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Abstract

In this paper we present a type system that combines inclusion and parametric polymorphism with
behaviors �multi�methods� and precise function typing� Type declarations allow user�de�nable variance
speci�cation of type parameters and user�de�nable subtyping between types of di�erent kind� Our
approach involves use of type speci�cation logic which translates type speci�cations into types� Types
are computable values� Type computation of types generated by the logic results in precise function and
behavior typing� As a proof of concept� a toy language with its syntax� semantics� and subject reduction
theorem is presented�



� INTRODUCTION �

� Introduction

In the past decade the type safety of programming languages has been a focus of proli�c research activity�
One of the major problems in this area is the development of a type system that would statically ensure
type safety and would still be expressive enough to deal with today�s advanced modeling and development
requirements� It is well known that expressive power and convenience of a type system sometimes� if not in
most cases� make static type safety very di�cult to achieve� It therefore comes as no surprise that many
languages sacri�ce static type safety for �exibility and expressiveness of their type systems �e�g Ei�el 	Mey

��
BETA 	MMMP�
���

The recent advancements in the area of type systems make it possible to design an expressive type sys�
tem that supports static type safety� One of the main ideas that allow us to achieve this goal is the idea of
polymorphism� Parametric polymorphism is used as a central design principle behind very expressive type
systems of ML 	MTH�
� and many languages in�uenced by it� such as Napier

 	MBC���� and Machiavelli
	BO���� Inclusion polymorphism� on the other hand� is used in modern object�oriented languages� Recently�
many attempts have been made to combine the expressive power of these two widely used forms of polymor�
phism in a single type system �PolyTOIL 	BSG���� LOOP 	ESTZ���� Sather 	SOM���� Theta 	DGLM����
TooL 	GM���� and TL 	MMS�����

However� the full potential of such a powerful combination has yet to be realized� In the presence of two
forms of polymorphism� the interaction between them must be identi�ed� This includes the subtyping be�
tween parametric types of the same shape� which can be covariant �such as non�updatable sets�� contravariant
�output streams�� or novariant �updatable sets�� It also includes subtyping relationships between di�erent
parametric types �such as Set�X� � UpdatableSet�X�� and between parametric and ordinary types �such
as String � Array�Char� or Collection�Collection�X�� � CollectionOfCollections�� Each of the lan�
guages mentioned above �xes the way the parametric types are treated in terms of variance� PolyTOIL and
TooL allow only covariant parametrizations� while Sather and Theta � only novariant ones� Only Theta�
Sather� and TooL allow user�speci�able subtyping relationships between di�erent parametric types�

Another important feature of a polymorphic type system is its ability to provide precise function typing�
This is needed when the return type of a function depends on types of its arguments� The standard technique
employs type variables that convey type information from argument to result type of a function� This
approach is used in ML 	MTH�
� and many other languages�

The presence of multiple dispatch makes precise function typing signi�cantly more complicated� Multiple
dispatch is sometimes de�ned in terms of multi�methods� and the run�time dispatch mechanism is required
to pick the �most suitable� method� The problems of static typing of multi�methods have been discussed in
	ADL���� 	CL���� 	CL���� 	Ghe���� and others� However� none of these papers discusses the combination of
multi�methods and precise function typing in the form of free variables in type speci�cations�

The ability to specify a wide range of possible interactions between two kinds of polymorphism� as well as
precise function typings� greatly enhances the expressive power of the type system� In this paper� we present
a mechanism that allows us to specify such interactions� give precise typing to functions and behaviors� and
statically type�check the resulting programs�

The mechanism proposed in this paper is designed for object�oriented languages with multiple dispatch
�where types of all arguments� not just the receiver� are taken into account�� It can be easily adopted for
single�dispatched languages as well� but works better in the presence of multiple dispatch� As far as we are
aware� the combination of multiple dispatch� parametric polymorphism� and static type checking is novel to
our work�

The essence of our approach is the treatment of type speci�cations as logical formulae �types� in an
appropriate variant of type theory� The types of objects are then obtained as proofs of their respective type



� USER�DEFINED TYPES �

speci�cations� The types generated in this manner can represent functions from types to types� For example�
the type speci�cation X�X has a proof �x�x� which is a type of functions that produce the result of the
same or lesser type then that of the receiver�

The paper is organized as follows� in Section �� we describe the type and subtype speci�cations that
are allowed in our framework and introduce the notion of the user type graph� Section � describes type
speci�cations and exempli�es their intended meaning� Types� subtyping� and the type reduction are described
in the Section �� The Section � describes the type speci�cation logic that is used to obtain types from type
speci�cations� Later� in Section �� we introduce a toy language that is used to illustrate our approach� with
its syntax and natural semantics� The material in the Section � deals with dispatch and behavior consistency
issues and includes the subject reduction theorem� Finally� Section 
 concludes the paper and outlines the
future research directions�

� User�de�ned types

In this section� we will describe the types that are declared by the user� We will also describe the subtype
declarations and special� prede�ned types�

User�de�ned types �ordinary and parametric� along with a few special prede�ned types form the basis of
the type hierarchy� User�de�ned types can be ordinary or parametric and are declared using type declarations�
while subtyping relationships between them are de�ned by subtype declarations�

In this section we will describe the type and subtype declarations allowed in our framework� We will also
de�ne the user type graph� which is an auxiliary structure automatically generated from the declarations and
used in type�checking and type inferencing� We will require the user type graph to be consistent �one of the
consistency condition being the graph acyclicity�� The formal de�nition of consistency will be presented in
the Section ����

We will start by describing the prede�ned special types� then we will proceed to the declarations and
�nish by the de�nition of the user type graph� its consistency� and auxiliary functions de�ned over it�

��� Special prede	ned types

Several special types are considered to be prede�ned�

�� The type �� This is the supertype of all other types� � is the type of run�time type errors� �err���

�� The type �� This is the subtype of all other types� � is the type of run�time errors �err�� generated
by primitives��

�� The type Object� This is a supertype of all types in the system except for �� The statement X � Object

is interpreted as �X is a valid object type��

�� The type Behavior� This type is a supertype of all behavior and function types �de�ned in Section ���

�� The type RegObject� RegObject is a supertype of all user�de�ned types except for Unit�

�� The type Unit� This type has no supertypes except for Object and � and no subtypes except for ��
The only object of this type is unit� This type is used for procedure and command return values�

�Thus objects of this type can never occur in a successfully typechecked program�
�Potentially� objects of this type can serve as exceptions as� once produced� they propagate all the way up to the highest

level without causing type errors� This potentially valuable treatment of � is outside the scope of this paper�
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�� The parametric types Productn�X�� � � � � Xn� �n � ��� These types have no supertypes except for
RegObject and no subtypes except for �� The parameters are covariant� Objects of these types have
the form ho�� � � � � oni and are used to deal with multiple arguments��

The special types and their place in the type hierarchy are depicted in the Figure � �except for products
that are in the user�de�ned type hierarchy� but are prede�ned and therefore special��

T

Object

⊥

RegObject

User-defined
types

Unit Behavior

Behavior and
function types

Figure �� Special types and their place in the type hierarchy

Note that the types � and � do not have �normal� names and thus can not be explicitly used in the
program� This is a design decision that can be justi�ed by the following consideration� since both these
types are types of errors� they should not occur in a correct program�

Having described the special types� we now proceed to the �normal� user�de�ned types�

��� User type declarations

First� we will establish some terminology and introduce the notation to be used for user�de�ned types� We
will denote user�de�ned types as T� Parametric types will be written as P�A�� � � � � An�� where Ai are type
parameters and P is called the head� The head of an ordinary type is that type itself� A set of all parametric
types with the same head will be called a family of parametric types�

Both parametric and ordinary types are declared by type declarations that have the following syntax�
htype�decli ��� type T j type P�htpar�specsi�
htpar�specsi ��� htpar�speci j htpar�specsi� htpar�speci
htpar�speci ��� htpar�var�speci j htpar�var�speci � T

�Note that there is no subtyping between product types of di�erent arities as we do not want to be able to call a behavior
with four arguments if it was designed to accept three�
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htpar�var�speci ��� 
 j � j �
A parametric type declaration is thus the de�nition of a family of parametric types� Each parameter is

characterized by its variance speci�cation and its upper bound� An upper bound is always a non�parametric
user�de�ned type�

Variance speci�cations denote subtyping relationships between parametric types of the same family� Type
parameters marked � are covariant� those marked � are contravariant� and those marked 
 are novariant�

For example� type Dictionary�� � String��� is a declaration of a family of �non�updatable� dictionary
types with two covariant parameters� the �rst being required to be a subtype of String� We assume that
the �rst argument is the key type and the second one is the value type��

The subtyping relationship between types is speci�ed by variance speci�cations �for within�family re�
lationships� and by explicit subtype declarations� Subtype declarations have one of �ve forms� ordinary�
ordinary� parametric�ordinary� ordinary�parametric� parametric�parametric� and parametric�any� We will
consider all these forms along with their syntax and semantics in turn� The following is the syntax of a
subtype declaration�
hsubtype�decli ��� htt�declijhpt�declijhtp�declijhpp�declijhpa�decli

The �rst form of subtype declaration establishes an ordinary type as a subtype of another ordinary type�
A subtype declaration of this form is written as
htt�decli ��� T �u T�

For example� Integer �u Real�
The second form of subtype declaration �hpt�decli� is the de�nition of a subtyping relationship between

a parametric type and its non�parametric supertype�
hpt�decli ��� P�hpt�par�declsi� �u T

hpt�par�declsi ��� hpt�par�decli j hpt�par�declsi� hpt�par�decli
hpt�par�decli ��� T� j � j P��hpt�par�declsi�

The number of hpt�par�declsimust match the de�nition of the appropriate type� The star � has a mean�
ing of a wildcard that matches anything� It can be considered as a universally quanti�ed unique anonymous
variable� This form of subtype declaration has an additional semantic restriction� The hpt�par�decli in the
i�th position of the parametric type P must be a subtype of MaxP�i �the upper bound of the i�th parameter
of P� as de�ned by its declaration�� For example� the declaration Dictionary�Text� �� �u TextDictionary

establishes TextDictionary as a common supertype of all types of the form Dictionary�Text� X�� where
X is any type� provided that Text is a subtype of String�

Yet another form of the subtyping declaration� htp�decli� is the declaration of a subtyping relationship
between a non�parametric type and its parametric supertype� It has the following syntax�
htp�decli ��� T �u P�htp�par�declsi�
htp�par�declsi ��� htp�par�decli j htp�par�declsi� htp�par�decli
htp�par�decli ��� T� j P��htp�par�declsi�

The absence of wildcards here is the only di�erence between this form of subtype declaration and
the previous one� For example� the declaration String �u List�Character� makes String a subtype of
List�Character�� Note that since the parametric type here is fully instantiated� it is impossible to make an
ordinary type a subtype of an in�nite number of parametric types�

�Each parametric type declaration P�� � � � implicitly de�nes constants nP � VP�i� and MaxP�i� nP is the arity of P � VP�i is
the variance annotation of the i�th parameter of P � and MaxP�i is the upper bound for it� If not explicitly given� MaxP�i is
Object for covariant ��� positions and RegObject for all the others �� and ��� If explicitly given� the upper bound should be
�c RegObject�
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The reasons why wildcards are disallowed here can be illustrated by the following example� Let us assume
that we allow wildcards and have the following de�nitions��

type UpdatableContainer�
��
type EmptyContainer�
EmptyContainer �u UpdatableContainer����
behavior B getOne fUpdatableContainer�X��X � � �g
Then application of B getOne to an object of type EmptyContainer is type�correct� but what result type

is it supposed to produce� Clearly� it can produce neither � nor � since then the behavior B getOne would
become non�monotonic �as UpdatableContainer is novariant� and thus prone to run�time type errors� To
prevent situations like this� wildcards are disallowed in this form of subtype declaration�

The most complicated form of subtype declaration is hpp�decli which establishes a subtyping relationship
between a parametric type�s� and its parametric supertype�s�� The following is its syntax�
hpp�decli ��� P�X�� � � � � XnP � �u P��hpp�par�declsi�
hpp�par�declsi ��� hpp�par�decli j hpp�par�declsi� hpp�par�decli
hpp�par�decli ��� Xi j T j P���htp�par�declsi�

Xi are variables �implicitly universally quanti�ed�� Each variable must appear once on the left and no
more then once on the right� There is also one additional semantic restriction� if the variables on the left and
on the right of the subtyping relationship are annotated by ��� �de�ned in Section �� then if a variable Xi is
annotated by ���� on the left� it must also be annotated by ���� on the right� Note that only �constant�
parametric types �htp�par�declsi� are allowed inside hpp�par�decli� The following are examples of this
form of subtype declaration�

type Set����
type Bag����
type UpdatableBag�
��
Bag�X� �u Set�X��
UpdatableBag�X� �u Bag�X��
These semantic restrictions are not self�evident� so we will look into them in more detail� The requirement

that no new variables appear on the right is equivalent to the absence of wildcards in htp�decli and was
discussed earlier� In order to justify the requirement dealing with variance annotations� consider the following
example� Let us have the following de�nitions�

type UpdatableContainer�
��
type SpecialContainer����
type Person�
type Student�
Student �u Person�
SpecialContainer�X� �u UpdatableContainer�X��
behavior B update f�UpdatableContainer�X�� X��UpdatableContainer�X� � � �g
Then if we take an object of type SpecialContainer�Student� and apply the behavior B update to it�

what result type should we get� At �rst sight� it should be UpdatableContainer�Student� as

SpecialContainer�Student� �u UpdatableContainer�Student�

But on the other hand

SpecialContainer�Student� �u SpecialContainer�Person� �u UpdatableContainer�Person�

�Behavior type speci�cations will be discussed in the Section 	



� USER�DEFINED TYPES �

so the result should also be UpdatableContainer�Person�� Since UpdatableContainer is novariant� these
two results are incompatible� This happened because the variance restriction was violated �X on the left
side is covariant ��� while X on the right side is novariant�
����

The last form of subtype declaration is hpa�decli� It establishes a subtyping relationship between a
parametric type and its argument� The following is the syntax of hpa�decli�
hpa�decli ��� P�X� �u X

Here P is a parametric type with a single parameter which must be either covariant ��� or novariant
�
�� X here is a variable� An example of a subtype declaration of this sort is the declaration of a type of
variables�

type Var�
��
Var�X� �u X�

which allows us to use objects of this type wherever the object of the argument type is expected� This is a
natural thing to do� but many type systems require explicit dereferencing operation to achieve this e�ect�
The restrictions on this form of subtype declaration are analogous to those placed on hpp�decli if we consider
the stand�alone variable X on the right as a parametric type Id�X� with a single covariant parameter��

Thus far we have described the type and subtype declarations allowed by our framework along with
their respective semantic restrictions� Apart from the conditions related to each of the �ve forms of subtype
declarations� there are also certain restrictions on the complete set of these declarations in the type system�
We will specify them in the next section using the notion of the user type graph�

��
 The user type graph and auxiliary functions

The user type graph �denoted G� is a graph with nodes labeled by user�de�ned types �both parametric and
ordinary� and directed edges produced �and labeled� by subtype declarations� We will use it not only to
verify the correctness of user type speci�cations� but also during type�checking and other manipulations with
types�

De�nition ���� The user type graph� If ftype Tk�� � � �g are type declarations where each type is declared
no more than once and fT�i �� � � � �u T�i �� � � �g are subtype declarations� then the user type graph G is de�ned
as follows�

�� For each type declaration type Tk there is a vertex in the graph� Thus� every parametric family is
represented in G by a single vertex while every ordinary type has its own corresponding vertex�

�� For each subtype declaration T��� � � � �u T��� � � � there is an edge from the vertex T� to T� in the graph

�� Subtype declarations of the form Q�X� �u X are not re�ected in G
�

Note that according to this de�nition there may be more than two edges between two nodes in the graph�
We require that the user type graph is consistent� The following is the de�nition of consistency�

De�nition ���� Consistency of the user type graph� The user type graph G is consistent i�

�The other �implicit� restriction is the fact that the 
depth
 of parametricity on the right�hand side is restricted to �� This
is done to simplify the de�nition of functions conv� �� and� �described in the Section ��	�� This restriction can be lifted�

�Note that a subtype speci�cation of this form actually produces an in�nite number of in�nite chains of subtyping


� � � �u Var�Var�X�� �u Var�X� �u X

for any type X�
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�� G is acyclic as a directed graph

�� If Q participates in the subtype declaration of the form Q�X� �u X �hpa�speci�� then Q is an isolated
vertex in G

�� If P is parametric and there are two �directed� paths from a vertex X to P in G� then the two paths share
a �nal segment of non�zero length

�

The �rst condition protects against �subtyping cycles�� The second one makes sure that in�nite subtyping
chains produced by subtype speci�cations of the �fth form do not interfere with the rest of the graph� Finally�
the third condition ensures that user�speci�ed subtyping declarations do not produce a situation where the
way up from a type to a parametric type in G can produce di�erent results if di�erent paths are taken� This
is the same problem the local semantic restrictions placed upon various forms of subtype declarations are
designed to protect from�

The user type graph is used to de�ne additional functions conv� �� and �� The former one is used
for type and subtype computations �Section �� while the latter two are used for domain intersection and
ultimately for behavior consistency checking �Section ���

The function conv�t� P � converts a type t to a given supertype� For example� if we have Bag�X� �u Set�X��
then conv�Bag�Person�� Set� � Set�Person�� The consistency conditions above ensure that this is indeed
a function� i�e� its result is unambiguous� The function � plays a similar role but returns a set �e�g�
Bag�Person��Set � fSet�Person�g�� In case of � the set always consists of only one element� The func�
tion � performs a similar function� but goes down the type hierarchy instead of going up� This function
can return a set with several elements� In our example� Set�Person��Bag � fBag�Person�g� The complete
de�nitions of these functions are given in the Appendix A��

In this section� we have described the type and subtype declarations allowed by our framework along
with the restrictions that are placed upon them� We have also introduced the notion of the user type graph
and have de�ned consistency for it� Next� we will describe the type speci�cations used to describe derived
types in our framework�

� Type speci�cations

Before proceeding to the de�nition of type speci�cations� we will �rst consider a couple of examples� These
same examples will be used later to show how the type speci�cation logic and type computations together
ensure the precise typing of functions�

�For simplicity� we will assume that types Unit� RegObject� and Productn belong to G and have the following declarations


type Unit�

type RegObject�

type Product�������

type Product���������

���

T �u RegObject�

P��� � � � � �� �u RegObject�

for all T �� Unit and P in G� This way� we will not have to de�ne special subtyping rules for them�
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The �rst example is one of the simplest possible type speci�cations� X�X� This is a type speci�cation of
a behavior that returns its only argument untouched� Here X is a type variable which is implicitly universally
quanti�ed�

A more involved example of a type speci�cation is the type speci�cation of behavior B union that produces
a union of two sets� It is written as �Set�X��Set�Y�� �Set�X 	Y�� The type operator 	 is understood as
the least upper bound of two types� The corresponding greatest lower bound operator is 
� Here both X
and Y are type variables and the notation �T�� � � � � Tn� will be used throughout the paper as a shortcut for
Productn�T�� � � � � Tn�� We assume that sets are non�updatable and declared as type Set����

An interesting example of a type speci�cation is the one of a behavior that adds an element to a set� It
is �Set�X��X� �Set�X�� It looks pretty straightforward� but let us consider what happens if the type of the
�rst argument is Set�Student� and that of the second argument is Person �a supertype of Student�� The
�rst impression is that this behavior is unapplicable� But there exists anX � Person such that the argument
types match the ones speci�ed by the behavior� Therefore� the behavior is applicable and the result type is
Set�Person�� This corresponds to the intuition that by adding just a person to a set of students� we produce
a new set that can only be classi�ed as a set of persons� Of course� this would not work with updatable sets�
but those are novariant and we would not be able to �nd an X as in the above example�

The last example of a type speci�cation is that of the behavior B apply that applies its �rst argument
to the second one and returns the result� The speci�cation is �X�Y�X��Y � Clearly� we can say what the
result type is if we know the types of both arguments� For instance� if the �rst argument is the behavior
that adds an element to a set �described above� and the second argument is a pair �product� of an object of
type Set�Student� and an object of type Person� then the result of this behavior will be Set�Person� as it
is exactly what we�ll get according to the previous example�

Now we proceed to the de�nition of a type speci�cation�

De�nition ���� Type speci�cation� The type speci�cation �hTSi� is de�ned syntactically as follows�
TS ��� X �X is a type variable�

j T �T is a user�de�ned type�
j Object
j Behavior
j P �TS�� � � � � TSnP � �P is a user�de�ned parametric type with arity nP �
j TS�	TS�
j TS�
TS�
j TS��TS�
j �TS�
j �TS�� � � � � TSn� �shortcut for Productn�TS�� � � � � TSn��

�

The operators 
 and 	 are� respectively� the greatest lower bound and the least upper bound operators�
The operator � is the function operator� The variables in a type speci�cation are implicitly universally
quanti�ed�

The type speci�cations as de�ned here are meant to be written by the user in the program� There is
also a notion of annotated type speci�cation which is only used by the type�checking mechanism described
later� The annotated type speci�cation di�ers from the normal one in that all variables are annotated with
their variance speci�cations �
��� or ��� The transformation ��� �de�ned in the Appendix B� transforms a
correct type speci�cation into an annotated type speci�cation�
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The transformation is straightforward except for one thing� arrow types are only allowed in covariant
positions� This restriction is necessary for the de�nition of computable subtyping given in Section ���� It is
also intuitively justi�ed as a behavior type in novariant position ��xes� the behavior type too precisely to
be useful� The same is true for contravariant occurrences�

In this section we have introduced the type speci�cations and gave several examples to illustrate their
meaning� The precise semantics of the type speci�cations will be established in Section � in terms of types
that will be described next�

� Types and subtyping

In this section� we will describe types that will be used to give the semantics of type speci�cations in Section ��
We will also describe two subtyping relationships �one is used for computation� the other � for theorems and
theoretical considerations��

��� Types

In our framework� types are computable� The computation on types gives precise typings to function and
behavior applications� For example� if a behavior has type speci�cation X�X� the type of such a behavior
will be �x�x� Being applied to any argument type� it will produce the result type� Only monotonic �w�r�t
subtyping	�� double�strict �w�r�t � and ��� total functions are considered� In order to see how we can require
that all functions be total� consider the following example� Let us assume that a behavior B plus has the
type speci�cation Integer �Integer� Then that behavior has a type �x��cond�x � Integer�� Integer�
which according to the type computation rules to be discussed below is reduced to Integer if applied to a
type that is a subtype of Integer and is reduced to � otherwise� It is easy to see that extending types to
total functions in this manner preserves both the usual notion of function subtyping �domain contravariance�
and monotonicity�

The following is the de�nition of a type�

De�nition ���� Type� a is a type i�
a ��� x �x is a variable�

j t �T is a user�de�ned type�
j Object
j Behavior
j �
j �
j p�a�� � � � � anP � �P is a user�de�ned parametric type� nP is its arity�
j a�	a�
j a�
a�
j �x�a �only functions monotonic w�r�t �f are allowed�
j a�b �shortcut for �x��cond�fx � a� a � Objectg�� b��
j rev�p� i� a� �P is a user�de�ned parametric type� i is a number from � to nP �
j conv�p� a� �P is a user�de�ned parametric type�
j apply�a�� a��

�More precisely� �f which will be described later in this section�
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j cond�C�� a �C is a set of conditions of the form a� � a� or a� � a��
�

Here rev� conv� apply� and cond are auxiliary functions� The meaning of conv�p� a� has already been
discussed in Section ���� rev�p� i� a� is similar except that it extracts the i�th argument from the resulting
parametric type� The function cond�C�� a checks the conditions in C �using �c � and returns � if they are
not satis�ed and the result of a otherwise� The function apply�f� a� applies lambda�abstraction which is its
�rst argument to its second argument and returns the result� The precise de�nitions of these functions along
with type computation �reduction� rules are given in Appendix C� The type reduction is denoted ��

There are several �avors of types� all slightly di�erent from each other� The extended types allow the
wildcard ��� in any position a variable is allowed� The closed types are types with no free variables� Reduced
types are types with all reductions carried out� they do not include rev� conv� apply� or cond� Argument
types are types obtained by a simple�minded translation of arguments of type speci�cations �called �TR
and de�ned in the Appendix D�� Except for being reduced� they do not contain occurrences of �� �� and
	 and restrict lambda abstractions to those produced by the arrow operator� Finally� concrete types are
types that an object can have� These types disallow 
 except for lambda�abstractions� but allow arbitrary
lambda�abstractions� All these varieties are de�ned in Appendix E�

Having described types� we now proceed to the description of subtyping relationships that we de�ne over
them�

��� Subtyping

We de�ne two subtyping� �c and �f � The �rst one can be computed and is therefore called computable
subtyping� while the second one has some nice theoretical properties and is called full subtyping�

The computable subtyping is used in type computations� because its rules can be used as an algorithm�
However� the computable subtyping is restricted in that it can only give a positive result when lambda
abstractions on the right are limited to arrow types� Full subtyping is free from this drawback� however� it is
not computable� This is the reason why we have two subtypings� one �computable� stronger than the other
�full��

The rules for computable subtyping are presented in Figure ��
Subtyping of parametric types �rule p�� and ordinary user�de�ned types �rule Const�� makes use of

auxiliary function conv de�ned over the user type graph �Section ����� The rule Const� uses this function
directly and the rule p� indirectly� via the function rev�

The rule V ar�Object is designed for checking types with unbound free variables� It states that a free variable
is assumed to be type�correct� This �and equality between two identical variables by the rule Axiom�� is the
only rule dealing with free variables�

The rules �� and �� deal with extended types� i�e� types with wildcards in them� The meaning of these
rules is �wildcard matches anything�� Since we have no structural transitivity rule� the presence of the
wildcard rules does not introduce subtyping cycles for non�extended types�

As can be seen from the rules� the computable subtyping is quite weak in terms of subtyping of lambda
abstractions �rule ���� and can only deal with arrow types �rather than with arbitrary abstractions� on the
right of �c � This weakness does not manifest itself during type�checking �since we disallow arrow types in
contravariant and novariant positions�� but it complicates the theory�

In order to avoid these complications� we de�ne full subtyping as an extension of �c where arbitrary
lambda�abstractions can be compared� We then establish relationship between two subtypings as well as
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Figure �� Computable subtyping � �c �
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several properties of the second one�
Full subtyping � �f � is de�ned by making the following changes to the rules for �c �

�� The rules ��� and ��Object are di�erent

�� The rule �� is introduced

�� In all rules� � is changed to �f

The type computation �f di�ers from � in that all subtype checking occurs via �f rather than via �c �
The following are the � rules for �f �

�e� 	e�x�f��f �f 	e�y�f��f
�x�f� �f �y�f�

���
�a� 	a�x�f�f �f Object

�x�f �f Behavior
��Behavior

�e� 	e�x�f��f �f 	e�y�f��f
�x�f� �f �y�f�

��

Note that while the rules in Figure � can be considered as computation rules if read from bottom to top�
the addition of the � rules above destroys this property�

The following theorem establishes the relationship between computable � �c � and full � �f � subtyping
as well as ordering properties of the latter�

Theorem ���� Subtyping� If t� t� are reduced types� then

�� t �c t
� � t �f t�

�� �f is a partial order on reduced types
�

Sketch of the proof� The �rst statement follows directly from comparative analysis of rules for �f and
�c � The second statement can be proven by structural induction over the derivation of �f �

In this section� we have de�ned computable and full subtyping� We have also shown the latter being the
weaker form of the two subtypings and established its ordering properties� We will proceed by de�ning the
logic of type speci�cations � a formal mechanism that allows us to translate type speci�cations into types�

� The logic of type speci�cations

In this section we will describe our approach to automatic generation of types from type speci�cations� We
want that translation to give the type speci�cations the intuitive meaning described earlier in the Section ��
At the end of this section we will present the theorem that con�rms that our translation does have this
property� We will also come back to the examples of Section � and show how the logic handles them�

The approach we take treats the type speci�cations as types in an appropriate variant of Martin�L�of�s
type theory� while treating our types as elements of these types� Doing so enables us to reduce the task of
automatic generation of the types to the task of constructing proofs in an appropriate variant of intuitionistic
logic�

The logic of type speci�cations is presented in Figure �� In this variant of intuitionistic logic� function
types ��� correspond to implication� union types �	� correspond to disjunction� and both intersection types
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�
� and parametric types �P �A�� � � � � An�� correspond to conjunctions� Type constants correspond to truth
values�

The type speci�cation logic is de�ned over annotated type speci�cations� The proof object produced by
the logic for an annotated type speci�cation is a closed type�

Sequents in the logic have the form � � a �� A�C where � is a set of proof�annotated formulae� a �� A
is a proof�annotated formula �a is a proof of A� and C is a set of conditions� The conditions are used for
argument checking and are generated in the leafs of the proof search and then pushed up to the corresponding
��abstraction �rule �I��

Since we have no elimination rule for disjunction �	�� we can use a simpli�ed version of implication�
elimination rule ��E�� This makes our logic non�contracting in the sense of Dyckho� 	Dyc���� Therefore a
goal�directed proof search is terminating�

The part of the logic that deals with variance annotations consists of the rules for variables �weakening
and axioms�� These rules place certain restrictions on the assumptions that can be discarded and produce
appropriate conditions in C� For example� the sequent a �� X�� b �� X
 � c ��X��C can be proven if we put
c � b� C � fa � bg� but the sequent a ��X�� b �� X� � c ��X��C can not be proven� In the �rst case we
know that b should be matched exactly by the proof c of X �since it is novariant�� and a should be matched
by the proof c of X in such a way that a � c �as it is covariant�� Thus� we should put c � b and require
that a � c which is exactly what the logic produces� In the second case we need to have c such that c � b
and a � c� so even if we know that a � b� we still have insu�cient information to determine what exactly c
should be�

The �subexpression� premise of the ruleWeakening Var deals with the case of recursive variable dependen�
cies� Consider the type speci�cation �X�X�X��X� It will be annotated to produce �X�� X��X���X��
When we try to prove it we will reach the sequent

rev�Product�� �� x� ��X
�� apply�rev�Product�� �� x�� rev�Product�� �� x�� �� X

� � q ��X��C

and since the proof object of the �rst X� in the assumption list is a subexpression of the proof object of
the second one and there is no proof for X
 in the assumption list� the weakening rule is unapplicable and
the sequent can not be proven� The reason for that is that in a perfect world the proof q should look like an
upper bound of the set

frev�Product�� �� x�� apply�rev�Product�� �� x�� rev�Product�� �� x���
apply�rev�Product�� �� x�� apply�rev�Product�� �� x�� rev�Product�� �� x���� � � �g

but we can not express this as a type� Note that the type speci�cation �UpdatableSet�X�� X�X��X can
be proven �because of novariance of UpdatableSet� and will �after simpli�cations� yield the proof object

�x��cond�apply�rev�Product�� �� x�� rev�Product�� �� rev�UpadatableSet� �� x���
� rev�Product�� �� rev�UpadatableSet� �� x����

rev�Product�� �� rev�UpadatableSet� �� x���
Having discussed the properties of the logic� we now present the theorem that establishes the precise

meaning of proofs produced by the type speci�cation logic� The corollary shows that function types produced
in this manner are indeed types� i�e� they are monotonic w�r�t full subtyping � �f ��

Theorem ���� Properties of derived types� If F� fAigi are annotated type speci�cations� f� faigi are types�
C is a set of conditions� �TR f � �� F� f �TR a�i �� Aigi� �x are free variables in f �� fa�igi� and fai �� Aigi �
f �� F�C then

f � min
�f

�u�Uf�cond�C�� 	�u��x�cf
��g
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� � x �� A�C� � � y �� B�C�
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 � � �
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Figure �� Logic of type speci�cations
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where U � f�x j fai �f 	�u��x�ca
�
igig� The notation 	a�b�cc denotes substitution with capture where free vari�

ables of a might become bound in 	a�b�cc� For example� 	x�t�c��x�t� � ��x�x�� �

Sketch of the proof� The proof is by showing that the conclusion of every logical rule satis�es the theorem
if the premises of that rule do� This is tedious but straightforward� The most tedious case is the rule
PE as it requires careful analysis of the function rev�

Corollary ���� Properties of derived arrow types� If

hTSi ��� A�R

� f �� A�R�C

�TR a �� A� �TR r �� R

C � fci �
vi digi

c� �
v�
c d�� � � � � cn �

vn
c dn

then

�� apply�f� t��f � min
�f

�u fcond�ft � 	�u��x�ca� 	�u��x�ca � Objectg�� 	�u��x�cr�g

�� f is monotonic w�r�t� �f

�� f is monotonic w�r�t� �c

�

Sketch of the proof� The �rst two statements are straightforward� In order to prove the third one� we
notice that the only signi�cant di�erence between �f and �c is that the subtyping rule ��� � �c �
works well in one direction only� This direction will not be reversed during subtype checking and type
computation because the transformation ��� only allows arrow types in covariant positions�

Now we will consider the same examples we did in Section � in order to see the types produced by the logic�
In order to make the generated types easier to understand� we will introduce the following notation� a�i �
rev�Productk� i� a� �extraction of the i�th component of a product type� e�g� �a� b���� � b� and P���a� �
rev�P� �� a� �extraction of an argument of a parametric type� e�g� UpdatableSet���UpdatableSet�a��� � a��
We will also simplify resulting types to make them more visual�

First we consider the type speci�cation X�X� Its annotated version is X��X� and the type pro�
duced by the logic is �x��cond�x � Object��x� which is equivalent to �x�x �we always assume that the
argument is a valid type�� The Corollary states that we must have apply��x�x� t��f � min �f

u fcond�ft �
	u�x�cx� 	u�x�cx � Objectg�� 	u�x�cx�g It is easy to see that the minimum is achieved when we put u � t
�u should be greater than t in order for the condition to be satis�ed� out of those u 
 t� the minimum u
provides the minimum result�� Then the minimum is t which is equal to apply��x�x� t��f �

The second example is the type speci�cation �Set�X��Set�Y���Set�X 	Y�� The logic produces the proof
object f� � �x�Set�Set���x���	Set���x���� �after simpli�cations�� This can be seen as an instruction to
obtain the result type as a set type of the greatest lower bound of parameters of the �rst and second
arguments of the behavior� For instance�

apply�f�� �Set�Student�� Set�Person���� �
Set�Set���Set�Student��	Set���Set�Person���� �
Set�Student	Person�� �
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Set�Person�
which is exactly the behavior we expect from the union on non�updatable sets�

The type speci�cation �Set�X��X� �Set�X� produces the proof object f� � �x�Set�Set���x���	�x����
It is easy to see that

apply�f�� �Set�Student�� Person��� � Set�Person�

which is the expected result for non�destructive addition of an element to a non�updatable set�
Note that if we had a novariant type UpdatableSet�X� and the type speci�cation �UpdatableSet�X��X�

�UpdatableSet�X� the generated proof object would be

f �� � �x��cond�x�� � Set�Set���x������ Set�Set���x�����

and an attempt to add a person to an updatable set of students will be tagged as a type error�

apply�f ��� �Set�Student�� Person��� � �

because the condition under cond is not satis�ed�
The behavior�application behavior signature �X�Y�X��Y will produce the proof object

f� � �x� apply�x��� x���

Thus if the behavior B NonDestructiveSetAdd has the type generated from the type speci�cation �Set�X��X�
�Set�X� �i�e f��� then

apply�f�� �B NonDestructiveSetAdd � �Set�Student�� Person���� �
apply�f�� �Set�Student�� Person��� �
Set�Person�

The last example is of more general nature� Let us consider two type speci�cations� A�B and A��B��
where all the types are variable�free� Then the proof of the �rst speci�cation will be f � �x��cond�x � A�� B�
and that of the second f � � �x��cond�x � A��� B��� Using the subtyping rules �for �c � it is easy to verify
that f �c f

� �� �A� �c A � B �c B
�� which is the standard subtyping rule for function types�

The above examples illustrate the way type speci�cation logic and type computations work together to
ensure precise typing of functions�

In this section� we have introduced and discussed the type speci�cation logic that produces computable
types from type speci�cations� We have also presented the theorem that establishes properties of this
transformation� Finally� we have given several examples that illustrate how type speci�cation logic and type
computation process work together to produce precise typing of functions in our framework�

In the next section� we will consider application of the theory developed so far to type�checking of a toy
language�

� The toy language� syntax and semantics

In this section� we introduce a toy language that we will use to illustrate our approach to type speci�cation
and type�checking� We will �rst describe the syntax of the language and explain the meaning of the language
constructs that have not been discussed earlier� Then we will describe the typing rules for the toy language
and its natural semantics� This will allow us to introduce notions of behavior consistency and dispatch and
prove the subject�reduction theorem in the next section�
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The syntax of the toy language is shown in the Figure �� The program in the language consists of a set
of user type and subtype declarations� a set of behavior de�nitions� and an expression� We have already
discussed user type and subtype declarations �along with their syntax� in the Section ��

A behavior declaration is a set of associations� where each association consists of a type speci�cation
�discussed in the Section �� and a function� When a behavior is applied to an object� the run�time type of
the object is used to choose the appropriate association from the set of associations of that behavior� This
process is called dispatch and will be discussed in the Section �� After choosing an association� the function
from that association is invoked on the receiver object�

The function in an association can be either a function written in the toy language �hfunctioni� or a
primitive function that is referred to by its name� Primitive functions have their own reductions and can
work with the store� The de�nition of primitive functions and the store depends on the goals of a language
designer� For the theory presented here it is su�cient that primitive function associations and the initial
store be consistent in the sence described in the Section ��

For example� let us assume that we have ColorVector which is a subtype of Vector and the behavior
B Plus that is de�ned as
behavior B Plus f

�Vector�Vector��Vector � hfunctioni��
�ColorVector�ColorVector��ColorVector � hfunctioni� g

Then the behavior application B Plus�aVector�aVector��
 will dispatch to the function hfunctioni� as will
the applications B Plus�aColorVector�aVector� and B Plus�aVector�aColorVector�� In all three cases� we will
expect the return type to be Vector� However� the behavior application B Plus�aColorVector�aColorVector�
will be dispatched to hfunctioni� and the expected result type will be ColorVector� This example shows
that our framework is designed for languages with multiple dispatch� This is the reason we allow covariant
argument speci�cations� It also shows that our toy language is capable of correcty typing binary methods
which is a known problem for many of object�oriented type systems �	AC���� 	BCC������

The function de�nitions of our toy language are straightforward and precisely model lambda abstractions�
The let�construct is just a convenient way to introduce local names� It does not play any special role in
terms of typing �as does� for example� the polymorphic let construct of various languages in ML family
	MTH�
�� 	Car
���� We will use a syntactic sugar fun �x�� � � � � xn� hexpri for
fun �x�

let x� � B Project��x� in
���
let xn � B Projectn�x� in expr

in order to deal with multiple arguments�
A non�trivial construct in our toy language is hclassi which is syntactically equivalent to class�x� hTSi��

where x is a name �introduced by hleti or hfuni� or a constant� The meaning of it can be described as follows�
the run�time type of the object referred to by x is taken �let it be x� and tranformed by the type f derived
from the type speci�cation hTSi to yield a type t� Then� the object class�t� is returned �t � apply�f� x���� To
illustrate how this works� consider the simpli�ed version of this construct cclass�hTSi� which is a syntactic
sugar for class�unit� Unit�hTSi�� For example� cclass�Person� will produce the object class�Person� that
can be used to create new persons as in
let newPerson � B New�cclass�Person�� in � � �
A more involved example is a function that swaps values of two variables of the same type�
fun �x�y�

�	We will use hexpri�hexpri
�
� � � � � hexprin� as a syntactic sugar for hexpri�hhexpri

�
� � � � � hexprini��
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hprogrami ��� huser�type�declsi � hbehaviorsi � hexpri
huser�type�declsi ��� huser�type�decli

j huser�type�declsi � huser�type�decli
huser�type�decli ��� htype�decli

j hsubtype�decli
hbehaviorsi ��� hbehaviori

j hbehaviorsi � hbehaviori
hbehaviori ��� behavior hnamei f hassoc�listi g
hassoc�listi ��� hassoci

j hassoc�listi � hassoci
hassoci ��� hTSi � hgen�functioni
hgen�functioni ��� hfunctioni

j primitive�name

hfunctioni ��� fun �x� hexpri
hexpri ��� x �x is a variable name�

j c �c is a constant name�
j hclassi
j hfunctioni
j happlici
j hleti
j hproducti
j � hexprsi �

happlici ��� hexpri�hexpri�
hproducti ��� hhexpri� � � � � hexprii
hleti ��� let x � hexpri in hexpri
hclassi ��� class�x�hTSi�
hexprsi ��� hexpri

j hexprsi � hexpri

Figure �� Toy language syntax
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let temp � B New�class�x�X�X�� in �B set�temp�x�� B set�x�y�� B set�y�temp�
This creates a temporary variable of the same type as the �rst argument and uses it as a temporary storage�
Of course� this could be done simpler by
fun �x�y�

let temp � x in �B set�x�y�� B set�y�temp��
since hleti is eagerly evaluated�

The hclassi construct in our toy language is just an example of a kind of language constructs that are
posssible in our framework� The ability not only to extract� but also manipulate types at run�time is inherent
in the framework presented in this paper�

The remaining constructs are standard and staightforward and do not require special description�
The typing rules for the toy language are presented in the Figure �� � is the typing environment which

is the set of name to type associations of the form x � t understood as �the name x is known to correspond
to an object with a type that is a subtype of t or t itself��

Top�level behavior de�nitions and prede�ned constant names along with their types constitute the initial
typing environment �denoted �
� that will be formally de�ned in the next section�

�� x � x � hexpri � e
� � fun �x� hexpri � �x�e

Fun

� � hexprsi � e
� � �hexprsi� � e

Block

� � hexprsi � e� � � hexpri � e�
� � hexprsi� hexpri � cond�fe� � Objectg�� e�

Seq

� � hexpri� � e� �� x � e� � hexpri� � e�
� � let x � hexpri� in hexpri� � e�

Let

� � hexpri
�
� e� � � hexpri

�
� e�

� � hexpri��hexpri�� � apply�e�� e��
Appl

� � hexpri
�
� e� � � � � � hexprin � en

� � hhexpri�� � � � � hexprini � Productn�e�� � � � � en�
Prod

� � x � x hTSi ��� S � S � s apply�s� x�� � t t �c RegObject

� � class�x� hTSi� � Class�t�
Class

where x is either a variable or a constant name

�� u � t � u � t
Axiom

Figure �� Typing rules for the toy language

In order to de�ne natural semantics for the toy language� we will need to de�ne what can be a run�time
object and what is the run�time environment�
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A run�time objects in the language is one of

�� Prede�ned constant ci

�� Behavior b � fhTSii � fig

�� Closure closure�E� x� hexpri�

�� Primitive�closure primitivei

�� Run�time object o

�� Class object class�t�

�� The unit value unit �used for command results� procedure results etc�


� Type error err�

�� Run�time error err�

The behavior objects thus carry enough information to be able to deal with run�time dispatch �late binding��
Closures are produced by evaluation of function de�nitions �hfunctioni� and carry the environment that
was in e�ect when the function de�nition was evaluated� the abstraction variable� and the body� Primitive�
closures are analogs of closures for primitive functions� They do not need to keep the environment as
primitive functions can not access it� Class objects are objects of the types Class��� and serve as factories
of objects� The run�time type error err� �of type �� should never be produced in a type�checked program�
while a run�time error err� �of type �� can be produced by a primitive function and serves as an exception
because it is pusehed up until the top level is reached�

The run�time environment E is a list of associations of the form x � o � t where x is a name� o is an
object� and t is its type� Thus we maintain types of objects at run�time�

The reduction ��� is de�ned on triples �S�E� hexpri� �where S is store and E is an environment� and
produces tuples of the form �S�� o � t� where S� is a new store� o is a run�time object� and t is its type� The
reduction rules are presented in the Appendix F�

The decision to adopt an eager evaluation for behavior and function arguments has been dictated by
the necessity to perform run�time dispatch� Until an argument is not evaluated� the dispatch decision can
not be made and the function to execute can not be chosen� Another construct that requires run�time type
information is the hclassi construct discussed earlier�

Note that function abstractions are evaluated lazily� This allows us to use the behavior de�nition mech�
anism to de�ne commands in the language instead of making them a part of the kernel� In the following
example� we will de�ne the command B if�command assuming that we have a type Boolean and a behavior
B if with the �llowing de�nitions�
type Boolean�
behavior B if f �Boolean� X� Y���X 	Y� � primitive�if g�
The command version will take a boolean and two commands and produce a command�
behavior B if�command f

�Boolean� Unit �Unit� Unit �Unit���Unit �Unit�� � fun �x�y�z� B if �x�y�z� g�
Here the second and the third argument are closures which are passed along and one of them constitutes
the result� The type Unit�Unit is a generic type of commands� The language operator ��� could have been
de�ned this way as well� in which case we would have one less basic construct in the language�

In this section� we have introduced the toy language� its syntax� semantics� and typing rules� In the
next section� we will deal with issues of behavior consistency and type correctness� and present the subject
reduction theorem�
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	 Behavior consistency and type�checking

In this section� we will consider behavior consistency issues and present the subject reduction theorem for
the toy language�

Behavior consistency is a sum of three components� the function association consistency� the primitive
function association consistency� and the unambiguous choice of a behavior association during dispatch� The
function association consistency ensures that a function in an association does indeed conform to the type
speci�cation of the association� This corresponds to the type correctness of the function with respect to a
given type speci�cation� The primitive function consistency ensures the conformance of primitive functions�

The unambiguous choice of a behavior association is needed to ensure that the dispatch can always pick
�the best �t� association based on the types of actual arguments� For example� if we have a type Person

and its subtypes Student and Teacher� we can de�ne a behavior B changeDepartment �
behavior B changeDepartment f

�Person�Department��Unit � hfunctioni��
�Student�Department��Unit � hfunctioni��
�Teacher�Department��Unit � hfunctioni� g

which invokes di�erent functions for di�erent types� It is easy to pick the �best �t� association in this case�
However� if we add a new type� TeachingAssistant� which is a subtype of both Student and Teacher� the
behavior de�nition above will become ambiguous as it is not clear which function should be applied when
the following statement is executed� B changeDepartment�aTeachingAssistant��

In order to deal with situations like the one described above� we introduce the operator 
� which� being
applied to two type speci�cations� yields a set of extended argument types that can potentially conform
to both type speci�cations� In the example above� Student 
� Teacher � � before the introduction of the
type TeachingAssistant and Student 
� Teacher � fTeachingAssistantg after that� The rules for the
operator 
� are presented in the Figure � and Figure ��

The main property of the operator 
� de�ned above is given by the following theorem�

Theorem ���� Domain intersection� If a�� a� are argument types� t is a concrete type� and there exist
such concrete types �t�� and �t� that t �f 	�t���x��a��t�� and t �f 	�t����x��a�� then

� t � 	����x��a� 
� 	����x��a�� �ac� t �f 	�ac���� t

where  t is an extended reduced type� �ac are concrete types� and �xi denotes free variables of ai� �

Sketch of the proof� The proof is by structural induction� For each rule we show that if the statement
of the theorem is true for the premises of the rule� then it is also true for that rule�s conclusions� We
use the analogous statements with �f changed to 
f and �f respectively when dealing with rules
about 	� and �� � Note that we do not need �� and 	� rules for arrow types as they are guaranteed
not to occur in other than covariant positions� The most tedious part of the proof is the one dealing
with the constructor rules which are de�ned in terms of functions � and � over G�

In other words� a non�empty intersection produced by the operator 
� does not guarantee that there
is a concrete type in the intersection� however� if such a type t exists� the intersection is not empty and t
conforms to one of the types in the intersection�

Now we are ready to formally de�ne behavior consistency�

De�nition ���� Behavior consistency� A behavior is consistent i�
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a 
� c � C� b 
� c � C�

a	b 
� c � C�	C�
DI	

a 	� c � C� b 	� c � C�

a	b 	� c � 	 c��C�
c��C�

�c� 	� c��
DU	

a �� b � C�

a	b �� c � 	c��C� �c� �� c�
DE	

a 
� c � C� b 
� c � C�

a
b 
� c � 	 c��C�
c��C�

�c� 
� c��
DI


a 	� c � C� b 	� c � C�

a
b 	� c � C�	C�
DU


a �� b � C�

a
b �� c � 	c��C� �c� �� c�
DE


a�b 
� c�d � f�a�b�
�c�d�g
DI�

a�b 
� Behavior � fa�bg
DIBehavior

a 
� Object � fag
DIObject

a 	� Object � fObjectg
DUObject

a 
� � � fag
DI�

a 	� � � fag
DU�

a �� � � fag
DE�

fai 
�VP�i bi � Cigi������ �nP
p�a�� � � � � anP � 
� p�b�� � � � � bnP � � 	ci�Ci

�p�c�� � � � � cnP �
DIP�

fai 	�VP�i bi � Cigi������ �nP
p�a�� � � � � anP � 	� p�b�� � � � � bnP � � 	ci�Ci

�p�c�� � � � � cnP �
DUP�

fai �� bi � Cigi������ �nP
p�a�� � � � � anP � �� p�b�� � � � � bnP � � 	ci�Ci

�p�c�� � � � � cnP �
DEP�

Here 
�
 � 	�
 � �� � 
�� � 	�� � 
� � and 	�� � 
�� � 	� �

b 
� a � C
a 
� b � C

DISimm
b 	� a � C
a 	� b � C

DUSimm
b �� a � C
a �� b � C

DESimm

a 
� a � fag
DIRe�

a 	� a � fag
DURe�

a �� a � fag
DERe�

Figure �� Domain intersection
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For all Si � G� Si �G P � Si �G P ��
��Si �G S� � S� �G P � S� �G P ��� S� � Si�

p�a�� � � � � anP ��si � Ci
� p��b�� � � � � bn�

P
��si � Ci

�

p�a�� � � � � anP � 
� p
��b�� � � � � bn�

P
� � 	

i�
ci
�
�Ci

�

ci
�
�Ci

�

�ci� 
� c
i
��

DIP��

The rule DIP�� is also in e�ect when there is t on either side of 
� �

For all Si � G� P �G Si � P � �G Si�
��S� �G Si � P �G S� � P � �G S��� S� � Si�

p�a�� � � � � anP ��si � Ci
� p��b�� � � � � bn�

P
��si � Ci

�

p�a�� � � � � anP � 	� p
��b�� � � � � bn�

P
� � 	

i�
ci
�
�Ci

�

ci
�
�Ci

�

�ci� 	� c
i
��

DUP��

The rule DUP�� is also in e�ect when there is t on either side of 	� �

P �x� �u x a �� p�c� a 	� b � C
a 	� p�b� � C

DUPany

Figure �� Domain intersection� parametric types

�� Every type speci�cation of the behavior is consistent

�� Every association of the behavior is consistent

�� Choice of an association is unambiguous
�

De�nition ���� Type speci�cation consistency� A type speci�cation hTSi is consistent i�

�� hTSi ��� S�

�� � s �� S�C

�� For every fa� �v a�g � C� a�� �v
c a��

�

The meaning of this de�nition is that the type speci�cation must be provable by the type speci�cation
logic and all top�level constraints in that proof must be satis�ed�

De�nition ���� Function association consistency� An association hTSi � hfunctioni is consistent i�

�� �
 � hfunctioni � f

�� �TR t �� hTSi

�� f �c t

Here �
 is the initial typing environment de�ned next� �
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Note that we use the �naive� logical derivation � �TR � instead of a full��edged logic ���� We have to do
that to be able to use computable subtyping � �c � which does not handle lambda abstractions on the right
unless they are arrow types� The naive translation is guaranteed to produce only arrow types on the right�
Consider the association
X �X � fun �x� x
In this case� f � �x�x and t � x��x�� In order to prove f �c twe have to prove apply�f� x��� �c x

� �according
to the ��rule of computable subtyping�� But apply�f� x��� � x� and x� �c x

�� Thus� the association above is
consistent�

The initial typing environment �denoted �
� is a typing environment that includes types of all constants
de�ned at the top level of the program� That includes prede�ned constants and behaviors�

De�nition ���� Initial typing environment� �
 is the initial typing environment i� �
 consists of�

�� funit � Unitg �typing of unit�

�� fci � cig for all prede�ned constants ci

�� fbi � btig for all behaviors bi� where bti are de�ned as follows�

bt � 
nbj��sj � hTSij ��
� S�j � � sj �� S

�
j�C

Here hTSij �j � �� � � � � nb� are type speci�cations of b�
�

Thus a type of a behavior that has several association is the lower bound of types derived from all type
speci�cations for that behavior� For example� the type of behavior B Add de�ned as
behavior B Add f

�Real�Real� �Real � hfunctioni��
�Integer�Integer� �Integer � hfunctioni�

is
��x��cond�x�� � Real� x�� � Real�� Real��


��x��cond�x�� � Integer� x�� � Integer�� Integer��
If we apply it to an argument type �Ineger�Real� we will get Real
� � Real� If an argument type was
�Ineger�Integer�� we would get Real
Integer � Integer �assuming Integer is a subtype of Real��

The following de�nition deals with unambiguous choice of an association from the list of associations of
a particular behavior�

De�nition ���� Unambiguous choice of association� We say that the choice of association for a behavior
b is unambiguous if for any pair of type speci�cations of b hTSi� and hTSi� the following holds�

�t � arg� 
� arg� �!i�
hTSii �cov hTSi� � hTSii �cov hTSi� � apply�fi� t

��� �c Object

where

arg� � 	����x�tr� � �TR tr� �� Arg�� hTSi� � Arg��Res��

arg� � 	����x�tr� � �TR tr� �� Arg�� hTSi� � Arg��Res��

hTSii ��
� Si� � fi �� Si�Ci t� � 	�y����t
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Here 	�y����t denotes t with every occurence of � changed to a fresh variable yi� while 	����x�tri denotes tri with
all free variables xi changed to �� �

This de�nition ensures that for any type�correct argument types for the behavior b there is always one
association with a type speci�cation that covers all others to which the argument types conform� The
de�nition of covering is given below�

De�nition ��	� Cover� A type speci�cation hTSi� covers another type speci�cation hTSi� �denoted hTSi� �cov hTSi��
i�

�� �TR a��r� �� hTSi�
�� �TR a��r� �� hTSi�

�� hTSi� ��
� S�� � s� �� S��C

�� r� �c r�

�� apply�s�� a��� �c Object

�

Informally� a type speci�cation A�B covers another one A��B� if A 
 A� and B 
 B�� We can say
that the second type speci�cation is more speci�c than the �rst one as it speci�es both argument and
result types more precisely� For example� the type speci�cation Real�Real covers the type speci�cation
Integer�Integer�

Now we are ready to de�ne dispatch� The goal of dispatching a behavior b on an argument of �concrete�
type t is to pick the most speci�c association for t from the list of associations of b and apply the function
from this association to the argument�

De�nition ���� Dispatch� The algorithm for picking up the most speci�c association �dispatch�b� t�� is
de�ned as follows�

�� Let hTSii be all associations of b� hTSii ��
� Si� � si �� Si�C

�� We form the set M � fi j apply�si� t� �c Objectg

�� The set M � is formed by all i� �M such that hTSii� is not covered by any other hTSii� i �M � If jM �j � �
we say that the dispatch on b and t is consistent and unambiguous and pick the association i�� i� �M �

as the most speci�c one� dispatch�b� t� � i�� If� on the other hand� jM �j �� �� we put dispatch�b� t� � 
�
�

M is the set of the speci�cations to which the argument type conforms� From those� we pick the most
speci�c one�

The following theorem establishes that once a behavior is consistent� dispatch is always unambiguous�
Moreover� the function chosen by dispatch produces the least possible result type�

Theorem ���� Behavior consistency� If behavior b is consistent� b � tb � 
i������ �nsi � �
� and t is a
concrete type such that apply�tb� t�� �f Object� then

�� dispatch�b� t� �� 
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�� If dispatch�b� t� � i then

apply�si� t�� �f apply�tb� t��

�� If dispatch�b� t� � i� function hfunctionii is a part of this association� and �
 � hfunctionii � fi� then

apply�fi� t�� �f apply�tb� t��
�

The proof of this theorem is given in the Appendix G� This proof is indicative of the techniques we use
to prove the other theorems in this section�

So far we have considered the functions written in our toy language� The following de�nition establishes
the properties of primitive functions that are necessary for the type�checking and dispatch to work properly�

De�nition ��
� Primitive function association consistency� A primitive function association hTSi � primitivei
is consistent if for any consistent store S the following holds�
If

�S� o � t��primi
� �S�� o� � t��

hTSi ��� S � s � S�C

apply�s� t�� �f Object

then

t� �f apply�s� t��

S� is consistent

�

In other words� we require that primitive functions behave almost as good as type�checked non�primitive
ones w�r�t their type speci�cations� Almost as good because we do not require monotonicity of typing� just
conformance to the type speci�cation� Note that there is no de�nition of store consistency here as it depends
upon the semantics of primitive functions� However� for the Theorem ��� the concrete de�nition of store
consistency is unnecessary as long as correct applications of primitive functions do not disturb it �as stated
in the above de�nition��

Now we have all the components needed for the subject reduction theorem�

Theorem ���� Subject reduction� If

�� The user type graph G is consistent

�� All behaviors are consistent

�� All primitive function associations are consistent

�� Store S is consistent

�� All free object variables xi in hexpri are present in E
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�� E � fxi � oi � tig� � � fxi � tig� � � hexpri � te� and te� �f Object

�� �S�E� hexpri�� � �S�� o � q�

then

�� S� is consistent

�� q �f te�
�

The consequence of this theorem is that the reduction of type�correct terms does not produce run�time
type errors �err�� or inconsistent store� Note that other run�time errors �err�� can only be produced by
primitive functions� if they are so de�ned�

Sketch of the proof� The proof is by structural induction on �� The most involved case is the one
dealing with application �hexpri��hexpri��� when neither of the expressions is reduced to err�� This
case in considered in the Appendix G

The absence of type errors in the correctly type�checked program is established as a consequence of the
subject reduction theorem�

Corollary ���� Type correctness of a program If hprogrami � huser�type�specsihbehaviorsihexpri is a
program and

�� The user type graph G generated by type and subtype de�nitions in the program is conssitent

�� All behaviors in the program are consistent

�� All primitive function associations in the program are consistent

�� S
 is a consistent store

�� �
 is the initial typeing environment �De�nition ����

�� E
 � funit � unit � Unit� bi � bi � bti� ci � ci � cig where ci are prede�ned constants and bi are
behaviors declared in the program� bti are behavior types de�ned as in �


�� �
 � hexpri � p


� p �c Object

�� �S
� E
� hexpri�� � �S�� o � tr�

then

�� tr �c Object

�� S� is consistent
�

In this section� we have introduced the notion of behavior consistency and dispatch� We have shown that
consistent behaviors are always dispatched unambiguously� We have also presented the subject reduction
theorem for our toy language and have established the absence of run�time type errors in a successfully
type�checked program�
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 Conclusions

In this paper� we have presented a type system that combines parametric and inclusion polymorphism�
variance speci�cations� user�de�ned subtyping between parametric and ordinary types� precise function types�
multiple dispatch� and static typing� We have shown that our approach based on the type speci�cation logic
allows us to correctly type�check programs in the toy language for which we have proven the subject�reduction
theorem�

In addition to the features described above� the presented type system has lower and upper bound types
and is therefore capable of typing database queries� The ability to specify subtype relationships of the form
Var�X� � X allows us to treat imperative features such as assignment� variables� and creation of new objects
inside our framework�

Further research directions include the development of less strict conditions for behavior consistency�
lifting some of the remaining restrictions on subtype declarations� enhancement of the toy language �the
ability to de�ne behaviors at run�time� run�time operations on types�� and building of its prototype compiler�
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A DEFINITION OF conv
 � AND � ��

A De�nition of conv� � and �

The functions de�ned here are auxiliary functions de�ned by user type speci�cations� conv converts a type
to its supertype in the user type hierarchy during type computation� � ��� is a set�valued function that
produces all possible conversions from subtype to supertype �from supertype to subtype� in the user type
hierarchy� � and � are used when domain intersection � 
� � is calculated�

Type
type If T �u T
� then

conv�t�� t�� � t�

t�t� � ft�g
t��t � ftg

Parametric
type If P �c�� � � � � cnP � �u T then

conv�t� p�a�� � � � � anP ��� � �cond�fai
MaxP�i �
VP�i cigi������ �nP �� t��

p�a�� � � � � anP ��t � ftg if �MaxP�i
ai� 
�
VP�i ci �� � for all i � �� � � � � nP

t�p � fp�c�� � � � � cnP �g

Type
parametric If T �u P �c�� � � � � cnP � then

conv�p� t�� � p�c�� � � � � cnP �
t�p � fp�c�� � � � � cnP �g

p�a�� � � � � anP ��t � ftg if �ai
MaxP�i� 
�
VP�i ci �� � for all i � �� � � � � nP

Parametric
parametric If P �x�� � � � � xnP � �u P
��q��x�� � � � � xnP �� � � � � qnP � �x�� � � � � xnP �� then

conv�p�� p�a�� � � � � anP ��� � �cond�fqi�a�
MaxP��� � � � � anP
MaxP�nP � �MaxP ��igi������ �nP � ��
p��q��a�
MaxP��� � � � � anP
MaxP�nP �� � � � �

qnP � �a�
MaxP��� � � � � anP
MaxP�nP ����
p�a�� � � � � anP ��p� � 	ci�Ci

fp��c�� � � � � ci�g
where Ci � qi�a�
MaxP��� � � � � anP
MaxP�nP � 
� MaxP ��i

p��a�� � � � � an�
P
��p � fp�s�� � � � � snP �g where si �

�
aj
MaxP�j if ci � xj

� otherwise

provided that ai 
� ci �� � for all i� ci �� xk

Parametric
any If P �x� �u x then

conv�p�� p�a��� � conv�p�� �a
MaxP������ for all P � �� P
p�a��p� � 	ai�Aai�p� where A � a 
� MaxP��

for all P � �� P
a�p � 	ai�Afp�ai�g where A � a 
� MaxP��

provided that a �� p�b�

Re�

conv�p� p�a�� � � � � anP ��� � p�a�� � � � � anP �
p�a�� � � � � anP ��p � fp�a�� � � � � anP �g
p�a�� � � � � anP ��p � fp�a�� � � � � anP �g



B VARIANCE ANNOTATION OF TYPE SPECIFICATIONS ��

Trans If fhP � P �
i � � � � � P

ni
i � P �igi������ �k are all di�erent paths from P to P � in G� then

conv�p�� p�a��� � �
ki���conv�p
ni
i � conv�pni��i � � � �conv�p�i � p�a��� � � � ������

p�a��p� � 	ki��fa
n
i g where anii � ani��i �pnii � � � � � a�i � p�a��p�i

p��a��p � 	ki��fa
�
i g where a�i � a�i�p�� � � � � a

ni��
i � p��a��p

n��
i

Default If not de�ned by any of the above�

conv�p� a�� � �
a�p � �
a�p � �

B Variance annotation of type speci�cations

The annotation process works on type speci�cations and produces annotated type speci�cations�

T ��v T
Const

X ��v Xv Var

A ��v A� B ��v B�

A	B ��v A�	B�
Meet

A ��v A� B ��v B�

A
B ��v A�
B�
Join

A ��� A� B ��� B�

A�B ��� A��B�
Arrow

fAi ��v�VP�i A�igi������ �nP
P �A�� � � � � AnP � ��

v P �A��� � � � � A
�
nP

�
Param

Here v � 
 � 
� v � 
���� � �� � � �� and ��� � � �� � �

C Type computations

Type computation process is de�ned for types and extended types�

t� � t t is a constant

x� � x x is a variable

�� � �

�x�f� � �x�f

�a
b�� �

���
��
a� if a� �c b�

b� if b� �c a�

�a��
��b� otherwise

�a	b�� �

���
��
a� if b� �c a�

b� if a� �c b�

�a��	��b� otherwise



D TYPICAL REPRESENTATIVE ��

apply�a� b�� �

��������
�������

	b�x�f� if a� � �x�f

�apply�c� b��	apply�d� b���� if a� � c	d

�apply�c� b��
apply�d� b���� if a� � c
d

� if a� � � and b� �c Object

� otherwise

�cond�C�� a�� �

�
a� if C � fai � bigi������ �n and �ai�� �c �bi�� for all i from � to n

� otherwise

P �x�� � � � � xnP �� �

�
P �x��� � � � � xnP�� if �ai�� �c Object for all i from � to nP

� otherwise

rev�p� i� a�� �

�����������������������������
����������������������������

bi� if a� � p��a�� � � � � anP � �

and conv�p� p��a��� � � � � anP����� � p�b�� � � � � bnP �

bi� if a� � t and conv�p� t�� � p�b�� � � � � bnP �

�rev�p� i� c��	 rev�p� i� d���� if a� � c	d and VP�i � �

�rev�p� i� c��
 rev�p� i� d���� if a� � c
d and VP�i � �

�rev�p� i� c��
 rev�p� i� d���� if a� � c	d�

rev�p� i� c�� �c Object� rev�p� i� d�� �c Object�

and VP�i � �

rev�p� i� c�� if a� � c
d� rev�p� i� d�� � �� and VP�i � �

rev�p� i� d�� if a� � c
d� rev�p� i� c�� � �� and VP�i � �

�rev�p� i� c��	 rev�p� i� d���� if a� � c
d�

rev�p� i� c�� �c �� rev�p� i� d�� �c �� and VP�i � �

� if a� � �

� otherwise

D Typical representative

This algorithm produces a reduced type from a type speci�cation� The di�erence between �TR and � is
that the latter produces a closed type�

�TR a �� A �TR b �� B
�TR a	b �� A	B TR	

�TR a �� A �TR b �� B
�TR a
b �� A
B TR


�TR a� �� A� � � � �TR anP �� AnP

�TR p�a�� � � � � anP � �� P �A�� � � � � AnP �
TRP

�TR a �� A �TR b �� B
�TR a�b �� A�B

TR�

�TR t �� T
TRConst

�TR x �� X
TRVar



E TYPES ��

E Types

E�� Reduced types

Reduced types are types with all reduction carried out�
ar ��� t �T is a user�de�ned type�

j Object
j Behavior
j �
j �
j p�ar�� � � � � arnP � �P is a user�de�ned parametric type�
j ar�	ar�
j ar�
ar�
j �x�a �only functions monotonic w�r�t �f are allowed�
j ar�br �shortcut for �x��cond�fx � ar� ar � Objectg�� br��

Closed reduced types �crtypes� are reduced types with no free variables�
Extended reduced types �ertypes� are like closed reduced types� but they can also contain the wildcard �

in any position a reduced type is allowed�

E�� Argument types

Argument types are types that can be used in behavior argument speci�cations� Argument types are always
reduced�
aa ��� t �T is a user�de�ned type�

j Object
j Behavior
j p�aa�� � � � � aanP � �P is a user�de�ned parametric type�
j aa�
aa�
j aa�ba �shortcut for �x��cond�fx � aa� aa � Objectg�� ba��

In argument types� arrow types are only allowed in positions covariant w�r�t� variance annotations�
Closed argument types �catypes� are argument types with no free variables�
Extended argument types �eatypes� are like closed argument types� but they can also contain the wildcard

� in any position an argument type is allowed�

E�
 Concrete types

Concrete types are types of objects� They are always reduced and closed and they can not be extended�
ac ��� t �T is a user�de�ned type�

j Object
j Behavior
j p�ac�� � � � � acnP � �P is a user�de�ned parametric type�
j hac�behi

hac�behi ��� hac�funi
j hac�behi 
hac�funi

hac�funi ��� �x�a �a is a type with no free variables except for x�
j ac�bc �shortcut for �x��cond�fx � ac� ac � Objectg�� bc��



F NATURAL SEMANTICS OF THE TOY LANGUAGE ��

In concrete types� behavior types �hac�behi� and arrow types are only allowed in positions covariant
w�r�t� variance annotations�

F Natural semantics of the toy language

�S�E�fx � o � tg� x�� � �S� o � t� where x is a name

�S�E� �hexprsi��� � �S�E� hexprsi��

�S�E�hclassi�x� hTSi��� �

�
�S� err� � �� if hxi �� E � �hxi � err� � �� � E

�S� class�t� � Class�t�� otherwise if �hxi � x � x� � E� t � apply�f� x��

where hTSi ��� S� � f � S�C

�S�E�fun �x� hexpri�� � �S� closure�E� x� hexpri� � �x�s�
where E � fxi � oi � tig� fxi � ti� x � xg � hexpri � s

�S�E� hexpri
�
� hexpri

�
�� �

�����
����
�S�� err� � �� if �S�E� hexpri

�
�� � �S�� err� � ��

�S�� err� � �� if �S�E� hexpri��� � �S�� err� � ��

�S�� o� � t�� otherwise� where �S�E� hexpri��� � �S�� o� � t���

�S�� E� hexpri��� � �S�� o� � t��

�S�E� let x � hexpri� in hexpri��� �

�����
����
�S�� err� � �� if �S�E� hexpri

�
�� � �S�� err� � ��

�S�� err� � �� if �S�E� hexpri
�
�� � �S�� err� � ��

�S�� o� � t�� otherwise� where �S�E� hexpri��� � �S�� o� � t���

�S�� E�fx � o� � t�g� hexpri��� � �S�� o� � t��



F NATURAL SEMANTICS OF THE TOY LANGUAGE ��

�S�E� hexpri
�
�hexpri

�
��� �

����������������������������������������������
���������������������������������������������

�S�� err
� � �� if �S�E� hexpri

�
�� � �S�� err

� � ��

�S�� err� � �� if �S�E� hexpri��� � �S�� err� � ��

�S�� err� � �� otherwise� if �S�E� hexpri
�
�� � �S�� o� � t��

�S�� E� hexpri��� � �S�� err
� � ��

�S�� err
� � �� otherwise� if �S�E� hexpri��� � �S�� o� � t��

�S�� E� hexpri��� � �S�� err� � ��

�S�� o� � t�� otherwise� if �S�E� hexpri��� � �S�� b � t��

�S�� E� hexpri��� � �S�� o� � t��

dispatch�b� t�� � i

bi � hTSi � fun �x� hexpri��

�S�� E�fx � o� � t�g� hexpri��� � �S�� o� � t��

�S�� o� � t�� otherwise� if �S�E� hexpri
�
�� � �S�� b � t�

�S�� E� hexpri��� � �S�� o� � t��

dispatch�b� t�� � i

bi � hTSi � primitivej
�S�� o� � t���primj

� �S�� o� � t��

�S�� o� � t�� otherwise� if �S�E� hexpri
�
�� � �S�� closure�Ec� x� hexpri�� � f�

�S�� E� hexpri��� � �S�� o� � t��

�S�� E�Ec�fx � o� � t�g� hexpri�� � �S�� o� � t��

�S�� err� � �� otherwise� where �S�E� hexpri��� � �S�� o� � t��

�S�� E� hexpri��� � �S�� o� � t��

�S�E� hhexpri�� � � � � hexprini�� �

���������������������������
��������������������������

�Si��� err� � �� if �S�E� hexpri��� � �S�� o� � t��
���

�Si� E� hexprii���� � �Si��� err
� � ��

and oi �� err�� oi �� err�

�Si��� err� � �� if �S�E� hexpri
�
�� � �S�� o� � t��

���

�Si� E� hexprii���� � �Si��� err
� � ��

and oi �� err�� oi �� err�

�Sn� ho�� � � � � oni� otherwise� if �S�E� hexpri
�
�� � �S�� o� � t��

���

�Sn��� E� hexprin�� � �Sn� on � tn�

and oi �� err�� oi �� err�
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G Proofs

Theorem G��� Behavior consistency� If behavior b is consistent� b � tb � 
i���ldots�nsi � �
� and t is a
concrete type such that apply�tb� t�� �f Object� then

�� dispatch�b� t� �� 


�� If dispatch�b� t� � i then

apply�si� t�� �f apply�tb� t��

�� If dispatch�b� t� � i� function hfunctionii is a part of this association� and �
 � hfunctionii � fi� then

apply�fi� t�� �f apply�tb� t��
�

Proof�

�� We will �rst prove that the dispatch in consistent and then that it is unambiguous� In order to
prove consistency� it is su�cient to show that under the conditions of the theorem

�i� apply�si� t�� �f Object

where hTSii are b�s speci�cations� hTSii ��
� Si� and � si �� Si� Since tb � 
i���ldots�nsi and

apply�tb� t�� �f Object according to the conditions of the theorem� consistency trivially follows
from the rules for �f and ��
Now we have to show consistency� Let i� be a number such that apply�si� � t�� �f Object �we
already know that such i� exists�� Then to prove consistency it is su�cient to show that under the
conditions of the theorem

�i� apply�si� t�� �f Object� hTSii� �cov hTSii

We will prove this statement by contradiction� Let us assume that there is i�� �� i� such that

apply�si�� � t�� �f Object�

���i���� hTSii��� �cov hTSii� � hTSii��� �cov hTSii�� � � apply�si��� � t�� �f Object

According to the Corollary ���� this means that there exist such concrete types �t�� and �t� that
t �f 	�t���x��argi� and t �f 	�t����x���argi�� � where �TR argi �� hTSii� Thus �according to the Theo�
rem ����

� t � 	����x��argi� 
� 	����x
���argi�� � �ac� t �f 	�ac���� t

Since according to the conditions of the theorem b is consistent� from the de�nition of consistency
we have

�!i���� hTSii��� �cov hTSi� � hTSii��� �cov hTSi� � apply�si��� � 	�y���� t� �c Object
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where �y are fresh variables� It is easy to show that

��ac	�y���� t �f Object� 	�ac���� t �f Object

where �y are fresh �anything is better than an unbound variable for subtyping derivation�� Thus�
we have that

apply�si��� � 	�ac���� t�� �c Object

t �f 	�ac���� t

From this� Theorem ���� and Corollary ��� we have

apply�si��� � t�� �f Object

Thus� we have a contradiction as the association number i��� is more speci�c than both i� and i���

�� Let i� be the number of the most speci�c association� Then

�i �� i�� ��apply�si� t�� �f Object� � hTSii� �cov hTSii

If

��apply�si� t�� �f Object�

then

apply�si� t�� � �

and everything is �ne as

apply�si� � t�� �f Object �f �

If

apply�si� t�� �f Object� hTSii� �cov hTSii

then �by the de�nition of �cov � ri� �c ri and thus ri� �f ri� where �TR aj�rj �� hTSij � From the
Corollary ��� it follows that

�t� apply�si� t� �f Object��u� apply�si� t� � 	�u��x�ri

Therefore�

��u� apply�si� t� � 	�u��x�ri

��u�� apply�si� � t� � 	�u���x��ri�

It is easy to show that

��u� �u�� a �f b� 	�u��x�a �f 	�u���b��b
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as unbound variables are treated by �f just like a type whose only property is that it is less than
Object� and thus substituting any type for them will not a�ect the derivation of subtyping� From
this we have

apply�si� � t�� �f apply�si� t��

and therefore we have

apply�si� � t�� �f apply�si� t��

for all i �� i�� Then

apply�bt� t�� � apply�
i��i�si
si� � t�� � 
i��i� apply�si� t�
apply�si� � t�� � apply�si� � t��

�� In order to prove this statement it is su�cient to prove that under the conditions of the theorem

apply�fi� t�� �f apply�si� t��

since we have already shown that

apply�si� t�� �f apply�tb� t��

Under the conditions of the theorem the association i is consistent and therefore �according to the
de�nition of consistency�

fi �c si

and thus fi �f si� Now according to the rule ��� we have that

apply�fi� t�� �f apply�si� t��

and thus we obtained the proof of the statement of the theorem�

Theorem G��� Subject reduction� If

�� The user type graph G is consistent

�� All behaviors are consistent

�� All primitive function associations are consistent

�� Store S is consistent

�� All free object variables xi in hexpri are present in E

�� E � fxi � oi � tig� � � fxi � tig� � � hexpri � te� and te� �f Object

�� �S�E� hexpri�� � �S�� o � q�

then

�� S� is consistent

�� q �f te�
�



G PROOFS �


The consequence of this theorem is that the reduction of type�correct terms does not produce run�time
type errors �err�� or inconsistent store� Note that other run�time errors �err�� can only be produced by
primitive functions� if they are so de�ned�

Detailed sketch of the proof� The proof is by structural induction on �� The most involved case is
the one dealing with application �hexpri��hexpri��� when neither of the expressions is reduced to err��
There are four main cases�

�� �S�E� hexpri
�
�� �� �S��� b � bt� � �S�E� hexpri

�
�� �� �S��� closure�Ec� x� hexpri� � c�

�bad�

�� �S�E� hexpri��� � �S��� b � bt�� �S��� E� hexpri��� � �S���� p � t�� and dispatch�b� t� � 
 �bad�

�� �S�E� hexpri��� � �S��� b � bt� �S��� E� hexpri��� � �S���� p � t�� and dispatch�b� t� � i� fun �x� hexpri
is a part of the i�th association of b �good�

�� �S�E� hexpri
�
�� � �S��� b � bt�� �S��� E� hexpri

�
�� � �S���� p � t�� and dispatch�b� t� � i� primitivei

is a part of the i�th association of b �good�

�� �S�E� hexpri��� � �S��� closure�Ec� x� hexpri� � c�� and �S��� E� hexpri��� � �S���� p � t� �good�

We have to show that bad cases never happen� while good cases do not produce err��

�� �S�E� hexpri
�
�� �� �S��� b � bt� � �S�E� hexpri

�
�� �� �S��� closure�Ec� x� hexpri� � c�

�bad� Assume �S�E� hexpri
�
�� � �S��� o � to� Then to ��f Behavior since behaviors closures are

the only objects �except for err� which we do not consider here� that have subtypes of Behavior
as types�

� � hexpri��hexpri�� � te� te� �f Object

�assumption of the theorem� and

� � hexpri
�
� t�� t�� 
f to

�induction assumption�� According to Appl�

te � apply�t�� t���

But according to the rules for � and �f

apply�t�� t��� �f Object� t�� �f Behavior

Thus we have

Behavior �
f to �f t�� �f Behavior

which is a contradiction� Thus this case can never happen�

�� �S�E� hexpri
�
�� � �S��� b � bt�� �S��� E� hexpri

�
�� � �S���� p � t�� and dispatch�b� t� � 
 We assume

� � hexpri
�
� t� Then

apply�bt� t��� ��f Object

according to the Theorem ��� and the de�nition of dispatch� According to the condition of this
theorem and the rule Appl

� � hexpri
�
�hexpri

�
� � apply�t�� t��� apply�t�� t��� �f Object
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where

� � hexpri� � t�

and bt �f t�� by induction assumption� Then by the monotonicity of apply w�r�t �f

apply�bt� t��� �f apply�t�� t���

and we have

Object �
f apply�bt� t��� �f apply�t�� t��� �f Object

which is a contradiction� Thus this situation can never happen�

�� �S�E� hexpri��� � �S��� b � bt� �S��� E� hexpri��� � �S���� p � t�� and dispatch�b� t� � i� fun �x� hexpri
is a part of the i�th association of b� Let us put

� � hexpri� � t�

� � hexpri� � t�

� � �fun �x� hexpri� � f

Then we have

te� � apply�t�� t��� by the rule Appl

bt �f t�� by induction hypothesis

t �f t�� by induction hypothesis

Therefore �by the rule ��� � �f �� Corollary ���� and transitivity of �f �

apply�bt� t�� �f te�

By the Theorem ��� and transitivity

apply�f� t�� �f te�

By the rule Fun we have

f � �x�e� where �
� x � x � hexpri � e

By the rule for � we have

apply�f� t�� � 	t�x�e�

and by the rule for � we have

�S�E� hexpri��hexpri���� � �S���� E�fx � p � tg� hexpri��
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We now have to show that

q� �f 	t�x�e� and S� is consistent�
where �S���� E�� hexpri�� � �S�� o � q��
E� � E�fx � p � tg�
�� � hexpri � e�
�� � �	fx � xg�
S��� is consistent�
all free object variables in hexpri are present in E��
	t�x�e� �f Object �by the Theorem ����

but this is the same as

q� �f e
�� and S� is consistent�

where �S���� E�� hexpri�� � �S�� o � q��
E� � E�fx � p � tg�
�� � hexpri � e��
�� � �	fx � tg�
S��� is consistent�
all free object variables in hexpri are present in E��
e�� �f Object�
e� � 	t�x�e

which is the induction hypothesis� Thus� this case is proven�

�� �S�E� hexpri��� � �S��� b � bt�� �S��� E� hexpri��� � �S���� p � t�� and dispatch�b� t� � i� primitivei
is a part of the i�th association of b� In this case the statement of the theorem directly follows
from the de�nition of primitive function association consistency and from the induction hypothesis�
Note that this is the only case when store consistency is an issue as the store can only be directly
manipulated upon by primitive functions�

�� �S�E� hexpri
�
�� � �S��� closure�Ec� x� hexpri� � c�� and �S��� E� hexpri

�
�� � �S���� p � t�� This is

analogous to the case � but is much simpler since dispatch is not involved�

Other �non�application� cases are signi�cantly simpler�


