0

i University of Alberta

The Logic of Type Specifications:
Typechecking Parametric and Inclusion Polymorphism

by

Yuri Leontiev, M. Tamer Ozsu, Duane Szafron

Technical Report TR 98-01
March 1998

DEPARTMENT OF COMPUTING SCIENCE
University of Alberta
Edmonton, Alberta, Canada



The Logic of Type Specifications:
Typechecking Parametric and Inclusion Polymorphism

Y. Leontiev, M. Tamer Ozsu, Duane Szafron
Laboratory for Database Systems Research
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada T6G 2E1

{yuri,ozsu,duane}@cs.ualberta.ca

Abstract

In this paper we present a type system that combines inclusion and parametric polymorphism with
behaviors (multi-methods) and precise function typing. Type declarations allow user-definable variance
specification of type parameters and user-definable subtyping between types of different kind. Our
approach involves use of type specification logic which translates type specifications into types. Types
are computable values. Type computation of types generated by the logic results in precise function and
behavior typing. As a proof of concept, a toy language with its syntax, semantics, and subject reduction
theorem is presented.
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1 Introduction

In the past decade the type safety of programming languages has been a focus of prolific research activity.
One of the major problems in this area is the development of a type system that would statically ensure
type safety and would still be expressive enough to deal with today’s advanced modeling and development
requirements. It is well known that expressive power and convenience of a type system sometimes, if not in
most cases, make static type safety very difficult to achieve. It therefore comes as no surprise that many
languages sacrifice static type safety for flexibility and expressiveness of their type systems (e.g Eiffel [Mey88],
BETA [MMMP90]).

The recent advancements in the area of type systems make it possible to design an expressive type sys-
tem that supports static type safety. One of the main ideas that allow us to achieve this goal is the idea of
polymorphism. Parametric polymorphism is used as a central design principle behind very expressive type
systems of ML, [MTH90] and many languages influenced by it, such as Napier88 [MBC*96] and Machiavelli
[BO96]. Inclusion polymorphism, on the other hand, is used in modern object-oriented languages. Recently,
many attempts have been made to combine the expressive power of these two widely used forms of polymor-
phism in a single type system (PolyTOIL [BSG95], LOOP [ESTZ95], Sather [SOM93], Theta [DGLM95],
TooL, [GM96], and TL [MMS94]).

However, the full potential of such a powerful combination has yet to be realized. In the presence of two
forms of polymorphism, the interaction between them must be identified. This includes the subtyping be-
tween parametric types of the same shape, which can be covariant (such as non-updatable sets), contravariant
(output streams), or novariant (updatable sets). Tt also includes subtyping relationships between different
parametric types (such as Set(X) < UpdatableSet(X)) and between parametric and ordinary types (such
as String < Array(Char) or Collection(Collection(X)) < CollectionOfCollections). Each of the lan-
guages mentioned above fixes the way the parametric types are treated in terms of variance. PolyTOIL and
Tool. allow only covariant parametrizations, while Sather and Theta — only novariant ones. Only Theta,
Sather, and TooL allow user-specifiable subtyping relationships between different parametric types.

Another important feature of a polymorphic type system is its ability to provide precise function typing.
This is needed when the return type of a function depends on types of its arguments. The standard technique
employs type variables that convey type information from argument to result type of a function. This
approach is used in ML [MTH90] and many other languages.

The presence of multiple dispatch makes precise function typing significantly more complicated. Multiple
dispatch is sometimes defined in terms of multi-methods, and the run-time dispatch mechanism is required
to pick the ”most suitable” method. The problems of static typing of multi-methods have been discussed in
[ADL91], [CL94], [CL96], [Ghe91], and others. However, none of these papers discusses the combination of
multi-methods and precise function typing in the form of free variables in type specifications.

The ability to specify a wide range of possible interactions between two kinds of polymorphism, as well as
precise function typings, greatly enhances the expressive power of the type system. In this paper, we present
a mechanism that allows us to specify such interactions, give precise typing to functions and behaviors, and
statically type-check the resulting programs.

The mechanism proposed in this paper is designed for object-oriented languages with multiple dispatch
(where types of all arguments, not just the receiver, are taken into account). It can be easily adopted for
single-dispatched languages as well, but works better in the presence of multiple dispatch. As far as we are
aware, the combination of multiple dispatch, parametric polymorphism, and static type checking is novel to
our work.

The essence of our approach is the treatment of type specifications as logical formulae (types) in an
appropriate variant of type theory. The types of objects are then obtained as proofs of their respective type
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specifications. The types generated in this manner can represent functions from types to types. For example,
the type specification X—X has a proof Az.z, which is a type of functions that produce the result of the
same or lesser type then that of the receiver.

The paper is organized as follows: in Section 2, we describe the type and subtype specifications that
are allowed in our framework and introduce the notion of the user type graph. Section 3 describes type
specifications and exemplifies their intended meaning. Types, subtyping, and the type reduction are described
in the Section 4. The Section 5 describes the type specification logic that is used to obtain types from type
specifications. Later, in Section 6, we introduce a toy language that is used to illustrate our approach, with
its syntax and natural semantics. The material in the Section 7 deals with dispatch and behavior consistency
issues and includes the subject reduction theorem. Finally, Section 8 concludes the paper and outlines the
future research directions.

2 User-defined types

In this section, we will describe the types that are declared by the user. We will also describe the subtype
declarations and special, predefined types.

User-defined types (ordinary and parametric) along with a few special predefined types form the basis of
the type hierarchy. User-defined types can be ordinary or parametric and are declared using type declarations,
while subtyping relationships between them are defined by subtype declarations.

In this section we will describe the type and subtype declarations allowed in our framework. We will also
define the user type graph, which is an auxiliary structure automatically generated from the declarations and
used in type-checking and type inferencing. We will require the user type graph to be consistent (one of the
consistency condition being the graph acyclicity). The formal definition of consistency will be presented in
the Section 2.3.

We will start by describing the predefined special types, then we will proceed to the declarations and
finish by the definition of the user type graph, its consistency, and auxiliary functions defined over it.

2.1 Special predefined types

Several special types are considered to be predefined:
1. The type T. This is the supertype of all other types. T is the type of run-time type errors' (err').

2. The type L. This is the subtype of all other types. L is the type of run-time errors (errl) generated

by primitives?.

3. The type Object. This is a supertype of all types in the system except for T. The statement X < Object
is interpreted as "X is a valid object type”.

4. The type Behavior. This type is a supertype of all behavior and function types (defined in Section 4).
5. The type RegObject. RegObject is a supertype of all user-defined types except for Unit.

6. The type Unit. This type has no supertypes except for Object and T and no subtypes except for L.
The only object of this type is unit. This type is used for procedure and command return values.

IThus objects of this type can never occur in a successfully typechecked program.
?Potentially, objects of this type can serve as exceptions as, once produced, they propagate all the way up to the highest
level without causing type errors. This potentially valuable treatment of L is outside the scope of this paper.
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7. The parametric types Product, (Xi,...,Xy) (n > 1). These types have no supertypes except for
RegObject and no subtypes except for L. The parameters are covariant. Objects of these types have
the form (o1, ... ,0,) and are used to deal with multiple arguments?.

The special types and their place in the type hierarchy are depicted in the Figure 1 (except for products
that are in the user-defined type hierarchy, but are predefined and therefore special).

-
Object
RegObject Unit Behavior
i '\ \
.+ "User-defined - .~ Behaviorand -
types .~ functiontypes .
1

Figure 1: Special types and their place in the type hierarchy

Note that the types T and L do not have "normal” names and thus can not be explicitly used in the
program. This is a design decision that can be justified by the following consideration: since both these
types are types of errors, they should not occur in a correct program.

Having described the special types, we now proceed to the "normal” user-defined types.

2.2 User type declarations

First, we will establish some terminology and introduce the notation to be used for user-defined types. We
will denote user-defined types as T. Parametric types will be written as P(A;, ..., Ayp), where A; are type
parameters and P is called the head. The head of an ordinary type is that type itself. A set of all parametric
types with the same head will be called a family of parametric types.

Both parametric and ordinary types are declared by type declarations that have the following syntax:
(type-decl) ::= type T | type P((tpar-specs))
(tpar-specs) ::= (tpar-spec) | (tpar-specs), (tpar-spec)
(tpar-spec) ::= (tpar-var-spec) | (tpar-var-spec) < T

3Note that there is no subtyping between product types of different arities as we do not want to be able to call a behavior
with four arguments if it was designed to accept three.
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(tpar-var-spec) == 0| + |-

A parametric type declaration is thus the definition of a family of parametric types. Each parameter is
characterized by its variance specification and its upper bound. An upper bound is always a non-parametric
user-defined type.

Variance specifications denote subtyping relationships between parametric types of the same family. Type
parameters marked 4 are covariant, those marked — are contravariant, and those marked 0 are novariant.

For example, type Dictionary(+ < String, +) is a declaration of a family of (non-updatable) dictionary
types with two covariant parameters, the first being required to be a subtype of String. We assume that
the first argument is the key type and the second one is the value type?.

The subtyping relationship between types is specified by variance specifications (for within-family re-
lationships) and by explicit subtype declarations. Subtype declarations have one of five forms: ordinary-
ordinary, parametric-ordinary, ordinary-parametric, parametric-parametric, and parametric-any. We will
consider all these forms along with their syntax and semantics in turn. The following is the syntax of a
subtype declaration:

(subtype-decl) ::= (tt-decl)|(pt-decl)|(tp-decl)|(pp-decl)|(pa-decl)

The first form of subtype declaration establishes an ordinary type as a subtype of another ordinary type.
A subtype declaration of this form is written as
(tt-decl) := T <, T

For example, Integer <, Real.

The second form of subtype declaration ({pt-decl)) is the definition of a subtyping relationship between
a parametric type and i1ts non-parametric supertype.

(pt-decl) ::= P({pt-par-decls)) <, T
(pt-par-decls) ::= (pt-par-decl) | (pt-par-decls), (pt-par-decl)
(pt-par-decl) ::= T’ | *x | P’((pt-par-decls))

The number of (pt-par-decls) must match the definition of the appropriate type. The star # has a mean-
ing of a wildcard that matches anything. It can be considered as a universally quantified unique anonymous
variable. This form of subtype declaration has an additional semantic restriction: The (pt-par-decl) in the
i-th position of the parametric type P must be a subtype of Maxzp; (the upper bound of the i-th parameter
of P, as defined by its declaration). For example, the declaration Dictionary(Text, *) <, TextDictionary
establishes TextDictionary as a common supertype of all types of the form Dictionary(Text, X), where
X is any type, provided that Text is a subtype of String.

Yet another form of the subtyping declaration, (tp-decl), is the declaration of a subtyping relationship
between a non-parametric type and its parametric supertype. It has the following syntax:

(tp-decl) == T <, P({tp-par-decls))
(tp-par-decls) ::= (tp-par-decl) | (tp-par-decls), (tp-par-decl)
(tp-par-decl) ::= T’ | P/({tp-par-decls))

The absence of wildcards here is the only difference between this form of subtype declaration and
the previous one. For example, the declaration String <, List(Character) makes String a subtype of
List(Character). Note that since the parametric type here is fully instantiated, it is impossible to make an
ordinary type a subtype of an infinite number of parametric types.

4Each parametric type declaration P(...) implicitly defines constants np, Vpi, and Mazp;. np is the arity of P, Vp; is
the variance annotation of the i-th parameter of P, and Mazp; is the upper bound for it. If not explicitly given, Mazp; is
Dbject for covariant (+) positions and RegObject for all the others (— and 0). If explicitly given, the upper bound should be
<c RegObject.
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The reasons why wildcards are disallowed here can be illustrated by the following example. Let us assume
that we allow wildcards and have the following definitions®:

type UpdatableContainer(0);

type EmptyContainer;

EmptyContainer <, UpdatableContainer(x);

behavior B_getOne {UpdatableContainer(X)—X ...}

Then application of B_getOne to an object of type EmptyContainer is type-correct, but what result type
1s 1t supposed to produce? Clearly, it can produce neither T nor L since then the behavior B_getOne would
become non-monotonic (as UpdatableContainer is novariant) and thus prone to run-time type errors. To
prevent situations like this, wildcards are disallowed in this form of subtype declaration.

The most complicated form of subtype declaration is (pp-decl) which establishes a subtyping relationship
between a parametric type(s) and its parametric supertype(s). The following is its syntax:

(pp-decl) == P(Xy,...,Xn,) <y P/((pp-par-decls))
(pp-par-decls) ::= (pp-par-decl) | (pp-par-decls), (pp-par-decl)
(pp-par-decl) := X, | T | P“({tp-par-decls))

X; are variables (implicitly universally quantified). Each variable must appear once on the left and no
more then once on the right. There is also one additional semantic restriction: if the variables on the left and
on the right of the subtyping relationship are annotated by 7 (defined in Section 3, then if a variable X; is
annotated by +(—) on the left, it must also be annotated by +(—) on the right. Note that only ”constant”
parametric types ((tp-par-decls)) are allowed inside (pp-par-decl). The following are examples of this
form of subtype declaration:

type Set(+);

type Bag(+);

type UpdatableBag(0);

Bag(X) <, Set(X);

UpdatableBag(X) <, Bag(X);

These semantic restrictions are not self-evident, so we will look into them in more detail. The requirement
that no new variables appear on the right is equivalent to the absence of wildcards in (tp-decl) and was
discussed earlier. In order to justify the requirement dealing with variance annotations, consider the following
example. Let us have the following definitions:

type UpdatableContainer(0);

type SpecialContainer(+);

type Person;

type Student;

Student <, Person;

SpecialContainer(X) <, UpdatableContainer(X);

behavior B_update {(UpdatableContainer(X), X)—UpdatableContainer(X)...}

Then if we take an object of type SpecialContainer(Student) and apply the behavior B_update to it,
what result type should we get? At first sight, it should be UpdatableContainer(Student) as

SpecialContainer(Student) <, UpdatableContainer(Student)
But on the other hand

SpecialContainer(Student) <, SpecialContainer(Person) <, UpdatableContainer(Person)

5Behavior type specifications will be discussed in the Section 3
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so the result should also be UpdatableContainer(Person). Since UpdatableContainer is novariant, these
two results are incompatible. This happened because the variance restriction was violated (X on the left
side is covariant (4) while X on the right side is novariant(0))°®.

The last form of subtype declaration is (pa-decl). It establishes a subtyping relationship between a
parametric type and its argument. The following is the syntax of (pa-decl):
(pa—decl) == P(X) <, X

Here P is a parametric type with a single parameter which must be either covariant (+) or novariant
(0). X here is a variable. An example of a subtype declaration of this sort is the declaration of a type of
variables:

type Var(0);

Var(X) <, X;
which allows us to use objects of this type wherever the object of the argument type is expected. This is a
natural thing to do, but many type systems require explicit dereferencing operation to achieve this effect.
The restrictions on this form of subtype declaration are analogous to those placed on {pp-decl) if we consider
the stand-alone variable X on the right as a parametric type Id(X) with a single covariant parameter’.

Thus far we have described the type and subtype declarations allowed by our framework along with
their respective semantic restrictions. Apart from the conditions related to each of the five forms of subtype
declarations, there are also certain restrictions on the complete set of these declarations in the type system.
We will specify them in the next section using the notion of the user type graph.

2.3 The user type graph and auxiliary functions

The user type graph (denoted G) is a graph with nodes labeled by user-defined types (both parametric and
ordinary) and directed edges produced (and labeled) by subtype declarations. We will use it not only to
verify the correctness of user type specifications, but also during type-checking and other manipulations with

types.

Definition 2.1. The user type graph: TIf {type Ti(...)} are type declarations where each type is declared
no more than once and {T}(...) <, T#(...)} are subtype declarations, then the user type graph G is defined
as follows:

1. For each type declaration type Ty there is a vertex in the graph. Thus, every parametric family is
represented in G by a single vertex while every ordinary type has its own corresponding vertex.

2. For each subtype declaration Ty(...) <, Ta(...) there is an edge from the vertex Ty to Ty in the graph

3. Subtype declarations of the form Q(X) <, X are not reflected in G
O

Note that according to this definition there may be more than two edges between two nodes in the graph.
We require that the user type graph is consistent. The following is the definition of consistency.

Definition 2.2. Consistency of the user type graph: The user type graph G is consistent iff

6 The other (implicit) restriction is the fact that the "depth” of parametricity on the right-hand side is restricted to 1. This
is done to simplify the definition of functions conv, N\, and / (described in the Section 2.3). This restriction can be lifted.
"Note that a subtype specification of this form actually produces an infinite number of infinite chains of subtyping:

... <y Var(Var(X)) <, Var(X) <, X

for any type X.
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1. G is acyclic as a directed graph

2. If Q participates in the subtype declaration of the form Q(X) <, X ({pa-spec)), then Q is an isolated
vertex in ¢

3. If P is parametric and there are two (directed) paths from a vertex X to P in G, then the two paths share

a final segment of non-zero length
O

The first condition protects against ”subtyping cycles”. The second one makes sure that infinite subtyping
chains produced by subtype specifications of the fifth form do not interfere with the rest of the graph. Finally,
the third condition ensures that user-specified subtyping declarations do not produce a situation where the
way up from a type to a parametric type in G can produce different results if different paths are taken. This
is the same problem the local semantic restrictions placed upon various forms of subtype declarations are
designed to protect from.

The user type graph is used to define additional functions conv, N\, and . The former one is used
for type and subtype computations (Section 4) while the latter two are used for domain intersection and
ultimately for behavior consistency checking (Section 7).

The function conv (¢, P) converts a type ¢ to a given supertype. For example, if we have Bag(X) <, Set(X),
then conv(Bag(Person), Set) = Set(Person). The consistency conditions above ensure that this is indeed
a function, i.e. its result is unambiguous. The function , plays a similar role but returns a set (e.g.
Bag(Person), 'Set = {Set(Person)}). In case of  the set always consists of only one element. The func-
tion N\, performs a similar function, but goes down the type hierarchy instead of going up. This function
can return a set with several elements. In our example, Set(Person)\Bag = {Bag(Person)}. The complete
definitions of these functions are given in the Appendix A3,

In this section, we have described the type and subtype declarations allowed by our framework along
with the restrictions that are placed upon them. We have also introduced the notion of the user type graph
and have defined consistency for 1t. Next, we will describe the type specifications used to describe derived
types in our framework.

3 Type specifications

Before proceeding to the definition of type specifications, we will first consider a couple of examples. These
same examples will be used later to show how the type specification logic and type computations together
ensure the precise typing of functions.

8 For simplicity, we will assume that types Unit, RegObject, and Product, belong to G and have the following declarations:
type Unit;
type RegObject;
type Producty(+, +);
type Products(+, +,+);

T <u RegObject;
P(x,...,%) <y RegObject;

for all T # Unit and P in G. This way, we will not have to define special subtyping rules for them.
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The first example is one of the simplest possible type specifications: X—X. This is a type specification of
a behavior that returns its only argument untouched. Here X is a type variable which is implicitly universally
quantified.

A more involved example of a type specification is the type specification of behavior B_union that produces
a union of two sets. It is written as (Set(X),Set(Y)) —Set(X UY). The type operator U is understood as
the least upper bound of two types. The corresponding greatest lower bound operator is N. Here both X
and Y are type variables and the notation (T3, ...,7,) will be used throughout the paper as a shortcut for
Product,(71,...,7,). We assume that sets are non-updatable and declared as type Set(+).

An interesting example of a type specification is the one of a behavior that adds an element to a set. It
is (Set(X),X) —Set(X). It looks pretty straightforward, but let us consider what happens if the type of the
first argument is Set(Student) and that of the second argument is Person (a supertype of Student). The
first impression 1s that this behavior is unapplicable. But there exists an X = Person such that the argument
types match the ones specified by the behavior. Therefore, the behavior is applicable and the result type is
Set(Person). This corresponds to the intuition that by adding just a person to a set of students, we produce
a new set that can only be classified as a set of persons. Of course, this would not work with updatable sets,
but those are novariant and we would not be able to find an X as in the above example.

The last example of a type specification is that of the behavior B_apply that applies its first argument
to the second one and returns the result. The specification is (X—=Y, X)—Y. Clearly, we can say what the
result type is if we know the types of both arguments. For instance, if the first argument is the behavior
that adds an element to a set (described above) and the second argument is a pair (product) of an object of
type Set(Student) and an object of type Person, then the result of this behavior will be Set(Person) as it
1s exactly what we’ll get according to the previous example.

Now we proceed to the definition of a type specification.

Definition 3.1. Type specification: The type specification ((TS)) is defined syntactically as follows:
TS = X (X is a type variable)

| T (T is a user-defined type)

| Object

| Behavior

| P(T'S1,...,TSn,) (P is a user-defined parametric type with arity np)

| T'S1UTS,

| TS1NTS,

| TS5, =155

[(75)

| (T'S1,...,TSy) (shortcut for Product, (T'S1,...,TSy))

The operators N and U are, respectively, the greatest lower bound and the least upper bound operators.
The operator — is the function operator. The variables in a type specification are implicitly universally
quantified.

The type specifications as defined here are meant to be written by the user in the program. There is
also a notion of annotated type specification which is only used by the type-checking mechanism described
later. The annotated type specification differs from the normal one in that all variables are annotated with
their variance specifications (0, +, or —). The transformation —* (defined in the Appendix B) transforms a
correct type specification into an annotated type specification.
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The transformation is straightforward except for one thing: arrow types are only allowed in covariant
positions. This restriction is necessary for the definition of computable subtyping given in Section 4.2. It is
also intuitively justified as a behavior type in novariant position ”fixes” the behavior type too precisely to
be useful. The same is true for contravariant occurrences.

In this section we have introduced the type specifications and gave several examples to illustrate their
meaning. The precise semantics of the type specifications will be established in Section 5 in terms of types
that will be described next.

4 Types and subtyping

In this section, we will describe types that will be used to give the semantics of type specifications in Section 5.
We will also describe two subtyping relationships (one is used for computation, the other - for theorems and
theoretical considerations).

4.1 Types

In our framework, types are computable. The computation on types gives precise typings to function and
behavior applications. For example, if a behavior has type specification X—X | the type of such a behavior
will be Az.z. Being applied to any argument type, it will produce the result type. Only monotonic (w.r.t
subtyping?), double-strict (w.r.t T and L), total functions are considered. In order to see how we can require
that all functions be total, consider the following example. Let us assume that a behavior B_plus has the
type specification Integer —Integer. Then that behavior has a type Az.(cond(z < Integer); Integer)
which according to the type computation rules to be discussed below is reduced to Integer if applied to a
type that is a subtype of Integer and is reduced to T otherwise. It is easy to see that extending types to
total functions in this manner preserves both the usual notion of function subtyping (domain contravariance)
and monotonicity.
The following is the definition of a type.

Definition 4.1. Type: a is a type iff
a = =z (x is a variable)
|t (T is a user-defined type)
| Object
| Behavior
| T
| L
| plai, ... ,anp) (P is a user-defined parametric type, np is its arity)
| CllUClz
| alﬂaz
| Az.a (only functions monotonic w.r.t <; are allowed)
| a—b (shortcut for Az.(cond({x < a,a < Object}); b))
| rev(p, i,a) (P is a user-defined parametric type, ¢ is a number from 1 to np)
| conv(p,a) (P is a user-defined parametric type)

| apply(a1, a2)

?More precisely, <; which will be described later in this section.
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| cond(C);a (C is a set of conditions of the form a1 < as or ay = as)

Here rev, conv, apply, and cond are auxiliary functions. The meaning of conv(p, a) has already been
discussed in Section 2.3. rev(p,,a) is similar except that it extracts the i-th argument from the resulting
parametric type. The function cond(C'); a checks the conditions in C' (using <. ) and returns T if they are
not satisfied and the result of a otherwise. The function apply(f, ) applies lambda-abstraction which is its
first argument to its second argument and returns the result. The precise definitions of these functions along
with type computation (reduction) rules are given in Appendix C. The type reduction is denoted {}.

There are several flavors of types, all slightly different from each other. The extended types allow the
wildcard () in any position a variable is allowed. The closed types are types with no free variables. Reduced
types are types with all reductions carried out; they do not include rev, conv, apply, or cond. Argument
types are types obtained by a simple-minded translation of arguments of type specifications (called tFrpgp
and defined in the Appendix D). Except for being reduced, they do not contain occurrences of T, L, and
U and restrict lambda abstractions to those produced by the arrow operator. Finally, concrete types are
types that an object can have. These types disallow N except for lambda-abstractions, but allow arbitrary
lambda-abstractions. All these varieties are defined in Appendix E.

Having described types, we now proceed to the description of subtyping relationships that we define over
them.

4.2 Subtyping

We define two subtyping: <. and <; . The first one can be computed and is therefore called computable
subtyping, while the second one has some nice theoretical properties and is called full subtyping.

The computable subtyping is used in type computations, because its rules can be used as an algorithm.
However, the computable subtyping is restricted in that it can only give a positive result when lambda
abstractions on the right are limited to arrow types. Full subtyping is free from this drawback; however, 1t is
not computable. This is the reason why we have two subtypings, one (computable) stronger than the other
(full).

The rules for computable subtyping are presented in Figure 2.

Subtyping of parametric types (rule p”) and ordinary user-defined types (rule Const”) makes use of
auxiliary function conv defined over the user type graph (Section 2.3). The rule C'onst” uses this function
directly and the rule p~ indirectly, via the function rev.

The rule Var[fbject is designed for checking types with unbound free variables. It states that a free variable
is assumed to be type-correct. This (and equality between two identical variables by the rule Axiomy) is the
only rule dealing with free variables.

The rules *”> and *< deal with extended types, i.e. types with wildcards in them. The meaning of these
rules is ”wildcard matches anything”. Since we have no structural transitivity rule, the presence of the
wildcard rules does not introduce subtyping cycles for non-extended types.

As can be seen from the rules, the computable subtyping is quite weak in terms of subtyping of lambda
abstractions (rule A<>) and can only deal with arrow types (rather than with arbitrary abstractions) on the
right of <. . This weakness does not manifest itself during type-checking (since we disallow arrow types in
contravariant and novariant positions), but it complicates the theory.

In order to avoid these complications, we define full sublyping as an extension of <. where arbitrary
lambda-abstractions can be compared. We then establish relationship between two subtypings as well as
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Figure 2: Computable subtyping ( <. )
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several properties of the second one.
Full subtyping ( <; ) is defined by making the following changes to the rules for <. :

1. The rules A<> and Ag,;.., are different
2. The rule A= is introduced
3. In all rules, |} is changed to {;

The type computation {}; differs from |} in that all subtype checking occurs via <; rather than via <. .
The following are the A rules for <; :

e [e/elfily <5 leslfally | Sa:[afelfl; <; Object .
Az fi <p Ay.fa Az.f <; Behavior Behavior

Ve: [e/l‘]f1Uf =y [6/y]f2uf A=
/\l‘.fl =f /\y.fz

Note that while the rules in Figure 2 can be considered as computation rules if read from bottom to top,
the addition of the A rules above destroys this property.

The following theorem establishes the relationship between computable ( <. ) and full ( <; ) subtyping
as well as ordering properties of the latter.

Theorem 4.1. Subtyping: If t,¢ are reduced types, then
Lt <.t/ =t<; 1
2. <; is a partial order on reduced types

Sketch of the proof: The first statement follows directly from comparative analysis of rules for <; and
<¢ . The second statement can be proven by structural induction over the derivation of <; .

In this section, we have defined computable and full subtyping. We have also shown the latter being the
weaker form of the two subtypings and established its ordering properties. We will proceed by defining the
logic of type specifications — a formal mechanism that allows us to translate type specifications into types.

5 The logic of type specifications

In this section we will describe our approach to automatic generation of types from type specifications. We
want that translation to give the type specifications the intuitive meaning described earlier in the Section 3.
At the end of this section we will present the theorem that confirms that our translation does have this
property. We will also come back to the examples of Section 3 and show how the logic handles them.

The approach we take treats the type specifications as types in an appropriate variant of Martin-Lof’s
type theory, while treating our types as elements of these types. Doing so enables us to reduce the task of
automatic generation of the types to the task of constructing proofs in an appropriate variant of intuitionistic
logic.

The logic of type specifications 1s presented in Figure 3. In this variant of intuitionistic logic, function
types (—) correspond to implication, union types (U) correspond to disjunction, and both intersection types
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(N) and parametric types (P(Ay, ..., Ap)) correspond to conjunctions. Type constants correspond to truth
values.

The type specification logic is defined over annotated type specifications. The proof object produced by
the logic for an annotated type specification is a closed type.

Sequents in the logic have the form T F a :: A/C where T is a set of proof-annotated formulae, a :: A
is a proof-annotated formula (a is a proof of A) and C is a set of conditions. The conditions are used for
argument checking and are generated in the leafs of the proof search and then pushed up to the corresponding
A-abstraction (rule —7).

Since we have no elimination rule for disjunction (U), we can use a simplified version of implication-
elimination rule (— ). This makes our logic non-contracting in the sense of Dyckhoff [Dyc92]. Therefore a
goal-directed proof search 1s terminating.

The part of the logic that deals with variance annotations consists of the rules for variables (weakening
and axioms). These rules place certain restrictions on the assumptions that can be discarded and produce
appropriate conditions in C'. For example, the sequent a :: Xt b :: XOF ¢ :: Xt /C can be proven if we put
e =0, C ={a < b}, but the sequent a :: X+t ,b:: X~ F ¢:: XT/C can not be proven. In the first case we
know that b should be matched exactly by the proof ¢ of X (since it is novariant), and @ should be matched
by the proof ¢ of X in such a way that a < ¢ (as it is covariant). Thus, we should put ¢ = b and require
that a < ¢ which 1s exactly what the logic produces. In the second case we need to have ¢ such that ¢ <
and a < ¢, so even if we know that a < b, we still have insufficient information to determine what exactly ¢
should be.

The ”subexpression” premise of the rule Weakening Var deals with the case of recursive variable dependen-
cies. Consider the type specification (X, X—X)—X. It will be annotated to produce (Xt Xt —5X*T)5 X+,
When we try to prove it we will reach the sequent

rev(Products, 1, 2) :: X1, apply(rev(Products, 2, ), rev(Products, 1,z)) : Xt k¢ = X1 /C

and since the proof object of the first Xt in the assumption list is a subexpression of the proof object of
the second one and there is no proof for X° in the assumption list, the weakening rule is unapplicable and
the sequent can not be proven. The reason for that is that in a perfect world the proof ¢ should look like an
upper bound of the set
{rev(Products, 1, z), apply(rev(Products, 2, #), rev(Products, 1, z)),
apply(rev(Products, 2, z), apply(rev(Products, 2, #), rev(Products, 1, z))), ...}
but we can not express this as a type. Note that the type specification (UpdatableSet(X), X—>X)—X can
be proven (because of novariance of UpdatableSet) and will (after simplifications) yield the proof object
Az.(cond(apply(rev(Producta, 2, #), rev(Products, 1, rev(UpadatableSet, 1, x)))
< rev(Products, 1, rev(UpadatableSet, 1, 2)));
rev(Products, 1, rev(UpadatableSet, 1, x)))
Having discussed the properties of the logic, we now present the theorem that establishes the precise
meaning of proofs produced by the type specification logic. The corollary shows that function types produced
in this manner are indeed types, i.e. they are monotonic w.r.t full subtyping ( <f ).

Theorem 5.1. Properties of derived types: 1f F,{A;}; are annotated type specifications, f,{a;}; are types,
C is a set of conditions, Frg [ o F,{Frgr d;:: A;};, & are free variables in [, {a’;};, and {a; :: A;}; +
f i F/C then

= min 3, {(cond (C); [@/7.f')}
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I'kaz: A/CY Fl—y::B/C'lul
'k aUy:: AUB/CLUC,
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Figure 3: Logic of type specifications
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where U = {Z| {a; <y [4/Z]cd’;};}. The notation [a/b].c denotes substitution with capture where free vari-
ables of @ might become bound in [a/b]cc. For example, [x/t].(Az.t) = (Az.z). O

Sketch of the proof: The proofis by showing that the conclusion of every logical rule satisfies the theorem
if the premises of that rule do. This is tedious but straightforward. The most tedious case is the rule
PFE as it requires careful analysis of the function rev.

Corollary 5.1. Properties of derived arrow types: If

(TS) =»+ A=R

FfaA=SR/C
Frra:: A, Frrr R
C={e;i <" di}i
c1 SZI dl,... , Cn SZ" dn

then
L. apply(f, 1) = minan {cond({t < [d/Z].a, [d/F].a < Object}); [d/Z]r)}

2. f is monotonic w.r.t. <;

3. f is monotonic w.r.t. <.

Sketch of the proof: The first two statements are straightforward. In order to prove the third one, we
notice that the only significant difference between <; and <. is that the subtyping rule A< ( <.)
works well in one direction only. This direction will not be reversed during subtype checking and type
computation because the transformation 1 only allows arrow types in covariant positions.

Now we will consider the same examples we did in Section 3 in order to see the types produced by the logic.
In order to make the generated types easier to understand, we will introduce the following notation: al: =
rev(Producty, i, a) (extraction of the i-th component of a product type, e.g. (a,b)}2l} = b) and P~1(a) =
rev(P, 1,a) (extraction of an argument of a parametric type, e.g. UpdatableSet™!(UpdatableSet(a))| = a).
We will also simplify resulting types to make them more visual.

First we consider the type specification X —X. Its annotated version is XT—X* and the type pro-
duced by the logic is Az.(cond(z < Object);z) which is equivalent to Az.z (we always assume that the
argument is a valid type). The Corollary states that we must have apply(Az.z,t)|; = min, S/ {cond({t <
[u/x]cx, [u/x]cx < Object}); [u/x]cx)} It is easy to see that the minimum is achieved when we put v = ¢
(u should be greater than ¢ in order for the condition to be satisfied; out of those u > ¢, the minimum u
provides the minimum result). Then the minimum is ¢ which is equal to apply(Az.z, t)Uf.

The second example is the type specification (Set(X),Set(Y)) —Set(X UY). The logic produces the proof
object fi = Az.Set(Set~!(z|1)USet1(x]2)) (after simplifications). This can be seen as an instruction to
obtain the result type as a set type of the greatest lower bound of parameters of the first and second
arguments of the behavior. For instance,

apply(f1, (Set(Student), Set(Person)))| =

Set(Set!(Set(Student))USet ! (Set(Person)))| =
Set(StudentUPerson){ =
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Set(Person)
which is exactly the behavior we expect from the union on non-updatable sets.
The type specification (Set(X),X) —Set(X) produces the proof object fo = Az.Set(Set™!(x)1)U(x]2))
It is easy to see that

apply(f2, (Set(Student), Person))!} = Set(Person)

which is the expected result for non-destructive addition of an element to a non-updatable set.
Note that if we had a novariant type UpdatableSet(X) and the type specification (UpdatableSet(X),X)
—UpdatableSet(X) the generated proof object would be

f'5 = Az.(cond(2]2 < Set(Set™'(x1))); Set(Set ! (z/1)))
and an attempt to add a person to an updatable set of students will be tagged as a type error,
apply(f’,, (Set(Student),Person))| = T

because the condition under cond is not satisfied.
The behavior-application behavior signature (X—Y, X)—=Y will produce the proof object

f3 = Az.apply(zl1, z2)

Thus if the behavior B_NonDestructiveSetAdd has the type generated from the type specification (Set(X),X)
—8Set(X) (i.e f2), then
apply(fs, (B_NonDestructiveSetAdd, (Set(Student),Person)))| =
apply(fa2, (Set(Student),Person))| =
Set(Person)

The last example is of more general nature. Let us consider two type specifications: A—B and A’—B/,
where all the types are variable-free. Then the proof of the first specification will be f = Az.(cond(z < 4),B)
and that of the second f' = Az.(cond(z < 4’),B’). Using the subtyping rules (for <.) it is easy to verify
that f <. f' <= (&' <. A AB <. B) which is the standard subtyping rule for function types.

The above examples illustrate the way type specification logic and type computations work together to
ensure precise typing of functions.

In this section, we have introduced and discussed the type specification logic that produces computable
types from type specifications. We have also presented the theorem that establishes properties of this
transformation. Finally, we have given several examples that illustrate how type specification logic and type
computation process work together to produce precise typing of functions in our framework.

In the next section, we will consider application of the theory developed so far to type-checking of a toy
language.

6 The toy language: syntax and semantics

In this section, we introduce a toy language that we will use to illustrate our approach to type specification
and type-checking. We will first describe the syntax of the language and explain the meaning of the language
constructs that have not been discussed earlier. Then we will describe the typing rules for the toy language
and its natural semantics. This will allow us to introduce notions of behavior consistency and dispatch and
prove the subject-reduction theorem in the next section.
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The syntax of the toy language is shown in the Figure 4. The program in the language consists of a set
of user type and subtype declarations, a set of behavior definitions, and an expression. We have already
discussed user type and subtype declarations (along with their syntax) in the Section 2.

A behavior declaration is a set of associations, where each association consists of a type specification
(discussed in the Section 3) and a function. When a behavior is applied to an object, the run-time type of
the object is used to choose the appropriate association from the set of associations of that behavior. This
process is called dispatch and will be discussed in the Section 7. After choosing an association, the function
from that association is invoked on the receiver object.

The function in an association can be either a function written in the toy language ({(function)) or a
primitive function that is referred to by its name. Primitive functions have their own reductions and can
work with the store. The definition of primitive functions and the store depends on the goals of a language
designer. For the theory presented here it is sufficient that primitive function associations and the initial
store be consistent in the sence described in the Section 7.

For example, let us assume that we have ColorVector which i1s a subtype of Vector and the behavior
B_Plus that is defined as
behavior B_Plus {

(Vector,Vector)—Vector : (function);,

(ColorVector,ColorVector)—ColorVector : (function)s }
Then the behavior application B_Plus(aVector,aVector)!? will dispatch to the function (function); as will
the applications B_Plus(aColorVector,aVector) and B_Plus(aVector,aColorVector). In all three cases, we will
expect the return type to be Vector. However, the behavior application B_Plus(aColorVector,aColorVector)
will be dispatched to (function)s and the expected result type will be ColorVector. This example shows
that our framework is designed for languages with multiple dispatch. This is the reason we allow covariant
argument specifications. It also shows that our toy language is capable of correcty typing binary methods
which is a known problem for many of object-oriented type systems ([AC95], [BCCT96]).

The function definitions of our toy language are straightforward and precisely model lambda abstractions.
The let-construct is just a convenient way to introduce local names. It does not play any special role in
terms of typing (as does, for example, the polymorphic let construct of various languages in ML family
[MTHI0], [Car86]). We will use a syntactic sugar fun (x1,...,xy,) (expr) for
fun (x)

let x; = B_Project;(x) in

let x, = B_Project, (x) in expr
in order to deal with multiple arguments.

A non-trivial construct in our toy language is {class) which is syntactically equivalent to class(x, (TS)),
where x is a name (introduced by (1et) or (fun)) or a constant. The meaning of it can be described as follows:
the run-time type of the object referred to by x is taken (let it be #) and tranformed by the type f derived
from the type specification (TS) to yield a type ¢. Then, the object class(t) is returned (¢t = apply(f, ){}). To
illustrate how this works, consider the simplified version of this construct cclass((TS)) which is a syntactic
sugar for class(unit, Unit—(TS)). For example, cclass(Person) will produce the object class(Person) that
can be used to create new persons as in
let newPerson = B_New(cclass(Person)) in ...

A more involved example is a function that swaps values of two variables of the same type:
fun (x,y)

10We will use {expr)({expr),,...,{expr),) as a syntactic sugar for {expr)({{expr),, ..., {expr),)).
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(program) ::= (user-type-decls) ; (behaviors) ; (expr)
(user-type-decls) ::= (user-type-decl)

| (user-type-decls) ; (user-type-decl)
(user-type-decl) ::= (type-decl)

| (subtype-decl)
(behaviors) ::= (behavior)

| (behaviors) ; (behavior)
(behavior) ::= behavior (name) { (assoc-list) }
(assoc-list) ::= (assoc)

| (assoc-1list) , (assoc)
(assoc) ::= (TS) : (gen-function)
(gen-function) ::= (function)

| primitive-name

(function) := fun (x) (expr)
(expr) := x (x is a variable name)
¢ (c is a constant name)
1ass>

(exprs) )
(applic) :i= {sxpr)((oxpr))
(product) ::= (({expr),...,(expr))
(let) := let x = (expr) in (expr)
(class) ::= class(x,(TS))

(exprs) ::= (expr)
| (exprs) ; (expr)

Figure 4: Toy language syntax

18
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let temp = B_New(class(x,X—X)) in (B_set(temp,x); B_set(x,y); B_set(y,temp)
This creates a temporary variable of the same type as the first argument and uses it as a temporary storage.
Of course, this could be done simpler by
fun (x,y)
let temp = x in (B_set(x,y); B_set(y,temp))
since (let) is eagerly evaluated.

The (class) construct in our toy language is just an example of a kind of language constructs that are
posssible in our framework. The ability not only to extract, but also manipulate types at run-time is inherent
in the framework presented in this paper.

The remaining constructs are standard and staightforward and do not require special description.

The typing rules for the toy language are presented in the Figure 5. © is the typing environment which
is the set of name to type associations of the form x : ¢ understood as ”"the name x is known to correspond
to an object with a type that is a subtype of ¢ or ¢ itself”.

Top-level behavior definitions and predefined constant names along with their types constitute the initial
typing environment (denoted Og) that will be formally defined in the next section.

O,x: x> (expr):e

O > fun (x) {expr) : A\x.e Fun

O > (exprs) : e
O > ({exprs)) :

Block
e

O > (exprs) : e; O > (expr) : s
O > (exprs); (expr) : cond({e; < Object});es

Seq

O b (expr), : e O,x :e; > (expr), @ e;

O > let x = (expr), in (expr), : e Let

O b (expr), : e O > (expr), : es
O > (expr), ({expr),) : apply(eq, e2)

O > (expr), : ¢; - O (expr), :e,

O > ({expr),,...,{expr),) : Producty,(e1,...,en) Prod

Obx:x (TS) T S FS:s apply(s, z) =1 t <. RegObject
O > class(x, (TS)) : Class(?)
where x 1s either a variable or a constant name

Class

@,u:tbu:tAXlom

Figure 5: Typing rules for the toy language

In order to define natural semantics for the toy language, we will need to define what can be a run-time
object and what is the run-time environment.
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A run-time objects in the language is one of
Predefined constant c;

Behavior b = {(Ts), : f;}

Closure closure(F, x, (expr))
Primitive-closure primitive;

Run-time object o

Class object class(t)

The unit value unit (used for command results, procedure results etc)
T

0~ O O e W N

Type error err

9. Run-time error errt

The behavior objects thus carry enough information to be able to deal with run-time dispatch (late binding).
Closures are produced by evaluation of function definitions ((function)) and carry the environment that
was in effect when the function definition was evaluated, the abstraction variable, and the body. Primitive-
closures are analogs of closures for primitive functions. They do not need to keep the environment as
primitive functions can not access it. Class objects are objects of the types Class(+) and serve as factories
of objects. The run-time type error err’ (of type T) should never be produced in a type-checked program,
while a run-time error errt (of type L) can be produced by a primitive function and serves as an exception
because it is pusehed up until the top level is reached.

The run-time environment F is a list of associations of the form x = o : ¢ where x 1s a name, o is an
object, and t is its type. Thus we maintain types of objects at run-time.

The reduction (57) is defined on triples (S, F, (expr)) (where S is store and F is an environment) and
produces tuples of the form (S’,0:¢) where S’ is a new store, o is a run-time object, and ¢ is its type. The
reduction rules are presented in the Appendix F.

The decision to adopt an eager evaluation for behavior and function arguments has been dictated by
the necessity to perform run-time dispatch. Until an argument is not evaluated, the dispatch decision can
not be made and the function to execute can not be chosen. Another construct that requires run-time type
information is the {(class) construct discussed earlier.

Note that function abstractions are evaluated lazily. This allows us to use the behavior definition mech-
anism to define commands in the language instead of making them a part of the kernel. In the following
example, we will define the command B_if-command assuming that we have a type Boolean and a behavior
B_if with the fillowing definitions:
type Boolean;
behavior B_if { (Boolean, X, Y)=>(X UY) : primitive-if };

The command version will take a boolean and two commands and produce a command.
behavior B_if-command {

(Boolean, Unit —Unit, Unit —Unit)—(Unit —Unit)) : fun (x,y,2) B_if (x,y,2) };
Here the second and the third argument are closures which are passed along and one of them constitutes
the result. The type Unit—Unit is a generic type of commands. The language operator ’;” could have been
defined this way as well, in which case we would have one less basic construct in the language.

In this section, we have introduced the toy language, its syntax, semantics, and typing rules. In the
next section, we will deal with issues of behavior consistency and type correctness, and present the subject
reduction theorem.
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7 Behavior consistency and type-checking

In this section, we will consider behavior consistency issues and present the subject reduction theorem for
the toy language.

Behavior consistency 1s a sum of three components: the function association consistency, the primitive
function association consistency, and the unambiguous choice of a behavior association during dispatch. The
function association consistency ensures that a function in an association does indeed conform to the type
specification of the association. This corresponds to the type correctness of the function with respect to a
given type specification. The primitive function consistency ensures the conformance of primitive functions.

The unambiguous choice of a behavior association is needed to ensure that the dispatch can always pick
”the best fit” association based on the types of actual arguments. For example, if we have a type Person
and its subtypes Student and Teacher, we can define a behavior B_changeDepartment:
behavior B_changeDepartment {

(Person,Department)—Unit : (function),

(Student,Department)—Unit : (function)s,

(Teacher,Department)—Unit : (function)s }
which invokes different functions for different types. It is easy to pick the ”best fit” association in this case.
However, if we add a new type, TeachingAssistant, which is a subtype of both Student and Teacher, the
behavior definition above will become ambiguous as it is not clear which function should be applied when
the following statement is executed: B_changeDepartment(aTeachingAssistant).

In order to deal with situations like the one described above, we introduce the operator N2 which, being
applied to two type specifications, yields a set of extended argument types that can potentially conform
to both type specifications. In the example above, Student N+ Teacher = (} before the introduction of the
type TeachingAssistant and Student N» Teacher = {TeachingAssistant} after that. The rules for the
operator M- are presented in the Figure 6 and Figure 7.

The main property of the operator N» defined above is given by the following theorem:

Theorem 7.1. Domain intersection: 1If a1, as are argument types, ¢ is a concrete type, and there exist
such concrete types ¢/ and ¢/ that ¢ <; [t//&1]a1(t') and ¢ <; [t"/#2]as, then

3t € [¥/#1)ar N [F/Fa)as, ae: t <y [ae/F]t

where ¢ is an extended reduced type, dé are concrete types, and &; denotes free variables of a;. a

Sketch of the proof: The proof is by structural induction. For each rule we show that if the statement
of the theorem is true for the premises of the rule, then it is also true for that rule’s conclusions. We
use the analogous statements with <; changed to >; and =; respectively when dealing with rules
about U, and =s . Note that we do not need =-» and U- rules for arrow types as they are guaranteed
not to occur in other than covariant positions. The most tedious part of the proof is the one dealing
with the constructor rules which are defined in terms of functions \, and  over G.

In other words, a non-empty intersection produced by the operator M. does not guarantee that there
s a concrete type in the intersection; however, if such a type t exists, the intersection is not empty and ¢
conforms to one of the types in the intersection.

Now we are ready to formally define behavior consistency.

Definition 7.1. Behavior consistency: A behavior is consistent iff
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an:c=0Ch bNe c=Cy aUs c=C4 bUs ¢ = Ch
anb N ¢ = Ue ec, (€1 N2 c2) bin anb Us ¢ = C1UCH bun
cp€C2
a =- b= Cl
afb =7 ¢ = U, ec, (c1 =7 0) DEN
Dl—
a—b N7 c—=d = {(a—=b)N(c—=d)}
a—b N Behavior = {a—b} DiBehavior
4 M Object = {a] DlObject o U Object = {Object] DUObject

N T _ DlI*
aﬂrg*:{a}Dl aUrg*:{a}DU

{a; N, VPi b; = C’i}i:L...,nP

*
aErg*:{a}DE

P(ars ) M 0y bap) = Ueec, (et emp) O
Pl ans) {J ;(bjpbz(:) }:EJ;E’Z(p(cl, ey PUP=
T S ) 2 e PEP
Here N = WY = =, Mt = Ur” = Ny, and UpT = My~ = Uy .
e =a7 DIRef —Tra = a7 DURe = DERel

Figure 6: Domain intersection
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Forall 5; € G: S; <g PAS; <g P'A
((Si<g S"ANS' <g PAS' <g P)= 5 =5)

play, ... anp)\s; = Ci Prbiy b ) N\esi = i DIP
/ ‘] ‘] #
plar, ... anp) N2 p/(bi, ... bp ) = Ui cieci (€1 N2 ch)
Lepecy

The rule DIP# is also in effect when there is ¢ on either side of N- .

Forall S; € G: P <g S; AP’ <g S;A
(" <gSiANP<g S AP <5 5)=5=5)

Plas, . anp) /5 = i Pbi b)) 7i = 02 DUP+
p(al, e ;anp) Uz p (bla cee abn}) = UZ el €< (Cl Uz Cz)
reyecsy

The rule DUP# is also in effect when there is ¢ on either side of Uy .

Pz) <y x a # p(c) al.b=0C
aU, pb)y=C

DUP 4y

Figure 7: Domain intersection: parametric types

1. Every type specification of the behavior is consistent
2. Every association of the behavior is consistent

3. Choice of an association is unambiguous

O
Definition 7.2. Type specification consistency: A type specification (TS) is consistent iff
L. (TS) —»t 5
2. ks S/C
3. For every {a; <V as} € C: a1l <Y asl)
O

The meaning of this definition is that the type specification must be provable by the type specification
logic and all top-level constraints in that proof must be satisfied.
Definition 7.3. Function association consistency: An association (TS) : (function) is consistent iff
1. Op > (function): f
2. Frpt:(TS)
3. f <t

Here Oy is the initial typing environment defined next. a



7 BEHAVIOR CONSISTENCY AND TYPE-CHECKING 24

Note that we use the “naive” logical derivation ( Frg ) instead of a full-fledged logic (F). We have to do
that to be able to use computable subtyping ( <. ) which does not handle lambda abstractions on the right
unless they are arrow types. The naive translation is guaranteed to produce only arrow types on the right.
Consider the association
X =X : fun (x) x
In this case, f = Az.z and t = '’ —=2’. In order to prove f <. t we have to prove apply(f, ") <. 2’ (according
to the A-rule of computable subtyping). But apply(f, ')} = 2’ and 2’ <. #’. Thus, the association above is
consistent.

The initial typing environment (denoted Og) is a typing environment that includes types of all constants
defined at the top level of the program. That includes predefined constants and behaviors.

Definition 7.4. Initial typing environment: Oy is the initial typing environment iff ©y consists of:
1. {unit : Unit} (typing of unit)
2. {c; : ¢;} for all predefined constants ¢;

3. {b; : bt; } for all behaviors b;, where bt; are defined as follows:
bt =72 s, (TS); =t S ks S/

Here <TS>j (7 =1,...,np) are type specifications of b.

Thus a type of a behavior that has several association is the lower bound of types derived from all type
specifications for that behavior. For example, the type of behavior B_Add defined as
behavior B_Add {
(RealReal) —Real : (function);,
(Integer,Integer) —Integer : (function)s,
is
(Az.(cond(z)1 < Real,z|2 < Real);Real))N
(Az.(cond(z)1 < Integer, |2 < Integer); Integer))
If we apply it to an argument type (Ineger Real) we will get RealNT = Real. If an argument type was
(Ineger,Integer), we would get RealNInteger = Integer (assuming Integer is a subtype of Real).
The following definition deals with unambiguous choice of an association from the list of associations of
a particular behavior.

Definition 7.5. Unambiguous choice of association: We say that the choice of association for a behavior
b is unambiguous if for any pair of type specifications of b (TS); and (TS), the following holds:

vVt € arg; N2 args 3li:
(TS); <cov (TS); A(TS); <cov (TS), Aapply(fi,t')} <. Object

where

argy = [¥/&]try (Frgtry o Argy, (TS), = Argi—Res)
args = [¥/&]try (Frgtro i Args, (TS), = Args—Ress)
<TS>Z» —T Si, F fi SZ/CZ t/:[g’/;‘]t



7 BEHAVIOR CONSISTENCY AND TYPE-CHECKING 25

Here [§/#%]t denotes t with every occurence of * changed to a fresh variable y;, while [¥/Z]tr; denotes tr; with
all free variables z; changed to *. ad

This definition ensures that for any type-correct argument types for the behavior b there is always one
association with a type specification that covers all others to which the argument types conform. The
definition of covering is given below.

Definition 7.6. Cover: A type specification (TS), covers another type specification (TS), (denoted (TS), <cov (TS);)

iff
1. Frrai—r o (TS),
2. Fpr as—rs : (TS),
3. (Ts), =T S, Fsp 5 /C
4. ry <o 7y
5. apply(s1, az)l} <. Object

Informally, a type specification A—B covers another one A’—B’ if A > A’ and B > B’. We can say
that the second type specification is more specific than the first one as it specifies both argument and
result types more precisely. For example, the type specification Real—Real covers the type specification
Integer—Integer.

Now we are ready to define dispatch. The goal of dispatching a behavior b on an argument of (concrete)
type t is to pick the most specific association for ¢ from the list of associations of b and apply the function
from this association to the argument.

Definition 7.7. Dispatch: The algorithm for picking up the most specific association (dispatch(b,t)) is
defined as follows:

1. Let (TS), be all associations of b, (TS), =+ S;, Fs; :: S;/C
2. We form the set M = {i| apply(s;,?) <. Object}

3. The set M’ is formed by all ' € M such that (TS),, is not covered by any other (TS),,i € M. If |[M'| =1
we say that the dispatch on b and ¢ is consistent and unambiguous and pick the association ¢,i' € M’
as the most specific one: dispatch(b,t) = i'. If, on the other hand, |M’| # 1, we put dispatch(b,t) = 0.

O

M 1is the set of the specifications to which the argument type conforms. From those, we pick the most
specific one.

The following theorem establishes that once a behavior is consistent, dispatch is always unambiguous.
Moreover, the function chosen by dispatch produces the least possible result type.

Theorem 7.2. Behavior consistency: If behavior b is consistent, b : tb = M;=1, »s; € Oy, and t is a
concrete type such that apply(tb, )| <; Object, then

1. dispatch(b,t) #0
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2. If dispatch(b,t) = i then
apply(si, 1)U =5 apply(tb, 1)U
3. If dispatch(b,t) = 4, function (function),; is a part of this association, and @g > (function), : f;, then

apply(fi, t) <; apply(tb, )i}

The proof of this theorem is given in the Appendix G. This proof is indicative of the techniques we use
to prove the other theorems in this section.

So far we have considered the functions written in our toy language. The following definition establishes
the properties of primitive functions that are necessary for the type-checking and dispatch to work properly.

Definition 7.8. Primitive function association consistency: A primitive function association (TS) : primitive,
is consistent if for any consistent store S the following holds:

If
(S,O : t)Vprim, = (S/,O/ : t/)
(TS) =+ S Fs:S/C
apply(s,t)} <; Object
then

t' <y apply(s, t)i}
S’ is consistent

In other words, we require that primitive functions behave almost as good as type-checked non-primitive
ones w.r.t their type specifications. Almost as good because we do not require monotonicity of typing, just
conformance to the type specification. Note that there is no definition of store consistency here as it depends
upon the semantics of primitive functions. However, for the Theorem 7.3 the concrete definition of store
consistency is unnecessary as long as correct applications of primitive functions do not disturb it (as stated
in the above definition).

Now we have all the components needed for the subject reduction theorem.

Theorem 7.3. Subject reduction: If
1. The user type graph G is consistent
. All behaviors are consistent
. All primitive function associations are consistent

2
3
4. Store S 1s consistent
5

. All free object variables x; in (expr) are present in ¥
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6. E={x; =0; : 4;}, O ={x; : t;}, O > (expr) : 1., and t.|} <; Object
7. (S, E,{expr))y = (5,0:¢q)
then

1. S’ is consistent

2. ¢ <s tel)

The consequence of this theorem is that the reduction of type-correct terms does not produce run-time
type errors (err') or inconsistent store. Note that other run-time errors (errt) can only be produced by
primitive functions, if they are so defined.

Sketch of the proof: The proof is by structural induction on 7. The most involved case is the one
dealing with application ({expr),({expr),)) when neither of the expressions is reduced to errt. This
case in considered in the Appendix G

The absence of type errors in the correctly type-checked program is established as a consequence of the
subject reduction theorem.

Corollary 7.1. Type correctness of a program If (program) = (user-type-specs)(behaviors)({expr) is a
program and
1. The user type graph G generated by type and subtype definitions in the program is conssitent
. All behaviors in the program are consistent
. All primitive function associations in the program are consistent

2

3

4. Sy is a consistent store

5. Oy is the initial typeing environment (Definition 7.4)
6

. Ey = {unit = unit : Unit,b; = b; : bl;,c; = ¢; : ¢;} where ¢; are predefined constants and b; are
behaviors declared in the program. bt; are behavior types defined as in O

7. ©g > (expr) : p

8. p<.0bject

9. (So, Fo, (expr))y = (5,0 : 1)
then

1. ¢, <. 0Object

2. S’ is consistent

In this section, we have introduced the notion of behavior consistency and dispatch. We have shown that
consistent behaviors are always dispatched unambiguously. We have also presented the subject reduction
theorem for our toy language and have established the absence of run-time type errors in a successfully
type-checked program.
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8 Conclusions

In this paper, we have presented a type system that combines parametric and inclusion polymorphism,
variance specifications, user-defined subtyping between parametric and ordinary types, precise function types,
multiple dispatch, and static typing. We have shown that our approach based on the type specification logic
allows us to correctly type-check programs in the toy language for which we have proven the subject-reduction
theorem.

In addition to the features described above, the presented type system has lower and upper bound types
and 1s therefore capable of typing database queries. The ability to specify subtype relationships of the form
Var(X) < X allows us to treat imperative features such as assignment, variables, and creation of new objects
inside our framework.

Further research directions include the development of less strict conditions for behavior consistency,
lifting some of the remaining restrictions on subtype declarations, enhancement of the toy language (the
ability to define behaviors at run-time, run-time operations on types), and building of its prototype compiler.
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A Definition of conv, /" and \,

The functions defined here are auxiliary functions defined by user type specifications. conv converts a type
to its supertype in the user type hierarchy during type computation. , (\) is a set-valued function that
produces all possible conversions from subtype to supertype (from supertype to subtype) in the user type
hierarchy.  and N\, are used when domain intersection ( N- ) is calculated.

Type-type If T' <, T’ then
conv(t' t)} =t
t = {t'}
Nt =11}
Parametric-type If P(cq,... ,cnp) <y T then

conv(t,p(ai, ..., anp))} = (cond({aiNMazp; gVPﬂ Citiz1,.. np )t
plai, ... an.)/t ={t}if (Maxp;Na;) MYPic,£Pforalli=1,... np
tINp={plcr, ... yenp)}

Type-parametric If T <, P(cq,...,¢,,) then

conv(p, ) = pler, ... s enp)
t/p=Aplcr,. .. ,cnp)}
plar, ... anp)\¢ = {t} if (aiNMazp,) NeVPi ¢ #Pforalli=1,... np

Parametric-parametric If P(z1,...,2,,) <u P'(q1(®1,... ,%np), - Gnp (%1, .., Tnp)) then
conv(p',p(ai, ..., a,,)) = (cond({gi(aiNMazpy,... ,an,"Mazpn,) < Mavp: ;}ti=1, . g )
plp(ainNMazpy, ... ap,NMazp,,),...,

Gnp (@NMazpy, ... an,NMazp,,))) )
p(ala cee aanp)/p/ = UC;ECz{p/(Clﬁ cee aci)}
where C; = ¢;(aiNMazp1,... a0, ,NMazp,,.) N> Mazp: ;

pa,... s NP = {P(51, -+, Snp)} where s; = {

provided that a; N7 ¢; # 0 for all i:  ¢; # =y

a;NMazxp; if ¢; =x;

* otherwise

Parametric-any If P(z) <,  then

conv(p', p(a))} = conv(p', (aNMazp )|} for all P' # P
p(a) /' =Ua,eaa; 'p’ where A =any Mazp,
for all P' £ P
aNp = Ug;ea{p(a;)} where A=an> Mazp;
provided that a # p(b)

Refl

conv(p,p(a, ..., anp)) b =plar, ... anp)
p(ala cee aanp)/p: {p(ala cee aanP)}
plat, ..., an ) \p = {p(ar, ... ,anp)}
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Trans If {{(P =P}, ... P = P')};=1,  are all different paths from P to P’ in G, then

conv(p, p(a))y = (NF_, (conv (p}*, conv(p?* =, .. .conv(pZ, p(a))U. .. )W) )U
pla)/p' = Uz {a'} where af'* € af* ™! 79}, af € p(a) /p}
_ _1
P(a)\p = Ui_i{ai} where aj € ai\p1,...,af* ™" € p(a)\p]

Default If not defined by any of the above,

conv(p,a)y =T
a/p=10
aN\p =

B Variance annotation of type specifications

The annotation process works on type specifications and produces annotated type specifications.

m(:onst mVar
Ay A BH”B’M ; Ay A Bb—)”B’J.
AUB —~" A'UB’ ee ANB —~" A'NB’ om
At A Bt B Arrow
A=-B =T A5 B
. vOVei ANV,
{Az — ?Z}z_ll,...,np . Param
P(Ay, ..., App) — P(Al,...,AnP)
Here v00=00v=0,+0—-—=—-0+=—,and +0+=—-0—-=+

C Type computations

Type computation process is defined for types and extended types.

t =1 t is a constant
== x 1s a variable
*{) = *
Ae.fll = e f
all if all <. by
(anb)h = { by if b <. all
(a))n(Jb)  otherwise
all if b <. all
(aUb) Y = { by if al) <. bl

(al))U(Jb)  otherwise

32
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[b/x]fl) ifall = Xx.f
(apply(c, b)JUapply(d, b)) if all = cUd
apply(a, b){} = { (apply(e, b)UNapply(d, b)) if all = end
il if al = L and bl} <. Object
T otherwise
all it C={a; <b;}tiz1, . n and (a;il)) <c (b)) for all 7 from 1 to n

T otherwise

(cond(C); a)l}l = {

Pz}, ... en ) if (aid)) <. Object for all ¢ from 1 to np

Plry, ... ,enp)lh = {

T otherwise
bz‘U’ ifa‘U':p/(ala"'aanp/)
and conv(p,p'(al}, ... an, W) =p01,. .. bnyp)

bil) if al}l =¢ and conv(p, )y =p(b1,...,bn,)
(rev(p, i, c)JUrev(p, i, )Y if all = cUd and Vp; = +
(rev(p, i, c)nrev(p, i, )Y if el =end and Vp; = +
(rev(p, i, c)ynrev(p, i, ))) if all = cUd,
rev(p, i, c)l} <. Object,rev(p,i,d)|} <. Object,

vev(p, i, a)l = and Vp; = —
rev(p,i,c)|} it all = end,rev(p, i, )y =T, and Vp; = —
rev(p,i,d)}{} if all = end, rev(p,i,e) =T, and Vp; = —

(rev(p, i, c)YJrev(p, i, ) ) if all = end,
rev(p, i, c)} <, T,rev(p,i,d)} <. T, and Vp; = —
* if al) =«

T otherwise

D Typical representative

This algorithm produces a reduced type from a type specification. The difference between Frgr and F is
that the latter produces a closed type.

Frra:: A Frrb:: B Frra:: A Frrb:: B
Frr alb :: AUB TRU Frr anbd :: ANB TRN
Frr a2 A Frr anp 0 Anp
TRP
Frrplar,...,anp) = P(A1,. .. Anp)
F A Frrb: B
TR @ TR TR

Frr a—b:: A—B

T TRConst

W X TRVar

Frr
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E Types

E.1 Reduced types

Reduced types are types with all reduction carried out.
ar == t (T is a user-defined type)
| Object
| Behavior
| T
| L
| plary, ... ,arp,) (P is a user-defined parametric type)
| ariUary
| ariNary
| Az.a (only functions monotonic w.r.t <; are allowed)
| ar—br (shortcut for Ax.(cond({z < ar,ar < 0Object});br))
Closed reduced types (crtypes) are reduced types with no free variables.
Extended reduced types (ertypes) are like closed reduced types, but they can also contain the wildcard *
in any position a reduced type is allowed.

E.2 Argument types

Argument types are types that can be used in behavior argument specifications. Argument types are always
reduced.
aa ::= t (T is a user-defined type)
| Object
| Behavior
| plaay, ... aan,) (P is a user-defined parametric type)
| aaiNaas
| aa—ba (shortcut for Ax.(cond({z < aa,aa < Object}); ba))
In argument types, arrow types are only allowed in positions covariant w.r.t. variance annotations.
Closed argument types (catypes) are argument types with no free variables.
Extended argument types (eatypes) are like closed argument types, but they can also contain the wildcard
* 1n any position an argument type 1s allowed.

E.3 Concrete types

Concrete types are types of objects. They are always reduced and closed and they can not be extended.
ac ::= t (T is a user-defined type)
| Object
| Behavior
| placy, ... acn,) (P is a user-defined parametric type)
| (ac-beh)
(ac-beh) := (ac-fun)
| (ac-beh) N{ac-fun)
(ac—fun) == Az.a (a is a type with no free variables except for x)
| ac—=be (shortcut for Ax.(cond({z < ac,ac < Object}); be))
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In concrete types, behavior types ({(ac-beh)) and arrow types are only allowed in positions covariant
w.r.t. variance annotations.

F Natural semantics of the toy language

(S, Ew{x =0 :1},x)V = (5,0 : 1) where x is a name
(S, E, ((exprs)))v = (5, E, (exprs))V

class)(x = (Serr: T) if(x)g EV((x)=enr’ :T)EE
(S, B (class)(x, (TS)))V {(S,class(t) : Class(t)) otherwise if ((x) =x:z) € F, ¢t = apply(f, =)
where (TS) =T S, F f:5/C

(S, E fun (x) (expr))y = (5, closure(F, x, (expr)) : Azx.s)
where B ={x; = o; 1 t;}, {x;:t;,x: 2} > (expr):s

(Sq,errT = T) if (S, E,{expr),)V = (Si,err’ : T)
(Sy,errt i L) if (S, E, (expr),)v = (Sp,errt : 1)
(S2,02 1 12) otherwise, where (S, E, (expr),)v = (51,01 : t1),
(S1, E, {expr),)V = (52,09 : {2)
(Sq,errT = T) if (S, E,{expr),)V = (Si,err’ : T)
(Sq,errt L) if (S, E,{(expr),)V = (Si,errt : 1)
(S2,02 1 12) otherwise, where (S5, E, (expr),)7 = (51,01 : t1),
(S1, EW{x = o1 : t1}, (expr),)V = (52,02 : 1)

(S’ E, <expr>1; <eXPr>z)V =

(S, E,let x = (expr), in (expr),)v =
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(Sp,errm :T) if (S, B, (expr),)
(Sp,errt o L) if (S, B, (expr),)
(Sa,err” : T)  otherwise, if (S, E, (expr),)7 = (S1,01 : t1)
(S1, E, {expr),)v = (Si,err : T)
(So,errt i 1) otherwise, if (S, E, (expr),)y = (S1,01 : 1)
(S1, E, (expr),) vV = (Sp,errt : 1)

)

= (Sp,err’ = T)

v
v = (Sp,errt 1 1)

2
(Ss,03 : t3) otherwise, if (S, E, (expr),)7 = (S1,b : t1)
(S1, E,(expr),)y = (52,00 : t2)
dispatch(b,ty) =i
b; = (TS) : fun (x) (expr)s)
(S, B, (expr), ({expr), ) v = (S5, B{e = 03 : 12}, {expr)y)v = (53,08 1)
(Ss,03 : t3) otherwise, if (S, F, (expr), )V = (S1,b : 1)
(51, B, (expr),)V = (52,02 : 12)
dispatch(b,ty) =i
bi = (Ts) : primitive;
(52,02 1 42)V ppim, = (53,03 : {3)
(Ss,03 : t3) otherwise, if (S, E, (expr),)7 = (51, closure(E,, x, {(expr)s) : f)
(51, B, (expr),)V = (52,02 : 12)
(Sa, FWEW{x = 0y : {2}, (expr))y = (S3,03 : t3)
(So,err” : T)  otherwise, where (S, E, (expr),)/ = (S1,01 : 1)
(51, B, (expr), )V = (52,02 : 12)

(SH_l,errT :T) it (S, E, (expr),)V = (51,01 : 1)

(Si, I, (expr); )V = (Sig1,err’ 0 T)
and o; #err', o; # errt

(SH_l,errJ‘ 21 if (S, F,(expr),)v = (51,01 : 1)

(S,E,((expr>1,... ,<eXpr>n>)V = :
(Si, I, (expr); )V = (Siy1,errt 1)
and o; #err', o; # errt

(Sn,{(01,...,0n)) otherwise, if (S, E, (expr),)V = (51,01 : 1)

(Sn—1, I, {expr), )V = (Sp,0n : t5)
and o; #err', o; # errt
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G Proofs

Theorem G.1. Behavior consistency: If behavior b is consistent, b : tb = Mi=1 1dots,n5i € Op, and 1 is a
concrete type such that apply(tb, )| <; Object, then

1. dispatch(b,t) #0
2. If dispatch(b,t) = i then

apply(si, 1)U =5 apply(tb, 1)U

3. If dispatch(b,t) = 4, function (function),; is a part of this association, and @g > (function), : f;, then

Proof:

apply (fi, )} <y apply(tb, )i}

1. We will first prove that the dispatch in consistent and then that it is unambiguous. In order to

prove consistency, it is sufficient to show that under the conditions of the theorem
i: apply(s;, t) <; Object

where (TS); are b’s specifications, (TS), —71 S;, and b s; :.S;. Since tb = Mi=1 igots n5; and
apply(tb, t){} <; Object according to the conditions of the theorem, consistency trivially follows
from the rules for <; and {.

Now we have to show consistency. Let ¢ be a number such that apply(s;,¢){ <; Object (we
already know that such ¢ exists). Then to prove consistency it is sufficient to show that under the
conditions of the theorem

Vi:  apply(s;, t)} <; Object = (TS),, <cov (TS),
We will prove this statement by contradiction. Let us assume that there is i/ # i’ such that

apply(si, 1)} < Object A
(23" (TSY;m <cov (TS); A(TS) ;i <cov (TS);i) A apply(sin, 1)} <; Object

According to the Corollary 5.1, this means that there exist such concrete types " and ¢ that
t <y [t//&Narg; and t <p [t"/&")arg;», where Frgarg; :: (TS),. Thus (according to the Theo-
rem 7.1)

3t € [¥/@)argi N2 [F)&"Nargin, de: t <y [ae/7]t

Since according to the conditions of the theorem b is consistent, from the definition of consistency
we have

" (TS, <ecov (TS); A(TS),i <cov (TS), A apply(si, [§/%]t) <. Object
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where ¢ are fresh variables. It is easy to show that
Vaelij/¥]t <; Object = [dc/¥]t <; Object

where § are fresh (anything is better than an unbound variable for subtyping derivation). Thus,
we have that

apply (s, [ae/F]t) )} <. Object
L <y @/

From this, Theorem 4.1, and Corollary 5.1 we have
apply(s;, 1)} <; Object

Thus, we have a contradiction as the association number 7"/ is more specific than both ¢ and .

2. Let ' be the number of the most specific association. Then
Vi#£ 40 —(apply(s;, t)i} <; Object) V (TS), <cov (TS),
If
—(apply(s;, t)i} <; Object)
then
apply(s;, ) =T
and everything is fine as
apply(si, )i} <; Object <; T
If
apply(si, 1)} <; Object A (TS),, <cov (TS);

then (by the definition of <cov ) ri» < 7; and thus ryy <¢ r;, where Frg a;—r; = <TS>j. From the
Corollary 5.1 1t follows that

Vi:  apply(s;,t) <; ObjectId: apply(s;,t) = [4/Z]r;
Therefore,

Ja:  apply(si,t) = [@/Z]r;
Ju’:s  apply(sy,t) = [17/967’]7“2"

It is easy to show that

Vi, u' a <pb=[i/da<; [u/b]b
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as unbound variables are treated by <; just like a type whose only property is that it is less than
Object, and thus substituting any type for them will not affect the derivation of subtyping. From
this we have

apply(sir, 1)U <; apply(s;,t){
and therefore we have
apply(sir, 1)U <; apply(s;, 1)

for all i £ ¢. Then

apply (b, 1)} = apply(NizirsiNsir, 04 = Nz apply(s;, t)Napply(s;r, 1) = apply(sir, t)i}

. In order to prove this statement it is sufficient to prove that under the conditions of the theorem

apply (fi, 1) <; apply (s, t)}
since we have already shown that
apply(si, 1)U =¢ apply(th, 1)l

Under the conditions of the theorem the association ¢ is consistent and therefore (according to the
definition of consistency)

fi <c s
and thus f; <; s;. Now according to the rule A<> we have that
apply(fi, 1)U <; apply(s;, 1)

and thus we obtained the proof of the statement of the theorem.

Theorem G.2. Subject reduction: If

1
2
3
4
5
6

7

. The user type graph G is consistent

. All behaviors are consistent

. All primitive function associations are consistent

. Store S is consistent

. All free object variables x; in (expr) are present in ¥
CE={xi=o0; :t;}, O ={x; : t;}, © > (expr) : t., and .|} <; Object
. (S, E,{expr))y = (5',0:q)

then

1. S’ is consistent

2. ¢ <s tel)
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The consequence of this theorem is that the reduction of type-correct terms does not produce run-time
type errors (err') or inconsistent store. Note that other run-time errors (errt) can only be produced by
primitive functions, if they are so defined.

Detailed sketch of the proof: The proof is by structural induction on 57. The most involved case is
the one dealing with application ({(expr),({expr),)) when neither of the expressions is reduced to errt.

There are four main cases:

1. (S, E,(expr),)y # (5”,b : bt) A (S, E,{(expr),vV) # (S”, closure(E., x, (expr)) : c)
(bad)
2. (S, E,(expr),)v = (S",b : bt), (S", E,{expr),)v = (5" ,p : ), and dispatch(b,t) = 0 (bad)

wo

. (S, E, {expr), )7 = (S",b: bt) (5", E, (expr),)y = (5", p : t), and dispatch(b,t) = 7, fun (x) (expr)
is a part of the é-th association of b (good)

4. (S, E,(expr),)v = (5",b:bt), (5", E, (expr),)y = (5", p : t), and dispatch(b,t) = i, primitive,
is a part of the é-th association of b (good)

. (S, E, (expr), )7 = (5", closure(E., x, (expr)) : ¢), and (S, E, (expr),)7 = (S, p : ) (good)

We have to show that bad cases never happen, while good cases do not produce errT.

1. (S, E,{expr),;)v # (5" b : bt) A (S, E,{expr),; ) # (5", closure(E., x, (expr)) : ¢)
(bad) Assume (S, E, (expr),)y = (5”,0 : t,) Then t, £; Behavior since behaviors closures are
the only objects (except for errt which we do not consider here) that have subtypes of Behavior
as types.

ot

O > (expr), ({(expr),) : t., t.} <; Object
(assumption of the theorem) and
O > (expr), 1 t1, till > L,
(induction assumption). According to Appl,
te = apply(t1,t2){}
But according to the rules for |} and <;
apply(t1,t2)4} <y Object = t1{} <; Behavior
Thus we have
Behavior ?; 1, <; t;{} <; Behavior

which is a contradiction. Thus this case can never happen.
2. (S, E,(expr),)v = (5",b: bt), (5", E, (expr),)7 = (5", p : t), and dispatch(b,t) = 0 We assume
© > (expr), : t3 Then

apply (b, t2)|} £ Object

according to the Theorem 7.2 and the definition of dispatch. According to the condition of this
theorem and the rule Appl

O v (expr), ((expr),) : apply(t1,t2), apply(ti,t2)} <; Object
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where
O > (expr), : t;
and b <; t;{ by induction assumption. Then by the monotonicity of apply w.r.t <;
apply(bt,t2)} <; apply(ti,t2)
and we have
Object 2 apply(bt, t2)Ih <f apply(t1,t2)} <y Object

which is a contradiction. Thus this situation can never happen.
3. (S, E, (expr),)v = (S5",b : bt) (", E, {expr),)v = (5", p : t), and dispatch(b,t) = i, fun (z) (expr)

1s a part of the i-th association of b. Let us put

O > (expr), : t;
O > (expr), : 1y
O > (fun (z) {(expr)) : f

Then we have

tedl = apply(t1,t2)4 by the rule Appl
bt <; t1{} by induction hypothesis
t <; t2l} by induction hypothesis

Therefore (by the rule A<> ( <; ), Corollary 5.1, and transitivity of <; )

apply(bt, )} <y t.l}
By the Theorem 7.2 and transitivity

apply(f, )i <y 1.
By the rule Fun we have

f = Ax.e, where ©g,x: x> (expr):e
By the rule for {} we have
apply(f, t)I} = [t/z]ey

and by the rule for 57 we have

(S, E, (expr), ((expT),)) v = (5", Ew{x = p : 1}, {expr))V
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We now have to show that

¢} <; [t/x]el} and S’ is consistent,

but this is the same as

where (S B’ (expr))y = (5,0 : q),

F' = Fd{x=p:t},

O’ > (expr) : ¢,

0 =0uU{x: z},

S is consistent,

all free object variables in (expr) are present in E’,
[t/x]el) <; Object (by the Theorem 7.2)

¢} <; €|} and 5’ is consistent,

where (5" E', (expr))v = (5,0 q),
F' = Fd{x=p:t},

O’ > (expr) : ¢,

0 = 0uU{x : t},

S is consistent,

all free object variables in (expr) are present in E,
¢’} <; Object,

e =[t/x]e

which is the induction hypothesis. Thus, this case is proven.

4. (S, E,(expr),)v = (5",b : bt), (5", E, {expr),)7 = (5", p : t), and dispatch(b,t) = i, primitive;
is a part of the i-th association of 6. In this case the statement of the theorem directly follows
from the definition of primitive function association consistency and from the induction hypothesis.
Note that this 1s the only case when store consistency is an issue as the store can only be directly
manipulated upon by primitive functions.

5. (S, E,(expr),)v = (5", closure(E.,x, (expr)) : ¢), and (5", E, (expr),)y = (5"",p : t). This is

analogous to the case 4 but is much simpler since dispatch is not involved.

Other (non-application) cases are significantly simpler.



