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Abstract 

In order to estimate reliability by a single administration of one test form, various 

approaches and corresponding reliability coefficients have been proposed so far. 

Currently, the five most influential approaches are: internal consistency, lower bound, 

principal components analysis (PCA), exploratory factor analysis (EFA), and structural 

equation modeling (SEM). Facing various approaches and thus dozens of reliability 

coefficients derived for estimating reliability, practicing researchers are curious to know 

which reliability coefficient(s) performs best, and under what circumstances. However, a 

comprehensive comparison of the reliability coefficients from the aforementioned five 

approaches has not been conducted yet. Therefore, a Monte Carlo study was conducted 

to evaluate the performances of the reliability coefficients from the five approaches under 

the conditions that are known to have effect on reliability estimation. Monte Carlo design 

factors included twelve specific measurement models, two levels of item number, three 

levels of sample size, three levels of error correlation, and two levels of factor 

correlation. In total, 72 simulation conditions were created by the combination of all 

design factors, and each condition was replicated 1,000 times in R environment. The 

results were collected in two stages. In the first stage, the percentage relative bias, 

standard error and root mean square error of each reliability coefficient were calculated 

for each condition. The rounded percentages of estimation failure numbers for each 

SEM reliability coefficient under all the manipulated conditions were also obtained to 



iii 

 

identify the conditions with serious estimation issues for the second stage analysis. In the 

second stage of this study, the percentage relative bias, standard error and root mean 

square error of Bayesian SEM estimates of reliability for the selected conditions were 

calculated. Results showed that correctly specified SEM estimates of reliability were 

least biased and comparatively stable under most of the conditions across the twelve 

measurement models in this study. However, under the conditions of small item 

numbers and complicated models, correctly specified SEM estimates of reliability were 

least accurate and exceptionally unstable due to estimation problems. In addition, 

over-specified SEM estimates of reliability were examined under the conditions in 

Model 1 (the tau-equivalent model with independent errors), Model 4 (the congeneric 

model with independent errors), Model 7 (the correlated factor model with factor 

correlation at 0.2 and independent errors) and Model 10 (the correlated factor model 

with factor correlation at 0.6 and independent errors). Results indicated that 

over-specified SEM estimates of reliability were as accurate and stable as correctly 

specified SEM estimates of reliability unless estimation problems occurred. Results in 

the second stage showed that the Bayesian estimation method with non-informative 

priors could effectively solve estimation problems but fail to eradicate the biases in 

SEM estimates of reliability. In order to solve estimation problems as well as 

maintaining the accuracy of SEM estimates of reliability, more types of priors need be 

tested and compared when using Bayesian estimation methods in a future study. 
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CHAPTER 1  INTRODUCTION 

Reliability is generally interpreted as the precision of test scores or other 

measurements in the field of psychometrics (Haertel, 2006; McDonald, 1999). The 

concern of reliability is to quantify the consistency of results from a measurement 

procedure across replications. Spearman (1904) first proposed to use the index of 

reliability to correct a correlation coefficient for attenuation due to measurement 

errors. These errors, as pointed out by Spearman, attenuate a correlation coefficient in a 

manner that cannot be remedied by increasing the number of individuals. The importance 

of reliability is not limited to correcting an attenuated correlation coefficient. As stated by 

Cronbach (1951, p. 297), “Even those investigators who regard reliability as a pale 

shadow of the more vital matter of validity cannot avoid considering the reliability of 

their measures.” Currently, reliability has become one of the most commonly reported 

psychometric properties when evaluating the quality of an educational or psychological 

measure. Researchers are recommended to “provide reliability coefficients of the scores 

for the data being analyzed even when the focus of their research is not psychometric” 

(Wilkinson & APA Task Force on Statistical Inference, 1999, p. 596). Therefore, studies 

on reliability estimation and its corresponding coefficients are of great importance to 

practicing researchers. 

Statistically, reliability is defined as the square of the correlation between observed 

scores and true scores (Spearman, 1904). Under the assumptions of the true-score model 

http://en.wikipedia.org/wiki/Charles_Spearman
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(Lord & Novick, 1968, see details in Chapter Two 2.1), it is equal to the ratio of true score 

variance to observed score variance, that is,  

𝜌𝑋𝑋 =  𝜌2(𝑋, 𝑇) =
𝜎𝑋𝑇

2

𝜎𝑋
2 𝜎𝑇

2 =
𝜎𝑇

2

𝜎𝑋
2.                    (1) 

Thus, reliability can be interpreted as the amount of the observed variance attributable to 

systematic differences among the individuals in the population. Since 𝜎𝑇
2 (true score 

variance) is unknown, reliability has to be estimated instead of being calculated directly. 

Spearman initially proposed equating the reliability coefficient to parallel-form or 

test-retest correlation. However, it is difficult to construct parallel forms and evaluate 

whether two or more forms of a test are parallel. It is also unreasonable to expect that 

examinees will be the same from one time to another due to the individual change over 

time or due to practice effect. It is possible that examinees will remember from one 

administration to another unless the time interval is quite long. In response to the 

difficulties inherent in using parallel forms and test-retest methods, methods for 

estimating reliability by a single administration of one test form have been developed.  

In order to estimate reliability by a single administration of one test form, various 

approaches and corresponding reliability coefficients have been proposed so far. 

Currently, the five most influential approaches are: internal consistency, lower bound, 

principal components analysis (PCA), exploratory factor analysis (EFA), and structural 

equation modeling (SEM). These five approaches and their corresponding reliability 

coefficients are reviewed in detail in Chapter Two. The SEM approach is used here as a 
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general approach which subsumes confirmatory factor analysis (CFA) approach, because 

CFA is a special case of SEM (Bollen, 1989). Other approaches to reliability estimation, 

such as analysis of variance (ANOVA) approach (Cronbach et al., 1963, 1972; Hoyt, 

1941; Shrout & Joseph, 1979), and hierarchical linear modeling (HLM) approach (Bryk 

& Raudenbush, 1992; Wang, 2002; Snijders & Bosker, 2012), are not considered in this 

study. The reason lies in the fact that external factors (e.g., the test administration 

methods or location) other than test items need to be considered in these approaches to 

obtain an optimal estimate of reliability. Otherwise, these two approaches generate 

reliability estimates at most as good as coefficient alpha (Hoyt, 1941; Shrout & Joseph, 

1979). 

Facing various approaches and thus dozens of reliability coefficients derived for 

estimating reliability, practicing researchers are curious to know which reliability 

coefficient(s) performs best, and under what circumstances, because overestimation of 

reliability may cause false confidence in the quality of the measure being evaluated, and 

underestimation of reliability may cause more time and effort to revise or even 

redevelop the measure. Although many researchers have conducted studies to compare 

these reliability coefficients, the results are not always consistent and the whole picture of 

how these reliability coefficients perform in comparison is not well understood due to the 

following reasons. First, there is a severe lack of the comprehensive studies which 

compare reliability coefficients from various approaches. To the author’s knowledge, 
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there is no study that has simultaneously evaluated the reliability coefficients from the 

aforementioned five approaches. So far, the two studies conducted by Osburn (2000), and 

Revelle and Zinbarg (2009) can be regarded as the most comprehensive studies, each 

comparing more than 10 reliability coefficients yet from no more than three approaches. 

Using hypothetical data, Osburn (2000) compared coefficient alpha and 10 other 

reliability coefficients from the internal consistency approach and the lower bound 

approach. Revelle and Zinbarg (2009) compared 13 reliability coefficients, including the 

internal consistency approach, the lower bound approach and the EFA approach, with 

both real and hypothetical data. However, the sampling distribution properties of these 

reliability coefficients were not provided in these two well-known studies.  

In my dissertation, reliability coefficients developed from each of the five 

approaches were compared. Specifically, performances of the most popular reliability 

coefficient (coefficient alpha) and recommended reliability coefficients from the other 

four approaches were evaluated under simulated conditions in a Monte Carlo study. The 

reliability coefficients compared in this study are respectively, coefficient alpha (the 

internal consistency approach), the most popular reliability coefficient in practice and 

literature; the glb (the lower bound approach), recommended by Sijtsma (2009), Ten 

Berge and Sočan (2004); generalized theta (PCA approach), recommended by Şimşek 

and Noyan (2013); omega (EFA approach), recommended by Revelle and Zinbarg (2009), 

and SEM estimates of reliability (SEM approach), recommended by Green and Yang 
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(2009). Prior to the Monte Carlo/simulation study for comparing these reliability 

coefficients, a review of reliability and classical test theory, the five approaches to 

reliability estimation, and the previous methodologies for reliability coefficient 

comparison are provided to justify the design of the current study.  

In addition to a comparison of reliability coefficients, methods were proposed and 

examined in order to improve the quality of SEM estimates of reliability when (1) the 

analysis model is misspecified and (2) sample size is small. The previous simulation 

study (Yang & Green, 2010) on SEM estimates of reliability suggested that the SEM 

estimates tended to be poorer if the model was misspecified by examining the conditions 

of both under-specified and over-specified models. To deal with issues of 

misspecification, using a general model as the analysis model was proposed and tested 

although it is an over-specified model. To overcome the estimation problems for small 

sample size data, Bayesian estimation was applied in the second stage of this study. The 

rationale for proposing these methods are provided in Chapter 2 Section 2.4.   

My dissertation consists of five chapters. The first chapter introduces the concept of 

reliability, the general formula for reliability estimation, and then major approaches to 

reliability estimation; finally briefly states the intention of the study. The second chapter 

reviews the relationship between reliability and the true-score model, the five approaches 

to reliability estimation and their corresponding reliability coefficients in detail; then 

reviews the methodologies in previous reliability coefficient comparison studies. In 
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addition, the purposes of the study and research questions are specifically proposed at the 

end of Chapter Two. The third chapter introduces the methodology of this simulation 

study. The design factors for generating and analyzing data are addressed first, followed 

by the procedures for data generation and analysis, as well as the programs for computing 

the reliability coefficients in this study. Evaluation criteria for assessing the quality of 

these reliability coefficients are also provided. The results of the simulation study are 

presented in Chapter Four. The relative biases, standard errors and root mean square 

errors of reliability coefficients are summarized separately under each measurement 

model. For SEM estimates of reliability, both the results from the correctly specified and 

misspecified analysis models are reported. In the last chapter, each reliability coefficient 

examined in this study is discussed, conclusions are summarized to address the research 

questions, and directions for future research on reliability estimates are provided.  
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CHAPTER 2  LITERATURE REVIEW 

 In this Chapter, the relationship between reliability and the Classical Test Model, the 

five approaches to reliability estimation and their corresponding reliability coefficients, 

and methods for comparing reliability coefficients are reviewed in detail. Based on the 

gaps identified in the literature, the purposes of this study and research questions are 

explicitly stated at the end of this chapter.  

2.1 Reliability and Classical Test Theory  

 Classical test theory may be regarded as roughly synonymous with true score theory 

(Lord & Novick, 1968; McDonald, 1999) since the measurement model in classical test 

theory is named as the true-score model. With the contribution by Guttman (1945), Lord 

and Novick (1968), and Novick and Lewis (1967), classical test theory is under a 

rigorously statistical treatment, in which the measurement model is expressed as 

𝑋 = 𝑇 + 𝐸,                             (2) 

where 𝑋 is the random variable defined over a population of persons and taking values of 

the observed scores obtained on different persons, 𝑇 and 𝐸 are respectively the 

true-score and error-score random variables taking values of unobserved true scores and 

error scores of these different persons. In the classical measurement model, the 

expectation of the error-score variable is defined as zero and thus the expectation of the 

true score variable is equal to the expectation of the observed score, that is,  

E[𝑇] = E[𝑋 − 𝐸] = E[𝑋] − E[𝐸] = E[𝑋].            (3) 
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Further, the error-score variable is independent from the true-score variable, that is, the 

correlation between 𝑇 and 𝐸 is zero: 

𝜌𝑇𝐸 = 0.                           (4) 

Therefore, the covariance between 𝑋 and 𝑇 (𝜎𝑋𝑇) is equal to the true-score variance 

(𝜎𝑇
2). 

𝜎𝑋𝑇 = E[𝑋𝑇] − E[𝑋]E[𝑇] = 𝜎𝑇
2 + E[𝑋𝐸] − E[𝐸]E[𝑇] = 𝜎𝑇

2.         (5) 

Based on equation (5) , reliability, which is defined as the square of the correlation 

between observed scores and true scores, is equal to the ratio of true score variance to 

observed score variance, that is,  

𝜌𝑋𝑋 =  𝜌2(𝑋, 𝑇) =
𝜎𝑋𝑇

2

𝜎𝑋
2 𝜎𝑇

2 =
(𝜎𝑇

2)2

𝜎𝑋
2 𝜎𝑇

2 =
𝜎𝑇

2

𝜎𝑋
2.                    (6) 

From equation (2), we have  

𝜎𝑋
2 = 𝜎(𝑇+𝐸)

2 = 𝜎𝑇
2 + 𝜎𝐸

2 + 2𝜎𝑇𝐸.                       (7) 

Since  

𝜎𝑇𝐸 = 𝜌𝑇𝐸𝜎𝑇𝜎𝐸 = 0,                            (8) 

Equation (7) is simplified to  

𝜎𝑋
2 = 𝜎𝑇

2 + 𝜎𝐸
2,                               (9) 

and thus 

𝜌𝑋𝑋 =
𝜎𝑇

2

𝜎𝑋
2 = 1 −

𝜎𝐸
2

𝜎𝑋
2.                            (10) 

Therefore, reliability can be obtained by either estimating the true-score variance or 

error-score variance. 
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2.2 Five Approaches to Reliability Estimation 

Among the five approaches to reliability estimation introduced in Chapter One, 

internal consistency and lower bound approach are the earlier attempts for estimating 

reliability by a single administration of one test form. Among all the reliability 

coefficients derived from the two approaches, Coefficient alpha (Cronbach, 1951), or 

named as Cronbach’s alpha, is the most often used in practice and in literature. 

Coefficient alpha, derived from the internal consistency approach, is mathematically 

equivalent to Guttman’s 𝜆3 (Guttman, 1945), derived from the lower bound approach. 

Since the 1970s, more reliability coefficients based on factor analytic approaches, for 

example, theta (Armor, 1974) and omega (McDonald, 1978; 1999), have been developed 

with the thriving of the factor analytic techniques. The reliability of a test can be 

estimated by the principal components analysis (PCA) approach (Armor, 1974; Şimşek 

& Noyan, 2013), exploratory factor analysis (EFA) (Revelle and Zinbarg, 2009; Şimşek 

& Noyan, 2013) and structural equation modeling (SEM) techniques (Brunner & Sub, 

2005; Graham, 2006; Green & Hershberger, 2000; Green and Yang, 2009; Komaroff, 

1997; Miller, 1995; Raykov, 1997a, 1997b, 1998, 2000, 2001; Raykov & Shrout, 2002). 

Particularly, examples include Raykov (1997a)’s composite reliability for congeneric 

measures model (CRCMM), Raykov and Shrout (2002)’s composite reliability for 

underlying correlated factor model and Green and Hershberger (2000)’s reliability 

coefficient for correlated error models. Although the five approaches differ in the models 
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or methods for estimating the true score variance or the error score variance, they all 

comply with the definitional formula of reliability: 𝜌𝑋𝑋 =  
𝜎𝑇

2

𝜎𝑋
2 = 1 −

𝜎𝐸
2

𝜎𝑋
2. 

2.2.1. The Internal Consistency Approach  

The core of the internal consistency approach involves dividing a test into two or 

more constituent parts and estimating reliability based on the assumption of a certain 

level of consistency (e.g., tau-equivalence) of the performance across these test parts. The 

internal consistency refers to the interrelatedness of constituent parts of a test (Green, 

Lissitz & Mulaik, 1977; McDonald, 1981; Miller, 1995; Schmitt, 1996), and these test 

parts may be two halves of a test, or sets of items pertaining to one same reading passage 

or the same context, or individual items. In short, the reliability coefficients based on the 

internal consistency approach require an assumption of a certain degree of internal 

consistency and the tenability of the assumption generally affects the accuracy of these 

coefficients as reliability estimates.  

Reliability Coefficients Requiring Parallelism of Test Parts 

The problem of estimating test score reliability from a single administration of a 

single test form was first taken up by Spearman (1910) and Brown (1910). They 

independently arrived at the solution later named as Spearman-Brown procedure. There 

are two ways of using Spearman-Brown procedure: 1) split a test into two parallel halves 

and use the formula 
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ρ𝑋𝑋′ =
 2ρ𝑋1𝑋2

1+ρ𝑋1𝑋2

                         (11) 

to estimate reliability; 2) divide a test into as many parts as they are parallel and use the 

formula  

ρ𝑋𝑋′ =  
kρ𝑋1𝑋2

1+(𝑘−1)ρ𝑋1𝑋2

                      (12) 

to estimate reliability (k represents the number of parallel parts). 

Derivation of the Spearman-Brown formula requires the assumptions of tau 

equivalence and equal error variance (Novick & Lewis, 1967). Tau equivalence means 

that each individual in the population has identical true scores across the parallel test parts 

and thus the true scores in the population under consideration have the same distribution 

across all the parallel test parts. Besides, the population error variances of the test parts 

are the same. Suppose a test is divided into two parallel halves, then we have T1 ≡ T2 

and Var(E1) = Var(E2). T1 and T2 are the true score variables of the two split halves, 

and T1 ≡ T2 represents the true score variables that are identical across the two parallel 

halves. E1 and E2 are the random error variables of the split halves 1 and 2. Directly 

testing the assumptions of parallelism is not possible and the only available information is 

the distributions of the observed scores of the divided test parts. The assumptions of 

parallel test parts are redefined by using available information only. That is, parallel test 

parts assume identical observed-score distributions (i.e. equal mean in the first moment 

and equal variance in the second moment) and equal covariances among all the divided 

test parts (it is not required if a test is merely split into halves). 
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Assessing these assumptions are tedious (Gullikson, 1950) and splitting a test into 

two or more parallel parts was difficult to achieve. Thus, alternative estimation 

procedures of reliability which require a less stringent assumption than parallelism were 

developed.  

Reliability Coefficients Requiring Tau-equivalence of Test Parts 

Flanagan and Guttman-Rulon (Guttman, 1945; Rulon, 1939) split half coefficients 

were derived to estimate test reliability under a weaker assumption that two halves are 

(essentially) tau equivalent, dropping the requirement of equal error score variances in the 

parallelism required in Spearman-Brown procedure. They derived several equivalent 

formulas for the split-half reliability estimate by assuming essential tau-equivalence for 

X1 and X2.  

Spearman-Brown formula is mathematically equal to Flanagan-Rulon (Rulon, 

1939)’s formula ρ𝑋𝑋′ = 4σ𝑋1𝑋2
/σ𝑋

2  under the assumption of essential tau-equivalence, 

since  

σ𝑇
2 = σ𝑇1+𝑇2

2 = σ𝑇
2

1
+ σ𝑇

2
2

+ 2σ𝑇1𝑇2
,              (13) 

σ𝑋1𝑋2
= σ(𝑇1+ 𝐸1)(𝑇2+𝐸2) = σ𝑇1𝑇2

+ σ𝑇1𝐸2
+ σ𝑇2𝐸1

+ σ𝑇1𝐸2
,    (14) 

σ𝑇1𝑇2
= σ𝑇1

σ𝑇2
,                      (15) 

and  

σ𝑇
2

1
= σ𝑇

2
2
,                            (16) 
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σ𝑇
2 =4σ𝑇

2
1

= 4σ𝑇
2

2
= 4σ𝑇1𝑇2

= 4σ𝑋1𝑋2
.            (17) 

(Note: equation σ𝑇
2 = 4σ𝑋1𝑋2

is derived from the assumption of essential tau-equivalence.)  

Coefficient alpha (Cronbach, 1951), or named as Cronbach alpha, was derived to 

estimate reliability under the assumption that all the items in a test are (essentially) tau 

equivalent. Coefficient alpha works for both dichotomously and polytomously scored 

items, which is equivalent to Kuder and Richardson (1937)’s KR 20 when items are 

dichotomously scored. Coefficient alpha is also equivalent to Guttman’s λ3 (one of a 

series of six lower bounds denoted from λ1 to λ6) (Guttman, 1945). Later, Ten Berge and 

Zegers (1978) proved that the first coefficient μ
0
 of their series of lower bounds is equal 

to Guttman’s λ3, and thus equal to coefficient alpha. 

α = λ3 = μ
0

=
n

n−1
(1 −

∑ σi
2

σX
2 ).                   (18) 

Coefficient alpha has become the most popular reliability coefficient because it 

requires no split of a test for estimating test reliability. However, people may forget that 

the assumption that all items in a test are (essentially) tau equivalent is more difficult to 

hold in practice compared with the assumption that the two split halves are (essentially) 

tau equivalent. Although warnings have been given by researchers that Cronbach alpha is 

an inaccurate estimate of reliability when the assumption of (essential) tau equivalence is 

violated (Graham, 2006; Green, Lissitz & Mulaik, 1977; Novick & Lewis, 1967; Osburn, 

2000; Zimmerman, Zumbo & Lalond, 1993), statistical test of the assumption was seldom 

conducted before applying alpha or other internal consistency reliability coefficients.  
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Reliability Coefficients Requiring Congeneric Test Parts 

Since the assumption of (essential) tau equivalence may not hold in practice, 

estimates of reliability under a more relaxed assumption of congeneric forms (Jöreskog, 

1971) were developed. Congeneric forms require neither (essential) tau equivalence nor 

equal error score variances. Trues score in congeneric forms are linearly related. If we 

have two split halves with congeneric forms, then T1 = φ(T2), where φ represents a 

linear function. Several coefficients, e.g., Kristof’s coefficient (Kristof, 1974), 

Angoff-Feldt coefficient (Feldt & Brennan, 1989), Raju’s coefficient (Raju, 1977), 

Feldt-Gilmer coefficient (Gilmer & Feldt, 1983), Feldt’s coefficient (Feldt & Brennan, 

1989) were derived under the assumption of congeneric forms (see Osburn, 2000, for a 

detailed summary of these coefficients).  

For three congeneric parts of unknown length, the model is just identified, meaning 

that there are exactly as many observed variances and covariances as the number of 

parameters to be estimated (Lord & Novick, 1968; Kristof, 1974). Kristof (1974) reports 

that his three-part division appears to give quite stable results across alternative partitions 

of a test into two parts. For a test divided into more than three congeneric parts, more 

parameters have to be estimated and thus the estimation process becomes more 

complicated. Jöreskog (1971) proposed the congeneric model 

𝑋𝑖 = 𝑈𝑖 + 𝛽𝑖𝑇 + 𝐸𝑖, (𝑖 = 1, 2, … , 𝑝),                (19) 

and a maximum likelihood solution for parameter estimation. The reliability for the ith 



15 

part of a test is estimated by  

�̂�𝑖 =
�̂�𝑖

2

�̂�𝑖
2+�̂�𝑖

2 ,                           (20) 

where 𝜃𝑖
2 is the estimated variance of 𝐸𝑖. The reliability for the test composed by these 

congeneric parts is then equal to  

 𝜌 =
𝜶′𝜷𝜷′𝜶

𝜶′𝜷𝜷′𝜶+𝜶′𝚯ϵ′𝜶
 ,                        (21) 

where 𝜶′ = (𝛼1, 𝛼2, … , 𝛼𝑚) is the relative weight vector and it is equal to (1,1, … ,1) 

when these congeneric parts are unweighted; 𝜷 is the vector containing the 𝛽𝑖s and 𝚯ϵ is 

the measurement error variance covariance matrix.  

Internal consistency reliability estimates often require the division of a test into more 

than two separate parts. The sampling variance of the estimated reliability coefficient is 

related to the number of units into which the test is divided. That is, greater precision is 

obtained if the test can be divided into a larger number of separate parts (Kristof, 1963). 

However, division into more parts is only better if model assumptions are satisfied 

(Brennan, 2001a). Therefore, the common practice of basing internal consistency 

reliability estimation on division of tests into the smallest possible units, the individual 

items, is not problematic only when model assumptions are satisfied. Internal consistency 

approach to reliability estimation is within the framework of classical test theory, and 

therefore all the models are under the umbrella of unidimensionality, meaning only one 

latent trait (true score variable) is assumed to exist in a test. The problem of violating the 

unidimensionality assumption vanishes in the following four approaches (i.e., the lower 
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bound, PCA, EFA and SEM) to reliability estimation because they require no assumption 

of unidimensionality. 

2.2.2. The Lower Bound Approach 

The formula ρ = 1 −
MaxTr∑𝐸 

𝟏′∑𝑋 𝟏
 can be regarded as a general equation for the lower 

bound estimation to reliability, where ∑𝐸  is the error score covariance matrix and ∑𝑋  is 

the observed score covariance matrix, and MaxTr∑𝐸  represents the maximum trace of 

the error score covariance matrix. By changing the constraints for estimating  MaxTr∑𝐸 , 

different lower bound estimates of reliability can be derived. Jackson and Agunwamba 

(1977) identified the specific constraint for each of Guttman’s six lower bounds (1945) 

and provided more types of constraints to derive other algebraic lower bounds.  

Guttman’s Lower Bounds to Reliability 

Guttman (1945) named his six coefficients of reliability as lower bounds and 

developed the concept of lower bounds by proposing the idea of bounding the estimation 

of the true test score variance or error test score variance to derive the estimates of 

reliability. Bounding here means using specific constraints/inequalities to minimize the 

true test score variance or maximize error test score variance, thus the estimate of 

reliability can always be lower than or at most equal to the true reliability.  

Guttman’s lambda1 adopts the constraint 0 ≤ θi ≤ σii (θi is the trace element of 

∑𝐸) to estimate MaxTr∑𝐸, thus the maximum trace of ∑𝐸 is the trace of ∑𝑋. The 
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equation of lambda1 is therefore given as 

λ1 = 1 −
Tr∑𝑋 

𝟏′∑𝑋 𝟏
.                         (22) 

The constraint for deriving lambda2 is that the determinant of the true score covariance 

matrix must be non-negative (Jackson & Agunwamba, 1977), which leads to  

 𝑡𝑖𝑡𝑗 ≥ 𝜎𝑖𝑗
2  (𝑖 ≠ 𝑗),                       (23)  

where 𝑡𝑖  and 𝑡𝑗 are the trace elements, i.e., the elements along the principal diagonal, of 

∑T. Based on the inequality  𝑡𝑖𝑡𝑗 ≥ 𝜎𝑖𝑗
2  (𝑖 ≠ 𝑗),  MaxTr∑E is estimated by the following 

inequality, 

∑ 𝜃𝑗
𝑛
𝑗=1 ≤ ∑ 𝜎𝑗

2𝑛
𝑗=1 − √

𝑛

𝑛−1
(∑ ∑ 𝜎𝑖𝑗

2𝑛
𝑖=1 (𝑖≠𝑗)

𝑛
𝑗=1 )   ,      (24)         

where 𝜃𝑗   represents the 𝑗th trace element of ∑E, and 𝑛 is the number of items. Then 

from the general equation, lambda2 can be obtained as 

𝜆2 = 1 −
∑ 𝜎𝑗

2𝑛
𝑗=1 −√

𝑛

𝑛−1
(∑ ∑ 𝜎𝑖𝑗

2𝑛
𝑖=1 (𝑖≠𝑗)

𝑛
𝑗=1 )

𝟏′∑𝑋𝟏
 .         (25) 

Guttman’s lambda3 (mathematically equivalent to coefficient alpha) then applies the 

constraint ti + tj ≥ 2σij(i ≠ j) to estimate the minimum trace of ∑𝑇. By summing the 

inequality ti + tj ≥ 2σij (i ≠ j) over 
n(n−1)

2
 pairs of items, we can obtain  

∑ ti
n
1 ≥ ∑ ∑ σij

n
1

n
1 ≥ (n − 1)−1 ∑ ∑ σij

n
1

n
1 (i ≠ j).           (26) 

Thus, 

𝟏′∑𝑇𝟏 = ∑ ti
n
1 + ∑ ∑ σij

n
1

n
1 ≥ (n − 1)−1 ∑ ∑ σij

n
1

n
1 + ∑ ∑ σij

n
1

n
1 =

n

n−1
∑ ∑ σij

n
1

n
1 , (27) 

And from the general equation, we have  

λ3 =
n

n−1
(1 −

∑ σii
n
1

𝟏′∑𝑋𝟏
).                       (28) 
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To make use of the constraint that ∑𝑇 is positive semi-definite, that is, 𝐮′∑𝑇𝐮 ≥ 0, 

(𝐮 refers to any n-vector with k elements either +1 or −1) and the remaining elements 

zeros), let k be equal to n and there are 2𝑛−1 such vectors as 𝐮 yield different 𝐮′∑𝑇𝐮. 

Since ∑𝑋 = ∑𝑇 + ∑𝐸, then  

𝐮′Σ𝑋𝐮 = 𝐮′Σ𝑇𝐮 + 𝐮′Σ𝐸𝐮,                    (29) 

and thus  

𝐮′∑𝑋𝐮 ≥ 𝐮′∑𝐸𝐮 =  ∑ 𝜃𝑗
𝑛
𝑗=1 .                  (30) 

Replace the MaxTr∑𝐸 with 𝐮′∑𝑋𝐮 in the general formula 𝜌 = 1 − MaxTr∑𝐸 /∑𝑋  , we 

have  

λ4 = 1 −
𝐮′Σ𝑋𝐮

𝟏′Σ𝑋𝟏
.                           (31) 

Guttman’s lambda4 has therefore 2𝑛−1possible values, including any split-half reliability 

(Note here each half does not necessarily have the n/2 number of items since +1 or −1 

are randomly assigned to the k elements in the vector 𝐮). Among all the lambda4s, only 

the maximized lambda4 is of interest (Callender & Osburn, 1979; Jackson & 

Agunwamba, 1977).  

Guttman’s lambda5 replaces the diagonal values of ∑𝑇 with twice the square root of 

the sum of squared interitem covariances from the column which has the maximized sum 

of squared interitem covariances, and we have  

λ5 = 1 −
∑ σii

n
1 −2(∑ σijmax

2 )

1
2

1′ΣX1
 ,                      (32) 

where jmax means the position of the column having the maximized sum of squared 
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interitem covariances. The constraint for deriving such a lower bound to the sum of the 

diagonal values of ∑𝑇  (and hence a lower bound to reliability) is the inequality that the 

arithmetic mean of two positive numbers is no less than their geometric mean.  

Guttman’s lambda6 sets the residual variance in the regression of the component 𝑋𝑖 

on the remaining components scores as the upper bound of the error variance 𝜃𝑖, 

therefore we obtain  

λ6 = 1 −
∑(Σ𝑋

−1)𝑖𝑖
−1

𝟏′Σ𝑋𝟏
.                         (33) 

Although Guttman initially recommended the use of lambda3 (i.e., coefficient alpha) 

and lambda4 among the six proposed measures, this recommendation was mainly due to 

the consideration of the relative ease of computation of the two coefficients. As proved by 

Guttman (1945), lambda2 was always equal to or greater than coefficient alpha. 

Furthermore, lambda5 and lambda6 were generally lower than lambda2 except for some 

limited conditions. In addition, Ten Berge and Zegers (1978) demonstrated an infinite 

series of successive improvement to Guttman’s lower bounds where coefficient alpha and 

lambda2 were the first two in the series. As concluded by the authors, the series did not 

improve much after lambda2.  

The Greatest Lower Bound 

Based on the lower bound concept, Jackson and Agunwamba (1977) proposed more 

types of constraints to derive other algebraic lower bounds, including the well-known 
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greatest lower bound (glb). According to Jackson and Agunwamba (1977), the glb can be 

expressed as  

𝜌𝑔𝑙𝑏 =
∑ ∑ 𝜎𝑖𝑗

𝑛
𝑖=1 (𝑖≠𝑗)

𝑛
𝑗=1 +MinTr∑T

𝟏′∑𝑋 𝟏 
= 1 −

MaxTrΣE

𝟏′∑𝑋 𝟏  
,             (34) 

where ∑T, ∑E and ∑X are the true score, error score and observed score 

variance-covariance matrices, respectively, 𝜎𝑖𝑗 is the covariance between item 𝑖 and 𝑗, 

𝑛 is the number of items in the test, MinTr∑T is the minimal trace of the true score 

variance, MaxTr∑E is the maximal trace of the true score variance, and 𝟏′∑X𝟏 is the 

total score variance. The glb for the reliability of the total score on a test is derived by 

maximizing the trace of error covariance matrix ∑𝐸 , which is equivalent to minimizing 

the trace of true score covariance matrix ∑𝑇 , subject to the conditions that both ∑𝑇  and 

 ∑𝐸 are non-negative definite matrix.  

Different from the traditional reliability coefficients calculated from a single formula, 

the greatest lower bound is derived by an iterative procedure, which was initially 

proposed by Bentler (1972), and then Woodhouse and Jackson (1977), later improved by 

Bentler and Woodward (1980), and Ten Berge, Snijders and Zegers (1981). The 

computational algorithm described by Ten Berge and Kiers (1991) was programmed in a 

computer program named MRFA2 to obtain the glb (Ten Berge & Kiers, 2003). Since the 

estimation of the glb is to minimize the linear function (1) subject to the constraint that an 

affine combination of symmetric matrices (∑𝑇  and  ∑𝐸 ) is positive semidefinite, the glb 

estimation could be obtained by semidefinite programming (Vandenberghe & Boyd, 
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1996), and the R package “RcSEp” (Bravo, 2013) provided in the R interface utilizes the 

semidefinite programming. Specifically, the glb can be calculated by formula (34) and the 

optimized MinTr∑T can be obtained using the function cSEp in the “RcSEp”. Although 

the calculation of the glb is more complicated because of the algorithm involved, it is 

worth studying as it is theoretically the optimal lower bound estimate of reliability 

(Jackson & Agunwamba, 1977; Sijtsma, 2009; Ten Berge & Sočan, 2004; Woodhouse & 

Jackson, 1977). 

2.2.3. The PCA Approach 

Armor (1974) introduced an approach to reliability estimation based on principal 

component factor analysis (PCA) and proposed the corresponding estimate of reliability 

named as theta. He claimed that principal components analysis offered the most 

straightforward and precise connection between reliability and factor scaling, and thus 

theta could assess optimal reliability.  

The basic hypothesis of component analysis is that, given a set of p items, the score 

of a subject on each item can be decomposed into p number of independent components 

or factors. The lack of correlation among principal components is a useful property as it 

means that the components are measuring different "dimensions" in the data. Among 

these p factors, only a small number of factors (e.g., m with m < p) that account for a 

relatively large proportion of the total item variation have the substantial meanings and 

considered as the non-error factors. Each item can contribute differently to a non-error 
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factor and thus items may have different factor loadings on the factor (i.e., the weights 

represent the contribution of items to the factor). Moreover, principal components are 

ordered so that the first component exhibits the greatest amount of the variation, the 

second component exhibits the second greatest amount of the variation, and so on. 

There are two general cases in principal component approach to reliability estimation. 

The first case is to assume a single factor solution. That is, the first principal component is 

sufficient for accounting for the variation of the scale. The reliability coefficient theta of 

the composite scores based on this single factor solution is expressed as   

𝜃 = (
𝑝

𝑝−1
) (1 −

1

𝜆1
),                          (35) 

where 𝜆1 is the first eigenvalue of a principal component solution. It is mathematically 

equivalent to the maximum possible value of alpha (the alpha for a composite scale 

formed by weighting items according to their principal component factor loadings) (Lord, 

1958). 

The second situation is to assume a multiple-factor solution with rotated factors. The 

formula for the reliability coefficient theta based on the multiple-factor solution with 

rotated factors is given by  

𝜃𝑘 = (
𝑝

𝑝−1
) (1 − ∑

𝜙ℎ𝑘
2

𝜆ℎ

𝑚
ℎ=1 ),                    (36) 

where 𝜙ℎ𝑘
2  refers to the squared correlation between the original unrotated scores for 

factor h and the rotated scores for the new factor k. 𝜃𝑘 is the proper formula for 

estimating reliability when the complete set of the rotated factor scores (i.e., 𝑚 = 𝑝) 
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from a principal components analysis is used (Armor, 1974).  

Based on Armor’s work, Şimşek and Noyan (2013) proposed generalized theta. 

Generalized theta is based on the eigenvalues of the principal components up to a 

pre-specified number of factors. The formula for generalized theta is written as 

𝜃𝐺 = (
𝑝

𝑝−𝑚
) (1 −

𝑚

∑ 𝜆𝑖
𝑚
𝑖=1

),                      (37) 

where 𝑚 refers to a pre-specified number of factors. Generalized theta is a generalized 

version of Armor’s theta and is equal to the true reliability when the dimensions are 

orthogonal and the items clustered within each dimension are parallel. 

2.2.4. The EFA Approach  

Although principal components analysis (PCA) and exploratory factor analysis (EFA) 

are often referred to collectively as factor analysis (FA), they differ in both mathematical 

and conceptual terms. The difference between PCA and EFA in mathematical terms lies 

in the diagonal elements of the correlation matrix for analysis. In PCA, all diagonal 

elements in the correlation matrix are 1s meaning that all of the variance in the matrix is 

to be accounted for by principal components. In contrast, in EFA, all diagonal elements 

are equal to what are called “communalities” meaning that only the variance shared with 

other variables is to be accounted for. The difference between PCA and EFA in 

conceptual terms is that PCA analyzes variance and EFA analyzes covariance 

(Tabachnick and Fidell, 2007, p. 635). Introduced by McDonald (1978) under the 

exploratory factor analytic framework, reliability can be estimated by coefficient omega, 
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which is expressed as  

ω = 1 −
∑ (1−ℎ𝑖

2)𝑛
𝑖=1

𝟏′Σ𝑋 𝟏
,                          (38) 

where hi
2 is the communality of the ith item, assuming items have been standardized. 

McDonald’s omega uses the estimates of uniqueness variances from factor analysis to 

represent error variances. Revelle and Zinbarg (2009) proposed to use a particular 

exploratory factor analytic approach to estimate omega, specifically, the application of 

higher order factor analysis with a Schmid–Leiman transformation (Schmid & Leiman, 

1957). This procedure of estimating omega proposed by Revelle and Zinbarg (2009) is 

based on a decomposition of the variance of a test score into variances due to a general 

factor, variances due to a set of group factors, and uniqueness variances, which is the sum 

of undistinguishable specific variance and random error variance. The whole estimation 

procedure for omega was programmed in the omega function in the R package “psych” 

(Revelle, 2013). Except EFA with the Schmid–Leiman transformation, other EFA 

methods have also been adopted in reliability estimation. For example, Şimşek and 

Noyan (2013) used principal factor analysis with Promax rotation to compute omega.  

The estimation of coefficient omega has also been extended into the field of 

confirmatory factor analytic models or structural equation models (McDonald, 1999). 

Omega derived from a specific confirmatory factor analytic model or structural equation 

model is usually in the form of 

 ω = 𝟏′𝑭𝚽𝑭′𝟏/𝟏′∑𝑋 𝟏,                         (39) 
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where 𝑭 represents factor loading matrix and 𝚽 factor correlation matrix. Currently, 

most researchers prefer to treat the coefficients derived from CFA or SEM as the SEM 

reliability coefficients than as coefficient omega (Green & Hershberger, 2000; Green and 

Yang, 2009; Komaroff, 1997; Miller, 1995; Raykov, 1997a, 1997b, 1998, 2000, 2001; 

Raykov & Shrout, 2002).  

2.2.5. The SEM Approach  

Structural Equation Modeling (SEM) is a general framework for modeling of 

relationships in multivariate data (Bollen, 1989). It can be roughly understood as a 

combination of two well-known classical statistical techniques: factor analysis and path 

analysis (regression). Consequently, SEM comprises two parts: a measurement model 

part (confirmatory factor analysis), and a structural model part (path analysis). 

Confirmatory factor analysis (CFA) is frequently used as a first step to assess the 

proposed measurement model in a structural equation model.  

The general representation of structural equations with latent variables is expressed 

as (Bollen, 1989): 

𝜼 = 𝐁𝜼 + 𝚪𝝃 + 𝛇,                          (40) 

where 𝐁 is the m x m coefficient matrix, 𝚪 is the m by n coefficient matrix, 𝜼 is a m x 1 

vector that contains m latent variables, 𝝃 is a n x 1 vector that contains n latent 

independent variables, and 𝛇 is the p x 1 vector of errors (residuals) in the equations. The 

measurement model of SEM specifies the relationship of the latent variables to the 
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observed variables. The mathematical formulas of the measurement model of SEM are as 

follows: 

𝐲 = 𝚲𝒚𝜼 + 𝝐,                           (41) 

𝒙 = 𝚲𝒙𝝃 + 𝜹,                           (42) 

where 𝐲 is p x 1 vector of endogenous variables (dependent variables), 𝜼 is a m x 1 

vector that contains m latent variables (𝑚 ≤ 𝑝), Λ𝑦 is a p x m matrix that contains the 

factor loadings from m latent variables to p observed dependent variables , 𝝐 is a p x 1 

vector that contains the measurement errors for the observed dependent variables. 

Similarly, 𝐱 is q x 1 vector of exogenous variables (independent variables), 𝝃 is a n x 1 

vector that contains n latent independent variables (𝑛 ≤ 𝑞), 𝚲𝒙 is a q x n matrix that 

contains the factor loadings from n latent independent variables to q observed 

independent variables, 𝜹 is a q x 1 vector that contains the measurement errors for the 

observed independent variables. The observed variables, regardless of whether they are 

dependent or independent variables, are named as indicators or manifest variables in the 

literature of SEM. 

The covariance matrix for 𝐱 is the expected value of 𝐱𝐱′，mathematically, that is, 

Σ𝐱 = Ε(𝐱𝐱′) = E(𝚲𝐱𝛏 + 𝛅)(𝚲𝐱𝛏 + 𝛅)′ = 𝚲𝐱𝚽𝚲𝐱
′ + 𝚯δ,       (43) 

where 𝚽 is the covariance matrix of the latent factors 𝛏 and 𝚯δ is the q x q matrix 

containing the error variances and covariances for the x variables. The covariance matrix 

for 𝐲 is the expected value of 𝐲𝐲′, which is derived as follows: 
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Σ𝐲 = Ε(𝐲𝐲′) = E(𝚲𝐲𝛈 + 𝛜)(𝚲𝐲𝛈 + 𝛜)
′

= 𝚲𝐱𝐄(𝛈𝛈′)𝚲𝐱
′ + 𝚯ϵ,    (44) 

and 

𝐄(𝛈𝛈′) = (𝐈 − 𝐁)−𝟏(𝚪𝚽𝚪′ + 𝚿)(𝐈 − 𝐁)−𝟏′,            (45) 

thus  

Σ𝐲 = 𝚲𝐲[(𝐈 − 𝐁)−𝟏(𝚪𝚽𝚪′ + 𝚿)(𝐈 − 𝐁)−𝟏′
]𝚲𝐲

′ + 𝚯ϵ,       (46) 

where 𝚿 is the covariance matrix for 𝛇 and 𝚯ϵ is the p by p matrix containing the error 

variances and covariances for the y variables. Suppose 𝐁 and 𝚪 are zero matrix, that is, 

no direct cause specified to latent variables 𝜼, then 𝜼 = 𝛇 and Σ𝐲 is simplified as 

𝚲𝐲𝚿𝚲𝐲
′ + 𝚯ϵ. Under that situation the SEM model is equal to the CFA model. 

The general formula for estimating reliability in SEM can be expressed as 

 𝜌𝑆𝐸𝑀 = 1 −
𝟏′𝚯ε 𝟏

𝟏′∑𝟏
,                          (47) 

where ∑ is the estimated population covariance matrix and 𝚯ε is a general matrix which 

represents the 𝚯δ when the measures are observed independent variables and the 𝚯ϵ 

when the measures are observed dependent variables. 

SEM for Reliability Estimation---Unidimensional Models 

A number of researchers have discussed reliability estimation within an SEM 

framework when items are unidimensional (Fleishman & Benson, 1987; Green & 

Hershberger, 2000; Komaroff, 1997; Miller, 1995; Raykov, 1997a, 1997b, 1998, 2001; 

Zimmerman, Zumbo, & Lalonde, 1993; Graham, 2006). Among all the models raised by 



28 

these researchers, Graham (2006)’s and Raykov (1997)’s models are reviewed here 

because of the generality of these models.  

In Graham (2006)’s model, the composite observed variable (X), which is the sum of 

the scores of components, is created. The variance of the composite observed variable X 

is obtained by adding the variances of the individual observed variables (X1, X2, etc.) 

while taking into account the shared variance of the individual observed variables. 

Graham (2006)’s model mainly follows Miller (1995)’s essentially tau equivalent model 

except there are no constraints between the composite true variable (T) to the individual 

item variables (X1, X2, etc.). The path diagram of this model is represented in the 

following figure.  
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Figure 1. Graham (2006)’s Structural Equation Model for Reliability Estimation 

 

The model illustrated in Figure 1 nests the three classical measurement models, 

X T 

X4 X3 X2 X1 
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respectively: the parallel model, the (essentially) tau-equivalent model and the 

congeneric model. That is, we can transform a general structural model to any of the 

classical measurement models by corresponding specifications. To achieve a parallel 

model, each of the paths from the composite true variable (T) to the individual item 

variables (X1, X2, etc.) are set to 1 in Figure 1, implying that each item variable measures 

the same latent variable in the same degree. Additionally, the individual item error 

variances are constrained to be equal to each other. The specification of the (essentially) 

tau-equivalent model is identical to the parallel model path diagram, except that error 

variances are not constrained to equality. To specify the congeneric model, the path from 

the latent true variable to one of the measured items is set to 1 (which is specified by 

default in SEM programs) or set the variance of the latent variable to 1, whereas the other 

paths from the true variable to the items are set free to be estimated. Any of the measured 

items can be chosen as the scaling variable, with no effect on the outcome of the model. 
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Figure 2. Raykov (1997)’s Structural Equation Model for Reliability Estimation 

 

Raykov (1997) proposed a structural equation model for estimation of composite 

reliability (illustrated in Figure 2), which is equivalent to Graham’s model. In effect, 

Raykov (1997) complicated the model presented in Figure 1 by: (a) adding a group of true 

score variables (T2, T3, etc.), (b) naming the composite observed variable X as a phantom 

variable F2 and (c) estimating the correlation between the latent variable T1 (equal to the 

composite true score variable in the model in Figure 1) and the composite variable F2 
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X2 X3 Xk 

T2 T3 Tk F
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(equal to the X in the model presented in Figure 1). The only difference between Graham 

(2006)’s and Raykov (1997)’s model is that the correlation between T1 and F2 (the 

determinant of reliability) is estimated in Raykov (1997)’s model. The square of the 

correlation between T1 and F2 in Raykov’s model is equal to the ratio of the true score 

variance to the observed score variance, and this ratio can be calculated using Graham’s 

model. In this study, Graham’s analysis model is used for unidimensional models analysis 

because the ratio of the true score variance to the observed score variance is normally 

used to calculate reliability in SEM estimates of reliability (see Yang & Green, 2010; 

Yang & Green, 2011) and it is consistent with the formula used for multidimensional 

models analysis. 

SEM for Reliability Estimation---Multidimensional Models 

Researchers have also proposed SEM methods for estimating reliability when items 

are multidimensional (Brunner & Sub, 2005; Raykov, 1998; Raykov & Shrout, 2002; 

Yang & Green, 2010). Brunner and Sub (2005) specified a “nested-factor model”, 

following the terminology of Gustafsson and Balke (1993), to represent the structure of 

the Berlin Intelligence Structure Test (BIS Test). The nested factor model defined by 

Gustafsson and Balke (1993) is in effect the hierarchical factor model, which is the more 

traditional terminology adopted by McDonald (1985), Schmid & Leiman (1957), Tucker 

(1940), and Wherry (1959). The hierarchical factor models or the nested factor 
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models,unlike the higher-order factor models, are the models with all factors at the same 

(first-order) level but different in their clusters of related manifest variables (Yung, 

Thissen, & McLeod, 1999). As illustrated in Figure 3, the factors in the first layer (F1 and 

F2) partition the manifest variables into clusters so that each factor has a distinct cluster of 

related manifest variables. The next layer of factors (G) in the hierarchical factor model 

again partitions the manifest variables into clusters. However, this time each cluster 

contains at least two clusters of manifest variables that are formed in the previous layer. 

Brunner & Sub (2005)’s model has eight orthogonal factors in their model, including the 

general factor (G), four operative factors (Mental Speed, Memory, Reasoning, and 

Creativity), and three content factors (Figural Ability, Verbal Ability, and Numerical 

Ability). The two-layer hierarchical pattern with the second layer containing all the 

clusters of manifest variables is equivalent to the bifactor model (Holzinger & Swineford, 

1937; Rindskopf & Rose, 1988).  

  

http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/statug_calis_sect114.htm#yung_y_99
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Figure 3. A Two-layer Hierarchical Factor Model (the Bifactor Model)  

 

Raykov and Shrout (2002) proposed an SEM method to estimate reliability for 

measures with an underlying correlated factors structure. In Raykov and Shrout’s model, 

the set of test parts is not homogeneous overall, but each subscale is substantially to 

highly interrelated with one another and these subscales are congeneric. As shown in 

Figure 4, there are two latent traits η1 and η2 with the manifest variables X1 to X4 

loaded on η1 and X3 to X6 loaded on η2. Instead of using the model in Figure 4, they 

proposed the model in Figure 5 for the composite reliability estimation. In the model in 

Figure 5, the first added latent variable η3 is the composite score of the manifest 

variables from X1 to X6 with all the loadings set to 1, while the second added latent 

variable η4 is the composite latent score of the latent variables η1 and η2. To relate this 

variable to the measured components, the path from η1 to η4 is set equal to the sum of 

X1 X3 X4 X5 X6 X2 

G 

F1 F2 
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the loadings of the manifest measures X1 to X4 that assess η1 (i.e., λ11 + λ21 + λ31 + λ41), 

and the path from η2 into η4 is constrained to be equal to the sum of the loadings of the 

manifest variables X3 to X6 measuring η2 (i.e., λ32 + λ42 + λ52 + λ62). Although the 

model in Figure 5 seems more complex than the one in Figure 4, these two models are 

equivalent in terms of estimation since there is no new free parameter to be estimated in 

the model in Figure 5. In this study, the model in Figure 4 is used as the analysis model 

with constraints modeling η3 and η4, hence it is equivalent to the model in Figure 5. 

When purely using the model in Figure 4, the general formula expressed in equation (47) 

(see page 27) can be used to calculate the SEM reliability coefficient.  
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Figure 4. A Correlated Factor Model in Raykov and Shrout (2002)’s 
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Figure 5. Raykov and Shrout (2002)’s Structural Equation Model for Reliability 

Estimation. 

SEM for Reliability Estimation---Correlated Error Models 

In SEM, correlated errors are frequently treated as due to factors left unspecified by a 

researcher’s model rather than pure measurement errors. In that case, the error covariance 

between items is not counted as the source of unreliable variance of the test. However, 

some researchers (Green & Hershberger, 2000; Green, 2003; Raykov, 1998; Rozeboom, 

1966, 1989; Zimmerman, Zumbo, & Lalonde, 1993) argued that the correlated errors may 

be due to random measurement errors, an unreliable component of measures. Green & 

Hershberger (2000) indicated that if random measurement errors on earlier items were 
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allowed to affect directly or indirectly scores on later items, the errors would contribute to 

the covariances between items. For example, Becker (2000) and Green (2003) argued that 

transient conditions, such as mood, can cause correlated errors among items. 

Green and Hershberger (2000) proposed two structural equation models: the model 

with direct effect on the measurement error of an item and the one with indirect effect. 

The former (see Figure 6) is the model in which only the parameters for immediately 

preceding error terms can be nonzero and covariances between error composites for this 

model would be zero except for adjacent items. The second (see Figure 7) is distinct from 

the former by adding an autoregressive component rather than a moving average 

component to the classical test theory model. In the second model each item score would 

be linked to previous item scores and only indirectly to previous error scores. To be 

consistent with the previous research studies (e.g., Zimmerman, Zumbo, & Lalonde, 1993; 

Yang & Green, 2010), the direct effect on measurement errors is modeled in my 

dissertation. In addition, the direct effect model is easier to be interpreted in practice 

than the indirect effect model of correlated errors. 
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Figure 6. The Model with Moving Average Component of Order 1 in Green & 

Hershberger (2000)’s  
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Figure 7. The Autoregressive Model in Green & Hershberger (2000)’s 

2.3. Methods Used in Previous Reliability Coefficients Comparison Studies 
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Although many researchers have conducted studies to compare different reliability 

coefficients, the results are not always consistent and the whole picture of how these 

reliability coefficients perform in comparison is unrevealed. This inconsistency or 

incommensurability among reliability studies is mainly because study methods differ 

from one study to another and hence the indices used to evaluate the quality of reliability 

estimators also differ. Some studies examine reliability coefficients at the population 

level, some at the sample level (e.g., Callender & Osburn, 1979; Green & Hershberg, 

2000; Osburn, 2000; Shapiro & Ten Berge, 2000; Ten Berge & Sočan, 2004; Zinbarg, 

Revelle, Yovel, & Li, 2005).  

Studies at the population level examine the bias of the population values of reliability 

coefficients from the true reliability of the test under manipulated conditions, that is, no 

sample data is generated and analyzed. For example, Osburn (2000) examined up to ten 

reliability coefficients by varying the degree of heterogeneity of test items. All the 

coefficients were calculated based on the population correlation matrices and then 

compared to the corresponding true reliability. The bias obtained from this type of study 

design is consistent with the bias of a point estimator �̂� defined in mathematical statistics. 

Statistically, the bias of a point estimator �̂� is given by 𝑩(�̂�) = 𝑬(�̂�) − 𝜌. Here 𝜌 

represents the true reliability and 𝑬(�̂�) the population reliability that is calculated using 

the known population covariance matrix. Studies at the population level provide the 

theoretical values of reliability coefficients; however, they could not provide the 
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empirical values of reliability coefficients. Thus, studies at the sample level are 

necessary and they offer more implications for practice. 

However, studies at the sample level vary remarkably. The first type of studies at the 

sample level directly compares different reliability coefficient values of various real data 

sets without examining the sampling distribution of reliability coefficients or the 

deviations from the true reliability. For example, Revelle and Zinbarg (2009) used nine 

data sets in total, including six examples (S1–S2c) from Sijtsma (2009), two examples 

(B&W 1 & 2) from Bentler and Woodward (1980), and the De Leeuw (1983) dataset to 

compare 13 reliability coefficients. They suggested that contrary to what the name 

implies, the glb was not the greatest lower bound estimate of reliability, but somewhat 

lower than omega. Their study showed that omega was the greatest under 7 examples out 

of 9 while maximized 𝜆4 was the greatest under the remained 2 examples, and the glb 

never produced the greatest estimates of reliability. However, the glb value in this study 

was a sample estimate of reliability. We need both true reliability and expected value of 

the glb to determine whether it is the greatest lower bound to reliability or not. Since the 

true reliability values were not provided in this study, no definite conclusion on which 

coefficient was the greatest lower bound could be drawn. It should also be noted that 

these nine examples only had the length of 4 to 8 items, the coefficients maximized 

lambda4 and omega might be sensitive to small item number and produced a positively 

biased sample estimate higher than the glb. In short, this type of comparison tells little 
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information about the bias in reliability coefficients and the results may change 

remarkably as sample data changes. 

The second type compares the deviation of the mean of sample reliability estimates 

relative to the corresponding population coefficient values and defines this deviation as 

the sample bias in reliability estimates. Mathematically, the bias is given by 𝐵(�̂�) =

𝐸(�̂�) −
∑ �̂�

𝑁
 and 𝐸(�̂�) is obtainable from the population covariance matrix. In this type of 

study, either the covariance matrix of a real dataset or an artificial covariance matrix is 

used as the population covariance matrix. Then random samples with varied sample sizes 

are drawn from the population covariance matrix. For example, Ten Berge and Sočan 

(2004) generated 500 samples of size 100, 250, 500, and 1000 out of De Leeuw (1983)’s 

the correlation matrix of a real data with 119 subjects and 6 items. The authors compared 

the sample bias in coefficient alpha, the maximized lambda4 and the glb in terms of the 

sample coefficient values relative to the corresponding coefficient values of the real 

dataset. The results showed that 1) all the sample bias values were low (ranged from 

-0.004 to 0.008); 2) alpha had the least sample bias (in absolute value), the glb had the 

largest sample bias, and the sample bias in the maximized lambda4 was in the middle. 

Shapiro and Ten Berge (2000) generated 500 samples of sample size respectively 100, 

500, 2000 from the multivariate normal 𝑁 (0, 𝐈p) distribution (p is the number of test 

items) and postmultiply each vector by ∑1/2 (∑ was a given population covariance 

matrix) to yield data following the multivariate normal 𝑁 (0, ∑) distribution. The given 



41 

population covariance matrix was respectively of 5 and 10 items from a scholastic 

achievement. The results showed that the sampling bias in the glb increased as the 

number of test items changed from 5 to 10 and decreased as the sample size increased 

from 100 to 2000. The sample bias was found to range from 1.8% to 13.5% higher than 

the population values, and the largest bias occurred under the condition of 10 items and 

100 cases. The sample bias defined in this type of study tells about the deviation of 

sample estimates of reliability from expected reliability estimate. Statistically, this 

deviation is measured by E[(�̂� − E(�̂�))
2

], that is, the variance of the sample estimates. 

However, it tells little about the deviation of sample estimates of reliability with regard 

to the true reliability. 

The third type of studies evaluates reliability coefficients by examining the degree of 

the bias of the mean of sample estimates relative to the true reliability of a test. For 

example, Yang and Green (2010) systematically studied the relative bias [calculated by 

(�̂� − 𝜌)/𝜌] of sample SEM estimates of reliability in comparison to coefficient alpha by 

a Monte Carlo study under the tau-equivalent, congeneric, bifactor and correlated error 

models. They found the SEM approach showed minimal (relative) bias when the model 

was correctly specified and items were relatively well defined by their underlying 

factor(s). When the model was misspecified, particularly underspecified, greater bias 

occurs. Although they proposed that the SEM estimates may be unstable and biased with 

small sample sizes, their study results showed that when the model is correctly specified, 
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SEM estimates of reliability demonstrated less bias than coefficient alpha for small 

sample sizes (i.e. 50 observations) and small number of items (i.e., 6 items) even under 

the tau-equivalent model. In addition, they reported the average deviations of the sample 

estimate from the estimated expected reliability and true reliability as the indices for 

stability of SEM reliability estimates. The formulas for the two types of deviations are 

respectively √(�̂�−�̂�)2

𝑁
 and √

(�̂�−𝜌)2

𝑁
.  

From the review of the methods in previous reliability studies, we can see that the 

method in the third type of studies at the sample level is most rigorous in terms of 

statistical standards for evaluating the quality of reliability coefficients. Therefore, this 

study adopted the method in the third type of studies at the sample level and closely 

followed the method section in Yang and Green (2010)’s study. However, some design 

factors were changed in this study. The details are presented in Chapter 3 section 3.1 

and rationales for major changes are also provided in that section. 

2.4. Study Purpose and Research Questions 

To date, there is no study that has compared the performances of the most often used 

or recommended reliability coefficients from each of the five approaches. Therefore, the 

major purpose of the current study is to evaluate the performances of the reliability 

coefficients from the five approaches under simulated conditions. The selected reliability 

coefficients are coefficient alpha, the most often used reliability coefficient (the internal 

consistency approach); the recommended reliability coefficients: the glb (the lower 
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bound approach), recommended by Green and Yang (2009), Sijtsma (2009), and Ten 

Berge and Sočan (2004), theta and generalized theta (PCA approach), recommended by 

Şimşek and Noyan (2013), omega (EFA approach), recommended by Revelle and 

Zinbarg (2009), and SEM estimates of reliability (SEM approach) under different 

analysis models (see details in Chapter 3), recommended by Green and Yang (2009), and 

Yang and Green (2011). Therefore, the first and main research question addressed in this 

simulation study is (1) Which reliability coefficient generates the best estimate of 

reliability considering the manipulated conditions? To answer this research question, a 

Monte Carlo study was conducted to compare the accuracy and stability of these 

reliability coefficients.  

Yang and Green’s (2010) study has shown that the correctly specified SEM 

estimates of reliability are very promising alternatives to coefficient alpha. However, the 

Monte Carlo simulation study on SEM estimates of reliability has not been replicated on 

various multidimensional measurement models and the performance quality of SEM 

estimates of reliability has not fully exposed. For example, we do not know how SEM 

estimates of reliability will perform when the assumption of unidimensionality is violated 

in different degrees. Moreover, multidimensional data is hard to be correctly specified in 

practice without prior knowledge of a measure or test; even with prior knowledge or 

theoretical rationale, it is not easy to correctly represent the internal structure of a measure. 

In addition, a complicated multidimensional model often incurs estimation problems (see 
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Yang & Green, 2010). Thus, the under-specified models seem to be more advantageous 

since model specifications are comparably simple and fewer parameters are required to 

be estimated. Therefore, the second research question is raised with a focus on the 

performances of the under-specified SEM estimates of reliability under the violation of 

unidimensionality in varied degree: (2) When the assumption of unidimensionality is 

violated, will unidimensional SEM estimates of reliability approximate the correctly 

specified SEM estimates of reliability?  

Graham’s (2006) study indicated that when the congeneric measurement model was 

used to analyze the data generated from a tau-equivalent model, the estimated reliability 

was almost as accurate as the one estimated by the correct model (tau-equivalent model). 

The congeneric model can provide approximately accurate estimates of the parameter 

loadings as the tau-equivalent model, given that there is no estimation problem, hence 

providing an approximately accurate estimate of reliability. Yang and Green’s (2010) 

study also found when the model was underspecified, greater bias occurs, whereas the 

over-specified models generated less bias. Therefore, I hypothesize that a general model 

can produce robust estimates of reliability when it is used to analyze data generated from 

the less specified models. The corresponding research question is: (3) If the analysis 

model is an over-specified model, will its estimates of reliability approximate those using 

the correctly specified analysis model?   

However, the disadvantage of using a general model is that more parameters need to 
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be estimated, which usually causes estimation problems (e.g., instability and 

convergence failure). Although ordinary least squares (OLS) and maximum likelihood 

(ML) are the most frequently used estimation methods in SEM, they tend to cause 

sampling bias and experience estimation problems for data with small sample sizes. To 

avoid these problems in parameter estimation when sample sizes are small, Bayesian 

estimation methods can be used for conditions where estimation problems occur. 

Bayesian estimation methods have been found to work well with small sample sizes, and 

usually do not produce inadmissible parameter estimates such as negative variances (Lee, 

2007; Hox, Van de Schoot & Matthijsse, 2012). However, Bayesian analysis requires 

complex statistical specifications and that hinders its application. Therefore, in this 

study, Mplus 7 was used due to its simple analysis specifications with convenient 

defaults (i.e., diffuse or non-informative priors). The corresponding and final research 

question is (4) Can Bayesian estimation with non-informative priors overcome 

estimation problems in SEM estimates of reliability using ML? If yes, will the estimates 

of reliability using Bayesian estimation with non-informative priors be more accurate 

and stable than those using ML?   
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CHAPTER 3  METHODS 

Chapter 3 presents the study design, specifically the manipulated design factors, the 

methods and programs for data generation and analysis, and the evaluation criteria for 

assessing the quality of the reliability coefficients selected in this comparison study. 

3.1. Study Design 

There were two major stages in this study. In stage 1, the selected reliability 

coefficients were evaluated across all the simulated conditions introduced below. First, 

three types of measurement models, including the (essentially) tau-equivalent model, the 

congeneric model and the correlated factor model, were chosen for data simulation. The 

(essentially) tau-equivalent model was selected to serve the purpose of comparison since 

coefficient alpha can correctly estimate reliability under the (essentially) tau-equivalent 

model. The correlated factor model instead of the bifactor model in Yang and Green’s 

study was used because (1) it is the basic model in the family of multidimensional models, 

of which the bifactor model and the higher order factor model can be mathematically 

derived (Yung, Thissen, & McLeod, 1999), (2) it is easier to manipulate because it has 

less parameters that need to be estimated compared to the corresponding bifactor model 

and higher order factor model, and (3) it is a more interpretable model than the 

corresponding bifactor model when manipulating test heterogeneity. 

In addition to measurement models, other factors that have been known to affect 

reliability estimation, including sample size, item number, factor correlation, and error 

http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/statug_calis_sect114.htm#yung_y_99
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correlation, were manipulated as follows (a) three levels of sample size: 50, 150, and 500, 

(b) two levels of number of items: 6 and 12, (c) two levels of factor correlation: 0.2 and 

0.6 for the correlated factor model, and (d) three levels of measurement error correlation: 

0, 0.2 and 0.5.  

Conditions with a large number of items and large sample sizes were not considered 

because bias in most reliability coefficients decrease systematically as item number 

increases and stability of reliability coefficients increases as sample size increases (Tang 

& Cui, 2012, 2014). Therefore, differences in various reliability estimates became 

smaller and less noticeable as item number and sample size increased. Give that large 

numbers of sample sizes and item numbers had already been considered in previous 

simulation studies (Tang & Cui, 2012, 2014), this study focused on smaller sample sizes 

and item numbers where the selection of an appropriate reliability estimate matters 

more. 

The factor correlation was manipulated no more than 0.6 since a high factor 

correlation indicated the existence of unidimensionality. Constructing highly correlated 

factor models was redundant in a simulation study where unidimentional models were 

already included.  

The models with correlated errors were also considered because the assumption of 

independent errors is hard to hold when items on a test are administered on a single 

occasion. Rozeboom (1966) has argued that when items on a test are administered on a 
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single occasion, errors among items are likely to be positively correlated and that these 

correlated errors yield spuriously high coefficient alphas. Correlated errors under this 

situation should be treated purely as measurement errors and considered as an unreliable 

component of measures. The size of error correlation was manipulated to be no more than 

0.5, following Yang and Green (2010)’s study. The underlying reason is a high 

correlation of measurement errors in a measure indicates the measure has very poor 

quality, which is not representative of most tests.  
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Table 1. 

Model Design 

Model Model Type 𝜙12 𝜆𝑖1 𝜆𝑖2 𝜌𝜀𝜀′ 

1 Tau-equivalent Model 0 All .6 0 0 

2  0 All .6 0 0.2 

3  0 All .6 0 0.5 

4 Congeneric Model  0 .4, .5, .6, .6, .7, .8* 0 0 

5  0 .4, .5, .6, .6, .7, .8* 0 0.2 

6  0 .4, .5, .6, .6, .7, .8* 0 0.5 

7 Correlated Model 0.2 .5, .6, .7, .0, .0, .0* .0, .0, .0, .5, .6, .7* 0 

8  0.2 .5, .6, .7, .0, .0, .0* .0, .0, .0, .5, .6, .7* 0.2 

9  0.2 .5, .6, .7, .0, .0, .0* .0, .0, .0, .5, .6, .7* 0.5 

10  0.6 .5, .6, .7, .0, .0, .0* .0, .0, .0, .5, .6, .7* 0 

11  0.6 .5, .6, .7, .0, .0, .0* .0, .0, .0, .5, .6, .7* 0.2 

12  0.6 .5, .6, .7, .0, .0, .0* .0, .0, .0, .5, .6, .7* 0.5 

Note 1. ρεε′ refers to the error correlation; λi1 and λi2 refer to the factor loadings on factor 1 

and factor 2 respectively; ϕ12 refers to the correlation between the two factors. 

Note 2. * represents 𝜆𝑖1of six items in a measure. 𝜆𝑖1 is replicated for a measure with 12 items. 

 

After combining the design factors: types of measurement models, factor 
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correlations, and error correlations, there were in total 12 specific measurement models 

(displayed in Table 1) for data generation. As shown in Table 1, the factor loadings were 

all 0.6 in the (essentially) tau-equivalent model, and they ranged from 0.4 to 0.8 in the 

congeneric model. In the correlated factor models, two factors with simple structure were 

generated with factor loadings (varying from 0.5 to 0.7) loading on distinctive items. The 

average of the factor loadings was controlled at 0.6, the medium high level, in these 

models. In total, two levels of number of items, three levels of number of subjects, and 

twelve measurement models were considered in the simulation study so as to produce a 

total of 2 x 3 x 12= 72 simulation conditions. Each simulation condition was replicated 

1,000 times.  

In stage 1, ML was used in all the SEM estimates of reliability; in stage 2, only the 

conditions with serious estimation issues were further examined using Bayesian 

estimation with non-informative priors. There are two reasons for using non-informative 

priors. First, it should not be assumed that researchers always have knowledge of the 

distributions of the parameters from previous research. Second, the convenience of using 

Bayesian estimation matters in application. Mplus 7 provides convenient defaults of 

non-informative priors. Specifically, these non-informative priors are the normal 

distributions with mean of 0 and infinite variance for free parameters like loadings and 

intercepts, and inverse Gamma distributions for free variance parameters. For a more 

detailed explanation of choosing priors for Bayesian SEM, see Dunson, Palomo, and 
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Bollen (2005). To estimate posteriors, the Markov Chain Monte Carlo technique 

(MCMC), or more specifically, Gibbs sampling, was used in Mplus 7. 

3.2. Data Generation and Analysis 

Responses to all the items were assumed to be multivariate normally distributed. For 

simplicity, all population item responses were assumed to have the mean of 0 and 

variance of 1, and thus the item covariance matrix was equal to correlation matrix. The 

population covariance matrix was generated for each specific model by the following 

equation, 

∑ = 𝚲y𝚿𝚲𝒚
′ + 𝚯ε,                         (48) 

where ∑ is the population covariance matrix, 𝚲y is the factor loadings matrix, 𝚿  is 

the correlation matrix of common factors, and 𝚯ε is the error variance-covariance matrix. 

The true reliability was calculated with each defined population covariance matrix.  

The sample observed score matrix was then generated by the R (R Development 

Core Team, 2008) package “mvtnorm” (Genz, A., Bretz, F., Miwa, T., Mi, X, Leisch, F., 

Scheipl, F., & Hothorn, T., 2014) to obtain multivariate normal item data using the 

defined population covariance matrix. After sample observed score matrices were 

generated, sample reliability estimates were computed. Coefficient alpha, theta, and 

generalized theta were calculated by their corresponding formulas. The glb and omega 

were obtained using the R package “psych” (Revelle, 2013).  

For obtaining the SEM estimates of reliability, SEM software, Mplus 7 (Muthén & 
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Muthén, 1998-2014), was used for estimating parameters of structural equation models 

and SEM reliability estimates were calculated by the general formula: equation (47) 

reviewed in Chapter Two. Each generated data set was fit to the following analysis 

models in Mplus 7. For unidimensional models, three analysis models were specified for 

running SEM: (1) the tau-equivalent model (i.e., equality constraints on the factor 

loadings), (2) the congeneric model (i.e., without equality constraints on factor loadings), 

(3) the unifactor congeneric model with correlated errors. For multidimensional models, 

five analysis models were specified for running SEM: (1) the tau-equivalent model (i.e., 

equality constraints on the factor loadings), (2) the congeneric model (i.e., without 

equality constraints on factor loadings), (3) the unifactor congeneric model with 

correlated errors, (4) the correlated factor model (with constraints of zero loadings on 

items to obtain the simple structure), and (5) the correlated factor model with correlated 

errors. The obtained SEM estimates of reliability from the above mentioned analysis 

models were named respectively as SEM.tau, SEM.cong, SEM. CE, SEM.CF and 

SEM.CFCE in the first stage of data analysis using the ML estimation method. In the 

second stage, the Bayesian estimation method was used and the BSEM estimates of 

reliability were named in a similar way as the corresponding SEM estimates of 

reliability. For example, SEM.CFCE was named as BSEM.CFCE when the Bayesian 

estimation method was selected.  

Each simulation condition (72 conditions in total) was replicated 1000 times. The 
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percentage relative bias, standard error and root mean square error of each reliability 

coefficient were calculated for each condition in R environment. The rounded 

percentages of estimation failure numbers for each SEM reliability coefficient under all 

the manipulated conditions were also obtained. This information was used to select the 

conditions with serious estimation issues for the second stage analysis. Finally, the 

percentage relative bias, standard error and root mean square error of Bayesian SEM 

estimates of reliability for the selected conditions were calculated.  

3.3. Evaluation Criteria 

The primary evaluation criterion used in this study is the accuracy of reliability 

estimation. To measure the accuracy of reliability estimation, the relative bias was 

calculated by the formula (�̂� − 𝜌)/𝜌, where �̂�  is the mean of reliability estimates across 

1,000 replications under each condition.  

In addition to a smaller bias, a preference exists for an estimator that has a 

distribution with a smaller variance ensuring in repeated sampling a higher portion of 

values of �̂� will be closer to 𝜌. Given two unbiased estimators of a parameter 𝜌 and all 

other things being equal, we would select the estimator with the smaller variance. Thus, 

the secondary evaluation criterion is the stability or precision of reliability estimation. To 

measure the stability of reliability estimation, the standard error, √∑(�̂�−�̂�)2

𝑁
, of the 

sampling distribution of �̂� was calculated under each condition. Smaller standard errors 

indicate more stable estimates across samples.  
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Finally, the root mean square error,√
∑(�̂�−𝜌)2

𝑁
, was considered because it takes account 

of both bias and precision of the estimator distribution (Wackerly, Mendenhall, & 

Scheaffer, 2008). If a reliability coefficient has inconsistent values in its relative bias 

and standard error (i.e., neither high nor low simultaneously), this criterion can be 

referred to given that it is the function of both bias and standard error.  
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CHAPTER 4  RESULTS 

4.1. Results in Stage One 

The indices for measuring the accuracy and precision of the reliability coefficients 

are summarized in Tables 2 to 13. Each table (from Table 2 to 13) presents the percentage 

relative biases (hereafter referred to as biases), standard errors (SEs) and root mean 

square errors (RMSEs) of the reliability coefficients under the conditions that item 

number is respectively 6 and 12 and sample size is respectively 50, 150 and 500 for each 

of the twelve specified measurement models described in Table 1 of Chapter 3. For SEM 

reliability coefficients, the rounded percentages of the numbers of estimation failures are 

presented in Tables 14 to 18. Each table (from Table 14 to 18) presents the rounded 

percentages of the estimation failure numbers for each of the five types of SEM 

reliability coefficient examined in this study (i.e., SEM.tau, SEM.cong, SEM. CE, 

SEM.CF and SEM.CFCE), under the conditions that item number is 6 and 12, and sample 

size is 50, 150 and 500. 

4.1.1 Reliability Estimates for Tau-Equivalent Models 

The relative percentage biases, SEs and RMSEs of all the reliability coefficients for 

Model 1 (the tau-equivalent model with independent errors), Model 2 (the 

tau-equivalent model with error correlation at 0.2) and Model 3 (the tau-equivalent 

model with error correlation at 0.5) are respectively presented in Tables 2, 3, and 4. The 
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results are summarized in the order of bias, SE and RMSE under each measurement 

model with respect to the conditions of 6 items and 12 items.  

6-Item Scale Model 1  

As shown in Table 2 (Model 1), alpha, theta, generalized theta (hereafter shorten as 

theta.g), SEM.tau (SEM estimate of reliability using the correctly specified analysis 

model, hereafter shortened as CSM), SEM.cong (SEM estimate of reliability using the 

over-specified analysis model, hereafter shortened as OSM) and SEM.CE (OSM) had 

quite accurate reliability estimates. They all had their biases below or around 1% under 

all the conditions of 6 items in Model 1. However, the biases of the glb and omega were 

considerably high (respectively 8.03% and 9.44%) under the condition that sample size 

was 50. As sample size increased, the biases in the glb and omega all decreased and the 

glb had higher rate of decreasing than omega. When sample size was 500, the biases of 

the glb and omega were respectively 2.96% and 6.68%, which were still higher than the 

remaining coefficients.  

The SEs of these reliability coefficients were all small, ranging from 0.01 to 0.06.  

SEM.tau (CSM) had the largest SE (0.06) and the glb and omega had the smallest SE 

(0.04) when sample size was 50. As sample size increased, the SEs of these reliability 

coefficients all decreased, and SEM.tau had the highest rate of decreasing. When sample 

size was 500, SEM.tau, SEM.cong (OSM) and SEM.CE (OSM) had the smallest SE 
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(0.01), and the remaining coefficients had a SE of 0.02.  

The RMSEs of these reliability coefficients were all considerably small, ranging 

from 0.01 to 0.08. Omega had the largest RMSE and the glb had the second largest 

RMSE regardless of sample size. Alpha, theta, theta.g, SEM.cong (OSM) and SEM.CE 

(OSM) had the smallest RMSE (0.05) when sample size was 50. When sample size 

increased to 150, except the glb and omega, all the coefficients had the smallest RMSE 

(0.03). When sample size continued to increase to 500, SEM.tau (CSM), SEM.cong and 

SEM.CE had the smallest RMSE (0.01).  

12-Item Scale Model 1  

The biases, SEs and RMSEs of these reliability coefficients all decreased as item 

number increased from 6 to 12. When item number increased from 6 to 12, omega’s 

bias dramatically decreased, whereas the glb’s bias only dropped unremarkably. On the 

other hand, simply increasing sample size significantly decreased the glb’s bias while it 

only slightly decreased omega’s bias. Under the conditions of 12 items, the glb had the 

largest bias and omega had the second largest bias regardless of sample size. The 

remaining coefficients had similarly small biases, the magnitude of which were all 

below or around 1%.  

The SEs of these reliability coefficients were all small, ranging from 0.01 to 0.03. As 

sample size increased, the SEs of these reliability coefficients all decreased. However, if 
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the SEs were at the level of 0.01, the decreasing rate were approaching zero. 

The RMSEs of these reliability coefficients ranged from 0.01 to 0.07. The glb had the 

largest RMSEs regardless of sample size. The RMSEs of the remaining coefficients were 

almost equally low, especially when sample sizes were large.  

 

Table 2 

Percentage Bias, SE and RMSE of Reliability Estimates of the Data Generated from the 

Tau-equivalent Model with Independent Errors (Model 1) 

6-Item scale n=50 n=150 n=500 

EC=0; 𝜌=0.77 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha -1.06 0.05  0.05 -0.36 0.03  0.03 0.12 0.02  0.02 

Glb 8.03 0.04  0.07 4.61 0.03  0.05 2.96 0.02  0.03 

Theta -0.35 0.05  0.05 -0.13 0.03  0.03 0.19 0.02  0.02 

Theta.g -0.35 0.05  0.05 -0.13 0.03  0.03 0.19 0.02  0.02 

Omega 9.44 0.04  0.08 7.34 0.03  0.06 6.68 0.02  0.06 

SEM.tau -0.65 0.06 0.06 -0.39 0.03 0.03 0.13 0.01 0.01 

SEM.cong -0.31 0.05 0.05 -0.95 0.03 0.03 0.18 0.01 0.01 

SEM.CE -0.71 0.05 0.05 -0.29 0.03 0.03 1.04 0.01 0.01 

12-Item scale n=50 n=150 n=500 

EC=0; 𝜌=0.87 Bias SE RMSE Bias SE RMSE Bias SE RMSE 
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Alpha -1.06 0.03 0.03 -0.28 0.01 0.01 0.06 0.01 0.01 

Glb 7.51 0.02  0.07 4.60 0.01  0.04 2.69 0.01 0.03 

Theta -0.32 0.03  0.03 -0.24 0.02  0.02 0.01 0.01 0.01 

Theta.g -0.32 0.03  0.03 -0.24 0.02  0.02 0.01 0.01 0.01 

Omega 2.59 0.03  0.04 1.71 0.01  0.02 1.40 0.01 0.02 

SEM.tau -0.75 0.03 0.03 -0.17 0.01 0.01 0.09 0.01 0.01 

SEM.cong -0.36 0.03 0.03 -0.07 0.01 0.01 0.13 0.01 0.01 

SEM.CE -0.13 0.03 0.03 -0.07 0.02 0.02 0.13 0.01 0.01 

Note 1. The bias values are in the form of percentage bias.  

Note 2. Theta.g represents generalized theta 

6-Item Scale Model 2  

Under the conditions of 6 items in Model 2 (Table 3), all the sample estimates of the 

reliability coefficients had positive bias except SEM.CE (CSM). It had negative bias 

when sample size was small (e.g., 50), and positive bias when sample size was enlarged. 

Among all the coefficients compared in this study, SEM.CE (CSM) stood out for its 

accurate reliability estimates with its bias below 1% under the conditions of 6 items in 

Model 2. However, the glb, omega had serious biases, ranging from 19.61% to 22.21%. 

Again, omega had the largest bias under the conditions of 6 items. The remaining 

reliability coefficients: alpha, theta, theta.g, SEM.tau (SEM estimate of reliability using 
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the under-specified analysis model, hereafter shortened as USM) and SEM.cong (USM) 

had similar biases ranging from 9.94% to 11.75%.  

The SEs of these reliability coefficients were all small, ranging from 0.01 to 0.05. 

SEM.CE (CSM) had the largest SE (0.05) and SEM.tau (USM) had the smallest SE 

(0.02) when sample size was 50. As sample size increased, the SEs of these reliability 

coefficients all decreased. When sample size was 500, SEM.CE had a SE of 0.02, and 

the remaining coefficients had a SE of 0.01.  

Compared with the corresponding conditions in Model 1 (Table 2), the RMSEs of 

these reliability coefficients were larger as there were correlated errors in Model 2 (Table 

3). SEM.CE (CSM) had the smallest RMSEs under all the conditions (ranging from 0.01 

to 0.05). The glb and omega had similar larger RMSE values, ranging from 0.14 to 0.16. 

The remaining reliability coefficients had their RMSEs ranging from 0.07 to 0.09. 

12-Item Scale Model 2  

The biases, SEs and RMSEs of these reliability coefficients all decreased as item 

number increased from 6 to 12. As similar as in Model 1, omega’s bias dramatically 

decreased, whereas the glb’s bias only dropped unremarkably when item number 

increased from 6 to 12. Under the conditions of 12 items, the glb had the largest bias 

regardless of sample size. SEM.CE (CSM) had the smallest biases, the magnitude of 

which were all below or around 1%. The remaining coefficients had similar biases 
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ranging from 5.17% to 6.18%.  

The SEs of these reliability coefficients were all small, ranging from 0.01 to 0.04. 

When sample size was 50, SEM.CE (CSM) had the largest SE (0.04) and the glb had 

the smallest SE (0.02). As sample size increased, the SEs of these reliability coefficients 

all decreased until they were at the level of 0.01. 

The RMSEs of these reliability coefficients ranged from 0.01 to 0.12. The glb had 

larger RMSE values (respectively 0.12, 0.10 and 0.09) than omega (respectively 0.08, 

0.07 and 0.07). SEM.CE (CSM) had the smallest RMSEs (respectively 0.04, 0.02 and 

0.01). The remaining reliability coefficients (i.e., alpha, theta, theta.g, SEM.tau [USM], 

and SEM.cong [USM]) all had their RMSEs at 0.05 regardless of sample size.  

 

Table 3  

Percentage Bias, SE and RMSE of Reliability Estimates of the Data Generated from the 

Tau-equivalent Model with Error Correlation at 0.2 (Model 2) 

6-Item scale n=50 n=150 n=500 

EC=0.2; 𝜌=0.72 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha 10.40 0.04  0.08 11.28 0.02  0.08 11.67 0.01  0.08 

Glb 21.53 0.03  0.16 19.83 0.02  0.14 19.61 0.01  0.14 

Theta 11.08 0.04  0.09 11.51 0.02  0.09 11.75 0.01  0.09 

Theta.g 11.32 0.04  0.09 11.51 0.02  0.09 11.75 0.01  0.09 
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Omega 22.21 0.03  0.16 21.21 0.02  0.15 20.90 0.01  0.15 

SEM.tau 9.94 0.02  0.07 10.85 0.01  0.08 11.21 0.01  0.08 

SEM.cong 10.67 0.03 0.08 11.10 0.02 0.08 11.31 0.01 0.08 

SEM.CE -0.96 0.05 0.05 -0.08 0.03 0.03 0.24 0.02 0.02 

12-Item scale n=50 n=150 n=500 

EC=0.2; 𝜌=0.83 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha 5.17 0.03 0.05 5.78 0.01 0.05 5.89 0.01 0.05 

Glb 13.93 0.02  0.12 12.14 0.01  0.10 11.24 0.01  0.09 

Theta 5.40 0.03  0.05 5.93 0.02  0.05 5.92 0.01  0.05 

Theta.g 5.40 0.03  0.05 5.93 0.02  0.05 5.92 0.01  0.05 

Omega 8.57 0.03  0.08 8.31 0.01  0.07 7.84 0.01  0.07 

SEM.tau 5.46 0.03 0.05 5.92 0.01 0.05 6.07 0.01 0.05 

SEM.cong 5.83 0.03 0.05 5.95 0.01 0.05 6.18 0.01 0.05 

SEM.CE -0.19 0.04 0.04 0.05 0.02 0.02 0.39 0.01 0.01 

6-Item Scale Model 3  

As the error correlation rose to 0.5 in Model 3 (Table 4), all sample estimates of the 

reliability coefficients had larger positive bias except SEM.CE (CSM). Still, SEM.CE 

(CSM) had the smallest bias in magnitude. As sample size increased, the magnitude of 

its bias decreased trivially. The glb was the least accurate reliability coefficient in Model 
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3, the bias of which ranged from 49.03% to 49.34% under the conditions of 6 items. 

Although omega had slightly less bias than the glb under all the conditions, it was less 

accurate than the remaining reliability coefficients (i.e., alpha, theta, theta.g, SEM.tau 

[USM], and SEM.cong [USM]). The remaining reliability coefficients had their biases 

ranging from 26.92% to 29.63% under the conditions of 6 items. 

Except SEM.CE (CSM), all the reliability coefficients had small SEs ranging from 

0.01 to 0.06. SEM.CE (CSM) had the largest SE (0.11) and the glb had the smallest SE 

(0.01) when sample size was 50. As sample size increased, the SEs of these reliability 

coefficients all decreased. When sample size was 500, SEM.CE had a SE of 0.03, and 

the remaining coefficients had their SEs at 0.01 or below.  

The RMSEs of these reliability coefficients continued to increase as error correlation 

increased to 0.5 in Model 3 (Table 4). SEM.CE (CSM) had the smallest RMSEs under 

all the conditions (ranging from 0.03 to 0.11), and the glb had the largest RMSE (0.32) 

irrespective of sample size. Compared with the glb, omega had a slightly smaller RMSE 

value (0.29) under all the sample size conditions. The remaining reliability coefficients 

had similar RMSEs ranging from 0.18 to 0.20. 

12-Item Scale Model 3  

The biases, SEs and RMSEs of these reliability coefficients all decreased as item 

number increased from 6 to 12 except that the bias of SEM.CE slightly increased in 
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magnitude under the condition of 500 observations. When item number was 12, 

SEM.CE (CSM) had the smallest bias (below 1%), and the glb had the largest bias 

(around 27%). Compared with the glb, omega had quite smaller bias values (around 

18%) under all the sample size conditions. The remaining reliability coefficients had 

similar biases near 14% to 15%. 

The SEs of these reliability coefficients were all small, ranging from 0.01 to 0.05. 

When sample size was 50, SEM.CE (CSM) had the largest SE (0.05) and the glb had 

the smallest SE (0.00). When sample size was 500, the SE of SEM.CE decreased to 0.01, 

which was the same as the other reliability coefficients except the glb. The glb had the 

smallest SE (0.00) under all the conditions. 

The RMSEs of these reliability coefficients ranged from 0.01 to 0.21. The glb had 

largest RMSEs (0.21), and SEM.CE (CSM) had the smallest RMSEs (respectively 0.05, 

0.03 and 0.01). Omega had its RMSE in the range of 0.14 to 0.15, and the remaining 

reliability coefficients had their RMSEs in the range of 0.11 to 0.12 under the conditions 

of 12 items.  

 

Table 4  

Percentage Bias, SE and RMSE of Reliability Estimates of the Data Generated from the 

Tau-equivalent Model with Error Correlation at 0.5 (Model 3) 

6-Item scale n=50 n=150 n=500 
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EC=0.5; 𝜌=0.65 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha 26.92 0.04  0.18 29.37 0.02  0.19 29.22 0.01  0.19 

Glb 49.03 0.01  0.32 49.34 0.01  0.32 49.23 0.00  0.32 

Theta 27.71 0.04  0.18 29.63 0.02  0.19 29.40 0.01  0.19 

Theta.g 29.35 0.06  0.20 29.63 0.02  0.19 29.40 0.01  0.19 

Omega 44.25 0.02  0.29 44.37 0.01  0.29 44.20 0.00  0.29 

SEM.tau 27.95 0.02  0.18 28.75 0.01  0.19 29.09 0.01  0.19 

SEM.cong 27.80 0.05  0.19 28.62 0.02  0.19 29.05 0.01  0.19 

SEM.CE -2.11 0.11  0.11 -0.57 0.08  0.08 -0.18 0.03  0.03 

12-Item scale n=50 n=150 n=500 

EC=0.5; 𝜌=0.78 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha 14.31 0.02 0.11 14.62 0.01 0.11 14.86 0.01 0.12 

Glb 27.28 0.00  0.21 27.18 0.00  0.21 27.15 0.00  0.21 

Theta 14.12 0.02  0.11 14.64 0.02  0.12 14.91 0.01  0.12 

Theta.g 14.12 0.02  0.11 14.64 0.02  0.12 14.91 0.01  0.12 

Omega 18.88 0.02  0.15 18.68 0.01  0.15 18.51 0.01  0.14 

SEM.tau 14.58 0.02 0.12 14.71 0.01 0.12 14.90 0.01 0.12 

SEM.cong 14.92 0.02 0.12 14.83 0.01 0.12 14.94 0.01 0.12 

SEM.CE 0.15 0.05 0.05 0.04 0.03 0.03 0.29 0.01 0.01 
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In summary, the reliability coefficient SEM.CE had the smallest bias and RMSE 

under almost all the conditions in the tau-equivalent models (Models 1 to 3). Under the 

conditions in Model 1 (the tau-equivalent model with independent errors), alpha, theta, 

theta.g, SEM.tau, and SEM.cong also had the smallest or nearly the smallest bias and 

RMSE. However, as error correlation occurred in Model 2 (the tau-equivalent model 

with error correlation at 0.2) and increased in Model 3 (the tau-equivalent model with 

error correlation at 0.5), their biases and RMSEs were much larger than SEM.CE. The 

glb had the largest bias and RMSE values under the conditions of 12 items in Models 1 

and 2 and under all the conditions in Model 3, while omega had the largest bias and 

RMSE values under the remaining conditions. The two coefficients (i.e., the glb and 

omega) consistently had larger biases and RMSEs than the other coefficients. 

All the reliability coefficients, except SEM.CE, had very small SEs ranging from 

0.00 to 0.06 under all the conditions. In fact, SEM.CE had similarly small SEs as other 

coefficients under most conditions. It only had slightly larger SE values than other 

coefficients when there were correlated errors as in Models 2 and 3 and when sample 

size was 50 and item number were 6, the discrepancies were very trivial unless under 

the condition when error correlation was 0.5. Under that condition, SEM.CE had its 

largest SE of 0.11. When sample size was 50 and item number was 12, the glb 

consistently had the smallest SE values across Models 1 to 3. In short, the reliability 

coefficients had similarly small SEs and their SEs decreased as sample size increased 
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from 50 to 150 or more.  

4.1.2 Reliability Estimates for Congeneric Models 

The relative percentage biases, SEs and RMSEs obtained for Model 4 (the 

congeneric model with independent errors), Model 5 (the congeneric model with error 

correlation at 0.2) and Model 6 (the congeneric model with error correlation at 0.5) are 

presented in Tables 5, 6 and 7. The results are summarized in the order of bias, SE and 

RMSE under each measurement model with respect to the conditions of 6 items and 12 

items. 

6-Item Scale Model 4  

Under the conditions of 6 items in Model 4 (Table 5), the most accurate reliability 

coefficients were theta, theta.g and SEM.cong (CSM). The three coefficients all had their 

percentage bias below 0.5% under all the conditions of 6 items. Coefficient alpha, 

SEM.tau (USM) and SEM.CE (OSM) had slightly larger bias than theta, theta.g and 

SEM.cong. However, the discrepancies among these coefficients were not remarkable, 

especially when the sample size was large. Similar as their performances in Model 1, 

the biases of the glb and omega were still higher than those of the other coefficients (i.e., 

alpha, theta, theta.g, SEM.tau, SEM.cong and SEM.CE), and omega had the largest bias 

under the conditions of 6 items. 

The SEs of these reliability coefficients were all small, ranging from 0.01 to 0.06.  
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alpha had the largest SE (0.06) and the glb and omega had the smallest SE (0.04) when 

sample size was 50. As sample size increased, the SEs of these reliability coefficients all 

decreased. When sample size was 500, alpha, SEM.tau (UCM), SEM.cong (CSM) and 

SEM.CE (OCM) had the smallest SE (0.01), and the remaining coefficients had a SE of 

0.02.  

The RMSEs of these reliability coefficients were all considerably small, ranging 

from 0.01 to 0.08. Omega had the largest RMSE and the glb had the second largest 

RMSE irrespective of sample size. Theta, theta.g, SEM.Tau (UCM), SEM.cong (CSM) 

and SEM.CE (OCM) had the smallest RMSE (0.05) and alpha had a RMSE of 0.06 

when sample size was 50. Their RMSEs all decreased as sample size increased. When 

sample size increased to 500, alpha, SEM.tau, SEM.cong and SEM.CE had the smallest 

RMSE (0.01), while theta and theta.g had a slightly larger RMSE (0.02). 

 

12-Item Scale Model 4  

The biases, SEs and RMSEs of these reliability coefficients all decreased as item 

number increased from 6 to 12. When item number increased from 6 to 12, omega’s 

bias remarkably decreased, whereas the glb’s bias only changed trivially. On the other 

hand, simply increasing sample size significantly decreased the glb’s bias while it only 

slightly decreased omega’s bias. Under the conditions of 12 items in Model 4 (Table 5), 



69 

the glb had the largest bias and omega had the second largest bias regardless of sample 

size. The remaining coefficients had similarly small biases, the magnitude of which 

were all below or around 1%.  

The SEs of these reliability coefficients were all small, ranging from 0.01 to 0.03. As 

sample size increased, the SEs of these reliability coefficients all decreased. When 

sample size was 500, all the coefficients had a SE of 0.01. 

The RMSEs of these reliability coefficients were also small in Model 4 (Table 5), 

ranging from 0.01 to 0.07. The glb had the largest RMSE values (respectively 0.07, 0.04 

and 0.02). The RMSEs of the remaining coefficients were almost equally low, especially 

when item number was large.  

 

Table 5  

Percentage Bias, SE and RMSE of Reliability Estimates of the Data Generated from the 

Congeneric Model with Independent Errors (Model 4)  

6-Item scale n=50 n=150 n=500 

EC=0; 𝜌=0.78 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha -2.68 0.06 0.06 -2.27 0.04 0.04 -0.90 0.01 0.01 

Glb 7.79 0.04  0.07 4.53 0.03  0.05 2.83 0.02  0.03 

Theta -0.27 0.05  0.05 -0.08 0.03  0.03 0.18 0.02  0.02 

Theta.g -0.27 0.05  0.05 -0.08 0.03  0.03 0.18 0.02  0.02 
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Omega 9.18 0.04  0.08 7.14 0.03  0.06 5.85 0.02  0.05 

SEM.tau -1.78 0.05 0.05 -1.79 0.03 0.03 -0.55 0.01 0.01 

SEM.cong -0.28 0.05 0.05 -0.85 0.03 0.03 0.12 0.01 0.01 

SEM.CE -1.45 0.05 0.05 -1.05 0.03 0.03 0.23 0.01 0.01 

12-Item scale n=50 n=150 n=500 

EC=0; 𝜌=0.87 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha -1.44 0.03 0.03 -0.69 0.01 0.01 -0.39 0.01 0.01 

Glb 7.28 0.02  0.07 4.55 0.01  0.04 2.62 0.01  0.02 

Theta 0.09 0.03  0.03 0.13 0.01  0.01 0.30 0.01  0.01 

Theta.g 0.09 0.03  0.03 0.13 0.01  0.01 0.30 0.01  0.01 

Omega 2.52 0.03  0.04 1.70 0.01  0.02 1.24 0.01  0.01 

SEM.tau -1.03 0.03 0.03 -0.51 0.01 0.01 -0.28 0.01 0.01 

SEM.cong -0.36 0.03 0.03 -0.08 0.01 0.01 0.09 0.01 0.01 

SEM.CE -0.16 0.03 0.03 -0.09 0.02 0.02 0.09 0.01 0.01 

6-Item Scale Model 5  

The results for Model 5 (Table 6) resembled those of Model 2 (Table 3). All the 

sample estimates of the reliability coefficients had positive bias values except SEM.CE 

(CSM). SEM.CE (CSM) had its bias under 0.5% under all the conditions except when 

sample size was 50. Under that condition, SEM.CE (CSM) had a bias of 4.04%, which 
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was still much smaller than the biases of the other coefficients. Again, omega had the 

largest bias values under the conditions of 6 items (respectively 21.43%, 20.19% and 

20.08%), which were slightly larger than the corresponding bias values of omega 

(respectively 21.13%, 19.29% and 19.06%). The remaining reliability coefficients (i.e., 

alpha, theta, theta.g, SEM.tau [USM] and SEM.cong [USM]) had similar biases ranging 

from 10.04% to 12.10%.  

Under the condition of 6 items In Model 5 (Table 6), SEM.CE (CSM) had an 

abnormally large SE (0.21) when sample size was 50. When sample size increased to 

150, the SE of SEM.CE (CSM) became as normal as the other coefficients. All the other 

coefficients had low SEs ranging from 0.01 to 0.04 and their SEs all decreased slightly as 

sample size increased. 

Compared with the corresponding conditions in Model 4 (Table 5), the RMSEs of 

these reliability coefficients were larger as there were correlated errors in Model 5 (Table 

6). SEM.CE (CSM) had the smallest RMSEs under all the conditions (ranging from 0.01 

to 0.04) except for the condition of 50 observations. Under that condition, it had the 

largest RMSE (0.21) and alpha had the smallest RMSE (0.08). The glb and omega had 

similar larger RMSE values, ranging from 0.14 to 0.16. The remaining reliability 

coefficients had their RMSEs ranging from 0.08 to 0.10.  

  



72 

12-Item Scale Model 5 

Under the conditions of 12 items in Model 5 (Table 6), SEM.CE (CSM) had the 

smallest bias (below 0.5%) and the glb had the largest bias (above 10%), irrespective of 

sample size. Omega consistently had a smaller bias than the glb but larger bias than the 

remaining reliability coefficients (i.e., alpha, theta, theta.g, SEM.tau [USM] and 

SEM.cong [USM]), which had similar biases ranging from 4.58% to 5.95%.  

When item number was 12, the SEs of these reliability coefficients were all small, 

ranging from 0.01 to 0.04. As sample size increased, the SEs of these reliability 

coefficients all decreased. When sample size was 500, all the coefficients had a SE of 

0.01. 

The RMSEs of these reliability coefficients ranged from 0.01 to 0.11. The glb had 

larger RMSE values (respectively 0.11, 0.10 and 0.09) than omega (respectively 0.07, 

0.07 and 0.06). SEM.CE (CSM) had the smallest RMSEs (respectively 0.04, 0.02 and 

0.01). The remaining reliability coefficients (i.e., alpha, theta, theta.g, SEM.tau [USM], 

and SEM.cong [USM]) all had similar RMSEs ranging from 0.04 to 0.06.  

 

Table 6  

Percentage Bias, SE and RMSE of Reliability Estimates of the Data Generated from the 

Congeneric Model with Error Correlation at 0.2 (Model 5)  

6-Item scale n=50 n=150 n=500 



73 

EC=0.2; 𝜌=0.72 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha 10.21 0.04 0.08 10.04 0.03 0.08 10.67 0.01 0.08 

Glb 21.13 0.03 0.16 19.29 0.02 0.14 19.06 0.01 0.14 

Theta 10.92 0.04 0.09 11.11 0.02 0.08 11.35 0.01 0.08 

Theta.g 11.40 0.04 0.09 11.11 0.02 0.08 11.35 0.01 0.08 

Omega 21.43 0.03 0.16 20.19 0.02 0.15 20.08 0.01 0.14 

SEM.tau 10.93 0.04 0.09 10.43 0.03 0.08 10.93 0.04 0.09 

SEM.cong 12.10 0.04 0.10 11.08 0.03 0.09 11.53 0.01 0.08 

SEM.CE 4.04 0.21 0.21 0.33 0.04 0.04 0.25 0.02 0.02 

12-Item scale n=50 n=150 n=500 

EC=0.2; 𝜌=0.84 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha 4.58 0.03 0.05 5.36 0.01 0.05 5.21 0.01 0.04 

Glb 13.43 0.02 0.11 11.61 0.01 0.10 10.76 0.01 0.09 

Theta 5.62 0.03 0.06 5.87 0.02 0.05 5.87 0.01 0.05 

Theta.g 5.62 0.03 0.06 5.87 0.02 0.05 5.87 0.01 0.05 

Omega 8.27 0.02 0.07 7.82 0.01 0.07 7.36 0.01 0.06 

SEM.tau 4.93 0.03 0.05 5.32 0.01 0.05 5.52 0.01 0.05 

SEM.cong 5.57 0.02 0.05 5.64 0.01 0.05 5.95 0.01 0.05 

SEM.CE -0.19 0.04 0.04 0.01 0.02 0.02 0.49 0.01 0.01 
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6-Item Scale Model 6  

As the measurement error correlation rose to 0.5 in Model 6 (Table 7), all the sample 

estimates of the reliability coefficients had considerably larger positive bias except 

SEM.CE (CSM). SEM.CE (CSM) had the negative and smallest bias in absolute value. 

The glb was the least accurate reliability coefficient, the bias of which ranged from 

48.20% to 48.55% under the conditions of 6 items. Omega was less biased than the glb 

under all the conditions, but it was less accurate than the remaining reliability 

coefficients (i.e., alpha, theta, theta.g, SEM.tau [USM], and SEM.cong [USM]). The 

remaining reliability coefficients had similar biases ranged from 27.18% to 28.78%. 

In Model 6 (Table 7), SEM.CE (CSM) had the largest large SE (0.23) when sample 

size was 50. When sample size increased to 150 or more, the SEs of SEM.CE became 

much smaller and comparable with the other coefficients. All the other coefficients had 

small SEs ranging from 0.00 to 0.05 and their SEs all decreased slightly as sample size 

increased. 

In Model 6 (Table 7), SEM.CE (CSM) had the smallest RMSE (ranging from 0.01 

to 0.04) except for the condition of 50 observations. Under that condition, it had a large 

RMSE (0.23). The glb had the largest RMSE value (0.32); omega had a smaller RMSE 

(0.28) than the glb but greater than the remaining coefficients (ie., alpha, theta, theta.g, 

SEM.tau [USM], and SEM.cong [USM]). The remaining coefficients’ RMSEs ranged 

from 0.18 to 0.19 under the conditions of 6 items. 
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12-Item Scale Model 6  

Under the conditions of 12 items in Model 6 (Table 7), SEM.CE (CSM) still had the 

smallest bias and the glb had the largest bias, irrespective of sample size. Omega 

consistently had a smaller bias than the glb but larger bias than the remaining reliability 

coefficients (i.e., alpha, theta, theta.g, SEM.tau [USM] and SEM.cong [USM]), which 

had similar biases ranging from 13.47% to 14.54%.  

The SEs of these reliability coefficients were all small (ranging from 0.01 to 0.02) 

except SEM.CE (CSM) under the condition of 50 observations. Under that condition, it 

had a comparatively large SE (0.15). As sample size increased to 150, SEM.CE’s SE 

decreased to 0.02, as small as those of the other coefficients. When sample size was 500, 

all the coefficients had a SE of 0.01 or below.  

The RMSEs of these reliability coefficients ranged from 0.01 to 0.21. The glb had 

largest RMSE (0.21) and omega had the second largest RMSE (0.14). Coefficient alpha, 

theta, theta.g, SEM.tau [USM], and SEM.cong [USM] all had a RMSE of 0.11. 

SEM.CE (CSM) had a rather large RMSE (0.15) when sample size was 50. When 

sample size increased to 150 or more, SEM.CE had the smallest RMSE.  

 

Table 7 

Percentage Bias, SE and RMSE of Reliability Estimates of the Data Generated from the 

Congeneric Model with Error Correlation at 0.5 (Model 6)  
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6-Item scale n=50 n=150 n=500 

EC=0.5; 𝜌=0.65 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha 27.20 0.04 0.18 28.02 0.02 0.18 28.29 0.01 0.18 

Glb 48.20 0.01 0.31 48.55 0.01 0.32 48.42 0.00 0.31 

Theta 26.98 0.04 0.18 28.78 0.02 0.19 28.51 0.01 0.19 

Theta.g 28.18 0.05 0.19 28.78 0.02 0.19 28.51 0.01 0.19 

Omega 43.35 0.02 0.28 43.72 0.01 0.28 43.66 0.00 0.28 

SEM.tau 27.63 0.04 0.18 28.29 0.02 0.18 28.45 0.01 0.19 

SEM.cong 27.18 0.05 0.18 27.37 0.03 0.18 27.63 0.01 0.18 

SEM.CE 5.97 0.23 0.23 0.52 0.04 0.04 0.60 0.02 0.02 

12-Item scale n=50 n=150 n=500 

EC=0.5; 𝜌=0.78 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha 13.47 0.02 0.11 13.85 0.01 0.11 14.04 0.01 0.11 

Glb 26.53 0.00 0.21 26.41 0.00 0.21 26.38 0.00 0.21 

Theta 13.81 0.02 0.11 14.36 0.01 0.11 14.54 0.01 0.11 

Theta.g 13.81 0.02 0.11 14.36 0.01 0.11 14.54 0.01 0.11 

Omega 18.35 0.02 0.14 18.24 0.01 0.14 18.06 0.01 0.14 

SEM.tau 13.79 0.02 0.11 13.99 0.01 0.11 14.10 0.01 0.11 

SEM.cong 14.37 0.02 0.11 14.40 0.01 0.11 14.38 0.01 0.11 

SEM.CE -2.14 0.15 0.15 0.24 0.02 0.02 0.26 0.01 0.01 
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In summary, the reliability coefficient SEM.CE had the smallest bias under most 

conditions in the congeneric models (Models 4 to 6). Under the conditions in Model 4 

(the congeneric model with independent errors), theta, theta.g, and SEM.cong had the 

smallest bias or near the smallest bias. The biases of alpha, SEM.tau and SEM.CE were 

slightly larger than theta, theta.g and SEM.cong, but their biases became similar as 

sample size increased. However, as error correlation occurred in Model 2 (the 

tau-equivalent model with error correlation at 0.2) and in Model 3 (the tau-equivalent 

model with error correlation at 0.5), only SEM.CE had the smallest bias. The biases of 

theta, theta.g, alpha, SEM.tau and SEM.cong were distinguishable larger than SEM.CE 

when there were error correlations, and the discrepancies between the bias of SEM.CE 

and those of the other coefficients became larger as error correlation increased. Similar 

as in the tau-equivalent models (Models 1 to 3), the glb and omega had larger biases 

than the other coefficients in Models 4 to 6. The glb had the largest bias values under the 

conditions of 12 items in Models 4 and 5 and under all the conditions in Model 6, while 

omega had the largest bias values under the remaining conditions.  

All the reliability coefficients had very small SEs ranging from 0.00 to 0.06 under 

all the conditions in Model 1. As there were correlated errors in Models 2 and 3, 

SEM.CE had rather large SE values when sample size was 50. When sample size 

increased, the SE of SEM.CE became similarly small as the other coefficients. The glb 

had the smallest SE values under most conditions across Models 1 to 3. In short, the 
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reliability coefficients had similarly small SEs and their SEs decreased as sample size 

increased from 50 to 150 or more. 

Similar to the tau-equivalent models (Models 1 to 3), SEM.CE had the smallest 

RMSE under most conditions in the congeneric models (Models 4 to 6). Under the 

conditions of 50 observations in Models 4 and 5, SEM.CE had rather large RMSE 

values. The glb had the largest RMSE values under the conditions of 12 items in Models 

4 and 5 and under all the conditions in Model 6, SEM.CE had the largest RMSE under 

the condition of 6 items and 50 observations in Model 5, and omega had the largest 

RMSE values under the remaining conditions. Alpha, theta, theta.g, SEM.tau, and 

SEM.cong had comparatively moderate RMSE values. The RMSEs of all the 

coefficients increased as error correlation increased or item number decreased. 

4.1.3 Reliability Estimates for Correlated Models 

The relative percentage biases, SEs and RMSEs of all the reliability coefficients for 

Model 7 (the correlated factor model with factor correlation at 0.2 and independent 

errors), Model 8 (the correlated factor model with factor correlation at 0.2 and error 

correlation at 0.2), Model 9 (the correlated factor model with factor correlation at 0.2 

and error correlation at 0.5), Model 10 (the correlated factor model with factor 

correlation at 0.6 and independent errors), Model 11 (the correlated factor model with 

factor correlation at 0.6 and error correlation at 0.2) and Model 12 (the correlated factor 

model with factor correlation at 0.6 and error correlation at 0.5) are presented in Table 8 
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to 13. The results are summarized in the order of bias, SE and RMSE under each 

measurement model with respect to the conditions of 6 items and 12 items. 

6-Item Scale Model 7  

Under the conditions of 6 items in Model 7, the glb, omega, theta.g, SEM.CF (CSM) 

and SEM.CFCE (OSM) had positive bias values; alpha, theta, SEM.tau (USM) and 

SEM.cong (USM) had negative bias; SEM.CE (USM) had a positive bias when sample 

size was 50 and negative bias values when sample size was 150 or more. None of the 

coefficients consistently had the smallest bias. Theta.g and SEM.CE had the smallest 

bias when sample size was 50, and SEM.CF had the smallest bias when sample size was 

150 or more. The glb, omega had larger bias values than SEM.CF under all the 

conditions of 6 items, but their biases were smaller than theta.g when sample size was 

150 or more. Coefficient alpha, theta, SEM.tau and SEM.cong all had similar negative 

biases ranging from -9.73% to -14.73%. SEM.CFCE had the abnormally largest bias 

irrespectively of sample size.  

When sample size was 50, the non-SEM estimates of reliability (i.e., alpha, the glb, 

theta, theta.g and omega) all had smaller SEs (ranging from 0.06 to 0.09) than the SEM 

estimates of reliability (ranging from 0.20 to 1.81). When sample size was 150 or more, 

SEM.tau (USM), SEM.cong (USM) and SEM.CF (CSM) had similar SEs as the 

non-SEM estimates of reliability, whereas SEM.CE (USM) and SEM.CFCE (OSM) still 
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had much larger SEs (ranging from 0.38 to 0.69) than the non-SEM estimates of 

reliability (ranging from 0.02 to 0.07).  

The RMSEs of the non-SEM estimates of reliability all had smaller RMSEs 

(ranging from 0.03 to 0.15) than the SEM estimates of reliability except for SEM.CF. 

SEM.CF had the smallest RMSE when sample size was 150 or more, but its RMSE was 

larger than the non-SEM estimates of reliability when sample size was 50. When sample 

size was 50, the glb had the smallest RMSE (0.09), theta, theta.g and omega had a 

similar but slightly larger RMSE (0.10), and alpha had a RMSE of 0.15. As to the SEM 

estimates of reliability, SEM.tau (USM) and SEM.CF (CSM) had comparatively smaller 

RMSEs, especially when sample size was large. SEM.cong (USM) had large RMSE 

(0.71) when sample size was 50, but its RMSE dropped at the level of the non-SEM 

estimates of reliability when sample size increased to 150 or more. SEM.CE (USM) 

also had large RMSEs (respectively 0.82, 0.69 and 0.38) and SEM.CFCE (OSM) had 

the largest RMSEs (respectively 1.87, 0.73 and 0.63).  

12-Item Scale Model 7  

When the item number increased to 12, theta, theta.g, omega, SEM.CF (CSM) and 

SEM.CFCE (OSM) had their biases below 5% regardless of sample size. Among them, 

omega and SEM.CF (CSM) were least biased. Alpha, SEM.tau (USM) and SEM.cong 

(USM) had slightly larger biases (in absolute value) than theta (in absolute value) and 
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theta.g, and rather larger biases than omega and SEM.CF. On the other hand, SEM.CE 

(USM) had the bias (in absolute value) much higher than all the other coefficients. The 

glb had the second largest bias when sample size was 150 or less, but its bias dropped fast 

as the sample size increased.  

Under the conditions of 12 items, the SEs of the non-SEM estimates of reliability 

ranged from 0.01 to 0.07, and those of the SEM estimates of reliability ranged from 

0.01 to 0.15. The SEs of the SEM estimates of reliability dropped quickly as item 

number increased to 12. When sample size was 50, all the reliability coefficients, except 

SEM.CE (USM) (0.15) and SEM.CFCE (OSM) (0.12), had small SEs ranging from 

0.04 to 0.07. When sample size increased to 150 or more, all the coefficients had 

similarly small SEs ranging from 0.01 to 0.04. 

When sample size was 50, theta and SEM.CF (CSM) had the smallest RMSE (0.05), 

whereas SEM.CE (USM) had the largest RMSE (0.21). As to the remaining coefficients, 

SEM.CFCE (OSM), the glb and alpha had larger RMSEs (ranging from 0.09 to 0.12) 

than theta.g, omega, SEM.tau and SEM.cong (ranging from 0.05 to 0.07). When sample 

size was 150, SEM.CF had the smallest RMSE (0.02), SEM.CE had the largest RMSE 

(0.15), and the remaining coefficients had their RMSEs in the range of 0.03 to 0.07. 

When sample size was 500, omega, SEM.CF and SEM.CFCE all had the smallest 

RMSE (0.02), SEM.CE had the largest RMSE (0.15), and the remaining coefficients 

had a RMSE of 0.04 or 0.05. 
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Table 8  

Percentage Bias, SE and RMSE of Reliability Estimates of the Data Generated from the 

Correlated Factor Model with Factor Correlation at 0.2 and Independent Errors (Model 

7)  

6-Item scale n=50 n=150 n=500 

EC=0; ρ=0.67 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha -17.43 0.09 0.15 -14.72 0.07 0.12 -13.97 0.02 0.10 

Glb 10.52 0.06 0.09 5.54 0.04 0.05 3.09 0.02 0.03 

Theta -9.73 0.07 0.10 -12.88 0.05 0.10 -12.88 0.03 0.09 

Theta.g 6.28 0.09 0.10 8.21 0.06 0.08 8.96 0.04 0.07 

Omega 10.21 0.07 0.10 5.73 0.07 0.08 5.66 0.06 0.07 

SEM.tau -16.54 0.11 0.16 -16.49 0.06 0.13 -13.82 0.02 0.09 

SEM.cong -14.84 0.70 0.71 -13.70 0.06 0.11 -12.45 0.02 0.09 

SEM.CE 6.28 0.82 0.82 -6.13 0.69 0.69 -22.21 0.38 0.41 

SEM.CF 8.67 0.20 0.21 1.69 0.04 0.04 0.55 0.02 0.02 

SEM.CFCE 67.28 1.81 1.87 40.58 0.68 0.73 38.31 0.57 0.63 

12-Item scale n=50 n=150 n=500 

EC=0; ρ=0.80 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha -8.85 0.06 0.09 -6.61 0.03 0.05 -6.26 0.02 0.05 

Glb 11.90 0.03 0.11 7.26 0.02 0.07 4.16 0.01 0.04 
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Theta -3.76 0.04 0.05 -5.80 0.02 0.04 -5.94 0.01 0.04 

Theta.g 4.13 0.04 0.06 3.66 0.02 0.04 3.51 0.02 0.04 

Omega -0.11 0.07 0.07 0.16 0.04 0.04 0.79 0.02 0.02 

SEM.tau -7.83 0.05 0.07 -6.58 0.03 0.05 -6.18 0.02 0.05 

SEM.cong -6.18 0.05 0.06 -6.06 0.03 0.05 -6.04 0.02 0.05 

SEM.CE -19.35 0.15 0.21 -18.84 0.06 0.15 -19.34 0.03 0.15 

SEM.CF -0.11 0.05 0.05 0.40 0.02 0.02 0.43 0.01 0.02 

SEM.CFCE 2.30 0.12 0.12 0.59 0.03 0.03 0.50 0.01 0.02 

6-Item Scale Model 8  

Under the conditions of 6 items in Model 8 (Table 9), SEM.cong (USM) had the 

smallest bias (below 3% in absolute value) and SEM.CFCE (CSM) had the largest bias 

(above 50%). Coefficient alpha and SEM.tau (USM) had rather low biases (ranging from 

3.97% to 6.16%). Theta had a lightly larger bias than alpha and SEM.tau, but it bias was 

smaller than SEM.CF (USM) (ranging from 21.85% to 24.36%). The glb, theta.g and 

omega had similarly large biases (ranging from 28.26% to 32.59%). SEM.CE (USM) 

had very inconsistent bias values. When sample size was 50, SEM.CE had a positive 

bias of 5.75%; when sample size was 150, it had a negative bias of -0.90%, which was 

small in magnitude; when sample size was 500, SEM.CE had a bias of -21.70%, which 

was rather large in magnitude.  
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Except SEM.cong, SEM.CE and SEM.CFCE, all the reliability coefficients had 

small SEs (ranging from 0.02 to 0.08). When sample size was 50, SEM.cong (0.20) had 

a much smaller SE than SEM.CE (0.85) and SEM.CFCE (1.5). When sample size was 

150 or more, SEM.cong had a similarly small SE as the other coefficients (i.e., alpha, 

theta, theta.g, the glb, omega, SEM.tau and SEM.CF), whereas SEM.CE and 

SEM.CFCE still had rather large SEs (ranging from 0.23 to 0.90).  

The RMSEs of these reliability coefficients in Model 8 (Table 9) were a little 

different from their corresponding values in Model 7 (Table 8) due to the discrepancies 

among non-SEM estimates of reliability. Alpha and theta had comparatively small 

RMSEs (ranging from 0.04 to 0.08), whereas the glb, omega and theta.g all had large 

RMSEs (ranging from 0.17 to 0.20) under all the conditions of 6 items in Model 8. As 

to the SEM estimates of reliability, SEM.tau (USM) and SEM.cong (USM) had 

comparatively smaller RMSEs, especially when sample size was large (150 or more). 

SEM.CF (USM) had slightly larger RMSEs than SEM.tau and SEM.cong, ranging from 

0.13 to 0.16 under all the conditions of 6 items in Model 8. SEM.CE (USM) had the 

second large RMSEs (respectively 0.85, 0.63 and 0.27) and SEM.CFCE (CSM) had the 

largest RMSEs (respectively 1.54, 0.83 and 0.95). 

12-Item Scale Model 8  

When item number increased to 12, all the coefficients, except SEM.cong and 
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SEM.CE, had decreased biases. SEM.CFCE (CSM) had minimal bias values (ranging 

from 0.08% to 1.43%). Alpha, theta, SEM.tau (USM), SEM.cong (USM) also had rather 

small biases in absolute values (ranging from 1.95 to 5.37%). Theta.g, omega and 

SEM.CF (USM) had rather large bias (ranging from 9.60% to 14.04%). SEM.CE (USM) 

and the glb had the largest bias in absolute values (ranging from 18.29% to 22.61%). 

However, SEM.CE had negative bias and the glb had positive bias.  

When item number was 12, the reliability coefficients all had quite small SEs 

ranging from 0.01 to 0.06, except SEM.CE (USM) (0.12) and SEM.CFCE (CSM) (0.12) 

under the condition of 50 observations. When sample size was 150 or more, SEM.CE 

and SEM.CFCE also fell into the range of 0.01 to 0.06. 

Under the conditions of 12 items, alpha, theta, SEM.tau (USM) and SEM.cong 

(USM) had small RMSEs ranging from 0.03 to 0.06; omega, theta.g and SEM.CF 

(USM) had moderate RMSEs ranging from 0.09 to 0.13; the glb and SEM.CE (USM) 

had comparatively large RMSEs ranging from 0.15 to 0.19. SEM.CFCE (CSM) had a 

moderate RMSE (0.12) when sample size was 50 and the smallest RMSE (no more than 

0.03) when sample size was 150 or more.  
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Table 9 

Percentage Bias, SE and RMSE of Reliability Estimates of the Data Generated from the 

Correlated Factor Model with Factor Correlation at 0.2 and Error Correlation at 0.2 

(Model 8)  

6-Item scale n=50 n=150 n=500 

EC=0.2; ρ=0.61 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha 6.16 0.07 0.08 3.97 0.05 0.06 5.43 0.02 0.04 

Glb 32.59 0.04 0.20 28.95 0.03 0.18 27.92 0.02 0.17 

Theta 9.05 0.05 0.07 5.84 0.04 0.05 5.56 0.03 0.05 

Theta.g 31.87 0.08 0.21 31.23 0.04 0.19 31.79 0.03 0.20 

Omega 31.66 0.06 0.20 28.26 0.06 0.18 29.43 0.03 0.18 

SEM.tau 5.69 0.08 0.09 4.62 0.05 0.06 5.57 0.02 0.04 

SEM.cong 0.80 0.20 0.20 -1.72 0.04 0.04 -2.82 0.02 0.03 

SEM.CE 5.75 0.85 0.85 -0.90 0.63 0.63 -21.70 0.23 0.27 

SEM.CF 24.36 0.06 0.16 22.51 0.03 0.14 21.85 0.02 0.13 

SEM.CFCE 55.26 1.50 1.54 48.75 0.77 0.83 50.46 0.90 0.95 

12-Item scale n=50 n=150 n=500 

EC=0.2; ρ=0.75 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha 1.95 0.05 0.06 3.39 0.03 0.05 3.24 0.02 0.04 

Glb 22.61 0.02 0.19 19.68 0.02 0.17 18.29 0.01 0.15 
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Theta 4.83 0.04 0.06 4.32 0.03 0.05 3.67 0.01 0.04 

Theta.g 13.45 0.04 0.12 14.76 0.03 0.13 14.04 0.02 0.12 

Omega 10.15 0.06 0.11 10.61 0.05 0.11 11.99 0.01 0.10 

SEM.tau 2.29 0.05 0.06 3.65 0.03 0.05 3.32 0.02 0.04 

SEM.cong -5.37 0.04 0.05 -3.43 0.03 0.04 -3.01 0.02 0.03 

SEM.CE -18.91 0.12 0.19 -18.85 0.06 0.15 -19.27 0.04 0.15 

SEM.CF 9.60 0.04 0.09 10.13 0.02 0.09 10.19 0.01 0.09 

SEM.CFCE 1.43 0.12 0.12 0.13 0.03 0.03 0.08 0.02 0.02 

6-Item Scale Model 9  

As the error correlation further increased to 0.5 in Model 9 (Table 10), all the 

coefficients had positive and sizable biases except SEM.CE (USM). SEM.CE (USM) 

had positive bias when sample size was no more than 150. In addition, SEM.CE had the 

least amount of bias (respectively 12.42%, 1.21%, -2.68%) in absolute values under 

condition of 6 items. The glb had the largest bias under all the conditions of 6 items. 

Omega and theta.g had smaller bias than the glb but much larger bias than the remaining 

coefficients (i.e., alpha, theta, SME.tau [USM] and SEM.cong [USM]). The remaining 

coefficients had similar large biases ranging from 32.51% to 35.58%.  

Under the conditions of 6 items in Model 9 (Table 10), the non-SEM estimates of 

reliability (i.e., alpha, the glb, theta, theta.g and omega), SEM.tau (USM), and SEM.CF 
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(USM) had small SEs (ranging from 0.01 to 0.08), whereas SEM.cong (USM), SEM.CE 

(USM) and SEM.CFCE (CSM) had large SEs (all above 0.30).  

The RMSEs of all the reliability coefficients in Model 9 (Table 10), except SEM.CE 

(USM) and SEM.CFCE (CSM), became larger than their corresponding values in Model 

8 (Table 9) as the error correlation increased from 0.2 to 0.5. Alpha, theta and SEM.tau 

had the smallest RMSE values under the conditions of 6 items. The glb, omega, theta.g 

and SEM.CF (USM) had large RMSEs, ranging from 0.32 to 0.47. SEM.CE (USM) had 

larger RMSEs than the glb, omega, theta.g and SEM.CF (USM), but smaller RMSEs 

than SEM.cong (USM). SEM.cong (USM) had the largest RMSE values (ranging from 

0.62 to 0.73). The RMSE of SEM.CFCE (CSM) changed rather differently from other 

reliability coefficients. When sample size was 50, SEM.CFCE (CSM) had very large 

RMSE (0.70); however, as sample size increased, its RMSE dropped dramatically (0.26 

for 500 observations).  

12-Item Scale Model 9 

When item number went up from 6 to 12, the bias in these coefficients, except 

SEM.CE (USM), all decreased dramatically, and SEM.CFCE (CSM) became the 

coefficient with the smallest bias values (respectively 0.63%, 0.38%, and 0.25%). 

SEM.CE (USM), on the other hand, had sizeable negative bias values (above 20%), the 

absolute values of which were slightly smaller than those of theta.g and SEM.CF 
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(USM). The glb had the largest bias under all the conditions of 6 items. The remaining 

coefficients (i.e., alpha, theta, SEM.tau [USM] and SEM.cong [USM]) had similar large 

biases ranging from 17.24% to 18.97% under the conditions of 12 items. 

When item number increased to 12, the SEs of SEM.cong (USM), SEM.CE (USM) 

and SEM.CFCE (CSM) dropped markedly, and the SEs of the other coefficients all 

decreased. All the coefficients, except SEM.CE, had their SEs in the range of 0.00 to 

0.08. Although SEM.CE had the largest SE values (respectively 0.15, 0.09 and 0.05), 

they were considerably smaller compared with its corresponding SE values under the 

conditions of 6 items. 

When item number was 12, SEM.CFCE (CSM) had the smallest RMSE values 

(respectively 0.07, 0.04 and 0.02). Omega, theta.g, SEM.CE (USM) and SEM.CF (USM) 

had larger RMSEs than alpha, theta, SEM.tau (USM) and SEM.cong (USM), but 

smaller RMSEs (ranging from 0.18 to 0.25) than the glb (0.37). The glb had the largest 

RMSEs under the conditions of 12 items.  

 

Table 10 

Percentage Bias, SE and RMSE of Reliability Estimates of the Data Generated from the 

Correlated Factor Model with Factor Correlation at 0.2 and Error Correlation at 0.5 

(Model 9)  

6-Item scale n=50 n=150 n=500 
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EC=0.5; 𝜌=0.53 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha 32.51 0.07 0.19 33.81 0.04 0.18 34.68 0.02 0.18 

Glb 75.23 0.02 0.40 75.74 0.01 0.40 75.43 0.01 0.40 

Theta 35.43 0.05 0.19 35.58 0.04 0.19 34.49 0.02 0.18 

Theta.g 67.53 0.08 0.37 67.57 0.05 0.36 68.02 0.03 0.36 

Omega 69.21 0.03 0.37 70.47 0.02 0.37 70.28 0.01 0.37 

SEM.tau 33.09 0.06 0.19 34.53 0.04 0.19 34.89 0.02 0.19 

SEM.cong 32.25 0.71 0.73 23.17 0.65 0.66 15.53 0.61 0.62 

SEM.CE 12.42 0.50 0.50 1.21 0.50 0.50 -2.68 0.37 0.37 

SEM.CF 67.08 0.07 0.36 62.45 0.02 0.33 61.17 0.01 0.32 

SEM.CFCE 52.15 0.64 0.70 40.83 0.45 0.50 20.62 0.26 0.28 

12-Item scale n=50 n=150 n=500 

EC=0.5; 𝜌=0.68 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha 17.24 0.04 0.15 17.01 0.04 0.15 18.12 0.01 0.15 

Glb 44.94 0.00 0.37 44.79 0.00 0.37 44.76 0.00 0.37 

Theta 18.97 0.03 0.16 18.38 0.03 0.16 18.46 0.01 0.16 

Theta.g 29.03 0.03 0.24 29.75 0.03 0.25 30.32 0.01 0.25 

Omega 27.72 0.04 0.23 27.90 0.04 0.23 29.49 0.01 0.24 

SEM.tau 17.71 0.04 0.15 17.81 0.02 0.15 18.19 0.01 0.15 

SEM.cong 20.85 0.08 0.19 18.13 0.02 0.15 18.09 0.01 0.15 
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SEM.CE -21.96 0.15 0.22 -21.16 0.09 0.18 -21.96 0.05 0.17 

SEM.CF 24.37 0.04 0.21 22.49 0.03 0.19 21.91 0.02 0.18 

SEM.CFCE 0.63 0.07 0.07 0.38 0.04 0.04 0.25 0.02 0.02 

 

Models 10 to 12 (Tables 11 to 13) resembled Models 7 to 9 (Tables 8 to 10) in every 

way except the factor correlation increased to 0.6 in Model 10 to 12. Therefore, the 

results presented in Tables 11 to 13 are not summarized in detail. The differences in the 

pairs of models (i.e., Model 7 and Model 10, Model 8 and Model 11, Model 9 and 

Model 12) are pointed out, in addition with a brief summary of the estimates of 

reliability with the largest or smallest bias, SE and RMSE.  

In Model 10 (Table 11), all the coefficients, except theta.g, had considerably smaller 

biases, SEs and RMSEs than their corresponding values in Model 7 (Table 8). Similar to 

Model 7, when item number was 6, SEM.CF (CSM) had the smallest bias (ranging from 

0.45% to 1.18%) and SEM.CFCE (OSM) had the largest bias (22.74%) when sample 

size was 50, but the bias of SEM.CFCE (OSM) was substantially smaller than the 

corresponding values in Model 7. When item number was 12, SEM.CFCE (OSM) had 

the smallest bias (ranging from -0.60% to -0.52%), which was smaller than SEM.CF 

(CSM) (ranging from -5.95% to -5.75%), whereas theta.g had the largest bias (ranging 

from 7.58% to 22.11%), which was different from the results in Model 7 where SEM.CE 

(USM) had the largest bias. In terms of the SEs of these coefficients, the glb had the 
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smallest SEs, whereas SEM.CFCE (OSM) had largest SEs under most of the conditions. 

When sample size was 500, all the coefficients had low SEs ranging from 0.01 to 0.05. 

As to the RMSEs of these coefficients, SEM.CF (CSM) had the smallest values under 

all the conditions, and other SEM estimates (except SEM.tau [USM]) had substantially 

larger RMSE values when both item number and sample size were small. 

 

Table 11 

 Percentage Bias, SE and RMSE of Reliability Estimates of the Data Generated from the 

Correlated Factor Model with Factor Correlation at 0.6 and Independent Errors (Model 

10)  

6-Item scale n=50 n=150 n=500 

EC=0; 𝜌=0.73 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha -8.18 0.08 0.10 -7.47 0.05 0.07 -5.44 0.02 0.04 

Glb 8.26 0.05 0.08 4.37 0.04 0.05 2.41 0.02 0.03 

Theta -5.26 0.06 0.07 -5.14 0.04 0.05 -4.78 0.02 0.04 

Theta.g 16.41 0.09 0.15 13.36 0.07 0.12 14.90 0.06 0.12 

Omega 9.10 0.05 0.08 6.86 0.04 0.06 5.82 0.03 0.05 

SEM.tau -7.18 0.08 0.10 -7.12 0.05 0.07 -5.30 0.02 0.04 

SEM.cong 3.88 0.37 0.37 -6.37 0.05 0.07 -4.95 0.02 0.04 

SEM.CE 0.95 0.50 0.50 -12.18 0.06 0.11 -13.11 0.03 0.10 
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SEM.CF 1.18 0.06 0.06 0.93 0.03 0.03 0.45 0.02 0.02 

SEM.CFCE 22.74 0.39 0.42 9.27 0.21 0.22 2.12 0.05 0.05 

12-Item scale n=50 n=150 n=500 

EC=0; 𝜌=0.85 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha -3.88 0.04 0.05 -2.79 0.02 0.02 -2.40 0.01 0.02 

Glb 8.87 0.02 0.08 5.42 0.01 0.05 3.11 0.01 0.03 

Theta -2.35 0.04 0.04 -2.35 0.02 0.02 -2.15 0.01 0.01 

Theta.g 22.11 0.06 0.19 10.53 0.04 0.10 7.58 0.01 0.07 

Omega 1.80 0.04 0.05 1.31 0.02 0.03 0.92 0.01 0.02 

SEM.tau -3.42 0.04 0.04 -2.62 0.02 0.02 -2.33 0.01 0.01 

SEM.cong -2.66 0.03 0.03 -2.34 0.02 0.02 -2.16 0.01 0.01 

SEM.CE -5.95 0.05 0.06 -5.88 0.03 0.05 -5.74 0.01 0.04 

SEM.CF -1.11 0.04 0.04 -0.69 0.02 0.02 -0.58 0.01 0.01 

SEM.CFCE -0.60 0.04 0.04 -0.58 0.02 0.02 -0.52 0.01 0.01 

 

In Model 11 (Table 12), alpha, theta.g, SEM.tau (USM) and SEM.cong (USM) had 

larger biases, whereas the remaining had smaller biases than their corresponding values in 

Model 8 (Table 9). All the coefficients had smaller than or equally low SEs as the 

corresponding value in Model 8. These coefficients, accordingly, had smaller RMSEs 

than those in Model 8 except for alpha, theta.g, and SEM.tau (USM). When item number 
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was 6, SEM.CE (USM) had the smallest, which was different from the results in Model 8 

where SEM.cong (USM) had the smallest bias. The coefficient with the largest bias was 

theta.g in Model 11, whereas it was the glb that had the largest bias in Model 8. When 

item number was 12, SEM.CFCE (CSM) produced the most accurate reliability estimate, 

which was consistent with the result in Model 8. However, in Model 11 theta.g was the 

least accurate reliability coefficient, which was different from the result in Model 8 where 

the glb was the least accurate reliability coefficient. In terms of the SEs of these 

coefficients, the glb had the smallest SE, whereas SEM.CFCE (OSM) had largest SEs 

under most of the conditions. When sample size was 500, all the coefficients had low 

SEs ranging from 0.01 to 0.05. As to the RMSEs of these coefficients, SEM.CFCE 

(CSM) had the largest RMSEs when sample size was no more than 150 and item 

number was 6, and theta.g had the largest RMSEs under the remaining conditions. 

However, SEM.CFCE (CSM) had the smallest RMSEs when item number was 

increased to 12 or sample size was increased to 500 while keeping item number at 6.  

 

Table 12 

Percentage Bias, SE and RMSE of Reliability Estimates of the Data Generated from the 

Correlated Factor Model with Factor Correlation at 0.6 and Error Correlation at 0.2 

(Model 11)  

6-Item scale n=50 n=150 n=500 
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EC=0.2; 𝜌=0.67 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha 8.54 0.06 0.08 8.30 0.03 0.06 9.12 0.02 0.06 

Glb 25.31 0.04 0.17 22.70 0.03 0.16 22.01 0.01 0.15 

Theta 8.91 0.05 0.08 9.01 0.03 0.07 9.28 0.02 0.07 

Theta.g 35.73 0.07 0.25 35.46 0.04 0.24 36.67 0.02 0.25 

Omega 25.69 0.04 0.18 24.18 0.02 0.16 23.48 0.02 0.16 

SEM.tau 9.36 0.06 0.09 8.63 0.03 0.07 9.27 0.02 0.07 

SEM.cong 10.99 0.05 0.09 9.34 0.03 0.07 9.60 0.02 0.07 

SEM.CE 2.94 0.40 0.40 -10.64 0.05 0.09 -11.52 0.02 0.08 

SEM.CF 18.21 0.05 0.13 17.78 0.03 0.12 17.48 0.01 0.12 

SEM.CFCE 30.18 0.79 0.82 10.73 0.23 0.24 2.04 0.05 0.05 

12-Item scale n=50 n=150 n=500 

EC=0.2; 𝜌=0.80 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha 3.68 0.04 0.05 4.85 0.02 0.05 4.71 0.01 0.05 

Glb 16.99 0.02 0.15 14.79 0.01 0.13 13.73 0.01 0.12 

Theta 4.68 0.04 0.06 5.14 0.02 0.05 5.03 0.01 0.05 

Theta.g 32.44 0.06 0.27 22.28 0.05 0.19 16.16 0.02 0.14 

Omega 9.75 0.03 0.09 9.54 0.02 0.09 9.14 0.01 0.08 

SEM.tau 4.11 0.04 0.06 5.01 0.02 0.05 4.79 0.01 0.05 

SEM.cong 4.80 0.03 0.06 5.29 0.02 0.05 4.94 0.01 0.05 



96 

SEM.CE -6.33 0.06 0.07 -5.36 0.03 0.05 -5.14 0.02 0.04 

SEM.CF 7.05 0.04 0.08 7.55 0.02 0.07 7.68 0.01 0.07 

SEM.CFCE -0.49 0.05 0.05 0.05 0.02 0.02 0.10 0.01 0.01 

 

In Model 12 (Table 13), all the coefficients, except theta.g, had considerably smaller 

biases, SEs and RMSEs than their corresponding values in Model 9 (Table 10). Similar to 

Model 9, when item number was 6, SEM. CE (USM) had the smallest bias and 

SEM.CFCE (CSM) had the largest bias when sample size was 50, but the bias of 

SEM.CFCE (CSM) was substantially smaller than the corresponding values in Model 9. 

When item number was 12, SEM.CFCE (OSM) had the smallest bias, whereas theta.g 

had the largest bias, which was different from the results in Model 9 where the glb had the 

largest bias. As to the SEs of these coefficients, the glb had the smallest SEs, whereas 

SEM.CFCE (OSM) had largest SEs under most of the conditions. When sample size 

was 500, all the coefficients had low SEs ranging from 0.01 to 0.03. With regard to the 

RMSEs of these coefficients, theta.g had the largest RMSEs under all the conditions; 

SEM.CE (USM) had the smallest RMSEs when item number was 6 and sample size was 

150 or less, and SEM.CFCE (CSM) had the smallest RMSEs under the remaining 

conditions. 
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Table 13 

Percentage Bias, SE and RMSE of Reliability Estimates of the Data Generated from the 

Correlated Factor Model with Factor Correlation at 0.6 and Error Correlation at 0.5 

(Model 12)  

6-Item scale n=50 n=150 n=500 

EC=0.5; 𝜌=0.60 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha 29.35 0.05 0.18 30.62 0.03 0.19 31.03 0.02 0.19 

Glb 58.00 0.02 0.35 58.45 0.01 0.35 58.25 0.00 0.35 

Theta 28.68 0.05 0.18 31.27 0.03 0.19 30.88 0.02 0.19 

Theta.g 68.30 0.10 0.42 63.68 0.04 0.38 63.55 0.02 0.38 

Omega 53.12 0.03 0.32 53.68 0.01 0.32 53.47 0.01 0.32 

SEM.tau 30.05 0.05 0.19 30.98 0.03 0.19 31.22 0.02 0.19 

SEM.cong 27.05 0.07 0.18 25.58 0.04 0.16 25.35 0.03 0.16 

SEM.CE 3.87 0.28 0.28 -6.73 0.08 0.09 -8.18 0.03 0.06 

SEM.CF 47.88 0.08 0.30 44.20 0.02 0.27 43.12 0.01 0.26 

SEM.CFCE 23.37 0.45 0.47 8.07 0.25 0.25 1.00 0.03 0.03 

12-Item scale n=50 n=150 n=500 

EC=0.5; 𝜌=0.74 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

Alpha 15.12 0.03 0.12 15.50 0.02 0.12 15.81 0.01 0.12 

Glb 33.65 0.00 0.26 33.54 0.00 0.26 33.53 0.00 0.26 



98 

Theta 15.16 0.03 0.12 15.74 0.02 0.13 16.07 0.01 0.13 

Theta.g 53.80 0.07 0.41 52.80 0.06 0.40 54.82 0.06 0.42 

Omega 22.46 0.03 0.18 22.51 0.01 0.17 22.42 0.01 0.17 

SEM.tau 15.51 0.03 0.13 15.65 0.02 0.12 15.88 0.01 0.13 

SEM.cong 14.89 0.03 0.12 15.30 0.02 0.12 15.72 0.01 0.12 

SEM.CE -5.78 0.11 0.12 -4.22 0.03 0.04 -4.01 0.02 0.03 

SEM.CF 17.16 0.03 0.14 16.41 0.03 0.13 16.42 0.01 0.13 

SEM.CFCE -0.36 0.06 0.06 0.04 0.03 0.03 0.12 0.02 0.02 

 

In summary, none of the reliability coefficients had the smallest bias under all the 

conditions in the correlated models. Under the correlated factor models and when the 

assumption of error independence held as in Models 7 and 10, SEM.CF generated the 

most accurate estimates of reliability except for the condition that the factor correlation 

was 0.2, item number was 6 and sample size was 50. Under that condition, theta.g and 

SEM.CE had the smallest bias. When there were correlated errors but error correlation 

was low (0.2) as in Models 8 and 11, SEM.cong had the smallest bias when factor 

correlation was 0.2 and item number was 6, and alpha had the smallest bias when factor 

correlation was 0.6 and item number was 6. When item number was 12, SEM.CFCE 

was the least biased. When there were correlated errors and error correlation was 

moderate (0.5) as in Models 9 and 12, SEM.CE had the smallest bias when item number 
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was 6. When item number was 12, SEM.CFCE had the smallest bias regardless of 

sample size.   

One obvious change in the correlated factor models, if compared with the previous 

models (i.e., the tau-equivalent models and congeneric models), was theta and theta.g 

had exactly opposite biases. In the previous models, theta and theta.g had very similar 

biases. However, in the correlated models, theta had the bias in negative values and 

theta.g had the bias in positive values; besides, the absolute values of theta’s bias 

increased and those of theta.g decreased as sample size went up.  

Under the correlated factor models and when the assumption of error independence 

held as in Models 7 and 10, all the SEM estimates of reliability, except SEM.tau and 

SEM.CF, had very large SEs, whereas the non-SEM estimates of reliability all had 

comparatively small SEs. As sample size or item number increased, the SEs of these 

reliability coefficients all decreased. As factor correlation increased from 0.2 in Model 7 

to 0.6 in Model 10, the SEs of all the reliability coefficients decreased. When error 

correlation was increased from 0 to 0.2 as in Models 8 and 11, all the reliability 

coefficients, except SEM.CFCE under the conditions of 6 items, had slightly smaller 

SEs. Under the conditions of 6 items, SEM.CFCE had increased SEs, especially when 

sample size was 150 or more. When low error correlation (0.2) as in Models 8 and 11 

was increased to moderate error correlation (0.5) as in Models 9 and 12, the SEs of 

non-SEM estimates and most SEM estimates of reliability decreased trivially. However, 
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the SE of SEM.CFCE decreased remarkably, whereas the SE of SEM.CE increased.  

Under the correlated factor models and when the assumption of error independence 

held as in Models 7 and 10, SEM.CF (CSM) generated the smallest RMSEs except for 

one condition that the factor correlation was 0.2, item number was 6, and sample size 

was 50. Under that condition, theta.g had the smallest RMSE. When there were low 

error correlation (0.2) as in Models 8 and 11, alpha had the smallest RMSEs when item 

number was 6. When item number was 12, SEM.CFCE (CSM) had the smallest RMSE 

except under the condition that sample size was 50 and factor correlation was 0.2. When 

error correlation was increased to 0.5 as in Models 9 and 12, alpha, theta and SEM.tau 

had very similar RMSEs when item number was 6. Although their RMSEs were smaller 

than the remaining coefficients, they were still considerably large (ranging from 0.18 to 

0.19). When item number was 12, SEM.CFCE (CSM) had the smallest RMSE values 

regardless of sample size. 

4.1.4 Percentage of Estimation Failure Number 

 Tables 14 to 18 present the rounded percentages of the numbers of estimation failure 

for each SEM reliability coefficient. Each estimation failure means that there was no 

convergence for parameter estimation and thus no reliability estimate was obtained from 

that replication of data. For SEM reliability coefficients of the unidimensional analysis 

model, that is, SEM.tau, SEM.cong and SEM.CE, the rounded percentages of estimation 

failure were reported across Models 1 to 12. As shown in Table 14, there was no 
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estimation failure for SEM.tau. For SEM.cong (see Table 15), there were serious 

estimation convergence problems in Model 9 when item number was 6. The percentage 

of failure numbers were 59%, 38% and 34% as sample size increased from 50 to 150 and 

to 500. Although increasing sample size could alleviate the estimation issues, there were 

still severe estimation problems under the conditions of small item numbers and 

complicated models. For SEM.CE, the estimation problem became even worse. There 

were serious estimation convergence problem in Models 7 to 9 when item number was 6. 

Also, the percentages of estimation failure increased from Model 7 to Model 9. The 

highest failure percentage, 61%, occurred in Model 9 when sample size was 50 and item 

number was 6, which was almost as twice as the failure percentage in Model 7 under the 

same condition. When item number was 12, the estimation problems decreased 

dramatically, and the worst case was 5% for SEM.CE in Model 9 when sample size was 

50.  

 The SEM reliability coefficients using the multidimensional analysis model, that is, 

SEM.CF and SEM.CFCE, differed greatly in their percentages of estimation failures. 

SEM.CF had no severe estimation problems under all the conditions. When sample size 

was 150 or more, there was almost zero convergence failure across 1000 replications. 

However, SEM.CFCE had severe estimation problems, especially in Models 7, 8 and 9 

when item number was 6. It had similar percentages of the estimation failure among 

Models 7, 8 and 9 although it used the correctly specified analysis model for data 
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generated from Models 8 and 9.  

 

Table 14 

The Rounded Percentage of Estimation Failures in SEM.tau Estimates of Reliability 

 6-Item scale 12-Item scale 

Model n=50 n=150 n=500 n=50 n=150 n=500 

1 (CSM)* 0 0 0 0 0 0 

2 (USM)* 0 0 0 0 0 0 

3 (USM) 0 0 0 0 0 0 

4 (USM) 0 0 0 0 0 0 

5 (USM) 0 0 0 0 0 0 

6 (USM) 0 0 0 0 0 0 

7 (USM) 0 0 0 0 0 0 

8 (USM) 0 0 0 0 0 0 

9 (USM) 0 0 0 0 0 0 

10 (USM) 0 0 0 0 0 0 

11 (USM) 0 0 0 0 0 0 

12 (USM) 0 0 0 0 0 0 

Note: (CSM)* means SEM.tau correctly specify the model, and (USM)* means SEM.tau 

underspecify the model. 
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Table 15 

The Rounded Percentage of Estimation Failures in SEM.cong Estimates of Reliability 

 6-Item scale 12-Item scale 

Model n=50 n=150 n=500 n=50 n=150 n=500 

1 (OSM)* 0 0 0 0 0 0 

2 (USM) 0 0 0 0 0 0 

3 (USM) 2 0 0 0 0 0 

4 (CSM) 0 0 0 0 0 0 

5 (USM) 0 0 0 0 0 0 

6 (USM) 0 0 0 0 0 0 

7 (USM) 2 0 0 0 0 0 

8 (USM) 3 0 0 0 0 0 

9 (USM) 59 38 34 4 0 0 

10 (USM) 0 0 0 0 0 0 

11 (USM) 0 0 0 0 0 0 

12 (USM) 11 9 1 1 0 0 

Note: (OSM)* means SEM.cong over-specify the model. 

 

Table 16  

The Rounded Percentage of Estimation Failures in SEM.CE Estimates of Reliability 
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 6-Item scale 12-Item scale 

Model n=50 n=150 n=500 n=50 n=150 n=500 

1 (OSM) 0 0 0 0 0 0 

2 (OSM) 1 0 0 0 0 0 

3 (OSM) 1 0 0 0 0 0 

4 (OSM) 1 0 0 0 0 0 

5 (CSM) 1 0 0 0 0 0 

6 (CSM) 3 0 0 0 0 0 

7 (OSM) 33 24 4 1 0 0 

8 (USM) 39 31 13 3 0 0 

9 (USM) 61 48 43 5 0 0 

10 (OSM) 6 0 0 0 0 0 

11 (USM) 9 0 0 1 0 0 

12 (USM) 17 2 0 1 0 0 

 

Table 17  

The Rounded Percentage of Estimation Failures in SEM.CF Estimates of Reliability 

 6-Item scale 12-Item scale 

Model n=50 n=150 n=500 n=50 n=150 n=500 

7 (CSM) 9 0 0 0 0 0 
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8 (USM) 5 0 0 0 0 0 

9 (USM) 7 1 0 5 0 0 

10 (CSM) 0 0 0 0 0 0 

11 (USM) 0 0 0 0 0 0 

12 (USM) 6 1 0 3 0 0 

 

Table 18  

The Rounded Percentage of Estimation Failures in SEM.CFCE Estimates of Reliability 

 6-Item scale 12-Item scale 

Model n=50 n=150 n=500 n=50 n=150 n=500 

7 (OSM) 59 43 16 1 0 0 

8 (CSM) 60 43 17 1 0 0 

9 (CSM) 60 48 13 6 0 0 

10 (OSM) 16 2 0 1 0 0 

11 (CSM) 19 3 0 0 0 0 

12 (CSM) 19 4 0 2 3 0 

4.2. Results in Stage Two  

As indicated in stage one results, when item number was 6, SEM.CE and 

SEM.CFCE had serious estimation problems in Models 7, 8 and 9, and SEM.cong had 
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serious estimation problems in Model 9. Even when there were no convergence problem 

and the parameters were estimated for some replications of data, the standard errors of 

these estimated SEM reliability coefficients were quite high, indicating that these 

estimates were not stable. The warning in Mplus 7 reported that the residual covariance 

matrix of the generated sample data is not positive definite, suggesting that the estimated 

parameters were neither reliable nor accurate. This finding was consistent with the large 

biases and standard errors in the three coefficients presented in Tables 8, 9 and 10. 

Therefore, Bayesian estimation was used in the second stage of this study, attempting to 

solve the estimation problems in the three coefficients when analyzing data generated 

from Models 7, 8 and 9.  

The biases, SEs and RMSEs of BSEM.cong, BSEM.CE and BSEM.CFCE for Model 

7 (the correlated factor model with factor correlation at 0.2 and independent errors), 

Model 8 (the correlated factor model with factor correlation at 0.2 and error correlation 

at 0.2), Model 9 (the correlated factor model with factor correlation at 0.2 and error 

correlation at 0.5) are presented in Tables 19 to 21. The results are summarized with the 

focus on the differences between ML SEM estimates of reliability and Bayesian SEM 

estimates of reliability regarding their respective biases, SEs and RMSEs. Since no 

estimation failures were detected when using the Bayesian estimation method, the 

rounded percentages of estimation failures were not reported for BSEM.cong, 

BSEM.CE and BSEM.CFCE. 
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Table 19 

Percentage Bias, SE and RMSE of Bayesian SEM Reliability of the Data Generated from 

the Correlated Factor Model with Factor Correlation at 0.2 and Independent Errors 

(Model 7)  

6-Item scale n=50     n=150    n=500 

EC=0; 𝜌=0.67 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

BSEM.cong -21.69 0.13 0.19 -20.48 0.08 0.16 -19.70 0.04 0.14 

BSEM.CE -48.73 0.16 0.36 -40.91 0.13 0.30 -34.36 0.06 0.24 

BSEM.CFCE -34.93 0.13 0.27 -21.81 0.11 0.18 -10.28 0.10 0.12 

 

Table 20 

Percentage Bias, SE and RMSE of Bayesian SEM Reliability Estimates of the Data 

Generated from the Correlated Factor Model with Factor Correlation at 0.2 and Error 

Correlation at 0.2 (Model 8)  

6-Item scale n=50     n=150    n=500 

EC=0.2; 𝜌=0.61 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

BSEM.cong -3.75 0.11 0.12 -1.56 0.06 0.06 -2.82 0.04 0.04 

BSEM.CE -45.80 0.15 0.32 -39.67 0.13 0.27 -34.44 0.06 0.22 

BSEM.CFCE -27.44 0.13 0.21 -15.18 0.10 0.14 -5.46 0.08 0.09 
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Table 21 

Percentage Bias, SE and RMSE of Bayesian SEM Reliability Estimates of the Data 

Generated from the Correlated Factor Model with Factor Correlation at 0.2 and Error 

Correlation at 0.5 (Model 9)  

6-Item scale n=50     n=150     n=500 

EC=0.5; 𝜌=0.53 Bias SE RMSE Bias SE RMSE Bias SE RMSE 

BSEM.cong 25.53 0.10 0.17 22.02 0.05 0.13 19.21 0.03 0.11 

BSEM.CE -37.87 0.16 0.25 -33.23 0.12 0.21 -29.94 0.08 0.18 

BSEM.CFCE -12.06 0.13 0.14 1.68 0.08 0.08 1.28 0.05 0.05 

 

As shown in Tables 19, 20 and 21, the Bayesian SEM estimates of reliability tended 

to be lower than the corresponding ML SEM estimates of reliability (see Tables 8, 9 and 

10). Comparing Table 19 and Table 8 (Model 7), BSEM.cong and SEM.cong both had 

negative biases, and BSEM.cong had bias larger than SEM.cong in absolute value. 

BSEM.CE had negative bias under all the conditions, but SEM.CE had positive bias 

when sample size was 50. When sample size was small, BSEM.CE had much lower 

estimates of reliability than SEM.CE. On the other hand, BSEM.CFCE had its bias totally 

different from the corresponding SEM.CFCE bias. SEM.CFCE had abnormally large 

positive bias, whereas BSEM.CFCE had negative bias that was sizeable in magnitude, 

especially when sample size was small. The SEs of Bayesian SEM estimates of 
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reliability were all smaller than the corresponding SEM estimates of reliability except 

for BSEM.cong under the conditions with 150 or more observations. The RMSEs of 

BSEM.cong and BSEM.CFCE were lower than the corresponding values of SEM.cong 

and SEM.CFCE, whereas the RMSEs of BSEM.CE were higher than the corresponding 

values of SEM.CE.  

When there were correlated errors as in Model 8 (see Tables 20 and Table 9), 

BSEM.cong had similar bias as SEM.cong, especially when sample size was large. 

BSEM.CE continued to have negative bias values that were much larger in magnitude 

than the corresponding SEM.CE regardless of sample sizes. BSEM.CFCE had negative 

bias comparatively smaller in magnitude (especially when sample size was large), 

which was different from SEM.CFCE under the same conditions in Model 8 where 

SEM.CFCE had large positive bias. The SEs and RMSEs of Bayesian SEM estimates of 

reliability were all smaller than the corresponding SEM estimates of reliability except 

for BSEM.cong under the conditions with 150 or more observations.  

As error correlation continued to increase as in Model 9 (see Table 21 and 9), 

BSEM.cong had relatively similar bias as SEM.cong, BSEM.CE had negative bias much 

larger in magnitude than the corresponding SEM.CE, and BSEM.CFCE had much 

smaller bias than SEM.CFCE under the same conditions. The SEs and RMSEs of 

Bayesian SEM estimates of reliability were all smaller than the corresponding SEM 

estimates of reliability under all the conditions in Table 21.  
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CHAPTER 5  DISCUSSION AND CONCLUSIONS 

Chapter 5 is organized in the order of the five approaches (i.e., internal consistency, 

lower bound, principle component analysis, exploratory factor analysis and structural 

equation modeling) from which the reliability coefficients in this study are derived. 

Accordingly, the reliability coefficients discussed below are (1) coefficient alpha, (2) the 

glb, (3) theta and theta.g, (4) omega, (5) SEM estimates of reliability and BSEM 

estimates of reliability. Then, conclusions are summarized to address the research 

questions raised in Section 2.4 in Chapter 2. Finally, limitations are pointed out and 

suggestions for future directions are provided. 

5.1 Discussion on the Studied Reliability Coefficients 

 In this section, the findings of the reliability coefficients studied in my dissertation 

are discussed, with a focus on the consistencies and contradictions between the findings 

in this study and previous studies. The unique findings in this study are emphasized and 

the possible reasons for these findings are discussed.  

5.1.1 Coefficient alpha 

Coefficient alpha is the most intensively studied reliability coefficient and often used 

as a reference coefficient when researchers are studying and examining a new reliability 

coefficient. In this study, the findings related to coefficient alpha are consistent with those 

in previous studies. First, alpha is negatively biased when the assumption of (essential) 
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tau-equivalence is violated. The degree of the violation of (essential) tau-equivalence is 

associated with the degree of internal consistency. Specifically, when the assumption of 

essential tau-equivalence is seriously violated, the internal consistency of a test 

component tends to be low (see Tang, Cui, & Babenko, 2014). The coefficients based on 

the internal consistency approach then have a negative bias and are frequently quoted as 

the lower bounds to reliability (see the literature review for the difference between 

internal consistency approach and the lower bound approach). Second, when the 

assumption of independent measurement errors is violated while the assumption of 

(essential) tau equivalence holds, coefficient alpha has positive bias. Zimmerman et al. 

(1993) examined variability of coefficient alpha under violation of the two assumptions 

and found that alpha underestimated reliability under violation of the assumption of 

(essential) tau equivalence and overestimated reliability under violation of the 

assumption of uncorrelated. 

Komaroff (1996, 1997) studied the interactive effects of simultaneous violations of 

the two assumptions by simulated true and error scores with known properties. As 

essential tau -equivalence is violated, alpha decreases. However, as the spread and 

magnitude of correlations among error scores is increased from zero, the reduction in 

alpha is attenuated to the point that alpha equals or overestimates the classical reliability 

coefficient. Coefficient alpha did not differentiate between the two sources of observed 

inter-item covariances. This finding is also confirmed in my study. Particularly, Models 
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5, 6, 8, 9, 11 and 12 were designed to study the effects of violating the two assumptions 

simultaneously.  

The results in my study further indicate that violating the assumption of the 

uncorrelated measurement error affects the bias in coefficient alpha more than violating 

the assumption of (essential) tau-equivalence. For example, if comparing Model 7 (the 

(essential) tau equivalence assumption being violated), Model 8 (both assumptions being 

violated with error correlation of 0.2) and Model 9 (both assumptions being violated with 

error correlation of 0.5), the bias in alpha changed dramatically from negative 11.68% in 

model 7 to positive 3.76% in Model 8 and then to positive 17.23% in model 9 when item 

number was 6 and sample size was 50. The possible reason for these results may lie in 

the manipulation of error correlation and factor loadings in this study. The factor 

loadings were set with the average at 0.6, whereas error correlation was set with two 

levels (0.2 and 0.6). If the average of factor loadings was set at 0.3, violating (essential) 

tau-equivalent might affect more of the bias in coefficient alpha.  

5.1.2 Glb 

The glb is the theoretically optimal lower bound to reliability from a mathematical 

perspective. However, its bias was substantially larger than coefficient alpha’s bias under 

most of the conditions in this study. Besides, its sample values overestimated true 

reliability under all the conditions in this study. Although the glb is lacking practical 

meaning due to its large positive sample bias (especially under the conditions of small 
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sample sizes), it has some attractive theoretical properties.  

First, its asymptotic property indicates that it is the most accurate and stable reliability 

coefficient when sample size goes to infinity. Thus, the glb is the greatest lower bound to 

reliability theoretically (Jackson & Agunwamba, 1977; Sijtsma, 2009; Ten Berge & 

Sočan, 2004; Woodhouse & Jackson, 1977). However, the glb had large sample bias in 

this simulation study, which confirmed the findings in Shapiro and Ten Berge (2000)’s 

study. When the assumption of error independence held as in Models 1, 4, 7 and 10, the 

magnitude of the bias of the glb was remarkably larger than that of alpha as in Model 

1(tau equivalent model) and Model 4 (congeneric model). In Model 7 (the correlated 

factor model with low factor correlation), the glb had much smaller bias in magnitude 

than alpha, especially when sample size was 150 or more. As the factor correlation 

increased to 0.6 as in Model 10, the glb had similar bias as alpha except that the signs of 

their bias were different: the glb had positive bias while alpha had negative bias. When 

the assumption of error independence was violated, the glb was also seriously affected. 

The bias in the glb increased dramatically as error correlation increased when keeping 

other conditions the same.   

Second, the violation of (essential) tau equivalence assumption or unidimensional 

assumption has little effect on the glb sample estimates of reliability (Sijtsma, 2009). 

When purely examining the effect of (essential) tau equivalence assumption without the 

interference of the assumption of error independence, we can compare the glb’s bias in 
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Models 1, 4, 7 and 10. The results suggested that the glb had slightly smaller bias as the 

tau equivalent model was changed into the congeneric model. As the unidimensional 

model was transformed into multidimensional model, the bias in the glb increased 

trivially. As the factor correlation increased from Model 7 to Model 10, the bias in the glb 

decreased slightly to the level as in the unidimensional models. When (essential) tau 

equivalence and error independence assumptions were both violated in Models 5, 6, 8, 9, 

11 and 12, the bias in the glb increased remarkably due to the correlated errors. 

This study examined, for the first time, the effect of violating the error independence 

assumption on the bias of the glb. Like the other non-SEM estimates of reliability (i.e., 

coefficient alpha, theta, theta.g and omega), the bias in the glb continued to increase as 

the error correlation increased from 0 to 0.2 and then to 0.5 when keeping other 

conditions the same. When the assumption of error independence held, the bias in the glb 

increased slightly as item number increased from 6 to 12. However, when there were 

correlated errors in the measurement models, the bias in the glb decreased substantially as 

item number increased. 

5.1.3 Theta and Theta.g 

Theta and theta.g are derived from the principal components analysis approach. One 

advantage of using theta and theta.g is that they are easy to calculate. The information 

needed for calculating these two coefficients is the eigenvalues of the variance covariance 

matrix and the determined number of factors. Theoretically, theta is an unbiased 
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estimator of true reliability when the assumption of unidimensionality holds (Armor, 

1974) and theta.g is an unbiased estimator of true reliability when factors are orthogonal 

and items are parallel on each factor (Şimşek & Noyan, 2013). Şimşek and Noyan (2013) 

studied the performance of theta.g under the conditions that the assumptions of 

orthogonal dimensions and parallel items on each factor were violated. They found that 

theta.g outperformed alpha when factors had negative correlation or when factors had 

positive but small or moderate correlations. However, the robustness of theta and theta.g 

has not yet been studied under the conditions that assumptions of (essential) tau 

equivalence and error independence are both violated. 

In this study, it was found that when both assumptions held as in Model 1, theta and 

theta.g had slightly smaller bias than alpha and they all had their percentage bias below 

0.5% under all the conditions in Model 1. When tau-equivalence assumption held and 

error independence assumption was violated as in Models 2 and 3, theta and theta.g had 

slightly larger bias than alpha when measurement errors were correlated. Theta and 

theta.g had the same bias when the (essential) tau equivalence assumption held, except 

under the condition of small item number (e.g., 6) and sample size (e.g., 50). However, 

the difference between theta and theta.g under that condition was trivial, which was 

probably due to the inaccurate estimation of factor number under the condition of small 

item number and sample size.  

When simply violating the assumption of (essential) tau-equivalence as in Model 4, 
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theta and theta.g still had their percentage bias below 0.5% under all the conditions. 

When the assumptions of (essential) tau-equivalence and error independence were 

violated simultaneously, theta and theta.g had slightly larger bias than alpha as they did 

under the conditions that only the assumption of error independence was violated in 

Models 2 and 3. The findings suggest that if a test or subscale is unidimensional, the 

violation of (essential) tau equivalence barely has effect on theta and theta.g estimates of 

reliability. 

When models became multidimensional, theta and theta.g had exactly opposite 

biases under the conditions in the correlated factor model. Theta had bias in negative 

values while theta.g had bias in positive values. In addition, the absolute values of theta’s 

bias increased regardless of item number; however, as sample size went up, the bias of 

theta.g increased when item number was 6 and decreased when item number was 12. The 

bias in theta is caused by underestimating the number of factors and the bias in theta.g is 

mainly caused by factor correlation (Şimşek & Noyan, 2013). As factor correlation 

increased from 0.2 in Model 7 to 0.6 in model 10, the bias in theta.g increased 

substantially, but the bias in theta became smaller since the higher the factor correlation 

was, the closer it was to a unidimensional model. Still, violating the assumption of error 

independence added more positive bias in theta and theta.g.  

5.1.4 Omega 

Reliability can be estimated under the exploratory factor analytic framework 
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(McDonald, 1978) using coefficient ω. Revelle and Zinbarg (2009) compared 13 

reliability coefficients by using nine data sets. They found that omega had slightly larger 

sample bias than the glb under all the conditions where 1) measurement error correlation 

was 0 or low; 2) item number was small and 3) factor correlation was high or the model is 

unidimensional. 

In this study, it was found that omega performed similarly as the glb when item 

number was small (i.e., 6 in this study): its sample values overestimated the true 

reliability under all the conditions. However, the two coefficients still differed in two 

aspects: (1) the bias of omega decreased more slowly than that of the glb as sample size 

increased; (2) omega had slightly larger sample bias than the glb except when there was 

measurement error correlation, especially when error correlation was high. The findings 

suggested the rate of the bias increasing in omega was smaller than that in the glb as 

error correlation increased, although the increase of error correlation surged the bias of 

omega. When item number increased from 6 to 12, the bias in omega decreased 

remarkably. When the assumption of independent errors held, the bias in omega went 

down by around 70% in the tau equivalent model and congeneric model, by around 100% 

in correlated factor model with factor correlation of 0.2, and by around 90% in the 

correlated factor model with factor correlation of 0.6. When the assumption of 

independent errors was violated and error correlation started to increase, the decreasing 

rate of the bias in omega became smaller as item number went up.  
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Although omega was better estimate of reliability than the glb when item number 

became larger, it was not the most accurate reliability estimator under most of the 

conditions. Thus, as the glb, it has less value for practical application.  

5.1.5 SEM Estimates of Reliability Using ML and Bayesian Estimation 

To be consistent with Yang and Green’s (2010) study, the SEM estimates of 

reliability using ML was named SEM estimates of reliability. The results of SEM 

estimates in this study were slightly inconsistent with Yang and Green’s study. Yang and 

Green found that the correctly specified SEM estimates of reliability were more accurate 

than the misspecified SEM estimates of reliability. However, this finding was only 

confirmed under the unidimensional models when the assumptions of (essential) tau 

equivalence and error independence were both violated. When the two assumptions both 

held, SEM.cong and SEM.CE, as the SEM estimates of reliability using over-specified 

analysis models, were all quite accurate. When sample size was 50, they had even less 

bias than SEM.tau. When sample size was large (150 or more), the advantage of model 

data fit could be seen.  

When the assumption of unidimensionality was violated, that is, under the correlated 

factor models in this study, the results were complicated and not completely inconsistent 

with Yang and Green (2010)’s findings. When there were no correlated errors in the 

correlated factor models, SEM.CF, the SEM coefficient using correctly specified analysis 

model, generated the most accurate estimate of reliability regardless of sample size or 
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item number. When there were correlated errors, SEM.CFCE, the SEM coefficient using 

correctly specified analysis model, generated the most accurate estimate of reliability 

under the conditions of 12 items, but SEM.CFCE did not demonstrate its accuracy when 

item number was 6. On the contrary, under the conditions of 6 items, SEM.CFCE was the 

least accurate estimate of reliability when error correlation was low. This was caused by 

the estimation problems in complex models with small item number. Therefore, when 

item number was small and measurement model was complicated, the correctly specified 

SEM estimates of reliability were not necessarily the most accurate due to estimation 

issues.  

This inconsistency between this study and Yang and Green (2010)’s study are 

probably caused by the following reasons. 1) The different multidimensional models 

were used in generating data. In Yang and Green’s study, bifactor models were used for 

generating multidimensional data, whereas correlated factor models were used for 

generating multidimensional data in this study. Bifactor models assume there is a 

dominant general factor on which each item has a substantial loading. In that sense, 

bifactor models bear more resemblance to unidimensional models. In contrast, correlated 

factor models may have rather different factors with low correlations with each other. 2) 

The different softwares were used in data simulation and SEM analysis. Yang and 

Green’s simulation study was conducted in SAS environment and this study was in R 

environment. Thus the results may have some minute differences in rounding and 
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sampling.  

BSEM approach to reliability estimation resembles SEM estimates of reliability 

except that they have different estimation methods. The SEM estimates of reliability 

using Bayesian estimation were simply named BSEM estimates of reliability in this 

section. The BSEM estimates of reliability in this study tended to be lower than the 

corresponding estimates using ML. Thus, if the SEM estimates of reliability using ML 

were higher than the true reliability, the BSEM estimates of reliability could reduce the 

positive bias. However, if the SEM estimates of reliability using ML were lower than the 

true reliability, the BSEM estimates of reliability would enlarger the magnitude of the 

negative bias. Therefore, using the Bayesian estimation method adopted in this study 

would not necessarily increase the accuracy of the corresponding reliability estimates. 

Nevertheless, the Bayesian estimation method used in this study solved estimation 

problems in SEM estimates of reliability. In addition, the correctly specified BSEM 

estimates of reliability (i.e., BSEM.CFCE in Models 8 and 9) were quite accurate when 

sample size was large. 

Although the Bayesian estimation method used in this study did not eradicate the 

bias in SEM estimates of reliability under the conditions where estimation problems 

occurred, it reduced the standard errors of these SEM reliability coefficients to a great 

extent. The small standard errors suggested that there were no or fewer estimation 

problems when using BSEM estimates of reliability, which were confirmed by the 
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results in stage two. Bayesian estimation was, for the first time, used in reliability 

estimation, and thus the findings in this study were of unique meaning.  

 

5.2 Summary of Answers to Research Questions 

Question 1: Which reliability coefficient generates the best estimate of reliability 

considering the manipulated conditions?  

In order to select the best estimate of reliability, RMSE was screened first given that 

it combined the information of accuracy and stability, that is, only the coefficients that 

were both accurate and stable could have a small RMSE value. If two or more 

coefficients had similar RMSEs, their biases were further examined to determine the 

best performing reliability coefficient. 

Under the conditions that both (essential) tau equivalence and error independence 

assumptions held as in Model 1, all the coefficients had small RMSEs ranging from 

0.01 to 0.08. Thus, the biases of these coefficients were further examined. In fact, except 

the glb and omega, all the coefficients had trivial biases around or below 1%. All SEM 

estimates of reliability performed similarly as coefficient alpha, theta, and theta.g even if 

the analysis model was not correctly specified (e.g., SEM.cong and SEM.CE). When 

there were correlated errors as in Models 2 and 3, SEM.CE (CSM) consistently had the 

smallest RMSEs regardless of sample size or item number and hence the best estimate 

of reliability.  
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Under the conditions that both congeneric models and error independence held as in 

Model 4, SEM.cong (CSM) and SEM.tau (USM), yielded the same smallest RMSEs 

under all the conditions. However, SEM.tau was slightly less accurate than SEM.cong, 

and thus SEM.cong (CSM) was the best estimate of reliability under the conditions in 

the congeneric model with independent errors. When there were correlated errors as in 

Models 5 and 6, SEM.CE (CSM) had the smallest RMSEs under all the conditions 

except that when sample size was small (i.e., 50). Under the conditions of 50 

observations, SEM.CE was not as stable as other coefficients although it was the least 

biased. Given that its RMSE was slightly larger than other coefficients’ RMSEs but its 

bias was much smaller than others’ biases, SEM.CE (CSM) was still regarded as the 

best estimate of reliability.  

Under the correlated factor models and when the assumption of error independence 

held as in Models 7 and 10, SEM.CF (CSM) generated the smallest RMSEs and the 

most accurate estimates of reliability except for one condition that the factor correlation 

was 0.2, item number was 6 and sample size was 50. Under that condition, SEM.CF 

was not as stable as other coefficients and less accurate than theta.g and SEM.CE, and 

theta.g had the smallest RMSE. When there were correlated errors but error correlation 

was low (0.2) as in Models 8 and 11, alpha had the smallest RMSEs when item number 

was 6. When item number was 12, SEM.CFCE (CSM) had slightly larger RMSEs 

occasionally but it was the least biased. Thus, alpha was the best estimate of reliability 
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when item number was 6 and SEM.CFCE was the best estimate of reliability when item 

number was 12 for the correlated factor models with low error correlation. When error 

correlation was moderate (0.5) as in Models 9 and 12, alpha, theta and SEM.tau all had 

very similar RMSEs and biases when item number was 6. Although their RMSEs were 

smallest, their estimates of reliability were far from accurate, especially under the 

conditions that factor correlation was low (0.2) as in Model 9. Under those conditions, 

the Bayesian estimation method provided much more accurate estimates of reliability 

when the analysis model was correctly specified. When item number was 12, 

SEM.CFCE (CSM) had the smallest RMSEs and was least biased regardless of sample 

size.   

In short, correctly specified SEM estimates of reliability performed better than other 

coefficients unless estimation issues occurred. When estimation problems exist, 

Bayesian estimation can be used to obtain a comparatively more accurate and stable 

estimate of reliability when the analysis model is correctly specified.  

 

Question 2: When the assumption of unidimensionality is violated, will unidimensional 

SEM estimates of reliability approximate the correctly specified SEM estimates of 

reliability? 

When the assumption of unidimensionality was violated as in the correlated factor 

models, the results of the unidimensional SEM estimates of reliability (i.e., SEM.tau, 
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SEM.cong and SEM.CE) were very different from those of the correctly specified SEM 

estimates of reliability. In Models 7 and 10 where errors were independent, SEM.CF 

(CSM) had much smaller bias than SEM.tau, SEM.cong and SEM.CE except under the 

condition that item number was 6 and sample size was 50. Under that condition, 

SEM.CE had the least bias. However, SEM.CE and SEM.cong were much less stable 

than SEM.CF although SEM.tau was slightly more stable than SEM.CF when sample 

size was small. When sample size was large, these coefficients were all stable unless 

estimation problems occurred as in SEM.CE.  

For data generated from the model with both low factor correlation and error 

correlation (Model 8), SEM.tau, SEM.cong and SEM.CE were all less biased than 

SEM.CFCE (CSM) when item number was 6. Under the conditions of 6 items, 

SEM.cong demonstrated highest accuracy; its stability was also better than SEM.CE and 

SEM.CF, although no better than SEM.tau when sample size was 50. When item 

number was 12, SEM.tau, SEM.cong and SEM.CE were more biased than SEM.CFCE 

regardless of sample size.  

For data generated from the model with moderate factor correlation and low 

correlated errors (Model 11), SEM.tau, SEM.cong and SEM.CE were less biased than 

SEM.CFCE (CSM) only under the conditions when item number was 6 and sample size 

was 150 or less. Under those conditions, SEM.CE demonstrated highest accuracy, but it 

was not very stable when sample size was 50. When item number was 12, SEM.tau, 
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SEM.cong and SEM.CE were more biased than SEM.CFCE regardless of sample size.  

 For data generated from the model with low factor correlation and moderate error 

correlation (Model 9), SEM.tau, SEM.cong and SEM.CE were all less biased than 

SEM.CFCE (CSM) when item number was 6. Under the conditions of 6 items, SEM.CE 

demonstrated the highest accuracy. However, SEM.CE and SEM.cong were not nearly 

as stable as SEM.tau. When item number was 12, SEM.tau, SEM.cong and SEM.CE 

were still more biased than SEM.CFCE regardless of sample size.  

For data generated from the model with both moderate factor correlation and error 

correlation (Model 12), SEM.CFCE (CSM) had smaller bias than SEM.tau, SEM.cong 

and SEM.CE except under the condition that item number was 6 and sample size was 

150 or less. Under those conditions, SEM.CE had the least bias. However, the stability 

of SEM.CE was not as good as those of SEM.tau and SEM.cong, although it was better 

than that of SEM.CFCE.  

In short, the unidimensional SEM estimates of reliability performed very differently 

from the correctly specified SEM estimate of reliability under the violation of 

unidimensionality, and none of the unidimensional SEM estimates of reliability could 

stand out with both satisfying accuracy and stability.  

 

Question 3: If the analysis model is an over-specified model, will its estimates of 

reliability approximate those using the correctly specified analysis model? 
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Using an over-specified model as the analysis model could not generate estimates of 

reliability that were exactly the same as the correctly specified SEM estimates of 

reliability. However, the estimates of reliability by an over-specified model turned out to 

be very close to the correctly specified SEM estimates of reliability and even had less 

bias under some particular conditions unless estimation problems occurred.  

Under the conditions of unidimensional models with independent errors, the analysis 

model for SEM.CE was an over-specified model for the data generated in Models 1 and 4. 

Its estimates of reliability were very close to SEM.tau (CSM) in Model 1(tau-equivalent 

model with independent errors) and SEM.cong (CSM) in Model 4 (congeneric model 

with independent errors). When sample size was 50 and item number was 12, it even had 

less bias than SEM.tau in Model 1 and SEM.cong in Model 4. Besides, the over-specified 

SEM estimates of reliability were as stable as the correctly specified SEM estimates of 

reliability. 

For multidimensional models with independent errors (Models 7 and 10), 

SEM.CFCE was the SEM reliability coefficient using an over-specified analysis model. 

It had the estimates of reliability similar as those of SEM.CF (CSM) when item number 

was 12. However, it had estimation problems when item number was 6 and hence was 

seriously biased and instable.  

In short, if there were no estimation problems, the over-specified SEM estimates of 

reliability could be used as alternatives to the correctly specified SEM estimates of 
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reliability. 

 

Question 4: Can Bayesian estimation with non-informative priors overcome estimation 

problems in SEM estimates of reliability using ML? If yes, will the estimates of reliability 

using Bayesian estimation with non-informative priors be more accurate and stable than 

those using ML?  

The Bayesian estimation method used in this study (i.e., Bayesian estimation with 

non-informative priors) could overcome estimation problems in SEM estimates of 

reliability. In fact, no estimation problems were identified when using Bayesian 

estimation for the analysis conducted in the second stage of this study. However, BSEM 

estimates of reliability performed very differently from the corresponding SEM 

estimates of reliability using ML estimation.  

If the analysis model was correctly specified, ML yielded the best SEM estimates of 

reliability unless estimation problems occurred. When estimation problems occurred, 

using Bayesian estimation with non-informative priors could reduce the bias in SEM 

estimates of reliability. However, the degree of the reduction in bias was different from 

one model to another. For Model 8 (the correlated factor model with low factor 

correlation and error correlation), BSEM.CFCE (CSM) had a satisfactory bias and 

standard error only when sample size was 500. For Model 9 (the correlated factor model 

with low factor correlation and moderate error correlation), BSEM.CFCE (CSM) had 
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very small bias and moderate standard error when sample size was 150 or more. 

For the misspecified SEM estimates of reliability, if the misspecified SEM 

reliability coefficient had very accurate estimates of reliability (e.g., SEM.cong in 

Model 8 under conditions of 6 items), using the Bayesian estimation method would 

neither improve nor worsen the accuracy of its estimates of reliability, especially when 

sample size was large. If the misspecified SEM reliability had inaccurate estimates of 

reliability (e.g., SEM.CE in Models 7, 8, and 9), the Bayesian estimation method in fact 

worsen the accuracy of SEM estimates of reliability instead of improving it.  

5.3 Limitations and Suggestions for Future Research  

As discussed afore, choosing different generation models or analysis models may 

result in different findings in SEM estimates of reliability. Thus, it is necessary to point 

out the differences in model design and the conditions under which new results are 

inconsistent with those in previous studies. In this study, not all the measurement models 

used in previous studies were replicated. If time and other conditions allow, it would be 

helpful to replicate previous studies and then compare the results with this study so that 

more convincing conclusions can be drawn.  

Furthermore, future research can focus on solving the estimation problems as well as 

maintaining the accuracy of SEM estimates of reliability. The correctly specified SEM 

estimates of reliability did perform the best if parameters can be properly estimated. This 

study only identified the method for solving the estimation problems (i.e., using the 
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Bayesian estimation method) but could not maintain the absolute accuracy of SEM 

estimates of reliability. More types of priors (e.g., informative priors and weak 

informative priors) need to be tried and compared when using Bayesian estimation in 

future study in order to maintain the accuracy of SEM estimates of reliability as well as 

solving the estimation problems. 

Last, more types of data (e.g., binary or categorical data) could be examined to see 

whether the same conclusions can be obtained. In this study, only continuous data was 

considered because in this way the results could be generalized to large psychological 

measures (e.g., Manual for the Adaptive Learning Scales) with various scales and 

subscales. That is, items in this study could be generalized to test parts at different levels 

(e.g., scales or subscales or some composite score of several items). Many published 

psychological measures transform raw scores into standardized scores like z or t scores. 

That is, in practice, continuous data like z or t scores are normally used for conducting 

psychometric analysis on these scales. However, it is still meaningful to compare the 

results in this study with the corresponding results for categorical data and examine 

whether the same conclusions can be obtained. 
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