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Abstract

Automated sports commentary is a form of automated narrative and human-computer in-

teraction. Sports commentary exists to keep the viewer informed and entertained. One way

to entertain the viewer is by telling brief stories relevant to the game in progress. We intro-

duce a system called the Sports Commentary Recommendation System (SCoReS) that can

automatically suggest stories for commentators to tell during games. Through several user

studies, we compared commentary using SCoReS to three other types of commentary and

showed that SCoReS adds significantly to the broadcast across several enjoyment metrics.

We also collected interview data from professional sports commentators who positively

evaluated a demonstration of the system. We conclude that SCoReS can be a useful broad-

cast tool, effective at selecting stories that add to the enjoyment and watchability of sports.

SCoReS is a step toward automating sports commentary, and thus automating narrative.
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Chapter 1

Introduction

Sports broadcasting is a billion-dollar industry. Most professional sports are broadcast to

the public on television, reaching millions of homes. The television experience differs in

many ways from the live viewing experience, most significantly through its commentary.

Much research has been done into the importance of commentary during sports broad-

casting. When watching a game on television, “. . . the words of the commentator are of-

ten given most attention” [Duncan and Hasbrook, 1988]. The commentary has the effect

of drawing the attention of the viewer to the parts of the picture that merit closer at-

tention [Kennedy and Hills, 2009], an effect called italicizing [Altman, 1986]. Commen-

tary can also set a mood during a broadcast. A commentator who creates a hostile at-

mosphere during a broadcast often makes the viewing experience more enjoyable for the

viewer [Bryant et al., 1982]. The descriptions given in a broadcast are so useful that fans

often bring radios to live games in order to listen to the interpretations of the commenta-

tors [Michener, 1976]. Also, some sporting venues now support a handheld video device

that provides the spectator with in-game commentary [Ross, 2012].

The purpose of commentators is to help the viewer follow the game and to add to its

entertainment value. One way to add entertainment to a broadcast is to tell interesting, rele-

vant stories from the sport’s past. The sport of baseball is particularly suited to storytelling.

Baseball is one of the oldest professional sports in North America, existing since 1876.

This longevity provides a rich history from which to draw interesting stories. Dick Enberg,

a sports commentator of various sports for over 50 years once claimed of baseball, “It’s a

great broadcaster sport. It’s the best broadcaster sport!”. The more popular commentators

are known as “storytellers” [Smith, 1995], as they augment the games they call by adding

stories that connect baseball’s past to its present. One of these “storytellers”, Vin Scully,

has been commentating for Brooklyn/Los Angeles Dodgers games since 1950 and has been
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voted the “most memorable personality in the history of the franchise”.

A typical baseball game lasts about three hours, but contains only ten minutes of action,

where the ball is live and something is happening on the playing field. This leaves two hours

and 50 minutes of time where little is happening on the playing field, and it is the job of the

commentators to entertain the viewer. This downtime is a good time to tell stories [Ryan,

1993]. Baseball is also known for being a statistically dense league, and being able to match

statistics from the current game state to a past situation in baseball adds to the commentators

ability to entertain the viewer.

To illustrate, consider the case where one baseball team is trailing by four runs in the

ninth inning. As this is not a particularly interesting situation, it may be a good time for a

story. An appropriate story might be that of the Los Angeles Dodgers, who on September

18, 2006, were also trailing by four runs in the bottom of the ninth inning. The Dodgers hit

four consecutive home runs to tie the game. The broadcast team could tell this story to the

viewer, because the situations are similar. Thus, what is needed is a mapping from a game

state (a particular point in a game) to an appropriate story.

Sports storytelling is a form of narrative discourse. Narrative discourse is a creative

activity that involves relaying to an audience a series of events in an interesting and enter-

taining manner. It is a recounting of contingent events from the past with one or more main

characters. Automating narrative discourse is a challenging problem for Artificial Intelli-

gence (AI) and a subject of much recent research [Young, 2007]. This thesis explores the

following hypothesis:

Sports colour commentary via storytelling can be automated using Artificial

Intelligence and Information Retrieval methods.

Specifically, we set out to test whether an AI approach can be developed that maps game

states to relevant stories, thereby significantly increasing audiences’ enjoyment of the

broadcast. To test this hypothesis, we develop an AI system that tells stories in the context

of baseball. To do so, the Sports Commentary Recommendation System (SCoReS) learns

offline to connect sports stories to game states, provided with some scored examples of

story-game state pairs. This learned mapping is then used during baseball games to suggest

relevant stories to a (human) broadcast team or, in the absence of a broadcast team (e.g., in

a sports video game), to autonomously output a relevant story to the audience. In the case

of suggesting stories to commentators, SCoReS is an example of human-computer inter-

action [Dix et al., 1993], as it is a computer system designed to communicate to humans

2



information that will improve their performance.

This thesis makes the following contributions to the field of AI. First, we formal-

ize story-based sports commentary as a mathematical problem. Second, we use machine-

learning methods and information retrieval techniques to solve the problem. This solution

for the specific domain of sports story selection, but is also general enough to be used in

other domains involving story selection. Third, we implement the approach in the domain

of baseball, evaluate the resulting AI system by observing feedback from human partici-

pants and show that it is effective in performing two separate tasks: i) automating sports

commentary, and thus automating narrative in a special case, and ii) assisting human com-

mentators. That is, we show that our combination of information retrieval techniques is able

to map previously unseen baseball game states to stories in a sufficiently effective manner

to improve the enjoyability of baseball broadcasts, increase interest in watching baseball

and suggest stories to professional commentators that they would tell during a live game.

The rest of the thesis is organized as follows. We next describe colour commentary in

detail, and formulate the problem of mapping sports game states to interesting stories. This

is followed by a review of research related to story-based commentary. Next, we describe

information retrieval techniques in detail and describe our approach to mapping game states

to stories – a combination of information retrieval techniques designed to rank stories based

on a given game state, and then ensure the higher-ranked stories are indeed relevant to said

game state. Following this, we describe empirical work performed to choose a story ranker,

and then use this ranker to select stories for baseball broadcasts. The quality of the story

mapping is evaluated with user studies and demonstrations to professional sports commen-

tators. We conclude with a discussion of lessons learned, future research and applications,

and a summary of the contributions of this thesis.

3



Chapter 2

Problem Formulation

Commentating in sports generally involves two people – a play-by-play commentator and

a colour commentator. Play-by-play commentating involves relaying to the audience what

is actually happening in the field of play. Beyond reporting the actions of the players as

they happen, the play-by-play commentator typically mentions such facts as the score of

the game, upcoming batters and statistics for the teams and players involved in the game.

Colour commentary, on the other hand, is much more subjective and broad, with the purpose

being to add entertainment (i.e, “colour”) to the broadcast. This can be done in several ways,

as we describe below.

After a play is over, colour commentators tend to analyze what has happened beyond

the surface. For instance, if a player swings awkwardly at a pitch and misses, the colour

commentator may point out that the reason for the hitch in his swing is that he has an ankle

injury, and is unable to plant his foot when swinging. This gives the viewer some extra

information beyond what he or she can see, or is told by the play-by-play commentator.

Another manner in which the colour commentator adds to a broadcast is by giving back-

ground information on the players involved in the game. While the play-by-play commen-

tator can provide a player’s statistics, the colour commentator tends to add more personal

information about a player, including possible interactions with that player.

Passing on their expertise in the sport at hand is one more way colour commentators add

to the broadcast. An example of the expertise of a colour commentator could be seen in the

July 23rd, 2011 game between the New York Yankees and Oakland Athletics. Paul O’Neill,

a former Major League Baseball (MLB) player, who played for the Yankees among other

teams, was the colour commentator for this game for the Yankees Entertainment and Sports

(YES) network. From the broadcast booth, he was able to pick up on a pattern of pitches

from the pitcher for the Athletics, Rich Harden. He noted that Harden almost never threw
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two fastballs in a row (an oddity for a major league pitcher), but that he would often throw

consecutive change-ups, a deceptively slow pitch that appears to the batter as a fastball,

often causing him to swing too early. After O’Neill pointed out this pattern, it was evident

to the viewer that he was correct. As pitch speeds are displayed on YES, one can verify

fairly quickly whether a pitch was a fastball or not.

Another rich aspect of colour commentary is storytelling, which is our focus. Effective

storytelling in sports broadcasts involves telling a story that is interesting to the audience,

and that is related to what is actually happening in the game being broadcast. While play-

by-play commentators are generally trained journalists, colour commentators are typically

former professional athletes or coaches. As former members of the league being shown,

they are thought to bring a level of expertise to the broadcast. Because they actually played

or coached in the league, colour commentators tend to tell stories from their own expe-

riences in the game. This gives the audience a first-hand account of snippets of baseball

history, which can be quite entertaining. Unfortunately, colour commentators do not have

first-hand knowledge of most of baseball history. They can draw upon their background

knowledge of the game to tell more stories, but they are limited in their memory as are all

humans. Their knowledge of stories, however vast for human beings, is still limited relative

to the total set of baseball stories available. This is where AI can be of assistance. Comput-

ers can both store many more stories than a human brain as well as quickly compute the

quality of a match between each story in the library and the game state at hand.

The problem we are attacking in this thesis is to tell interesting stories as live commen-

tary to a sports game. To compare stories to game states, we extract features from both,

such as the score, the teams involved and what type of action is happening (i.e., a home

run). Formally, the game state is a vector of n numeric features: ~g = (g1, g2, . . . gn). To

illustrate: binary feature g1 may be 1 if in game state ~g there is a runner on first base. In-

teger feature g2 can be the current inning. Similarly, a baseball story can be described with

a vector of p numeric features: ~s = (s1, s2, . . . sp). Binary feature s1 can be 1 if the story

involves a runner on first base and integer feature s2 can be the inning number mentioned in

the story. The task is then to map ~g to a relevant and interesting ~s. Figure 2.1 demonstrates

the problem. The game state is extracted from what is happening on the field and made

available to the AI system. The story database is also provided to the system. Based on the

game state, the AI system selects a relevant, interesting story, and relates it to the viewer.

We next review related work in automated commentary and storytelling, before using

the above-described framework to tackle the problem of mapping game states to stories.
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Colour Commentator

     : 8,2, ..., 5
     : 5,4, ..., 3

...

      : 7,9, ..., 9

matchup feature valued between 0 and 1. It indicates how well the story and game

state match in terms of a strong hitter and a strong pitcher being involved. It is

calculated by combining features providing several statistics for the current batter

and pitcher in �g with a story category feature in �s.

The similarity vector �c indicates how related �g and �s are, but does not pro-

vide a scalar value. We now need to map �c to D(�g,�s) — the 5-point-scale qual-

ity of the match between �g and �s. We use machine learning techniques to create

such a mapping from training data T. To build this training data set, we take a

set of m game states vectors G = {�g1, . . . ,�gm} and form a set of m · q similar-

ity vectors �c for all �gi ∈ G and all q stories vectors from our story vector library

S = {�s1,�s2, . . . ,�sp}. We then label each similarity vector with the ground-truth

value of the quality of match between the corresponding game state and the story.

Mathematically: T = {(�c, D(�g,�s)) | �g ∈ G,�s ∈ S, �c is the similarity vector for �s

and �g }. For simplicity’s sake in the rest of the thesis, we refer to S as the story li-

brary rather than the story vector library and G as the game state library, rather than

the game state vector library. Also, as game states and stories are the equivalent of

queries and documents in this work, we will use the former terms in this section.

�s1 �s2 �sp �s16 �s8 �s13

4.3 Listwise Scoring Metrics

IR algorithms are generally divided into three groups – pointwise, pairwise and

listwise [Liu et al., 2008]. Pointwise algorithms are regression and classification

algorithms, with mean-squared error typically used as an error function. Pairwise

algorithms perform an incomplete ordering on the data. Listwise algorithms make
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Story 35:  
"Someone asked Birdie 

Tebbetts how often Bob Feller 
struck him out and ..." 

Figure 2.1: An AI colour commentator selects interesting stories for the viewer.
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Chapter 3

Related Work

In this chapter, we review existing research relevant to the problem we are solving. Related

work in automated and human storytelling is presented in Section 3.1, while automated

play-by-play commentary, with some added colour commentary is presented in Section 3.2.

None of the existing work delivers story-based colour commentary to a live sports game.

Following this, we review research related to our solution to the problem, in the field of

information retrieval (Section 3.3).

3.1 Automated and Human Storytelling

Narrative generation explicitly attempts to automate storytelling by having computers cre-

ate a story with entertaining plot and characters. The ability to generate effective narra-

tive is important in different applications, such as entertainment, training and education

[Riedl, 2004], and this area has been studied for over twenty years [Hammond et al., 1990].

Story generation is generally divided into three categories – character-centric (where sim-

ulated characters determine the story), author-centric (where an author’s thought process is

modeled) and story-centric (where the structural properties of stories themselves are mod-

eled) [Bailey, 2009]. As narratives are a sequence of events describing how a story world

changes over time, some techniques model story generation as a planning task [Riedl, 2004].

More recently, Analogy-based Story Generation has received attention. This approach gen-

erates new stories from existing stories. SAM (Story Analogies through Mapping) [On-

tanon and Zhu, 2011] completes a partial story by transferring knowledge from a source

story. SAM breaks stories into phases and generates an injective mapping from the phases

of the source story to the phases of the partial story. SAM then finds analogous mappings

between the two stories, based on similarities between the computer understandable de-

scriptions of the source story and the target story. In sports commentating, the stories told
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are true. Narrative generation approaches create fictional stories and are thus inapplicable

to our problem.

There has been much work on automated storytelling in non-sports video

games [Roberts and Isbell, 2008]. Some systems generate or adapt a story due to actions

taken by the player, creating a so-called interactive drama. PaSSAGE (Player-Specific Sto-

ries via Automatically Generated Events) [Thue et al., 2007] is a system that models the

current user and adapts the story within the game to suit the system’s model of the user.

Values for five character attributes are assigned to the player, and then updated on the ba-

sis of the player’s actions within the game. Automated Story Director (ASD) [Riedl et al.,

2008] is an experience manager that accepts two inputs: an exemplar narrative that encodes

all the desired experiences for the player and domain theory encoding the rules of the en-

vironment. As the player can influence the narrative, ASD adapts the examplar narrative

to ensure coherence of the story and a feeling of agency for the player. These adaptations

are pre-planned based on the domain theory. Systems such as PaSSAGE and ASD actively

change the course of the game based on user actions. As a commentary system cannot al-

ter what happens in a live sports game (real or video game), these systems are not directly

applicable to our problem.

Human commentators try to weave a narrative with a coherent plot through unpre-

dictable sports games [Ryan, 1993]. Plot is a difficult narrative dimension for the broadcast

team, as they do not know what the end result of the game will be until it concludes. They

can, however, attempt to predict an ongoing theme based on what has happened so far, and

begin to build up a plot that fits with the predicted ending. This brings into play differ-

ent themes that the broadcaster can choose to follow, and he or she can follow more than

one at a time (hedging his or her bets, so to speak). In the broad scheme of narratives, the

range of themes spans all of human experience. In baseball, these themes are much more

limited, and they include: the Incredible Come-From-Behind Victory, the Fatal Error, the

Heroic Feat, the Lucky Break Victory, the Unlikely Hero, the Inevitable Collapse, Over-

coming Bad Luck, Persistence That Pays Off, Last Chance, Futility, Wasted Opportunity

and Opportunism [Ryan, 1993].

In similar work, Bryant [Bryant et al., 1977] identifies 15 themes, which he labels as mo-

tifs: Spirit, Competition, Human Interest, Urgency, Pity, Miracle, Gamesmanship, Compar-

ison, Performance Competence, Physical Competence, Old-College-Try, External Forces,

History, Personnel and Glory. The work by both Ryan and Bryant involves human sto-

rytelling, not automated storytelling, so it is not applicable to our problem of automated
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commentary. Also, the themes they present require more information than can easily be

expressed by the set of numerical features used in our approach.

3.2 Automated Commentating in Sports

StatSheet [Allen, 2012] and Narrative Science [Frankel, 2012] automatically write previews

for sports games that have not yet happened, and summaries about sports games that have

already happened. For summaries, they are provided with statistics from a completed game

and compose a narrative about the game, with the goal being to provide an interesting

summary of game events. For previews, they are provided with statistics from past games,

and compose a preview for the game that should entice the reader to watch said game.

Neither Statsheet nor Narrative Science operate with live game data and both are unable to

solve our problem of providing live stories during a game. They may, however, provide an

additional potential database of stories about past games to augment our current system.

Modern commercial sports video games typically employ professional broadcast teams

from television to provide commentary for the action in the game. This involves pre-

recording large amounts of voice data that will be reusable for many different games. As

an example, a clip to the effect of “Now that was a big out!” could be recorded and used in

multiple situations where one team was in dire need of retiring a batter or runner. Recorded

clips often use pronouns (i.e, “he” and “they”) so that they are not specific to any particular

player or team. This makes the commentary generic, which reduces the amount of record-

ing required, as recording voice data can be time consuming and expensive. Unfortunately,

generic commentary is less exciting to the audience. We would like our AI system to deliver

colourful commentary tailored to the current game by mapping the current game state to a

story chosen specifically for said game state.

The MLB: The Show [SCE San Diego Studio, 2009] suite of games is often considered

to be at the leading edge of baseball video games. Recorded clips of Matt Vasgersian of the

MLB network act as the play-by-play commentary while Dave Campbell of ESPN’s Base-

ball Tonight is the colour commentator. Most of the colour commentary involves analysis of

what has happened on the field and indirect suggestions to the player as to how to improve

their play. As far as we have seen, there is no storytelling in these games, which is what our

system is designed to add to sports commentary.

In MLB 2K7, another leading baseball video game, Jon Miller and Joe Morgan of

ESPN: Sunday Night Baseball provide the play-by-play and colour commentary, respec-
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tively. There is at least one instance of relating a game state to a story from baseball’s past,

occurring when a third strike is dropped by the catcher and he has to throw to first base to

record the out. Here, Miller reminds us of a 1941 World Series game where Mickey Owens

committed an error on a similar play, changing the course of the series. Figure 3.1 shows a

screenshot of MLB 2K7 and the Miller story below. There appear to be a very limited num-

ber of stories told in the game, however, and a single story is used repeatedly. Repetition

takes the entertainment value out of the story as video game players do not wish to hear

the same story multiple times. Once more stories are added to the story library, the problem

of mapping game states to relevant stories becomes apparent. This is the problem we are

studying in this thesis.

"A dropped third strike a few moments ago.  You know the 1941 World Series 
turned on a similar play, when Mickey Owens dropped a called third strike 

leading to a Yankees victory over the Dodgers, and catapulting the Yankees 
to another world title"

Figure 3.1: An example of storytelling in MLB2K7.

Robot World-Cup Soccer (RoboCup) is a research testbed involving robots playing soc-

cer [Kitano et al., 1997]. There is also a RoboCup simulation league, where the games are

not physically played, but are simulated on a computer. Both the physical and simulation

leagues provide researchers with a standard common testbed in which to evaluate their AI

strategies for various goals. Previous academic work in automated commentary has focused
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primarily on automated play-by-play commentary. Byrne, Rocco and MIKE [Andre et al.,

2000a] are three systems that produce automated play-by-play commentary for RoboCup

simulator league games. The three systems obtain their data from the Soccer Server [Ki-

tano et al., 1997], which summarizes the gameplay’s main features – the player locations

and orientations, the ball location and the score of the game. Each system generates natural

language templates, filling in player and team names where appropriate, then uses text-to-

speech software to verbalize the derived commentary. Dynamic Engaging Intelligent Re-

porter Agent (DEIRA) is a similar system to Byrne, Rocco, and MIKE, as it performs the

same task, but in the sport of horse racing.

Rocco, MIKE, Byrne and DEIRA are designed to provide accurate play-by-play com-

mentary for RoboCup soccer and horse racing, and accomplish exactly that. There are some

attempts within these systems to provide colour commentary, but none go as far as to try

to incorporate storytelling. That is, these systems tackle a problem different from what our

work tackles – they automate factual commentary with some bias added, but do not imple-

ment colour commentary via stories. Our system could be used in conjunction with each

of these automated play-by-play systems to create fully automated commentary, featuring

both play-by-play and colour.

Rocco (RoboCupCommentator) is template-based, so that when an event is to be com-

municated to the audience, the appropriate template is filled with the proper names of teams

and players and then output. An example of this would be a template “ BLANK shoots and

scores! BLANK now has the lead!” being filled with the player name “Smith” and the team

name “New York” to become ”Smith shoots and scores! New York now has the lead!”.

Available time, bias and report style are factors considered when choosing a template to

output. Repetition is avoided by storing a history of previously uttered sentences. This also

avoids repeating a player’s name too often, where a pronoun could be used instead (i.e.,

“he” instead of “Smith”). Rocco keeps a queue of possible outputs, along with a saliency

value for each of these. As a possible output grows in age, its saliency shrinks, because it

becomes less and less relevant. If the system deems it has nothing of interest in its queue

(i.e, all the saliency values are below the output threshold), background information (such

as the names of the teams involved in the game) is delivered to the user instead.

Rocco 2 [Andre et al., 2000b] replicates Rocco, but also involves two simulated specta-

tors as commentators, who are fans of one of the teams involved. This adds some biases to

the commentators, as they use language that expresses emotion towards the teams involved.

When the team for which the spectators are cheering performs well, they describe the ac-
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tion in a positive manner, whereas if the opposition does well, they report the action in a

negative manner. Thus, there is some colour in Rocco 2, but it is along the lines of creating a

“hostile” environment, as in [Bryant et al., 1982]. The template-based architecture of both

Rocco and Rocco 2 is designed for play-by-play commentary, so colour commentary within

these systems would likely need to come from an outside source, such as our system.

Byrne is similar to Rocco, but also includes a human face that changes its expression

based on built-in biases and what is happening on the simulated field. Where Byrne differs

from Rocco is in its addition of emotion to the comments (similar to Rocco 2). The human

face has static characteristics such as a nationality and liking or disliking particular teams.

These characteristics are part of the emotion-generation module used in Byrne to determine

what emotions to attach to a given output. Each emotion contains a type (i.e., “sad”), a

score (an intensity value for the emotion), a decay function (the emotion diminishes with

time), a cause (what happened to cause the emotion) and a target (which is optional –

where the emotion is directed). Similarly, (DEIRA) [Knoppel et al., 2008] involves a virtual

agent providing play-by-play commentary with emotion for virtual horse races. The agent

in DEIRA’s expression and tone change according to what is happening on the field of play

(or racetrack). Byrne and DEIRA are designed to add emotion to play-by-play commentary,

but not to produce colour commentary. While not done now, the human face in Byrne could

be used in conjunction with SCoReS to add colour commentary to Byrne, giving it stories

told with emotion.

MIKE (Multiagent Interactions Knowledgeably Explained) makes use of six Soccer

Analyzer Modules that perform different operations on the available data, communicate with

each other, and make suggestions to the proposition pool, which leads to natural language

output. There are three lower-level modules – basic, shoot and technique and three higher-

level modules – bigram, Voronoi, and statistic.

The bigram module models ball movement as a Markov chain, using a 24 × 24 tran-

sition matrix that follows ball play, as there are 22 players (11 versus 11) and two goals.

The matrix allows for analysis of pass success rates, number of shots and other statistics

related to ball movement. As its name would lead one to believe, the Voronoi module cal-

culates Voronoi diagrams for each team. This determines the defensive coverage and other

positioning information, so that it can be remarked upon by MIKE.

There are six types of remarks used in MIKE: Explanation of Complex Events (higher-

level changes in action), Evaluation of Team Plays (criticism of positioning and ball move-

ment as it pertains to a team as a whole), Suggestions for Improving Play (advice for how to
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help improve play), Predictions (what the system thinks will happen), Set Pieces (plays from

dead ball situations such as throw-ins) and Passwork (criticism of ball movement). Com-

mentary from MIKE can involve one or more of these types. Some of these (most notably

“Evaluation of Team Plays”) are more colour commentary than play-by-play commentary,

but are not in any way storytelling. The statistics gathered by MIKE’s six modules could be

used to suggest stories, however, giving our system a richer set of game state features.

Within its live online game summaries, Major League Baseball uses a system called

SCOUT [Kory, 2012] that provides textual analysis of the current game. The viewer is

shown information such as the type of pitches thrown during an at-bat and the tendencies

of the batter with respect to the pitcher. While SCOUT provides some colour, it is mostly a

statistical summary and currently does not tell stories. Our system could extend SCOUT by

adding stories to MLB online game summaries.

Rhodes [Rhodes et al., 2010] describes a system that follows Freytag’s pyramid [Frey-

tag and MacEwan, 1908] and adds dramatic commentary to sports. His system stores val-

ues for the different Bryant motifs [Bryant et al., 1977], and a vocabulary for each that

changes as their level of intensity increases. Each theme has a set of actions that can occur

in the game that either increase its intensity (Freytag’s rising action) or decrease its inten-

sity (Freytag’s falling action). One theme within the system is “Urgency”, with some level

1 phrases being “looking shaky” and “fortune not on their side”, and level 3 phrases being

“doomed” and “beyond salvation”. Lexicalised Tree-Adjoining Grammar is used to gener-

ate comments on the fly. While drama is added to the commentary with this program, it is an

augmentation to play-by-play commentary moreso than an addition of colour commentary.

Our system could further augment the dramatic commentary by adding story selection.

3.3 Information Retrieval Methods

As we will describe in Chapter 4, we frame the problem of automated story selection in

sports commentary as an information retrieval (IR) problem. Information retrieval involves

finding material (documents) that satisfies an information need [Manning et al., 2008]. In

the context of this work, an IR problem involves a user submitting a query in order obtain

a set of documents relevant to the query. Each query-document pair is typically assigned a

match quality on a discrete scale from 0 to 4 as shown in Table 3.1. Information retrieval

algorithms attempt to sort documents according to their match quality for a query. This is

called the ranking problem. IR algorithms are typically divided into three groups – point-
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Match Quality Appropriateness
4 Perfect
3 Very Good
2 Good
1 Poor
0 Completely Inappropriate

Table 3.1: The meaning of match quality values, in terms of how appropriate the given story
is for the given game state.

wise, pairwise and listwise. In this section, we discuss each of these strategies in detail,

citing relevant examples.

3.3.1 Pointwise Algorithms

Pointwise algorithms approximate the ranking problem as a classification or regression

problem. These algorithms thus attempt to minimize classification and regression error,

with each query-document pair’s match quality being equally important in evaluation. In

their most basic form, a classification or regression algorithm is used to estimate each query-

document match quality and documents are ranked according to these estimate match qual-

ities for each query. Decision trees, decision stumps, artificial neural networks and naı̈ve

Bayes classifiers are some examples of classification and regression techniques that can

solve the ranking problem in this fashion [Mitchell, 1997].

McRank [Li et al., 2007] is a pointwise algorithm that casts the ranking problem as a

multiple classification (hence ’Mc’) and multiple ordinal classification problem. Multiple

ordinal classification takes advantage of the fact that there is an ordering in IR class labels

(i.e., a match quality of 3 is better than a match quality of 2, see Table 3.1). Thus, McRank

calculates the probability that a given query-document pair is greater than a given threshold

in order to sort documents for a query. A gradient boosting tree algorithm is used to learn

class probabilities for each query-document pair, and these class probabilities are converted

to ranking scores using their expected relevance. Normalized Discounted Cumulative Gain

(NDCG), a common IR evaluation metric described in Section 4.5, is upper-bounded with

the muitlple-class classification error.

As pointwise algorithms use classification and regression error in learning a ranking

function, they are solving the “wrong” problem (and often a harder problem), since they

are later evaluated with a different metric – an IR metric. IR metrics tend to focus on the

top of a ranked list (since users typically care more about the top-ranked documents than
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documents further down the list) and pointwise algorithms treat all documents as equally

important, no matter where they place in a ranked list.

3.3.2 Pairwise Algorithms

Like pointwise algorithms, pairwise algorithms reduce the ranking problem to a classifi-

cation problem. Instead of minimizing the error on each query-document pair, however,

pairwise algorithms learn a binary classifier to estimate which of a pair of documents is

better for a query. The goal of pairwise algorithms is to minimize the number of inversions

necessary in the current ranking of documents for a query.

RankNet [Burges et al., 2005] is a pairwise algorithm that uses an artificial neural net-

work to minimize a cross-entropy loss function. This loss function is a function of the

difference between the system’s output for each member of a pair of documents for a given

query. The authors claim that casting ranking as an ordinal regression problem solves an

unnecessarily hard problem, highlighting the fact that users typically only care about the

relative position of a document in the ranked list for a query, not the (arbitrarily valued)

estimated match quality of the query-document pair. RankNet’s evaluation is carried out on

single documents, outputting a relevance score for each document with respect to unseen

queries. Fidelity Rank (FRank) [Tsai et al., 2007] is similar to RankNet, but uses fidelity as

a loss function instead of cross-entropy loss. This is because while cross-entropy is convex

it is not bounded, whereas fidelity is bounded between 0 and 1 (but not convex).

RankBoost [Yoav Freund and Singer, 2003] is a boosting pairwise algorithm based

on AdaBoost [Freund and Schapire, 1995] that combines various user rankings into one

ranking, with the goal to produce a linear ordering of the set of documents by combining

ranking features. Ranking features are a set of given linear orderings. SSRankBoost [Amini

et al., 2008] is an implementation of RankBoost using partially labeled data for bipartite

ranking. MPBoost [Esuli et al., 2006] preserves the magnitude of match qualities with the

thinking that an algorithm should focus on documents that are far apart in match quality for

a given query.

Both pairwise algorithms and pointwise algorithms make use of loss functions that are

only somewhat related to the IR metrics they will be tested on. They focus their learning on

query-document pair match qualities, which leads to a lack of focus on the top of a ranked

list. For most applications, including ours, the match quality of the top-ranked documents

is much more important than the match quality of documents further down the ranked list.
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3.3.3 Listwise Algorithms

Listwise algorithms rank documents for queries by directly optimizing IR scoring metrics,

and thus operating directly on a ranked list of documents instead of query-document pairs.

Optimizing IR scoring metrics is difficult because they are neither smooth nor differentiable

(making gradient descent difficult, for example). As such, additional steps must be taken to

incorporate them into IR algorithms.

SVM-MAP uses support vector machines to optimize a relaxed version of Mean Av-

erage Precision (MAP), an IR metric described in Section 4.3.2. Support vector machines

have been used in pairwise algorithms (Ranking SVM [Herbrich et al., 2000]), and SVM-

MAP has been shown to outperform these algorithms. SoftRank [Taylor et al., 2008] ap-

proximates the evaluation measure, allowing it to be both smooth and differentiable. It

avoids the sorting problem by treating scores as random variables, operating in a four step

process. First, a score distribution is calculated, and then it is mapped to a rank distribu-

tion. SoftRank then approximates NDCG (Section 4.5) with an expected smoothed NDCG

called SoftNDCG. Since SoftNDCG is smooth and differentiable, SoftRank then uses gradi-

ent descent to optimize it. In AdaRank [Xu and Li, 2007], IR metrics are embedded directly

into an existing method (AdaBoost [Freund and Schapire, 1995]). AdaRank is described in

detail in Section 4.4.1.

LambdaRank [Burges et al., 2006] builds on RankNet, using artificial neural networks

for ranking, but instead of minimizing cross-entropy loss, LambdaRank computes its gradi-

ents after the documents have been sorted by their match qualities with respect to a query,

which allows it to optimize IR metrics directly. LambdaMART [Burges, 2010] is a boosted

version of LambdaRank, combining LambdaRank with MART. MART [Friedman, 1999] is

a boosted tree model, outputting a linear combination of regression trees. In LambdaMART,

MART is used to model derivatives, while LambdaRank specifies derivatives during train-

ing. LambdaMART and LambdaRank can also be combined to form an IR algorithm, as we

will discuss in the next section.

While listwise algorithms directly (or approximately) optimize IR metrics by operating

on ranked lists instead of query-document pairs and are often shown to outperform point-

wise and pairwise algorithms, they often do not output a match quality for the documents in

the ranked list. In some applications (such as ours), this match quality is an important bit of

information, necessary to decide the output of the system. Thus, it is sometimes necessary

to combine listwise algorithms with pointwise or pairwise algorthms, as we discuss next.
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3.3.4 Hybrid Methods

In order to utilize the advantages of listwise algorithms (operation on ranked lists) and

pointwise algorithms (estimating match qualities for query-document pairs), several hybrid

IR algorithms have been developed. IntervalRank [Moon et al., 2010] uses isotonic regres-

sion with an implicitly defined loss function. This loss function is primarily listwise, but

uses pairwise constraints and an optional penalty for incorrect pointwise scores (incorrect

query-document match qualities). Boltzrank [Volkovs and Zemel, 1999] also makes use of

pairwise information within a listwise approach. A conditional probability distribution over

a ranked list of documents for a query is created in order to permit gradient ascent to be

used in the evaluation metric. These probabilities take the form of a Boltzmann distribu-

tion (hence, “Boltzrank”) based on an energy function that depends on both pointwise and

pairwise potentials.

A linear combination of ranking models has been used to construct a ranking algo-

rithm [Burges et al., 2011], combining twelve ranking models in a linear fashion – eight

bootstrap aggregating LambdaMART boosted tree models, two LambdaRank artificial neu-

ral networks and two MART models using logical regression cost (pointwise). This IR

algorithm combination won the 2011 Yahoo! Learning to Rank Challenge, demonstrating

the effectiveness of hybrid IR methods.
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Chapter 4

Proposed Approach

In this chapter, we present an AI approach to solving the problem of delivering story-based

colour commentary to a live baseball game. We start by framing the problem as an infor-

mation retrieval problem (Section 4.1). We then describe the machine-learning techniques

we used (Sections 4.2 – 4.4) and finally combine these techniques in Section 4.5.

4.1 Information Retrieval Framework

We approach the problem of automated story selection in sports as an information retrieval

problem. In the context of sports, the game state for which we are seeking an appropriate

story is treated as the query, while the candidate stories returned by the system are the

documents. Our system’s goal then, is given a game state, to return to the user a ranked

list of stories, based on how appropriate they are for the game state. We assume that the

game state is available live, such as is the case for Major League Baseball [Live XML game

summaries, 2011]. We also assume that a database of stories has previously been collected.

Thus, the problem is to retrieve stories most appropriate for game states during live

sports broadcasts. Once a story database has been obtained, a system must learn to match the

stories to game states. The broader the story database, the more likely an appropriate story

can be found that matches any given game state. As “being interesting” is an informal and

subjective measure, we evaluate the quality of the mapping by incorporating the selected

stories into a simulated broadcast and test the enjoyment of viewers and the interest of

professional commentators.

The match quality D(~g,~s) between a game state ~g = (g1, g2, . . . gn) and story ~s =

(s1, s2, . . . sp) is an integer on the 5-point scale from 0 for a completely inappropriate match

to 4 for a perfect match (as seen in Table 3.1). Thus, the problem is given a game state ~g, to

retrieve a story ~s of the highest match quality D(~g,~s).
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4.2 Training Data

We solve this problem by using IR techniques and machine learning. Rather than feed the

game state and story features to IR algorithms, we made the connection between corre-

sponding features more explicit. A similarity vector ~c was computed for a game state speci-

fied by feature vector ~g and a story specified by feature vector ~s. Each component of vector

~c is the result of comparing one or more features of ~g to one or more relevant features of

~s. To compare binary features we use the logical connectives. For instance, if we want to

match the runner on first base features, then we take a biconditional over the correspond-

ing features: c = g ↔ s = 1 ↔ 1 = 1. Figure 4.1 shows corresponding features of ~g

and ~s being compared to set the value of c. For non-binary features we use feature-specific

functions. For instance, if we compare the current inning number g and the inning number

involved in a story s, then the similarity feature c is calculated as (8− |g − s|)/8, where

values closer to 1 indicate a closer pairing of inning features. Another example is the mar-

quee matchup feature valued between 0 and 1. It indicates how well the story and game

state match in terms of a strong hitter and a strong pitcher being involved. It is calculated

by combining several statistical features for the batter and pitcher in ~g with a story category

feature in ~s. The full calculation of the marquee matchup feature is given in Appendix C.

matchup feature valued between 0 and 1. It indicates how well the story and game

state match in terms of a strong hitter and a strong pitcher being involved. It is

calculated by combining features providing several statistics for the current batter

and pitcher in �g with a story category feature in �s.

The similarity vector �c indicates how related �g and �s are, but does not pro-

vide a scalar value. We now need to map �c to D(�g,�s) — the 5-point-scale qual-

ity of the match between �g and �s. We use machine learning techniques to create

such a mapping from training data T. To build this training data set, we take a

set of m game states vectors G = {�g1, . . . ,�gm} and form a set of m · q similar-

ity vectors �c for all �gi ∈ G and all q stories vectors from our story vector library

S = {�s1,�s2, . . . ,�sp}. We then label each similarity vector with the ground-truth

value of the quality of match between the corresponding game state and the story.

Mathematically: T = {(�c, D(�g,�s)) | �g ∈ G,�s ∈ S, �c is the similarity vector for �s

and �g }. For simplicity’s sake in the rest of the thesis, we refer to S as the story li-

brary rather than the story vector library and G as the game state library, rather than

the game state vector library. Also, as game states and stories are the equivalent of

queries and documents in this work, we will use the former terms in this section.

�s1 �s2 �sp �s16 �s8 �s13

4.3 Listwise Scoring Metrics

IR algorithms are generally divided into three groups – pointwise, pairwise and

listwise [Liu et al., 2008]. Pointwise algorithms are regression and classification

algorithms, with mean-squared error typically used as an error function. Pairwise

algorithms perform an incomplete ordering on the data. Listwise algorithms make

direct use of IR scoring metrics to search for a good ranking of stories. All IR

algorithms output a ranker, which produces a ranked list of stories based on a given

game state. We used listwise algorithms to map game states to stories, as they are

the state of the art in information retrieval. In listwise algorithms, stories are ranked

for each game state and the ranking is evaluated with IR scoring metrics. These

metrics generally focus on the top of a ranked list, giving more importance to the
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Figure 4.1: The runner on first base feature for the game state, g34 is compared to the
corresponding feature in the story, s24 to produce a value for the runner on first base match
feature in ~c, c23. If both g34 and s24 are 1, c23 = 1. Otherwise c23 = 0.

The similarity vector ~c indicates how related ~g and ~s are, but does not provide a scalar

19



value. We now need to map ~c to D(~g,~s) — the 5-point-scale quality of the match between

~g and ~s. We use machine learning techniques to create this mapping from training data T.

To build this training data set, we take a set ofm game states vectors G = {~g1, . . . , ~gm}
and form a set of m · p similarity vectors ~c for all ~gi ∈ G and all p stories vectors from

our story vector library S = {~s1, ~s2, . . . , ~sp}. We then label each similarity vector with the

ground-truth value of the quality of match between the corresponding game state and the

story. Mathematically: T = {(~c,D(~g,~s)) | ~g ∈ G, ~s ∈ S,~c is the similarity vector for ~s and

~g }. For simplicity’s sake in the rest of the thesis, we refer to S as the story library rather

than the story vector library and G as the game state library, rather than the game state

vector library. Also, as game states and stories are the equivalent of queries and documents

in this work, we will use the former terms in the remainder of the thesis.

4.3 Listwise Scoring Metrics

IR algorithms are generally divided into three groups – pointwise, pairwise and listwise [Liu

et al., 2008]. Pointwise algorithms are regression and classification algorithms, with mean-

squared error typically used as an error function. Pairwise algorithms perform a partial

ordering on the data. Listwise algorithms make direct use of IR scoring metrics to search

for a good ranking of stories. All IR algorithms output a ranker, which produces a ranked

list of stories based on a given game state. The optimal ranker produces the list of stories

ranked according to their true match qualities, D(~g,~s).

We used listwise algorithms to map game states to stories, as they rank stories for each

game state and the ranking is evaluated with IR scoring metrics. These metrics generally

focus on the top of a ranked list, giving more importance to the match quality of the top

ranked stories and decreasing the importance of accuracy with the ranking of stories.

The process of evaluating a ranker using IR metrics is shown in Figure 4.2. A ranker R

sorts a story database S based on the current game state ~g. This permutation (sorting) of S,

π, is then scored by D to produce a vector of match qualities θ. The metric M then maps θ

to a scalar value, providing feedback about the strength of the ranking.

Formally, a ranker performs a mapping of stories: RS : G → Π from the set of game

states G, to a set of permutations Π, for a given set S of p stories. A given permutation of

S, π ∈ Π is scored according to its match qualities with ~g,D, producing θ. Thus, θ is vector

of p integers, θi = D(πi, ~g). IR scoring metrics accept this θ as input and output feedback

γ on the quality of the permutation (ranking) π. Formally, an IR metric performs a mapping
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all �gi ∈ G and all q stories vectors from our story vector library S = {�s1, . . . ,�sp}.

We then label each similarity vector with the ground-truth value of the quality of

match between the corresponding game state and the story. Mathematically: T =

{(�c, D(�g,�s)) | �g ∈ G,�s ∈ S, �c is the similarity vector for �s and �g }. For simplicity’s

sake in the rest of the thesis, we refer to S as the story library rather than the story

vector library and G as the game state library, rather than the game state vector

library. Also, as game states and stories are the equivalent of queries and documents

in this work, we will use the former terms in this section.
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listwise [Liu et al., 2008]. Pointwise algorithms are regression and classification

algorithms, with mean-squared error typically used as an error function. Pairwise

algorithms perform an incomplete ordering on the data. Listwise algorithms make

direct use of IR scoring metrics to search for a good ranking of stories. All IR

algorithms output a ranker, which produces a ranked list of stories based on a given

game state. We used listwise algorithms to map game states to stories, as they are

the state of the art in information retrieval. In listwise algorithms, stories are ranked

for each game state and the ranking is evaluated with IR scoring metrics. These

metrics generally focus on the top of a ranked list, giving more importance to the

match quality of the top ranked stories and decreasing the importance of accuracy
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match quality of the top ranked stories and decreasing the importance of accuracy

with the ranking of stories.

The process of evaluating a ranking using IR metrics is shown in Figure ??. A

ranker R maps a story database to an ordering π based on a given game state �g.

Formally, a ranker performs a mapping: RS : G → Π from the set of game states

G, to a set of permutations Π, for a given set S of p stories. The permutation of

S, π is then scored according to its match qualities with �g, D, producing θ. θ is IR

scoring metrics accept this θ and output feedback on the quality of the permutation

(ranking) π. Formally, an IR metric performs a mapping M :: Rp → R.

4.3.1 Winner Takes All

A simple example of an IR scoring metric is Winner Takes All (WTA), shown in

Figure 4.1. This metric considers only the match quality for the top ranked story,

θ1 (line 1), comparing it to a given threshold t (line 2). If the top ranked story’s

match quality meets or surpasses the threshold (line 3), WTA returns 1, otherwise,

it returns 0 (lines 4-7). Thus, WTA is a binary threshold scoring metric whose output

rests completely on the top ranked story, ignoring the rest of the ranking. Consider

the example in Table 4.2. Here θ1 = 2. If the threshold t = 2, then WTA would

return 1. If t > 2, however, WTA would return 0.

4.3.2 Average Precision

Other IR scoring metrics consider more stories than the top ranked story. One ex-

ample is Average Precision (AP), shown in Figure 4.2. AP accepts the same input
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and �g }. For simplicity’s sake in the rest of the thesis, we refer to S as the story li-
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Table 4.2: An example of the scores θ for a ranking φ, for a given game state �g and
the best possible scores, φ for optimal ranker Z.

match quality of the top ranked stories and decreasing the importance of accuracy

with the ranking of stories.

The process of evaluating a ranking using IR metrics is shown in Figure ??. A

ranker R maps a story database to an ordering π based on a given game state �g.

Formally, a ranker performs a mapping: RS : G → Π from the set of game states

G, to a set of permutations Π, for a given set S of p stories. The permutation of

S, π is then scored according to its match qualities with �g, D, producing θ. θ is IR

scoring metrics accept this θ and output feedback on the quality of the permutation

(ranking) π. Formally, an IR metric performs a mapping M : Rp → R.

4.3.1 Winner Takes All

A simple example of an IR scoring metric is Winner Takes All (WTA), shown in

Figure 4.1. This metric considers only the match quality for the top ranked story,

θ1 (line 1), comparing it to a given threshold t (line 2). If the top ranked story’s

match quality meets or surpasses the threshold (line 3), WTA returns 1, otherwise,

it returns 0 (lines 4-7). Thus, WTA is a binary threshold scoring metric whose output

rests completely on the top ranked story, ignoring the rest of the ranking. Consider

the example in Table 4.2. Here θ1 = 2. If the threshold t = 2, then WTA would

return 1. If t > 2, however, WTA would return 0.

4.3.2 Average Precision

Other IR scoring metrics consider more stories than the top ranked story. One ex-

ample is Average Precision (AP), shown in Figure 4.2. AP accepts the same input
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Winner Takes All (θ, t)
INPUT:

θ vector of match qualities for a ranking π
t threshold

OUTPUT:
γ: score for θ

3 if θ1 ≥ t
4 γ ← 1
5 else
6 γ ← 0
7 end if

Figure 4.1: Winner Takes All scoring metric.

as WTA, but also requires the number of positions to consider relevant, N . That

is, AP requires the user to specify how much of the ranked list is important. In our

context, N varies depending upon the application. If we would like to suggest sto-

ries to professional commentators, then N can be 3 or 4, to give the commentators

some choice. When operating autonomously, however, N is 1, as only the top story

will be output to the viewer.

AP calculates the precision P at each relevant position (line 3). The precision

P at any position j is number of relevant stories in the top j results, divided by j

(line 2). Here R(j) = 1 if θj ≥ t, and 0 otherwise. The average precision, γ, is then

calculated, based on the precision at each relevant position (line 7) and the total

number of relevant positions (line 10). Higher values of γ suggest a better ranking,

with the range [0, 1]. Consider again the example in Table 4.2, and let N = 4 and

t = 3. The AP here would be calculated as:

AP =
1

2

�
1

2
+

2

4

�
= 0.5

If we instead let t = 2, then,

AP =
1

3

�
1

1
+

2

2
+

3

4

�
≈ 0.92
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queries and documents in this work, we will use the former terms in this section.

4.3 Listwise Scoring Metrics

IR algorithms are generally divided into three groups – pointwise, pairwise and

listwise [Liu et al., 2008]. Pointwise algorithms are regression and classification

algorithms, with mean-squared error typically used as an error function. Pairwise

algorithms perform an incomplete ordering on the data. Listwise algorithms make

direct use of IR scoring metrics to search for a good ranking of stories. All IR

algorithms output a ranker, which produces a ranked list of stories based on a given

game state. We used listwise algorithms to map game states to stories, as they are

the state of the art in information retrieval. In listwise algorithms, stories are ranked

for each game state and the ranking is evaluated with IR scoring metrics. These

metrics generally focus on the top of a ranked list, giving more importance to the

match quality of the top ranked stories and decreasing the importance of accuracy

with the ranking of stories.
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scoring metrics accept this θ and output feedback on the quality of the permutation
number of relevant positions (line 10). Higher values of γ suggest a better ranking,

Figure 4.2: Evaluating a ranker. R ranks the story database S based on �g, producing
π. IR scoring metrics M evaluate the match qualities of π, θ and output a scalar
value γ to provide feedback on the performance of R.

The process of evaluating a ranking using IR metrics is shown in Figure 4.2.

Put simply, a ranker R sorts a story database S based on the current game state �g.

This permutation (sorting) of S, π, is then scored by D to produce a vector of match
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Figure 4.2: Evaluating a ranker.

Winner Takes All (θ, t)
INPUT:

θ vector of match qualities for a ranking π
t threshold

OUTPUT:
γ: score for θ

1 if θ1 ≥ t
2 γ ← 1
3 else
4 γ ← 0
5 end if

Figure 4.3: Winner Takes All scoring metric.

M : Zp → R. Some IR scoring metrics also require the match qualities θ∗, produced by the

ground truth ordering π∗.

4.3.1 Winner Takes All

A simple example of an IR scoring metric is Winner Takes All (WTA), shown in Figure 4.3.

This metric considers only the match quality for the top ranked story, θ1 comparing it to a

given threshold t. If the top ranked story’s match quality meets or surpasses the threshold

(line 1), WTA returns 1, otherwise, it returns 0 (lines 2-5). Thus, WTA is a binary threshold

scoring metric whose output rests completely on the top ranked story, ignoring the rest of

the ranking. Consider the example in Table 4.1. Here θ1 = 2. If the threshold t = 2, then

WTA would return 1. If t > 2, however, WTA would return 0.
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Rank θ θ∗

1 2 4
2 4 4
3 1 3
4 3 3
5 2 2

Table 4.1: An example of the scores θ for a ranking π, for a given game state ~g and the best
possible scores, θ∗ for optimal ranker π∗, for the top 5 ranking positions.

4.3.2 Average Precision

Other IR scoring metrics consider more stories than the top ranked story. One example

is Average Precision (AP), shown in Figure 4.4. AP accepts the same input as WTA, but

also requires the number of positions to consider relevant, N . That is, AP requires the user

to specify how much of the ranked list is important. In our context, N varies depending

upon the application. If we would like to suggest stories to professional commentators, then

N can be 3 or 4, to give the commentators some choice. When operating autonomously,

however, N is 1, as only the top story will be output to the viewer.

Average Precision (θ, t,N )
INPUT:

θ vector of match qualities for a ranking π
t threshold
N number of ranking positions to consider

OUTPUT:
γ: score for θ

1 γ ← 0
2 for i = 1, . . . , N
3 if θi ≥ t
4 R(i)← 1
5 else
6 R(i)← 0
7 end if
8 P (i)← (

∑i
j=1R(j))/i

9 end for
10 for i = 1, . . . , N
11 ifR(i) = 1
12 γ ← γ + P (i)
13 end if
14 end for
15 γ ← γ/

∑N
i=1R(i)

Figure 4.4: Average Precision scoring metric.
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At each position of θ to be considered, AP checks if θi meets the threshold t (line 3). If

so, this position is considered relevant (line 4). The precision P at any position i is the total

number of relevant stories in the top i positions, divided by i (line 8). The average precision,

γ, is then calculated, based on the precision at each relevant position (line 12) and the total

number of relevant positions (line 15). Higher values of γ suggest a better ranking, in the

range [0, 1]. Consider again the example in Table 4.1, and let N = 4 and t = 3. The AP

here would be calculated as:

γ =
1

2

(
1

2
+

2

4

)
= 0.5.

If we instead let t = 2, then,

γ =
1

3

(
1

1
+

2

2
+

3

4

)
≈ 0.92.

Normalized Discounted Cumulative Gain(θ,N, θ∗)
INPUT:

θ vector of match qualities for a ranking π
N number of ranking positions to consider
θ∗ ground truth ranking match qualities

OUTPUT:
γ: score for θ

1 E ← 0
2 V ← 0
3 for i = 1, . . . , N
4 E ← E + (2θi − 1)/ log2(i+ 1)

5 V ← V + (2θ
∗
i − 1)/ log2(i+ 1)

6 end for
7 γ = E/V

Figure 4.5: Normalized Discounted Cumulative Gain scoring metric.

4.3.3 Normalized Discounted Cumulative Gain

Another example of an IR scoring metric is Normalized Discounted Cumulative Gain

(NDCG), shown in Figure 4.5. We will demonstrate NDCG from the bottom up. The gain

at position i is calculated using the match quality at this position (2θi − 1). The cumulative

gain is the sum of these gains over all positions N to be considered. The discount factor is

1/ log(i + 1), increasing the discount as the rank position worsens. Finally, the metric is

normalized by dividing by the optimal Discounted Cumulative Gain – that of the ground

truth scores θ∗ for the given ~g.
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NDCG takes as input the vector of match qualities θ for a ranking π, the number N of

positions to consider, and the ground truth match qualities π∗ for the given game ~g. First,

the true DCG, E, and the optimal DCG, V , are initialized to 0 (line 1). Then for every

position i up to N , E and V are updated by adding the Discounted Gain at i (lines 3 – 6).

Finally, the NDCG is calculated by dividing the true DCG by the optimal DCG (line 7). As

with AP, NDCG scores have the range [0, 1], with higher scores suggesting a better ranking.

Consider the case where N = 1 for the example in Table 4.1:

γ =
(22 − 1)

log2(1 + 1)

/ (24 − 1)

log2(1 + 1)
=

3

15
= 0.2.

If N = 2:

γ =
(

3 +
(24 − 1)

log2(2 + 1)

)/(
15 +

(24 − 1)

log2(2 + 1)

)
≈ 12.46

24.46
≈ 0.51.

And if N = 3:

γ =
(

12.46 +
(21 − 1)

log2(3 + 1)

)/(
24.46 +

(23 − 1)

log2(3 + 1)

)
≈ 12.96

27.96
≈ 0.46.

4.3.4 Discussion

Each of the described IR metrics focuses on the top of a ranked list. That is, the match

qualities at the top of θ have a greater bearing on the score provided by an IR metric than

those at the bottom of θ. WTA is the extreme case, considering only whether the match

quality of the top ranked story meets a given threshold. This makes WTA seem well-suited

to the case of an autonomous commentator, as stories ranked second or worse are irrelevant

for its output. WTA provides little information during training, however, making it possibly

difficult for an IR algorithm to effectively learn with WTA as its scoring metric.

AP can consider more than one position (depending on N ), but is again binary (either a

story is relevant, or it is not). NDCG makes use of both the actual match qualities of θ in its

gain calculation, as well as the best possible ranking for the given ~g. AP ignores both these

bits of information.

Table 4.2 shows how WTA, AP and NDCG vary with N and t, given the data in Ta-

ble 4.1. WTA does not vary withN and will output 1 if t ≤ 2 and 0 otherwise. Note that AP

is unaffected by any story si it considers irrelevant unless there is a story sj ranked lower

than si that is relevant. NDCG, on the other hand, will have its score decrease with less rel-

evant stories, even at θN (although at a discounted rate as we approach N ). Thus NDCG is
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N NDCG AP (t = 2) AP (t = 3) WTA(t = 2) WTA (t = 3)
1 0.2 1 0 1 0
2 0.51 1 0.5 1 0
3 0.46 1 0.5 1 0
4 0.52 0.92 0.5 1 0
5 0.53 0.89 0.5 1 0

Table 4.2: How IR scoring metrics NDCG, AP and WTA vary with respect to N and t,
given the data in Table 4.1.

more likely to “protect” a colour commentator from bad stories, whereas AP does not allow

these poor stories to affect the output of better stories at the top of θ. NDCG gives a finer

evaluation to θ as it uses more information than AP (namely, θ∗), possibly providing an

IR algorithm more feedback with respect to its rankings. As each of WTA, AP and NDCG

offer different advantages and disadvantages, we considered each in our empirical work.

Expected Reciprocal Rank (ERR) [Chappelle et al., 2009] is another common IR scor-

ing metric similar to NDCG, but whose discount factor at a position varies according to the

relevance of the story in the position before (similar to AP). Return Score (RS) is a metric

we created that is the same as WTA, except that it returns the actual match quality of the

top ranked story, rather than simply perform a threshold operation on it. We considered both

ERR and RS in our preliminary experiments, but neither was chosen to be part of a final

ranker, so we omit further discussion of them here.

4.4 SCoReS Offline
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Top Ranked Story

Contextualizer

"Ed Roush hit .350 
a few years in a 
row and led the 
league in hitting a 
couple of times, 
but he never got 
over one time he 
did not ..."

EvaluatorRanker

Figure 4.6: SCoReS chooses a story to output to a commentator.

Our approach to selecting stories for game states is a three-step process involving a

Ranker, an Evaluator, and a Contextualizer, as shown in Figure 4.6. This hybrid approach
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uses a listwise algorithm to rank, a pointwise algorithm to evaluate and domain-specific

methods to contextualize. In this section, we describe the offline training and creation of

each element of SCoReS, and then describe the online operation in detail (Section 4.5).

4.4.1 Machine-learning a Ranker

For the ranking algorithm, we adapted AdaRank [Xu and Li, 2007], a listwise algorithm

based on AdaBoost [Freund and Schapire, 1995]. AdaRank forms a “strong” ranker by

iteratively selecting and combining “weak” rankers. A weak ranker uses a single component

of the similarity vector ~c to rank (i.e., sort) the training data T. Each weak ranker has a

“vote” on the final ranking, based on how its mapping of S to π over the training data was

scored according to a chosen IR scoring metric (described below).

SCoReS AdaRank (Algorithm ??) accepts as input a set of training data T, the number

of game states in T, m, an IR scoring function M , the number of weak rankers to compose

the strong ranker k, and the number of tie-breaking features to use y. In line 1, SCoReS

AdaRank first partitions T by its m constituent games states, where i runs from 1 to m.

This is done because stories can be meaningfully sorted by the match quality values (D)

only for a given game state. The ground truth rankings T are then calculated (line 2) for

possible use in evaluating weak rankers (line 13). All weights are initialized to 1/m (line 3)

as all game states are initially equally important. The main ranker R and its corresponding

confidence valuesA are initialized to be empty sets (line 4). The set of feature combinations

to be considered for use in weak rankers, B, is then calculated based on the number of

features in each ~c in T, and the number of features to use for tie-breaking y (line 5).

At each iteration of SCoReS AdaRank, elements b of B whose first elements have not

yet been used in R are considered as possible weak rankers (lines 6-25). Thus, each feature

of ~c may only be used once as the main sorter in a weak ranker. For each game state, the

weighted score v of sorting Ti by b (with any remaining ties broken randomly) is calculated,

using the scoring function M and current weights w (lines 10-14). The arguments to M

vary based on which scoring metric is used, but all metrics we consider accept θi, the match

qualities for Ti as input. If the mean weighted score v for b is greater than the maximum

encountered so far in this iteration, then the feature combination to be used in the weak

ranker r for this iteration is set to b (lines 15-18). After evaluating all valid elements of B,

the best weak ranker for this iteration is added to the main ranker R (line 21) and A and

w are updated (lines 22-24) as in [Xu and Li, 2007]. The data is re-weighted after each

iteration of SCoReS AdaRank, so that examples that have been incorrectly classified so far
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SCoReS AdaRank (T,m,M, k, y)
INPUT:

T: training data
m number of game states
M : IR scoring function
k: number of iterations
y: number of tie-breaking features

OUTPUT:
R: ranker

1 partition T by game state: T = T1 ∪T2 ∪ . . . ∪Tm

2 sort each Ti by D values, yielding ground truths Ti
3 initialize weights w(G) to 1/m
4 initialize ranker R and weak ranker confidences A to ∅
5 get all combinations B of length y + 1 from T
6 for each iteration up to k
7 µ← 0
8 for each combination b in B
9 if b(1) /∈ R
10 for i = 1, . . . ,m
11 sort Ti by b, yielding T′i
12 θi ← D(Ti)
13 v(i)← w(i) ·M(θi, . . .)
14 end for
15 if mean(v) > µ
16 µ←mean(v)
17 r ← b
18 end if
19 end if
20 end for
21 add r to R
22 calculate α for r
23 add α to A
24 update w
25 end for

Figure 4.7: SCoReS AdaRank algorithm.
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Game State 1 w1 = 1/3

Story c1 c2 c3 c4 D

1 0 0 0.875 0.6 4
2 0 1 0.5 0.4 2
3 1 1 0 0 1
4 0 0 0.375 0.9 3

Game State 2 w2 = 1/3

Story c1 c2 c3 c4 D

1 0 0 0.5 0.7 0
2 1 1 0.5 0.7 3
3 0 1 0 0.3 2
4 1 0 0.125 0.5 4

Game State 3 w3 = 1/3

Story c1 c2 c3 c4 D

1 0 1 1 0.3 4
2 1 0 0 0.3 2
3 1 0 0.75 0.5 1
4 0 0 0.875 0 0

Table 4.3: Unordered training data T for SCoReS AdaRank.

are given more weight (line 24).

As a small, concrete example, let M be NDCG [Xu and Li, 2007], m = 3, k = 2, and

y = 1. Let the similarity vectors ~c in T consist of the following features: the runner on first

base feature (c1), the strikeout feature (c2), the inning feature (c3), and the marquee matchup

feature (c4). The first two are binary: they are 1 if both the story and game state involve a

runner on first base (or both involve a strikeout), and 0 otherwise. The marquee matchup and

inning features are computed as previously described. Table 4.3 shows possible training data

split into its 3 constituent game states, while Table 4.4 shows the ground truth orderings,

π∗. The weight of each game is initially set to 1/3. The best feature combination for the

first iteration is (c3, c4) — the runner on first base feature to be used as the main sorter, with

the strikeout feature as a tiebreaker. Sorting by this feature combination yields the orderings

shown in Table 4.5. Assuming we consider the top 3 ranking positions relevant, the NDCG

scores for each game state in this ordering would be (0.97, 0.59, 0.89), with weighted mean

µ = 0.81 (as all weights are equal).

The weak ranker r for this iteration would thus be (c3, c4) and c3 would not be consid-

ered as a main sorter in weak rankers in later iterations. α is calculated with the formula

(from [Xu and Li, 2007]):
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Game State 1 w1 = 1/3

Story c1 c2 c3 c4 D

1 0 0 0.875 0.6 4
4 0 0 0.375 0.9 3
2 0 1 0.5 0.4 2
3 1 1 0 0 1

Game State 2 w2 = 1/3

Story c1 c2 c3 c4 D

4 1 0 0.125 0.5 4
2 1 1 0.5 0.7 3
3 0 1 0 0.3 2
1 0 0 0.5 0.7 0

Game State 3 w3 = 1/3

Story c1 c2 c3 c4 D

1 0 1 1 0.3 4
2 1 0 0 0.3 2
3 1 0 0.75 0.5 1
4 0 0 0.875 0 0

Table 4.4: Ground truth ordering π∗ of training data T from Table 4.3.

Game State 1 w1 = 1/3

Story c1 c2 c3 c4 D

1 0 0 0.875 0.6 4
2 0 1 0.5 0.4 2
4 0 0 0.375 0.9 3
3 1 1 0 0 1

Game State 2 w2 = 1/3

Story c1 c2 c3 c4 D

1 0 0 0.5 0.7 0
2 1 1 0.5 0.7 3
4 1 0 0.125 0.5 4
3 0 1 0 0.3 2

Game State 3 w3 = 1/3

Story c1 c2 c3 c4 D

1 0 1 1 0.3 4
4 0 0 0.875 0 0
3 1 0 0.75 0.5 1
2 1 0 0 0.3 2

Table 4.5: The ordering π of T after being sorted by feature combination (c3, c4). Random
tie-breaking was necessary for game state 2 (between stories 1 and 2).
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α =
1

2
· ln

∑m
i=1w(i) (1 +M(θi, 3, θ

∗
i ))∑m

i=1w(i) (1−M(θi, 3, θ∗i ))

where θi is the vector of match qualities D for the ordering of game state i by r, and θ∗i is

the vector of match qualities D for the ground truth π∗. α for this iteration would thus be

1.13. The weights for each game state are then updated with the formula (from [Xu and Li,

2007]):

w(i) =
e−M(θi,3,θ

∗
i )

∑m
j=1 e

−M(θi,3,θ∗i )

giving the new w = (0.28, 0.41, 0.32).

On the second iteration, game state 2 has more weight, as the weak (and main) ranker

(c3, c4) failed to sort it as well as it did game states 1 and 3. This leads to r = (c1, c4),

µ = 0.73, α = 1.01, and thus main ranker R = ((c3, c4), (c1, c4)) and A = (1.13, 1.01).

After normalizing, A = (0.53, 0.47).

This means the weak ranker using the inning feature to sort and the marquee matchup

feature as a tiebreaker gets 53% of the vote for ranking S, and the runner on first base

feature combined with the marquee matchup feature tiebreaker gets 47% of the vote with

respect to the ranking output by SCoReS AdaRank.

4.4.2 Machine-learning an Evaluator

Though the Ranker R output by SCoReS AdaRank provides a ranked list of stories, it does

not provide a value for D for these stories. Thus, there is always a top-ranked story for a

game state, but SCoReS AdaRank provides no indication as to how “good” the top ranked

story is. We added an Evaluator to provide an estimate of D. The Evaluator can then be

used as a threshold to ensure the top-ranked SCoReS AdaRank story is worth telling.

In principle, it is possible to use the Evaluator on its own to rank stories. The reason

we do not do this is because of its pointwise nature; it uses mean squared error (MSE) as

a scoring metric, which treats each datum equally – there is no preference with respect to

accuracy towards the top of a ranked list. As a result, the Evaluator tends to give only a

rough “good/no good” evaluation of a story and is not sensitive enough to choose between

two similar stories. Thus, we instead use a pointwise algorithm to obtain a quick estimate

of one particular match quality, but do not rely on it to estimate every match quality and

rank the stories based on these estimates.
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4.4.3 Coding a Contextualizer

Even if the Ranker/Evaluator combination deem a story appropriate for output given a game

state, it may not be a good time to tell the story. This is because certain situations are not

appropriate for stories as they are exciting on their own, or because the story may get cut off

if we attempt to tell it. We use several domain specific features to determine whether it is a

good time to tell a story. An example from baseball where a story may be cut off would be

if there are two strikes on the batter with two out. This would be a bad time to start telling

a story as the inning could easily end on the next pitch (with a strikeout). If the game at

hand is the seventh game of the World Series, tied in the ninth inning with the bases loaded

and two out, there is probably no need to tell a story, and telling one would likely aggravate

viewers, who would be completely focused on the play.

SCoReS (G′,S, R,A,E, t)
INPUT:

G′: game states for a live game
S: our story library
R: Ranker from SCoReS AdaRank
A: weak ranker confidences for R
E Evaluator
t threshold for Evaluator

1 for each game state ~g in G′

2 if should tell a story in ~g
3 create {~c }, comparing ~g to ~s ∈ S
4 rank {~c } with R and A
5 ~s◦ ← top ranked story
6 if E(~s◦) ≥ t
7 output ~s◦ to broadcast team (or viewer)
8 end if
9 end for
10 end for

Figure 4.8: SCoReS as used during a live game.

4.5 SCoReS Online

Our SCoReS system thus consists of a Ranker (learned by SCoReS AdaRank), an Evaluator

(learned by a pointwise algorithm) and a Contextualizer (manually designed) as shown in

Figure 4.8. SCoReS processes each game state in a given (novel) game G′ (line 1). If the

current game state ~g is appropriate for a story according to the Contextualizer (line 2), we

create similarity vectors of ~g and each story in S (line 3). The similarity vectors are then

sorted with the ranker R and confidences A learned by SCoReS AdaRank offline (line 4).
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The top ranked story is extracted in line 5 and then scored by the Evaluator E in line 6. If

the story passes the provided threshold t, it is suggested to the broadcast team (line 7). Or,

if SCoReS is operating autonomously, the story is output to the viewer.
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Chapter 5

Empirical Evaluation

To evaluate the quality of SCoReS, we conducted a series of empirical studies where we

asked potential users to evaluate the system. We examined several possible applications of

SCoReS: providing generic commentary, adding stories to existing commentary, picking

context appropriate stories, and assisting professional commentators to select stories.

We conducted several experiments to evaluate whether SCoReS improved broadcast

quality in any of these applications. User Study I was conducted to ensure commentary

was beneficial within our game library before we even tried to improve said commentary.

User Studies II – VI tested whether there was a reason to tell stories in a broadcast within

our game library and whether the stories selected needed to be in proper context. The final

experiment was a demonstration of the SCoReS system to professional commentators. Their

feedback is an estimate of whether SCoReS can be successfully deployed in a professional

broadcast setting.

These experiments evaluated SCoReS in both its modes of operation: as an autonomous

commentary tool within the user studies, and as an assistant to a human colour commentator

in the interviews with professional commentators. In the user studies, we evaluated com-

mentary augmented by SCoReS by inserting SCoReS’ top-ranked story into video clips

from actual baseball games. We chose to use actual games because watching clips from a

video game would likely not be interesting to the participants, inducing boredom. Note that

improving commentary from actual games appears to be a harder problem than improving

sports video game commentary, as commentary in video games is pre-recorded and generic,

whereas commentary during an actual game is tailored to that particular game.

In order to build training data for SCoReS, we first downloaded MLB game statistics

from MLB’s XML site [Live XML game summaries, 2011], with permission from MLB.

For all experiments, the game state and story features were kept constant. The game state
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features used in our experiments are given in Table 5.1. The feature vector for each game

state included the values for the above-described features at a particular pitch, as well as

their values for the previous pitch. This was done because stories are often told in reference

to an event preceding the current game state. Thus, g3 stored the current number of outs for

the current batter, while g40 stored the out total from the previous pitch.

One hundred and ten stories were gathered from “Rob Neyer’s Big Book of Baseball

Legends” [Neyer, 2008], “Baseball Eccentrics” [Lee and Prime, 2008], and Wikipedia. A

selection of these stories is shown in Appendix B. Stories ranged in year from 1903 to 2005.

Feature selection and categorization of the stories were done by hand. Using our baseball

expertise, and based on the features available from MLB’s XML site, we chose the 10

game state categories listed in Table 5.2. While these categories are not those used in other

work, we thought they were appropriate given the available data (i.e., it would be difficult to

categorize a game state as “the Lucky Break Victory” as in [Ryan, 1993] without video of

the game,using only selected statistics). Story features used in all experiments are detailed

in Table 5.3. Building similarity vectors ~c created a new feature set, given in Table 5.4.

In order to ease the burden on the human performing the match quality labelling, we

constructed some rules based on the available statistics that suggest a match quality, which

are then refined by hand. A screenshot of the suggestion program is shown in Figure 5.1.

Relevant statistics from both the game (e.g., batting statistics) and the story (e.g., the year

and category) are displayed. The title and first few words of the story are displayed for the

labeller, to show which story is at hand, and allow for reference to the rest of the story

statistics, stored elsewhere. Matching statistics are given at the bottom, which in this case

are a team (“nya” is the New York Yankees), the month and a double play. The double

play in the game refers to the result of the previous at bat, and in this case, the previous

half inning. This can be gathered from the information presented, as there are 0 outs in this

half inning, meaning the double play must have occurred in the previous half inning. The

program suggests a score of 2 (meaning “Good”) which can be refined by the labeller.

The suggested match qualities for each ~c are calculated based primarily on the confi-

dence that the story and game state match on category (1/3) and whether any of the teams

matched (1/3). The confidence of a categorical match between the game state and story

is based upon features of the game state relevant to the story category (the calculation of

the marquee matchup category match is given in Appendix C). For instance, if the story

category is “bad statistics for batter”, then the confidence in a category match is based on

the statistics of the current batter. If the story category is “opening of inning”, then the
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id Name Type Description
g1 Balls Integer Number of balls on batter.
g2 Strikes Integer Number of strikes on batter.
g3 Outs Integer Number of outs in inning.
g4 Batter Side Binary 0 for right, 1 for left.
g5 Pitcher Side Binary 0 for right, 1 for left.
g6 Season At Bats Integer Batter’s number of at-bats this season.
g7 Season Average Percentage Batter’s batting average this season.
g8 Season HR Integer Batter’s home run total this season.
g9 Season RBI Integer Batter’s run batted in total this season.
g10 Season Wins Integer Pitcher’s win total for this season.
g11 Season Strikeouts Integer Pitcher’s strikeout total this season.
g12 Season Pitcher Average Percentage Pitcher’s batting average against this season.
g13 Season Pitcher At Bats Integer Number of at bats versus pitcher this season.
g14 Career At Bats Integer Batter’s number of at-bats in his career.
g15 Career Average Percentage Batter’s batting average in his career.
g16 Career HR Integer Batter’s home run total in his career.
g17 Career RBI Integer Batter’s run batted in total in his career.
g18 Career Wins Integer Pitcher’s win total in his career.
g19 Career Strikeouts Integer Pitcher’s strikeout total in his career.
g20 Career Pitcher Average Percentage Pitcher’s batting average against in his career.
g21 Career Pitcher At Bats Integer Number of at bats versus pitcher in his career.
g22 Road Score Integer Number of runs scored by the road team.
g23 Home Score Integer Number of runs scored by the home team.
g24 Road Wins Integer Number of wins this season for the road team.
g25 Road Losses Integer Number of losses this season for the road team.
g26 Home Wins Integer Number of wins this season for the home team.
g27 Home Losses Integer Number of losses this season for the home team.
g28 Home Team Integer Home Team ID.
g29 Road Team Integer Road Team ID.
g30 Inning Integer Current Inning.
g31 Last At-Bat Integer ID for result of last at bat (e.g., “pop out”).
g32 Month Integer Current Month.
g33 Day Integer Current Day.
g34 Runner on 1st Binary True if there is a runner on first base.
g35 Runner on 2nd Binary True if there is a runner on second base.
g36 Runner on 3rd Binary True if there is a runner on third base.
g37 Pitch Count Integer Total number of pitches thrown by current pitcher.

Table 5.1: Game state features used in all experiments. There were actually 74 game state
features, as each game state vector stores values for the previous game state as well.
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id Story Category
1 Opening of Inning
2 Bad Statistics for Batter
3 Marquee Matchup
4 Great Statistics for One Player
5 Bad Statistics for either Hitter or Pitcher
6 Important Games from History
7 Big Finish
8 Blowout or Comeback
9 One-run Game, Home Run Hitter Batting

10 Human Interest

Table 5.2: The story and game state categories used in our experiments.

confidence is based on how close the game state is to the beginning of an inning.

The result of the last at bat matching events in the story provides 1/18 of the suggested

match quality. The remaining portion of the match quality depends upon the sum of the fol-

lowing corresponding features (if they are true in both the game and the story): the day, the

inning, the month, the run difference, the runner positions, the count on the batter, the num-

ber of balls, strikes and outs and whether the game state and the story involve a “blowout” (a

difference of 5 or more runs). While many of these criteria resemble the similarity features

in Table 5.4, they are not equivalent. The similarity features were designed after the data

was labelled, and provide more information than the suggestion program.

5.1 Choosing a Ranker

In order to choose a Ranker and an Evaluator for SCoReS, we performed a leave-one-out

cross validation experiment. Training data consisted of 40 game states and the 110 stories

gathered from various sources. At each cross-validation fold, 4290 data (39 game states ×
110 stories) were used to build training data T , while 110 (1 game state× 110 stories) were

used for testing data. The same story database was used in training and testing. Candidate

Evaluators were trained on T and then used within SCoReS at each fold. As a reminder,

SCoReS AdaRank accepts as input a set of training data T, the number of game states in

T, m, an IR scoring function M , the number of weak rankers to compose the strong ranker

k, and the number of tie-breaking features to use y. While T and m are determined by the

data, M , k and y must be otherwise determined.
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id Name Type Description
s1 Month Integer Current Month.
s2 Inning Integer Current Inning.
s3 Run Difference Integer Difference in score.
s4 Year Integer Year story took place.
s5 Home Team Integer Home Team ID.
s6 Road Team Integer Road Team ID.
s7 Strikeout Binary True if story contained a strikeout.
s8 Home Run Binary True if story contained a home run.
s9 Sacrifice Binary True if story contained a sacrifice bunt or fly.
s10 Double Binary True if story contained a double.
s11 Triple Binary True if story contained a triple.
s12 Double play Binary True if story contained a double play.
s13 Fly Out Binary True if story contained a fly out.
s14 Pop Out Binary True if story contained a pop out.
s15 Ground Out Binary True if story contained a ground out.
s16 Triple Play Binary True if story contained a triple play.
s17 True or False Binary True if story is factually true.
s18 Injury Binary True if story contained an injury.
s19 Pinch Hitter Binary True if story contained a pinch hitter.
s20 Rally Binary True if story contained a rally.
s21 Blowout Binary True if story contained a blowout victory.
s22 Substitution Binary True if story contained a substitution.
s23 Foul Ball Binary True if story contained a foul ball.
s24 Runner on 1st Binary True if story contained a runner on first base.
s25 Runner on 2nd Binary True if story contained a runner on second base.
s26 Runner on 3rd Binary True if story contained a runner on third base.
s27 Outs Integer Number outs in the game featured in the story.
s28 No Hitter Binary True if story contained a no hitter.
s29 Walk Binary True if story contained a walk.
s30 Intentional Walk Binary True if story contained an intentional walk.
s31 Single Binary True if story contained a single.
s32 Pitcher Home Run Binary True if story contained a pitcher home run.
s33 Bunt Binary True if story contained a bunt.
s34 Inside Park Home Run Binary True if story contained an inside the park home run.
s35 Hit By Pitch Binary True if story contained a hit batsman.
s36 Ejected Binary True if there was an ejection in the story.
s37 World Series Binary True if current game is a World Series game.
s38 Grand Slam Binary True if story contained a .grand slam.
s39 Play at Plate Binary True if story contained a play at the plate.
s40 Debut Binary True if story contained a player’s MLB debut..
s41 Balls Integer Number of balls on batter.
s42 Strikes Integer Number of strikes on batter.
s43 Assist Binary True if story contained an outfield assist.
s44 Error Binary True if story contained a fielding error.
s45 Category Integer ID for Category (Category list is given in 5.2).

Table 5.3: Story features used in all experiments.
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id Name Type Description
c1 Balls Real Ball count similarity.
c2 Strikes Real Strike count similarity.
c3 Outs Real Out count similarity.
c4 Inning Real Inning similarity.
c5 Run Difference Real Run difference similarity.
c6 Month Real Month similarity.
c7 One Team Binary True if one team in common.
c8 Two Team Binary True if two teams in common.
c9 Home Run Binary Home run in both ~g and ~s.
c10 Sacrifice Binary Sacrifice hit in both ~g and ~s.
c11 Single Binary Single in both ~g and ~s.
c12 Double Binary Double in both ~g and ~s.
c13 Triple Binary Triple in both ~g and ~s.
c14 Double play Binary Double play in both ~g and ~s.
c15 Strikeout Binary Strikeout in both ~g and ~s.
c16 Fly Out Binary Fly out in both ~g and ~s.
c17 Pop Out Binary Pop out in both ~g and ~s.
c18 Ground Out Binary Ground out in both ~g and ~s.
c19 Walk Binary Walk in both ~g and ~s.
c20 Intentional Walk Binary Intentional walk in both ~g and ~s.
c21 Hit By Pitch Binary Hit batsman in both ~g and ~s.
c22 Substitution Binary Substitution in both ~g and ~s.
c23 Runner on 1st Binary Runner on 1st in both ~g and ~s.
c24 Runner on 2nd Binary Runner on 2nd in both ~g and ~s.
c25 Runner on 3rd Binary Runner on 3rd in both ~g and ~s.
c26 Marquee Matchup Real Confidence in this category match.
c27 Great Statistics for Batter or Pitcher Real Confidence in this category match.
c28 Bad Statistics for Batter Real Confidence in this category match.
c29 Bad Statistics for Pitcher Real Confidence in this category match.
c30 Opening of Inning Real Confidence in this category match.
c31 Important Games from History Real Confidence in this category match.
c32 Big Finish Real Confidence in this category match.
c33 Blow Out Real Confidence in this category match.
c34 HR hitter in 1-run game Real Confidence in this category match.

Table 5.4: Similarity features for ~g and ~s used in all experiments.
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Figure 5.1: Screenshot from a program acting as an assistant to a human labelling game
state and story pairs.

For IR scoring metrics, M , we considered the following: NDCG, AP, WTA, ERR, and

RS. We tested the cross product of this set of scoring metrics, k = [1, 3] and y = [0, 25].

We also tested the cross product of the full set of scoring metrics, k = [4, 5] and y = [0, 4],

and the cross product of the full set of scoring metrics, k = [6, 7] and y = [0, 1] .

The best performing instantiation of SCoReS had a Decision Tree as the Evaluator.

The best set of parameters for AdaRank found using this process was 〈M = NDCG, k = 7,

y = 0〉. To choose the actual Ranker for SCoReS we provided all 4400 training data T to

SCoReS AdaRank. This produced the Ranker shown in Table 5.5. The Contextualizer did

not allow stories to be told if there were two strikes on a batter with two outs in an inning,

to avoid starting a story just before the inning ended on a strikeout. Stories also could not

be told if the teams involved in the game were separated by 1 run or fewer, as there is less

need for stories in close games.

This combination of Ranker/Evaluator/Contextualizer output stories that averaged a

3.35 match quality. Stories were only output for 23 of the 40 folds, because in 17 folds,

the Evaluator (Decision Tree) deemed the story chosen by SCoReS AdaRank to be of in-

sufficient quality to output. As a comparison, a perfect selector (based on the ground truth

labelings) would output stories with a 3.7 average match quality, outputting a story for all
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Main Sorter α

One Team (c7) 0.22
Run Difference (c5) 0.14
Single (c11) 0.14
Out Count (c3) 0.13
Hit by Pitch (c21) 0.12
Marquee Matchup (c26) 0.12
Great Statistics (c27) 0.12

Table 5.5: The Ranker produced by SCoReS AdaRank with 4400 training data.

40 folds. The Decision Tree operating on its own output stories that averaged a 2.3 match

quality, outputting a story for all 40 folds. Thus it does not provide as good a ranking as the

Ranker, but does provide a scalar value within the hybrid approach that can be used as a

threshold to determine which top ranked stories are output by SCoReS.

While these experiments show that SCoReS performs well with respect to outputting a

story with a high match quality, what we are actually interested in is the enjoyment of view-

ers watching games containing commentary augmented by SCoReS, as well as how useful

professional commentators think SCoReS would be to them while they are commentating

on games. We thus made the transition from cross-validation experiments to user studies

and interviews.

5.2 User Studies

The true measure of success for SCoReS is how viewers perceive the stories it selected in

the context of the game. Between summer 2011 and winter 2012, we conducted six user

studies to test whether commentary adds to a broadcast, whether inserting stories into a

broadcast makes it more enjoyable, and whether the added stories need to be in the proper

context to add to the broadcast. Each user study involved participants watching video clips

from two AAA (minor league) baseball games: the July 15, 2009 AAA All-Star game be-

tween the International League and the Pacific Coast League, and the April 7, 2011 game

between the Buffalo Bisons and Syracuse Chiefs. Each study involved three different types

of commentary, depending upon which hypothesis we were testing. Each video clip was be-

tween three and six minutes in length, and they were always shown in chronological order.

The order of the commentary, however, varied. After each clip, participants answered ques-

tions related to their enjoyment of the clip. At the end of the session, participants completed

a background questionnaire.
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User Study I Questionnaire
1) I found this viewing experience enjoyable.
2) I learned something watching this clip.
3) I found this viewing experience interesting.
4) I found the video clip easy to follow.
5) I enjoyed the commentary in this clip.
6) Viewing this clip made me more interested in watching baseball.
7) Viewing this clip made me more interested in watching sports.
8) Viewing this clip made me more interested in participating in sports.

Table 5.6: User study questions asked to participants in User Study 1. Participants were
asked to rate each question from 1 to 7 (strongly disagree - strongly agree).

5.2.1 User Study I – The Need for Commentary

In the first user study, we compared SCoReS Commentary to two different types of com-

mentary. For No Commentary, we removed the commentary from the broadcast, and left

the crowd noise§. The Original Commentary had voiceovers for the original professional

commentary, with no stories inserted or present in the original commentary.¶ The SCoReS

Commentary had a story selected by our system.

We recruited 16 participants from the local community. To measure the performance of

the different types of commentary, we evaluated participants’ answers to the eight questions

listed in Table 5.6. For each of the two games, each participant saw one clip each with

Original Commentary, SCoReS Commentary, and No Commentary. Thus, each participant

saw six video clips in total. For this experiment, SCoReS was trained on 35 game states

and 88 stories, as we did not yet have our full training data. SCoReS output stories that

averaged a 1.89 match quality, for 19 of the 35 cross-validation folds. As a comparison, a

perfect selector would output stories with a 2.6 average match quality, outputting a story for

all 35 folds. The Decision Tree (used as the Evaluator) output stories that averaged a 1.47

match quality over the 40 games, when used as an autonomous ranker.

The parameters for this experiment are shown in Table 5.7, with the Ranker being that

shown in Table 5.8. Jim Prime, who did the play-by-play for this study, is an author of

several baseball books, including Ted Williams’ Hit List, a book he co-authored with Ted

Williams of the Boston Red Sox [Williams and Prime, 1996]. SCoReS had a database of
§The crowd noise was artificial as we could not remove commentary without removing the crowd noise.

After removing all the sound from the original broadcast, we added an audio file of crowd noise. This held for
all types of commentary.
¶Voicing over the commentary was necessary as we needed to insert stories in some commentary, and

needed the stories read in the same voice as the other commentary. We used voiceovers in all video clips for
consistency.

41



Parameter Value
Total Number of Participants 16
Baseball Fan Participants 4
Story Database Size 88
Ranker Parameters 〈NDCG, 4, 4〉
Play-by-Play Commentator Jim Prime
Colour Commentator Greg Lee

Table 5.7: Parameters for User Study I.

88 stories from which to choose stories for each game state. Figure 5.2 shows that SCoReS

Commentary ranked significantly higher than No Commentary across all metrics. A one-

tailed test was used to check for significance in the results of all experiments. Correcting for

multiple comparisons with a Holm-Sidak test, SCoReS Commentary is ranked significantly

higher than No Commentary across all metrics except “Viewing this clip made me more

interested in participating in sports.”. The full table of p values is shown in Appendix A.1.
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Figure 5.2: Mean (+/- Standard Error of the Mean) difference between SCoReS Commentary
and No Commentary. *** indicates p < 0.001.

42



Main Sorter 1st Tiebreaker 2nd Tiebreaker 3rd Tiebreaker α

One Team (c7) Two Teams (c8) Triple (c13) Walk (c19) 0.36
Run Diff (c5) One Team (c7) Strikeout (c15) Marquee(c26) 0.24
Two Teams (c8) Hit by Pitch (c21) Runner on First (c23) Strikeout (c15) 0.21
Out (c3) One Team (c7) Home Run (c9) Int Walk (c20) 0.19

Table 5.8: The Ranker produced by SCoReS AdaRank with 3080 data.

5.2.2 User Studies II, III, & IV – Discovery of the First Clip Bias

Having collected evidence that commentary itself adds entertainment to a game broadcast,

we performed two more user studies, replacing No Commentary with Mismatch Commen-

tary. For Mismatch Commentary, we inserted a story in the same place as we would with

SCoReS, but instead of the story being selected for that game state, it was actually a story

chosen by SCoReS for a different game state, in the other game the participant saw. This

allowed us to keep the story pool consistent across the conditions thereby controlling for

the overall level of interest.

User Studies II and III

User Studies II and III took place concurrently. User Study II was conducted at the Univer-

sity of Alberta (U of A), while User Study III took place at Acadia University. Due to the

procedural differences in using the subject pool at the two institutions, participants from the

U of A did not know the subject matter of the study beforehand, while those at Acadia Uni-

versity did (thus, they were “self-selected”). Both sets of participants were drawn from the

Psychology subject pool at their respective academic institutions. To better assess the value

of the different types of commentary, the questions asked of participants were updated for

User Studies II and III (Table 5.9) ‡. Questions from Table 5.6 deemed unnecessary were re-

moved, and questions pertaining specifically to the story were added in an attempt to gauge

what effect the stories were having on viewers’ enjoyment of the clips. As in the first user

study, participants in User Studies II and III saw six video clips each, three from each game

and two of each type of commentary.

Parameters for User Studies II and III (as well as IV) are given in Table 5.11, with

the Ranker given in Table 5.12. The cross-validation process described in section 5.1 was

updated to perform 10 iterations of each parameter set and take the average, to avoid bias

from random tie-breaking in rankings (in the case where the ranker itself does not provide
‡There were also four “dummy” questions asked in an attempt to prevent subjects from deducing exactly

what we were testing. These are shown in Appendix D.6.
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User Studies II, III, V, and VI Questionnaire
1) I found this viewing experience enjoyable.
2) I learned something about baseball history watching this clip.
3) I found the video clip easy to follow.
4) I enjoyed the commentary in this clip
5) Viewing this clip made me more interested in watching baseball.
6) I thought the story in this clip was enjoyable.
7) I thought the story in this clip was fitting to the game at hand.
8) I thought the story in this clip was annoying.

Table 5.9: Questions asked to participants in User Studies II, III and IV.

enough information to completely order the stories). This implementation of SCoReS av-

eraged a 2.25 match quality over 16 game states for which it output a story, while (as in

User Study I) a perfect ranker would have averaged a 2.6 match quality over all 35 folds.

In an attempt to improve the Ranker and Evaluator performance, we introduced 18 new

similarity features. None of the Rankers used in he user studies made use of these features

but the Evaluator (a Decision Tree) did use these features in some cases. These similarity

features are listed in Table 5.10.

In an attempt to overcome any ordering biases, nine different combinations of the com-

mentary orderings were used in the study (Table 5.13). By having approximately the same

number of participants see each of these combinations, we ensure that each type of com-

mentary appears in each chronological position the same number of times for each game.

Also, each SCoReS selected story from game A appears as a Mismatch story in game B

the same number of times (3) and at each place in the ordering the same number of times

(1). As an example the SCoReS chosen story for the second clip of Buffalo Bisons vs Syra-

cuse Chiefs game (labelledM2 when shown in the All-Star game) appears first in Group

2, second in Group 5 and third in Group 9. It is also important to ensure that no subject

hears the same story twice. Thus,M2 cannot be shown in the All-Star game in any group

where SCoReS Commentary appears second for the Buffalo Bisons - Syracuse Chiefs game

(Groups 1, 3 and 6). While the order of the games is less important, we did play Game A

first in odd groups and Game B first in even groups. The results are discussed below.

User Study IV

User Study IV differed from the first three studies in several aspects. Firstly, participants

watched three video clips from one game, and then were given a choice concerning which

version of the fourth clip they would like to watch. They were told that the three clips
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id Name Type Description
c36 Career Average Against Measure Real (~s K+NH) × ~g career BAA.
c37 Season Average Against Measure Real (~s K+NH) × ~g season BAA.
c38 Career Wins Measure Real (~s K+NH) × ~g career W.
c39 Season Wins Measure Real (~s K+NH) × ~g season W.
c40 Career Batting Average Measure Real (~s HR+2B+3B+GS) × ~g career BA.
c41 Season Batting Average Measure Real (~s HR+2B+3B+GS) × ~g season BA.
c42 Career Home Runs Measure Real (~s HR+2B+3B+GS) × ~g career HR.
c43 Season Home Runs Measuret Real (~s HR+2B+3B+GS) × ~g season HR..
c44 Last Career Average Against Measure Real (~s K+NH) × ~g last career BAA.
c45 Last Season Average Against Measure Real (~s K+NH) × ~g last season BAA.
c46 Last Career Wins Measure Real (~s K+NH) × ~g last career W.
c47 Last Season Wins Measure Real (~s K+NH) × ~g last season W.
c48 Last Career Batting Average Measure Real (~s HR+2B+3B+GS) × ~g last career BA.
c49 Last Season Batting Average Measure Real (~s HR+2B+3B+GS) × ~g last season BA.
c50 Last Career Home Runs Measure Real (~s HR+2B+3B+GS) × ~g last career HR.
c51 Last Season Home Runs Measuret Real (~s HR+2B+3B+GS) × ~g last season HR..
c52 Season Batting Average Relevance Real # of untrue ~s features × ~g season BA.
c53 Season Average Against Relevance Real # of untrue ~s features × ~g season BAA.

Table 5.10: Similarity features added after User Study I. Here “K” = “strikeout”, “NH” =
“no-hitter”, “BA” = “batting average”, “BAA” = “batting average against”, “HR” = “home
run”, “2B” = “double”, “3B” = “triple”, “GS” = “grand slam” , “W” = “wins” and “Last” =
“Pitcher/Batter for the previous pitch”.

Parameter User Study II User Study III User Study IV
Institution U of A Acadia Acadia
Total Number of Participants 97 28 22
Baseball Fan Participants 17 21 13
Story Database Size 88 88 88
Ranker Parameters 〈AP, 3, 2〉 〈AP, 3, 2〉 〈AP, 3, 2〉
Play-by-Play Commentator Greg Lee Greg Lee Len Hawley
Colour Commentator Jim Prime Jim Prime Jim Prime

Table 5.11: Parameters for User Studies II, III and IV.

Main Sorter Tiebreaker α

One Team (c7) Big Finish (c32) 0.57
Sacrifice (c10) Bad Pitcher Confidence (c28) 0.22
Blowout (c33) Home Run Hitter One Run Game (c34) 0.21

Table 5.12: The Ranker produced by SCoReS AdaRank for User Studies II, III, and IV.
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Group All-Star Audio Ordering Bisons Audio Ordering First Game
Group 1 OM1 S M2 S O A
Group 2 M2 O S S M2 O B
Group 3 O S M3 M1 S O A
Group 4 O S M1 M3 O S B
Group 5 S M2 O S OM3 A
Group 6 M3 S O O S M1 B
Group 7 S M3 O S OM2 A
Group 8 M1 O S OM1 R B
Group 9 S OM2 OM3 S A

Table 5.13: User Study II and III Orderings. Original Commentary = O, SCoReS Commen-
tary = S and Mismatch Commentary =M.

they had seen featured different types of commentary and asked which of these types of

commentary they would like to see in the fourth clip. They were not explicitly told which

types of commentary were available, simply that they could choose between the types of

commentary in the first three clips they watched. They then watched the fourth clip and

answered whether they were pleased with their choice, or not. User Study IV took place at

Acadia, again with self-selected participants. Len Hawley, the play-by-play commentator

for the Acadia Men’s Varsity hockey team did the play-by-play reading for this experiment,

and the last two user studies as well. This provided the experiments with a professional

voice, and removed any bias created by having the researcher do some of the commentating.

First Clip Bias

The ordering of the commentary types in User Study IV (Original Commentary, SCoReS

Commentary and Mismatch Commentary) was balanced, so that each type appeared in each

clip approximately the same number of times. The type of commentary from the first clip

shown was never chosen for the fourth clip by a participant, however. A similar issue was

noted in User Studies II and III – participants rated the first clip they saw statistically signif-

icantly lower for all questions, except “I learned something about baseball history watching

this clip”. SCoReS Commentary did score significantly higher than Original Commentary

and Mismatch Commentary for this metric, with p < 0.05. Beyond this metric though,

results for studies II – IV were disregarded, as the first clip bias distorted participants

perceptions of each commentary type. Data supporting the first clip bias can be found in

Appendix A.2, while some discussion of results for User Studies II and III can be found

in Appendices A.3 and A.4, respectively. The first clip bias was not seen in User Study I,
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which is why those results were presented.

5.2.3 User Studies V and VI – Baseball Fans prefer SCoReS

Similarly to User Studies II and III, User Studies V and VI took place concurrently at the

University of Alberta and Acadia University, respectively. Participants from the U of A

again had no knowledge of study subject matter beforehand, and Acadia students again

were self-selected.

The setup for User Studies V and VI included some adjustments to previous studies.

Foremost amongst these was eliminating the first clip bias. To do so, we inserted a “dummy

clip”, which preceded the three video clips of interest. Thus, each participant saw eight

video clips in total. Another adjustment was to screen participants with the question “Are

you a baseball fan?” †. As baseball fans actually enjoy baseball games, we hypothesized

that they would be likely to notice differences in commentary. Also, SCoReS is built to

improve the enjoyment of a sport. If someone does not enjoy a sport to begin with, it may

be difficult to change his or her mind. The ordering of video clips was again that shown in

Table 5.13. SCoReS had access to the full 4400 training data, and output the Ranker shown

in Table 5.5. Parameters for these experiments are given in Table 5.14.

We recruited 39 students from the U of A and 17 students from Acadia University who

were self-described baseball fans. For each of the two games, each participant saw one

clip each with Original Commentary, SCoReS Commentary, and Mismatch Commentary.

The 17 baseball fans from Acadia did not yield any significant results, likely mostly due to

the small number of them. The baseball fans from the University of Alberta, did, however.

Figure 5.3 shows the mean difference between SCoReS Commentary and both Original

Commentary and Mismatch Commentary for User Study VI. SCoReS Commentary was

ranked higher than the Original Commentary for the “Viewing this clip made me more

interested in watching baseball” metric, with p < 0.001. This shows that adding stories

to commentary can improve a broadcast. SCoReS Commentary was ranked higher than

Mismatch Commentary for the “I found this viewing experience enjoyable” metric with

p < 0.01. This shows that intelligently adding stories to commentary can be more enjoyable

to the viewer than adding random stories.

Correcting for multiple comparisons with a Holm-Sidak test, p < 0.05 for both of

these comparisons. The full list of p values can be found in Appendix A.5. Questions 6

†We asked several screening questions and allowed subjects who said “yes” to any of them to participate,
hence why not all the participants in these studies were baseball fans.
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Parameter User Study V User Study VI
Institution Acadia U of A
Total Number of Participants 23 69
Baseball Fan Participants 12 39
Story Database Size 110 110
Ranker Parameters 〈WTA, 7, 0〉 〈WTA, 7, 0〉
Play-by-Play Commentator Len Hawley Len Hawley
Colour Commentator Jim Prime Jim Prime

Table 5.14: Parameters for User Studies V and VI.

– 8 from Table 5.9 are omitted from the graph as 1) the questions were irrelevant to the

Original Commentary case and b) there were no significant differences between SCoReS

Commentary and Mismatch Commentary for these questions.
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Figure 5.3: Mean (+/- Standard Error of the Mean) difference between SCoReS Commentary
and Original Commentary or Mismatch Commentary. *** indicates p < 0.001; * indicates
p < 0.05; ∧ indicates p < 0.1.

5.3 Interviews with Commentators

In this experiment, we demonstrated SCoReS to professional commentators. To evaluate the

potential usefulness of SCoReS, we first asked them, “Would you be interested in a system

that suggests interesting stories during a game?”. Then we demonstrated SCoReS delivering

three stories for four different clips to the commentators. After each clip, we asked, “Would

you tell any of the suggested stories?”. The commentators could answer based on a synop-
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sis, or choose to see the full story text. After the full demonstration we asked, “Would you

be interested in this particular system?”. The Ranker used within SCoReS to choose stories

for the demonstration was the same as that used in User Studies V and VI (Table 5.5). A

screenshot of the demonstration is shown in Figure 5.4.

The four commentators were Len Hawley (who did play-by-play reading for some video

clips, but was detached from the story insertion aspect of the user studies), Dan Robertson,

play-by-play commentator for various sports (including baseball) for Eastlink Television,

and Mark Lee and Kevin Weekes, a play-by-play an colour commentator team for the Cana-

dian Broadcasting Corporations’s (CBC’s) Hockey Night in Canada programme.

All four commentators said they believed a system such as SCoReS would be a useful

tool to have at their disposal. When asked about SCoReS itself, they all answered that it

would be a great tool not only for baseball, but also for other sports, with a few tweaks.

In particular, stories would need to be kept short for hockey broadcasts, which is a faster

moving sport.

Among the four clips shown to each commentator, a story suggested in two of them

would have been told by Len Hawley and Dan Robertson with some minor changes. One

of these was a story about a player having a successful day batting, the day after his divorce

in late April, 1988 (the full story can be found in Appendix B.1). The game state where

the story was told was during the April 7th Buffalo Bisons game, just after a player had

his fourth hit and fifth run batted in of the game, thus, a successful game in his own right.

Both commentators said they would have told the story if it had happened in early April. The

Ranker within SCoReS did not make use of the month match feature, c6, for this experiment.

Thus, the story happening earlier in April would have had no effect on SCoReS, and this

story could still have been output. Even if c6 were part of the Ranker used, c6 only takes

account of the month of a story, not the day, so SCoReS would again have been unaffected

by this new knowledge.

Mark Lee and Kevin Weeks also said in two of the clips shown that they would have

told one of the stories presented by SCoReS, with no conditions on their answers. They

offered several other insights as well. First, even if the stories suggested are not appropriate

at the time of suggestion, once commentators have seen them, they can keep the stories in

mind in case they are relevant later. As Mark Lee pointed out, on the two occasions he did

not choose to tell a story, SCoReS suggested stories with a borderline match quality to the

current game state, but if the game state were to change slightly, the match quality would

be high enough for the story to warrant telling. Secondly, a system such as SCoReS would
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Figure 5.4: Screenshot of stories suggested by SCoReS overlaid on the screen during the
2009 AAA All-Star game.
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need to be completely integrated into a broadcast, and not simply used by the commentating

team. This would allow the producers to add imagery to the broadcast, relevant to the story

that the commentators choose to tell. Thirdly, while commentators do know many stories

about the sport being broadcast, there are too many different parts of the game they must

monitor and process in order to properly broadcast the game that they often cannot think up

stories on their own. Thus SCoReS can be beneficial to the broadcasters not only in terms

of suggesting stories they do not know, but also in terms of stories they do know, but would

not have thought of and connected to the current game state. Lastly, while older stories

may seem less relevant to younger viewers, they are actually quite relevant to viewers who

watched games at the time the stories took place. Thus, SCoReS can help keep the interest

of several generations of sports fans by connecting a sport’s past to its present.
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Chapter 6

Discussion and Conclusion

We have shown that SCoReS has a statistically significant positive influence on the sports

viewing experience across several metrics. National commentators Mark Lee and Kevin

Weekes were particularly positive about the system, suggesting its appeal for a broad audi-

ence. This indicates that implementing SCoReS in professional commentating may lead to

a better viewing experience.

6.1 Lessons Learned

Participants in the user studies were recruited from subject pools, and study participation

made up a part of their grade. Thus, they did not watch the video clips at a time of their

choosing, as opposed to a fan watching on television. A more effective way of evaluating

SCoReS would be to have baseball fans evaluate the system at a time of their choosing,

when they are interested in watching baseball.

Viewing three to six minute clips of games can make it difficult for a participant to

gain context in the game, and thus make it difficult to appreciate an appropriately placed

story. An ideal setup for SCoReS evaluation would be to have participants watch an entire

baseball game, so that they could better gauge whether a particular story should be told at a

particular time.

Professional commentators generally state why stories they are telling are relevant, to

give context to the story. This did not happen during the user studies, because we believed

this would have biased participants’ answers to some of the questions. In hindsight, it may

have been possible to state why a story was being told by mentioning the game features that

led to the story’s selection, for both the SCoReS stories and the Mismatch stories.

Despite these challenges, SCoReS was able to achieve significant improvements in

overall enjoyment and increasing interest in watching baseball, and we surmise that in
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a more realistic deployment, SCoReS would further improve the entertainment value of

sports broadcasts. Identifying these challenges and the ways to overcome them is one of the

contributions of this project and we hope these will be used by future researchers.

6.2 Future Research

In the future, we would like to augment SCoReS with baseball facts, in addition to sto-

ries. These facts would be shorter bits of information from baseball’s past, that could be

told quickly. Also, the system would benefit from an automated bot to perform several

tasks. The bot could mine the web looking for relevant stories, providing SCoReS with an

ever-growing set of stories from which to choose. The bot could also automatically extract

features from the stories it finds, eliminating the need to do so by hand.

Adding more training data (both game states and stories) should also benefit SCoReS,

by helping to create a more intelligent learner. A larger story database for SCoReS to choose

from online should provide for a system with more flexibility, making it more likely there is

a story in the database relevant to each game situation. Data labelling is a time-consuming

process that could be performed by multiple individuals (rather than just one domain ex-

pert), possibly making use of such services as Mechanical Turk [Amazon, 2012].

6.3 Future Applications

SCoReS offers many possible future applications along the lines of fully automated com-

mentary. Combining SCoReS with the systems described in Chapter 3 (such as Byrne)

would yield a completely automated commentating system. Sports video games could in-

crease their story databases, and then use SCoReS to select between these stories during

gameplay. Automated storytelling systems such as Statsheet and Narrative Science could

use SCoReS to automatically add stories to their own automatic recaps of games.

SCoReS could also be used to created personalized colour commentary. The viewing

experience could be tailored to not just simply groups, but individuals, through web broad-

casts. Features describing the viewer could be input into the system, and stories could be

selected partly based on these features. Finally, SCoReS could be used for story selection

in real-time strategy games such as StarCraft as they have their own sets of features and

stories, and often contain commentary.
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6.4 Conclusion

Storytelling is believed to be a cognitively rich and creative task. In order to excel in sto-

rytelling, an innate aptitude and training are required. Skilled storytellers including writers,

poets and colour commentators are recognized and famed. In this work, we took a step to-

wards automating this task by building the first AI story selector for colour commentary

in any sport. Its implementation in baseball was positively evaluated in user studies and by

national level professional commentators. We believe this to be a contribution to the field

of Artificial Intelligence with immediate practical applications.
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Appendix A

Supplemental Results for User
Studies

In this appendix, we provide p values for User Studies I and VI, and supplemental results for

user studies affected by the first clip bias. These results helped guide us in later experiments

(User Studies V and VI, and commentator interviews) and also provide some evidence that

SCoReS is able to improve the quality of a broadcast.

Metric p value Corrected
p value

Enjoyment 1.6× 10−7 1.3× 10−6

Learned 1.1× 10−6 8.8× 10−6

Follow 8.5× 10−7 6.8× 10−6

Commentary 9.1× 10−5 7.3× 10−4

Watch Baseball 2.0× 10−8 1.6× 10−7

Interesting 1.4× 10−7 1.1× 10−6

Watch Sports 2.0× 10−6 1.6× 10−5

Participate 8.5× 10−3 6.6× 10−2

Table A.1: p values for the bars in Figure 5.2. All differences are significant (p < 0.05),
even with the Holm-Sidak correction, except for the “Participate” metric.

A.1 User Study I

Table A.1 shows p values obtained from a one-tailed t-test on the data from User Study I.

A.2 First Clip Bias

Figure A.1 shows the effect of the first clip bias (see Section 5.2.2) on the Enjoyment metric

in User Study II. The first clip is ranked significantly lower, regardless of commentary type.

The rest of the metrics are ranked similarly, except for the “I learned something about
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baseball history watching this clip”. This bias is likely due to participants being unfamiliar

with the teams and game when the watch the first clip, and becoming more familiar after

having seen the first clip.
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Figure A.1: The enjoyment of participants per clip, for User Study II. Clip 1 suffers from
the first clip bias, as it is ranked significantly lower than Clips 2− 5.

Table A.2 shows the difference between the scores for the first clip and the scores for

the clip that scored the worst (other than clip 1), for the enjoyment and commentary metrics.

User Studies, II, III and IV are all significantly affected by the first clip bias, while User

Study I is not. User Studies V and VI do not suffer from the first clip bias due to the showing

of a dummy clip before the first clip of interest. Tables for metrics other than the “Learned”

metric show similar results.

A.3 User Study II

User study II took place at the University of Alberta. Results from these experiments were

affected by the first clip bias, rendering the results untrustworthy. Still, trends seen in the

Study Enjoyment Enjoyment Commentary Commentary
Difference p value Difference p value

I −0.125 4× 10−1 +0.19 4× 10−1

II +1.143 1× 10−6 +1.5 3× 10−6

III +0.773 1× 10−7 +1.37 8× 10−14

IV +1.000 4× 10−3 +0.8 4× 10−2

V 0 5× 10−1 +0.12 3× 10−1

VI −0.045 6× 10−1 −0.18 8× 10−1

Table A.2: The mean difference between the minimum of clips 2−5 and clip 1 over several
metrics.
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results from these studies led us to the successful User Studies IV and V, so we present the

results here.

Figure A.2 shows the mean difference between SCoReS Commentary and both Original

Commentary and Mismatch Commentary for 97 participants at the University of Alberta.

Recall that the only metric unaffected by the first clip bias was that measuring “I learned

something watching this clip”. As Figure A.2 shows, SCoReS Commentary outperforms

both Original Commentary and Mismatch Commentary by a statistically significant margin

in this metric. This makes intuitive sense for the Original Commentary clip, as it contains

no story, while the clip containing SCoReS Commentary does. In the case of Mismatch

Commentary, it is possible that participants learned more from the SCoReS Commentary

case because the story they heard had some connection to the game at hand, thus keeping

their attention.
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Figure A.2: Mean (+/- Standard Error of the Mean) difference between SCoReS Commen-
tary and Original Commentary or Mismatch Commentary, for User Study II. * indicates
p < 0.05.

A.4 User Study III
Figure A.3 shows the mean difference between SCoReS Commentary and both Original

Commentary and Mismatch Commentary for 28 participants at the Acadia University. User

Study III was originally meant as a supplemental study to User Study II – to boost the
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Question vs Original vs Mismatch Corrected Corrected
Original Mismatch

Enjoyed 1.8× 10−1 1.0× 10−2 6.2× 10−1 5.0× 10−2

Learned 6.0× 10−2 4.4× 10−1 2.7× 10−1 9.4× 10−1

Follow 1.2× 10−1 1.3× 10−1 4.9× 10−1 5.0× 10−1

Commentary 1.0× 10−1 5.3× 10−1 4.3× 10−1 9.8× 10−1

Watch 8.0× 10−4 1.0× 10−1 4.0× 10−3 4.2× 10−1

Table A.3: The p values when comparing SCoReS Commentary to Original Commentary
and Mismatch Commentary in User Study VI (for the bars in Figure 5.3).

participant number and completely balance the study with respect to the orderings in Ta-

ble 5.13. We later deemed it a separate study due to the self-selection of the participants at

Acadia. This led to User Study III being unbalanced in terms of which clip was seen first.

Among the 28 participants, only 2 saw the a first clip with SCoReS Commentary, while 13

each saw Original Commentary and Mismatch Commentary first. Given the first clip bias,

SCoReS was given a tremendous advantage in this study, and this could explaine SCoReS

showing improvement over the other two types of commentary, as seen in Figure A.3.
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Figure A.3: Mean (+/- Standard Error of the Mean) difference between SCoReS Commen-
tary and Original Commentary or Mismatch Commentary for User Study III. We omit sig-
nificance symbols due to the unbalanced nature of the experiment.
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A.5 User Study VI

Table A.3 shows the p values for Figure 5.3, the results for User Study VI, as well as the p

values after being corrected with a Holm-Sidak multiple comparison correction.
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Appendix B

Sample Stories

The following four stories were part of the story database used in all experiments. They were

among the stories suggested to professional commentators as part of the demonstration of

SCoReS.

B.1 Keith Hernandez’s Divorce

Former New York Met Keith Hernandez likes to tell the story about the day after his divorce.

Hernandez’s divorce was effective on April 25, 1988, and in the Mets’ 13-4 victory the next

day over the Braves, Hernandez hit two homers, including a grand slam, and collected seven

RBIs. After the game, he told reporters, “If I got a divorce every day, I’d be in the Hall of

Fame.”

B.2 1986 World Series

In the 1986 World Series, the Boston Red Sox led the New York Mets by three games

to one and by two runs in the bottom of the tenth inning of Game 6. With two outs, the

Mets hit three consecutive singles, and then benefitted from a Bob Stanley wild pitch to tie

the game. This left them with a runner at second base and two out, for the batter, Mookie

Wilson. After fouling off several pitches, Wilson hit a weak grounder down the first base

line that somehow eluded first baseman Bill Buckner and led to the Mets winning the game.

The Mets would win Game 7 to take the 1986 World Series.

B.3 Red Barrett’s Quick Game

Red Barrett was a pitcher for the Boston Braves known for keeping the clubhouse loose

with his antics. He also was known for pitching quick games. On August 10, 1944, he shut
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out the Cincinnati Reds 2-0, allowing only 2 singles. The entire game took just one hour

and 15 minutes to play. He threw only 58 pitches, a major league record for a complete

game.

B.4 Luis Tiant’s Tough All-Star Loss

Luis Tiant, who pitched for the Cleveland Indians and Boston Red Sox among other teams,

had his best season in 1968, going 21-9 with 9 shutouts and a 1.60 ERA. He had some

rough luck in the Major League All-Star game, though. Chosen to start the game, he gave

up a lead off single to Willie Mays. Tiant then attempted a pick-off throw, but first baseman

Harmon Killebrew was not prepared, and missed the throw. Mays advanced to second, then

to third on a wild pitch from Tiant that walked Curt Flood. The double play that followed

allowed Mays to score. This would be the only run of the game, as the National League

prevailed 1-0, the first time an AllStar game ended with that score. Tiant later said “I lost

the game because I tried to pick-off Mays. Instead, I picked off Killebrew”.
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Appendix C

Marquee Matchup Feature
Calculation

In this appendix, we present how the marquee matchup feature is calculated, referencing

the table of similarity features (Table 5.4) the table of game state features (Table 5.1) and

the table of story features (Table 5.3).

In order to compute the marquee matchup feature c26, we first calculate four interme-

diate features f to later combine into a single scalar value. Table C.1 shows the threshold

values for f1, the Good Batting Average feature, while Table C.2 shows the threshold values

for f2, the Good Pitcher Average Against feature.

Test on Season f1
Batting Average (g7)

g7 ≤ 0.26 0.3
g7 ≤ 0.28 0.5
g7 ≤ 0.30 0.7
g7 > 0.30 1

Table C.1: Calculation of the good batting average feature f1.

Test on Season f1
Pitching Average (g12)

g12 ≤ 0.23 1
g12 ≤ 0.25 0.8
g12 ≤ 0.27 0.5
g12 ≤ 0.28 0.3
g12 > 0.28 0

Table C.2: Calculation of the good pitching average against feature f2.
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The Good Batter Home Run Total feature, f3 is calculated according to the formula:

f3 = g8

/((g32 − 4) · 30 + g33
180

· 30
)

where g8 is the batter’s season home run total, g32 is the current month and g33 is the current

day. This formula considers a total of 30 home run total for a season as a marquee home run

hitter, and uses the day and month features to correct for the time of season during which

the game is taking place. The baseball regular season runs from April (the fourth month

of the year) through September (the ninth month), and there are approximately 30 days in

a month (with exactly 30 in September), giving this calculation the approximate range of

[0, 1]. This feature assumes a 30 home run pace is optimal. A home run pace over 30 is

capped at 1.

The Good Pitcher Win Total feature f4 is calculated in a similar manner:

f4 = g10

/((g32 − 4) · 30 + g33
180

· 15
)

where g10 is the pitcher’s win total. Like a high home run pace, a win total pace over 15 is

capped at 1.

The marquee matchup feature c26 is first set to 0.25·(f1+f2+f3+f4), considering each

intermediate feature f equal. Thus, c26 has range [0, 1]. As the value of c26 is not simply a

representation of whether the game state presents a marquee matchup, but a confidence in a

marquee matchup match, its value is further refined by the category of the story, as shown

in Table C.3.

Category feature Category Refinement of Marquee
s45 value Matchup Feature c26

1 Opening of Inning c26 ← c26 · 0.5
2 Bad Hitter c26 ← c26 · 0.1
3 Marquee Matchup c26 ← c26 · 1.0
4 Great Stats c26 ← c26 · 0.8
5 Bad Stats c26 ← c26 · 0.1
6 Important Game c26 ← c26 · 0.3
7 Big Finish c26 ← c26 · 0.3
8 Blowout c26 ← c26 · 0.3
9 Home Run Hitter c26 ← c26 · 0.3
10 Human Interest c26 ← c26 · 1.0

Table C.3: Refinement of the marquee matchup feature c26 according to the category of the
story s45.

If the story category has little in common with a marquee matchup (e.g., “Bad Hitter”),

then the marquee matchup confidence is diminished. The more similar a category is to
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a marquee matchup, the less its value is diminished. The exception is “Human Interest”,

which is a catch-all category of sorts. No category confidence is diminished for when this

is the story category. The other category confidence features (c27 – c34) are calculated in a

similar manner.
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Appendix D

User Study Materials

D.1 Briefing for User Studies I,II and III

Introduction: Welcome! You are invited to participate in a research study being conducted

by Greg Lee and Dr. Vadim Bulitko of the Department of Computing Science from the

University of Alberta. The purpose of this study is to evaluate the effectiveness of different

types of sports commentary.

Your participation: Your participation in this study involves watching six 5-minute video

clips of Minor League Baseball games. Following the completion of the clip, you will be

asked to fill out a survey ranking the games across several measures, including which game

was more enjoyable to watch.

Your rights: Your decision to participate in this study is entirely voluntary and you may

decide at any time to withdraw from the study. Your decision to discontinue will not affect

your academic status or access to services from the University of Alberta. If you choose

to participate, you may skip any items you do not wish to answer. Responses made by

individual participants on the questionnaires will remain confidential, and your name will

not appear on the questionnaire or be associated with your responses in any way. Ques-

tionnaires will be identified only by a researcher-assigned code number, for the purpose of

associating survey forms with the particular story that the participant experienced. Only

researchers associated with the project will have access to the questionnaires. The results

of this study may be presented at scholarly conferences, published in professional journals,

or presented in class lectures. All data presented will be anonymous. The data will be

securely stored by Greg Lee) for a minimum of five years.
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Benefits and risks: There are no foreseeable risks to this study, but if any risks should

arise, the researcher will inform the participants immediately. If you should experience any

adverse effects, please contact Greg Lee and/or Dr. Vadim Bulitko immediately.

Contact information If you have any questions or comments on the study, or if you wish

a clarification of rights as a research participant, you can contact Greg Lee or the Human

Research Ethics Committee at the number and address below.

Greg Lee

Ph.D. Candidate

27 Finch Court

Kentville, NS

(902) 365-5884

Vadim Bulitko, Ph.D.

Associate Professor

Department of Computing Science

University of Alberta Edmonton, AB

T6G 2E8

(780) 492-3854

University of Alberta Research Ethics Office

(780) 492-2614

reoffice@ualberta.ca

Stephen Maitzen, Ph.D.

Chair of the Acadia Research Ethics Board

Department of Philosophy, Acadia University

Wolfville, NS

B4P 2R6

(902) 585-1407
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Signatures. Please sign below to indicate that you have read and understood the nature and

purpose of the study. Your signature acknowledges the receipt of a copy of the consent form

as well as indicates your willingness to participate in this study.

D.2 Briefing for User Studies IV,V and VI

Introduction: Welcome! You are invited to participate in a research study being conducted

by Greg Lee and Dr. Vadim Bulitko of the Department of Computing Science from the

University of Alberta. The purpose of this study is to evaluate the effectiveness of different

types of sports commentary.

Your participation: Your participation in this study involves watching four 5-minute video

clips of Minor League Baseball games. Following the completion of each clip, you will be

asked to fill out a survey ranking the clip across several measures, including how enjoyable

it was to watch. In addition, following the first three clips you will be asked to choose

which version of the fourth clip you would like to see, based on what you saw in the first

three clips.

The clips will be from two baseball games. One set of clips features the 2009 AAA

All-Star Game, played between the International League All-Stars and the Pacific Coast

League All-Stars on July 9, 2009. The other is a game between the Buffalo Bisons (the

New York Mets AAA affiliate) and the Syracuse Chiefs (the Washington Nationals AAA

affiliate). This game is from April 7, 2011, the first day of the AAA season that year.

Your rights: Your decision to participate in this study is entirely voluntary and you may

decide at any time to withdraw from the study. Your decision to discontinue will not affect

your academic status or access to services from the University of Alberta. If you choose

to participate, you may skip any items you do not wish to answer. Responses made by

individual participants on the questionnaires will remain confidential, and your name will

not appear on the questionnaire or be associated with your responses in any way. Ques-

tionnaires will be identified only by a researcher-assigned code number, for the purpose of

associating survey forms with the particular story that the participant experienced. Only
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researchers associated with the project will have access to the questionnaires. The results

of this study may be presented at scholarly conferences, published in professional journals,

or presented in class lectures. All data presented will be anonymous. The data will be

securely stored by (Greg Lee) for a minimum of five years.

Benefits and risks: There are no foreseeable risks to this study, but if any risks should

arise, the researcher will inform the participants immediately. If you should experience any

adverse effects, please contact Greg Lee and/or Dr. Vadim Bulitko immediately.

Contact information If you have any questions or comments on the study, or if you wish

a clarification of rights as a research participant, you can contact Greg Lee or the Human

Research Ethics Committee at the number and address below.

Greg Lee

Ph.D. Candidate

27 Finch Court

Kentville, NS

(902) 365-5884

Vadim Bulitko, Ph.D.

Associate Professor

Department of Computing Science

University of Alberta Edmonton, AB

T6G 2E8

(780) 492-3854

University of Alberta Research Ethics Office

(780) 492-2614

reoffice@ualberta.ca

Stephen Maitzen, Ph.D.
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Chair of the Acadia Research Ethics Board

Department of Philosophy, Acadia University

Wolfville, NS

B4P 2R6

(902) 585-1407

Signatures. Please sign below to indicate that you have read and understood the nature and

purpose of the study. Your signature acknowledges the receipt of a copy of the consent form

as well as indicates your willingness to participate in this study.

D.3 Debriefing for User Study I

Thank you for participating in this study! Your time and effort have been valuable to us.

Baseball broadcasting is a major business, and we would like to show that part of it can

either be automated completely or aided by an automated system. Our research investigates

whether computers can learn to do colour commentary for baseball. Specifically, we

investigate having computers automatically select stories from baseballs immediate and

distant past based on what is actually happening (or has just happened) in the current game.

Since storytelling is considered a very human task, this is an interesting and challenging

problem.

To examine this, we created an automated storytelling system in which the story is chosen

based on features of the current game state (such as balls, strikes and the score). Our inde-

pendent variable is the presence or absence of the storytelling system within the broadcast.

There were three types of broadcast shown in the user study:

- a broadcast with no commentators

- play-by-play commentary with human colour commentary

- play-by-play commentary with computer-chosen colour commentary.

Our hypotheses were that viewers who watched the broadcasts with computer-chosen

colour commentary would rate the game’s entertainment value as highly as viewers who

experienced the broadcasts with human colour commentary. The broadcasts without

commentators were included to investigate whether commentary is necessary at all. It was
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necessary to withhold the information that the broadcasts could contain computer com-

mentary to eliminate biases based on having this information. The results of this research

could help both the video game industry by supplying automatic colour commentary, or

actual Major League Baseball broadcasts by supplying an assistant to a human colour

commentator.

Thanks very much for participating. Without the help of people like you, we couldn’t

answer most important scientific questions in psychology. You’ve been a great help. Do

you have any questions that I can answer right now? If you have any questions, later on,

about the study, please contact Greg Lee via either phone (902-365-5884) or e-mail (gre-

glee@cs.ualberta.ca) or if you have general questions, contact the University of Alberta

Research Ethics Board at reoffice@ualberta.ca or (780) 492-2614 , Sharon Randon (Re-

search Participation Coordinator) at rescred@ualberta.ca or 780-492-5689. or Dr. Stephen

Maitzen (Chair of Acadia Research Ethics Board) via phone (902-585-1407) or email

(stephen.maitzen@Acadiau.ca). Please do not tell other people about what we had you do

here to avoid biasing potential participants.

D.4 Debriefing for User Studies II-VI

Thank you for participating in this study! Your time and effort have been valuable to us.

Baseball broadcasting is a major business, and we would like to show that part of it can

either be automated completely or aided by an automated system. Our research investigates

whether computers can learn to do colour commentary for baseball. Specifically, we

investigate having computers automatically select stories from baseballs immediate and

distant past based on what is actually happening (or has just happened) in the current game.

Since storytelling is considered a very human task, this is an interesting and challenging

problem.

To examine this, we created an automated storytelling system in which the story is chosen

based on features of the current game state (such as balls, strikes and the score). Our inde-

pendent variable is the presence or absence of the storytelling system within the broadcast.

There were three types of broadcast shown in the user study:

- a broadcast with no commentators

- play-by-play commentary with human colour commentary
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- play-by-play commentary with computer-chosen colour commentary.

Our hypotheses were that viewers who watched the broadcasts with computer-chosen

colour commentary would rate the game’s entertainment value as highly as viewers who

experienced the broadcasts with human colour commentary. The broadcasts without

commentators were included to investigate whether commentary is necessary at all. It was

necessary to withhold the information that the broadcasts could contain computer com-

mentary to eliminate biases based on having this information. The results of this research

could help both the video game industry by supplying automatic colour commentary, or

actual Major League Baseball broadcasts by supplying an assistant to a human colour

commentator.

Thanks very much for participating. Without the help of people like you, we couldn’t

answer most important scientific questions in psychology. You’ve been a great help. Do

you have any questions that I can answer right now? If you have any questions, later on,

about the study, please contact Greg Lee via either phone (902-365-5884) or e-mail (gre-

glee@cs.ualberta.ca) or if you have general questions, contact the University of Alberta

Research Ethics Board at reoffice@ualberta.ca or (780) 492-2614 , Sharon Randon (Re-

search Participation Coordinator) at rescred@ualberta.ca or 780-492-5689. or Dr. Stephen

Maitzen (Chair of Acadia Research Ethics Board) via phone (902-585-1407) or email

(stephen.maitzen@Acadiau.ca). Please do not tell other people about what we had you do

here to avoid biasing potential participants.

D.5 Questionnaire for User Study I

Please circle one value for each question:

Video Clips 1-6

I found this viewing experience enjoyable

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I learned something watching this video clip

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)
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I found this viewing experience interesting

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I found the video clip easy to follow

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I enjoyed the commentary in this clip

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

Viewing this clip made me more interested in watching baseball

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

Viewing this clip made me more interested in watching sports

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

Viewing this clip made me more interested in participating in sports

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

D.6 Questionnaire for User Studies II and III

Please circle one value for each question

Video Clips 1-6

I found this viewing experience enjoyable

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I learned something watching this video clip

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I found the video clip easy to follow
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(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I enjoyed the commentary in this clip

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

Viewing this clip made me more interested in watching baseball

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

There was a good balance between the commentators

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I thought the commentators displayed bias towards one team

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

The commentators were experts concerning baseball

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

There was a story in this clip

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I thought the story in this clip was enjoyable

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I thought the story in this clip was fitting to the game at hand

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I thought the story in this clip was annoying

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)
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D.7 Questionnaire for User Study IV

Please circle one value for each question

Video Clips 1-3

I found this viewing experience enjoyable

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I learned something watching this video clip

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I found the video clip easy to follow

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I enjoyed the commentary in this clip

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

Viewing this clip made me more interested in watching baseball

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

There was a good balance between the commentators

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I thought the commentators displayed bias towards one team

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

The commentators were experts concerning baseball

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

There was a story in this clip

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I thought the story in this clip was enjoyable
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(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I thought the story in this clip was fitting to the game at hand

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I thought the story in this clip was annoying

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

1) The three clips you have just seen used different forms of commentary. You will now

see one more clip from this game. Please choose which form of commentary you’d like to

see used in the final clip:

a) Type of commentary from clip 1

b) Type of commentary from clip 2

c) Type of commentary from clip 3
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Video Clip 4

I found this viewing experience enjoyable

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I learned something watching this video clip

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I found the video clip easy to follow

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I enjoyed the commentary in this clip

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

Viewing this clip made me more interested in watching baseball

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

There was a good balance between the commentators

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I thought the commentators displayed bias towards one team

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

The commentators were experts concerning baseball

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

There was a story in this clip

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I thought the story in this clip was enjoyable

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I thought the story in this clip was fitting to the game at hand

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)
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I thought the story in this clip was annoying

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I am glad I chose this version of the fourth clip

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

In hindsight, I would have preferred to choose one of the other versions

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

The type of commentary in this clip was what I expected based on my choice

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

D.8 Questionnaire for User Studies V and VI

Please circle one value for each question

Video Clips 1-6

I found this viewing experience enjoyable

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I learned something watching this video clip

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I found the video clip easy to follow

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I enjoyed the commentary in this clip

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

Viewing this clip made me more interested in watching baseball

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

77



There was a good balance between the commentators

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I thought the commentators displayed bias towards one team

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

The commentators were experts concerning baseball

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

The story in this clip was about:

a) there was no story

b) tomatoes

c) a disputed strike call

d) players trying to throw games

I thought the story in this clip was enjoyable

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I thought the story in this clip was fitting to the game at hand

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

I thought the story in this clip was annoying

(Strongly Disagree) 1 2 3 4 5 6 7 (Strongly Agree)

D.9 Post-Study Questionnaire for User Studies I,II and III

1) Are you a baseball fan?

Yes No

2) Were you familiar with the teams involved in the clips?

Yes No
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3) In an average year, how much baseball do you watch? (Please circle one)

None

Less than a full game

1-5 games

5-20 games

20+ games

4) In an average year, how many hours of sports do you watch? (Please circle one)

0 hours

1-10 hours

10-100 hours

100+ hours

5) Please circle your age group:

18-25

26-30

31-35

36 and up

6) Please circle your sex

Male

Female

D.10 Post Study Questionnaire for User Studies IV, V, and VI

1) Are you a baseball fan?

Yes No

2) Were you familiar with the teams involved in the clips?

Yes No
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3) In an average year, how much baseball do you watch? (Please circle one)

None

Less than a full game

1-5 games

5-20 games

20+ games

4) In an average year, how many hours of sports do you watch? (Please circle one)

0 hours

1-10 hours

10-100 hours

100+ hours

5) Please circle your age group:

18-25

26-30

31-35

36 and up

6) How many books did you read for pleasure in the past year? (Please circle one)

None

1-3

4-10

10 or more

7) Do you think having stories added to a broadcast makes a game more entertain-

ing?

Yes

No

8) In your lifetime, how many organized baseball/softball games have you partici-

pated in? (Please circle one)

None
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1-5

6 or more

9) In general, do you think baseball is boring?

Yes

No

6) Please circle your sex

Male

Female
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