics that appear to play important roles during frameshifting. 
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While much work remains before a complete model of −1 PRF can be realized, the 

observation of a correlation between −1 PRF efficiency and formation of alternate 

conformations across an increasing range of conditions suggests that 

conformational plasticity may be a common feature linking various frameshift 

signals, highlighting its importance as a determinant of −1 PRF efficiency. 
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4 Mechanical Models for Constant Force 
Measurements 

4.1 Motivation 

The overall fluctuations as observed in constant force data involve the 

accumulation of random movements by each component in the construct. As 

discussed in chapter 1 and 2, the molecule’s conformational fluctuation can be 

viewed as a diffusive process over its energy landscape, with the fluctuation rates 

set by a diffusion coefficient. Note that the diffusion coefficient here does not 

relate to the translational mobility, but rather the “conformational mobility” that 

characterizes how fast the molecular structure changes. On the other hand, the 

stiffness of a molecule can be extracted from equilibrium measurements because 

it is directly related to the fluctuation timescale. This information is of interest 

because it provides insight into the conformational dynamics of the molecule. 

The conformational dynamics of the molecule itself are hidden in the 

measured signals due to the simultaneous movements of beads and handles. 

Unfortunately, the serially connected construct cannot be represented by a linear 

system, in which the superposition principle can be conveniently applied. In light 

of this, Hinczewski and colleagues have developed a dynamic deconvolution 

theory that aims to recover the dynamical properties of bio-molecules in the 

context of optical tweezers experiments (Hinczewski et al., 2010). 

It is important to note the difference between the dynamic information 

extracted from molecules of interest within the tweezers measurements, as 

opposed to molecules in isolation. Considering that a molecule in a measurement 
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like the one shown in Figure 2.1 will be affected by the viscous drag of the beads 

and handles, its dynamic properties will be different than those in isolation. This 

kind of information is certainly less interesting, as molecules are never connected 

to polystyrene beads in vivo. Thus, a successful deconvolution theory should be 

able to extract, for example, the diffusion coefficient and stiffness of a protein as 

if they are in isolation. 

Eventually we hope to develop a general mechanical model describing 

each component and its fluctuation timescale with different parameters. As 

constant force measurements are often bandwidth limited by factors such as bead 

sizes and length of handles, we need a model capable of predicting these effects 

on the conformational dynamics of proteins, and of probing the limit when the 

information is completely buried. Understanding the mechanics of bead and 

handle fluctuation can help us differentiate the real response of proteins from 

noise. 

 

4.2 Dynamic Deconvolution of a Network 

This section presents and expands up on the work by Hinczewski and colleagues 

(Hinczewski et al., 2010). Using the framework developed by the authors for a 

dual-trap measurement, we extended some of their results to accommodate for 

the fact that our optical tweezers setup is not symmetrical (with different handle 

sizes, bead sizes, and trap stiffness). Unless otherwise stated, the equations are 

mostly derived directly from Hincewski’s paper. 

 



39 

 

 

Figure 4.1: The force perturbation acting on the bead, generating a response from 
the bead movements. The overall response is the convoluted sum of each 
frequency components. 

 

The derivation of the dynamic deconvolution theory stems from a Fourier 

analysis of the motions of each component in the system. Consider a bead where 

an oscillatory force along the pulling axis is applied; the position fluctuation of 

the bead will exhibit a response of the same frequency, but with a different 

amplitude, coupled by additional random motions as a result of thermal energy. 

Since any time series can be expressed as a sum of a Fourier series, the overall 

response of the system can be viewed as the convoluted sum of response of the 

system at each frequency (Figure 4.1). It is therefore much easier to apply 

deconvolution to a signal in frequency space instead of time space. 

The linear response of an object, J(ω), under a stretching force in optical 

tweezers is defined as the ratio of the complex amplitude of its position 

fluctuation, z(ω), and the force, f(ω), it experiences. 

𝐽(𝜔) =
𝑧(𝜔)

𝑓(𝜔)
    [4.1] 
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Figure 4.2: The general notion of self and cross responses. They refer to the 
response of handle or proteins occurring at the same and the opposite side of the 
applied force, respectively. 

 

Consider a partial construct where the force is applied from one end 

(Figure 4.2). The self and cross response of the construct correspond to 

movements on the same and the opposite side of the applied force, respectively. 

In general, responses can be asymmetrical, but symmetric assumptions on the 

handle’s and protein’s response function can greatly simplify the set of 

deconvolution equations. 

After introducing the notion of self and cross individual responses, we 

need to build the total response function from the bottom up by combining the 

responses from each mechanical element in the measurement. The general 

nomenclature for composite responses, when two components are connected, 

is 𝐽𝑖
𝐴. The superscript denotes the components whose motions are described by 

the response function, while the subscript i denotes either the self or cross 

response. 

A two component composite response is derived by considering two 

objects, A and B, connected by an imaginary spring of stiffness γ. When an 
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oscillatory force 𝑓𝐿𝑒−𝑖𝜔𝑡 is applied from the left end of A, the resulting fluctuation 

along the pulling axis, zAL, becomes: 

𝑧𝐴𝐿 = 𝐽𝑠𝑒𝑙𝑓,𝐿
𝐴 𝑓𝐿 + 𝐽𝑐𝑟𝑜𝑠𝑠

𝐵 𝑓     [4.2] 

where f = -γ(zAR-zBL) denotes the instantaneous force exerted by the imaginary 

spring, with zAR and zBL referring to the fluctuations of the right end of component 

A and the left end of component B, respectively . On the other hand, Newton’s 

third law implies the following set of equations: 

𝑧𝐴𝑅 = 𝐽𝑐𝑟𝑜𝑠𝑠
𝐴 𝑓𝐿 + 𝐽𝑠𝑒𝑙𝑓,𝑅

𝐴 𝑓     [4.3] 

𝑧𝐵𝐿 = −𝐽𝑠𝑒𝑙𝑓,𝐿
𝐴 𝑓     [4.4] 

𝑧𝐵𝑅 = −𝐽𝑐𝑟𝑜𝑠𝑠
𝐵 𝑓     [4.5] 

By definition, the composite responses are: 

𝐽𝑠𝑒𝑙𝑓,𝐴
𝐴𝐵 =

𝑧𝐴𝐿

𝑓𝐿
      [4.6] 

𝐽𝑠𝑒𝑙𝑓,𝑌
𝐴𝐵 =

𝑧𝐵𝑅

𝑓𝑅
      [4.7] 

𝐽𝑐𝑟𝑜𝑠𝑠
𝐴𝐵 =

𝑧𝐵𝑅

𝑓𝐿
=

𝑧𝐴𝐿

𝑓𝑅
     [4.8] 

It is relatively straightforward to derive the remaining equations for forces 

applied from the right. Thus, by taking the imaginary spring stiffness to the limit 

of 𝛾 → ∞, we can solve for the full response function. 

𝐽𝑠𝑒𝑙𝑓,𝐴
𝐴𝐵 = 𝐽𝑠𝑒𝑙𝑓,𝐿

𝐴 −
(𝐽𝑐𝑟𝑜𝑠𝑠

𝐴 )2

𝐽𝑠𝑒𝑙𝑓,𝑅
𝐴 +𝐽𝑠𝑒𝑙𝑓,𝐿

𝐵      [4.9] 
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𝐽𝑐𝑟𝑜𝑠𝑠
𝐴𝐵 =

𝐽𝑐𝑟𝑜𝑠𝑠
𝐴 𝐽𝑐𝑟𝑜𝑠𝑠

𝐵

𝐽𝑠𝑒𝑙𝑓,𝑅
𝐴 +𝐽𝑠𝑒𝑙𝑓,𝐿

𝐵      [4.10] 

𝐽𝑠𝑒𝑙𝑓,𝐵
𝐴𝐵 = 𝐽𝑠𝑒𝑙𝑓,𝑅

𝐵 −
(𝐽𝑐𝑟𝑜𝑠𝑠

𝐵 )2

𝐽𝑠𝑒𝑙𝑓,𝑅
𝐴 +𝐽𝑠𝑒𝑙𝑓,𝐿

𝐵      [4.11] 

Equations 4.9-4.11 form the basis of the dynamic deconvolution theory. The total 

response for a network of three or more components can be found by reiterating 

the convolution rules.  

The remaining piece is the problem of calculating the total response 

function from time series measurements of bead fluctuations. The key to this 

problem is the use of the Fluctuation-Dissipation Theorem (FDT). The 

spontaneous fluctuation of a system under random thermal motion is 

fundamentally related to its response to an external perturbation. The Langevin 

theory of Brownian motion, along with results from the Einstein-Smoluchowski 

equation, yield an equation that relates the diffusion coefficient, D of an object to 

its mobility, μ: 

𝐷 = 𝜇𝑘𝐵𝑇     [4.12]. 

Equation 4.12, called the Einstein relation, connects the coefficient of diffusion 

with the mobility of the system, and it implies that the ultimate source of 

diffusion lies in the random, fluctuating force arising from the incessant motion 

of the fluid molecules (Pathria and Beale, 2011).  

The diffusion coefficient is a measure that relates an object’s displacement 

to the driving force of diffusion arising from thermal energy or electrochemical 

potential. Loosely speaking, the diffusion coefficient can be seen as a particle’s 
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ability to diffuse through a fluid. On the other hand, the mobility μ comes from 

the notion of viscous drag, which determines the velocity of a particle in fluid 

when it is propelled by an external force.  

The FDT establishes the fundamental relationship between the mobility, 

which represented the dissipative force of the system, and the autocorrelation 

function of the fluctuations (Pathria and Beale, 2011). It can be deduced from the 

FDT that the derivative of an autocorrelation function of a time series is 

equivalent to its time domain linear response, differing only by the Boltzmann 

factor kBT (Landau and Lifshitz, 1996). A common definition for the 

autocorrelation of a time series, R(τ), is given by: 

𝑅(𝜏) = 〈𝑧(𝑡 + 𝜏)𝑧(𝑡)〉    [4.13] 

Direct calculation using equation 4.13 is certainly possible, but it is 

computationally intensive. As an alternative, we invoke the Wiener-Khinchin 

theorem, which states that the autocorrelation function is equivalent to the 

Fourier transform of the absolute square of the time series (Cohen, 1992). To 

obtain the time and frequency domain response, we can take the derivative of the 

autocorrelation function and consequently its Fourier transform. As seen in 

Figure 4.3b, the raw Fourier Transform of a time response function exhibits high 

frequency noise contamination. This is due to the fact that the statistics are 

insufficient for the higher time lag calculation of autocorrelation. The number of 

discrete frequency components depends on the number of points in time series 

used for Discrete Fourier Transform calculations (Smith, 2007). We can 

overcome this artifact by filtering the frequency domain response with log scale 

averaging, such that the bins size are equal in the logarithmic scale (Figure 4.3c). 
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: 

Figure 4.3(a):The time 
space response 
obtained by 
differentiating the 
mean square 
displacement of the 
bead position.  

 

 

 

 

 

Figure 4.3(b): The raw 
frequency space 
response by applying 
Fourier Transform 
directly.  

 

 

 

 

 

Figure 4.3(c): The 
filtered frequency 
space complex 
response. (Blue 
denotes the real part, 
and red denotes the 
imaginary part) 
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As a summary, given a set of position measurements (Figure 4.4a), we will 

calculate its autocorrelation function by applying the Wiener-Khinchin Theorem 

(Figure 4.4b); to obtain its time/frequency domain response (Figure 4.4c,d).  

 

Figure 4.4: (a) The raw data as measured in constant force experiments. (b) The 
autocorrelation function calculated using the Wiener-Khinchin Theorem.  (c) The 
time space response obtained by differentiating the autocorrelation function. (d) 
The filtered frequency space response. (Blue denotes the real part, and red 
denotes the imaginary part) 
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We are eventually interested in the individual response of a protein. 

However, the total response is not an explicit function of the protein’s response. 

Direct inversion will lead to instabilities in the solution for the protein’s response 

function because the Fourier transform of the total response can contain noise 

that leads to asymptotic behavior. A more feasible approach is to model the 

functional form of the bead response using the FDT, and the handle response 

using results from the worm-like chain (WLC) model. We first build the network 

bottom up by combining the theoretical functional forms via the set of 

convolution equations 4.9-4.11. The model is then fitted to the total response 

calculated from experimental time series, yielding parameters that characterize 

the individual responses. Details on each response function will be discussed in 

Chapter 5. 
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5 Dynamic Deconvolution of Experimental 
Data 

In Chapter 4 we discussed how the response of a network of mechanical 

components can be built from the bottom up if the response function of each 

component is known. The functional form of the bead and handle response can 

be derived using the FDT and the WLC models, respectively. In this chapter, we 

want to test the validity of both the response functions and the deconvolution 

approach through a series of measurements using different constructs: beads 

only, beads with DNA handles, and beads with DNA handles linked to a protein 

molecule.  

 

5.1 Bead Measurements 

A bead’s motion in an optical trap can be modelled as a diffusive Brownian 

particle constrained as an oscillator in a harmonic potential. By extending the 

Langevin theory of Brownian motion to include a harmonic term with a spring 

constant kTrap, we can write the one-dimensional equation of motion (Equation 

5.1): 

𝑚
𝑑2𝑥

𝑑𝑡2
+

1

𝜇𝐵

𝑑𝑥

𝑑𝑡
+ 𝑘𝑇𝑟𝑎𝑝𝑥 = 𝐹(𝑡)     [5.1] 

Here μB is the mobility of a spherical particle in a fluid with viscosity η, kTrap is the 

stiffness of the optical trap, F(t) is the time-dependent external force, and m is 

the mass of the particle. 
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The solution to the differential equation can be found by decomposing the 

response into a sum of independent terms involving a sinusoidal applied force 

(Hinczewski et al., 2010; Pathria and Beale, 2011). As a result, the response 

function of a single bead in frequency space takes the form of a Lorentzian 

(Equation 5.2). 

𝐽𝐵(𝜔) =
𝜇𝐵

𝜇𝐵𝑘𝑇𝑟𝑎𝑝 − 𝑖𝜔
    [5.2] 

In order to test the validity of this function, single bead experiments were 

performed with various trap stiffness and bead radii. The bead was trapped with a 

stiffness ranging from 0.1-0.2 pN/nm, and fluctuations in its position were 

measured and recorded as a function of time (Figure 5.1).   

 

 

Figure 5.1: Sample data trace from single bead measurements. The position 
distribution is roughly Gaussian, as expected for a harmonic trapping potential. 
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The time traces can be analyzed using the procedural steps detailed in 

chapter 4. Figure 5.2 shows an example of the autocorrelation of a bead with 

radius 300 nm, and its corresponding filtered frequency space response with fits. 

 

Figure 5.2: Position autocorrelation of a bead of radius 300 nm being held at a 
stiffness of 0.15 pN/nm. Bead response in (a) time space and (b) frequency space. 
Red and blue lines show the real and imaginary parts of the response, 
respectively. Black lines show the corresponding fits to the response using 
equation 5.2. The Lorentzian discrepancy occurs above 3 kHz. 
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As seen from Figure 5.2b, at frequencies above 3 kHz, the response starts 

to deviate from the characteristic 1/ω2 drop of the Lorentzian function. The high 

frequency discrepancy suggests that the bead’s movement during shorter time 

scale are highly correlated, and this discrepancy is most likely contributed by 

factors other than the bead dynamics. The Lorentzian is merely a simplistic first 

order approximation of the bead response. However, we will show in section 5.4 

that the protein conformational dynamics can in fact be captured in the low 

frequency range, so that the deconvolution approach is still feasible by limiting 

the fit range. 

As a first order approximation, we can fit the response with a frequency 

range constraint (<3 kHz) to extract the trap stiffness and bead mobility using 

equation 5.2. The extracted trap stiffness can be compared to other established 

ways to measure the trap stiffness, namely the power spectrum and variance 

methods (Berg-Sørensen and Flyvbjerg, 2004; Neuman et al., 2007). Figure 5.3 

shows that the trap stiffness obtained from the autocorrelation method agrees 

well with the results from the variance and the power spectrum methods. To 

estimate the bead radius correctly, we need to invoke Faxen’s correction of Stokes’ 

law, a phenomenological description (equation 5.3) for the diffusion of spherical 

particles near a surface (Viana et al., 2007). The correction is necessary because 

the beads are trapped roughly a diameter (600 nm) away from the surface, 

making the proximity effect significant. Here η = 10-3 Pa.s is the viscosity of water 

at 200 C, r is the bead radius, and h is the distance of bead center from the surface. 

𝜇𝐵 =
6𝜋𝜂𝑟

1 −
9

16 (
𝑟
ℎ

) +
1
8 (

𝑟
ℎ

)
3

−
45

256
(

𝑟
ℎ

)
4

+
1

16 (
𝑟
ℎ

)
5      [5.3] 
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Figure 5.3: Stiffness comparison. Extracted stiffness are compared to other 
established stiffness measurement methods. (a) Stiffness measured using the 
autocorrelation and the power spectrum method (b) Stiffness measured using the 
autocorrelation and the variance method. Solid lines indicate the expected 
equality between the results from different methods. 
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Using equation 5.3, we obtained the following results: 268 ± 3 nm at 0.12 

pN/nm, 283 ± 3 nm at 0.15 pN/nm, and 293 ± 5 nm at 0.19 pN/nm. These 

number are quite close to the nominal expected value of 300 nm. The discrepancy 

from the nominal value becomes smaller at higher trap stiffness, for reasons that 

are not yet understood. Note that the errors are reported as standard error of the 

mean. 

 

5.2 Hydrodynamic Effect Measurements 

Constant force experiments are usually done at a trap separation of 500-

1000 nm, depending on the length of handle used. Since the beads are only 1 to 2 

diameters apart, the hydrodynamic effect, or the vortex in a fluid generated by 

random bead movements, may be significant. At such a close distance, the 

turbulence of the fluid will affect the movement of the beads leading to additional 

noise in the bead’s response function. In order to test whether there is a 

significant coupling between the motions of two beads, we designed a set of 

experiments that replicate the experimental conditions used in protein folding 

measurements. A larger bead is trapped at a constant stiffness of 0.3 pN/nm, 

while a smaller bead is trapped at various trap stiffness, in the range of 0.1 to 0.2 

pN/nm. The experiment is repeated at different bead separations so that the 

hydrodynamic effect can be observed at different distances. 

Figure 5.4 shows the time and frequency response of the 300 nm bead in 

the presence of the second bead. The frequency response is analogous to result 

from the single bead measurements. Figure 5.5 presents the extracted bead radii 

at various trap stiffness and separations, compared to the single bead result. We 
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observed that while the extracted radii exhibited a similar average value, the 

variance in the results was systematically higher when another bead was present. 

The results are summarized in Table 5.1, showing that the twin bead results are 

consistent with those calculated from single bead measurements. 

 

Figure 5.4: Position autocorrelation of a bead of radius 300 nm, being held with a 
stiffness of 0.15 pN/nm, but with the proximity of another bead of radius 410 nm, 
being held at 0.66 pN/nm. Bead response in (a) time space and (b) frequency 
space. Red and blue lines show the real and imaginary parts of the response, 
respectively. Black lines show the corresponding fits to the response using 
equation 5.2. 
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Figure 5.5: Summary of bead results. The bead radii are calculated using equation 
5.3. A total of 20 beads are measured, being held at stiffness of (a) 0.12 pN/nm (b) 
0.15 pN/nm (c) 0.19 pN/nm, respectively. 
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Distance\Stiffness 0.12 

pN/nm 

0.15 

pN/nm 

0.19 

pN/nm 

550 nm 289 ± 5 nm 315± 7 nm 352 ± 14 nm 

650 nm 304 ± 4 nm 322 ± 6 nm 335 ± 12 nm 

750 nm 259 ± 4 nm 273 ± 4 nm 280 ± 11 nm 

single 268 ± 3 nm 283 ± 3 nm 293 ± 5 nm 

Table 5.1: Summary of extracted bead radius results. Errors are reported as 
standard error of the mean. 

 

5.3 Handle Measurements 

Having measured the bead responses, we will now add in a handle to the 

construct. The next set of experiments will measure the overall tether-bead 

response, in the absence of protein. In the actual preparation of constructs, the 

tether is made by connecting two shorter handles, comprised of 1281 and 798 

base-pairs, respectively, through a disulfide bond on one strand. The 1281-base-

pair handle end is attached to the anti-digoxigenin functionalized bead of 410 nm 

radius, while the 798-base-pair handle end is attached to the avidin 

functionalized bead of 300 nm radius. This construct is held at a constant force 

with the smaller bead being pulled out of the center of the trap into the zero-

stiffness region, and the larger bead trapped at a constant stiffness in the linear 

region (0.3 pN/nm). The same measurement was repeated at several different 

constant forces, ranging from 7 pN to 14 pN. Data were collected by Hao Yu 

between the months of May and June 2010.  
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Figure 5.6: Sample data trace from handle measurements. (a) A 300 nm radius 
bead is trapped in the zero-stiffness region. (b) A 410 nm radius bead is trapped 
in the linear region. 

 

Figure 5.6 shows the experiment setup schematic and a sample of data 

traces taken. Similar results were found from 2 different molecules, although the 

results are shown only for one. 

Hinczewski and colleagues derived the expected functional form for the 

response of handles using the theory of polymer dynamics (Hinczewski et al., 

2010). The key assumption in this derivation is that fluctuations along a semi-

flexible polymer can be decomposed into a sum of normal modes. By assuming an 
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exponentially decaying autocorrelation function in time, the handle’s normal 

mode response can be written as a sum of exponents, or as a sum of Lorentzians 

in frequency space. The sum of normal modes, with an additional center of mass 

term, can describe the response of handles completely (Equation 5.4 & 5.5). 

𝐽𝑠𝑒𝑙𝑓
𝐻 (𝜔) =

𝜇0
𝐻

−𝑖𝜔
+ ∑

𝜇𝑛
𝐻

𝜇𝑛
𝐻𝑘𝑛

𝐻 − 𝑖𝜔

𝑁𝑚𝑜𝑑𝑒𝑠

𝑛=1

     [5.4] 

𝐽𝑐𝑟𝑜𝑠𝑠
𝐻 (𝜔) =

𝜇0
𝐻

−𝑖𝜔
+ ∑ (−1)𝑛

𝜇𝑛
𝐻

𝜇𝑛
𝐻𝑘𝑛

𝐻 − 𝑖𝜔

𝑁𝑚𝑜𝑑𝑒𝑠

𝑛=1

     [5.5] 

The normal modes can be arranged such that the n = 1 mode represents the mode 

with the largest relaxation time. To reduce the number of parameters necessary, 

we decided to fit the handle response by including only the first normal mode, 

because in the low temperature limit, the handle response is dominated by the 

center-of-mass term and the first normal mode. Hincewski proposed the addition 

of a term to describe the bead surface response (equation 5.6) when the bead is 

linked in a network. This additional term describes the contribution of the 

rotational motion of the bead, and it separates the response of the bead’s surface 

from its center. 

𝐽𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝐵 (𝜔) =

𝜇𝐵

𝜇𝐵𝑘𝑇𝑟𝑎𝑝 − 𝑖𝜔
+

𝜇𝑟
𝐵

𝜇𝑟
𝐵𝑘𝑟

𝐵 − 𝑖𝜔
     [5.6] 

 To extract the response for the handles alone, we need to build up the 

handle-bead network from its components. We can derive the response by first 

convoluting the two beads separately with their own handles, then combining 

them into a single entity. Unfortunately, the complete network now contains a 

total of 14 parameters, making overfitting of the data a concern. We find that an 
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unconstrained fit often leads to instabilities and asymptotic behaviour, because 

the minimization algorithm has to search through a 14-dimensional phase space, 

and any local extrema can cause the minimum searching process to fail. To 

overcome this difficulty, we constrained the handle parameters to values derived 

from the WLC model (Hinczewski et al., 2010). Equation 5.7 and 5.8 shows that 

the handle mobility should remain constant, while the handle stiffness should 

vary according to the 3/2 th power of force. 

𝜇0
𝐻 ≈ 𝜇1

𝐻 =
ln [

𝐿
𝑑

]

2𝜋𝜂𝐿
     [5.7] 

𝑘1
𝐻 ≈

4𝑘𝐵𝑇

𝑙𝑝𝐿
(

𝑙𝑝𝐹

𝑘𝐵𝑇
)

3
2

     [5.8] 

The combined handle and beads’ time and frequency responses are shown in 

Figure 5.7. By constraining the handle parameters (Figure 5.8), the 

corresponding fit result for bead parameters is shown in Figure 5.9. 

 The bead radii implied by the mobilities are 150 ± 50 nm and 530 ± 40 

nm for the small and large bead, respectively. This is not unreasonable as the 

bead rotation is now coupled to the handle’s fluctuation, causing the “effective” 

bead mobility to change. Another observation from Figure 5.8 is that the mobility 

of the smaller bead is varying with the applied force. This is consistent with the 

single bead results where the apparent bead radius seems to be increasing as we 

increase the trap stiffness. 
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Figure 5.7: The position autocorrelation of a construct with handles being held at 
a constant force of 10.8 pN. The corresponding frequency response of the (a) 300 
nm bead operating in the zero-stiffness region of the trap (trap 1) (b) 410 nm 
bead operating in the linear region of the trap (trap 2). Red and blue lines show 
the real and imaginary parts of the response, respectively. Black lines show the 
corresponding fits to the response functions. 
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Figure 5.8: Constrained handle parameters using values estimated from the WLC 
model. Blue denotes the parameter of the handle being connected to the smaller 
bead while red denotes the parameter of the handle connected to the larger bead. 
Handle (a) mobility (𝜇0

𝐻/𝜇1
𝐻) (b) stiffness (𝑘0

𝐻) 

 

Figure 5.9: Extracted bead parameters. Blue and red denote the parameters that 
are related to the small and the large bead, respectively. Bead’s (a) translational 
mobility (𝜇𝐵) and (b) rotational mobility (𝜇𝑟

𝐵). (c) Trap stiffness (𝑘𝑇𝑟𝑎𝑝) (d) 
Rotational elasticity (𝑘𝑟

𝐵). The rotational elasticity is the same for both beads. 
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5.4 Protein Measurements 

After characterizing the response of the beads and handles, we can now proceed 

to measure a complete construct encompassing a protein. The protein used in our 

measurements is the recombinant Syrian hamster Prion Protein (SHaPrP, 90-

231). The protein construct is prepared by first attaching it to the handles via 

disulfide bonds, then to the beads (Yu et al., 2012). The experimental setup for 

protein measurements is similar to the one outlined in the previous section. Data 

were collected by Hao Yu between the months of May and June 2010. Data is 

analyzed over 3 different molecules. 

Hinczewski’s paper derived the protein response function by using the 

numerical solution of the corresponding Fokker-Planck equation (Hinczewski et 

al., 2010). Assuming a double well potential and discretizing it over M values, 

they derived the generalized form of the protein response (Equation 5.10). 

𝐽𝑃(𝜔) = ∑
𝛽𝐶𝛼Λ𝛼

Λ𝛼 − 𝑖𝜔

𝑀−1

𝛼=1

= ∑
𝜇𝛼

𝑃

𝜇𝛼
𝑃𝑘𝛼

𝑃 − 𝑖𝜔

𝑀−1

𝛼=1

     [5.10] 

Cα and Λα are parameters related to the eigenvector and eigenvalue of the 

transition matrix of the discretized potential well (Hinczewski et al., 2010). The 

first Lorentzian of equation 5.10 models the potential as a well-defined parabolic 

well, while the remaining terms account for the anharmonic correction. 

The authors proposed a key relation (Equation 5.11) that resembles the 

structure of equations 4.9 and 4.11. 

𝐽𝑠𝑒𝑙𝑓
2𝐻𝐵+𝑃 = 2𝐽𝑠𝑒𝑙𝑓,𝐵

𝐻𝐵 −
2(𝐽𝑐𝑟𝑜𝑠𝑠

𝐻𝐵 )2

𝐽𝑠𝑒𝑙𝑓,𝐻
𝐻𝐵 + 𝐽𝑃/2

     [5.11] 
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Equation 5.11 assumes a symmetrical optical tweezers setup, which is not 

applicable in our case since we use different bead sizes and place them in 

different stiffness regions of asymmetrical traps. In view of that, we made a slight 

modification to the equation 5.11, where Hn and Bn (for n = 1,2) denote the 

responses respectively of the two handles and the two beads. 

𝐽𝑠𝑒𝑙𝑓,𝐵𝑛
2𝐻𝐵+𝑃 = 𝐽𝑠𝑒𝑙𝑓,𝐵𝑛

𝐻𝑛𝐵𝑛 −
(𝐽𝑐𝑟𝑜𝑠𝑠

𝐻𝑛𝐵𝑛)2

𝐽𝑠𝑒𝑙𝑓,𝐻𝑛
𝐻𝑛𝐵𝑛 + 𝐽𝑃/2

         𝑛 = 1,2    [5.12] 

We have already shown in section 5.2 that by constraining the handle parameters, 

we are able to obtain good fits with bead parameters consistent with the results 

from measurements of beads alone. We will employ the same strategy to extract 

the protein dynamics, using the first order term in equation 5.10.  

As can be seen in Figure 5.10, the sample data trace shows how the 

protein can hop between different states. The distribution of states depends on 

the force exerted on the beads by the traps; higher force will push the protein to 

stay in the completely unfolded (higher extension) state and vice versa.  

 

Figure 5.10: Sample data trace from handle measurements. The high extension 
state represents the completely unfolded molecule while the low extension state 
represents the folded molecule. 
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 Figure 5.11 and 5.12 show the responses of the protein construct in the 

folded and unfolded states, respectively. We expanded on the data analysis 

procedure described in section 5.3, by adding in the protein’s response function 

(5.10) to the convoluted network. We restricted the handle parameters to the 

values in Figure 5.8, while letting the beads and protein parameters to float freely. 

The corresponding fit results are summarized in Figure 5.13 and 5.14. Once we 

have found the protein’s mobility from the fits, we can calculate the diffusion 

coefficient of the unfolded and folded states, respectively, from the mobility of 

protein (𝜇𝛼
𝑃) using equation 4.12. 

Analysing 51 data traces from 3 molecules, we found the diffusion 

coefficients of the completely unfolded and folded states to be 10-11.6±0.3 m2/s and 

10-12.3±0.2 m2/s, respectively. Note that this diffusion coefficient relates to the 

diffusion of the protein over the conformational energy landscape along the 

reaction coordinate for folding (here, molecule extension), not merely the 

translation diffusion of the protein through the solution. The diffusion coefficient 

of our unfolded protein is consistent with previously values for conformational 

diffusion reported from fluorescence measurements, in the range 10-10 to 10-13 

m2/s (Waldauer et al., 2010). It is remarkable that our results agree with the 

literature since fluorescence measurements do not typically involve beads and 

handles. In contrast, force spectroscopy measurements where the mechanical 

network was not deconvolved found much slower diffusion coefficients, 10-15 to 

10-16 m2/s (Berkovich et al., 2012; Lannon et al., 2013). It is also important to note 

that this is the first time a diffusion coefficient has been calculated for a folded 

protein. 
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Figure 5.11: The position autocorrelation of a construct with handles and protein 
being held at a constant force of 10.8 pN in the folded state. The corresponding 
frequency response of the (a) 300 nm bead operating in the zero-stiffness region 
of the trap (trap 1) (b) 410 nm bead operating in the linear region of the trap (trap 
2). Black lines are the corresponding fit to the response functions using equation 
5.12. 
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Figure 5.12: The position autocorrelation of a construct with handles and protein 
being held at a constant force of 10.8 pN in the unfolded state. The corresponding 
frequency response of the (a) 300 nm bead operating in the zero-stiffness region 
of the trap (trap 1) (b) 410 nm bead operating in the linear region of the trap (trap 
2). Black lines are the corresponding fit to the response functions using equation 
5.12. 

. 
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Figure 5.13: The extracted bead parameters. The 3oo nm bead in trap 1 when the 
construct is in the unfolded (blue) and folded (purple) states. The 410 nm bead in 
trap 2 when the construct is in the unfolded (red) and folded (green) states. 

 

 

Figure 5.14: Diffusion coefficient calculated from the mobility of the protein (μP). 
Blue and purple lines are the diffusion coefficient for the unfolded and folded 
states, respectively. 
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Based on the above results, we can conclude that the dynamic 

deconvolution theory is indeed capable of capturing a protein conformational 

dynamics. The fact that the extracted diffusion coefficient of the energy landscape 

agrees with previously reported values suggest that this theory is viable, provided 

further revisions can be made to address the limitations illustrated in the 

previous sections. 
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6 Conclusion and Future Work 

In this thesis, we demonstrated how the conformational dynamics of a molecule 

can be probed by utilizing various measurement modes of optical tweezers. We 

also presented different data analysis methods that are able to recover important 

energy landscape parameters, such as the diffusion coefficient, free energy and 

rates.  

 

6.1 RNA pseudoknot conformational dynamics 

The role of mRNA conformational plasticity in −1 PRF could be probed further by 

extending this kind of study to other stimulatory structures. For example, in the 

case of HIV-1, −1 PRF is apparently stimulated by a hairpin with a 3-nt bulge 

(Staple and Butcher, 2005). The local stability of the three base-pairs adjacent to 

the ribosomal RNA entry tunnel is known to influence −1 PRF efficiency 

(Marcheschi et al., 2011), but the structural dynamics of the hairpin have yet to be 

explored as a determining factor. Furthermore, the HIV-1 stimulatory structure 

may actually form an intramolecular triplex during −1 PRF (Dinman et al., 2002), 

raising structural parallels with pseudoknot-induced frameshifting. Ligands that 

modulate −1 PRF efficiency in HIV-1 (Brakier-Gingras et al., 2012; Marcheschi et 

al., 2011) would provide an opportunity to probe the link between conformational 

dynamics and −1 PRF in a different system and thereby test the generality of the 

proposed mechanism. 
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Finally, we note that our results suggest that when screening for 

molecules with potential as anti-viral therapeutics that work by modulating −1 

PRF efficiency, focusing on the effects of compounds on pseudoknot 

conformational dynamics should prove more fruitful than focusing simply on 

modulating the stability of the pseudoknot structure. A similar strategy may also 

prove effective for targeting −1 PRF stimulated by other types of structures, like 

the hairpin in the HIV-1 frameshift signal. 

 

6.2 Dynamic Deconvolution Theory 

The dynamic deconvolution theory presented in chapter 4 and 5 is interesting, 

but it is far from complete. We showed how we can build up the network by 

incorporating elements in sequence, and consequently verified by experiments. 

We tested the validity of the bead response function, although it is found to be 

limited to a certain frequency range. The high frequency discrepancy suggests 

that there is some unknown interference, most likely arising from instrumental 

effects that contribute to the autocorrelation of the bead position. 

Although the experimental results look promising, we can further improve 

our measurement protocols. For example, constant force measurements can be 

done in a more systematic way by measuring the bead-only movements after the 

construct breaks. This will allow us to extract the bead mobility under the same 

experiment conditions, reducing the parameter list by another four (two for each 

bead). On the other hand, the DNA measurement can be repeated with handles of 

different length.  
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 For future work, we would like to test the theory on other molecules, such 

as those with more than two states. We wish to apply this theory, if successfully 

validated, to study the difference between an on or off pathway intermediate 

states. The dynamic deconvolution of network promises an alternative way of 

understanding a molecule’s conformational dynamics by extracting the diffusion 

coefficient of each extension state.  
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