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Abstract

Biological engineering is a domain of study that involves applying known engi-

neering principles to biological systems. Qualitative studies in the field of biology

have undergone tremendous advancements in the last two decades but quantitation

is still in its early stages due to various complexities involved in its design, control,

and operation. The current state of research in the field of bioengineering involves

mostly elementary quantitation of biological systems without a strong grasp into

the fundamentals of engineering. Advanced learning algorithms can help overcome

some of the problems generally associated with biological systems including model

complexity, noisy measurements, and data scarcity. In the current study, bioengi-

neering problems are viewed from process systems engineering perspective with

a focus on three aspects: modeling, monitoring, and fault detection. The three

representative bioengineering problems chosen to cover the three aforementioned

aspects are:

• Modeling a gene network: Accurate inference of gene network can provide



information that can lead to new ideas for treating complex diseases. A novel

algorithm for building gene networks from microarray datasets using a first

principles differential equations model is proposed. The proposed algorithm

was able to obtain a good estimate of the gene connectivity matrix for an

experimental dataset on a nine gene network inEschericia coli.

• Monitoring a microalgal bioreactor system: Monitoring ofprocess conditions

in algal cultures helps in maximizing oil productivity. A support vector

regression based algorithm is proposed for monitoring the culture conditions

of an algal bioreactor system. The multivariate sensor built using an ex-

perimental dataset gave good predictions for the concentrations of biomass,

glucose and percentage oil content.

• Detection of transplant rejection: Early detection of graft rejection is manda-

tory to effectively treat and prevent cardiac dysfunction.An algorithm based

on hypothesis testing is proposed for detecting biomarkersuseful for detec-

tion of rejection. The chosen biomarkers are validated on publicly available

microarray datasets. For these datasets, the biomarkers obtained based on

the proposed method were able to achieve a good separation between the

successful and failed transplant classes.

The methodologies and strategies proposed in this thesis have helped in the

modeling, monitoring, and fault detection of bioengineering systems.
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1
Introduction

Studies in the biological field have undergone significant changes in the last forty

years. Biology has expanded from the usual area of qualitative scientific fact accu-

mulation towards a more advanced field involving quantitation of the new knowl-

edge obtained. The methods developed for quantitative prediction of the biological

processes in turn lead to developing new tools for controlling these processes. This

1



lead to the design of various new biological-based productsand thus ushered in a

new domain in engineering involving the field of biology (Johnson and Phillips,

1995).

Biological engineering or Bioengineering covers broad rangeof fields including

bioprocess engineering, biomedical engineering, systemsbiology, metabolic engi-

neering, tissue engineering, etc. Bioengineering involvesmanipulating biological

information, constructing bio-materials, processing bio-chemicals, producing bio-

fuels, and help maintain or enhance human health. However, the tools developed for

fast and reliable engineering of biological systems are quite limited. There are ma-

jor challenges that greatly limit the engineering of biology including an inability to

avoid or manage biological complexity, the tedious and unreliable construction and

characterization of synthetic biological systems, the apparent spontaneous physical

variation of biological system behaviour, and evolution (Endy, 2005). Some of the

complexity of working with these biological applications include:

• High amount of noise:Understanding and modeling biological systems also

involves taking into account the occurrence of noise and fluctuations in the

system. In other words, biological systems and processes are inherently

noisy and have to be addressed carefully so as to avoid undesirable results

(Herranz and Cohen, 2010). Noise existing in biological systems is classified

as external noise due to environmental fluctuations or internal noise due to

certain regulatory molecules (Tian, 2010; J. Hasty et al., 2000). One of

the examples of noise in the biological application involves building bio-

chemical networks from gene expression microarray datasetwhich include

2



the measurement and hybridization noise (Tu et al., 2002; Thattai and van

Oudenaarden, 2001). For reducing the effect of noise and in turn improving

the signal to noise ratio, standard statistical and signal processing techniques

including principal components analysis (PCA) (Hotelling,1933; Nomikos

and MacGregor, 1994), partial least squares (PLS) (Wold, 1966; Mejdell and

Skogestad, 1991), filtering methods (Cleveland, 1979; Savitzky and Golay,

1964; Kalman, 1960; Seborg et al., 2004) applied in various process systems

engineering applications can be used.

• Nonlinearity: The majority of applications in the field of biological and

medical sciences are predominantly nonlinear complex systems (Hunter and

Korenberg, 1986). Advanced statistical and machine learning algorithms

used in process systems engineering applications including kernel PCA (Lee

et al., 2004), support vector machines (Chitralekha and Shah, 2010) can be

used for modeling such systems.

• Data Scarcity and High Dimensionality: Biological systems are usually

characterized by high dimensional scarce dataset including applications in-

volving use of gene expression microarrays datasets for building regulatory

network (Yeung et al., 2002; Wang et al., 2006), identifyingtransplant rejec-

tion and designing durable biomaterials (Darrabie et al., 2005; Pickup et al.,

2007). Statistical techniques including principal components analysis (PCA),

partial least squares (PLS), and independent component analysis (ICA) can

be used when dealing with such datasets.

Considerable research effort has been spent on focusing on important and potential

3



1.1. Branches in Process Engineering

applications in bioengineering including production of biofuels and bioproducts

from microalgae, identification of transplant rejection inpatients and manufacture

of biomaterials for biomedical application. Many analogies can be drawn between

the existing process engineering applications and applications in the field of bio-

logical engineering. The following section talks about thedifferent branches in the

field of process systems engineering and its analogous applications in the field of

biological engineering

1.1 Branches in Process Engineering

Process engineering or process systems engineering (PSE) is a branch of chemical

engineering which deals with the understanding and development of systematic

procedures for the design and operation of chemical processsystems, ranging from

microsystems to industrial scale continuous and batch processes (Grossmann and

Westerberg, 2000). The various different areas in process engineering as character-

ized by Grossmann and Westerberg (2000) are as follows:

1.1.1 Process Design

The first and foremost branch in process systems engineeringis process and product

design. Process or product design involves deciding on the unique characteristics

and features of the desired product. One of the major features in process design is

not only to be innovative but also to be cost effective. Another major challenge that

will remain is the design of sustainable and environmentally benign processes. An

4



1.1. Branches in Process Engineering

analogy can be drawn between PSE and biological engineeringin the application

of design and analysis of metabolic networks. However, the design of metabolic

networks can be more elaborate and convoluted when comparedto design of PSE

systems.

1.1.2 Modeling

One of the aspects of paramount importance in PSE is modeling. Process modeling

attempts to relate a desired quantity based on the availablevariables which are

deemed important for the purpose of modeling. The purpose ofa model is to

reduce the complexity of understanding a phenomenon by narrowing down the

aspects that influence its relevant behavior. Curtis et al. (1992) states that a process

model is an abstract description of an actual or proposed process that represents

the chosen process elements that are important to the purpose of the model and can

be enacted by a human or machine. For modeling various aspects involved in a

bioengineering applications, more flexible modeling environments will be required

that can accommodate a greater variety of models.

1.1.3 Process control

Process control involves the use of statistical and engineering principles to monitor

the process and maintain it at the desired performance/ operating condition safely

and efficiently. The significant accomplishments in the fieldof process control in-

clude model predictive control, robust control, nonlinearcontrol, statistical process

control, and process monitoring. Achievements in advancedprocess control and

5



1.2. Thesis Contribution

process monitoring can be applied towards new applicationsin bioprocess systems

and biomedical engineering.

1.1.4 Process Operations

The area of process operations, has a shorter history than process design and con-

trol. The broad area of process operations includes data reconciliation, real-time

optimization, fault detection and diagnosis, and process planning and scheduling.

Efficient fault detection and diagnosis is of increasing importance when dealing

with applications in biomedical engineering. For example,identification of disease

(fault) in a patient helps in early diagnosis which in turn can help in speedy recovery.

1.2 Thesis Contribution

The aim of this work is to apply well known statistical and machine learning tech-

niques including principal components analysis, partial least squares, support vector

learning, clustering algorithm, and hypothesis testing todifferent applications in

the biological engineering. The specific objectives of thiswork fall in the following

categories:

1) Process design and modeling:Obtain a gene regulatory network from

gene expression data using a first principles differential equation (DE)

model.

2) Process Monitoring: Develop an online multivariate sensor for monitor-

6



References

ing the chemical components in an algal bioreactor system.

3) Process Operations:Develop a novel strategy for identifying candidate

biomarkers which aid in the detection and diagnosis of transplant rejec-

tion.
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2
Inferring Gene Networks using Robust

Statistical Techniques1

2.1 Introduction

Gene expression profiling has produced insights into complex biological systems.

In the field of genomics, gene expression profiling has been used to understand the

mechanisms underlying biological processes including allograft rejection (Erickson

et al., 2003), and breast cancer progression (Ma et al., 2009).

In this chapter, a novel algorithm is proposed for reverse engineering of gene reg-

1A version of this chapter has been published as: V. R. Nadadoor, A. Ben-Zvi, and S. L. Shah,
“Inferring Gene Networks Using Robust Statistical Techniques”, Statistical Applications in Genetics
and Molecular Biology: Vol. 10: Iss. 1, 2011.
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ulatory network from gene expression data obtained from microarray experiments.

Microarray experiments have allowed the gene expression profiles to be measured

for the whole genome (thousands of genes) simultaneously under a variety of con-

ditions (Tu et al., 2002). Microarray technology has been applied to biological

processes including acute allograft rejection (Stegall etal., 2002), during mouse

and human pregnancy (Bethin et al., 2003), and yeast sporulation (Chu et al., 1998).

Data from microarray experiments may be arranged in the formof a rectangular ma-

trix containing expression level of genes (rows) at different experimental conditions

(columns) (Troyanskaya et al., 2001). The number of time-samples (i.e, microarray

slides) used to profile gene expression is typically less than the number of genes

profiled. As a result, the data matrix from microarray experiments will often have

more rows (i.e., genes) than columns (i.e., time points).

Much research effort has focused on estimating (or reverse-engineering) gene net-

works from gene expression data obtained from micro-array experiments (Yeung

et al., 2002; Gardner et al., 2003; Liu et al., 2006) with applications including hu-

man B cells (Schadt and Lum, 2006), gap gene network ofDrosophila melanogaster

(Basso et al., 2005). Reverse engineering is the process of elucidating the structure

of the system by reasoning backwards from observations of its behavior (Hartemink,

2005). Reverse engineering of gene network involves estimating the connectiv-

ity matrix, given observations of the system over time (D’haseseleer et al., 2000;

Tegner et al., 2003; Yeung et al., 2002). These gene networksare capable of

showing the interaction of a large number of genes in a concise manner (Brazh-

nik et al., 2002). Several graphical methodologies including graphical Gaussian

(GG) ((Magwene and Kim, 2004)) and dynamic Bayesian network (DBN) (Zou

and Conzen, 2005) modeling have been applied for reverse engineering of gene

networks. Due to the high computational complexity and needfor high number

of data points, both these methods can be used only for small networks (gene

networks of size smaller than 10) (He et al., 2009), (Hecker et al., 2009), (Bansal

et al., 2007). He et al. (2009) also state that in the GG and theDBN method,

the resultant gene network obtained is undirected. Other known methodologies

including Boolean networks (Liang et al., 1998) and system oflinear ordinary

differential/algebraic equations (Yeung et al., 2002; Tegner et al., 2003; Bansal
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et al., 2006; Gardner et al., 2003; Liao et al., 2003; Foteinou et al., 2009) have been

proposed to reverse engineer the gene network from gene expression data obtained

from these microarray experiments. Boolean network methodology is limited, as

they give undirected networks using a binary set of variablexi ∈ {0,1}, to represent

the presence of a connection between genes ((Hecker et al., 2009)). Also, the

method of inferring gene networks from linear algebraic equations as proposed in

Liao et al. (2003) and Foteinou et al. (2009), needapriori information for estimation

of gene connectivity matrix. In this work, the research effort is concentrated on the

approach of inferring gene networks from ordinary differential equations (ODEs)

without any givenapriori information regarding the network.

Ordinary differential equations (ODEs) have been used to model biological net-

works (Gardner et al., 2003; Yeung et al., 2002; Bansal et al.,2006; Kim et al.,

2007). For a network ofn genes, the corresponding ODE system is given by

(McAdams and Arkin, 2000; Jong, 2002):

ẋi(t) = fi(x1(t), . . . ,xi(t), . . . ,xn(t),u1(t), . . . ,un(t)) (2.1)

i = 1,2, ...,n

where eachxi is a function of time representing expression levels of theith gene;

and fi is a nonlinear function representing the time-derivative in the expression

level of the ith gene. The measured gene expression levels, ˜xi ’s, are corrupted

with measurement noise (Tu et al., 2002; Thattai and van Oudenaarden, 2001), and

therefore can be written as an added sum of the signal and noise components as

follows:

x̃i(t) = xi(t)+ξi(t) (2.2)

wherex̃i is a function of time representing noisy expression levels of the ith gene

andξi(t) is a function of time representing the measurement noise in the expression

levels of theith gene.

The system of nonlinear ODEs as described in Equation 2.1, operating around a
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hyperbolic rest point2 can be approximated by a system of linear ODEs ((Kreyszig,

1999)).

ẋ(t) = An×nx(t)+Bn×pu(t) ∀ t ∈ T = [0, t f ]. (2.3)

x̃(t) = x(t)+ξ (t) (2.4)

whereA is the connectivity matrix of then genes;B is the perturbation matrix;x(t)

is a function of time representing noise-free expression levels of then genes (i.e,

x(t) = [x1(t) x2(t) . . . xn(t)]T); x̃(t) is a function of time representing noisy expres-

sion levels of then genes;ξ (t) is a function of time representing the measurement

noise in the expression levels of then genes; andu(t) is the input function, which

is the perturbation vector, at timet. The input function,u(t),is a p× 1 vector,

containing the information regarding all perturbations attime t and is typically

a constant vector perturbing a select set ofp genes, as perturbation of all the

genes in the network is not feasible (Bansal et al., 2007, 2006). Estimation of

the connectivity matrixA, from Equation 2.3 has been proposed by Gardner et al.

(2003), Yeung et al. (2002) and Bansal et al. (2006).

In Gardner et al. (2003), Equation 2.3 is solved at steady state, i.e. ẋ(t) = 0,

using multiple linear regression. The method requires perturbation of all genes

in the network, which is not always feasible in a gene expression experiment.

Furthermore, obtaining a steady state data is expensive as it requires performing

multiple perturbations to the cell (Bansal et al., 2007).

In Yeung et al. (2002), an algorithm is proposed for estimating the entries of the

connectivity matrixA. In this approach the gene expression levels,x(t), is sampled

at time t j = {t1 < t2 < .. < tm} with t j ∈ T, and is written in the form of a gene

expression matrix,Xn×m, with rows indicating the various genes and columns in-

dicating different time samples. That is, each cell in the gene expression matrix

represent expression level of that particular gene at a given time. Typically due to

high experimental costs, the number of samples are far fewerthan the number of

2Let x0 be the rest point for the differential equation ˙x= r(x,u) (i.e. r(x0,u) = 0). The pointx0

is called the hyperbolic rest point if every eigenvalue ofM = ∂ r
∂x(x0) is non-zero.(Chicone, 1999)
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genes (n>>m). In this respect this is an underspecified estimation problem or there

are more unknowns than the number of equations and thereforeit is not possible to

obtain a unique identification solution forA.

−−−→ t

Xnxm =

⎛

⎜

⎜

⎜

⎜

⎜

⎜
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: .. :
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⎞
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⎟
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⎟

⎟

⎠

⏐

⏐

yGenes

Equation 2.3, is rewritten in a matrix form as shown:

Ẋn×m = An×nXn×m+Bn×pUp×m (2.5)

whereA is the gene connectivity matrix, andB= [b1, . . . ,bp] is the input (or external

stimuli) matrix. The goal of reverse engineering is to estimate each of the entries

in matrix A. However, for a typical experimental data set, the number oftime

samples,m, is fewer than the number of genes,n. Therefore, the maximum number

of independent equations implied by System 2.5 (i.e.,n×m) is less than the number

of connections inA (i.e., n× n). As a result, there exists several solutions forA

in Equation 2.5. Yeung et al. (2002) discuss a methodology toreverse-engineer

gene networks in Equation 2.5, using singular value decomposition (SVD) and

robust regression. The method suggested in Yeung et al. (2002) is computationally

efficient for larger gene expression datasets. One of the bigdrawback of the method

is that the time derivative matrix,̇X, is estimated using linear interpolation. For a

gene expression data, which are inherently noisy, the linear interpolation strategy

could lead to erroneous results (Bansal et al., 2006).

In Bansal et al. (2006), an algorithm TSNI (Time Series Network Identification) is

proposed to infer the gene network from a linear ODE by perturbing any one gene in

the network. The method provides an effective way for estimating the gene network
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and the perturbation matrix. However, the method does not provide a statistically

significant approach for obtaining a sparse network and needs apriori information

regarding the connections.

In this work, the method of partial least squares is applied to obtain the gene

connectivity matrix (gene network). The proposed algorithm combines statisti-

cal tools including leave-one-out jackknifing and the Akaike information criterion

(AIC) to ensure that the entries in the obtained gene connectivity matrix are sta-

tistically significant. To the best of our knowledge these three methods have not

been collectively applied in studies concerned with gene network. The proposed

algorithm provides a robust estimation of the connectivitymatrix in the presence of

measurement noise. A significant part of the study is dedicated to comparing and

highlighting the superior performance of the proposed method in comparison with

the methods available in the literature.

2.1.1 Partial Least Squares Regression (PLSR)

Typically time series microarray data are characterized bya large number of genes,

n, and a few measurements,m (m<< n). Therefore, well established dimension

reduction tools including PCR (principal component regression) and partial least

squares regression (PLSR) are used for performing multivariate regression in the

reduced dimension space (Pihur et al., 2008). PLSR was first proposed by Herman

Wold during mid-sixties (Wold, 1966) and subsequently found success in various

applications in the field of chemometrics (Wold et al., 2001), neuro imaging (McIn-

tosh and Lobaugh, 2004), and process control (Dayal and MacGregor, 1997). The

PLSR algorithms have also found applications in the field of systems biology as

an exploratory tool for potential gene-gene interactions (Datta, 2001; Pihur et al.,

2008).

As in the case of multiple linear regression (MLR), the main purpose of partial

least squares regression (PLSR) is to build a linear model,Y = Zβ + ζ . In this

work, Y is an (m− 1)× n variables response matrix,Z is an (m− 1)× (n+ p)

variables predictor matrix,β is a(n+ p)×n regression coefficient matrix, andζ is

15
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a noise term for the model which has the same dimensions asY. The partial least

squares model can be considered as consisting of outer relations for both theZ and

Y matrices and an inner relation linking them (Geladi and Kowalski, 1986). The

outer relations for theZ, andY matrices are built using the principal components

analysis, as follows:

Z = TPT +E = ∑ thpT
h +E (2.6)

Y =UQT +F★ = ∑uhqT
h +F★ (2.7)

whereT, P, andE are the score, loading, and the error matrices ofZ, respectively;

U , Q, and F★ are the score, loading, and the error matrices ofY, respectively.

An inner relationship is obtained between the two score matricesU andT. For

example, a simple inner relation is a linear one.

ûh = bhth (2.8)

A Graphical representation of PLSR algorithm is presented in Figure 2.1.

In this work, a SIMPLS algorithm is used to obtain the gene connectivity matrix

from a linear ODE. SIMPLS algorithm was first proposed by Sijmen de Jong as an

alternative approach to NIPALS partial least squares regression. A detailed version

of the SIMPLS algorithm is given in (Jong, 1993).

2.1.2 Leave-one-out Jackknifing

While the PLS algorithm can be used to obtain a gene connectivity matrix, it cannot

be used to guarantee that all parameters in a model are statistically significant (Pihur

et al., 2008). Leave-one-out jackknifing is a commonly used technique in statistical

analysis that can be used for judging whether a particular entry in the connectivity

matrix is spurious (de la Fuente and Makhecha, 2006; Fisher,1973; Gardner et al.,

2003). In this work, the assertion thatµ (the mean estimate of a coefficient) is

equal to zero, is the null hypothesis. The alternative hypothesis is thatµ is not

equal to zero. In this work, a normal distribution will be assumed for the mean
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Figure 2.1: Graphical demonstration of the partial least squares regression (PLSR)
algorithm

of the coefficient estimates and a significance level ofα = 0.05 will be used. In

order to obtain samples of the entries of the connectivity matrix, the leave-one-out

method described by Fukunaga and Hummels (1989) and Fukunaga and Hummels

(1987) was used.

2.1.3 Akaike Information Criterion

Gene networks are highly sparse with most entries in the connectivity matrix being

zero (Jeong et al., 2001; Tegner et al., 2003; Nacher and Ochiai, 2008; Hoguland

et al., 2006). The Akaike information criterion (AIC) can be used to obtain further

sparsity in the gene connectivity matrix. The AIC is an approach used for model

selection and is widely accepted in various statistical model identification problems

(Bozdogan, 1987; Yamaoka et al., 1978). This criterion has also been successfully

applied in the literature to achieve sparsity in a gene connectivity matrix (Hoon

et al., 2003; Ferrazzi et al., 2007; Cedersund and Roll, 2009; Chen et al., 2005). The
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AIC is used to find an optimal tradeoff between accuracy and model complexity by

penalizing both the modeling error and the number of parameters in the model.

Akaike (Akaike, 1974, 1981) gives the definition of AIC as follows:

AIC = (-2)log(maximum likelihood)+2(number of independently adjusted parame-

ters within the model).

In this work, the model errors are assumed to be Gaussian and independent and

identically-distributed random variables (i.i.d). Letmbe the number of observations

andRSS= ∑m
i=1 ε̂2

i be residual sum of squares. Then Akaike information criterion

(AIC) becomes:

AIC= 2np+m[log(
2πRSS

m
)+1] (2.9)

wherenp is the number of parameters. The Akaike information criterion (AIC) not

only rewards the accuracy of fit based on residual sum of squares, but also penalizes

number of parametersnp. This penalty term avoids over-fitting by having a tradeoff

between the goodness of fit with a parsimonious model. The preferred model is the

one with the lowest AIC value.

For small sample size applications, the Akaike informationcriterion (AIC) does

lead to biased estimate, which in turn leads to overfitting (Hurvich and Tsai, 1989).

Therefore, a corrected AIC has been used in the current studybased on the model

suggested by McQuarrie and Tsai (1998). The corrected Akaike information crite-

rion (AIC) is given by the equation:

AIC= 2np+mlog(
RSS
m

)+
m+np

m−np−2
(2.10)

2.2 Challenges

As mentioned in Section 2.1, microarray technology have enabled the gene expres-

sion profiles to be measured for thousands of genes,n, simultaneously. Also, the

experimental cost for obtaining the time samples,m, for these thousands of genes

are high. Therefore, the number of equations (m×n) are fewer than the number of

unknowns (n×n). The system of ODEs needed to be solved are under-determined.
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Withoutapriori information regarding the gene network,no methodologycan give a

unique and a true estimate for all the entries in the connectivity matrix,A. Typically,

to identify the complete network model or connectivity matrix, the number of time

samples in the data,m, must be at least equal to number of genes,n. Even with

m = n time samples, due to the presence of noise in the gene expression data

matrix, it is not practically feasible to achieve a true estimate for all the entries

of the connectivity matrix. In this work, a methodology is proposed to obtain a

consistent estimate for some of the entries of the connectivity matrix.

As mentioned in Nacher and Ochiai (2008) and Hoguland et al. (2006), most of

the elements in the connectivity matrix,A, are zero. An entry in the connectivity

matrix, Â, can be estimated as zero by two means, namely, one by applying a

particular methodology, and secondly the entry in connectivity matrix is assigned

zero by default due of the lack of sufficient data. Not all the entries in the con-

nectivity matrix are affected by the gene expression data matrix, X. Therefore, for

a large and a highly sparse matrix, the percentage of entriesestimated correctly

and the percentage of entries obtained vary significantly. For example, consider a

simulated case study with 500×500 connectivity matrix following the power law

as mentioned in Nacher and Ochiai (2008) and Hoguland et al. (2006). For this

simulated example, the number of non-zero entries in the connectivity matrix is

904. Choosing an estimate for the connectivity matrix,Â, with all the entries in the

connectivity matrix as zero, the percentage error in the estimateÂ is 0.36%. Based

on the percentage error, the estimate,Â, can be considered to be a very accurate one.

This is a unique feature when dealing with sparse matrices, where a metric defining

the number of errors is not a true indication of the usefulness of the methodology.

In this work, the performance of the method is assessed basedon both the correctly

identified zero and non-zero coefficients. For validating the non-zero coefficients,

only the sign of the coefficients are considered, whilst ignoring the magnitude.
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2.3 Methods

2.3.1 Gene Connectivity Network Model

As stated in Section 2.1, for a system operating around steady state the gene con-

nectivity matrix can be modeled with a set of linear ordinarydifferential equations

(ODEs). Equation 2.3, can be re-written in the form:

ẋi(t) =
n

∑
j=1

ai j x j(t)+
p

∑
l=1

bil ul (t) ∀t ∈ T = [t1, tm]. (2.11)

wherei = 1, ...,n is the number of genes;xi(t) is the expression level of theithgene

at timet; ẋi(t) is the rate of change in the expression level of theithgeneat time

t; p is the number of genes perturbed in the system;ai j is the influence of thejth

gene on theith gene;bil is the l th perturbation on theith gene andul (t) is the l th

perturbation at timet (Bansal et al., 2006).

Equation 2.11, is rewritten in a matrix form as suggested in Equation 2.3

ẋ(t) = An×nx(t)+Bn×pu(t) (2.12)

wherex(t) and ẋ(t) are the expression level and the rate of change of expression

level vectors for alln genes at timet, respectively;u(t) is a p×1 vector containing

the information regarding all perturbations at timet.

2.3.2 Algorithm

The continuous form of the Equation 2.12 needs to be discretized for analysis.

However, exact discretization may sometimes be intractable due to the heavy matrix

exponential and integral operations involved. It is much easier to calculate an

approximate discrete model. Euler’s approximation can be used to discretize a

continuous system of equations to a discrete form. For a noisy data, however, taking

a derivative by applying Euler’s approximation will further increase the noise level.
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Bilinear Transformation is one of the highly recommended methods for continuous

to discrete transformation. Bilinear transformation applies the trapezoidal rule

approximation which incorporates the higher-order integration procedure unlike the

Euler’s approximation. One of the advantages of bilinear transformation is that for

any value of sampling time, the discrete time approximationto a stable continuous-

time system is also stable. Since biological systems have a high time constant,

the time step size chosen does not have an effect on the approximation (Ober and

Montgomery-Smith, 1990; Mayhan, 1984).

x(tk+1) = Adx(tk)+Bdu(tk) ∀ k= 1,2, ..m−1 time points (2.13)

wherex(tk) is the noise-free or the signal component of the gene expression level

measured for then genes at a given timetk. The noisy gene expression level

measurement for the discrete case is defined as follows:

x̃(tk) = x(tk)+ξ (tk) ∀ k= 1,2, ..m time points (2.14)

whereξ (tk) is the noise component of the measured expression level, forthe n

genes, at timetk. Equation 2.13 can be rewritten in a matrix form for all time points

as:

Y = GAT
d +UTBT

d (2.15)

whereY is a transpose of the matrix havingx(t2), x(t3), and so on tillx(tm) as

columns (i.e.Y = [x(t2) .. x(tm)]T)andG is a transpose of the matrix with vectors

x(t1), x(t2), and so on tillx(tm−1) as columns (i.e.G= [x(t1) .. x(tm−1)]
T). Equation

2.15 is rewritten as follows:

Y = Zβ (2.16)
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whereZ =
[

G UT
]

andβ =

⎡

⎢

⎣

AT
d

BT
d

⎤

⎥

⎦
.

Applying SIMPLS on theZ andY matrices in Equation 2.16 and choosing the first

k PLS components, the following solution is obtained

βpls = RCT =

⎡

⎢

⎣

AT
d0

BT
d0

⎤

⎥

⎦
(2.17)

whereRandC matrices are the weights of theZ matrix and loadings of theY matrix

calculated based on the algorithm suggested in (Jong, 1993), respectively;Ad0 and

Bd0 are the solution obtained by applying partial least squares(PLS) on theY and

Z matrices in Equation 2.16.

The solutionÂ = Ad0 does not give a sparse estimate for the connectivity matrix.

To obtain sparsity of̂A and to ensure that each connection is significant, the leave-

one-out jackknifing and the AIC methods are applied sequentially. Firstly, the leave

one out jackknifing method is applied to eliminate spurious connections. Secondly,

the AIC method is applied to achieve further sparsity by finding a optimal tradeoff

between accuracy and model complexity by penalizing both the modeling error and

the number of parameters in the connectivity matrix..

The leave-one-out jackknifing (p-value hypothesis testing) is carried out on the

entries of theÂ matrix, to eliminate spurious connections. The procedure for

the leave-one-out jackknifing is as follows: For each timet = t1, t2, . . . , tm, the

samplex(t) is removed and the connectivity matrix is estimated using partial least

squares (PLS) on the newY andZ matrices in Equation 2.16. In this way a series

of m samples are obtained for each of the entries in the connectivity matrix. A

hypothesis test based on at-distribution withm−1 degrees of freedom is then used

to determine if each of the entries in the connectivity matrix are significant. As

suggested in Section 2.1.2, a confidence level ofα = 0.05 is chosen for performing

leave-one-out jackknifing.
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The Akaike information criterion (AIC) method, as defined in Equation 2.10, is

applied to theÂ matrix obtained after applying leave-one-out jackknifing to achieve

further sparsity by finding a optimal tradeoff between accuracy and model com-

plexity by penalizing both the modelling error and the number of parameters in the

connectivity matrix. A series of steps in applying the AIC islisted as follows:

1. A nominal AIC score,IÂ, is computed for the model̂A.

2. For each entryi j in Â, a new model̂Ai j is defined which is identical tôA but

the i j th entry is zero.

3. For each of the new models the AIC score,IÂi j
, is calculated .

4. The model with the lowest AIC score among theÂi j models is selected (i.e.

Â★
i j = argmin{IÂi j

})

5. If IÂ★
i j
< IÂ, then makeÂ= Â★

i j and repeat steps 2 to 5

6. The procedure is terminated when no connection can be found whose elimi-

nation reduces the AIC score.

Let Ad = Â, be the final model obtained. The discretized form of final solution,

Ad andBd0, are transformed into continuous form,A andB, using inverse bilinear

transformation suggested in Ober and Montgomery-Smith (1990).

A=
2(Ad− I)
δ t(Ad + I)

(2.18)

B=
2√
δ t

(Ad + I)−1Bd0 (2.19)

2.3.3 An Illustrative Example

Before highlighting the effectiveness of the proposed method on a real data set,

the algorithm was applied on a simulation example. In this example, a set of 1000

random sparse gene networks of 10 genes are chosen. Each of these 1000 random

networks,A, are chosen based on the following characteristics:
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• Each network is represented by a full rank matrix with eigenvalues of the real

part less than zero to ensure stability of dynamical systems(Bansal et al.,

2006; Ljung, 1999).

• Each network follows a power-law distribution meeting therequirements of

P(k)∼ k−1.8 (Nacher and Ochiai, 2008; Hoguland et al., 2006).

For the network of 10 genes, the perturbation matrix,B, with a single perturbation,

is chosen (p=1). The gene perturbed is chosen randomly and isstored in theBn×1

matrix. Since only one gene is perturbed, theB matrix has all its entries except the

one chosen randomly, equal to zero. TheU , 1×m, matrix is chosen with all the

entries being constant and equal to 1.

2.3.4 Building a Simulated gene expression matrix

For each of the 1000 networks, a simulated expression matrixX =
[

x(t1) .. x(tm)
]

was obtained using thelsimcommand in MATLAB (Bansal et al., 2006) by solving

Equation 2.12. The initial timet1 is chosen to be zero and the end timetm is chosen

to be equal to 4 times the absolute value of the real part of thesmallest eigen value of

A (Ljung, 1999; Bansal et al., 2006; Gardner et al., 2003). For every gene expression

matrix, X, five equally sampled time points (m = 5) are chosen. White Gaussian

noise component is added to theX matrix with zero mean and varying standard

deviations, fromσ = 0.01*∣∣X∣∣ (1 % noise level) to 0.25*∣∣X∣∣ (25 % noise level)

in increments of 0.01*∣∣X∣∣, where∣∣X∣∣ is the absolute values of entries of the gene

expression matrix,X (Bansal et al., 2006; Gardner et al., 2003). In total, there are

1000 simulated noisy gene expression matrices for each of the 25 different noise

components.

2.3.5 Comparitive study of the three methods

A comparative study is performed to assess the performance of the proposed method,

by comparing it with the methods suggested in Yeung et al. (2002) and Bansal
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et al. (2006). For the sake of simplicity and uniformity in comparing all three

methods, the sparsity constraints in the proposed method based on leave-one-out

jackknifing and the AIC were not applied to the recoveredAd0 matrix, given in

Equation 2.17. Instead, the recoveredAd0 matrix, in Equation 2.17, is directly

transformed using bilinear transformation, mentioned in Equation 2.18, to obtain

theA matrix. The resultant,A, matrix is compared to the corresponding connectivity

matrices obtained using methods suggested in Yeung et al. (2002) and Bansal et al.

(2006).

The network sparsity for each of these methods was achieved based on the method

proposed in Bansal et al. (2006). In the method suggested by Bansal et al. (2006),

for the purpose of obtaining sparsity, the smallesth entries in recovered network,

Â, are set to zero. The variableh is defined such that it varies from zero to total

number of entries in connectivity matrix (in this case 10× 10 =100) (Bansal et al.,

2006). For every smallesth ∈ {0,1, ...,100} entries set to zero, a corresponding

connectivity matrix,A, is obtained.

The performance of the algorithm proposed in this work alongwith the algorithms

proposed in Yeung et al. (2002) and Bansal et al. (2006) are assessed based on the

correctly identified zero and non-zero coefficients (based on only the sign of the

coefficients) in theA matrix. For this purpose, two ratiosrz andrnz are introduced

as suggested in Bansal et al. (2006):

rz =
Identified correct zero coefficients
Total number of zero coefficients

(2.20)

rnz=
Identified correct non-zero coefficients with agreeing sign

Total number of non-zero coefficients
(2.21)

An averagernz versus therz curve, across 1000 networks, is plotted for all three

methods and a comparison is made. The curve which ensures a maximum area

under thernz versus therz curve is considered the best method (Bansal et al., 2006).
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2.3.6 Robustness of the proposed method to noise

To highlight the robustness of the proposed method to measurement noise, a sin-

gle 10 gene system is chosen based on the characteristics stated in Section 2.3.3.

White Gaussian noise components with zero mean and standard deviation equal to

0.25*∣∣X∣∣ (25 % noise level) is added, at 100 different times, to the simulatedX

matrix, in Monte-Carlo fashion. A set of 100 differentX matrices are obtained,

one for each noise component. For each noise component, a connectivity matrix

A is estimated using the proposed method (including the sparsity constraint pro-

posed by the method). The variance of the entries in recovered A, across the 100

different noise components, are calculated. The method which gives lower values

for the variances of the entries is considered a better method, because it ensures the

consistency in the estimates.

2.3.7 Experimental Data

The algorithm was applied to a nine-transcript subnetwork of the SOS pathway in

E.coli. The total RNA was extracted at 6 time points: 0, 12, 24, 36, 48,and 60

min. Each experiment was done in triplicate and an average expression is chosen

at all time points. The noise level in the experiment was found to be approximately

around 13 % (refer Bansal et al. (2006) for experimental description and the noise

in the experimental data).

Table 2.1 gives a list of the 9 genes in the SOS network along with average expres-

sion levels at different times.

2.4 Results and Discussion

2.4.1 10 gene simulated networks

Each of the 1000 recovered networks,A, are made sparse by setting the smallest

h absolute values of̂A matrix equal to zero. The two ratiosrz andrnz, suggested
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Genes 0 min 12 mins 24 mins 36 mins 48 mins 60 mins
recA 0 3.4555 3.7139 3.5245 3.3526 3.4996
lexA 0 0.7193 1.0782 1.0783 0.8543 0.8787
Ssb 0 0.599 1.1959 0.8905 0.4406 0.425
recF 0 1.4377 0.7241 0.2964 -0.0114 0.1034
dinI 0 2.1853 3.3187 3.3862 3.2019 3.2664

umuDC 0 0.4214 1.0584 0.9315 0.8259 1.0371
rpoD 0 1.8529 1.3839 0.4021 -0.0522 -0.1174
rpoH 0 0.1713 -0.2225 -0.65 -0.9738 -0.7261
rpoS 0 -0.5088 -0.3991 - 1.0944 -1.7731 -1.4595

Table 2.1: The gene expression data of the 9 gene SOS subnetwork.

in Equations 2.20 and 2.21 respectively, are calculated by varying the value ofh

from zero to the total number of entries inA. The best value ofh is the value when

all the connections (positive, negative and zero) are identified correctly with no

false negatives or positives (i.e.rz =rnz=1). For a noisy under-determined system,

estimating all the connections accurately, without anyapriori information, is not

feasible. Therefore, the method which ensures a maximum area under thernz versus

therz curve is considered as the better method (Bansal et al., 2006).

The area under the averagernzversus therz curve, across the 1000 random networks

versus different noise levels is plotted. Figure 2.2 shows the average area under the

rnzversus therz curve versus noise level for the proposed method. The plot indicates

that for low noise (noise level less than 5 %), choosing threePLS components gives

the best estimate for the connectivity matrix and at higher noise level, choosing two

PLS components is a better option. Based on the area under the curve value in

Figure 2.2, two PLS components are chosen for the estimationof the connectivity

matrices using the proposed methodology.

An averagernz versus therz plot comparing the three methods is presented in this

chapter. For the comparison, three principal components are chosen for estimating

the network using the method proposed in Bansal et al. (2006).As suggested in

Section 2.3.7, the noise level of the real data is approximately around 13 %. Hence,

a plot comparing the averagernz versus therz across 1000 random networks, for a

noise level of 13 % is presented in Figure 2.3,
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Figure 2.2: Plot of the area under the averagernz (true non-zeros) versus therz (true
zeros) curve across 1000 random networks, versus the percentage noise levels for
the proposed method.
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Figure 2.3: Plot of the averagernz (true non-zeros) versus therz (true zeros) curve
across 1000 random networks, at a noise level of 13 %, for all the three methods.
Subscript 1, 2 and 3 indicate the proposed method, method in Bansal et al. (2006),
and method in Yeung et al. (2002) respectively.
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The area under the averagernz versus therz curve for the proposed method is higher

than the area under the curve for the methods proposed in (Bansal et al., 2006) and

(Yeung et al., 2002). Based on this result, the performance ofthe method proposed

is better compared to the performance of the other two methods.

2.4.2 Advantages of PLSR over PCR

The advantage of the PLSR method, used in the study, comparedto PCR method,

used in Bansal et al. (2006), is illustrated with the help of ansimulated example.

A set of 5000 different sparse gene networks of 10 genes are chosen, based on the

characteristics mentioned in Section 2.3.3:

• Each network is represented by a full rank matrix with eigenvalues of the real

part less than zero to ensure stability of dynamical systems(Bansal et al.,

2006; Ljung, 1999).

• Each network follows a power-law distribution meeting therequirements of

P(k)∼ k−1.8 (Nacher and Ochiai, 2008; Hoguland et al., 2006).

For each of the 5000 sparse networks, an expression matrixX =
[

x(t1) .. x(tm)
]

was obtained using thelsimcommand in MATLAB (Bansal et al., 2006) by solving

Equation 2.12. The initial timet1 is chosen to be zero and the end timetm is chosen

to be equal to 4 times the absolute value of the real part of thesmallest eigen value of

A (Ljung, 1999; Bansal et al., 2006; Gardner et al., 2003). For every gene expression

matrix, X, five equally sampled time points (m = 5) are chosen. White Gaussian

noise component is added to theX matrix with zero mean with varying standard

deviations, fromσ = 0.01*∣∣X∣∣ (1 % noise level) to 0.25*∣∣X∣∣ (25 % noise level)

in increments of 0.01*∣∣X∣∣, where∣∣X∣∣ is the absolute values of entries of the gene

expression matrix,X (Bansal et al., 2006; Gardner et al., 2003). In total, there are

5000 simulated noisy gene expression matrices for each of the 25 different noise

components.

For each of the 5000 recovered networks,A, the two ratios,rz andrnz, suggested

in Equations 2.20 and 2.21 respectively, are calculated by varying the value ofh
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from zero to the total number of entries inA. The best value ofh is the value when

all the connections (positive, negative and zero) are identified correctly with no

false negatives or positives (i.e.rz =rnz=1). For a noisy under-determined system,

estimating all the connections accurately, without anyapriori information, is not

feasible. Therefore, the method which provides a larger area, under thernz versus

the rz curve, compared to the other methods is considered superior(Bansal et al.,

2006).

The area under thernz versus therz curve, for the methods proposed in this work

and method suggested in Bansal et al. (2006), are compared. Since the PLSR

method, used in this study, is compared with the PCR method, used in Bansal

et al. (2006), the sparsity constraints in the proposed method based on leave-one-

out jackknifing and the AIC were not applied to the recoveredAd0 matrix, given

in Equation 2.17. Instead, the recoveredAd0 matrix is directly transformed using

bilinear transformation, mentioned in Equation 2.18, to obtain theA matrix.

In Figure 2.4, a histogram plot of the difference in the area under thernz versus the

rz curve (at 13% noise level), between methods proposed in thiswork and (Bansal

et al., 2006), for all the 5000 recovered networks, is plotted. The histogram shows

that with approximately 78% confidence, the method proposedin this work gives

higher area under thernz versus therz curve compared to the method proposed in

Bansal et al. (2006). This can be used as a conclusion to suggest that the PLSR

method, used in this study, gives a better estimate for the connectivity matrix over

PCR method, used in Bansal et al. (2006).

The confidence level in obtaining a higher area under thernz versusrz curve using

the PLSR method compared to PCR method, across various noise levels, is plotted

in Figure 2.5. It can seen from the figure that PLSR method consistently outper-

forms the PCR method for all chosen noise levels. This can be used as a conclusion

to suggest that the PLSR method, used in this study, gives a better estimate for the

connectivity matrix over PCR method, used in Bansal et al. (2006).
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Figure 2.4: Comparative performance of the proposed method with respect to
the method in Bansal et al. (2006), for the 5000 simulated genenetworks. The
histogram shows the distribution of the difference in areaaP

rnz,rz − aB
rnz,rz.a

P
rnz,rz,

aB
rnz,rz are the areas underrnz (true non-zeros) curve versus therz (true zeros) for

the proposed method and the method in Bansal et al. (2006), respectively, at a noise
level of 13 %, for the 5000 simulated networks, , as shown in Figure 2.3. Each
bin corresponds to the number of networks obtained with the similar differences in
the area between the dashed (proposed method) and solid (Bansal et al. (2006)’s
method) curves in Figure 2.3
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2.4.3 Advantages of applying both leave-one-out jackknifing and

the AIC methods

In the current study, both leave-one-out jackknifing and theAIC methods are used

for obtaining a sparse estimate of the gene connectivity matrix. The advantage of

using both the methods for obtaining an estimate is emphasized with the help of

5000 simulated noisy gene expression matrices at each of the25 different noise

levels, as mentioned in Section 2.4.2.

As proposed in Section 2.2, to obtain a sparse estimate of thegene connectivity ma-

trix, leave-one-out jackknifing is applied first and then theAIC method is applied.

Applying the sparse estimate using the proposed approach iscompared with the

sparse estimate obtained by applying the leave-one-out jackknifing method alone,

the AIC method alone, and first the AIC methodology and secondleave-one-out

jackknifing. The comparative study involves enforcing the sparsity constraints to

the recoveredAd0 matrix, in 2.17 by applying the four different procedures. For

each of the cases, the resultant matrix,Ad, is transformed using bilinear transfor-

mation, suggested in 2.18, to obtain theA matrix.

As in Section 2.4.2, for each of the 5000 recovered networks,A, the two ratios,rz

andrnz, for the sparse network obtained are calculated. The best value of the two ra-

tios is when all the connections are correctly identified ( i.e. rz =rnz=1). An average

of the two ratios,rz andrnz, across the 5000 recovered networks is calculated. For a

noisy under-determined system, estimating all the connections accurately, without

any apriori information, is not feasible. Therefore, the technique which has the

{rnz, rz} point in the averagernz versus therz curve closer to the point (smaller

distance){1,1} is considered as the better method.

To this end, a distance metric,drnz,rz, is defined which calculates the distance of the

{rnz, rz} point in the averagernz versus therz curve to the point{1,1}. The distance

metric is defined as follows:

drnz,rz =
√

(1− rnz)2+(1− rz)2
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Figure 2.6: Comparing the distance of the point on the averagernz (true non-
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method, only the AIC method, leave-one-out jackknifing+AICmethodologies, and
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Based on the smaller value of the distance metric,(drnz,rz) in Figure 2.6, the sparsity

constraint enforced by applying first the leave-one-out jackknifing method and then

the AIC method is the ideal combination. The method of applying leave-one-out

jackknifing (LOOJ) before AIC is also justified based on the fact that applying

LOOJ first removes the spurious connections obtained using PLSR method and

gives a robust connectivity matrix and further applying theAIC method reduces the

complexity of the obtained matrix. Obtaining a robust modelprior to reducing the

model complexity is a more judicious approach.

2.4.4 Analysis of Noise-Robustness Via Monte Carlo Simulations

Since, microarray data are highly noisy, the consistency ofthe entries in the connec-

tivity (recovered) matrix in presence of measurement noiseis a necessary require-

ment. The method which shows a higher confidence for the entries is indicative of a

better performance. Since the noise level is 25 %, two PLS components are chosen

for the proposed method and two principal components (PCs) are chosen for the

method proposed in Bansal et al. (2006).

A histogram of the variances of the entries, across the 100 Monte-Carlo samples,

is also plotted. Figure 2.7 shows a histogram plots of the variance of the entries

in A for the proposed method and the methods in Yeung et al. (2002)and Bansal

et al. (2006). As can be seen from Figure 2.7, the variances ofthe entries obtained

by the proposed method is smaller than variances of the entries using the methods

proposed in Bansal et al. (2006) and Yeung et al. (2002). From the plots one of

the important observation is that the variances of some of the entries using method

proposed in Yeung et al. (2002) are significantly higher and hence the confidence

on the estimates are very poor.

2.4.5 Nine Gene SOS Network

For the nine gene SOS dataset in Table 2.1, the algorithm proposed, in this study,

is applied and the network obtained is shown in Table 2.2. Since the noise level in
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Figure 2.7: Histograms of the variance of the entries of the recovered connectivity
matrices estimated by the proposed method (first), by methodproposed in Bansal
et al. (2006) (second) and the method proposed in Yeung et al.(2002) (third). The
initial values of the histograms are zoomed and presented inthe inset of the plot.
Note the different scale in these plots.
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the real data is around 13%, three PLS components are chosen for analysis. A 95%

confidence level is chosen for obtaining sparsity using leave-one-out jackknifing

(α= 0.05).

The inferred network is compared with known interactions given in the literature.

There were 43 proposed connections, apart from the self feedback, between these

9 genes (Bansal et al., 2006) . For estimating the final gene network, no apriori

information regarding the number of connections per gene isused. Table 2.2 gives

the final gene network estimated using the method proposed inthis work.

Table 2.2: The nine gene SOS network recovered using the proposed methodology.
The connectivity matrix values are rounded off to two decimal places.

recA lexA Ssb recF dinI umuDC rpoD rpoH rpoS
recA -0.83 0 0.02 1.06 0.36 0.09 0.76 0 0
lexA 0.32 -2.00 0.01 0.30 0.10 0.03 0.21 0 0
Ssb -0.07 -0.04 -1.99 0.66 0.22 0.06 0.46 0 0
recF 0.11 0 -0.09 -1.93 -0.39 0.10 0.78 0 0
dinI 1.12 0 0.01 0.61 -1.79 0.06 0.44 0 0

umuDC 0.33 0 0 0.14 0.05 -1.99 0.11 0 0
rpoD 0.23 0 0 0.12 -0.69 -0.33 -0.69 0 0
rpoH -0.08 0 0 0.17 -0.48 0.04 0.36 -2.00 0
rpoS 0.26 0 0 0.14 -0.79 -0.27 0.10 0 -1.63

For comparing the original and the recovered networks, onlythe signs of the entries

are taken into account whilst ignoring the magnitude. Therefore, the network given

in Table 2.2 is converted to a sign network given in Table 2.3 for the purpose of

comparison. Tables 2.3 and 2.4, show the recovered gene network (only signs) us-

ing the algorithm suggested in this study and the network proposed in the literature,

respectively.

As many as 25 of the 43 proposed connections were correctly identified as com-

pared to the 20 connections obtained using the method proposed in Bansal et al.

(2006). For obtaining a sparse matrix, the method proposed in (Bansal et al., 2006)

used the information that each gene is connected to five othergenes ( based on the

work proposed in Gardner et al. (2003)). Using the proposed method, we were

able to achieve as many as 25 connections correctly without using theapriori
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information regarding the connectivity of the genes, suggested in Gardner et al.

(2003). The method proposed was also able to identify 19 truezero coefficients in

the network compared to the 17 true zero coefficients obtained using the method

proposed in Bansal et al. (2006).

Table 2.3: The recovered SOS network (only signs) using the proposed methodol-
ogy

recA lexA Ssb recF dinI umuDC rpoD rpoH rpoS
recA -1 0 1 1 1 1 1 0 0
lexA 1 -1 1 1 1 1 1 0 0
Ssb -1 -1 -1 1 1 1 1 0 0
redF 1 0 -1 -1 -1 1 1 0 0
dinI 1 0 1 1 -1 1 1 0 0

umuDc 1 0 0 1 1 -1 1 0 0
rpoD 1 0 0 1 -1 -1 -1 0 0
rpoH -1 0 0 1 -1 1 1 -1 0
rpoS 1 0 0 1 -1 -1 1 0 -1

Table 2.4: The original nine gene SOS network as proposed in the (Bansal et al.,
2006). The values 1, -1, and 0 indicate a positive connection, negative connection,
and a lack of connection respectively

recA lexA Ssb recF dinI umuDC rpoD rpoH rpoS
recA -1 -1 1 1 -1 1 0 0
lexA 1 -1 1 1 -1 1 0 0
Ssb 1 -1 1 1 -1 1 0 0
recF 0 0 -1 0 -1 1 0 1
dinI 1 -1 -1 1 -1 1 0 0

umuDc 1 -1 -1 1 1 1 0 0
rpoD 1 -1 -1 1 1 -1 1 0
rpoH 0 0 0 0 0 0 1 0
rpoS 0 0 0 0 0 0 1 0
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To emphasize the advantage of using first, the leave-one-outjackknifing method

and then the AIC method, as suggested in the proposed method,the number of con-

nections obtained using the proposed method (25 of the 43 proposed connections)

is compared with the number of connections obtained by applying only leave-one-

out jackknifing method (31 of the 43 proposed connections), applying only the AIC

method (16 of the 43 proposed connections), and applying first the AIC methodol-

ogy and second leave-one-out jackknifing (16 of the 43 proposed connections), as

sparsity constraints.

Although, the number of connections correctly identified, by using only leave-

one-out jackknifing, increased from 25 to 31, the number of true zero coefficients

identified in the network decreased from 19 to zero. Therefore, due to the presence

of large number of false positives, the method of obtaining sparsity using leave-

one-out jackknifing alone is not preferred.

2.5 Advantages of the proposed method to the method

based on (Varah, 1982)

For the purpose of applying the procedure suggested in Varah(1982), the gene

expression levels,x(t), is sampled at timet j = {t1 < t2 < .. < tm} with t j ∈ T, and

is written in the form of a gene expression matrix,Xn×m, with rows indicating the

various genes and columns indicating different time samples. That is, each cell in

the gene expression matrix represent expression level of that particular gene at a

given time (refer Section 1).

Equation 9, is written for all m samples in the matrix form as follows:

Ẋn×m = An×nXn×m+Bn×pUp×n (2.22)

An estimate for both the original matrixX and its first derivative matriẋX, in

Equation 2.22, are obtained by applying a uniform cubic b-spline least squares

method (Varah (1982); Deng et al. (2009)). Equation 2.22, can be written analogous
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2.5. Advantages of the proposed method to the method based on(Varah, 1982)

to the Equation 2.15 as follows:

Y = GAT +UTBT (2.23)

whereY is a transpose of thėX matrix andG is a transpose of theX matrix.

Equation 2.23 is rewritten as follows:

Y = ZH (2.24)

whereZ =
[

G UT
]

andH =

⎡

⎢

⎣

AT

BT

⎤

⎥

⎦
.

Applying SIMPLS on theZ andY matrices in Equation 2.16 and choosing the first

k PLS components, the following solution is obtained

Hpls = RCT =

⎡

⎢

⎣

AT

BT

⎤

⎥

⎦
(2.25)

whereRandC matrices are the weights of theZ matrix and loadings of theY matrix

calculated based on the algorithm suggested in (Jong, 1993), respectively;A andB

are the solution obtained by applying partial least squares(PLS) on theY andZ

matrices in Equation 2.24.

The simulated case study of 5000 gene networks, suggested inSection 3.2, is used

to recover the connectivity matrix using the method proposed in this section. For

each of the 5000 recovered networks,A, the two ratios,rz andrnz, are calculated by

varying the value ofh from zero to the total number of entries inA.

The area under thernz versus therz curve, for the method proposed in this work and

method using the procedure in Varah (1982), are compared. Figure 2.8, shows a

histogram plot of the difference in the area under thernzversus therz curve, between
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Figure 2.8: Comparative performance of the proposed method with respect to the
method using the procedure in Varah (1982), for the 5000 simulated gene networks.
The histogram shows the distribution of the difference in area aP

rnz,rz − aV
rnz,rz.

aP
rnz,rz, aV

rnz,rz are the areas underrnz (true non-zeros) versus therz (true zeros)
for the proposed method and the method based on the procedurein Varah (1982),
respectively, at a noise level of 13 %, for the 5000 simulatednetworks.
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method proposed in this work and the method using the procedure in Varah (1982),

for all the 5000 recovered networks. The histogram shows that with more than

99% confidence, the method proposed in this work gives higherarea under thernz

versus therz curve compared to the method proposed using the procedure inVarah

(1982). This can be used as a conclusion to suggest that the method proposed in

this study, gives a better estimate for the connectivity matrix over the method using

the procedure in Varah (1982), for smaller networks.

Also, for large networks, the estimate of the connectivity matrix obtained using the

procedure in Varah (1982) did not yield a better result compared to the method pro-

posed in this work. Therefore, it can be concluded that the method proposed in this

work shows a superior performance compared to the method using the procedure in

Varah (1982).
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2.6 Limitations

As mentioned in Section 2.1, microarray technology have enabled the gene expres-

sion profiles to be measured for thousands of genes,n, simultaneously. Also, the

experimental cost for obtaining the time samples,m, for these thousands of genes

are high. Therefore, the number of equations (m×n) are fewer than the number of

unknowns (n×n). The system of ODEs needed to be solved are under-determined.

For a large gene network with very few time samples, the proposed method does not

yield satisfactory results. This is due to the highly under-determined nature of the

system which require more than one set of experiments for obtaining a satisfactory

result.

2.7 Concluding remarks

In this study, three objectives are achieved, firstly, a novel algorithm is proposed for

obtaining a statistically significant estimate of the gene network from linear ODEs

using a combination of well known statistical tools such as partial least squares

(PLS), leave-one-out jackknifing and the Akaike information criterion (AIC). The

method uses the knowledge of bilinear transformations for discretizing a linear

ODE problem into a linear algebraic problem.

Secondly, a comparative study performed with a simulated gene network, illustrated

the superior performance of the method as compared to methods available in the

literature. The simulated gene network is built so that it closely resembles a real

gene network (i.e. a stable network with gene connectivity satisfying a power law

distribution). The obtained estimates were consistent androbust to measurement

noise in the data.

Finally, the method applied on experimental data for a nine-gene SOS network

was able to successfully extract 25 out of 43 proposed connections in the literature

without anyapriori knowledge on the network.
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3
Limitations in Inferring Gene Networks

from Microarray Datasets1

In this chapter, an algorithm for reverse engineering gene networks using data

obtained from microarray experiments is proposed. Under the proposed scheme,

the parameter space describing gene interaction is partitioned into estimable and

inestimable linear subspaces. The estimable subspace is obtained by using principal

components analysis (PCA). It is shown that these estimable subspaces are robust

with respect to experimental noise. Also, a method for designing experiments which

will allow the estimation of the complete network is presented. As a result, the

proposed procedure will, necessarily, only allow the estimation of a subset or some

1A portion of this chapter has been published in the IFAC proceedings. V. R. Nadadoor, A.
Ben-Zvi, and S. L. Shah, “Challenges in Reverse Engineeringof Gene Networks from Algebraic
Perspective”, Proceedings on the 11th symposium Computer Applications in Biotechnology, IFAC
symposia, on July 2010.
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combination of the entries inA. However, the benefit of the proposed approach is

that one is explicitly aware of which portion of the network is identified and which

is not.

3.0.1 Principal Components Analysis

As there are more entries in the connectivity matrixA than can typically be esti-

mated from experimental data, one can only estimates a portion of the gene network.

Under the proposed framework, keylinear combinationsof genes are identified

and their interconnectivity is estimated. Principal Components analysis (PCA) is a

statistical technique that can be used to separate or extract the key linear combina-

tions from a set of noise data (Wold, 1978, 1966). PCA has been widely used and

has been extremely successful in a number of applications including clustering of

gene expression data, assessment of biological age and diagnosis of coronary heart

disease (Yeung and Ruzzo, 2001; Nakamura et al., 1988; Brindleet al., 2002)

The singular value decomposition (SVD) algorithm is used toperform PCA on the

gene expression data. SVD involves factorization of a givenmatrix, in this caseXT ,

into three matricesU , S, andV as shown:

XT =USVT (3.1)

whereU consists of orthonormalized eigenvectors associated witheigenvalues of

XTX, and the matrixV consists of orthonormalized eigenvectors ofXXT . S is a

diagonal matrix with elements being non-negative square roots of eigenvalues of

XXT , called the singular values.

In the PCA notation,T = US is the score vector, and̃P = V forms the loading

vectors or the principal component vectors (PC). The 1st principal component (PC)

captures direction of the greatest variability followed bythe 2nd orthogonal PC this

relation continues until thenth PC which captures the least variability. Typically

last few principal components are assumed to capture the variability due to noise.
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3.1. Proposed Method

TheXT matrix can be written in the PCA notation as follows:

XT =
d

∑
i=1

TiP
T
i +

n

∑
i=d+1

TiP
T
i = X̃T +ζ (3.2)

wheren is the total number of PCs,d is the significant PCs that capture the signal

component.Ti ’s andPi ’s are the score vectors and loading vectors of theith principal

component. The scores in Equation 3.2, are in the decreasingorder of magnitude

as shown:

∣∣T1∣∣2 > ∣∣T2∣∣2 > .... > ∣∣Tn∣∣2 (3.3)

Therefore,Td+1 to Tn are scores of PCs which are attributed to noise in the matrix

XT .

3.1 Proposed Method

Let Xnxm, represent an experimentally observed gene expression data matrix. First,

principal components analysis (PCA) is performed on the datamatrix XT
m×n. This

allows the matrixXT to be written as a linear combination ofd < m<< n principal

components representing the signal component in the data, and a set ofn− d

principal components which represent the noise component in the data. The integer

d is chosen using the prediction error sum of squares (PRESS) method (Wold,

1978). The matrixXT can therefore be written as

XT
m×n = Tm×dPT

d×n+Te
m×(n−d)(P

⊥
(n−d)×n)

T (3.4)

whereP andT are the loading and score matrices for the firstd principal compo-

nents respectively. Likewise,P⊥ andTe are the loading and score matrices for the

remaining(n−d) components. Thed loading vectors in theP matrix, and(n−d)

loading vectors in theP⊥ matrix together form an orthonormal basis. That is, the

vectors in the matrix̃P=
[

P,P⊥]= [P1,P2, . . . ,Pd,Pd+1, . . . ,Pn] form a orthonormal
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3.1. Proposed Method

basis forℝn. In order to simplify the notation, Equation 3.4 can be written as:

XT
m×n = X̃T

m×n+ζ (3.5)

where,X̃T
m×n = TmxdPT

d×n, and (3.6)

ζ = Te
m×(n−d)(P

⊥
(n−d)×n)

T (3.7)

are the signal and noise terms respectively.

For a system operating around steady state the gene connectivity matrix can be

modeled with a set of linear ordinary differential equations (ODEs)as follows:

ẋ(t) = Ax(t)+Bu(t) (3.8)

For the sake of simplicity, in this work, a discrete linear model is assumed to model

the gene network instead of ODEs. The system considered is asfollows:

x(tk+1) = x(tk)+∆t(Ax(tk)+Bu(tk)) (3.9)

Equation is rewritten in a matrix form as shown:

∆X = AX+BU (3.10)

where∆X = 1
∆t

[

(x(1)−x(0)) ... (x(m)−x(m−1))
]

. Substituting Equation

3.5 into Equation 3.10, leads to:

∆X̃+∆ζ = AX̃+Aζ +BU (3.11)

Taking expectation of Equation 3.11, gives the following expression :

E[∆X̃]+E[∆ζ ] = E[AX̃]+E[Aζ ]+E[BU]

Note that using the algorithm proposed in this work, Equation 3.11 contains a noise

term ζ whose mean is assumed to be zero (i.e.,E[ζ ] = E[∆ζ ] = 0). Simplifying
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3.1. Proposed Method

and dropping theE(⋅) notation for compactness one obtains:

∆X̃ = AX̃+BU (3.12)

To obtain a general solution, Equation 3.6 is substituted into the transpose of Equa-

tion 3.12 giving:

(∆X̃)T = X̃TAT +BT = TPTAT +(BU)T (3.13)

The least squares solution forPTAT , in Equation 3.13 is

PTÂT = (TTT)−1TT((∆X̃)T − (BU)T) (3.14)

where Â denotes the least-squares estimate ofA. The general solution for̂A in

Equation 3.14 is then:

Â= A0+C(P⊥)T (3.15)

where,AT
0 = P(TTT)−1TT((∆X̃)T − (BU)T) (3.16)

andC is an arbitrary matrix. Recalling that the columns of theP⊥ matrix are the

principal components associated with the noise in the data,an optimal noise-free

estimable portion ofA is obtained by settingC = 0. For the sake of simplicity,

an external stimuli matrixBp = BU is defined, and henceforth all the equations

are rewritten based onBp. Therefore, the Equation 3.12 can be rewritten in the

following form:

∆X̃ = AX̃+Bp (3.17)

3.1.1 Creating a simulatedX̃ matrix and testing the proposed

method

A simulated gene expression data,X̃ is built from a given gene network,A and

an external stimuli matrixBp. The simulated example involves obtainingm time

samples for analysis given an initial vector ˜x(0), A andBp.
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3.1. Proposed Method

A procedure is shown for creating thesem time samples. A sparse connectivity

matrixA, an initial gene expression sample vector, ˜x(0) = T(0)PT , at time t=0, and

an external stimuli matrixBp are chosen. Equation 3.1, can be rewritten for the

noise free case as follows:

x̃(t +1) = x̃(t)+∆tx̃(t)AT +b(t) (3.18)

whereBp = [b(0) ... b(m−1)] andX̃ = [x̃(0) ... x̃(m−1)].

Equations 3.18 can be written in the matrix form fort j = {0 < 1 < .. < m} as

follows:
⎛

⎜

⎜

⎜

⎜

⎝

x̃(1)

x̃(2)

:

x̃(m)

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

x̃(0)[I +∆tAT ]

x̃(1)[I +∆tAT ]

:

x̃(m−1)[I +∆tAT ]

⎞

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎝

b(0)

b(1)

:

b(m−1)

⎞

⎟

⎟

⎟

⎟

⎠

(3.19)

While creating a simulated matrix withm time samples ,̃X, there is a need to choose

an initial vector ˜x0, connectivity matrixA, B, andt.

Let A, be the original connectivity matrix. Equation 3.19 is usedto generateX̃

matrix, from the connectivity matrixA, initial sample ˜x0 (at timet = 0), andBp for

various time samplest.

The procedure described above is applied to generateX̃ matrix, which in turn is

used to re-estimate the connectivity matrix,Â by applying the method proposed in

the current work. Shown below are theA, X̃, Bp, andt data used for the above

simulated example:

A=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 6.51 3.15 0 0 4.71

−0.33 0 0 6.49 1.52 0

2.38 0 0 4.35 0.58 0

0 20.87 15.87 0 0 21.56

0 5.42 4.94 0 0 4.45

2.41 0 0 5.71 1.91 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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X̃ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−0.24 −1.25 −0.94 −0.94 −0.24 −1.25

−0.40 −1.32 −0.99 −1.62 −0.41 −1.32

−0.59 −1.44 −1.08 −2.34 −0.59 −1.44

−0.78 −1.60 −1.20 −3.13 −0.78 −1.60

−1.00 −1.82 −1.36 −4.01 −1.00 −1.82

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Bp =

⎛

⎜

⎜

⎜

⎜

⎝

0.01 −0.73 −0.55 0.03 0.01 −0.73

−0.05 −0.78 −0.59 −0.20 −0.05 −0.78

−0.18 −0.02 −0.01 −0.71 −0.18 −0.02

−0.24 −0.57 −0.43 −0.95 −0.24 −0.57

⎞

⎟

⎟

⎟

⎟

⎠

t =
(

0 0.01 0.02 0.03 0.04
)

3.1.2 Estimates using the Proposed methodology

A set of two random noise components are added to theX̃ matrix and the first step of

the proposed methodology as indicated in section 3.1, is applied. The consistency

of the estimates below will indicate the significance of considering the noise in the

methodology.

Two random noise components with standard deviation of 0.01and 0.05 are added,

to the simulated gene matrix̃X given in the section 4.1. The connectivity matrices

A1, andA2, are estimated for the two noise components.

Noise with 0.01 Standard DeviationFor noise with standard deviation 0.01, the
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loading matrix,P1, and the score matrix,T1, as suggested in Equation 3.16 are:

P1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−0.1795 0.1527

−0.4048 −0.4757

−0.3036 −0.3569

−0.7180 0.6110

−0.1795 0.1527

−0.4049 −0.4757

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

T1 =

⎛

⎜

⎜

⎜

⎜

⎝

2.0576 0.8750

2.6797 0.4956

3.3835 0.1450

4.1856 −0.2033

⎞

⎟

⎟

⎟

⎟

⎠

The connectivity matrixA1 estimated in the first step of the methodology is:

A1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.00 5.30 3.98 0.00 0.00 5.30

1.51 0.00 0.00 6.03 1.51 0.00

1.13 0.00 0.00 4.53 1.13 0.00

0.00 21.20 15.90 0.00 0.00 21.20

0.00 5.30 3.98 0.00 0.00 5.30

1.51 0.00 0.00 6.03 1.51 0.00

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Noise with 0.05 Standard DeviationFor noise with standard deviation 0.05, the

loading matrix,P2, and the score matrix,T2, as suggested in Equation 3.16 are:

P2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−0.1795 0.1533

−0.4050 −0.4743

−0.3036 −0.3569

−0.7178 0.6106

−0.1799 0.1545

−0.4050 −0.4769

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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T2 =

⎛

⎜

⎜

⎜

⎜

⎝

2.0578 0.8774

2.6815 0.4948

3.3858 0.1398

4.1870 −0.2033

⎞

⎟

⎟

⎟

⎟

⎠

Similar to the first case, the connectivity matrixA2 estimated in the first step of the

methodology is found to be:

A2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−0.03 5.3563 4.03 −0.10 −0.03 5.37

1.53 −0.04 −0.03 6.13 1.54 −0.05

1.15 −0.05 −0.04 4.60 1.16 −0.06

−0.11 21.38 16.07 −0.39 −0.13 21.45

−0.03 5.38 4.04 −0.10 −0.04 5.40

1.54 −0.08 −0.06 6.14 1.55 −0.09

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The sum of squared error of between the two estimates,A1 and A2, is given as

follows: ∑∑(A1−A2)
2 =0.64. Therefore, the estimated matrices,A1 andA2, are

quite similar in the presence of noise. Based on the aforementioned two estimates,

A1 andA2, the following conclusions can be drawn.

1. The connectivity matrix estimated using the proposed methodology helps in

obtaining true values for some of the coefficients in the connectivity matrix.

2. It does not give the true estimate for all coefficients in the connectivity matrix.

The limitation in the proposed method, in estimating all thecoefficients in the

connectivity matrix, is explained in a later section.

To further highlight the significance of the proposed methodology, a simulated case

study is performed by selecting a set of 100 different randomnoise components with

standard deviations of 0.01 and 0.05 each. Two sets of 100 different connectivity

matrices are estimated, using the proposed methodology, for each of the two noise

components.

Figure 3.1, is the histogram plot of the variance of the coefficients in the connectiv-

ity matrices for the two different noise components with standard deviation of 0.01
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Figure 3.1: Histograms of the variance of the entries of the recovered connectivity
matrices estimated by the proposed method. The variance of the coefficients
estimated by the proposed methodology for noise componentswith std. of 0.01
(top panel) and std. of 0.05 (bottom panel) are presented. The scale in the plots
suggest a consistent estimate of the entries in the connectivity matrix.
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3.1. Proposed Method

and 0.05. The figure highlights the robustness of the estimates in the presence of

noise in the data. Smaller variances for the coefficients in the connectivity matrix

as shown in Figure 3.1, indicates the robustness of the methodology proposed in the

presence of noise.

3.1.3 Limitations

The method proposed in this work assumes that the gene expression matrix,X̃ is

correlated. That is, a few linear combinations of the genes explain the gene expres-

sion matrix,X̃ = TPT . The connectivity matrix estimated using this assumption,

may not be the true estimate of the connectivity matrix. Given a gene expression

data from a given microarray experiment, the solution of theconnectivity matrix es-

timated is not necessarily the true estimate for all the coefficients of the connectivity

matrix. The limitation that only a few of the connections canbe estimated based on

the assumption that̃X is correlated is highlighted using an illustrative exampleas

shown below:

An illustrative example in the form of a small case study is performed. The simu-

lated example involves obtaining various time samples for analysis given an initial

vector, x̃1(0), connectivity matrix,A, and an external stimuli matrix,B1. Let A,

x̃1(0), B1 be given as shown below.

A=

[

−1 0

−1 1

]

x̃1(0) =
[

1 0
]

B1 =

⎡

⎢

⎣

1 1

: :

1 1

⎤

⎥

⎦
(3.20)
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3.1. Proposed Method

Equation 3.19 is used to calculate ˜x1(i), ∀i ∈ ℕ, at various times and the result is:

x̃1(1) =
[

1 0
]

x̃1(2) =
[

1 0
]

:

x̃1(i) =
[

1 0
]

(3.21)

Additional number of time samples does not gives additionalinformation regarding

the data. The time samples get trapped into a subspace given by the vector

[

1

0

]

.

The loading matrix,P1, and the score matrix,T1, obtained from Equation 3.16 are

given as follows:

P1 =

[

1

0

]

T1 =
[

1
]

The connectivity matrix,Â1, estimated using the methodology proposed in this

work is:

Â1 =

[

−1 0

−1 0

]

The solutionÂ1, does not give a true estimate for all the coefficients in the connec-

tivity matrix. It gives the exact estimate for all the connections in the first column

of the A matrix. To get a true estimate for all the coefficients in the connectivity

matrix, another case study is performed.

The case study involves obtaining various time samples for analysis given an initial

vector,x̃2(0), A, andB2 as shown:

A=

[

−1 0

−1 1

]
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3.1. Proposed Method

x̃2(0) =
[

0 1
]

B2 =

⎡

⎢

⎣

0 −1

: :

0 −1

⎤

⎥

⎦

Once again, Equation 3.19 is used to calculate ˜x2(i), ∀i ∈ ℕ, at various times:

x̃2(1) =
[

0 1
]

x̃2(2) =
[

0 1
]

:

x̃2(i) =
[

0 1
]

(3.22)

The loading matrix,P2, and the score matrix,T2, obtained from Equation 3.16 are

given as follows:

P2 =

[

0

1

]

T2 =
[

1
]

The connectivity matrix,Â2, estimated using the methodology proposed in this

work now:

Â2 =

[

0 0

0 1

]

The true estimate of the connectivity matrix,Â, as obtained by taking the sum of

both the estimates,̂A1 andÂ2 is:

Â=

[

−1 0

−1 1

]

Note that the matrix formed by the loading vectors from the two case studies, [P1

P2], form a basis inℝ2. Therefore, there exists an underlying relationship between

the two case studies shown in this section. This relationship helps in estimating the

coefficients of the connectivity matrix in entirety. In the following section, a general

procedure for estimating all the coefficients in connectivity matrix is illustrated.
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3.2. Independent Microarray Experiments for Estimating Gene Network

3.2 Independent Microarray Experiments for Esti-

mating Gene Network

Microarray experiments referred in this work constitutes agiven gene expression

matrix, X̃, and a prescribed external stimuli matrix,B (Gardner et al., 2003; Yeung

et al., 2002). The external stimuli matrixB has a direct effect on theA matrix.

Therefore a suitable external stimuli matrix,B, is needed to estimate the original

connectivity matrix,A.

As indicated in the previous section, from a given microarray experiment, the so-

lution obtained is only a portion of the connectivity matrix. For estimating the

complete connectivity matrix, a series of different micro-array experiments have to

be performed. This section deals with a methodology of estimating the complete

connectivity matrixA.

Any given matrix,A, can be partitioned as follows:

A= P̃

(

a11 a12

a21 a22

)

P̃T (3.23)

A= Pa11P
T +Pa12(P

⊥)T +P⊥a21P
T +P⊥a22(P

⊥)T (3.24)

The matrix,A, given in Equation 3.24, will represent the general form of connectiv-

ity matrix, A, given in Equation 3.15 if and only if the right-hand side of Equation

3.24 and Equation 3.15 are the same.

The general form of the connectivity matrix as given in Equation 3.15 is as follows:

A= A0+C(P⊥)T (3.25)

whereAT
0 =P(TTT)−1TT((∆X̃)T −(Bp)

T). The estimateA0 obtained can be rewrit-

ten as follows:

A0 = ((TTT)−1TT((∆X̃)T − (Bp)
T))TPT = a0PT (3.26)
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3.2. Independent Microarray Experiments for Estimating Gene Network

wherea0 = ((TTT)−1TT((∆X̃)T − (Bp)
T))T .

Equating right-hand side of Equations 3.25 and 3.24 leads tothe following equality:

A0+C(P⊥)T = Pa11P
T +Pa12(P

⊥)T +P⊥a21P
T +P⊥a22(P

⊥)T (3.27)

Post multiplying both sides of Equation 3.27 withP and substituting Equation 3.26,

leads to the following equation:

a0PTP= Pa11P
TP+P⊥a21P

TP (3.28)

a0 = Pa11+P⊥a21 (3.29)

Again, post multiplying both sides of Equation 3.29 withPT , leads to the following

equation:

A0 = a0PT = Pa11P
T +P⊥a21P

T (3.30)

Equation 3.30 refers only to a portion of estimate,Â1 = A0, of gene connectivity

matrix A which is estimated by using the first step of the proposed methodology.

The estimateÂ1, only gives the true estimate for some of the connections in the

original connectivity matrix. To obtain the true estimate for all connections in

the connectivity matrix, a series of independent experiments are needed to be per-

formed. The following section gives a methodology to estimate all the coefficients

of the connectivity matrix.

3.2.1 Independent Experiments

Starting with the gene expression matrix,X̃1 = T1PT , and external stimuli matrix,

B1, satisfying the equation∆X̃1 = AX̃1+B1, the solution,A0, obtained in the first

step of the proposed method is given as shown in Equation 3.30. That is,

Â1 = A0 = (Pa11+P⊥a21)P
T (3.31)
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By an independent experiment, starting withX̃2 = T2(P⊥)T andB2, satisfying the

equation∆X̃2 = AX̃2+B2, the solution,A0⊥, obtained in the first step of the pro-

posed methodology is given by:

Â2 = A0⊥ = (Pa12+P⊥a22)(P
⊥)T (3.32)

Since the number of genes is much greater than the number of samples possible

(n >> m> d), the estimate,A0⊥, given in Equation 3.32 cannot be estimated by

a single experiment. Therefore, a series of independent experiments are needed to

be performed starting with the gene expression matrices andthe external stimuli

matrices as shown

X̃k = Tkv
T
k andBk ∀k= 2,3,4, .. (3.33)

wherevk is the matrix formed by a subset of the vectors in the matrixP⊥. Vectors

in each subset matrixvk form a partition for theP⊥ matrix. Each of these gene

expression matrix,Xk, and external stimuli matrix,Bk, satisfy the equation∆X̃k =

AX̃k+Bk.

For each of the independent experiments shown in Equation 3.33, a solution,Âk =

A0k, is obtained using the proposed methodology. The final estimate for the gene

connectivity matrix,Â, is the sum of all the estimates obtained from each experi-

ment:

Â=
θ

∑
i=1

Âi (3.34)

whereθ , is the number of independent experiments performed.Â is the estimate

for the all the coefficients of the connectivity matrix.

3.3 Concluding Remarks

Gene networks is useful in getting a better understanding ofmechanisms of com-

plex biological processes such as organ transplant rejection and breast tumors. It

is a well known fact that reverse engineering of such gene networks from gene ex-

pression data tend to be underdetermined. Also, the gene expression data obtained
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from microarray experiments are very noisy. In this work, the identification of the

gene network is treated as a step-wise problem. The gene network was separated

into estimated and unestimated components based on the experiments performed.

The robustness of the data in the presence of noise is also discussed in this article.

It is also shown, the limitations of the methods available inthe literature have also

been discussed. Simulated examples generated, illustrates the importance of this

work.

The model obtained gives true estimate for some of the connections in the gene

network. The method also suggests the need for further microarray experiments

to be performed for constructing the gene network topology in entirety. Overall,

the importance of this work is get an understanding of various different portions or

partitions of the gene networks and suggests a procedure forestimating each one of

portions individually.
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4
Online Sensor for Monitoring a

Microalgal Bioreactor System Using

Support Vector Regression1

4.1 Introduction

The biotechnological use of microalgae for the production of fine chemicals and

biofuels is of growing interest due to the higher growth rateand productivity of

algae compared to higher plants (Chisti, 2007). Moreover, microalgae can be inten-

1A version of this chapter has been accepted for publication.V. R. Nadadoor, H. De la
Hoz Siegler, S. L. Shah, W. C. McCaffrey, and A. Ben-Zvi, “Online Sensor for Monitoring a
Microalgal Bioreactor System Using Support Vector Regression”, Accepted for publication in the
Chemometrics and Intelligent Laboratory Systems, 2011.
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sively grown in traditional bioreactors, reducing the pressure over cropland (Singh

et al., 2011). Several microalgae species are remarkable for their capacity to pro-

duce and store large amounts of oil. For example, lipid content in A. protothecoides

can represent up to 57.8% of the cell dry weight when grown heterotrophically

(Xiong et al., 2008). In the heterotrophic growth mode, an organic substrate is used

as both the carbon and energy source. It has been shown that when growing either

heterotrophically, or photoheterotrophically microalgae exhibits a higher produc-

tivity in terms of either biomass or oil when compared to phototrophically cultured

algae (Liu et al., 2011; Liang et al., 2009).

Oil production in algae has been shown to be dependent on culture conditions (De

la Hoz et al., 2011), and therefore appropriate monitoring and control of these con-

ditions are required in order to maximize oil productivity.From a process control

perspective, it is desirable to know, at any given moment, the cell concentration,

oil content, and substrate concentration in the reactor. These quantities, however,

are rarely directly measured, as their quantification involve a series of elaborate

and time consuming steps. For example, cell concentration in the reactor is usually

expressed in terms of cell dry weight per unit volume. Dry weight determination

requires the removal of a sample from the reactor, centrifugation and washing, and

further drying of the sample until constant weight is achieved. This procedure can

take anywhere from two hours up to a day, to be completed. Similarly, intracel-

lular oil content and extra-cellular nutrient concentration require several hours or

even days to be determined. Oil is generally quantified by solvent extraction of a

dry algal sample or by derivatization and chromatographic quantification, and the

substrate concentration is determined by gas or liquid chromatography. Further-

more, highly qualified personnel are required for measuringthe cell and substrate

concentrations along with quantifying the oil content.

In this work, an online multivariate sensor based on supportvector regression is

developed to monitor the concentrations of biomass, glucose and oil content in

microalgal cultures in a bioreactor system. A portion of thestudy is dedicated

for comparing and highlighting the superior performance ofthe proposed method

with respect to other techniques available to build online sensors. Also, the effect of
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4.2. Background

several preprocessing techniques on the goodness of model fit is assessed. A review

of the current status of Raman spectroscopy, as a tool for bioprocess monitoring is

presented in the next section.

4.2 Background

Developing sensors for online monitoring of bioprocess systems has been exten-

sively studied and successfully applied using various different types of spectro-

scopic methods including fluorescence spectroscopy (Marose et al., 1998; Skibsted

et al., 2001) and near-infrared spectroscopy (Landgrebe etal., 2010; Yeung et al.,

1999). Furthermore, performance improvement methods for online monitoring of

bioprocess systems by reducing the prediction error of the concentration estimates

have also been studied (Dabros et al., 2009). However, the lack of detailed struc-

tural information obtained by these spectroscopic methodslimits their use for the

identification of the chemical constituents in complex samples, as in the case of

algal bioreactors.

Raman spectroscopy has the potential to be used as a process analytical technology

to estimate several key process variables in algal bioreactors (Huang et al., 2010).

The Raman scattering is produced by the inelastic interaction between light and

matter. These inelastic interactions are highly dependenton the vibrational char-

acteristics of the molecular bonds of the components in the sample under analysis.

As such, the Raman spectra will be a function of all of the cellular components

(i.e., proteins, lipids, DNA, etc.) as well as constituentsin the growth media. Of

course, this implies that the generated spectra will be highly convoluted, due to the

presence of thousands of components in the cell and the culture media.

Shope et al. (1987) were the first to propose the use of Raman spectroscopy for

bioprocess monitoring, namely, the analysis of ethanol fermentation products. The

Raman spectra were measured off-line and it was shown that several features of the

spectra can be used for quantifying the concentration of thefermentation products.

However, no model was built and fluorescence was reported as the main predica-
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ment that hindered proper model building. To reduce the effect of fluorescence, Xu

et al. (1997) compared two different laser sources (Argon ion at 514.5 nm and solid

state diode laser at 785 nm) and removed the cells from the broth. It was reported

that the 785 nm laser substantially eliminated the background fluorescence and

improved the limit of detection by a factor of 5, thereby allowing the simultaneous

measurement of concentration of glucose, glutamine, lactate and ammonia in the

fermentation broth. Shaw et al. (1999) followed the fermentation of glucose to

ethanol on-line by using a flow-thru cell (ex-situ), concluding that Raman spec-

troscopy is an ideal method for following biotransformations in a nondestructive

and noninvasive way. As in the case of Xu et al. (1997), Shaw etal. (1999) used a

780 nm laser and removed the cells from the broth, through an in-line filter, previous

to spectra acquisition.

The first on-line and in-situ application of Raman spectroscopy to monitor a biopro-

cess was reported by Cannizaro et al. (2003). A 785 nm laser anda 12.5 mm immer-

sion Raman probe inserted in a side port of the bioreactor wereused. The probe was

connected to the control unit with a fiber optic. Carotenoids production byPhaffia

rhodozymawas quantified. Cannizaro et al. (2003) took advantage of the unique

enhanced Raman signal characteristic of carotenoids to build a calibration model

without the use of complex chemometric tools for signal deconvolution and without

removing the cells from the sample. Lee et al. (2004) monitoredEscherichia coli

bioreactions using Raman both in-situ and off-line. Limitedaccuracy of the on-line

measures was reported, which was associated to a change in the Raman spectrum

of the sapphire window probe after steam-sterilization. A chemometric model was

built using data from pure components spectra measured off-line and before probe

sterilization.

The increasing interest in the technological applicationsof microalgae has arisen

the need for proper quantification of microalgal products. Currently, analytical

methods for biomass and product quantification in microalgal cultures are time

consuming and prone to error. An on-line, multivariate, spectroscopic monitoring

tool has the potential to facilitate and speed algal bioprocess development and

commercialization. Huang et al. (2010) stated that the Ramanspectra are related
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to the key variables in a microalgal culture. Their study, however, did not involve

obtaining a relationship between the spectra and the components in the culture. The

foremost application involving the quantification of lipids in a microalgal system

was proposed by Wu et al. (2010). The study demonstrated thatRaman spec-

troscopy can directly obtain quantitative information of the lipids, albeit in single

cells. Recently, Abbas et al. (2011) studied the distribution of carotenoids in single

algal cells using Raman spectroscopy. There is, however, a need for a compre-

hensive understanding of a quantitative relationship between the spectra and the

components in the culture media.

The main aim of the present study is to construct chemometricmodels, in a statis-

tical or mathematical framework, to estimate chemical compositions in a faster and

noninvasive procedure. Chemometric models of spectroscopic data have previously

been built using known statistical and machine learning tools including principal

component regression (PCR) (Estienne and Massart, 2001), partial least squares

(PLS) (Goetz et al., 1995), and support vector machines (SVR)(Thissen et al.,

2004).

The use of principal components in regression was first suggested by Kendall (1957)

and Hotelling (1957). Since then PCR have been successfully applied in vari-

ous fields including chemometrics ((Marbach and Helse, 1990; Naes and Martens,

1988)), flow-injection analysis ((Blanco et al., 1993)), andbiomedical studies for

multi-class cancer classification (Tan et al., 2005). Partial least squares (PLS) was

first proposed by Herman Wold during mid-sixties (Wold, 1966) and subsequently

found success in various applications in the field of chemometrics (Sjostrom et al.,

1983; Wold et al., 2001), neuro imaging (McIntosh and Lobaugh, 2004), and pro-

cess control (Dayal and MacGregor, 1997). The robustness ofPCR and PLS to

overfitting, makes it an important tool in the field of chemometrics. One of the

major disadvantages of the PCR and the PLS is their inadequacywhen applied to

nonlinear systems (Demiriz et al., 2001). To deal with the system nonlinearities,

the regression method based on support vector learning can be used.

Along with handling of system nonlinearities, the support vector learning methodol-

ogy has other advantages over the traditional PCR and PLS methods which include
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better performance in the presence of outliers in the calibration dataset, superior

modeling with a smaller dataset, and a simpler model (in terms of order) obtained

based on the structural risk minimization (SRM) principle asopposed to empirical

risk minimization (ERM), employed by the PLS and PCR methods. Based on

SRM principle, SRM minimizes the loss function (empirical risk) as well as the

model complexity (structure of the model), thus avoiding overfitting. On the other

hand, ERM only minimizes the loss function (empirical Risk) defined for the task

(Khatibisepehr et al., 2011). The combined application of Raman spectroscopy and

support vector regression (SVR) was presented by Barman et al.(2010) for moni-

toring blood glucose levels. Barman et al. (2010) showed thatthe use of nonlinear

SVR model represents a 30% enhancement in prediction accuracy over the PLS

model, when measurements from multiple human volunteers were considered.

4.3 Theory

4.3.1 Support Vector Regression

Support vector regression (SVR) was developed as an extension of the theory of

support vector machines(SVM) to regression problems (Scholkopf and Smola, 2002).

The support vector algorithm was proposed by Vapnik in 1992 and was later devel-

oped over the years (Boser et al., 1992). The concept of support vector learning

has been successfully applied to various classification andregression problems in-

cluding the development of robust calibration models for monitoring blood glucose

levels (Barman et al., 2010), applying SVR for multivariate nonlinear processes

(Chitralekha and Shah, 2010; Khediri et al., 2010), materialoptimization of salon

ceramics (Xu et al., 2006), and identification of time seriesmodels (Thissen et al.,

2003).

Given a training dataset,{(x1,y1)...(xm,ym)} ⊂ ℝ
n×ℝ, regression involves mini-

mizing a loss function. In the case of a simple least squares regression, the quadratic

loss function shown in Equation 4.1 is minimized.
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min
w

L =
m

∑
i=1

(yi − f (xi ,w))
2 (4.1)

wherey = f (x,w) is the linear function used for the regression problem;m is the

number of sample points;xi andyi are theith independent predictor variable and

observation respectively;w is the parameter vector that defines the functionf .

In SVR, a newε-insensitive loss function,L(∣y− f (x,w)∣ε), is defined as suggested

in (Vapnik, 1998):

L(∣y− f (x,w)∣ε) = ∣y− f (x,w)∣ε (4.2)

where,

∣y− f (x,w)∣ε =
{

0 ∣y− f (x,w)∣ ≤ ε
∣y− f (x,w)∣− ε otherwise

(4.3)

For the case of linear regression, a linear function,f , is defined as follows:

f (x,w,b) = ⟨w,x⟩+b (4.4)

In SVR, the goal is to find the optimal variables (w∗,b∗) that generate the function,

f ∗(x), that gives the minimum loss function. This problem is formulated as a

constrained convex optimization problem:

min
w,b,ξi ,ξ ★

i

J =
∣∣w∣∣2

2
+C

m

∑
i=1

(ξi +ξ ★
i ) (4.5a)

subject to

⎧







⎨







⎩

f (xi ,w)−yi ≤ ε +ξi

yi − f (xi ,w)≤ ε +ξ ★
i

ξi ,ξ ∗
i ≥ 0

(4.5b)

whereC> 0 is the regularization parameter, which is a tradeoff between the penalty

imposed onw and the tolerance on deviations larger thanε; ξi andξ ∗
i are slack

variables that allow the constraints to have a training error greater thanε and also

penalize them in the objective function; andi = 1,2, ..,mare the training data points.
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Figure 4.1 is a graphical depiction of theε-SVR model.
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Figure 4.1: Graphical Representation of theε-SVR model for a linear case
(Chitralekha and Shah, 2010).

The use of anε-insensitive loss function has been previously investigated in great

detail (Vapnik, 1998). Theε-insensitive loss function builds a tube of insensitivity

with only the points outside the tube being penalized so as tominimize the resulting

errors in the objective function. The value ofε affects the smoothness of the SVRs

response and also affects the number of support vectors, so both the complexity

and the generalization capability depend on its value. Also, there is a considerable

investigation regarding the noise model of theε-SVR method (Pontil et al., 2000;

Kwok and Tsang, 2003). Theε-insensitive loss function can be used when the noise

affecting the data is assumed to be additive and Gaussian. The mean and variance

of the noise model, however, are random variables whose probability distributions

can be computed explicitly (Pontil et al., 2000).

The constrained minimization, given in Equations 4.5a and 4.5b, is a standard

problem in optimization theory. This can be solved by constructing the Lagrangian
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for the objective function and the constraints. By solving the Lagrangian, the weight

vector,w, can be derived as follows:

w=
m

∑
i=1

(αi −α★
i )xi , (4.6)

where{αi ,α★
i } are the Lagrange multipliers associated with the training point xi.

The linear function,in Equation 4.4, can be rewritten as follows:

f (x) =
m

∑
i=1

(αi −α★
i )⟨xi ,x⟩+b (4.7)

Equation 4.6 indicates that the weight vectorw can be described as a linear com-

bination of training vectors, which in turn leads to the property that, for evaluating

f (x) it is not required to explicitly calculate the weight vector, w. These observa-

tions become important when the linear SVR is extended to thenonlinear case.

The basic idea behind the nonlinear SVR is to project{xi} onto a feature spaceF .

The aforementioned linear SVR algorithm is then applied to the projected dataset.

Let φ(x) be a mapping that maps thex according to the relationφ : ℝn → F . A

linear function,f , in the projected space is then defined as follows:

f (φ(x)) = ⟨w,φ(x)⟩+b (4.8)

In short, the nonlinear SVR algorithm behaves like a linear one, if the input vec-

tors xi ’s are replaced by their corresponding feature vectorsφ(xi). Projecting the

training data into a very high dimensional space is computationally expensive. Due

to the exclusive dot product form in Equation 4.8, the computation complexity

involved in obtaining the projected training datasets can be avoided with the help of

a “kernel trick” (Boser et al., 1992). The kernel function is represented as follows:

k(xi,x j) =
〈

φ(xi),φ(x j)
〉

(4.9)

Using the kernel function suggested in Equation 4.9, for thenonlinear case, the
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function f can be transformed to:

f (φ(x)) =
m

∑
i=1

(αi −α★
i )⟨φ(xi),φ(x)⟩+b=

m

∑
i=1

(αi −α★
i )k(xi ,x j)+b (4.10)

analogous to the linear case given in Equation 4.7.

The most used kernel functions are the Gaussian RBF-kernel,k(xi ,x j)= e−γ∣∣xi−x j ∣∣2,γ >
0; and the polynomial kernel with an order ofd, k(xi ,x j) = (γxT

i x j +constant)d,γ >
0. It can be seen that the linear kernel is a polynomial kernelwith order equal to

one (d = 1).

In this work, a Gaussian RBF kernel is used, as it is a very usefulkernel and its

application to support vector regression problems is widespread (Chitralekha and

Shah, 2010). Application of the RBF-kernel based SVR is demonstrated, in this

work, by building a multivariate sensor for monitoring the biochemical composition

of a microalgal bioreactor.

4.4 Materials and Methods

4.4.1 Experiment Setup

The algaeAuxenochlorella protothecoides, UTEX B25, was cultured heterotrophi-

cally in a 2L bioreactor (Sartorious Biostat A plus). The experimental setup of the

bioreactor is shown in Figure 4.2. A solid-state fiber Bragg grating stabilized laser,

with an excitation wavelength of 785 nm and output power equal to 300 mW, was

used for obtaining the Raman spectra. The Raman spectrometer consisted of an f/4

symmetrical crossed Czerny-Turner monochromator, with a 50µm wide slit, and a

1024 x 58 pixels (2D array) Hamamatsu detector. Raman spectrawere acquired

using an immersion probe inserted in one of the upper ports ofthe bioreactor.

The stainless steel immersion probe was chemically sterilized by submerging it

in a mixture of benzalkonium chlorides (Roccal-D) for at least 15 minutes prior to

its installation in the bioreactor. The bioreactor temperature was kept constant at
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Figure 4.2: A picture depicting the 2L bioreactor system (onthe left) and the digital
control unit (on the right)
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25∘C. Raman spectra were collected every 10 minutes, and recordedand processed

using MATLAB. For each measurement, the spectrometer grating channel was left

with a laser source turned off, in order to record the background radiation. These

background radiation spectra were subsequently subtracted from the spectra of the

culture media.

For model building and validation, samples were withdrawn from the bioreactor at

four hour intervals and analyzed, to determine the algal concentration, oil content,

and substrate concentration. A model was built, using the calibration dataset, for

measuring the concentration of three main components in thebioreactor, namely,

biomass, glucose and oil content. A brief description of theprocedures used for the

off-line measurement of the concentrations of biomass, glucose and oil content is

provided below.

Biomass concentration was determined as total suspended solids (TSS), by cen-

trifuging 1.4 mL of cell suspension (RCF = 9335 g) for 10 minutes. The obtained

pellets were washed twice with a saline phosphate buffer solution (pH 6.2). The

washed pellets were centrifuged again and the resulting precipitates were vacuum

dried at a temperature of 50∘C and a pressure of 0.1 bar until the precipitate attained

a constant weight. The clear supernatant from the centrifugation was filtered using

a 0.22µm syringe filter in order to remove any residual cells.

Glucose concentration in the filtered supernatant was measured by high perfor-

mance liquid chromatography (Agilent 1200 Series HPLC), using a SupelcoGel

Pb carbohydrate column at 70∘C (Internal diameter 7.8 mm, length 30 cm) with a

guard column. Sample injection volume was 10µL; eluent was deionized, sterile

water (MilliQ, MilliPore); elution flow-rate was set at 0.5 mL/min, and a refractive

index detector (RID) at 35∘C was used.

Oil content in the cells was determined by fluorospectrometry of cells stained with

Nile Red. In this method, florescence intensity is linearly correlated to the total

neutral lipid content of the cells. A 10µL aliquot of a 10µg/mL Nile Red solution

in ethanol was added to the individual wells of a 96-microplate containing 10µL

samples of 10 g/L algal cells. The volume in each well was completed to 200

µL by adding a 30% (v/v) ethanol solution in water. Samples were incubated
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at 40∘C for 10 min, and fluorescence emissions were recorded with a multiplate

reader spectrophotometer (Fluoroskan Ascent, Thermo Labsystems). Excitation

and emission wavelengths were selected at 530 nm and 604 nm, respectively. Nile

Red oil measurements were calibrated using algal cells for which oil content had

been previously determined gravimetrically, following the method developed by

Hara and Radin (1978). An algal sample of known oil content, asdetermined

gravimetrically, was used in each micro-plate run as internal standard. Fluorescence

measurements were performed in triplicate, and the averagestandard error was

5.6%.

Three different datasets were generated by running the reactor in fed-batch mode

starting at different initial conditions and by varying thefeeds flowrate. The first

dataset (DS1) corresponds to a D-Optimal run, as reported in(Surisetty et al., 2010).

In this case, algae were cultured over a period of 360 h, and glucose, glycine,

and minerals were supplemented to the reactor in order to generate significant

perturbations in the bioreactor response. For the second dataset (DS2), feed flow

followed a pseudo-random binary profile, as presented in (Dela Hoz et al., 2011).

In the third dataset (DS3), culture conditions were modifiedin order to maximize

biomass production. A summary of the three datasets is presented in Table 4.1,

where the range of the three measured variables, and the number of data points in

each data set is presented.

Table 4.1: Number of samples and range of concentration values for biomass,
glucose, and oil content for all three datasets

Dataset Range of concentration values No. of samples

Biomass (g/l) Glucose (g/l) Oil content (% w/w)
DS1 0.75-39.36 0-101.90 14.27-65.07 79
DS2 0.50-38.20 0.01-52.30 19.40-79.10 78
DS3 2.40-144.29 0.05-45.59 32.88-82.06 57
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4.4.2 Preprocessing Methods

Raman Spectra Preprocessing

Before building a chemometric model, preprocessing of Raman spectra is per-

formed. The advantages of preprocessing the Raman spectra using various smooth-

ing and transformation methods have been extensively studied (Afseth et al., 2006;

Chau et al., 2004). Chau et al. (2004) and Martens and Naes (1989) provide a

basic description of the preprocessing methods applied in the current study. The

preprocessing techniques applied in this work are:

• Savitzky-Golay (SG) filtering: Savitzky-Golay filter is a smoothing filter

based on polynomial regression. For the Savitzky-Golay method, a third

order polynomial with a section size of 7 points is used.

• Standard normal variate (SNV) transformation: A standardnormal variate

transformation is performed to the Raman spectra such that the resulting

spectra have mean zero and unitary variance.

• Linear polynomial baseline correction (Polyfit): In the linear polynomial

baseline correction method, a peak selection algorithm is used to identify the

peaks. A linear polynomial is fitted to the baseline values for each of these

obtained peaks. The resulting polynomial curve (line) is then subtracted from

the raw Raman spectra.

• Combination of standard normal variate transformation andlinear polynomial

baseline correction method (SNV&Polyfit): The Raman spectrais first trans-

formed using standard normal variate and then linear polynomial baseline

correction is performed on the resulting transformed spectra.

• Combination of Savitzky-Golay smoothing filter and standard normal vari-

ate transformation (SG&SNV): The Raman spectra is first smoothed using

the Savitzky-Golay filter and the resulting spectra is transformed using the

standard normal variate transformation.
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• Combination of Savitzky-Golay smoothing filter, standard normal variate,

and linear polynomial baseline correction (SG&SNV&Polyfit): Raman Spec-

tra is first smoothed using the Savitzky-Golay smoothing filter and the re-

sulting spectra are preprocessed using the standard normalvariate and linear

polynomial baseline correction techniques.

Preprocessing of the Measured Concentrations

The concentrations of the chemical components in the bioreactor system are sus-

ceptible to measurement noise. Therefore, a preprocessingtechnique in the form of

a filter is necessary to reduce the effect of measurement noise in the data used for

model building. To this end, robust LOESS (locally weightedquadratic regression)

method (Cleveland, 1979; Cleveland and Devlin, 1988; Hastie and Tibshirani, 1986)

is used for smoothing the measurements along different samples. The filtered

data is subjected to further preprocessing by performing standard normal variate

(SNV) transformation on the data. The final measured data, after smoothing and

normalization, is used for model building purposes.

4.4.3 Optimal Selection of Model Parameters

For building a chemometric model, it is necessary to determine the optimal number

of model parameters to obtain an accurate model, while avoiding overparameter-

ization. The non-linear radial basis function support vector regression algorithm

used in this work possesses three adjustable parameters: the soft margin (C) for the

regression cost function, the threshold parameter (ε), given in Equations 4.5a and

4.5b, and the radial basis function kernel parameter (γ). To determine the optimal

value of these three parameters, a systematic grid search (refer to (Hsu et al., 2003)

for details) was performed in combination with a 10-fold cross-validation method

using the predicted residual sum of squares (PRESS) statistic.

In the 10-fold cross-validation method, the calibration dataset is divided in 10

subsets. The regression model is calibrated using 9 of thesesubsets and the resulting

83



4.4. Materials and Methods

model is evaluated in the remaining subset. The calibrationis repeated 10 times,

leaving out at each iteration a different subset. The PRESS statistic is computed for

each one of the 10 regression models constructed, and the average PRESS value is

used as a measure of the goodness of fitting provided by the combination ofC, ε,

andγ values. This procedure was performed for every value in the parameter space,

to determine the parameter combination that reduces the average PRESS.

4.4.4 Model Building

For building a robust sensor for biomass, the datasets obtained from the three

experiments (DS1, DS2, and DS3 mentioned in Section 4.4.1) are divided into

calibration and validation datasets. The calibration dataset is obtained using the

equal-weighting (EW) method described as follows:

Step 1. The samples from the first dataset (DS1), the second dataset (DS2), and the

third dataset (DS3), mentioned in Table 4.1, were combined together into a

single combination dataset of 214 samples.

Step 2. The combined dataset was sorted in increasing order of concentration of the

component to be modeled.

Step 3. The sorted combined dataset was partitioned into 130equal subgroups based

on the maximum and minimum values in the component concentration. That

is, theith subgroup is the partition that includes the samples whose component

concentration value falls in the range,

[

MN +(i−1)∗ MX−MN
130 MN + i ∗ MX−MN

130

]

where MN and MX are the maximum and minimum concentration values of

the components to be modeled. A point to be noted is that the partition of

subgroups based on this approach can lead to the possibilityof some of the

subgroups being empty (containing zero samples).

Step 4. One sample was chosen from each of the 130 subgroups unless the subgroup
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was empty. Due to presence of these empty subgroups, less than 130 samples

were obtained for the calibration.

Step 5. The remaining samples from the combined dataset werestored in the residual

dataset (RS).

The residual dataset (RS) obtained was used for validating the model. In total, 60

samples were obtained for calibration and the remaining 154samples were used for

validation. Figure 4.3 shows a flow chart that illustrates the procedure of obtaining

the calibration and validation datasets for the biomass concentration.

Figure 4.3: Flowchart illustrating the method used for obtaining the calibration and
validation datasets for the biomass concentration
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The partition of the data is carried out to guarantee that themeasurements selected

for model building cover the entire range of biomass concentrations. The biomass

concentration increased monotonically following a sigmoidal profile with regions

overloaded with data with a minor variation in the measurement values and regions

with large variations in the measurements and very few data points. In this case, the

application of a random selection method could lead to a choice of a large portion of

measurements with not enough variations and thereby building a non-robust model.

For building a sensor for glucose concentration and oil content, however, dataset

(DS3) was chosen for building calibration and validation datasets. The reason for

choosing only the third dataset (DS3) for model building andvalidation is due to

the existing correlation between glucose concentration and oil content with biomass

concentration, as discussed below.

The effect of biomass on the Raman spectra is predominant compared to that of the

glucose concentration and the oil content. Therefore, building a sensor for glucose

concentration and oil content using a dataset where there isa strong correlation

between these two variables and the biomass concentration could lead to a bias in

the model. In the first two datasets (DS1 and DS2), the change of concentration in

glucose and oil content is found to be related to the change inthe biomass concen-

tration. Table 4.2, shows the correlation coefficient values for glucose concentration

and oil content with the biomass concentration, for the three datasets (DS1, DS2,

and DS3).

Table 4.2: Correlation coefficient value between glucose andbiomass concentra-
tions and oil content and biomass concentrations for all three datasets (DS1, DS2,
and DS3)

Datasets Correlation Coefficient

Biomass and Glucose Biomass and Oil

DS1 0.4708 0.5197
DS2 0.6020 0.4353
DS3 0.0026 0.0088
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Based on the correlation coefficients, shown in Table 4.2, there exists a strong

correlation between glucose and biomass concentrations for datasets DS1 and DS2.

Hence, it cannot be ascertained with a high confidence that a model built for glu-

cose concentration will not incorporate some of the relationship (trend) that exists

between biomass and glucose concentration in the two datasets. Given the existing

cross correlation in the calibration dataset, it is not possible to achieve a total

deconvolution for the individual effects of biomass and glucose on the Raman

spectra. Likewise, the significant correlation coefficientvalues, as shown in Table

4.2, between oil content and biomass concentration lead to asimilar conclusion of

model bias.

The calibration and validation datasets for glucose concentration and oil content are

built by random data selection method, using only the third dataset (DS3). As per

the random data selection method, a subset of 30 random samples was chosen from

the dataset DS3 for building the calibration dataset and theremaining 27 samples

were used for validating the model.

4.5 Results and Discussion

The unprocessed Raman spectra of microalgal cultures are highly complex due

to the presence of thousands of components in the media. Thisis highlighted in

Figure 4.4, where the Raman spectra for two different algal samples with varying

compositions are shown.

It is difficult to readily associate changes in the characteristics for the two spectra,

presented in Figure 4.4, with changes in the culture compositions even though the

respective concentrations of biomass, glucose, and oil content are very different.

For an experimentalist untrained in advanced signal processing techniques, trying to

use Raman spectra for estimating the chemical composition ofthe algal cultures, it

is practically impossible to extract the significant peaks for each of the components

in the sample matrix.

Additionally, the presence of other factors including sample fluorescence (as men-
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Figure 4.4: Unprocessed Raman spectra of A. protothecoides liquid cultures. The
concentration of glucose and biomass in the media, and the intracellular content of
oil were determined offline as: a) (Blue curve in online version) 33.3 (in g/l), 2.07
(in g/l), and 35.3 (% w/w) respectively; and b) (Red curve in online version) 108.8
(in g/l), 40.0 (in g/l), and 53.0 (% w/w) respectively
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tioned in Section 2), turbidity, and bubbles in the system, causes variations in the

intensity of the spectra and introduces spurious peaks. These disturbances add

to the difficulty in the extraction of relevant information for model building. To

emphasize the effect of fluorescence on Raman spectra, the spectra of freeze-dried

cells of A. protothecoides were collected ten times, at regular intervals. After

each collected spectra, the total exposure time of the sample to the laser source

was consequently higher. In Figure 4.5, it can be seen that the total Raman count

decreased as exposure time to the laser increased. This result indicates that there

was background fluorescence coming from the sample, as photo-bleaching usually

results in a significant reduction in the intensity of the fluorescent background.
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Figure 4.5: Raw Raman spectra of algal biomass powder. Spectrawere collected
one after the other, increasing at each collection the totalexposure time to the laser.
Background fluorescence decreases with increasing exposuretime.

Signal processing techniques facilitate the extraction ofmeaningful information out

of the spectra. For instance, baseline removal and spectralnormalization enhance

several spectral features, allowing the identification of some of the features as

associated to the biochemical composition of the culture. For example, the peaks

around 1440 and 1655 cm−1 are related to the oil content in the cells. Similarly,

the peaks around 423, 516, 900, and 1360 cm−1 were found to be dependent on the

glucose concentration in the culture media at a 95% confidence level. The peaks
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identified here are in concordance with previously reportedvalues for pure media

components and for oil (Alfano et al., 2008; Zou et al., 2009).

4.5.1 Effect of Processing on Correlation Coefficient

The Raman spectra may be affected by the physical and chemicalproperties of the

sample matrix as well as various other unknown disturbancesin the system (Afseth

et al., 2006). Signal preprocessing is performed to remove the effect of noise while

retaining the maximum amount of information. Even though the primary objective

of a preprocessing method is removal of noise, it cannot be guaranteed that all the

information in the signal is retained. Therefore, an appropriate preprocessing tech-

nique needs to be chosen to de-noise the spectra and retain most of the information.

The R2 values for the calibration dataset, for different preprocessing techniques,

are shown in Table 3. Overall, it can be said, based on theR2 values, that the

SNV transformation provides the best model for all the threevariables of interest.

The Savitzky-Golay (SG) filter, however, produced a marginally better model in

the case of glucose. Whether this is due to a structural reasonin terms of spectral

characteristics associated with glucose or due to differences in the nature of the

error of the off-line measurements, was not investigated. Nevertheless, it is relevant

to highlight that the intensity of the spectral bands that are due to the glucose

molecule was lower than the intensity of those peaks associated with the oil and

biomass. Furthermore, the fluorescence background due to the algal cells almost

hid the presence of glucose peaks. A technique, such as SG filtering, that reduces

the noise in the spectra while preserving the peak features might, in the case of

glucose, be more suitable than one that scales up all the spectra.

Table 3 indicates that the combination of preprocessing techniques, generally, show

a poor performance (lowerR2 value) than the individual techniques. The loss of

information that results when multiple preprocessing methods are used for noise

reduction proves to be costly during the model building procedure.
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Table 4.3:R2 value of the calibration dataset for different preprocessing techniques.
The cells in the table highlighted inbold indicate the preprocessing techniques
chosen for each of the three components.

R2 values for calibration dataset

Preprocess Biomass Glucose %Oil

Datasets 1,2, & 3 Only Dataset 3 Only Dataset 3

SG 0.9950 0.9956 0.8741
Polyfit 0.9932 0.9878 0.9978
SNV 0.9975 0.9926 0.9985

SNV&Polyfit 0.9971 0.9602 0.9965
SG&SNV 0.9972 0.9905 0.9799

SG&SNV&Polyfit 0.9967 0.9880 0.9981

4.5.2 Model Validation

To assess the performance of the model built using SVR, the measured concen-

trations (for biomass, glucose, and oil content) are compared with the predicted

concentrations. Plots of measured versus predicted concentrations of biomass,

glucose, and oil content are shown in Figures 4.6, 4.7, and 4.8.

Figure 4.6 shows the measured versus predicted values for the biomass concentra-

tion. The standard normal variate transformation was used for preprocessing the

Raman spectra, as it provides the highestR2 value for calibration, as per Table

4.3. Datasets DS1, DS2, and DS3 were used for model building and validation, as

indicated in Section 4.4.4.

The correlation coefficient,R2, for the validation dataset between the measured

and the predicted biomass concentrations was 0.9822 (from Figure 4.6), which

is comparable with theR2 value of 0.9975 obtained for the calibration dataset.

This indicates that the RBF-kernel based support vector regression is a satisfactory

method for sensor development, as it gave a correlation coefficient close to unity

for both the calibration and validation datasets. Also, thecomparable correlation

coefficient for both datasets implies that there was insignificant model overfitting.
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Figure 4.6: Measured versus predicted biomass concentration using the standard
normal variate transformation for preprocessing the Raman spectra. RMSE value:
3.51 (R2 value: 0.9822)

92



4.5. Results and Discussion

The developed sensor is robust for the full range of the biomass concentrations

(0.50− 144.29 g/L) considered in this study. The performance of the method is

quite remarkable, given that the algal bioreactors are complex systems with unde-

fined chemical composition and, in addition, the algal cellschange their chemical

composition along a single batch. These complexities in thesample matrix intro-

duce unknown interferences in the Raman spectra. Figure 4.7 shows the measured

versus predicted values for the glucose concentration. Forpreprocessing the Raman

spectra, the Savitzky-Golay filtering was used for buildingthe model for glucose

concentration and only dataset DS3 was used for model building and validation, as

indicated in Section 4.4.4.

The correlation coefficient value for the validation dataset between the measured

and the predicted glucose concentrations was 0.8081, whichis quite satisfactory

but not very close to theR2 value of 0.9956 obtained for the calibration dataset.

This indicates that there is significantly more overfitting in the glucose model than

in the case of biomass. Nonetheless, the predictive capability of the model built

for the glucose concentration is fairly good, based on both the R2 value and the

observations in Figure 4.7.

The lower prediction accuracy of the glucose model could be due fewer number of

measurements available for model building. More experimentally measured glu-

cose concentrations (decoupled with biomass concentration) could prove beneficial

in the model building exercise. These data could be obtainedwith cells growing

under nitrogen limited conditions which favour the conversion of glucose to bio-oil

rather than to biomass.

Figure 4.8 shows the measured versus predicted concentration curve for the oil

content. The standard normal variate transformation was used for preprocessing

the Raman spectra. Only dataset DS3 is used for model buildingand validation, as

indicated in Section 4.4.4.

In Figure 4.8, it can be seen that the predicted oil content has a positive correlation

with respect to the experimental measurement. The correlation coefficient (R2

= 0.6422) for the validation dataset, however, was significantly lower than that

of the calibration dataset. The lower correlation coefficient implies that caution
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Figure 4.7: Measured versus predicted glucose concentration using Savitzky-Golay
filtering for preprocessing the Raman spectra, for DS3. The circles (red in the
online version) marked around the points correspond to the measurements in the
initial lag phase (these are initial measured values; see the text in Section 5.4 for
details) which are predominantly outliers. Excluding the outliers the RMSE value
for predicted glucose concentration reduced from 5.64 to 4.31. (R2 value: 0.8081
to 0.8867)
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Figure 4.8: Measured versus predicted oil content using standard normal variate
transformation for preprocessing the Raman spectra, for DS3. Again, the marked
circles (red in the online version) corresponded to the measurements in the initial lag
phase (these are initial measured values; see the text in Section 5.4 for details) which
are predominantly outliers. Excluding the outliers the RMSEvalue for predicted oil
content reduced from 7.56 to 3.63.(R2 value: 0.6422 to 0.8597)

95



4.5. Results and Discussion

should be exercised when using Raman spectroscopy for estimation of oil content

in microalgae.

The low correlation coefficient for the validation dataset for oil might be due to

noise in the experimental measurements. Oil content quantification can be per-

formed using several different techniques (Chen et al., 2009; Wawrik and Harriman,

2010; Halim et al., 2011). However, there is no one widely accepted standard

method, due to complexity of all methods and the relatively high error (Lee et al.,

1998; Christie, 1993). Lee et al. (1998) compared the estimated oil content in

microalgae using different extraction solvents and cell disruption systems and found

up to 50% relative difference in the estimated oil content. Likewise, Chen et al.

(2009), compared the relative error of fluorescence and gravimetric based oil con-

tent determination method and found a standard deviation ofapproximately 5 %.

The relative error associated to this standard deviation for the sample reported by

Chen et al. (2009) is 25%, at the 95% confidence level. In general, all the existing

experimental procedures for measuring oil are prone to higherror. In this work,

as mentioned in Section 4.4.1, the average standard error for the measurements

was 5.6%, which corresponds to an average relative error of 22.43% at the 95%

confidence level.

The average relative error for the validation dataset usingthe Raman-based method

was 8.9%, assuming that the calibration measurements are free of error. This

value is lower than the average relative error associated with the Nile Red based

measurements obtained in this work, and to the reported error for both gravimetric

and fluorescence based oil quantitation methods. Consequently, the support vector

Raman spectroscopy based sensor can at least be considered atthe same level of

accuracy as the existing experimental procedures. In orderto improve the support

vector regression model performance, it would be required to reduce the relative

error in the calibration dataset. It is expected that, by using a calibration dataset

generated with a more precise oil measuring technique, a higher correlation coeffi-

cient can be achieved.

In summary, the proposed method was able to satisfactorily predict the three main

components in the algal bioreactor, namely, biomass, glucose, and oil content,
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within the normal error bounds. However, there is still scope for improvement,

particularly in the case of glucose concentration and oil content. Performing more

experiments, in which the concentration measurements of the three predicted com-

ponents (biomass, glucose and oil content) could lead to an improved sensor build-

ing. Improving the signal to noise ratio in the Raman spectrometer, could also have

a positive effect on the accuracy of the measurements.

4.5.3 Comparative study with other statistical methods

A comparative study is performed to illustrate the advantage of the applied support

vector regression method over other statistical methods including principal compo-

nents regression (PCR), partial least squares (PLS) regression, and kernel principal

components regression (KPCR) for building an online monitoring sensor. Both

PCR and PLSR techniques are used to convert a set of highly correlated variables

to a set of independent variables by using linear transformations, applying feature

reduction for large datasets. Kernel PCR is a nonlinear extension of the principal

component regression method. The KPCR method uses the same principle referred

to as the “kernel” trick, as mentioned in Section 3.1.

From Table 4.4, it can be seen that all of the four techniques have a comparably

low root mean square error (RMSE) for the biomass concentration. For glucose

composition and oil content, however, the performances of the PCR, the PLS, and

the KPCR methods are significantly poorer when compared to theSVR method, as

seen by their higher root mean squares prediction errors (RMSE). In general, for

all components, the SVR method shows a consistently superior performance when

compared to the other three methods.

4.5.4 On-line Estimation of the Compositions in the Bioreactor

In Section 5.2, Raman spectra was successfully correlated with the concentrations

of biomass, glucose, and oil content in the cells. In this section, the use of Raman

spectroscopy as an on-line, real-time multivariate sensoris tested for microalgal
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Table 4.4: Root mean square error (RMSE) value for the different statistical
techniques used. The cells in the table highlighted inbold indicate the method
chosen for each of the three components.

RMSE values for prediction estimates

Sensors Biomass Glucose %Oil
SNV SG SNV

PCR 4.07 9.56 9.07
PLS 4.31 9.58 10.0

Kernel PCR 3.80 10.9 8.02
Nonlinear SVR 3.51 5.64 7.56

applications. For this purpose, the green microalgaeA. protothecoideswas cultured

in a 2L bioreactor, with the Raman probe inserted in the reactor to collect the spectra

in situ. Chemical composition was estimated using the proposed SVR sensor. The

dataset DS3 was created using off-line measurements from this experiment.

Raman spectra was collected every ten minutes with an integration time equal to 20

seconds. The average time required for transforming the information from spectra

to chemical composition was 0.058 seconds. The average total time, including

spectra collection, was around 20 seconds with the prediction of the composition

taking an insignificant amount of time compared to the spectral integration time.

The estimation of chemical properties of an algal culture is, therefore, solely de-

termined by the integration time. Compared to the algal culture dynamics, which

can be of the order of hours or sometimes days, the predictiontime (around 20

seconds) is insignificant. Therefore, Raman spectra can be used for real time on-

line estimation of the composition in the algal bioreactors.

The predicted profiles for biomass, glucose, and oil contentare shown in Figures

4.9, 4.10, and 4.11 respectively. For comparison purposes,the off-line experimental

measurements are also included in the plots. There is a good match between the

Raman spectra based predictions and the experimental measurements for the full

range of concentrations.

During the initial 50 hours of culture time, the variance between contiguous Raman
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Figure 4.9: Biomass concentration profile for an algal culture: (⋅) support vector
Raman spectroscopy -based measurement; (□) Off-line experimental measure
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Figure 4.10: Glucose concentration profile for an algal culture: (⋅) support vector
Raman spectroscopy-based measurement; (□) Off-line experimental measure. For
explanation regarding measurements enclosed in box ‘A’ refer to the text in Section
3.5.4
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Figure 4.11: Profile for the oil content in the algal cells: (⋅) support vector Raman
spectroscopy-based measurement; (□) Off-line experimental measure
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based predictions was higher than in the subsequent culturetimes. This indicates

that there are significant interferences from the sample matrix at the start-up of the

culture. At the start of the culture (lag phase), there are important changes in both

the chemical composition of the culture media and the biochemical composition

of the algal cells. Rapid changes in the concentration of trace elements in the

initial culture medium, cell size and morphology, and cell pigmentation could be

responsible for the high variance observed in the initial spectra measurements.

Therefore, the spectral based estimations should be used with utmost precaution

during the lag phase. It is suggested that a moving average window be used to

reduce the fluctuation in the predictions. In Figures 4.7 and4.8 the data points

corresponding to the lag phase are circled. It can be seen that the deviation between

the off-line measures and the estimated values is significantly higher for this subset

of the data than for the other data points. Ignoring the lag-phase data, the accuracy

of the prediction is improved as indicated by a reduction in the RMSE values (and

an increase in theR2 values).

From Figure 4.10, it can be seen that glucose estimates (after lag phase) based on

Raman spectroscopy have a smoother profile than the experimental measurements.

Although, experimental measurements for glucose based on HPLC have in general

a high precision, the samples drawn from the reactor and analyzed in the HPLC

might not be representative of the bioreactor contents. This is because, the con-

ditions in the sampling line may not be the same as the conditions in the reactor.

Furthermore, the sample obtained from the reactor might undergo changes during

the time lapsed for preparing the sample for HPLC and other analysis. These could

lead to reduced accuracy and reliability of the off-line measurements.

An additional advantage of the on-line Raman based method is that the composition

measurements can be taken at a considerably higher frequency compared to the

off-line experimental measurements, given that the Raman based method does not

require the removal of a sample from the reactor. The reducedfrequency for the

removal of a sample, in turn, reduces the chance of contamination from faster

growing bacteria and fungi. A higher measurement frequencyhelps in observing

the changes in the composition that will otherwise be overlooked. For example,
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the variation in the glucose concentration between approximately 75 and 90 hours

(enclosed in box ‘A’ in Figure 4.10) is not readily apparent from the off-line experi-

mental measurements. Whereas, the Raman spectroscopic method is able to clearly

identify these changes.

From Figure 4.11, it can be seen that the variance of contiguous oil estimates

using the Raman spectra is lower compared to the one obtained using off-line

measurements. This implies that the estimates provided by the Raman spectra are

more reliable than the off-line experimental measurements.

Therefore, it can be concluded that Raman spectroscopy can beused for predicting

the glucose and oil estimates after the lag phase. From Figure 4.9, it can be seen

that for biomass estimates, however, Raman spectroscopy canbe used for the entire

range of culture times (including the lag phase).

4.6 Conclusion

Appropriate monitoring and control of culture conditions in microalgal bioreactors

are required in order to maximize oil productivity. Raman spectra in combination

with support vector regression can be used for building a multivariate sensor for

the online-monitoring of the concentrations of the three main components in the

bioreactor, namely, biomass, glucose, and oil content in the cells. In heterotrophic

algal cultures, the substrate (glucose) concentration is usually the control variable.

Therefore, a control law can be defined for optimizing the concentration of biomass

and the oil content.

The advantages of the proposed online sensor include: a reduction in the time

taken to obtain an estimate of the biochemical composition of the system and

thereby enabling the use of several well known control strategies; a smaller variance

in the oil estimates was observed with Raman based measurements compared to

the off-line measurements; and a solution for the problem ofdisparity between

the measured sample and the reactor contents is achieved, thus providing a more

reliable measurement than traditional off-line analysis.
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The effect of preprocessing techniques including Savitzky-Golay filtering, base-

line correction, and standard normal variate transformation on the model building

exercise was studied. Standard normal variate is the most suitable preprocessing

technique for estimating biomass concentration and the oilcontent. Similarly for

a suitable estimation of glucose concentration, it is necessary to use the Savitzky-

Golay filter.
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5
Identifying Candidate Biomarkers for

Early Detection of Heart Transplant

Rejection Using Real Time Reverse

Transcription Polymerase Chain

Reaction (RT-PCR)

5.1 Introduction

Organ transplantation is one of the rapidly developing fields in biomedical studies.

Graft rejection remains to be a major barrier in organ transplantation. The rejec-
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tion process involves an immune response against the foreign tissue antigens. An

early detection of rejection is mandatory to effectively treat and prevent cardiac

dysfunction (Morris and Delves, 1998; Dallman and Delves, 1998). Assessment of

gene expression levels has produced insights for identification of allograft rejection

(Erickson et al., 2001, 2004, 2003). Gene expression microarrays emerged as a im-

portant tool in the 1990s for measuring the gene expression levels of protein coding

mRNA transcripts within a tissue (Schena et al., 1995). Over the past 20 years

they have become the dominant source used in transcriptomics, the study of said

mRNA transcripts. Researchers often compare expression levels of mRNAs across

different types of tissues to find biomarkers that are differentially expressed, i.e.

they produce different amounts of mRNA. The theory is based onthe assumption

that different levels of mRNA in the tissues cause a similar difference in the amount

of proteins produced (Quackenbush, 2002). Differing levels of protein can in turn

lead to, or indicate the manifestation of, sickness, disease or damage to the tissue.

Knowing which biomarkers are differentially expressed is of great importance to

many applications: Pharmaceutical companies could develop drugs that target these

biomarkers (Walker., 2001). In clinical settings these biomarkers could be used in

diagnostic systems to aide doctors and clinicians (Muelleret al., 2007). They could

also be used as good starting points for future research in biology (Schena et al.,

1996; Carulli et al., 1998).

Much research effort has focused on identifying differentially expressed genes (can-

didate biomarkers) from microarray datasets (Li et al., 2002; Miller et al., 2003).

Researchers use class comparisons analysis to obtain lists of genes and gene sets

that are differentially expressed between the classes of interest. To validate the

results a secondary analysis with a more accurate technology, such as northern

blotting or real-time polymerase chain reaction (RT-PCR) is used (Chuaqui et al.,

2002). RT-PCR method is faster and more robust to small changes in expression.

Furthermore, the microarray datasets are highly corruptedwith noise and higher

reliability of RT-PCR measurements provides a robust identification of candidate

biomarkers (Allanach et al., 2008).

In this study, a novel procedure for obtaining candidate biomarkers from a time
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series RT-PCR data for early detection of heart allograft rejection. To the best

knowledge of the author and collaborators, this is first suchstudy of identification

of biomarkers using time series data. These chosen biomarkers were validated by

applying the k-means clustering algorithm on various independent renal allograft

microarray datasets obtained from the ncbi-geo website. Hypothesis testing is

a commonly used technique in statistical analysis that can be used for making

decisions on the data. A test of hypotheses (test procedure)is a method for using

sample data to decide between two competing claims. Hypothesis testing has found

applications in the field of systems biology (Venkat et al., 2011) and organ trans-

plantation (Paya et al., 2004). Likewise, clustering algorithms have been applied to

analyze gene expression datasets in diverse biomedical applications including skin

biopsies (Whitfield et al., 2003), diabetes (Koulmanda et al., 2008), and kidney

transplant rejection (Flechner et al., 2004). Horwitz et al. (2004) has used hier-

archical clustering to demonstrate the ability of their chosen candidate markers to

distinguish control, rejection, and post rejection samples. The k-means clustering

algorithm, used in this study, has found application in structure identification of the

dataset and recognizing any potential mislabeling in post-operative liver transplant

monitoring (Melvin et al., 1997).

In this study, the syngeneic and allogeneic heart transplant patients were used to

differentiate the innate from the adaptive immune responsethat helps in identifying

robust markers of rejection. Additionally, the work considers the identified robust

markers of rejection from heart transplant animal models asa precursor to working

with human data for use in medical problems.

5.2 Methods and Materials

5.2.1 Study Design

Serial changes in the transcript levels of 82 genes were analyzed by real-time re-

verse transcriptase polymerase chain reaction (RT-PCR) at 14different, non-equally

spaced time points,t ∈ t1 < t2 < < t14 (refer to Appendix A for the genes and
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actual times when expression values were measured) during the first 7 days after

allogeneic and syngeneic murine heart transplantation.

Mice: Eight to 12 wk old male BALB/cByJ (BALB/c) (H-2d), C57BL/6J (B6) (H-

2b) mice were obtained from Jackson Laboratory (JAX, Bar Harbor, Maine) and

housed under standard conditions in a pathogen free facility.

Transplant model: Heart grafts were transplanted in a heterotopic cardiac trans-

plant model as previously described (Corry et al., 1973). Briefly, hearts were har-

vested from freshly sacrificed donors and immediately transplanted into recipients

anaesthetized via intra peritoneal injection with 60 mg/kgof pentobarbital sodium.

The donor aorta was anastomosed to the recipient abdominal aorta by end-to-side

anastomosis. The donor pulmonary artery was anastomosed end-to-side to the

recipient vena cava. All surgical procedures were completed in less than 60 minutes

from the time that the donor heart was harvested. Donor hearts that did not beat

immediately after reperfusion or stopped within 1 day following transplantation

were excluded (> 95% of all grafts functioned at day 1 following transplanta-

tion). The recipient’s native heart was not surgically manipulated and remained

functional. Donor allograft hearts were harvested immediately after transplantation

(0 time point) and at 1, 3, 6, 9, 12, 15, 18, 21 hours and at 1, 2, 3, 4, 5, 6 and 7

days following transplantation. Three BALB/c and three B6 un-transplanted hearts

served as controls. The allografts were divided into equal sections for extraction

of RNA and tissue sections for histology. Altogether 99 hearts (93 transplant, 6

control hearts) were harvested and analyzed. In the allogeneic transplant model

BALB/c donor hearts were transplanted into B6 recipients (BALB/c into B6), in

the syngeneic transplant model B6 donor hearts were transplanted into B6 recipients

(B6 into B6) to analyze the innate response.

A-priori gene selection:

82 genes were selected for the kinetic analysis based on prior microarray studies

(Mueller et al., 2003). All genes were manually classified according to the bio-

logical processes they contribute to using the gene ontology GO annotation system
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(Ashburner et al., 2000). If a gene contributed to more than one distinct biological

process, the most appropriate for the current experimentalsettings was chosen. 12

functional classes were defined and further grouped into immune-related and non-

immune related gene sets. Information regarding the 82 individual genes, the 12

designated biological classes they are assigned to, their Gene ID and GenBank

numbers, gene symbols, gene names and the sequences of the primer pairs used

are presented in supplementary material of Mueller et al. (2003)’s work.

5.2.2 Applied method of transcript measurements

Real-time RT-PCR: Primer pairs were designed using Primer Express software (Ap-

plied Biosystems, Foster City, CA). Forward (FW) and reverse (RE)primers were

chosen to have a length between 18 and 22 base pairs and designed to amplify an

amplicon length of 51 base pairs. All primer pairs were tested in both immune-rich

tissue samples and non-template controls for specificity, primer-dimer formation,

and reproducibility.

RNA extracted from the individual tissue samples was analyzed individually to

control for both technical and biological variability. Total murine RNA was iso-

lated from three hearts per time-point using TRI Reagent (Sigma-Aldrich Corp.,

St. Louis, MO). All samples were treated with deoxyribonuclease to eliminate

DNA (Deoxyribonuclease I, Amplification Grade, InvitrogenLife Technologies,

Carlsbad, CA) contamination. 10µg of RNA were reverse transcribed using Su-

perScript II RNase Reverse Transcriptase (Gibco, Carlsbad, CA). The single cDNA

reaction product was aliquoted for the target and control amplifications. For all

target primers the same cDNA sample was used.

The GeneAmp 5700 Sequence Detection System (Applied Biosystems, Foster City,

CA) was used to perform RT-PCR using 250 ng of template cDNA, 5µM of for-

ward and reverse primer and 10µL of 10X SYBR Green PCR Master Mix (Applied

Biosystems, Foster City, CA) per well in a MicroAmp Optical 96-well reaction

plate (Applied Biosystems, Foster City, CA). The gene-specificPCR products were

continuously measured by the increase in fluorescence due tothe binding of SYBR
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Green to double-stranded DNA during 40 cycles. Dye ROX, included in the SYBR

Green PCR Master Mix, served as a passive reference to normalize for non-PCR-

related fluctuations in fluorescence signal.

Based on the constitutive expression across various experiments and further vali-

dated by the microarray results glyceraldehyde-3-phosphate dehydrogenase (Gapdh)

was chosen as endogenous control for normalization.

The relative quantitation of the amount of gene target was based on the∆CT method

[Manual GeneAmp 5700, Applied Biosystems, Forster City, CA]. The difference

in the cycle threshold (CT) value of each target gene is calculated relative to the

CT value of the endogenous reference Gapdh. The relative amount of target gene

transcript is expressed as percentage of Gapdh, which is setto 100%. The quantities

of the individual target gene in each experimental sample are expressed as n-fold

difference relative to its quantity in the calibrator sample, i.e. the un-transplanted

control hearts (BALB/c in the allogeneic experiments, B6 in the syngeneic). All

real-time RT-PCR experiments were run in triplicate, analyzing samples from 3

animals per group.

Analysis of the transcript measurements:

At each time stamp, t, the transplantation procedure is replicated. TheCT values

are obtained experimentally for all the replicates at these14 time samples. The

∆CT values for 85 genes for all replicates are calculated at these time instantti =

1,2, ...,14. Tables 1 to 16 in Appendix A, show the values for the genes at different

times for isograft (syngeneic) and allograft (allogeneic)patients. In this work,

the ∆∆CT values are calculated and analyses were performed on them for early

detection of allograft rejection. The definitions and the procedure for obtainingCT ,

∆CT , and∆∆CT values are as follows (Thiel et al., 2002; Pfaffl, 2001):

• CT : The cycle values of the target gene.

The CT value is the experimentally measured value for the transplantation

patient.
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• ∆CT : The difference in threshold cycles for target and reference.

The∆CT values are calculated by subtracting theCT values of the target gene

with respect to the house keeping gene, GAPDH. That is, for the kth gene at

time ti, the corresponding∆CT value is given by the Equation 5.1

∆CT(ti ,k) =CT(ti ,k)−CT(ti ,R) (5.1)

where ∆CT(ti ,k), CT(ti ,k) are the∆CT , CT values forkth gene at timeti
respectively andCT(ti ,k) is theCT value for the reference gene, in this case

GAPDH, at timeti.

• ∆∆CT : The difference in normalized threshold cycles for experimental

and calibrator sample The ∆∆CT values are calculated by subtracting the

∆CT values of the experimental sample of a given gene with the mean ∆CT

values of the calibration sample of the same gene. For thekth gene the

corresponding∆∆CT value is given by the Equation 5.2

∆∆CT(k) = ∆CT(k,e)− ∆̄CT(k,c) (5.2)

where∆CT(k,e), is the∆CT value for thekth gene for the experimental sample

andC̄T(k,c) is the mean∆CT value for thekth gene for the calibration sample.

In the case of a missing∆CT values for a particular gene, for one of its replicates, an

average value across the other replicates is chosen. For statistical analysis, the∆CT

values for the genes at all time instants are required. Therefore, genes with zero∆CT

values for all the replicates at any given time are removed from the analysis. The

geneFOLbp3 has a lot of missing∆CT values (refer Appendix A) and therefore

is removed from analysis. Similarly, geneCK which has missing∆CT values on

day 4 for all replicates is also removed (refer Appendix A). In the∆∆CT values, the

impact of the house gene GAPDH is zero, and therefore is removed for the analysis.
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5.3 Statistical Methods and Data Analysis

To identify and validate the potential biomarkers that can detect allograft at early

stages, statistical analysis including hypothesis testing and k-means clustering are

applied. Brief descriptions of the two methods are given below:

5.3.1 Hypothesis Testing:

A standard approach to the hypothesis testing problem consists of a series of steps

given below:

Step 1. Research and define the test hypothesis along with choosing the variable to

be used in sample data.

Step 2. State the null hypothesis (H0) and the alternate hypothesis (H1).

Step 3. Select the significance level for the test and decide which test is appropriate

while stating the relevant test statistic T.

Step 4. Consider the statistical assumptions being made about the sample in doing

the test.

Step 5. Compute all quantities appearing in the test statistic and then the value of the

test statistic.

Step 6. Determine the p-value associated with the observed value of the test statistic.

Step 7. State the conclusion (which is to rejectH0 if p-value and not to reject H0

otherwise) as per the context of the problem and the level of significance.

There are two kinds of hypothesis testing that can be performed for identifying the

differences between the two classes, namely, t-test which is a test statistic for the

differences between the means of two distributions and F-test which specifically

tests for difference in variances between the two classes. The procedure for obtain-

ing both the allogeneic and syngeneic datasets is the same. The assumption that the
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variances in both the allogeneic and syngenic datasets, caused due to errors in the

measurements, is equal is a reasonable one. Therefore, t-test seems an appropriate

method for comparing the means of the two distributions assuming that the variance

of the two classes is known.

5.3.2 K-means clustering:

K-means Clustering is a method of cluster analysis (unsupervised classification)

which aims to partition n observations into K clusters in which each observation

belongs to the cluster with the nearest mean. K-means methodconstructs these par-

titions so that the squared Euclidean distance between any object and the centroid

of its respective cluster is at least as small as the squared distances to the centroids

of the remaining clusters. This procedure consists of the following steps (Ray and

Turi, 1999; Steinley, 2006):

Step 1. Choosing the K initial cluster centers,µ1
1,µ

1
2, ...,µ

1
K.

Step 2. The squared Euclidean distance, , between thel th object and thejth cluster is

obtained as shown:

d2(l , j) =
K

∑
j=1

(xl j −µ(1)
j )2 (5.3)

Objects are allocated to the cluster where 5.3 is minimum

Step 3. After initial object allocation, cluster centroid is obtained for each cluster,

then objects are compared to each centroid (usingd2(l , j) ) and moved to the

cluster whose centroid is closest.

Step 4. New centroids are calculated with the updated cluster membership (by calcu-

lating the centroids after all objects have been assigned).

Step 5. Steps 2 and 3 are repeated until no objects can be movedbetween clusters.

The K value is obtained by prior knowledge of the number of clusters present in

the data. In this work, only two clusters are considered, namely, allogeneic and

syngeneic.
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5.4 Results

5.4.1 Potential Biomarkers

Identification of potentially diagnostic genes

It is a well known biological fact, that prior to rejection (at initial time) both the

allogeneic and syngeneic patients have the same gene expression value. Therefore,

it is necessary to find biomarkers (genes) that do not indicate any inherent difference

between the gene expression value for allogeneic and syngeneic patients at initial

time (t = 0 hr). A pre-processing and feature selection procedure is required to

obtain biomarkers which have similar gene expression values, for both classes, at

the initial time (t = 0 hr) and significantly different gene expression values around

the final time (t = 7 days).

In this work a new approach to obtain biomarkers is proposed which exploits the

diverging trend between allogenic and syngeneic datasets with time for illustrating a

transplant rejection. The pre-processing/feature selection technique involves a sta-

tistical comparison of the population means for the two classes of data (allogeneic

and syngeneic), for each gene, at each time step. The genes/biomarkers which

indicate that the allogeneic and syngeneic samples are fromthe same population at

initial time and from differing populations at later time are chosen.

The hypothesis testing method using a student t-distribution was used to compare

the two population means. The assertion thatµ1−µ2 (difference of the population

means of the two classes) is equal to zero is the null hypothesis. The alternative

hypothesis is thatµ1− µ2 is not equal to zero. In this study, a normal distribution

will be assumed for the difference of the population means atvarying significance

level,α = 0.01 (99 % confidence level) to 0.99 (1 % confidence level) in increments

of 0.01.

For each time t, the maximum % confidence level at which the twopopulation

means are statistically indistinguishable, is calculated. The biomarkers (genes)

that show a higher confidence level for similarity of the means at initial time,t1,
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compared to the one at timet2, which in turn show a higher % confidence level for

the similarity of means compared to the one att3, so on so forth are chosen. In short,

the biomarkers which shows a decreasing level of confidence for similarity of means

with increasing time is considered to be the best marker for allograft rejection.

Metric Definition

For a given gene, Lety= {y1,y2, ...,y14} be a sequence defined such thatyi is the

maximum confidence level for the similarity of means at timeti. As stated in Sec-

tion 5.3, allogeneic and syngeneic patients do not indicateany inherent difference

at initial time and hence a higher confidence level for similarity of the means is

required at the initial timet1 = 0 hr. Therefore, a threshold of 0.5 is chosen for the

y1 value at timet1 = 0 hr. A set of 20 genes are obtained as indicated in Table 5.1.

Table 5.1: The 20 genes obtained

Genes

4 granz B 7 MLC-2
3 TNF-a 3 G-CSF R

1 Pro-C5a 2 MBL-2
4 perforin 8 GSH Px
2 SAA4 4 serglycin

1 C4 3 IFN-b
9 MTHFD2 5 TLR-7
10 B2-M 12 rp S24
3 IL-1b 9 sepiapterin R
12 rp L8
2 SAP

For the purpose of obtaining a metricG, various other parameters are defined as

shown:

∆i, j = (yi −y j +ζ ) ∀ i = 1,2, ..,n−1 and j = i+1, ..n (5.4)

∆i, j = 0 ∀ i = 1,2, ..,n−1 and∀ j ≤ i (5.5)
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Ideally the RHS term in Equation 5.4 should be greater than zero for anyζ >= 0

(tolerance value). This might not be the case when dealing with a real biological

data such as the one in this study. A metricG is defined for a given gene as follows:

G=
E

(E+F)
(5.6)

(5.7)

whereE andF are total number of positive and negative values in the∆k matrix,

respectively.∆k is a(n−1)×n matrix with elements{∆i, j} as given in Equations

5.4 and 5.5. Theζ value is chosen based on the standard deviation of the confidence

values as suggested in Equation 5.8:

ζ =
0.1
n

n

∑
i=1

σi = 0.03 (5.8)

whereσi is the standard deviation of the confidence values of the 20 genes, indicated

in Table 5.1, at timei. The gene with a higher value of metricG, shows a better

decreasing trend in the confidence level and hence is a bettermarker for early

detection of allograft rejection compared to the gene with alower value ofG. Table

5.2, gives a list of the 20 genes in the decreasing order of theG value. Table

5.2 shows the ranking of the selected 20 genes according to their suitability to

differentiate allogeneic and syngeneic over the whole timecourse. In Table 5.2,

three genes are chosen based on the criteria of them being greater than 95 % of the

maximum achievable value of the metric G (=1).

Figure 5.1, gives the plot for the confidence level of these three chosen genes

which show a generally decreasing trend from timet1 to t14. The three best genes

out of the selected 20 were chosen. The figure shows the degreeof similarity or

dissimilarity of these genes between allogeneic and syngeneic patients. The higher

the confidence level (y axis) the more similar is the gene between the two groups.

The metric/figure shows that these 3 genes are most similar atthe earliest time
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Table 5.2: The estimated metricG for the 20 genes

Genes Metric G

1 1 Pro-C5a 0.9560
2 3 TNF-a 0.9556
3 4 granz B 0.9535
4 4 perforin 0.8791
5 2 SAA-4 0.7802
6 9 MTHFD2 0.7753
7 10 B2-M 0.7692
9 3 IL-1b 0.7555
8 12 rp L8 0.7555
10 2 SAP 0.7356
11 7 MLC-2 0.7111
12 3 G-CSF R 0.6923
13 2 MBL-2 0.6889
14 8 GSH Px 0.6813
15 4 serglycin 0.6593
16 1 C4 0.6555
17 3 IFN-b 0.6373
18 5 TLR-7 0.6067
19 12 rp S24 0.6043
20 9 sepiapterin R 0.3297
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points and very dissimilar at the later times. As early as 3 hrs these genes become

dissimilar/differentiate allogeneic from syngeneic.

The three genes chosen for analysis are as follows:

The complement product Pro-C5a, the official name is hemolytic component

(Hc), aliases used are C5 or C5a:The protein encoded by the C5 gene plays

an important role in inflammatory and cell killing processes. The C5a gene is an

anaphylatoxin that possesses potent chemotactic activityand is derived from the

alpha polypeptide via cleavage with a convertase. In the literature it is indicated

that the anaphylatoxin C5a might have potential as an early and reliable marker for

acute renal allograft rejection (Mueller et al., 1997)..

Tumor Necrosis Factor- (TNFa): The TNF gene encodes a multifunctional pro-

inflammatory cytokine that belongs to the tumor necrosis factor (TNF) superfamily.

Increased levels of TNF were demonstrated within the blood of patients during

episodes of renal allograft injection and thus have been suggested as a useful early

and discriminatory marker of rejection (Tuschida et al., 1992).

Granzyme-B (GZMB): The protein encoded by GZMB gene is crucial for the

rapid induction of target cell apoptosis (programmed cell death) by CTL in cell-

mediated immune response. The accurate diagnosis of acute rejection by measuring

granzyme B mRNA in urinary cells, have been successfully demonstrated. Further-

more, it is stated that measuring the levels of granzyme B could be used predict the

development of acute rejection (Lo et al., 2001).

The allogeneic and syngeneic time trends of the chosen biomarkers indicate the dif-

ference between successful and failed transplantation. Figure 5.2, shows a graphical

representation of the average∆∆CT values of all replicates at each time instant for

the three chosen biomarkers aforementioned. The divergence of the two curves

(allogeneic and syngeneic) from timet1 = 0 hr till t14= 7 days indicates the occur-

rence of allograft rejection.
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Figure 5.1: The chosen biomarkers based on hypothesis testing method suggested
in this section. The chosen biomarkers are used for further validation
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Figure 5.2: Time trend indicating the difference between the data obtained from
allogeneic and syngeneic patients.
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5.4.2 Application of the three markers in a multivariate frame-

work

The three chosen biomarkers in Section 5.3, are subjected tovarious preliminary

graphical analysis to illustrate the advantage of using a multivariate framework for

detection of allograft rejection.

Firstly, the three individual biomarkers are viewed in a univariate framework. At

each time instantti , and for each of the three chosen biomarkers, mean and 95%

Confidence level of the replicates are calculated separatelyfor each class. Figures

5.4.2 and 5.4.2, indicates the mean and 95% confidence level for the∆∆CT values

of the replicates grouped together for each of the 3 biomarkers from initial time (0

hr) to 12 hr mark. An overlap between the allogeneic and syngeneic confidence

regions indicates a non-separable case.

Figures 5.4.2 and 5.4.2 indicate that the separation between the allogeneic and

syngeneic classes happen on only at the 12 hr mark and only in TNF-α gene. Also,

the figures show that no separation between the allogeneic and syngeneic classes is

achieved at any time prior to 12 hours, for any of the three biomarkers when viewed

individually.

Similarly, in Figure 5.5 it can be seen that the three chosen biomarkers when viewed

in a multivariate framework shows a class separation as early as 6 hours. In Figure

5.5, 2 dimensional ellipses for all the possible combination of biomarkers({Pro-

C5a(4), TNFa}, {Pro-C5a(4), Granzyme B}, and{TNFa, Granzyme B}) are plot-

ted. The ellipse are plotted with the mean∆∆CT value as center and 95% Confi-

dence level, of the biomarkers, as the major and minor axes.

Based on the aforementioned results from the plots, it can be concluded that a

multivariate framework of using the biomarkers for detection of allograft rejection

is advantageous. The three biomarkers chosen are validatedusing independent renal

transplantation microarrays obtained from the ncbi-geo website.
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Figure 5.3: A univariate plot showing the mean∆∆CT values and 95% confidence
level (based on the replicates), for the three chosen biomarkers, at times 0 hr, 1 hr,
and 3 hr.
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Figure 5.4: A univariate plot showing the mean∆∆CT values and 95% confidence
level (based on the replicates), for the three chosen biomarkers, at times 6 hr, 9 hr,
and 12 hr.
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Figure 5.5: A bivariate plot showing the mean∆∆CT values and 95% confidence
level (based on the replicates) for combinations of two biomarkers at 6 hr mark.
Due to lack of sufficient data a 3-D model could not be built anda 2-D projection
is shown for all combinations of two genes.
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5.4.3 Validation of the biomarkers in independent data sets

The obtained candidate biomarkers are validated to three new and publicly-available

microarray measurements on both human and animal renal transplantation patients

for rejection. Before applying k-means algorithm to the microarray datasets for

separating the classes (allogeneic and syngeneic), the datasets are normalized using

a standard normal variate (SNV) transformation across all genes in the microarray.

Rat renal transplantation dataset

A well defined rat kidney transplantation model with strict transplant and sample

preparation procedures to analyze genome wide changes in gene expression four

days after syngeneic and allogeneic transplantation (Edemir et al., 2008). From

the huge microarray dataset, the three chosen biomarkers, in this study, are used for

analysis. K-means clustering algorithm mentioned in Section 5.3.2 is used to cluster

the rat renal transplant dataset of 10 samples (With 5 samples each of allogeneic and

syngeneic rats). Figure 5.6 shows the separated clusters for allogenic and syngeneic

rat patients clustered using the k-means algorithm.

From Figure 5.6 it can be seen that by using the three chosen biomarkers the

microarray dataset obtained for rat experiments is clearlyseparated into two groups

(allogeneic and syngeneic) with an accuracy of 100%. There is an underlying fact

that an animal experimental setup produces clean data and the 82 genes chosen for

calibration were sufficient for identifying the candidate biomarkers and thus help in

obtaining a clear demarkation between the allogeneic and syngeneic patients.

Human renal allograft dysfunction dataset

The Renal transplant data is received from recipients who have undergone diagnos-

tic biopsies after transplantation from April 2004 to December 2006 (Mao et al.,

2011). A set of 61 patients were chosen for analysis with 34 ofthem showing acute

rejection and the remaining 27 of them showing a stable renalfunction. For the

purpose of this study only patients undergoing acute rejection and patients with
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Figure 5.6: Plot indicating the two separated clusters for allogeneic and syngeneic
rat samples using k-means algorithm for rat renal transplantation dataset. The three
chosen biomarkers, as suggested in Section 5.4.1, are used for separation of the
clusters. The centroids for the two clusters are also plotted.
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stable renal functions were chosen. The patients undergoing acute tubular necrosis

were not selected for analysis. Figure 5.7 shows the separated clusters for allogenic

and syngeneic human patients clustered using the k-means algorithm.
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Figure 5.7: Plot indicating the two separated clusters for allogeneic and syngeneic
human samples using k-means algorithm for renal allograft dysfunction dataset.
The three chosen biomarkers, as suggested in Section 5.4.1,are used for separation
of the clusters. The centroids for the two clusters are also plotted.

For this human renal allograft dysfunction dataset, k-means clustering algorithm

achieved a separation between the two classes with an accuracy of around 75%.

From Figure 5.7 it can be seen that by the three chosen biomarkers does correctly

predict the patients undergoing allograft rejection. However, a small amount of

patients undergoing successful transplantation is also classified as transplant rejec-

tion. The reason for this misclassification could be becauseof the fact that the gene

expression profile for 82 genes obtained from RT-PCR dataset is not sufficient for

choosing the candidate biomarkers needed for detection of transplant rejection in

human patients.

133



5.4. Results

Human renal allograft dysfunction dataset

The Renal transplant data is received from recipients who have undergone diagnos-

tic biopsies after transplantation from April 2004 to December 2006 (Mao et al.,

2011). A set of 74 patients were chosen for analysis with 26 ofthem showing renal

dysfunction and the remaining 48 of them showing stable renal function. For the

purpose of this study only patients undergoing acute rejection and patients with

stable renal functions were chosen. The patients undergoing borderline rejection or

presumed rejection were not selected for analysis. Figure 5.7 shows the separated

clusters for allogenic and syngeneic human patients clustered using the k-means

algorithm.
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Figure 5.8: Plot indicating the two separated clusters for allogeneic and syngeneic
human samples using k-means algorithm for renal allograft dysfunction dataset.
The three chosen biomarkers, as suggested in Section 5.4.1,are used for separation
of the clusters. The centroids for the two clusters are also plotted.

For this human renal allograft dysfunction dataset, k-means clustering algorithm

achieved a separation between the two classes with an accuracy of around 68%.

Again, from Figure 5.8 it can be seen that by using the three chosen biomarkers a

clear separation between the allogeneic and syngeneic patients cannot be achieved.
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5.5. Discussion

5.5 Discussion

The procedure proposed in this work exploits the link between changes in the RNA

extracted from individual tissue samples was analyzed yielding candidate biomark-

ers for transplantation. Furthermore, the three candidatebiomarkers obtained using

the proposed method is validated to new and publicly-available microarray mea-

surements on renal transplantation patients for rejection. The results shown in this

study demonstrate that the gene expression measurements from time series RT-PCR

dataset can be a powerful and a fast strategy for discoveringcandidate biomarkers

for transplant rejections. Also, the biomarkers chosen from the gene expression

profiles obtained from heart transplantation patients wererobust in identifying re-

jection even when applied on independent renal transplant patients.

5.6 Conclusion

Heart transplantation is one of the fastest developing areain the biomedical field.

Heart allograft rejection is one of the biggest challenges during transplantation.

Therefore, an early detection of allograft rejection can help in preventing transplan-

tation rejection. In this work, a novel algorithm has been built for early detection of

transplant rejection.

The study is divided into two parts, firstly, a set of three candidate biomarkers

were chosen from a time series RT-PCR dataset, obtained from eight to 12 wk old

male BALB/cByJ (BALB/c) (H-2d), C57BL/6J (B6) (H-2b) mice patients, using

hypothesis testing. A metricG is defined as a part of this work for quantifying the

chosen biomarkers.

Secondly, the chosen candidate biomarkers were validated to three new and publicly-

available microarray measurements, from ncbi-geo website, on both human and

animal renal transplantation patients for rejection. The chosen biomarkers were

able to separate the allogeneic and syngeneic classes with a100% accuracy in the

case of rat patients.
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For human patients, however, a separation between the allogeneic and syngeneic

classes is not clear. This is due to the fact that the human genome has more genes

compared to the mouse genome and the candidate biomarkers chosen from the 82

relevant genes for mouse patients may not be exhaustive for human patients. A

comprehensive set of genes are needed for identifying the relevant biomarkers for

human patients.
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6
Conclusions, Summary, and Future

Work

6.1 Concluding Remarks

Biological engineering has many important applications involving design, control

and operation of biological systems. Biological engineering encompasses a wide

range of fields including bioprocess engineering, biomedical engineering, systems

biology, cellular engineering, genetic engineering, etc.In this thesis bioengineering

problems are viewed in the framework analogous to chemical process engineering

problems and statistical and machine learning tools are applied in their analysis.

The three aspects of process systems engineering that have been studied as a part of

this work are modeling, monitoring, and fault detection. Robust learning algorithms

indeed have shown the potential to be used as tools to developand evaluate the
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6.1. Concluding Remarks

performance of bioengineering systems. Several statistical and machine learning

tools were used to solve some of the common complexities associated with bio-

engineering systems.

1. Obtaining a reduced complexity model:

a. For inferring the gene network, the number of connectionsper gene

was reduced using the Akaike information criterion. The AICmethod

achieves a trade-off between model accuracy and model complexity.

b. For building multivariate sensors for monitoring the microalgal culture

conditions the model complexity was minimized using support vector

regression.

c. For identifying candidate biomarkers, the proposed method was able

to choose the minimum number of biomarkers based on the defined

quantification approach.

2. Obtaining statistically significant results:

a. In the gene network inference problem, statistically insignificant con-

nections (spurious connections) were eliminated using leave-one-out

jackknifing.

b. In the Raman based sensor for monitoring the culture conditions, a

statistically significant relation between the experimental measurement

and predicted outcomes (sample correlation coefficient) was used for

choosing the suitable preprocessing technique.

c. For identifying candidate biomarkers, a statistically significant confi-

dence level based approach was used to test the separation ofthe two

clusters (allogeneic and syngeneic).

3. Obtaining a noise-insensitive solutions:

a. The signal component of the gene expression measurementsobtained

was extracted using the partial least squares (PLS) approach. Thus the
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6.2. Summary

obtained connectivity matrix using the extracted signal component was

insensitive to the noise in the measurements.

b. The noise in Raman spectral measurements obtained due to turbidity,

bubbles in the system, and background fluorescence were reduced us-

ing preprocessing techniques including Savitzky-Golay filtering, SNV

transformation, etc.

c. The presence of noise in the RT-PCR dataset measurements were taken

into account while defining the quantification measure for choosing the

biomarkers.

4. Obtaining a strategy for overcoming data scarcity:

a. For inferring the gene network, the proposed PLS/leave-one-out jack-

knifing/AIC algorithm used the knowledge of sparsity of the gene con-

nectivity matrix to obtain a robust estimate.

b. For building a multivariate sensor, the advantage of SVR algorithm in

working with small sample datasets was exploited to obtain amodel for

predicting the concentrations of glucose and oil content.

c. For identifying candidate biomarkers, the biological knowledge of sep-

aration between the allogeneic and syngeneic clusters withtime was

incorporated. This approach was able to overcome the data deficiency as

small number of measurements were enough to identify relevant biomark-

ers for separation.

6.2 Summary

The thesis has presented three representative biological engineering systems and

new robust learning algorithms have been developed. The following points summa-

rize the contributions outlined in this thesis:
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6.2. Summary

6.2.1 Inferring Gene Networks

• In this thesis a new algorithm has been proposed for reverseengineering gene

networks from linear ODEs using bilinear transformation and a combination

of well known statistical tools including partial least squares (PLS), leave-

one-out jackknifing, and the Akaike information criterion (AIC).

• The proposed algorithm was tested on various simulated networks and the

improved performance over the current existing techniquesin the literature

was highlighted.

• Due to the underdetermined nature of the ODE system, various challenges

and limitations in inferring gene networks from microarraydatasets are also

addressed.

• Finally, the proposed algorithm applied to an experimental nine-gene network

for E. Coli was able to successfully outperform methods currently available

in the literature.

6.2.2 Monitoring a Bioreactor System

• In this thesis, an online multivariate sensor to monitor concentrations of biomass,

glucose and oil content in microalgal cultures has been built. An algorithm

combining Raman spectroscopy and support vector regressionwas used for

building the multivariate sensor. Even though, the combined use of Raman

spectroscopy and support vector regression has recently been reported for

monitoring of blood glucose (Huang et al., 2010), monitoring of cellular and

intracellular metabolites concentration is a more complextask.

• The sensor built using support vector regression is compared with other tech-

niques including principal components regression (PCA), partial least squares

regression (PLSR), and kernel PCA and the superior performance of the

proposed method is quantified.
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• As a part of the study, the effect of preprocessing techniques including Savitzky-

Golay filtering, baseline correction, and standard normal variate transforma-

tion on the model building exercise were assessed. Suitablepreprocessing

technique for estimating the concentrations of biomass, glucose, and oil con-

tent were also obtained based on the goodness of fit.

• The proposed sensor was able to successful monitor and predict the concen-

trations of biomass, glucose, and oil content.

6.2.3 Detection of Transplant Rejection

• In this thesis, a novel technique for choosing candidate biomarkers for detect-

ing the allograft rejection is presented. The method uses hypothesis testing

to obtain a set of candidate biomarkers from a time series RT-PCR dataset, ob-

tained from eight to 12 wk old male BALB/cByJ (BALB/c) (H-2d), C57BL/6J

(B6) (H-2b) mice patients. A metricG is defined for quantifying the chosen

biomarkers.

• The chosen candidate biomarkers were validated using three publicly-available

microarray datasets, from ncbi-geo website, on both human and animal renal

transplantation patients.

• The chosen biomarkers gave a good separation between the allogeneic (trans-

plant rejection) and syngeneic (successful transplant) classes in the case of rat

patients. However, for separation between the classes of human patients more

work needed to be done to ensure the chosen genes

6.3 Future Work

The following areas of future work are suggested:

• Implementation of a control strategy in the algal bioreactor system for

maximizing the oil productivity: Optimizing the oil productivity requires
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building a model, developing a sensor, and defining a controllaw. In a

previous work, De la Hoz et al. (2011) focused efforts on building a model

for the microalgal biotransformation. The present work involved developing

a robust multivariate sensor for monitoring the concentrations of the biomass,

glucose, and oil content in a microalgal bioreactor. The future work involves

defining a control law for optimizing the concentration of biomass and the oil

content by using the glucose concentration as the control variable.

• Suggesting an good experimental Strategy for obtaining candidate biomark-

ers: As mentioned earlier, obtaining candidate biomarkers for prediction of

transplant rejection is one of the biggest challenges in biomedical studies. A

good experimental strategy can help in obtaining a good set of biomarkers for

early detection of rejection. For this purpose, a plot of thedaily and hourly

values of the average∆∆CT (defined in Section 5.2.2) values are presented.

Significant variations between the hourly and daily plot indicate the necessity

for performing more hourly experiments for early detectionof transplant

rejection. Figure 6.1, show the daily and hourly plot for thegene TNF-

α indicating the need for more hourly experiments for early detection of

transplantation failure.

Implementation of the proposed method, in Chapter 5, on the suggested dataset

could lead in obtaining a superior set of candidate biomarkers for effective

identification of transplant rejection.
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Figure 6.1: Daily and Hourly Plot of the TNF-α for developing a good experimental
strategy. Variations between the hourly and daily plots indicate the need for
conducting more experiments on the hourly basis.
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A
Heart Allograft Rejection Dataset

In this appendix, the list of genes and their gene symbols arepresented along with

the actual times when the∆Ct (refer Chapter 4 for definition) values are calculated.

As suggested in Chapter 4, the geneFOLbp3 has a lot of missing∆CT values and

therefore is removed from analysis. Likewise, the geneCK which has missing∆CT

values on day 4 for all replicates is also removed.
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Table A.1:∆CT values for first 31 genes for the isograft Patients

ref 0h 0h 0h 1h 1h 1h 1h 3h 3h 3h
Gene Symbol C0 avg

GAPDH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C1q-a 6.3 6.2 6.3 5.5 5.6 6.2 5.7 6.4 5.6 6.1 6.7
C1q-b 5.1 4.2 4.5 4.0 3.9 4.1 4.2 4.4 3.7 4.0 4.7
C1q-c 7.1 6.8 6.9 6.0 6.2 7.2 6.5 7.0 6.1 6.2 7.1
C1-Inh 3.0 2.7 2.8 1.9 2.4 2.3 2.6 2.8 2.5 2.2 2.9

C3 4.7 5.2 5.0 2.8 4.9 3.8 4.2 4.5 4.2 4.2 5.2
C3aR 7.7 7.3 7.0 7.3 7.0 7.7 6.7 7.7 6.3 6.8 7.9
C4 7.1 7.6 7.5 5.4 7.7 6.7 6.5 7.3 8.1 7.1 7.8

C5aR 7.0 6.5 7.0 6.9 5.8 6.5 6.2 6.8 5.5 5.4 6.1
C9 9.3 9.5 8.8 9.3 10.7 9.1 6.9 7.8 7.5 7.8 8.5

compl H 3.5 2.7 2.1 2.4 2.8 2.9 2.6 3.1 2.8 2.1 2.9
DAF-1 6.8 6.1 5.9 5.4 5.9 6.3 6.7 6.9 6.3 6.3 7.3
Pro-C5a 10.4 12.2 12.1 11.6 11.6 10.8 8.4 9.3 12.3 9.9 11.9
properdin 6.1 6.2 6.3 5.3 5.9 5.1 5.5 6.0 6.2 6.8

APP 2.3 1.7 1.8 1.5 1.8 2.2 2.4 2.8 1.7 1.2 2.1
CRP 8.3 10.1 9.9 11.1 9.6 8.4 6.3 6.8 9.5 7.5 9.4

MacManR 6.4 5.4 5.7 5.4 5.4 6.5 6.7 6.6 5.3 5.3 5.8
Man6-PR 5.2 4.6 4.5 4.4 4.7 4.9 4.5 4.8 4.6 4.1 5.0
MBL-2 8.9 10.2 10.0 11.1 10.2 8.7 6.7 7.6 9.7 7.8 9.7
SAA-2 8.4 10.3 8.8 8.5 9.8 8.6 7.1 7.6 7.0 7.5 9.3
SAA-4 9.6 10.7 10.7 11.4 10.8 9.3 7.6 8.1 9.7 8.8 10.4
SAP 8.8 10.9 11.4 12.1 10.1 9.1 7.1 7.5 10.8 8.8 10.2

G-CSF R 8.1 8.5 8.1 7.9 7.6 8.6 6.6 7.7 7.3 7.9 8.2
GM-CSF R2a 8.1 9.2 9.2 9.8 7.2 7.8 5.8 7.2 8.0 7.1 7.7

IFN-b 9.4 11.5 11.4 12.6 10.9 9.8 7.5 8.1 10.6 8.6 10.2
IFN-g 5.7 5.3 5.4 5.3 5.3 5.4 5.3 5.7 5.5 4.9 5.7
IL-1a 7.6 7.9 6.9 7.1 7.2 7.4 5.9 6.5 6.3 5.9 6.8
IL-1b 8.4 7.9 8.4 9.7 4.8 5.5 5.8 7.0 4.6 3.5 5.0
IL-2 7.1 8.5 6.9 7.7 7.3 9.3 6.3 6.8 5.7 6.3 8.1
IL-6 7.8 7.5 7.1 7.7 3.8 4.0 5.0 5.8 3.3 1.8 2.4
IL-10 8.9 11.3 11.1 11.6 9.7 8.8 7.4 8.3 10.1 8.2 9.7
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Table A.2:∆CT values for first 31 genes for the isograft Patients

6h 6h 6h 9h 9h 9h 12h 12h 12h 12h 18h 18h 18h

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6.5 6.7 6.4 6.7 6.5 6.9 6.4 6.8 6.6 7.1 6.6 6.2 6.0
4.2 4.6 4.5 4.4 4.3 4.5 4.2 4.5 4.2 4.7 4.4 3.6 3.8
6.1 6.7 6.9 7.0 6.6 7.5 6.7 7.2 6.9 7.7 7.1 6.4 6.4
2.9 2.8 3.2 3.2 2.6 2.8 2.9 2.5 2.8 3.1 2.6 2.3 2.6
5.9 5.2 5.6 5.9 5.6 4.4 4.6 4.3 4.2 5.3 4.8 3.6 4.3
7.9 8.1 7.2 8.4 7.6 7.9 6.6 7.0 6.5 7.3 7.7 6.0 6.0
8.4 7.6 8.5 8.3 8.3 7.0 7.6 7.0 7.0 7.5 7.8 6.0 7.1
5.6 6.0 6.7 6.4 5.2 5.5 4.0 4.0 4.4 4.7 5.4 3.3 3.3
9.9 10.4 8.3 9.4 9.1 9.0 10.3 9.0 10.2 10.6 10.6 11.1 10.6
3.4 3.0 3.3 3.6 3.2 3.1 2.9 2.8 3.0 3.2 3.4 2.7 2.6
6.6 7.5 6.8 7.5 6.8 7.5 7.4 7.4 7.4 7.5 7.4 6.1 6.6
12.8 13.1 13.5 12.9 12.3 13.3 12.6 11.4 12.9 13.0 13.1 13.0 13.3
6.1 6.4 7.1 7.3 6.3 5.5 4.4 5.1 4.8 5.4 5.1 3.9 3.7
2.1 2.5 2.3 2.5 2.6 2.5 1.9 2.0 2.1 2.3 1.9 1.3 1.5
10.1 11.3 10.5 11.1 9.1 10.9 10.3 9.1 9.8 9.8 9.4 10.1 9.7
5.1 5.3 5.8 5.7 5.6 5.7 5.0 5.9 5.1 5.4 5.4 5.0 5.5
4.8 5.1 5.2 5.1 5.2 5.1 4.4 4.6 4.6 4.5 4.5 3.7 4.0
10.7 12.2 10.8 11.2 9.4 11.3 10.1 9.5 10.1 10.3 10.2 10.6
9.3 5.4 6.2 8.8 8.9 6.9 9.7 8.8 9.7 10.3 10.6 9.0 10.6
11.8 10.8 10.0 11.6 10.8 12.6 10.9 10.2 11.7 11.6 12.1 12.5 12.0
11.3 11.9 11.4 9.9 11.6 10.7 9.6 10.9 10.9 11.0 10.9 9.8
8.0 7.9 7.6 8.3 6.5 6.5 4.9 4.7 4.8 5.2 6.1 4.2 4.2
7.0 6.9 7.7 7.4 8.3 8.1 6.8 7.5 7.2 7.5 7.9 7.0 6.4
11.5 13.1 11.5 12.5 10.5 12.4 11.3 10.2 11.4 11.0 10.7 11.9 11.1
5.3 5.1 5.6 5.4 5.2 4.5 4.7 4.6 5.0 5.4 5.1 4.1 4.1
7.1 7.8 7.5 8.6 7.7 8.5 7.3 6.7 7.9 8.4 6.4 6.3 7.0
4.2 3.5 4.8 4.6 2.9 3.7 3.4 2.5 4.3 4.0 3.0 2.3 2.5
9.5 6.7 8.8 9.5 9.5 7.9 8.6 9.1 9.1 8.2 9.2 8.2
3.2 2.9 3.1 3.7 2.4 3.0 4.1 4.0 4.2 4.1 4.0 3.4 4.0
10.2 10.9 10.6 11.7 9.5 9.7 10.4 9.3 10.8 11.1 11.0 10.1 10.5
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Table A.3:∆CT values for first 31 genes for the isograft Patients

d 1 d 1 d 1 d 2 d 2 d 2 d 2 d 2 d 3 d 3 d 3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6.0 6.9 6.6 5.0 5.0 5.8 5.4 4.9 5.5 5.7 5.8
4.6 5.0 4.8 2.7 2.2 3.3 2.9 2.6 2.9 3.3 3.1
6.7 7.8 7.4 5.9 5.9 6.6 5.8 6.0 5.7 5.4 6.2
3.2 3.4 3.0 2.3 2.5 3.2 2.8 2.0 2.3 2.3 2.5
4.8 6.0 4.4 4.6 4.8 5.0 4.7 3.5 3.4 4.0 4.1
6.9 8.3 7.5 4.7 4.8 6.0 5.9 5.7 5.3 5.8 5.1
7.4 8.3 6.8 6.5 6.3 6.6 6.5 5.8 5.4 6.2 6.3
5.0 6.0 5.3 4.0 4.5 4.7 4.8 5.2 4.6 5.2 4.4
9.6 10.3 9.4 12.0 10.0 9.8 10.5 9.1 11.9 13.0 10.2
3.0 4.0 3.4 3.0 3.0 4.3 3.3 3.4 3.6 3.5 3.5
7.2 8.3 7.1 6.8 6.7 7.8 6.9 6.4 6.6 6.8 6.8
12.4 12.2 11.3 14.2 12.9 11.2 12.1 10.3 13.7 15.3 12.1
4.7 5.6 5.0 3.3 3.7 3.8 3.8 3.8 3.3 3.9 3.8
2.2 2.5 2.2 1.6 1.9 2.1 2.1 1.8 1.7 2.2 1.7
10.3 10.1 9.1 11.1 11.1 9.7 10.1 8.7 11.9 14.2 10.9
6.7 7.1 7.0 5.1 5.8 6.6 5.8 5.7 5.5 5.8 5.6
4.8 4.9 4.6 3.9 4.2 4.7 4.7 4.1 4.4 4.9 4.2
10.1 10.6 9.4 11.4 9.6 10.3 8.6 11.5 13.5 10.5
9.8 10.3 8.9 11.9 11.9 10.3 10.5 9.2 11.5 13.2 11.4
10.6 11.3 10.5 13.2 12.0 11.3 11.2 9.9 13.3 14.9 11.7
10.5 10.9 10.0 12.7 11.1 9.9 10.6 9.3 12.2 14.3 10.7
5.1 6.5 6.6 5.9 5.7 5.3 5.6 5.9 6.5 7.0 6.6
6.4 7.9 7.9 7.8 7.3 7.8 7.6 7.7 8.0 8.6 8.3
11.1 11.1 10.1 12.1 13.2 10.5 9.9 12.6 15.4 11.9
4.8 5.4 5.1 4.6 4.8 5.4 5.1 5.1 5.1 5.6 5.3
7.5 8.2 7.1 9.0 8.8 6.2 8.7 7.7 8.6 9.2 8.4
3.7 4.6 4.0 9.5 5.8 3.2 6.3 5.5 5.2 5.6 5.4
7.8 9.5 8.9 11.4 10.7 9.5 9.4 8.3 10.8 12.3 10.7
4.6 5.3 4.9 6.8 6.6 6.1 6.5 6.3 6.2 7.7 6.8
9.8 11.2 9.5 11.3 10.4 9.8 12.8 9.2 11.6 11.7 10.6
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Table A.4:∆CT values for first 31 genes for the isograft Patients

d 4 d 4 d 4 d 5 d 5 d 5 d 6 d 6 d 6 d 7 d 7 d 7

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5.3 5.2 5.5 5.3 5.7 4.9 5.8 5.6 5.1 4.3 4.8 4.9
2.9 3.2 3.2 3.0 3.4 2.5 3.4 3.1 2.7 1.7 2.5 2.5
5.4 5.5 6.3 5.4 5.6 6.1 5.9 6.6 5.6 5.0 4.5 5.7
1.5 2.0 2.2 2.2 2.3 1.8 2.4 2.2 1.7 0.9 1.7 1.4
3.4 4.0 3.5 3.8 4.3 3.5 4.0 4.1 3.8 2.2 3.7 2.9
5.3 6.3 6.0 5.6 6.8 5.6 6.7 6.7 6.2 3.6 5.2 5.6
5.2 6.0 6.9 5.9 7.4 7.4 7.1 7.1 5.8 4.5 5.4 5.6
5.3 5.5 5.1 4.8 5.6 5.1 5.9 5.5 5.7 2.5 4.7 4.3
12.1 10.7 11.1 11.5 11.1 13.1 9.1 9.1 12.5 10.2 11.0
2.6 3.2 3.3 3.3 4.0 3.8 2.9 2.9 1.8 2.4 2.6 3.1
6.1 6.7 6.2 5.9 6.8 6.2 6.7 6.5 6.3 4.9 5.5 5.5
12.7 12.8 12.0 12.9 13.0 13.4 12.6 7.9 8.5 12.0 9.1 10.2
4.2 4.2 4.8 4.4 5.0 3.7 5.6 4.3 4.8 2.1 3.9 3.7
1.5 2.1 2.0 1.6 2.2 1.3 1.7 1.7 1.7 0.1 1.1 1.2
13.2 12.6 11.5 12.4 12.3 10.8 11.3 7.5 7.4 11.2 9.2 9.2
5.5 6.2 5.7 5.7 6.7 6.1 6.7 6.7 5.5 3.9 5.3 6.1
4.4 4.7 4.5 4.6 5.3 4.1 3.6 3.6 3.3 2.7 3.6 4.1
14.1 11.9 11.0 12.2 11.9 11.8 7.8 7.9 10.7 9.2 10.1
11.4 9.9 11.6 11.1 11.6 11.6 11.7 6.2 5.5 8.4 10.1 6.0
13.7 12.9 12.1 11.9 11.9 13.2 9.6 9.6 13.3 11.0 12.1
14.7 12.6 11.7 12.3 11.6 12.9 12.4 8.9 8.9 11.6 10.0 10.6
6.7 7.6 7.6 6.5 8.1 -1.7 8.5 7.4 7.6 3.8 7.0 5.5
8.3 8.3 8.5 8.0 8.8 8.0 9.0 8.6 8.3 6.5 7.8 7.5
14.0 13.7 12.1 14.2 16.8 12.0 8.3 8.5 13.3 9.8 11.1
4.7 5.5 5.5 5.0 5.8 5.4 6.0 6.1 5.4 3.4 4.5 4.6
8.2 8.7 8.8 8.9 8.8 8.6 10.1 9.9 8.8 7.8 9.6 7.5
4.7 6.4 6.7 5.8 7.7 3.5 4.8 5.0 4.4 6.4 6.7
11.9 10.1 11.0 11.7 11.3 10.5 10.5 7.7 7.2 10.7 9.2 9.9
6.4 7.8 7.5 7.3 8.6 6.2 8.6 6.1 8.4 3.7 7.7 6.7
12.3 11.8 11.3 10.5 11.0 10.4 12.6 11.9 11.4 9.7 11.0 9.7

152



Table A.5:∆CT values for next 29 genes for the isograft Patients

ref 0h 0h 0h 1h 1h 1h 1h 3h 3h 3h
Genes C0 avg
IL-11 8.9 10.2 8.7 9.0 9.2 8.7 6.9 7.6 7.9 7.8 9.3

IL-12 p35 9.0 9.1 8.2 10.3 9.5 8.6 6.8 7.8 9.5 7.9 10.0
IL-12 p40 8.3 10.5 10.2 10.7 9.6 8.8 6.7 7.5 10.1 7.7 9.3

TNF-a 9.9 11.2 10.9 11.7 10.6 10.1 7.9 8.9 9.0 8.9 9.9
granz B 9.1 10.9 10.8 10.2 10.0 8.7 6.7 7.3 9.3 8.3 9.9
granz D 6.9 9.2 9.4 10.1 8.5 7.0 4.8 5.3 9.4 6.5 8.6
granz E 6.3 8.7 8.6 9.8 7.9 6.5 4.4 4.8 8.5 5.7 8.1
granz G 6.2 8.7 8.5 9.6 8.1 6.2 4.1 4.6 8.8 5.5 8.0
perforin 8.6 9.6 9.2 9.5 9.0 8.4 6.7 7.5 8.0 7.0 9.1
serglycin 4.8 4.5 3.9 4.4 3.4 3.9 4.1 4.3 3.6 3.1 3.5
TLR-1 8.6 12.1 12.2 12.9 12.6 12.6 11.0 11.5 11.1 11.1 12.4
TLR-2 9.0 8.9 9.9 9.2 7.4 8.2 7.5 8.3 7.6 6.7 7.3
TLR-3 11.0 10.7 10.6 10.5 12.0 9.6 10.6 12.3 10.2 11.2
TLR-4 6.5 6.1 6.8 6.8 7.1 7.3 6.8 6.8 6.1 5.8 6.2
TLR-5 6.5 6.1 4.9 5.3 6.0 6.7 5.4 6.4 4.8 4.8 5.8
TLR-6 8.8 10.2 9.8 10.4 9.4 9.0 7.1 7.8 10.5 8.4 9.6
TLR-7 7.4 7.2 7.5 7.6 7.6 7.1 7.2 7.3 7.5 6.0 6.6
TLR-8 9.0 9.7 9.7 9.8 9.6 9.2 7.7 8.5 9.8 8.6 9.4
TLR-9 9.5 10.1 10.3 9.9 10.5 9.8 9.0 8.7 10.3 9.6 10.1
Aldo-a -1.0 -1.1 -1.2 -1.1 -1.1 -1.0 -0.3 -0.4 -0.9 -1.5 -1.1
CARAT 8.4 7.9 7.6 7.8 7.5 8.8 8.3 8.6 7.6 7.6 7.9
Cat D 0.8 0.5 0.4 0.5 0.6 0.6 1.3 1.1 0.7 0.3 0.6
CK -0.5 -1.1 -1.4 -1.0 -1.5 -0.4 0.1 -0.3 -1.3 -1.8 -1.2

GDH 5.8 5.5 5.2 3.6 5.4 4.9 3.9 4.5 6.1 5.2 6.2
IDO 8.2 9.3 8.9 8.9 8.9 8.8 6.9 7.8 8.3 9.1 8.8

LDH-2B 0.7 0.7 0.2 0.3 0.1 0.7 0.9 2.3 0.3 2.1 0.2
MEP 2.9 2.3 2.2 2.4 2.1 2.6 2.9 3.2 2.7 2.0 2.5

ANK-1 9.0 10.5 9.4 10.3 9.6 9.5 7.8 8.3 10.4 9.0 10.1
b-actin 2.3 1.5 1.9 1.5 1.5 1.9 2.4 3.0 1.3 1.1 2.1
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Table A.6:∆CT values for next 29 genes for the isograft Patients

6h 6h 6h 9h 9h 9h 12h 12h 12h 12h 18h 18h 18h

9.5 9.7 8.0 9.9 10.2 10.0 7.6 8.6 6.9 7.2 6.7 6.6 7.2
10.4 9.0 9.0 10.3 9.7 10.0 9.6 8.6 9.6 10.1 8.9 9.4 8.8
10.8 11.3 9.7 11.3 9.4 10.7 9.8 8.6 9.5 9.4 9.2 9.5 9.6
11.1 11.4 10.8 11.8 10.2 11.3 9.2 8.6 9.6 9.8 9.2 8.3 8.8
10.1 9.6 11.1 10.6 9.7 9.5 10.0 9.3 10.1 10.4 10.3 9.8 9.9
9.6 11.1 9.7 10.4 8.5 10.0 9.2 8.2 9.0 9.3 8.9 8.8 9.3
9.3 10.7 9.3 10.0 8.1 9.2 8.4 7.4 8.6 8.5 8.4 8.4 8.7
9.0 10.1 9.3 9.8 8.2 9.6 8.4 8.0 8.6 9.0 8.3 8.3 8.9
10.0 9.4 8.0 9.7 9.4 10.4 9.3 9.1 9.9 10.1 9.3 9.7 9.6
3.0 2.2 3.6 3.1 2.8 1.7 1.6 1.1 0.7 1.0 1.9 0.6 0.9
12.8 11.5 10.8 12.3 13.1 13.4 11.1 12.3 11.4 12.4 12.9 11.5 11.2
7.0 6.9 7.7 8.1 7.4 7.0 6.5 6.8 7.0 7.1 7.7 5.9 5.9
11.0 10.7 10.5 10.7 12.3 11.9 12.4 12.9 12.5 11.9 12.9 12.4 12.9
6.8 5.1 5.0 7.3 7.3 6.6 5.7 6.9 6.1 6.1 6.6 6.2 6.2
6.0 6.6 3.9 5.8 6.8 7.3 6.7 6.8 7.0 7.3 7.1 6.8 6.1
10.0 9.8 10.3 10.2 9.3 9.6 8.6 8.0 8.1 8.6 9.1 8.1 8.1
6.0 6.5 7.1 6.6 6.6 7.0 7.8 7.7 7.5 8.8 8.7 7.2 7.3
8.8 8.8 9.4 8.8 9.2 8.6 8.8 8.8 8.7 9.2 9.2 8.6 8.3
10.9 10.6 10.7 10.5 10.2 10.3 9.8 9.9 9.8 11.8 11.6 9.7 9.8
-1.1 -0.8 -0.8 -1.1 -0.9 -0.9 -0.7 -0.9 -1.1 -0.9 -0.8 -0.9 -0.9
8.2 7.0 6.6 6.9 9.8 9.4 9.5 8.9 10.0 9.6 9.5 9.4
0.5 0.9 0.8 0.7 0.8 0.7 0.5 0.7 0.3 0.5 0.7 0.4 0.2
-1.1 -0.9 -1.1 -1.1 -0.4 -0.8 0.1 0.0 -0.5 -0.2 0.1 0.2 -0.4
6.0 6.0 6.6 5.9 6.0 4.9 6.1 5.6 5.7 5.7 6.7 6.0 5.3
9.3 9.8 9.0 8.8 8.7 9.4 9.2 9.7 10.0 10.0 9.8 9.8
0.0 0.5 0.5 0.2 0.2 0.4 1.5 0.8 0.5 0.6 1.3 2.9 0.4
2.5 2.7 2.5 2.5 2.4 2.6 2.2 2.1 2.1 2.5 2.8 2.0 1.7
10.9 11.2 10.5 10.5 10.2 10.7 10.1 9.6 10.1 9.7 11.0 10.1 10.2
2.2 2.1 2.6 2.1 2.6 1.2 0.2 0.8 0.1 0.1 0.6 -0.5 -0.5
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Table A.7:∆CT values for next 29 genes for the isograft Patients

d 1 d 1 d 1 d 2 d 2 d 2 d 2 d 2 d 3 d 3 d 3

6.5 8.1 7.4 9.4 9.4 9.5 9.8 9.0 9.4 11.3 10.1
9.5 10.2 9.3 11.3 9.8 9.5 9.9 8.8 9.2 12.0 10.0
9.7 10.1 9.0 11.9 10.6 9.3 10.4 9.0 11.6 13.0 10.2
10.2 10.0 9.4 10.2 10.5 8.3 10.5 9.3 9.8 10.6 9.5
10.4 10.1 9.5 10.2 10.2 10.0 10.7 9.0 10.6 11.9 10.6
9.6 9.3 8.3 10.5 9.7 8.7 9.2 7.4 10.5 13.2 9.3
8.7 8.9 7.6 10.1 9.6 8.1 8.8 6.6 9.9 12.0 8.7
8.8 8.5 7.8 10.0 9.4 7.9 8.6 6.8 10.1 11.8 9.0
8.7 10.0 9.3 10.6 9.7 9.7 10.0 8.7 11.1 12.1 10.2
1.4 2.6 1.8 2.5 2.7 2.8 2.9 3.0 3.2 4.2 3.4
10.4 12.5 12.6 10.6 9.9 7.7 7.9 7.6 7.6 8.9 11.1
7.2 8.4 7.6 6.9 7.3 5.9 6.7 6.1 5.9 6.8 7.3
11.7 11.8 12.2 11.1 11.9 8.9 9.0 8.3 8.6 9.8 11.9
5.5 6.6 7.1 6.2 6.4 5.5 5.0 5.1 5.0 6.1 7.0
7.0 7.5 7.0 6.6 6.3 7.3 6.8 6.4 6.9 7.8 7.3
8.7 10.0 9.0 8.9 8.5 8.6 8.9 8.4 9.1 10.1 9.2
7.8 8.6 8.1 5.8 5.9 6.2 6.1 5.9 6.3 6.5 6.5
9.3 10.0 9.3 7.5 7.5 8.3 8.2 7.8 8.4 8.5 8.2
10.2 10.9 10.7 8.6 7.8 8.6 7.8 7.0 8.0 8.4 8.7
-0.3 -0.4 -0.3 -0.4 -0.2 0.2 0.0 -0.6 -0.1 0.1 0.1
8.9 9.2 9.5 9.1 8.7 8.3 7.6 7.0 8.1 8.0 9.4
0.6 0.6 1.0 -0.5 -0.3 0.5 0.4 -0.1 0.3 0.6 0.6
0.5 0.1 0.7 1.0 1.5 2.4 1.7 1.5 2.6 3.2 3.3
6.7 6.2 6.5 5.2 5.6 6.6 6.6 6.5 7.6 7.7 7.5
9.5 21.2 9.3 11.1 10.7 10.8 10.2 8.8 10.7 12.7 10.3
2.4 1.2 1.3 1.1 1.5 4.0 2.6 1.7 3.1 2.8 3.5
3.5 3.0 2.7 1.6 1.8 2.7 2.9 2.1 2.6 3.0 2.6
10.4 10.8 10.2 10.8 10.0 10.1 10.6 9.2 10.7 12.2 10.7
0.7 0.9 0.9 0.3 0.8 0.5 0.8 0.8 0.4 1.2 0.7
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Table A.8:∆CT values for next 29 genes for the isograft Patients

d 4 d 4 d 4 d 5 d 5 d 5 d 6 d 6 d 6 d 7 d 7 d 7

11.2 9.9 10.2 10.7 11.8 11.3 11.6 10.7 11.4 7.6 11.4 9.9
11.4 8.9 9.8 9.4 9.5 10.8 11.5 10.5 10.3 9.2 10.6 8.9
11.7 12.0 10.8 11.5 11.4 13.4 12.4 12.0 11.2 10.3 11.4 9.1
9.9 10.7 11.0 10.7 11.5 10.0 12.3 11.8 11.0 8.8 10.4 8.5
9.2 11.3 10.0 10.9 11.0 11.1 11.2 11.8 9.9 10.3 11.4 9.3
12.0 10.8 9.5 10.0 10.7 11.8 10.0 6.5 6.5 8.9 9.1 7.8
11.9 10.1 9.3 9.6 10.3 10.7 10.1 9.9 10.0 8.8 9.3 7.7
11.4 10.3 9.4 9.7 10.2 10.3 10.1 9.9 10.2 8.6 9.4 7.7
9.9 10.9 9.9 10.6 10.9 12.0 11.6 11.6 10.0 9.4 10.6 9.1
4.1 4.0 4.7 4.2 5.0 0.5 4.9 3.7 4.3 1.3 3.8 2.7
11.1 11.7 11.1 11.0 13.0 14.3 12.8 12.6 10.4 10.6 12.3
7.0 7.7 7.7 7.5 9.1 9.3 8.5 8.0 7.7 9.0 15.0 9.5
11.0 12.0 12.4 11.8 13.9 14.9 13.5 13.6 13.1 11.8 11.3 12.5
6.7 6.8 6.6 6.3 7.8 7.5 7.9 6.8 5.6 6.0 7.5
6.8 6.8 7.5 6.4 6.9 7.8 7.7 7.0 5.1 6.6 6.3
9.7 10.6 9.7 9.0 10.5 10.5 9.9 9.7 6.8 9.1 8.5
5.8 6.6 6.2 5.9 6.7 7.0 7.1 6.4 4.9 5.5 6.2
7.9 8.6 8.2 7.8 9.2 9.0 8.9 9.0 6.4 7.6 8.0
8.0 9.0 8.5 8.6 9.7 10.1 9.7 9.5 9.2 7.8 8.5 8.6
-0.3 -0.2 -0.5 -0.4 -0.5 -0.5 -0.2 -0.7 -0.3 -0.3 -0.4
8.4 8.9 10.7 11.3 10.9 12.0 11.9 10.6 11.9 10.9 10.8
0.3 0.6 0.7 0.3 0.9 0.5 0.5 0.2 -0.8 0.0 -0.1
1.5 1.6 1.6 1.7 1.5 1.9 2.0 1.1 4.7 1.6 1.7
6.7 7.3 6.5 7.0 6.8 7.1 7.0 7.6 6.3 7.1 7.2 5.9
10.9 11.0 10.6 10.7 10.3 11.9 10.6 7.8 7.8 10.1 10.1 9.0
2.6 1.9 2.7 2.7 1.8 3.3 2.1 2.6 4.3 2.4 2.2
2.3 2.5 3.1 2.3 3.3 0.0 2.6 2.5 2.3 0.0 2.0 1.8
11.1 10.7 10.3 10.5 11.3 11.0 11.3 10.7 8.8 10.6 9.8
1.1 1.2 1.3 0.6 1.2 0.1 -0.4 -0.6 -0.9 -1.2 0.3 0.0
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Table A.9:∆CT values for last 22 genes for the isograft Patients

ref 0h 0h 0h 1h 1h 1h 1h 3h 3h 3h
Genes C0 avg
gelsolin 0.2 0.7 0.7 -0.2 -0.3 0.1 0.3 1.3 0.9 2.4 0.0
MLC-2 -2.7 -2.2 -3.5 -3.4 -4.0 -3.0 -3.0 -3.1 -3.6 -3.5 -3.6

crystallin -1.2 -0.5 -1.0 -1.1 -1.5 -1.1 -0.7 -1.2 -1.4 3.8 -1.5
GSH Px 1.3 1.6 1.1 -0.1 1.8 0.6 1.1 0.8 2.5 2.7 1.6
Hsc70 -0.1 1.0 0.6 0.8 -0.1 0.1 0.5 1.5 0.0 1.9 -0.1
iNOS 10.9 9.3 9.6 10.3 9.8 10.9 10.9 11.1 10.6 9.8 10.5
MGP 0.9 0.4 0.5 -0.2 0.2 0.4 0.4 0.7 0.9 -0.3 0.1
DHFR 7.5 8.3 2.7 7.6 8.0 7.8 6.4 7.2 7.4 8.4 7.8

FOLbp3 8.4 8.2 7.6 7.9 7.9 6.2 7.1 7.1 7.9 7.2
GTP-CH I 8.6 9.7 9.7 9.9 9.1 9.2 7.2 7.9 9.2 11.6 9.2
MTHFD2 7.4 7.7 8.2 7.4 8.3 7.8 6.6 7.5 7.8 10.7 7.5

PTPS 4.5 4.3 0.8 4.2 4.1 4.6 4.5 4.8 4.0 5.1 3.9
sepiapterin R 5.6 6.5 5.7 5.7 5.6 6.2 6.4 6.7 5.3 6.6 5.8

B2-M 0.7 1.1 0.8 0.4 0.1 0.4 0.8 0.8 0.5 2.6 0.3
I-A-b one 5.6 5.7 5.6 4.7 4.8 4.9 4.8 6.5 5.1 9.6 5.9

I-E-b 4.5 5.2 4.9 3.6 3.8 4.0 4.2 4.8 4.9 4.4 5.0
MHC-1 7.0 8.5 8.0 7.8 7.7 7.9 6.1 6.8 8.6 9.8 7.8
BLR-1 9.1 11.3 10.6 10.3 9.7 8.8 7.5 8.4 11.0 11.1 9.7
EF-1a 0.2 0.1 -0.3 -0.5 -0.3 -0.2 -0.2 -0.2 0.2 1.2 -0.1
GAS-6 4.3 3.7 3.6 3.7 3.9 4.8 4.6 5.4 4.4 4.2 4.2
rp L8 0.9 0.9 0.3 0.7 0.1 0.5 1.1 0.6 0.4 0.9 0.5
rp S24 0.0 -0.1 -0.6 -0.3 -0.9 0.1 -0.1 -0.5 -0.6 1.5 -0.6
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Table A.10:∆CT values for last 22 genes for the isograft Patients

6h 6h 6h 9h 9h 9h 12h 12h 12h 12h 18h 18h 18h

0.9 0.4 0.6 0.7 0.3 0.7 1.4 0.6 1.3 1.4 2.3 1.1 0.8
-2.5 -3.3 -3.6 -3.3 -3.6 -3.2 -2.8 -2.9 -3.2 -3.1 -2.5 -2.7 -3.2
-1.1 -1.6 -1.4 -1.7 -1.4 -1.5 -1.7 -1.5 -2.3 -2.3 -2.1 -1.2 -1.9
1.2 1.7 2.7 2.5 1.3 1.3 0.9 -0.4 1.3 1.6 1.3 0.0 0.7
0.8 0.1 -0.1 0.0 0.6 -0.3 -0.5 0.1 -1.0 -0.9 0.0 0.1 -1.1
10.5 10.7 10.4 10.7 10.9 10.5 9.1 7.7 6.8 8.4 10.2 7.8 9.8
0.8 0.5 1.1 1.2 0.4 1.0 0.9 0.3 0.3 0.3 0.8 -0.5 -0.3
8.9 8.4 8.6 8.5 8.8 8.7 7.9 8.4 8.8 8.9 8.5 8.3
9.1 8.8 6.5 7.4 9.6 9.9 9.4 10.0 10.6 11.5 11.4 10.0
9.0 8.8 8.7 9.2 9.4 9.8 9.5 9.0 9.6 10.0 10.6 9.7 9.2
9.3 7.7 8.4 7.9 7.9 7.1 6.7 6.5 6.4 6.2 7.3 5.6 5.7
5.3 4.7 4.0 4.4 4.6 4.6 4.9 4.8 4.7 5.0 5.6 5.0 4.4
6.8 6.1 4.9 5.5 6.3 6.0 6.6 6.6 6.6 7.0 7.2 8.1 5.9
0.4 0.4 0.6 0.4 0.6 0.1 0.6 0.5 0.2 0.6 -0.2 -0.1 0.3
5.4 5.1 5.0 5.4 5.3 5.5 5.3 6.0 6.1 6.6 6.5 5.3 4.7
7.0 4.8 5.2 4.5 4.1 4.4 4.3 4.8 5.2 5.8 5.7 4.3 4.1
10.2 8.8 8.6 8.2 8.2 8.2 7.6 7.6 7.7 7.9 8.3 8.2 7.5
11.1 11.4 11.2 10.9 10.8 10.1 10.2 8.9 9.6 10.0 9.8 10.3 9.5
0.1 0.1 0.2 0.5 0.3 -0.2 -0.8 -0.7 -0.5 -0.6 -0.1 -0.8 -1.3
4.5 5.1 4.3 4.7 4.5 4.9 4.7 4.7 4.5 4.3 5.0 4.4 4.1
0.6 0.9 0.7 0.7 0.6 0.5 0.6 0.5 0.3 0.3 0.3 0.1 -0.1
0.0 0.1 -0.3 -0.1 0.0 -0.2 -0.2 -0.2 -0.5 -0.3 -0.7 -0.5 -0.8
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Table A.11:∆CT values for last 22 genes for the isograft Patients

d 1 d 1 d 1 d 2 d 2 d 2 d 2 d 2 d 3 d 3 d 3

2.0 2.2 1.4 0.9 1.1 3.2 2.0 1.1 2.7 2.5 3.0
-2.8 -2.8 -2.4 -2.4 -2.2 -0.3 -1.9 -2.7 -0.3 -1.6 -0.6
-1.5 -1.4 -1.3 -1.8 -1.6 -0.9 -1.3 -1.8 -1.4 -0.6 -1.0
1.8 2.5 0.4 -0.1 0.2 1.1 0.8 0.0 0.5 0.9 1.1
-0.3 -0.3 0.2 0.0 0.4 1.8 0.4 0.2 1.6 0.9 1.1
8.1 9.8 9.3 9.2 8.7 7.3 9.4 9.4 8.9 10.6 9.5
0.6 1.1 0.6 -0.6 -0.3 1.8 0.1 -0.6 2.1 0.2 1.0
8.8 9.5 8.5 7.4 6.7 7.8 7.6 7.0 8.3 8.5 8.0
10.2 10.7 9.3 8.1 10.1 10.2 9.7 8.3 11.5 13.1 10.9
9.9 10.4 11.3 11.8 10.9 10.8 10.8 9.3 11.7 12.5 10.5
7.2 7.3 6.9 6.8 6.5 8.1 6.9 6.2 7.3 7.4 7.1
5.7 6.2 5.9 5.4 5.3 6.6 6.7 4.9 5.8 6.4 6.5
6.7 7.4 8.2 7.4 6.8 9.3 6.8 6.8 7.8 8.3 8.2
1.6 1.2 0.9 -0.1 0.2 0.9 1.6 0.0 0.1 0.9 1.1
6.1 6.7 6.2 5.2 5.1 6.6 5.6 4.4 5.5 5.7 5.4
5.1 6.8 5.1 4.0 4.3 7.6 4.5 3.3 4.3 5.2 5.0
8.3 8.7 8.3 7.9 7.7 9.1 9.3 8.0 9.1 9.0 8.4
9.8 10.1 9.5 11.2 10.5 9.5 10.6 8.8 10.7 12.2 10.3
0.0 -0.3 -0.3 -1.2 -1.0 -0.6 -1.1 -0.8 -0.2 -0.5
4.8 5.2 5.1 3.3 3.7 4.3 3.8 4.0 4.3 4.7 4.2
0.4 0.3 0.6 0.1 0.3 0.9 1.1 0.2 2.0 1.6 1.3
0.0 -0.3 0.0 -0.6 -0.4 0.4 0.0 -0.7 0.7 1.0 0.4
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Table A.12:∆CT values for last 22 genes for the isograft Patients

d 4 d 4 d 4 d 5 d 5 d 5 d 6 d 6 d 6 d 7 d 7 d 7

1.0 2.3 3.3 2.9 2.3 3.3 2.3 2.8 2.3 2.1 1.8
-1.9 -2.4 -2.1 -1.3 -2.3 -0.7 -2.0 -1.5 0.6 -1.9 -2.2
-0.5 -0.7 -1.5 -1.1 -1.6 -1.3 -1.4 -1.1 1.4 -0.4 -0.4
0.7 1.0 1.2 0.4 1.2 0.3 0.4 0.3 0.9 0.6 0.3 0.0
0.6 0.7 0.4 1.1 0.9 0.7 0.8 0.6 -0.1 0.3 0.6
9.3 10.4 9.8 9.6 10.3 9.3 10.1 10.5 6.9 9.9 9.0
-0.9 -0.3 0.7 -0.1 -0.1 -0.9 -0.5 -0.8 -2.0 -1.4 -1.4
8.3 8.2 7.3 7.1 8.2 3.5 8.6 8.1 8.5 5.6 7.7 7.6
12.6 10.0 11.1 11.7 11.9 10.1 11.3 8.6 8.7 11.5 5.4 10.1
11.8 10.9 11.5 11.3 9.8 10.8 10.8 9.1 8.9 10.5 11.0 10.3
7.2 7.2 6.6 7.0 7.0 5.5 7.3 6.9 4.6 6.7 6.4
5.4 5.7 5.8 6.2 5.4 5.6 5.9 6.0 4.9 5.3 4.9
7.7 7.2 7.8 8.0 6.9 7.5 8.0 8.0 8.0 7.8 6.9
0.2 0.7 12.0 0.8 0.9 0.3 0.3 0.5 -0.8 -0.6 -0.3
4.4 5.2 5.7 5.0 5.3 5.1 5.2 5.0 4.7 3.6 3.5 3.7
3.6 3.7 4.4 3.8 4.6 4.2 3.7 3.8 2.4 2.4 2.6
7.8 8.4 8.3 8.5 8.6 9.4 8.5 9.3 6.4 7.3 7.3
12.4 11.2 11.0 11.7 11.8 11.0 12.4 11.8 9.6 11.4 9.4
-0.7 -0.3 -0.6 -0.8 -0.2 -1.3 -0.6 -0.9 -0.6 -2.4 -1.3 -1.1
3.6 4.7 4.6 3.8 4.8 4.2 3.8 3.5 3.0 2.8 3.2
0.9 0.9 1.1 1.0 1.1 0.8 1.3 1.0 0.7 0.7 0.6
0.2 0.1 0.3 0.2 0.4 -0.2 0.5 0.2 -0.3 -1.0 -0.2 -0.2
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Table A.13:∆CT values for first 31 genes for the allograft Patients

dCT ref 0 h 0 h 0 h 1 h 1 h 1 h 1 h 1 h 3 h 3 h
C0 avg

GAPDH 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C1q-a 5.3 6.4 6.4 7.2 6.2 5.9 5.7 6.2 6.0 5.8 5.7
C1q-b 4.4 5.0 4.8 5.7 4.5 4.9 4.6 5.1 5.2 4.3 4.2
C1q-c 7.0 7.5 7.6 8.3 7.1 6.1 7.9 7.9 7.7 5.9 7.4
C1-Inh 2.5 3.0 2.8 3.7 2.1 3.0 2.8 3.0 3.0 2.4 2.4

compl C3 3.8 6.2 4.4 7.2 5.2 7.6 5.6 7.2 7.1 6.4 4.6
C3aR 7.7 8.5 8.0 9.0 8.4 9.2 7.4 8.6 8.2 8.0 7.8
C4 6.3 5.9 6.5 9.0 7.5 8.1 8.3 5.7

C5aR 6.7 7.1 8.0 8.9 7.8 8.8 7.3 8.5 8.5 6.7 5.9
C9 10.2 11.4 11.0 13.4 12.8 10.8 10.8 10.1 12.3 11.0

compl H 3.0 4.0 3.3 4.1 3.2 4.8 3.0 3.6 3.6 3.8 4.1
DAF-1 5.7 7.2 6.9 6.8 6.3 6.1 7.1 6.9 6.6 7.1
Pro-C5a 12.7 12.9 14.4 15.2 12.5 14.2 12.7 13.3 12.9 11.8
properdin 6.1 7.0 5.6 7.0 6.7 7.0 6.5 7.6 7.5 7.4 4.9

APP 1.8 2.4 2.2 3.2 1.8 3.0 1.9 3.0 2.9 1.9 2.3
CRP 10.6 11.5 11.6 12.9 12.1 13.6 11.2 10.7 10.8 11.9 10.7

MacManR 5.4 6.2 6.1 7.2 6.0 7.4 6.0 6.9 6.9 6.2 6.1
Man6-PR 4.3 5.1 5.2 5.6 5.0 6.0 4.9 5.8 6.2 5.7 4.8
MBL-2 10.6 11.9 11.7 12.9 14.9 11.8 11.6 10.7 10.8 11.7 10.6
SAA-2 12.0 10.7 10.3 13.3 11.7 8.6 10.3 9.7 11.4 10.4
SAA-4 11.5 11.1 13.7 14.4 16.0 12.9 11.9 11.2 11.0 12.0 11.5
SAP 10.6 11.4 13.4 14.1 14.8 13.1 12.4 11.0 11.2 12.6 10.4

G-CSF R 9.5 9.0 9.9 9.2 9.4 8.5 8.9 8.9 8.4 8.7
GM-CSF R2a 9.0 8.3 9.4 10.6 9.5 9.8 8.3 9.0 9.1 8.5 6.7

IFN-b 11.4 12.2 14.6 14.4 16.2 12.9 12.0 11.8 11.9 10.8
IFN-g 5.7 6.2 5.9 7.2 6.3 6.7 5.7 6.6 6.6 6.1 5.9
IL-1a 8.9 9.1 8.7 10.2 9.8 8.9 7.3 8.7 8.4 8.1 8.0
IL-1b 9.6 8.2 10.8 10.2 9.9 7.7 9.4 8.7 5.7 3.8
IL-2 11.5 10.3 7.6 8.9 8.3 11.4 10.6
IL-6 10.5 8.1 8.7 6.4 8.9 7.8 3.0 3.1
IL-10 11.1 12.2 12.5 13.5 10.1 11.4 10.8 11.0 9.5
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Table A.14:∆CT values for first 31 genes for the allograft Patients

3 h 3 h 3 h 6 h 6 h 6 h 9 h 9 h 9 h 12 h 12 h 12 h

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6.5 6.2 6.5 6.3 6.5 6.7 5.6 5.3 5.7 5.3 6.1 4.6
4.5 5.0 5.2 4.5 4.7 4.6 3.9 3.7 4.3 4.0 4.1 2.3
8.0 7.4 7.7 7.6 8.3 7.6 6.8 6.8 7.5 7.7 6.8 5.9
2.3 2.9 3.1 2.6 3.0 2.7 2.7 2.5 2.5 2.9 3.0 2.2
3.9 7.6 8.2 4.9 8.1 5.7 6.2 4.4 5.7 5.4 6.8 3.9
7.5 8.2 9.1 8.2 8.7 8.1 7.3 6.1 8.4 7.6 6.1 4.9
6.0 8.7 7.1 9.5 7.3 7.7 6.9 7.5 7.0 8.3 6.2
5.8 7.5 7.9 5.7 6.9 5.5 5.6 4.6 7.5 5.8 4.3 3.9
11.1 9.2 11.3 11.1 10.5 10.1 9.5
2.9 4.3 4.2 3.3 4.5 2.9 3.0 2.7 3.7 3.9 3.1 2.5
6.0 7.7 7.2 6.9 7.6 7.3 6.7 7.3 7.0 7.7 7.8 6.3
13.4 10.3 14.0 13.6 14.1 13.3 12.4 13.1 13.6 12.5 12.5 10.7
5.4 7.4 7.8 5.8 7.2 6.2 5.8 4.5 5.1 5.5 4.3 3.2
2.0 2.7 3.0 2.1 2.8 2.0 2.0 1.8 2.7 2.4 2.2 1.2
10.9 8.7 11.7 11.0 12.4 11.7 10.4 10.2 10.9 10.3 10.1 10.2
5.3 7.8 7.5 5.7 6.5 5.1 5.2 4.3 6.4 6.3 4.7 3.7
4.5 5.8 6.0 4.8 5.5 4.5 4.9 4.2 5.7 4.9 4.8 3.8
11.0 8.4 11.3 10.8 12.3 11.1 10.8 10.3 10.7 10.8 10.2 9.7
9.2 8.6 9.9 9.6 12.2 10.4 9.3 7.6 9.8 9.0
11.7 12.1 11.9 12.7 12.9 10.9 10.5 11.6 10.9 10.4 10.6
12.0 9.6 11.5 11.8 12.2 12.0 10.9 11.9 11.0 10.5 10.0
8.8 8.6 9.2 8.2 8.7 7.8 6.9 9.4 6.4 6.8
6.3 7.7 9.2 6.6 9.0 6.6 6.2 5.0 9.1 6.4 5.5 4.5
11.7 9.7 12.7 11.7 12.0 12.7 11.3 11.5 11.9 11.5 10.9 10.6
5.9 6.4 6.4 4.7 6.9 5.3 5.2 4.2 6.6 4.1 4.8 4.0
7.3 8.3 9.1 7.9 9.4 8.2 8.1 8.9 8.0 7.2 7.4
3.0 6.9 6.9 3.0 5.2 3.3 3.7 3.2 7.9 3.8 5.4 3.9
9.9 8.6 10.0 9.5 10.8 10.9 8.3 6.6 10.2 9.8 8.0
1.3 5.2 5.2 1.7 3.9 1.8 3.6 2.1 5.0 2.9 3.7 4.1
9.1 9.2 11.8 9.6 11.4 10.1 10.0 10.2 9.7 9.2 9.8 9.2
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Table A.15:∆CT values for first 31 genes for the allograft Patients

18 h 18 h 18 h d 1 d 1 d 1 d 2 d 2 d 2 d 3 d 3 d 3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.7 5.7 5.3 5.1 5.2 4.2 4.1 4.6 2.9 3.1 3.6
3.0 4.2 3.9 3.8 3.6 3.6 2.7 2.9 3.3 1.7 1.7 2.2
6.0 6.9 7.5 6.3 6.7 6.9 5.3 4.8 6.2 3.8 3.7 5.6
2.2 2.8 3.0 3.3 3.6 2.9 2.9 3.7 3.1 2.3 2.4 1.9
5.2 5.4 7.3 5.0 6.8 5.5 4.0 5.2 5.0 4.6 4.1 3.6
6.5 6.4 7.7 6.3 7.0 5.7 5.7 6.4 5.1 5.4 5.8 4.4
6.6 6.7 9.8 6.3 6.7 6.8 6.9 5.7
4.2 4.4 5.9 4.1 5.0 4.1 4.1 4.9 4.6 4.6 4.2
9.8 10.2 8.7 12.4 11.7 10.0 11.5 8.8 7.6 11.2 11.1 11.3
3.4 3.1 4.2 4.0 5.0 3.0 3.5 4.5 3.4 3.7 3.7 2.9
7.3 7.3 8.7 6.9 6.8 7.3 5.9 7.2 6.8 6.8 6.6 6.0
11.5 12.2 10.3 13.0 14.1 11.5 12.3 10.1 9.5 11.7 12.3 13.1
4.9 4.5 5.4 5.4 5.5 4.6 4.5 5.2 5.0 4.1 4.3 3.7
1.7 2.0 3.2 2.4 2.5 1.9 2.1 2.5 2.3 2.0 1.9 1.5
9.9 10.4 8.7 11.9 10.7 9.9 11.0 8.1 7.5 11.1 10.8 11.2
4.8 5.4 6.1 5.2 5.7 5.1 4.4 5.3 5.2 4.6 4.4 4.2
4.3 4.6 5.4 4.5 5.3 4.2 4.2 4.8 4.6 4.2 4.7 3.7
10.1 10.3 9.0 11.8 11.4 10.3 11.0 8.0 8.3 11.4 11.1 11.8
8.6 10.1 9.3 11.5 10.0 8.6 10.3 7.7 8.0 10.8 10.2 8.1
10.0 11.4 9.3 12.5 11.5 10.8 11.6 9.4 9.2 11.5 11.8 11.3
10.4 11.0 9.1 12.6 11.0 10.0 11.2 8.5 7.9 11.1 11.3 12.2
6.9 7.9 7.8 5.3 6.6 4.7 5.1 5.9 5.6 6.5 6.6 6.6
4.8 4.8 6.0 6.9 8.1 6.5 6.4 6.6 6.4 7.8 7.3 6.8
10.8 9.6 12.6 12.1 10.4 12.0 9.0 8.2 11.8 13.2 12.5
4.6 4.5 5.6 4.7 5.5 5.2 5.0 5.6 3.9 4.0 4.5 3.9
8.3 7.5 7.2 8.0 9.4 7.8 7.7 6.5 6.9 8.9 8.9 7.8
4.5 3.6 3.6 4.2 6.3 4.7 3.6 3.3 6.1 4.2 5.6 5.4
9.5 10.3 8.5 9.9 9.0 5.9 8.6 7.2 9.3 10.1
4.5 5.6 5.1 5.9 6.8 5.2 4.9 5.6 5.0 5.7 6.0 5.1
9.5 10.2 9.1 11.2 11.1 9.9 10.5 9.0 8.7 10.7 11.0 10.2
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Table A.16:∆CT values for first 31 genes for the allograft Patients

d 4 d 4 d 4 d 5 d 5 d 5 d 6 d 6 d 6 d 7 d 7 d 7 d 7

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.8 3.7 3.4 3.3 3.0 2.6 2.8 2.6 3.2 2.5 2.6 2.7
2.2 1.0 1.2 2.1 1.4 1.2 0.9 1.2 1.2 0.7 0.8 0.7 0.8
5.8 4.1 5.1 4.0 4.1 5.0 3.2 3.7 5.0 3.1 3.4 3.5 4.8
2.6 1.3 1.3 2.3 1.4 1.9 3.0 2.9 1.9 0.8 2.3 2.4 2.3

2.3 3.3 3.6 2.0 2.9 5.7 2.9 1.1 3.3 3.1 2.4
6.3 5.4 2.9 6.2 6.1 4.7 4.1 4.9 4.7 4.0 4.7 4.6 3.4
6.7 5.1 5.4 5.7 4.9 5.3 5.4 5.7 5.3 4.5 4.9 4.6 4.7
5.1 4.9 2.7 5.5 5.1 4.1 3.2 3.9 4.1 3.4 3.6 3.7 2.9

11.1 11.1 11.1 9.6 9.6 12.2 11.6 11.2
3.8 3.0 4.0 4.2 5.0 5.9 5.8 5.0 3.5 6.1 5.6 5.0

7.1 7.2 6.3 7.5 7.8 6.1 8.4 8.8 5.9 6.1 8.2 8.0 5.9
9.4 11.3 11.9 9.0 11.7 11.2 9.9 9.8 11.2 13.7 11.9 12.1 10.3
4.7 4.6 2.4 5.0 5.2 3.8 4.1 4.7 3.8 2.4 3.9 4.1 2.9
2.3 1.6 0.6 2.8 1.9 1.7 2.1 2.4 1.7 0.4 2.1 1.9 1.4
7.6 10.5 10.7 7.3 10.5 9.9 8.8 8.3 9.9 10.9 12.0 10.6 9.2
5.7 4.8 3.9 6.5 6.1 6.7 7.0 7.2 6.7 5.3 7.1 6.2 6.2
5.1 3.9 2.8 4.4 3.5 3.5 3.5 3.9 3.5 2.0 3.2 3.2 3.4
8.4 11.0 10.0 7.8 11.0 9.7 8.8 8.3 9.7 11.5 11.9 10.7 8.7
8.3 10.3 9.3 8.1 7.3 9.4 9.0 7.3 11.9 10.4 10.1 6.9
9.0 11.1 8.9 11.7 10.1 9.4 9.2 10.1 12.3 12.2 11.4 9.3
7.8 11.0 11.5 7.5 10.3 10.1 9.1 8.7 10.1 11.9 11.2 10.8 9.8
5.9 6.9 5.6 6.6 6.0 7.1 6.1 6.6 5.8 5.0 7.2 5.1 8.7
7.1 7.9 7.5 6.3 6.0 8.1 6.1 6.7 8.1 5.7 6.6 6.1 6.4
8.2 13.0 11.2 7.3 11.8 9.1 9.0 9.2 12.7 12.3 12.1 11.5 8.8
4.4 2.9 2.6 2.6 1.8 2.7 3.5 1.2 0.7 2.3 2.3 2.2
6.9 9.1 7.5 7.4 8.8 7.3 7.6 7.6 7.3 8.5 8.6 8.8 6.4
3.6 6.0 4.3 5.2 5.6 4.0 4.1 4.6 4.0 3.6 4.1 4.4 2.7
7.2 9.5 4.7 6.9 8.4 8.3 7.8 8.6 8.6 8.7 4.1
6.1 6.3 4.5 5.9 7.2 5.0 5.4 5.1 5.2 4.6 4.9 5.0 4.4
9.3 9.6 10.6 8.3 8.8 7.8 8.6 8.5 7.8 7.4 8.5 8.8 7.8
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Table A.17:∆CT values for next 29 genes for the allograft Patients

dCT 0 h 0 h 0 h 1 h 1 h 1 h 1 h 1 h 3 h 3 h

IL-11 11.5 9.3 10.5 12.6 12.2 11.8 9.4 9.1 10.9 10.1
IL-12 p35 10.8 10.5 11.6 13.2 13.3 9.7 10.5 9.8 11.6 10.1
IL-12 p40 10.7 10.4 13.0 13.1 10.8 10.3 11.5 10.3

TNF-a 10.9 10.0 12.3 12.7 12.9 12.8 10.7 10.7 10.5 9.9 9.1
granz B 10.8 11.6 12.7 13.2 11.8 10.6 9.9 10.0
granz D 9.6 10.2 11.8 11.9 13.5 14.8 10.8 9.6 9.2 10.3 9.3
granz E 9.4 9.6 11.3 11.7 15.1 10.7 9.0 8.9 9.7 8.8
granz G 9.3 9.0 11.4 11.9 14.9 8.9 8.9 9.8 8.9
perforin 9.8 10.1 11.3 11.7 11.0 12.6 9.6 9.1 9.7 9.6 10.5
serglycin 4.6 3.6 4.6 4.8 4.1 5.0 3.9 4.8 4.6 3.6 2.6
TLR-1 12.0 9.2 9.4 10.2 10.4 11.1 10.7 10.5 10.1 10.3 9.7
TLR-2 8.5 7.6 7.9 9.0 8.5 9.5 7.7 8.7 8.6 7.2 6.0
TLR-3 13.4 8.1 8.7 9.2 8.1 11.2 8.8 9.3 9.6 8.0 8.8
TLR-4 7.0 6.7 6.5 6.4 6.7 8.4 5.5 6.2 6.5 7.3
TLR-5 6.5 7.2 6.3 7.8 7.2 7.4 4.7 6.3 6.1 7.4 7.4
TLR-6 9.0 9.6 10.0 10.6 10.0 12.0 9.8 10.4 10.4 10.4 9.9
TLR-7 7.6 7.2 7.1 7.9 6.9 8.2 7.2 7.8 7.5 6.4 6.0
TLR-8 11.0 10.2 9.6 10.2 9.5 11.8 9.4 9.9 8.0 10.1 9.2
TLR-9 9.7 9.3 10.0 10.4 10.4 9.7 9.6 10.1 9.8
Aldo-a -0.4 -0.3 -0.7 -0.4 -0.4 -0.4 -0.9 0.1 -0.1 -0.3 -0.7
CARAT 8.3 6.1 6.2 6.6 6.8 6.8 6.8 7.0 7.2 6.6
Cat D 1.0 1.0 0.7 1.3 1.1 1.1 0.7 1.2 1.2 1.5 0.6
CK -0.3 -0.5 -0.6 0.1 -0.1 -0.3 -1.1 -0.8 -0.6 -0.4 -0.6

GDH 5.5 6.9 5.5 8.7 5.6 7.6 7.2 7.3 7.7 6.8 5.1
IDO 10.6 11.8 11.8 10.5 10.0

LDH-2B 0.4 0.7 0.4 0.6 0.7 0.9 0.1 0.9 1.0 0.7 0.4
MEP 2.6 2.9 2.5 2.9 2.3 3.2 2.3 3.3 2.9 2.5 4.1

ANK-1 11.1 10.3 11.2 11.9 12.2 10.7 10.0 10.2 10.7 11.2
b-actin 1.6 2.5 2.6 3.8 2.1 3.1 2.3 3.2 3.4 2.4 2.2
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Table A.18:∆CT values for next 29 genes for the allograft Patients

3 h 3 h 3 h 6 h 6 h 6 h 9 h 9 h 9 h 12 h 12 h 12 h

10.7 9.0 10.0 10.3 11.7 9.5 10.0 7.8 11.2 10.3 8.1 7.5
10.3 8.6 10.9 10.4 12.3 10.4 10.4 9.5 10.7 9.5 9.3 9.5
10.8 8.4 11.8 12.0 11.7 11.3 10.1 10.1 11.3 10.8 9.6 9.7
8.8 9.0 11.2 10.1 10.6 10.2 10.3 9.4 11.4 9.5 8.4
10.0 9.0 11.1 9.3 11.1 10.6 9.8 6.2 11.7 8.6 9.0
9.2 7.0 10.3 10.3 10.9 10.2 9.6 10.0 10.0 9.3 9.1 8.7
8.9 6.3 10.3 9.7 10.2 10.0 8.6 9.1 9.5 8.9 8.6 8.3
9.1 6.4 10.0 9.8 10.6 9.8 8.9 8.8 9.2 8.7 8.6 8.2
9.5 8.3 10.3 9.6 11.1 10.2 9.9 7.5 10.6 9.8 9.2 9.0
2.7 4.2 4.3 1.9 3.8 2.2 2.1 1.0 4.3 1.7 0.5 1.6
9.8 8.4 9.8 11.0 8.8 9.3 7.9 9.6 8.8 7.7 6.2
5.4 7.7 7.9 5.9 6.9 5.2 5.6 5.2 7.9 5.5 6.9 5.3
8.4 8.8 9.3 7.5 8.6 7.5 7.2 8.1 8.7 8.3 9.1 7.7
5.8 5.9 7.4 5.3 5.5 4.5 7.3 5.9 4.1 4.0
6.8 6.4 6.7 7.4 6.7 5.9 5.3 6.9 6.4 5.7 5.8
9.1 10.4 9.0 10.5 9.1 8.8 8.1 10.4 8.9 8.1 7.2
6.0 7.0 5.9 6.3 6.2 5.4 5.9 7.0 5.7 5.5 5.6
9.1 10.4 8.5 9.7 8.3 8.1 7.4 10.1 8.1 8.1 7.1
9.5 10.4 9.3 10.4 9.7 9.2 8.6 10.5 8.4 8.9 6.9
-0.7 -0.1 -0.6 -0.1 -0.4 -0.7 -0.7 -0.1 -0.2 -0.3 -0.5
6.8 6.9 6.8 7.2 6.8 6.6 6.3 7.9 6.5 7.4 6.9
1.1 1.7 1.0 1.8 1.2 1.2 0.7 1.7 1.3 1.4 0.2
-0.3 -0.6 -0.6 -0.2 -0.3 -0.9 0.2 0.1 -0.5 0.3
6.4 8.2 7.2 6.0 8.7 7.2 6.7 6.3 7.7 6.6 7.7 6.8
10.4 8.8 10.1 10.8 10.5 9.6 8.9
1.2 1.9 1.2 0.7 0.9 0.1 0.4 0.2 1.2 0.7 1.1 1.0
2.4 3.2 3.2 2.2 2.7 2.3 1.6 2.0 3.3 2.1 0.7 1.4
11.0 11.3 10.8 11.8 11.1 10.4 10.4 11.2 10.5 10.0 9.6
2.1 3.0 3.1 1.5 2.7 1.3 1.4 0.7 2.3 1.4 0.2 -0.4
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Table A.19:∆CT values for next 29 genes for the allograft Patients

18 h 18 h 18 h d 1 d 1 d 1 d 2 d 2 d 2 d 3 d 3 d 3

6.7 7.9 7.5 7.6 9.0 7.4 8.8 8.1 7.9 10.4 11.4
9.6 10.2 8.9 12.1 11.3 10.0 11.2 8.7 8.6 11.7 11.7 10.4
9.6 10.4 8.8 12.4 12.1 9.2 11.2 8.4 7.6 11.3 12.1 10.1
9.1 8.8 8.9 9.6 10.3 9.7 9.3 8.6 8.7 10.1 9.9 9.4
10.3 9.9 9.2 10.8 9.7 9.8 9.6 8.2 7.8 8.5 7.6
8.5 9.1 7.5 9.7 9.3 8.8 8.3 6.3 6.5 9.3 10.5 9.1
8.1 8.8 6.9 9.5 8.6 8.1 8.1 5.8 5.6 9.2 10.0 9.4
7.9 8.6 6.8 9.0 8.6 8.1 5.7 5.4 8.6 9.9 9.3
9.2 10.3 8.8 10.7 10.8 10.9 9.9 8.4 8.3 9.6 10.7
0.8 1.0 1.7 1.4 3.4 2.2 2.4 2.9 3.8 2.8 0.6 3.7
7.0 7.2 8.2 8.6 9.9 8.8 9.4 6.5 8.3 8.9
5.7 6.0 6.9 5.9 8.0 5.8 5.5 6.6 6.1 5.6 6.3 5.1
10.0 9.6 9.5 10.9 11.2 10.3 10.3 10.1 6.9
4.6 4.5 5.8 5.8 7.6 6.0 6.4 4.0 6.2 6.3 3.9
6.7 6.5 6.1 7.1 7.7 6.1 7.1 7.0 5.1 6.9 7.7 5.6
8.0 8.4 8.4 8.0 9.5 7.4 7.9 7.9 7.3 8.7 8.8 7.6
6.4 6.8 7.0 7.4 6.6 6.6 6.6 6.5 6.5 6.2 5.7
8.6 8.3 8.9 11.3 11.0 7.6 8.5 8.0 12.5 9.7 11.7
8.4 8.6 9.4 9.8 10.4 9.5 9.7 10.6 8.5 7.6 9.2 7.6
-0.5 -0.4 0.3 0.2 0.3 -0.6 0.3 0.7 -0.1 0.3 -2.7 -0.6
6.6 6.6 7.9 11.4 10.2 8.4 9.2 10.1 8.5 10.3 7.8 9.8
0.7 0.6 1.4 0.9 1.2 0.6 0.7 1.4 1.2 0.3 -2.1 0.5
-0.1 0.1 0.5 1.4 1.3 0.9 2.6 3.9 1.5 3.7 0.3 2.6
6.9 6.7 7.6 6.3 9.3 6.6 7.0 9.4 7.3 8.6 6.5 7.2
9.2 10.3 8.4 11.3 10.1 10.3 9.8 8.1 8.9 10.3 11.1
1.1 1.0 1.7 1.2 2.7 0.9 1.7 5.1 1.7 3.4 3.9 2.5
1.5 1.5 2.0 1.5 2.3 1.8 1.9 2.5 2.7 1.4 -0.7 1.8
9.8 10.5 9.3 11.6 11.9 10.4 10.6 8.8 9.3 11.7 9.1 11.9
0.4 0.4 1.5 0.0 -0.3 0.0 -0.3 0.3 1.0 0.0 -0.1 0.2
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Table A.20:∆CT values for next 29 genes for the allograft Patients

d 4 d 4 d 4 d 5 d 5 d 5 d 6 d 6 d 6 d 7 d 7 d 7 d 7

8.5 9.9 8.6 8.4 11.2 9.5 7.9 7.0 9.5 8.8 7.5 7.8 7.7
8.9 11.4 8.9 11.7 9.0 9.4 9.1 9.0 10.3 12.1 11.4 8.5
7.9 9.5 11.6 7.8 10.1 7.5 8.7 8.7 7.5 9.2 9.9 9.9 8.4
8.3 7.8 8.1 7.9 7.2 6.7 7.6 8.2 6.7 6.6 7.8 7.6 6.9
7.2 6.0 6.1 4.9 3.8 0.7 3.4 3.7 2.8 0.6 1.6 2.6 1.8
6.3 10.0 8.9 6.3 9.2 6.1 7.1 6.8 6.9 7.0 8.8 5.7
5.7 9.4 8.5 5.9 8.6 5.8 6.7 6.5 8.1 6.4 6.6 8.2 5.4
5.7 9.5 8.7 6.0 8.7 5.9 7.1 6.5 7.6 6.3 6.7 8.4 5.5
8.1 8.3 7.9 7.4 6.7 3.8 5.2 6.2 5.1 2.9 4.3 5.2 4.5
3.0 3.3 1.6 3.2 3.2 1.7 1.3 2.4 2.0 1.0 1.4 2.2 0.9
8.7 8.2 5.0 8.1 8.0 8.2 8.9 11.5 7.0 6.9 5.3
6.2 5.5 4.5 5.1 4.9 4.5 4.4 5.2 4.5 5.8 4.1 4.8 4.1
10.3 9.2 6.5 10.0 9.1 11.1 11.6 13.7 10.9 10.5 7.2
6.2 5.8 3.4 6.1 6.1 4.4 5.8 5.9 4.4 7.4 5.4 5.3 3.8
6.5 7.0 4.8 6.8 7.6 5.0 6.5 7.2 5.0 5.8 6.8 7.8 5.0
7.7 8.2 6.8 7.5 8.1 7.2 7.3 7.8 7.2 6.6 7.7 8.0 6.7
6.8 6.2 4.6 6.6 6.9 5.5 5.9 6.4 5.5 5.7 5.5 6.2 5.1
10.4 11.8 9.6 11.5 9.9 11.6 9.1 6.2 5.9 7.1 5.3 7.5
8.6 7.0 6.6 7.3 7.1 5.9 6.4 8.1 5.9 5.6 5.9 6.4 6.1
0.6 0.2 -0.3 1.2 0.0 -0.6 0.3 0.7 -0.5 -0.9 0.3 0.2 -0.4
9.5 10.9 10.0 9.2 11.2 10.1 10.8 11.0 10.8 10.9 11.8 11.6 9.8
0.9 0.7 -0.7 1.5 1.3 0.6 0.9 1.1 0.5 0.2 0.6 0.6 0.4

4.7 4.2 4.1 5.0 5.2 3.9 6.1 6.7 6.6
7.6 9.2 10.1 8.1 9.1 8.1 8.1 9.2 8.1 6.9 8.5 9.7 8.6
7.8 8.0 6.4 7.5 7.5 4.4 6.8 7.3 6.3 5.2 6.1 6.4 5.0
3.5 5.0 6.0 4.3 4.3 3.3 5.7 6.9 3.3 2.9 4.4 5.9 5.4
2.4 1.9 -0.2 2.6 2.5 3.0 1.8 2.5 2.2 2.1 2.7 2.3 1.1
9.2 10.6 8.6 9.4 11.4 9.6 9.3 9.0 11.6 10.5 12.0 11.1 8.2
0.7 -0.6 -0.8 0.6 -0.4 -0.1 0.2 0.1 -0.5 -1.8 -0.7 -0.6 -0.3
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Table A.21:∆CT values for last 22 genes for the allograft Patients

dCT 0 h 0 h 0 h 1 h 1 h 1 h 1 h 1 h 3 h 3 h
Co ref

gelsolin 0.2 -0.3 -0.3 0.7 -0.5 0.7 -0.4 0.1 0.4 0.0 -0.7
MLC-2 -2.2 -2.8 -2.7 -2.8 -2.8 -2.8 -2.9 -2.7 -2.3 -3.0

crystallin -0.8 -1.0 -1.4 -0.8 -1.0 -1.5 -1.3 -0.9 -0.8 -1.1 -1.5
GSH Px 1.0 1.8 -0.4 1.7 0.8 1.5 0.7 2.4 2.2 1.3 0.7
Hsc70 0.3 0.4 0.6 0.6 0.0 1.1 -0.6 0.4 0.4 0.7 0.4
iNOS 9.0 9.3 10.3 10.5 9.9 11.3 10.5 10.9 11.3 10.7 10.7
MGP 1.1 1.1 0.3 1.8 0.2 1.0 0.8 1.2 1.0 0.9 0.4
DHFR 8.4 8.4 8.3 9.3 8.9 9.6 8.4 8.7 9.2 8.5

FOLbp3 10.6 11.1 8.7 7.7 10.6 10.3
GTP-CH I 9.8 9.5 11.3 10.3 8.9 9.0 9.7 9.5
MTHFD2 8.3 8.1 9.1 9.6 7.8 8.7 7.9 8.8 8.8 8.5 7.8

PTPS 4.3 5.1 4.6 5.0 4.7 5.0 4.2 4.9 4.8 4.6 4.6
sepiapterin R 5.8 6.2 5.9 6.9 6.3 6.4 4.4 5.9 5.6 6.4 6.8

B2-M 1.2 1.4 1.0 1.4 0.8 1.8 0.6 1.7 1.4 1.2 0.7
I-A-b one 9.2 14.4 15.2 13.9 18.4 14.5 7.9 7.6

I-E-b 4.4 5.5 5.2 5.6 5.2 6.5 4.9 5.8 5.8 5.3 4.2
MHC-1 8.0 9.0 8.7 9.0 8.7 10.3 8.8 8.9 9.1 9.6 9.4
BLR-1 11.9 9.7 10.7 12.1 11.7 11.4 10.2 10.2 11.2 9.2
EF-1a 0.2 0.1 -0.4 0.8 -0.4 0.2 -0.2 0.4 0.3 -0.3 0.0
GAS-6 4.2 4.7 3.6 5.2 4.0 5.6 4.0 5.1 5.2 4.7 4.5
rp L8 1.5 1.0 1.1 1.6 0.8 1.3 0.8 1.3 1.2 0.7 0.8
rp S24 0.5 0.0 0.3 0.1 -0.1 0.5 -0.2 0.2 0.3 -0.3 -0.2
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Table A.22:∆CT values for last 22 genes for the allograft Patients

3 h 3 h 3 h 6 h 6 h 6 h 9 h 9 h 9 h 12 h 12 h 12 h

-0.3 0.1 0.2 0.3 0.4 0.4 0.1 0.4 0.5 0.4 0.9 0.9
-2.1 -2.0 -2.8 -3.0 -2.8 -2.8 -2.7 -2.6 -2.1 -2.6 -2.7 -1.9
-1.1 -0.5 -0.8 -1.0 -0.1 -0.8 -1.1 -0.5 -0.5 -0.8 -1.4 -1.4
0.0 1.8 1.8 0.7 2.5 1.1 1.3 1.1 1.4 1.4 1.2 0.1
0.2 1.1 0.7 0.3 0.8 0.4 -0.2 -0.5 1.0 0.8 -0.4 -0.6
10.5 12.3 10.3 10.3 11.7 10.2 10.1 9.5 11.7 10.2 9.0 8.0
0.8 1.2 1.1 0.7 1.4 0.6 0.4 1.3 0.9 0.8 0.7 0.1
8.5 8.1 8.9 8.6 8.8 9.5 8.0 8.8 8.6 8.3 6.8

9.8 8.4 9.2 10.6 10.3 8.9 9.3 10.1 9.0 8.9
8.0 8.1 9.2 7.7 8.7 8.1 7.3 8.6 7.2 5.9 5.7
5.1 5.2 5.1 4.8 5.2 4.9 4.9 4.8 5.2 4.9 5.0 5.0
7.1 6.6 6.1 6.6 7.1 7.1 5.5 4.7 6.6 6.5 5.8 5.6
1.1 2.0 1.7 0.2 1.2 1.3 0.7 0.4 1.4 0.4 0.3 0.0
8.0 8.8 9.0 7.3 9.2 8.6 8.2 5.6 8.8 6.8 6.0 5.0
4.7 6.1 6.1 4.2 5.9 5.3 5.8 3.8 5.9 4.7 5.4 4.1
9.0 9.1 9.8 8.7 9.5 8.6 8.2 8.3 9.6 8.4 7.9 7.7
9.7 9.3 12.6 10.1 11.7 11.6 10.5 10.8 11.8 9.5 10.0 9.7
-0.1 0.3 0.1 -0.4 0.5 0.6 -0.6 -0.2 -0.3 -0.1 -1.1 -1.3
4.1 5.8 4.9 4.6 5.4 4.2 4.0 4.3 4.8 4.6 5.4 3.1
1.3 1.2 1.5 0.8 1.3 1.5 0.8 0.7 0.7 0.8 0.1 0.3
0.0 0.0 0.3 -0.1 0.3 0.1 -0.1 -0.1 0.0 -0.1 -0.6 -0.3
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Table A.23:∆CtT values for last 22 genes for the allograft Patients

18 h 18 h 18 h d 1 d 1 d 1 d 2 d 2 d 2 d 3 d 3 d 3

0.3 1.0 1.2 0.9 1.6 0.8 1.8 3.2 2.1 2.5 -0.9 2.3
-2.2 -2.2 -2.1 -1.2 -1.8 -1.2 -0.5 0.1 -0.9 0.1 -3.2 -0.8
-1.5 -1.0 -0.8 -0.8 -1.2 -1.9 -1.4 -0.5 -1.8 -0.8 -0.5 -1.7
0.6 0.3 1.2 0.4 2.4 0.8 -0.2 1.4 0.7 0.2 -2.6 0.0
-0.4 0.3 0.3 -0.2 1.3 -0.9 -0.3 1.2 -0.4 0.8 1.3
7.3 7.8 9.3 7.0 9.8 8.9 7.3 9.4 10.6 10.1 11.0 9.4
-0.1 0.8 1.0 0.7 -2.8 4.1 -0.1 0.4 0.3 -0.8 -0.7
8.1 8.5 8.0 8.1 7.2 8.1 6.3 6.8 7.3 7.5 8.2 7.7
9.7 11.9 10.5 9.9 8.2 11.2 11.1
8.5 9.9 8.9 8.1 9.2 9.3 7.7 7.6 8.0 8.7 9.0
6.2 6.8 6.6 6.2 6.5 6.3 5.7 6.1 7.5 6.4 7.1 6.3
5.5 5.5 5.9 5.9 6.1 5.7 5.6 6.0 7.7 6.1 6.1 5.6
6.0 6.7 7.0 7.8 8.5 7.1 6.3 7.6 7.4 7.3 7.7 6.7
0.5 0.7 1.4 1.9 1.4 0.8 2.0 1.4 0.0 0.6 0.6 -0.3
6.2 6.4 8.2 5.4 6.0 6.6 4.9 5.6 4.6 3.4 4.0 3.6
5.4 5.4 6.2 5.1 4.6 5.2 4.8 5.3 3.8 2.7 2.5
7.9 9.1 7.9 8.6 4.8 12.5 8.5 7.8 7.0 9.1 6.1 8.8
9.0 9.7 8.9 11.6 11.5 10.6 10.6 8.8 9.9 12.0 11.6 12.1
-1.2 -0.6 -0.3 -0.9 -0.8 -0.8 -0.5 -1.2 -1.0 -1.6 -4.3 -1.4
5.0 4.7 5.9 4.5 5.9 5.5 3.7 5.2 5.9 4.2 2.0 5.3
0.3 0.7 0.8 0.7 0.7 0.6 0.7 0.7 1.2 0.4 0.9
-0.5 -0.2 0.1 -0.1 0.0 -0.1 -0.4 -0.1 -0.3 -0.2 0.1 -0.2
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Table A.24:∆CT values for last 22 genes for the allograft Patients

d 4 d 4 d 4 d 5 d 5 d 5 d 6 d 6 d 6 d 7 d 7 d 7 d 7

3.3 2.7 2.5 3.6 2.4 3.5 3.6 4.0 3.0 2.6 3.8 3.9 2.8
-0.4 -0.4 4.2 0.7 -0.1 -0.1 2.6 3.7 0.9 -0.9 0.9 1.6 2.6
0.3 0.2 2.2 1.8 0.9 -0.8 1.8 2.0 0.6 -1.3 0.8 1.6 0.9
0.9 0.6 0.4 1.2 0.6 0.8 2.5 2.8 0.5 0.6 1.8 1.7 2.3
1.5 0.5 -0.7 0.9 0.8 -0.6 1.4 1.6 -0.5 -1.0 0.3 1.0 -0.5
9.4 9.3 7.3 8.0 7.2 4.9 4.8 5.2 7.1 4.7 5.0 5.4 3.3
-0.7 -0.6 -1.1 -0.5 -0.3 0.7 1.5 1.6 -0.6 -0.1 1.2 0.9 0.0
7.6 8.0 6.2 7.5 8.2 4.2 7.8 8.1 6.9 5.7 6.9 7.6 3.5
8.5 9.3 9.5 8.7 9.8 5.6 8.1 8.3 7.0 6.8 7.8 7.7 5.5
8.8 11.3 9.5 7.8 9.0 7.3 8.7 8.8 9.3 9.2 9.9
6.8 6.5 5.1 6.7 6.2 4.4 6.6 5.3 4.2 5.6 6.1
6.3 6.5 5.6 7.0 6.9 5.3 5.8 7.2 6.8 5.1 6.6 6.6 5.2
9.4 9.3 6.9 9.4 8.4 4.9 9.6 9.3 6.8 7.2 9.3 9.3 4.5
1.1 -1.2 -0.8 -0.2 -1.1 -1.5 -0.6 -0.6 -1.2 -2.8 -0.9 -1.0 -1.2
4.6 2.5 3.9 2.5 1.8 0.5 0.7 1.1 0.5 -0.4 0.4 0.4 0.3
2.9 0.5 1.8 0.6 -0.3 0.0 0.7 -0.3 -1.0 -0.3 -0.5 -0.6
6.7 9.7 7.4 6.4 8.8 8.1 7.9 8.1 8.9 7.5 8.9 8.2 7.6
9.3 10.8 10.4 9.2 9.9 10.5 9.5 9.2 10.6 9.9 10.8 9.9 9.5
-0.9 -1.6 -2.4 -0.8 -1.3 -1.7 -1.2 -0.4 -1.5 -2.1 -1.4 -1.2 -1.7
5.3 4.5 4.8 5.6 4.5 8.1 6.6 6.8 6.6 5.0 6.7 5.5 7.2
0.8 0.7 0.1 1.5 0.9 0.8 1.2 1.8 1.0 -0.3 0.7 1.0 1.0
-0.4 -0.2 -0.2 0.5 0.5 -0.2 0.5 0.9 -0.1 -1.1 0.2 0.9 1.2
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