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Abstract

Biological engineering is a domain of study that involves lgimg known engi-
neering principles to biological systems. Qualitativedgs in the field of biology
have undergone tremendous advancements in the last twdedelat quantitation
is still in its early stages due to various complexities imed in its design, control,
and operation. The current state of research in the fieldagrgineering involves
mostly elementary quantitation of biological systems witha strong grasp into
the fundamentals of engineering. Advanced learning algms can help overcome
some of the problems generally associated with biologigstesns including model
complexity, noisy measurements, and data scarcity. In tinect study, bioengi-
neering problems are viewed from process systems engmgepéerspective with
a focus on three aspects: modeling, monitoring, and faukatien. The three
representative bioengineering problems chosen to coeethttee aforementioned

aspects are:

* Modeling a gene network: Accurate inference of gene ndtwan provide



information that can lead to new ideas for treating complsgakes. A novel
algorithm for building gene networks from microarray detasusing a first
principles differential equations model is proposed. Thappsed algorithm
was able to obtain a good estimate of the gene connectivitypofar an

experimental dataset on a nine gene netwotiksohericia coli

* Monitoring a microalgal bioreactor system: Monitoringawbcess conditions
in algal cultures helps in maximizing oil productivity. A [goort vector
regression based algorithm is proposed for monitoring thieiie conditions
of an algal bioreactor system. The multivariate sensort lmsing an ex-
perimental dataset gave good predictions for the condesrisaof biomass,

glucose and percentage oil content.

» Detection of transplant rejection: Early detection offgrajection is manda-
tory to effectively treat and prevent cardiac dysfunctidn.algorithm based
on hypothesis testing is proposed for detecting biomankse$ul for detec-
tion of rejection. The chosen biomarkers are validated dsligly available
microarray datasets. For these datasets, the biomark@amet based on
the proposed method were able to achieve a good separatiwedrethe

successful and failed transplant classes.

The methodologies and strategies proposed in this theses inglped in the

modeling, monitoring, and fault detection of bioenginegrsystems.
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Introduction

Studies in the biological field have undergone significanges in the last forty
years. Biology has expanded from the usual area of quatatientific fact accu-
mulation towards a more advanced field involving quanttabf the new knowl-
edge obtained. The methods developed for quantitativaqaieal of the biological

processes in turn lead to developing new tools for conimglihese processes. This



lead to the design of various new biological-based prodatsthus ushered in a
new domain in engineering involving the field of biology (dsbn and Phillips,

1995).

Biological engineering or Bioengineering covers broad raoféelds including
bioprocess engineering, biomedical engineering, systgaisgy, metabolic engi-
neering, tissue engineering, etc. Bioengineering invoidagipulating biological
information, constructing bio-materials, processing-themicals, producing bio-
fuels, and help maintain or enhance human health. Howédaeetpols developed for
fast and reliable engineering of biological systems aréedimited. There are ma-
jor challenges that greatly limit the engineering of bigiagcluding an inability to
avoid or manage biological complexity, the tedious and lisdvke construction and
characterization of synthetic biological systems, theaa@pt spontaneous physical
variation of biological system behaviour, and evolutiomd, 2005). Some of the

complexity of working with these biological applicatiomglude:

» High amount of noise: Understanding and modeling biological systems also
involves taking into account the occurrence of noise anddatons in the
system. In other words, biological systems and processesnaerently
noisy and have to be addressed carefully so as to avoid wadksresults
(Herranz and Cohen, 2010). Noise existing in biologicaleystis classified
as external noise due to environmental fluctuations ornialemoise due to
certain regulatory molecules (Tian, 2010; J. Hasty et &002. One of
the examples of noise in the biological application invehNmuilding bio-

chemical networks from gene expression microarray dateketh include



the measurement and hybridization noise (Tu et al., 2002ttahand van
Oudenaarden, 2001). For reducing the effect of noise anarmitproving
the signal to noise ratio, standard statistical and sigradgssing techniques
including principal components analysis (PCA) (Hotellii®33; Nomikos
and MacGregor, 1994), partial least squares (PLS) (Wol@61®ejdell and
Skogestad, 1991), filtering methods (Cleveland, 1979; 8aviand Golay,
1964; Kalman, 1960; Seborg et al., 2004) applied in varioosgss systems

engineering applications can be used.

» Nonlinearity: The majority of applications in the field of biological and
medical sciences are predominantly nonlinear complexesys{Hunter and
Korenberg, 1986). Advanced statistical and machine laegraigorithms
used in process systems engineering applications inguagimel PCA (Lee
et al., 2004), support vector machines (Chitralekha and S¥at0) can be

used for modeling such systems.

» Data Scarcity and High Dimensionality: Biological systems are usually
characterized by high dimensional scarce dataset ingjualoplications in-
volving use of gene expression microarrays datasets fddibgiregulatory
network (Yeung et al., 2002; Wang et al., 2006), identifyiransplant rejec-
tion and designing durable biomaterials (Darrabie et &8l052 Pickup et al.,
2007). Statistical techniques including principal comgats analysis (PCA),
partial least squares (PLS), and independent componelysan@dCA) can

be used when dealing with such datasets.

Considerable research effort has been spent on focusingpmrtamt and potential



1.1. Branches in Process Engineering

applications in bioengineering including production obfioiels and bioproducts
from microalgae, identification of transplant rejectiorpiatients and manufacture
of biomaterials for biomedical application. Many anal@ao@n be drawn between
the existing process engineering applications and agpitain the field of bio-
logical engineering. The following section talks about diféerent branches in the
field of process systems engineering and its analogouscagiplis in the field of

biological engineering

1.1 Branches in Process Engineering

Process engineering or process systems engineering (®&Byanch of chemical
engineering which deals with the understanding and dewsdop of systematic
procedures for the design and operation of chemical prayetems, ranging from
microsystems to industrial scale continuous and batchgss®s (Grossmann and
Westerberg, 2000). The various different areas in procagimieering as character-

ized by Grossmann and Westerberg (2000) are as follows:

1.1.1 Process Design

The first and foremost branch in process systems engineasnmgcess and product
design. Process or product design involves deciding on iiigpua characteristics
and features of the desired product. One of the major femtarprocess design is
not only to be innovative but also to be cost effective. Aeotmajor challenge that

will remain is the design of sustainable and environmeptadinign processes. An



1.1. Branches in Process Engineering

analogy can be drawn between PSE and biological enginegritige application
of design and analysis of metabolic networks. However, #gsgh of metabolic
networks can be more elaborate and convoluted when compadkssign of PSE

systems.

1.1.2 Modeling

One of the aspects of paramount importance in PSE is modéingess modeling
attempts to relate a desired quantity based on the availalables which are
deemed important for the purpose of modeling. The purposa wiodel is to
reduce the complexity of understanding a phenomenon bywarg down the
aspects that influence its relevant behavior. Curtis et @87} states that a process
model is an abstract description of an actual or proposedegsothat represents
the chosen process elements that are important to the gugbtise model and can
be enacted by a human or machine. For modeling various aspeaived in a
bioengineering applications, more flexible modeling eswiments will be required

that can accommodate a greater variety of models.

1.1.3 Process control

Process control involves the use of statistical and engimgerinciples to monitor
the process and maintain it at the desired performanceAbtpgrcondition safely
and efficiently. The significant accomplishments in the f@fighrocess control in-
clude model predictive control, robust control, nonlineantrol, statistical process

control, and process monitoring. Achievements in advamredess control and



1.2. Thesis Contribution

process monitoring can be applied towards new applicatiob®process systems

and biomedical engineering.

1.1.4 Process Operations

The area of process operations, has a shorter history tlogess design and con-
trol. The broad area of process operations includes datacé@tion, real-time

optimization, fault detection and diagnosis, and procéssning and scheduling.
Efficient fault detection and diagnosis is of increasing ami@nce when dealing
with applications in biomedical engineering. For examplentification of disease

(fault) in a patient helps in early diagnosis which in turn b&lp in speedy recovery.

1.2 Thesis Contribution

The aim of this work is to apply well known statistical and rnime learning tech-
niques including principal components analysis, partiast squares, support vector
learning, clustering algorithm, and hypothesis testinglifterent applications in
the biological engineering. The specific objectives of wisk fall in the following

categories:

1) Process design and modelingObtain a gene regulatory network from
gene expression data using a first principles differentiglaion (DE)

model.

2) Process Monitoring: Develop an online multivariate sensor for monitor-
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ing the chemical components in an algal bioreactor system.

3) Process Operations:Develop a novel strategy for identifying candidate
biomarkers which aid in the detection and diagnosis of fpkam rejec-

tion.
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Inferring Gene Networks using Robust
Statistical Techniques

2.1 Introduction

Gene expression profiling has produced insights into coxpl@ogical systems.

In the field of genomics, gene expression profiling has beed tesunderstand the
mechanisms underlying biological processes includirggadift rejection (Erickson

et al., 2003), and breast cancer progression (Ma et al.,)2009

In this chapter, a novel algorithm is proposed for reversgresering of gene reg-

LA version of this chapter has been published as: V. R. Nadado®en-Zvi, and S. L. Shah,
“Inferring Gene Networks Using Robust Statistical Teclusig’, Statistical Applications in Genetics
and Molecular Biology: Vol. 10: Iss. 1, 2011.
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2.1. Introduction

ulatory network from gene expression data obtained fromraaitay experiments.
Microarray experiments have allowed the gene expressioiilgs to be measured
for the whole genome (thousands of genes) simultaneouslgrumvariety of con-
ditions (Tu et al., 2002). Microarray technology has beepliad to biological
processes including acute allograft rejection (Stegalllet2002), during mouse
and human pregnancy (Bethin et al., 2003), and yeast spom(&hu et al., 1998).
Data from microarray experiments may be arranged in the &dmrectangular ma-
trix containing expression level of genes (rows) at diffeéiexperimental conditions
(columns) (Troyanskaya et al., 2001). The number of tinregges (i.e, microarray
slides) used to profile gene expression is typically lesa tha number of genes
profiled. As a result, the data matrix from microarray expemts will often have
more rows (i.e., genes) than columns (i.e., time points).

Much research effort has focused on estimating (or revenggieering) gene net-
works from gene expression data obtained from micro-arkpe@ments (Yeung
et al., 2002; Gardner et al., 2003; Liu et al., 2006) with aapions including hu-
man B cells (Schadt and Lum, 2006), gap gene netwokko$ophila melanogaster
(Basso et al., 2005). Reverse engineering is the processaiflaling the structure
of the system by reasoning backwards from observations bétavior (Hartemink,
2005). Reverse engineering of gene network involves estigyahe connectiv-
ity matrix, given observations of the system over time (Béseleer et al., 2000;
Tegner et al., 2003; Yeung et al., 2002). These gene netwanksapable of
showing the interaction of a large number of genes in a centianner (Brazh-
nik et al., 2002). Several graphical methodologies inelgdgraphical Gaussian
(GG) ((Magwene and Kim, 2004)) and dynamic Bayesian netwbBRN) (Zou

and Conzen, 2005) modeling have been applied for reverseesryig of gene
networks. Due to the high computational complexity and reechigh number

of data points, both these methods can be used only for sraddlonks (gene
networks of size smaller than 10) (He et al., 2009), (Hecked.e2009), (Bansal
et al.,, 2007). He et al. (2009) also state that in the GG andDiBN method,

the resultant gene network obtained is undirected. Othewhknmethodologies
including Boolean networks (Liang et al., 1998) and systentir&far ordinary

differential/algebraic equations (Yeung et al., 2002; rerget al., 2003; Bansal
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et al., 2006; Gardner et al., 2003; Liao et al., 2003; Fotektal., 2009) have been
proposed to reverse engineer the gene network from genessipn data obtained
from these microarray experiments. Boolean network metloggas limited, as
they give undirected networks using a binary set of variapbte{0, 1}, to represent
the presence of a connection between genes ((Hecker et08P))2 Also, the
method of inferring gene networks from linear algebraicagmuns as proposed in
Liao et al. (2003) and Foteinou et al. (2009), napdori information for estimation
of gene connectivity matrix. In this work, the research effe concentrated on the
approach of inferring gene networks from ordinary différ@nequations (ODES)
without any giverapriori information regarding the network.

Ordinary differential equations (ODES) have been used tdehbiological net-
works (Gardner et al., 2003; Yeung et al., 2002; Bansal ek@Dg; Kim et al.,
2007). For a network ofi genes, the corresponding ODE system is given by
(McAdams and Arkin, 2000; Jong, 2002):

Xi(t)=fi(xa(t),...,%i(t),....xn(t),us(t),...,un(t)) (2.1)
i=12,...n

where eachx; is a function of time representing expression levels ofithgene;
and f; is a nonlinear function representing the time-derivativehe expression
level of theit" gene. The measured gene expression levels, dre corrupted
with measurement noise (Tu et al., 2002; Thattai and van @aateen, 2001), and
therefore can be written as an added sum of the signal ané normmponents as
follows:

Xi(t) =x(t) +&(t) (2.2)

wherex is a function of time representing noisy expression levélheit" gene
andé;(t) is a function of time representing the measurement noideeiexpression
levels of the" gene.

The system of nonlinear ODEs as described in Equation 2dratipng around a
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hyperbolic rest point can be approximated by a system of linear ODEs ((Kreyszig,
1999)).

X(t) = AnxnX(t) 4+ Bnxpu(t) YVt e T =[0,t¢]. (2.3)
K(t) = x(t) + &(t) (2.4)

whereA is the connectivity matrix of tha genesB is the perturbation matrix(t)

is a function of time representing noise-free expressiwvaléeof then genes (i.e,
X(t) = [x1(t) %2(t) ... Xa(t)]T); X(t) is a function of time representing noisy expres-
sion levels of then genesg (t) is a function of time representing the measurement
noise in the expression levels of thgenes; andi(t) is the input function, which

is the perturbation vector, at tinte The input function,u(t),is a p x 1 vector,
containing the information regarding all perturbationgiate t and is typically

a constant vector perturbing a select setpofenes, as perturbation of all the
genes in the network is not feasible (Bansal et al., 2007, RO&&timation of
the connectivity matriXd, from Equation 2.3 has been proposed by Gardner et al.
(2003), Yeung et al. (2002) and Bansal et al. (2006).

In Gardner et al. (2003), Equation 2.3 is solved at steadw,ste. x(t) =0,
using multiple linear regression. The method requiresupleation of all genes
in the network, which is not always feasible in a gene expoessxperiment.
Furthermore, obtaining a steady state data is expensivieraguires performing
multiple perturbations to the cell (Bansal et al., 2007).

In Yeung et al. (2002), an algorithm is proposed for estintathe entries of the
connectivity matrixA. In this approach the gene expression levels, is sampled

at timet; = {t; <t, < .. <tm} with tj € T, and is written in the form of a gene
expression matrix}n.m, With rows indicating the various genes and columns in-
dicating different time samples. That is, each cell in theggexpression matrix
represent expression level of that particular gene at angivee. Typically due to
high experimental costs, the number of samples are far fdveer the number of

2Let xo be the rest point for the differential equative=(x,u) (i.e. r(xo,u) = 0). The pointx
is called the hyperbolic rest point if every eigenvaludvbf= %(xo) is non-zero.(Chicone, 1999)
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genesii >> m). In this respect this is an underspecified estimation grolar there
are more unknowns than the number of equations and theriefemeot possible to
obtain a unique identification solution fét

— 1
X1 (tl) .. X1 (tm)
X2 (tl) .. Xo (tm)

Xoxm = Xi(-tl) Xi(.tm) lGenes

Xn(tl) .o Xn(tm)
Equation 2.3, is rewritten in a matrix form as shown:

anm:Anxnxnxm+anpprm (2.5)

whereAis the gene connectivity matrix, ald= [by,...,bp] is the input (or external
stimuli) matrix. The goal of reverse engineering is to eatineach of the entries
in matrix A. However, for a typical experimental data set, the humbetinoé
samplesm, is fewer than the number of genes,Therefore, the maximum number
of independent equations implied by System 2.5 (ne.m) is less than the number
of connections inA (i.e., n x n). As a result, there exists several solutions Aor
in Equation 2.5. Yeung et al. (2002) discuss a methodologgverse-engineer
gene networks in Equation 2.5, using singular value decaitipn (SVD) and
robust regression. The method suggested in Yeung et al2Y208omputationally
efficient for larger gene expression datasets. One of thérhaigback of the method
is that the time derivative matrix, is estimated using linear interpolation. For a
gene expression data, which are inherently noisy, thedimt@rpolation strategy
could lead to erroneous results (Bansal et al., 2006).

In Bansal et al. (2006), an algorithm TSNI (Time Series Nekaldentification) is
proposed to infer the gene network from a linear ODE by pbitigrany one gene in
the network. The method provides an effective way for edimgahe gene network

14
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and the perturbation matrix. However, the method does ratige a statistically
significant approach for obtaining a sparse network andsapdori information
regarding the connections.

In this work, the method of partial least squares is appl@dhtain the gene
connectivity matrix (gene network). The proposed algonitbombines statisti-
cal tools including leave-one-out jackknifing and the Aleikformation criterion

(AIC) to ensure that the entries in the obtained gene connigcthatrix are sta-

tistically significant. To the best of our knowledge thesee¢hmethods have not
been collectively applied in studies concerned with gertevaidk. The proposed

algorithm provides a robust estimation of the connectimgtrix in the presence of
measurement noise. A significant part of the study is deselittd comparing and
highlighting the superior performance of the proposed weih comparison with

the methods available in the literature.

2.1.1 Partial Least Squares Regression (PLSR)

Typically time series microarray data are characterized layge number of genes,
n, and a few measurements,(m << n). Therefore, well established dimension
reduction tools including PCR (principal component regmgsand partial least
squares regression (PLSR) are used for performing mubkitearegression in the
reduced dimension space (Pihur et al., 2008). PLSR was fopbped by Herman
Wold during mid-sixties (Wold, 1966) and subsequently fd$iccess in various
applications in the field of chemometrics (Wold et al., 20@Euro imaging (Mcin-
tosh and Lobaugh, 2004), and process control (Dayal and kgm® 1997). The
PLSR algorithms have also found applications in the fieldystems biology as
an exploratory tool for potential gene-gene interactiddat{a, 2001; Pihur et al.,
2008).

As in the case of multiple linear regression (MLR), the maimpose of partial
least squares regression (PLSR) is to build a linear matiet,Zf3 + . In this
work, Y is an (m— 1) x n variables response matri¥, is an(m—1) x (n+ p)
variables predictor matrix3 is a(n+ p) x nregression coefficient matrix, arddis
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2.1. Introduction

a noise term for the model which has the same dimensiolfs d$ie partial least
squares model can be considered as consisting of outaoreldor both thez and

Y matrices and an inner relation linking them (Geladi and Kekial1l986). The
outer relations for th&, andY matrices are built using the principal components
analysis, as follows:

Z=TP'+E=Stp| +E (2.6)
Y =UQ" +F* =5 ungf +F” (2.7)

whereT, P, andE are the score, loading, and the error matriceg,akspectively;
U, Q, andF* are the score, loading, and the error matricey pfespectively.
An inner relationship is obtained between the two score ineslt) andT. For
example, a simple inner relation is a linear one.

Un = bpth (2.8)

A Graphical representation of PLSR algorithm is presemegigure 2.1.

In this work, a SIMPLS algorithm is used to obtain the geneneativity matrix
from a linear ODE. SIMPLS algorithm was first proposed by ®ijnide Jong as an
alternative approach to NIPALS partial least squares ssgpa. A detailed version
of the SIMPLS algorithm is given in (Jong, 1993).

2.1.2 Leave-one-out Jackknifing

While the PLS algorithm can be used to obtain a gene conngatnatrix, it cannot
be used to guarantee that all parameters in a model ardistdlyssignificant (Pihur
et al., 2008). Leave-one-out jackknifing is a commonly ugetinique in statistical
analysis that can be used for judging whether a particulely @mthe connectivity
matrix is spurious (de la Fuente and Makhecha, 2006; Fidl9&3; Gardner et al.,
2003). In this work, the assertion that(the mean estimate of a coefficient) is
equal to zero, is the null hypothesis. The alternative hypsis is thafu is not
equal to zero. In this work, a normal distribution will be as®d for the mean
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Figure 2.1: Graphical demonstration of the partial leasbses regression (PLSR)
algorithm

of the coefficient estimates and a significance levelraf 0.05 will be used. In
order to obtain samples of the entries of the connectivityrimahe leave-one-out
method described by Fukunaga and Hummels (1989) and FuawmajHummels
(1987) was used.

2.1.3 Akaike Information Criterion

Gene networks are highly sparse with most entries in theextivity matrix being
zero (Jeong et al., 2001; Tegner et al., 2003; Nacher anda)&@08; Hoguland
et al., 2006). The Akaike information criterion (AIC) can b&ed to obtain further
sparsity in the gene connectivity matrix. The AIC is an apgtoused for model
selection and is widely accepted in various statistical ehatentification problems
(Bozdogan, 1987; Yamaoka et al., 1978). This criterion hsg laéen successfully
applied in the literature to achieve sparsity in a gene coiity matrix (Hoon
etal., 2003; Ferrazzi et al., 2007; Cedersund and Roll, 2008n@hal., 2005). The
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AIC is used to find an optimal tradeoff between accuracy andehcomplexity by
penalizing both the modeling error and the number of pararaéh the model.

Akaike (Akaike, 1974, 1981) gives the definition of AIC asléols:
AIC = (-2)log(maximum likelihood)+2(number of independigradjusted parame-
ters within the model).

In this work, the model errors are assumed to be Gaussianraegpendent and
identically-distributed random variables (i.i.d). lrebe the number of observations
andRSS= yM, &2 be residual sum of squares. Then Akaike information cateri
(AIC) becomes:

AIC =2n,+ m[log(zn::S% +1] (2.9)

wherenp is the number of parameters. The Akaike information cai@AIC) not
only rewards the accuracy of fit based on residual sum of sgubut also penalizes
number of parameters,. This penalty term avoids over-fitting by having a tradeoff
between the goodness of fit with a parsimonious model. THepesl model is the
one with the lowest AIC value.

For small sample size applications, the Akaike informatoiterion (AIC) does
lead to biased estimate, which in turn leads to overfittingriith and Tsai, 1989).
Therefore, a corrected AIC has been used in the current §taskyd on the model
suggested by McQuarrie and Tsai (1998). The corrected Akafiormation crite-
rion (AIC) is given by the equation:

m-np
—Np—2

RS
AIC = 2n,,+mlog( m%+m (2.10)

2.2 Challenges

As mentioned in Section 2.1, microarray technology havéleaktthe gene expres-
sion profiles to be measured for thousands of genesimultaneously. Also, the
experimental cost for obtaining the time samplasfor these thousands of genes
are high. Therefore, the number of equatioms<(n) are fewer than the number of
unknowns £ x n). The system of ODEs needed to be solved are under-detetmine
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Withoutapriori information regarding the gene networlq methodologgan give a
unigue and a true estimate for all the entries in the corwigcinatrix, A. Typically,
to identify the complete network model or connectivity matthe number of time
samples in the datam, must be at least equal to number of germmesEven with
m = n time samples, due to the presence of noise in the gene exprafata
matrix, it is not practically feasible to achieve a true mgtie for all the entries
of the connectivity matrix. In this work, a methodology isoposed to obtain a
consistent estimate for some of the entries of the conncthatrix.

As mentioned in Nacher and Ochiai (2008) and Hoguland et2@0§), most of
the elements in the connectivity matriX, are zero. An entry in the connectivity
matrix, A, can be estimated as zero by two means, namely, one by agmyin
particular methodology, and secondly the entry in conmigtmatrix is assigned
zero by default due of the lack of sufficient data. Not all tidries in the con-
nectivity matrix are affected by the gene expression dataixn. Therefore, for
a large and a highly sparse matrix, the percentage of ergstsated correctly
and the percentage of entries obtained vary significantly.eikample, consider a
simulated case study with 5800 connectivity matrix following the power law
as mentioned in Nacher and Ochiai (2008) and Hoguland eR@Q6). For this
simulated example, the number of non-zero entries in th@exivity matrix is
904. Choosing an estimate for the connectivity matkixwith all the entries in the
connectivity matrix as zero, the percentage error in thieneseA is 0.36%. Based
on the percentage error, the estimétg;an be considered to be a very accurate one.
This is a unique feature when dealing with sparse matrichsreva metric defining
the number of errors is not a true indication of the usefldrdghe methodology.
In this work, the performance of the method is assessed lwaskdth the correctly
identified zero and non-zero coefficients. For validating tlon-zero coefficients,
only the sign of the coefficients are considered, whilst rgrgpthe magnitude.
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2.3 Methods

2.3.1 Gene Connectivity Network Model

As stated in Section 2.1, for a system operating around gistade the gene con-
nectivity matrix can be modeled with a set of linear ordindifferential equations
(ODEs). Equation 2.3, can be re-written in the form:

n p
()= ajxjt)+ Y byu(t) vteT=[t,tm]. (2.11)
= =1

wherei = 1,...,nis the number of genes;(t) is the expression level of tHE'gene
at timet; %(t) is the rate of change in the expression level of ithgeneat time
t; pis the number of genes perturbed in the systajnis the influence of thgth
gene on the!" gene;b; is thel™ perturbation on thé" gene andy (t) is thelt™
perturbation at timé (Bansal et al., 2006).

Equation 2.11, is rewritten in a matrix form as suggestedqgudtion 2.3

X(t) = AnxnX(t) + Bnxpu(t) (2.12)

wherex(t) andX(t) are the expression level and the rate of change of expression
level vectors for alh genes at timé, respectivelyu(t) is ap x 1 vector containing
the information regarding all perturbations at titne

2.3.2 Algorithm

The continuous form of the Equation 2.12 needs to be dizewtfor analysis.

However, exact discretization may sometimes be intraetdibé to the heavy matrix
exponential and integral operations involved. It is muchkierato calculate an
approximate discrete model. Euler's approximation can $eduo discretize a
continuous system of equations to a discrete form. For amlaita, however, taking
a derivative by applying Euler’'s approximation will furthiacrease the noise level.
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Bilinear Transformation is one of the highly recommendedhods for continuous
to discrete transformation. Bilinear transformation agplithe trapezoidal rule
approximation which incorporates the higher-order irdéign procedure unlike the
Euler’s approximation. One of the advantages of bilineamngformation is that for
any value of sampling time, the discrete time approximatiioa stable continuous-
time system is also stable. Since biological systems havgltathme constant,
the time step size chosen does not have an effect on the apateon (Ober and
Montgomery-Smith, 1990; Mayhan, 1984).

X(tk+1) = AgX(tk) +Bgu(ty) Vk=1,2,..m— 1 time points (2.13)

wherex(ty) is the noise-free or the signal component of the gene expreksvel
measured for the genes at a given timg. The noisy gene expression level
measurement for the discrete case is defined as follows:

X(tk) = X(tx) + & (tx) VYV k=1,2,..mtime points (2.14)

whereé (tx) is the noise component of the measured expression levethéon
genes, at timé&. Equation 2.13 can be rewritten in a matrix form for all tinwernis
as:

Y =GA] +UTB] (2.15)

whereY is a transpose of the matrix havingty), x(t3), and so on tillx(ty) as
columns (i.e.Y = [x(t2) .. X(tm)]T)andG is a transpose of the matrix with vectors
X(t1), X(t2), and so on tilk(tm_1) as columns (i.eG = [x(t1) .. X(tm_1)]T). Equation
2.15 is rewritten as follows:

Y =28 (2.16)
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Al
whereZ = [ G uUT ] andp =
Bd

Applying SIMPLS on theZ andY matrices in Equation 2.16 and choosing the first
k PLS components, the following solution is obtained

Ado
Bpis=RC" = (2.17)
Bio

whereR andC matrices are the weights of tdematrix and loadings of thé matrix
calculated based on the algorithm suggested in (Jong, 18%}ectivelyAqo and
Bgo are the solution obtained by applying partial least squé?es) on they and
Z matrices in Equation 2.16.

The solutionA = Ay does not give a sparse estimate for the connectivity matrix.
To obtain sparsity oA and to ensure that each connection is significant, the leave-
one-out jackknifing and the AIC methods are applied seqakntFirstly, the leave
one out jackknifing method is applied to eliminate spuriousnections. Secondly,
the AIC method is applied to achieve further sparsity by figdh optimal tradeoff
between accuracy and model complexity by penalizing bahrtbdeling error and

the number of parameters in the connectivity matrix..

The leave-one-out jackknifingpfvalue hypothesis testing) is carried out on the
entries of theA matrix, to eliminate spurious connections. The procedore f
the leave-one-out jackknifing is as follows: For each time tq,t,...,ty, the
samplex(t) is removed and the connectivity matrix is estimated usintjgldeast
squares (PLS) on the néfvandZ matrices in Equation 2.16. In this way a series
of m samples are obtained for each of the entries in the conitgathatrix. A
hypothesis test based on-distribution withm— 1 degrees of freedom is then used
to determine if each of the entries in the connectivity mxadtie significant. As
suggested in Section 2.1.2, a confidence level ef 0.05 is chosen for performing
leave-one-out jackknifing.
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The Akaike information criterion (AIC) method, as defined igquation 2.10, is

applied to thed matrix obtained after applying leave-one-out jackknifiogthieve

further sparsity by finding a optimal tradeoff between aacyrand model com-
plexity by penalizing both the modelling error and the numifgparameters in the
connectivity matrix. A series of steps in applying the AlGis$ed as follows:

1. A nominal AIC scorely, is computed for the moddl.

2. For each entrjj in A, a new model; is defined which is identical t4 but
theijt" entry is zero.

3. For each of the new models the AIC scd%aj,, is calculated .

4. The model with the lowest AIC score among ﬁqg models is selected (i.e.
A =arg min{IA”_ B
5. If 13 <14 then makeA = A}; and repeat steps 2to 5

6. The procedure is terminated when no connection can belfatmose elimi-
nation reduces the AIC score.

Let Ay = A, be the final model obtained. The discretized form of finaligoh,
A4 andBgg, are transformed into continuous forandB, using inverse bilinear
transformation suggested in Ober and Montgomery-SmitB@L9

2 )
B— (1) B (2.19)

2.3.3 An lllustrative Example

Before highlighting the effectiveness of the proposed netho a real data set,
the algorithm was applied on a simulation example. In theneple, a set of 1000
random sparse gene networks of 10 genes are chosen. Eadseflib00 random
networks A, are chosen based on the following characteristics:
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» Each network is represented by a full rank matrix with eigdues of the real
part less than zero to ensure stability of dynamical systBassal et al.,
2006; Ljung, 1999).

» Each network follows a power-law distribution meeting tleguirements of
P(k) ~ k=18 (Nacher and Ochiai, 2008; Hoguland et al., 2006).

For the network of 10 genes, the perturbation maBixyith a single perturbation,
is chosen (p=1). The gene perturbed is chosen randomly astdred in theB, 1
matrix. Since only one gene is perturbed, Bimatrix has all its entries except the
one chosen randomly, equal to zero. Thel x m, matrix is chosen with all the
entries being constant and equal to 1.

2.3.4 Building a Simulated gene expression matrix

For each of the 1000 networks, a simulated expression rr)et:m{ X(t1) .. X(tm) ]
was obtained using tHeimcommand in MATLAB (Bansal et al., 2006) by solving
Equation 2.12. The initial timg is chosen to be zero and the end tigaés chosen

to be equal to 4 times the absolute value of the real part cfittadlest eigen value of
A (Ljung, 1999; Bansal et al., 2006; Gardner et al., 2003). #eryegene expression
matrix, X, five equally sampled time points (m = 5) are chosen. White &ans
noise component is added to thematrix with zero mean and varying standard
deviations, fromo = 0.01*|X|| (1 % noise level) to 0.25tX|| (25 % noise level)

in increments of 0.011X||, where||X|| is the absolute values of entries of the gene
expression matrixX (Bansal et al., 2006; Gardner et al., 2003). In total, theee ar
1000 simulated noisy gene expression matrices for eachea?3hdifferent noise
components.

2.3.5 Comparitive study of the three methods

A comparative study is performed to assess the performdrtice proposed method,
by comparing it with the methods suggested in Yeung et al0Zp@nd Bansal
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et al. (2006). For the sake of simplicity and uniformity inngoaring all three
methods, the sparsity constraints in the proposed methsedban leave-one-out
jackknifing and the AIC were not applied to the recovergg matrix, given in
Equation 2.17. Instead, the recover&gh matrix, in Equation 2.17, is directly
transformed using bilinear transformation, mentioned qudion 2.18, to obtain
theA matrix. The resultanf, matrix is compared to the corresponding connectivity
matrices obtained using methods suggested in Yeung e08l2J2nd Bansal et al.
(2006).

The network sparsity for each of these methods was achieansetion the method
proposed in Bansal et al. (2006). In the method suggested byaBanhal. (2006),
for the purpose of obtaining sparsity, the smallesintries in recovered network,
A, are set to zero. The variabkeis defined such that it varies from zero to total
number of entries in connectivity matrix (in this case<100 =100) (Bansal et al.,
2006). For every smallest< {0,1,...,100} entries set to zero, a corresponding
connectivity matrix A, is obtained.

The performance of the algorithm proposed in this work alaith the algorithms
proposed in Yeung et al. (2002) and Bansal et al. (2006) aesssd based on the
correctly identified zero and non-zero coefficients (baseamy the sign of the
coefficients) in theA matrix. For this purpose, two ratiog andr,; are introduced
as suggested in Bansal et al. (2006):

B Identified correct zero coefficients
~ Total number of zero coefficients

(2.20)

Iz

i Identified correct non-zero coefficients with agreeing sign
ne— Total number of non-zero coefficients

An averagery; versus the, curve, across 1000 networks, is plotted for all three
methods and a comparison is made. The curve which ensuresimuma area
under therp; versus the, curve is considered the best method (Bansal et al., 2006).

(2.21)
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2.3.6 Robustness of the proposed method to noise

To highlight the robustness of the proposed method to measant noise, a sin-
gle 10 gene system is chosen based on the characteristied steSection 2.3.3.
White Gaussian noise components with zero mean and stanelaetidn equal to
0.25%|X|| (25 % noise level) is added, at 100 different times, to theutated X
matrix, in Monte-Carlo fashion. A set of 100 differedtmatrices are obtained,
one for each noise component. For each noise component,neaity matrix
A is estimated using the proposed method (including the gpamsnstraint pro-
posed by the method). The variance of the entries in recdw&racross the 100
different noise components, are calculated. The methodhgives lower values
for the variances of the entries is considered a better rdetiexause it ensures the
consistency in the estimates.

2.3.7 Experimental Data

The algorithm was applied to a nine-transcript subnetwdrth® SOS pathway in
E.coli. The total RNA was extracted at 6 time points: 0, 12, 24, 36,24l 60
min. Each experiment was done in triplicate and an averageesgion is chosen
at all time points. The noise level in the experiment was btmbe approximately
around 13 % (refer Bansal et al. (2006) for experimental detsan and the noise
in the experimental data).

Table 2.1 gives a list of the 9 genes in the SOS network alotiy avierage expres-
sion levels at different times.

2.4 Results and Discussion

2.4.1 10 gene simulated networks

Each of the 1000 recovered networks,are made sparse by setting the smallest
h absolute values of matrix equal to zero. The two ratiog andr,;, suggested
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Genes | Omin | 12 mins| 24 mins | 36 mins| 48 mins| 60 mins
recA 0 3.4555| 3.7139 | 3.5245| 3.3526 | 3.4996
lexA 0 0.7193| 1.0782 | 1.0783 | 0.8543 | 0.8787
Ssb 0 0.599 1.1959 | 0.8905| 0.4406 | 0.425
recF 0 1.4377 | 0.7241 | 0.2964 | -0.0114| 0.1034
dinl 0 2.1853 | 3.3187 | 3.3862 | 3.2019 | 3.2664

umubDC| O 0.4214 | 1.0584 | 0.9315| 0.8259 | 1.0371

rpoD 0 1.8529 | 1.3839 | 0.4021 | -0.0522| -0.1174
rpoH 0 0.1713| -0.2225 | -0.65 | -0.9738| -0.7261
rpoS 0 -0.5088| -0.3991 -| 1.0944 | -1.7731| -1.4595

Table 2.1: The gene expression data of the 9 gene SOS sulvsketwo

in Equations 2.20 and 2.21 respectively, are calculatedaoying the value oh
from zero to the total number of entriesAn The best value dfiis the value when
all the connections (positive, negative and zero) are ifiedtcorrectly with no
false negatives or positives (i.e; =rn,~=1). For a noisy under-determined system,
estimating all the connections accurately, without apyiori information, is not
feasible. Therefore, the method which ensures a maximuawerder the,; versus
ther; curve is considered as the better method (Bansal et al., 2006)

The area under the averaggversus the;, curve, across the 1000 random networks
versus different noise levels is plotted. Figure 2.2 shdwesaverage area under the
I'nzVversus the; curve versus noise level for the proposed method. The platates
that for low noise (noise level less than 5 %), choosing tRe® components gives
the best estimate for the connectivity matrix and at higloesenlevel, choosing two
PLS components is a better option. Based on the area undeuthe alue in
Figure 2.2, two PLS components are chosen for the estimafitite connectivity
matrices using the proposed methodology.

An average; versus the, plot comparing the three methods is presented in this
chapter. For the comparison, three principal componeetslawsen for estimating
the network using the method proposed in Bansal et al. (2086)suggested in
Section 2.3.7, the noise level of the real data is approxipatround 13 %. Hence,

a plot comparing the averagg, versus the; across 1000 random networks, for a
noise level of 13 % is presented in Figure 2.3,
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Figure 2.2: Plot of the area under the averggdétrue non-zeros) versus thg(true
zeros) curve across 1000 random networks, versus the pageenoise levels for
the proposed method.
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and method in Yeung et al. (2002) respectively.
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2.4. Results and Discussion

The area under the averaggversus the, curve for the proposed method is higher
than the area under the curve for the methods proposed indBetral., 2006) and
(Yeung et al., 2002). Based on this result, the performandesoiethod proposed
is better compared to the performance of the other two msthod

2.4.2 Advantages of PLSR over PCR

The advantage of the PLSR method, used in the study, compgafRGR method,

used in Bansal et al. (2006), is illustrated with the help ofenulated example.
A set of 5000 different sparse gene networks of 10 genes axseahbased on the
characteristics mentioned in Section 2.3.3:

» Each network is represented by a full rank matrix with eigémes of the real
part less than zero to ensure stability of dynamical systBassal et al.,
2006; Ljung, 1999).

» Each network follows a power-law distribution meeting tlguirements of
P(k) ~ k=18 (Nacher and Ochiai, 2008; Hoguland et al., 2006).

For each of the 5000 sparse networks, an expression m&tri% X(t1) .. X(tm) ]
was obtained using tHsimcommand in MATLAB (Bansal et al., 2006) by solving
Equation 2.12. The initial timg is chosen to be zero and the end titjés chosen

to be equal to 4 times the absolute value of the real part cfitfadlest eigen value of
A(Ljung, 1999; Bansal et al., 2006; Gardner et al., 2003). FFeryegene expression
matrix, X, five equally sampled time points (m = 5) are chosen. White &8ans
noise component is added to thematrix with zero mean with varying standard
deviations, fromo = 0.01%|X|| (1 % noise level) to 0.25tX|| (25 % noise level)

in increments of 0.01tX||, where||X|| is the absolute values of entries of the gene
expression matrixX (Bansal et al., 2006; Gardner et al., 2003). In total, theee ar
5000 simulated noisy gene expression matrices for eachec?23hdifferent noise
components.

For each of the 5000 recovered networksthe two ratiosy, andr,; suggested
in Equations 2.20 and 2.21 respectively, are calculatedaoyivg the value oh
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from zero to the total number of entriesAn The best value dfiis the value when
all the connections (positive, negative and zero) are ifiedtcorrectly with no
false negatives or positives (i.e; =rn,,=1). For a noisy under-determined system,
estimating all the connections accurately, without apyiori information, is not
feasible. Therefore, the method which provides a largea,areder the,; versus
ther, curve, compared to the other methods is considered su&amsal et al.,
2006).

The area under the,; versus the, curve, for the methods proposed in this work
and method suggested in Bansal et al. (2006), are comparette 8ie PLSR
method, used in this study, is compared with the PCR methoet] us Bansal
et al. (2006), the sparsity constraints in the proposed odelfased on leave-one-
out jackknifing and the AIC were not applied to the recovebgg matrix, given

in Equation 2.17. Instead, the recovergg matrix is directly transformed using
bilinear transformation, mentioned in Equation 2.18, ttaobtheA matrix.

In Figure 2.4, a histogram plot of the difference in the anedan ther,,, versus the

r; curve (at 13% noise level), between methods proposed imthiik and (Bansal
et al., 2006), for all the 5000 recovered networks, is ptbtfEhe histogram shows
that with approximately 78% confidence, the method propasekis work gives
higher area under thg, versus the, curve compared to the method proposed in
Bansal et al. (2006). This can be used as a conclusion to duipgeéthe PLSR
method, used in this study, gives a better estimate for theexivity matrix over
PCR method, used in Bansal et al. (2006).

The confidence level in obtaining a higher area undertheersus, curve using

the PLSR method compared to PCR method, across various ruds,lis plotted

in Figure 2.5. It can seen from the figure that PLSR methodistargly outper-

forms the PCR method for all chosen noise levels. This cané@ asa conclusion
to suggest that the PLSR method, used in this study, giveier lestimate for the
connectivity matrix over PCR method, used in Bansal et al. 200
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Figure 2.4: Comparative performance of the proposed methtd nespect to
the method in Bansal et al. (2006), for the 5000 simulated geteorks. The
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2.4. Results and Discussion

2.4.3 Advantages of applying both leave-one-out jackknifing and
the AIC methods

In the current study, both leave-one-out jackknifing andAle methods are used
for obtaining a sparse estimate of the gene connectivityimathe advantage of
using both the methods for obtaining an estimate is empédsiath the help of
5000 simulated noisy gene expression matrices at each dStfferent noise
levels, as mentioned in Section 2.4.2.

As proposed in Section 2.2, to obtain a sparse estimate gethe connectivity ma-
trix, leave-one-out jackknifing is applied first and then 1€ method is applied.
Applying the sparse estimate using the proposed approacbtnipared with the
sparse estimate obtained by applying the leave-one-okitp#mng method alone,
the AIC method alone, and first the AIC methodology and sedeade-one-out
jackknifing. The comparative study involves enforcing tparsity constraints to
the recoveredi\yp matrix, in 2.17 by applying the four different proceduresor F
each of the cases, the resultant matAy, is transformed using bilinear transfor-
mation, suggested in 2.18, to obtain thenatrix.

As in Section 2.4.2, for each of the 5000 recovered netwa@kk#e two ratiosy;
andr, for the sparse network obtained are calculated. The bkst vhthe two ra-

tios is when all the connections are correctly identifieé (r; =r,,=1). An average

of the two ratiosr, andry, across the 5000 recovered networks is calculated. For a
noisy under-determined system, estimating all the commestccurately, without
any apriori information, is not feasible. Therefore, the techniquechhhas the
{rnz rz} point in the average,; versus the, curve closer to the point (smaller
distance) 1,1} is considered as the better method.

To this end, a distance metrid, -, is defined which calculates the distance of the
{rnz rz} pointin the average,; versus the; curve to the poin{1,1}. The distance
metric is defined as follows:

drnz7rz - \/(1— rnZ)2+ (1— FZ)2
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2.4. Results and Discussion

Based on the smaller value of the distance metdeggz.) in Figure 2.6, the sparsity
constraint enforced by applying first the leave-one-oukkading method and then
the AIC method is the ideal combination. The method of apg\ieave-one-out
jackknifing (LOOJ) before AIC is also justified based on thet fdnat applying

LOOQJ first removes the spurious connections obtained usif®RPmethod and
gives a robust connectivity matrix and further applying A€ method reduces the
complexity of the obtained matrix. Obtaining a robust mqal&br to reducing the
model complexity is a more judicious approach.

2.4.4 Analysis of Noise-Robustness Via Monte Carlo Simulations

Since, microarray data are highly noisy, the consistentliyeéntries in the connec-
tivity (recovered) matrix in presence of measurement nisigenecessary require-
ment. The method which shows a higher confidence for thessrigriindicative of a
better performance. Since the noise level is 25 %, two PLScorents are chosen
for the proposed method and two principal components (P@sklaosen for the
method proposed in Bansal et al. (2006).

A histogram of the variances of the entries, across the 106t@4Garlo samples,
is also plotted. Figure 2.7 shows a histogram plots of theamae of the entries
in A for the proposed method and the methods in Yeung et al. (28@2Bansal

et al. (2006). As can be seen from Figure 2.7, the varianct#seaéntries obtained
by the proposed method is smaller than variances of theeenising the methods
proposed in Bansal et al. (2006) and Yeung et al. (2002). Fhenplots one of

the important observation is that the variances of someepétitries using method
proposed in Yeung et al. (2002) are significantly higher agwick the confidence
on the estimates are very poor.

2.4.5 Nine Gene SOS Network

For the nine gene SOS dataset in Table 2.1, the algorithnopeap in this study,
is applied and the network obtained is shown in Table 2.2ceSthe noise level in
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the real data is around 13%, three PLS components are charsandlysis. A 95%
confidence level is chosen for obtaining sparsity usingdeawe-out jackknifing
(a=0.05).

The inferred network is compared with known interactiongegiin the literature.
There were 43 proposed connections, apart from the selbédd between these
9 genes (Bansal et al., 2006) . For estimating the final gengonlet no apriori
information regarding the number of connections per gensésl. Table 2.2 gives
the final gene network estimated using the method propostdsimork.

Table 2.2: The nine gene SOS network recovered using th@gedmethodology.
The connectivity matrix values are rounded off to two dediptaces.

recA | lexA | Ssb | recF | dinl | umuDC| rpoD | rpoH | rpoS
recA | -0.83| O 002| 1.06 0.36| 0.09 | 0.76| O 0
lexA | 0.32|-2.00] 0.01| 0.30| 0.10| 0.03 | 0.21| O 0
Ssb | -0.07|-0.04|-199| 066 | 0.22| 0.06 | 046| O 0
reck | 0.12| O |-0.09|-193|-0.39| 0.10 | 0.78| O 0
dinl 1.12| O 001|061 -1.79| 006 | 044 O 0
umuDC| 0.33| O 0 0.14| 005| -199 | 0.11| O 0
rpoD | 0.23| O 0 0.12 | -0.69| -0.33 |-0.69| O 0
rpoH | -0.08| O 0 0.17 | -0.48| 0.04 | 0.36|-2.00| O
rpoS | 0.26| O 0 0.14|-0.79| -0.27 | 0.10| O |-1.63

For comparing the original and the recovered networks, thr@ysigns of the entries
are taken into account whilst ignoring the magnitude. Tloeeg the network given

in Table 2.2 is converted to a sign network given in Table 2:3tlie purpose of
comparison. Tables 2.3 and 2.4, show the recovered genenketanly signs) us-

ing the algorithm suggested in this study and the networpgsed in the literature,
respectively.

As many as 25 of the 43 proposed connections were correchtifted as com-

pared to the 20 connections obtained using the method pedgosBansal et al.

(2006). For obtaining a sparse matrix, the method propasésansal et al., 2006)
used the information that each gene is connected to five gregs ( based on the
work proposed in Gardner et al. (2003)). Using the proposethad, we were

able to achieve as many as 25 connections correctly withsuguthe apriori
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2.4. Results and Discussion

information regarding the connectivity of the genes, sstggkin Gardner et al.
(2003). The method proposed was also able to identify 19zeue coefficients in
the network compared to the 17 true zero coefficients oldairseng the method
proposed in Bansal et al. (2006).

Table 2.3: The recovered SOS network (only signs) using tbpgsed methodol-
ogy

recA | lexA | Ssb| recF | dinl | umuDC| rpoD | rpoH | rpoS
recA -1 0 1 1 1 1 1 0 0
lexA 1 -1 1 1 1 1 1 0 0
Ssb -1 -1 ] -1 1 1 1 1 0 0
redF 1 0 -1 -1 -1 1 1 0 0
dinl 1 0 1 1 -1 1 1 0 0
umuDc| 1 0 0 1 1 -1 1 0 0
rpoD 1 0 0 1 -1 -1 -1 0 0
rpoH -1 0 0 1 -1 1 1 -1 0
rpoS 1 0 0 1 -1 -1 1 0 -1

Table 2.4: The original nine gene SOS network as proposelkirfBansal et al.,
2006). The values 1, -1, and O indicate a positive connectiegative connection,
and a lack of connection respectively

recA | lexA | Ssb| recF | dinl | umuDC | rpoD | rpoH | rpoS
recA -1 -1 1 1 -1 1 0 0
lexA 1 -1 1 1 -1 1 0 0
Ssh 1 -1 1 1 -1 1 0 0
reck 0 0 -1 0 -1 1 0 1
dinl 1 -1 ] -1 1 -1 1 0 0
umuDc| 1 -1 ] -1 1 1 1 0 0
rpoD 1 -1 -1 1 1 -1 1 0
rpoH 0 0 0 0 0 0 1 0
rpoS 0 0 0 0 0 0 1 0
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2.5. Advantages of the proposed method to the method bas@tmah, 1982)

To emphasize the advantage of using first, the leave-ongokinifing method
and then the AIC method, as suggested in the proposed méiieaaymber of con-
nections obtained using the proposed method (25 of the 4®pedl connections)
is compared with the number of connections obtained by applgnly leave-one-
out jackknifing method (31 of the 43 proposed connectiornlyang only the AIC
method (16 of the 43 proposed connections), and applyingliesAIC methodol-
ogy and second leave-one-out jackknifing (16 of the 43 pregp@®nnections), as
sparsity constraints.

Although, the number of connections correctly identifiegt, using only leave-
one-out jackknifing, increased from 25 to 31, the numberwé rero coefficients
identified in the network decreased from 19 to zero. Theegfdue to the presence
of large number of false positives, the method of obtainipgrsity using leave-
one-out jackknifing alone is not preferred.

2.5 Advantages of the proposed method to the method
based on (Varah, 1982)

For the purpose of applying the procedure suggested in \@@82), the gene
expression levels(t), is sampled at timg = {t; <t < .. <tm} withtj € T, and
is written in the form of a gene expression matiXs,.m, with rows indicating the
various genes and columns indicating different time sampldat is, each cell in
the gene expression matrix represent expression levelabfprticular gene at a
given time (refer Section 1).

Equation 9, is written for all m samples in the matrix form akdws:

anm:Anxnxnxm+ anpprn (2-22)

An estimate for both the original matriX and its first derivative matrix, in
Equation 2.22, are obtained by applying a uniform cubic Imspleast squares
method (Varah (1982); Deng et al. (2009)). Equation 2.22 beawritten analogous
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2.5. Advantages of the proposed method to the method bas@tmah, 1982)

to the Equation 2.15 as follows:

Y=GA" +UTB' (2.23)

whereY is a transpose of th& matrix andG is a transpose of th¥ matrix.
Equation 2.23 is rewritten as follows:

Y =ZH (2.24)
AT

whereZ = [ G UT ] andH =
BT

Applying SIMPLS on theZ andY matrices in Equation 2.16 and choosing the first
k PLS components, the following solution is obtained

AT
Hpis = RC" = (2.25)
BT

whereR andC matrices are the weights of tdematrix and loadings of thé matrix
calculated based on the algorithm suggested in (Jong, 1833)ectivelyA andB
are the solution obtained by applying partial least squéPeés) on theY andZ
matrices in Equation 2.24.

The simulated case study of 5000 gene networks, suggesgs=ttion 3.2, is used
to recover the connectivity matrix using the method progddsethis section. For
each of the 5000 recovered networksthe two ratiosr, andry, are calculated by
varying the value oh from zero to the total number of entriesAn

The area under they; versus the curve, for the method proposed in this work and
method using the procedure in Varah (1982), are compareguré-2.8, shows a
histogram plot of the difference in the area undentheersus the, curve, between
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Figure 2.8: Comparative performance of the proposed methibdrespect to the
method using the procedure in Varah (1982), for the 5000 Isited gene networks.
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2.5. Advantages of the proposed method to the method bas@tmah, 1982)

method proposed in this work and the method using the praeedarah (1982),
for all the 5000 recovered networks. The histogram showswilih more than
99% confidence, the method proposed in this work gives higresa under they,;
versus the, curve compared to the method proposed using the procedifeeai
(1982). This can be used as a conclusion to suggest that ttiednproposed in
this study, gives a better estimate for the connectivityrixatver the method using
the procedure in Varah (1982), for smaller networks.

Also, for large networks, the estimate of the connectivigtmx obtained using the
procedure in Varah (1982) did not yield a better result camg#o the method pro-
posed in this work. Therefore, it can be concluded that théhateproposed in this
work shows a superior performance compared to the methad tis procedure in
Varah (1982).
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2.6 Limitations

As mentioned in Section 2.1, microarray technology havélkeatthe gene expres-
sion profiles to be measured for thousands of gemesimultaneously. Also, the
experimental cost for obtaining the time samplasfor these thousands of genes
are high. Therefore, the number of equatioms<(n) are fewer than the number of
unknowns £ x n). The system of ODEs needed to be solved are under-detatmine
For a large gene network with very few time samples, the geganethod does not
yield satisfactory results. This is due to the highly undetermined nature of the
system which require more than one set of experiments fa@irmby a satisfactory
result.

2.7 Concluding remarks

In this study, three objectives are achieved, firstly, a halgorithm is proposed for
obtaining a statistically significant estimate of the geagwvwork from linear ODEs
using a combination of well known statistical tools such agtipl least squares
(PLS), leave-one-out jackknifing and the Akaike informataiterion (AIC). The
method uses the knowledge of bilinear transformations fecrdtizing a linear
ODE problem into a linear algebraic problem.

Secondly, a comparative study performed with a simulatee getwork, illustrated
the superior performance of the method as compared to metadlable in the
literature. The simulated gene network is built so thataisely resembles a real
gene network (i.e. a stable network with gene connectiatisf/ing a power law
distribution). The obtained estimates were consistentrabdst to measurement
noise in the data.

Finally, the method applied on experimental data for a jare SOS network
was able to successfully extract 25 out of 43 proposed caiomsan the literature
without anyapriori knowledge on the network.
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Limitations in Inferring Gene Networks
from Microarray Datasets

In this chapter, an algorithm for reverse engineering gestgvarks using data
obtained from microarray experiments is proposed. Underptioposed scheme,
the parameter space describing gene interaction is paeii into estimable and
inestimable linear subspaces. The estimable subspactia@d by using principal
components analysis (PCA). It is shown that these estimathlspsices are robust
with respect to experimental noise. Also, a method for desgexperiments which
will allow the estimation of the complete network is preseht As a result, the
proposed procedure will, necessarily, only allow the estiom of a subset or some

LA portion of this chapter has been published in the IFAC pedimgs. V. R. Nadadoor, A.
Ben-Zvi, and S. L. Shah, “Challenges in Reverse Engineesfr@ene Networks from Algebraic
Perspective”, Proceedings on the 11th symposium Compuiplidations in Biotechnology, IFAC
symposia, on July 2010.

51



combination of the entries iA. However, the benefit of the proposed approach is
that one is explicitly aware of which portion of the netwoskdentified and which
is not.

3.0.1 Principal Components Analysis

As there are more entries in the connectivity magixhan can typically be esti-
mated from experimental data, one can only estimates apatithe gene network.
Under the proposed framework, kéyear combinationsof genes are identified
and their interconnectivity is estimated. Principal Comgus analysis (PCA) is a
statistical technique that can be used to separate or etikey linear combina-
tions from a set of noise data (Wold, 1978, 1966). PCA has beéalywused and

has been extremely successful in a number of applicatiarthgdimg clustering of

gene expression data, assessment of biological age antbdiag@f coronary heart
disease (Yeung and Ruzzo, 2001; Nakamura et al., 1988; Brendle, 2002)

The singular value decomposition (SVD) algorithm is usepadorm PCA on the
gene expression data. SVD involves factorization of a givatrix, in this cas& T,
into three matriced, S andV as shown:

XT =usVv' (3.1)

whereU consists of orthonormalized eigenvectors associated swénvalues of
XTX, and the matri®/ consists of orthonormalized eigenvectorsXof’. Sis a
diagonal matrix with elements being non-negative squanésrof eigenvalues of
XXT, called the singular values.

In the PCA notationT = USis the score vector, anél = V forms the loading
vectors or the principal component vectors (PC). THedncipal component (PC)
captures direction of the greatest variability followedtbhg 2" orthogonal PC this
relation continues until thet” PC which captures the least variability. Typically
last few principal components are assumed to capture tha&bility due to noise.
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3.1. Proposed Method

TheXT matrix can be written in the PCA notation as follows:

n

ZT,PTJr T.PT XT+¢ (3.2)

wheren is the total number of PCsl, is the significant PCs that capture the signal
componentT;’s andP’s are the score vectors and loading vectors ofttherincipal
component. The scores in Equation 3.2, are in the decreasiley of magnitude
as shown:

ITall2 > [[Tallz > ... > [[Tnll2 (3-3)

Therefore, Ty 1 to Ty are scores of PCs which are attributed to noise in the matrix
XT,

3.1 Proposed Method

Let Xxm, represent an experimentally observed gene expressianvdstix. First,
principal components analysis (PCA) is performed on the ottix X/ ,. This
allows the matrixXT to be written as a linear combination@& m < < n principal
components representing the signal component in the dathaaset ofn —d
principal components which represent the noise componeheidata. The integer
d is chosen using the prediction error sum of squares (PRES8jochéWold,
1978). The matriXT can therefore be written as

Xr;l;xn - medp(}xn+'rne1x(n d)(P(Lnfd)xn)T (3.4)

whereP andT are the loading and score matrices for the firgtrincipal compo-
nents respectively. Likewis® andT® are the loading and score matrices for the
remaining(n— d) components. Thd loading vectors in th® matrix, and(n —d)
loading vectors in th&® matrix together form an orthonormal basis. That is, the
vectors in the matri® = [P,P+] = [P, Ps,...,Py,Py;1, ..., Pn] form a orthonormal
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3.1. Proposed Method

basis forR". In order to simplify the notation, Equation 3.4 can be \eritas:

Xr-Tr1><n:>2rT1xn+Z (3-5)
where, X1, = TrwdPi.p, and (3.6)
{ =T n-d)(Pin_dyxn)’ (3.7)

are the signal and noise terms respectively.

For a system operating around steady state the gene corityentatrix can be
modeled with a set of linear ordinary differential equai¢@®DESs)as follows:

X(t) = AX(t) + Bu(t) (3.8)

For the sake of simplicity, in this work, a discrete lineardabis assumed to model
the gene network instead of ODEs. The system consideredad@ss:

X(tier1) = X(ti) + At (AX(t) + Bu(ty)) (3.9)
Equation is rewritten in a matrix form as shown:
AX =AX+BU (3.10)

whereAX = é[ (X(1) =x(0)) ... (x(m)—x(m—1)) ] Substituting Equation
3.5 into Equation 3.10, leads to:

AX+Al = AX+AZ +BU (3.11)
Taking expectation of Equation 3.11, gives the followingmssion :
E[AX] +E[AZ] = E[AX] + E[AZ] + E[BU]

Note that using the algorithm proposed in this work, Equa8d.1 contains a noise
term { whose mean is assumed to be zero (E8(| = E[A{] = 0). Simplifying
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3.1. Proposed Method

and dropping th&(-) notation for compactness one obtains:
AX = AX +BU (3.12)

To obtain a general solution, Equation 3.6 is substitutéaltime transpose of Equa-
tion 3.12 giving:

(AX)T =XTAT +BT =TPTAT + (BU)T (3.13)
The least squares solution fBf AT, in Equation 3.13 is
PTAT = (TTT) 11T ((aX)T — (BU)T) (3.14)

whereA denotes the least-squares estimateofThe general solution foA in
Equation 3.14 is then:

A=nAg+C(PHT (3.15)
where A} = P(TTT) 1T ((aX)T — (BU)T) (3.16)

andC is an arbitrary matrix. Recalling that the columns of e matrix are the
principal components associated with the noise in the detaptimal noise-free
estimable portion oA is obtained by settin@ = 0. For the sake of simplicity,
an external stimuli matriBp, = BU is defined, and henceforth all the equations
are rewritten based oB,. Therefore, the Equation 3.12 can be rewritten in the
following form:

AX = AX + B, (3.17)

3.1.1 Creating a simulatedX matrix and testing the proposed

method

A simulated gene expression daé,is built from a given gene networld and
an external stimuli matriBp. The simulated example involves obtainingtime
samples for analysis given an initial vecigOf, A andBp.
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3.1. Proposed Method

A procedure is shown for creating thesetime samples. A sparse connectivity
maitrix A, an initial gene expression sample vecigf) = T(0)PT, at time t=0, and

an external stimuli matriBp are chosen. Equation 3.1, can be rewritten for the
noise free case as follows:

X(t+1) = K(t) + AtX(t)AT 4 b(t) (3.18)

whereBp, = [b(0) ... b(m— 1)] andX = [X(0) ... X(m— 1)).

Equations 3.18 can be written in the matrix form fpr= {0 <1 < .. <m} as
follows:

(O)[1 +MAT] b(0)

X X
%(2) (1)1 _+AtAT] 1) (3.19)

oy
-~

gm—nﬂ+mAW mﬁ—n

While creating a simulated matrix withtime samplesX, there is a need to choose
an initial vectorxgy, connectivity matrixA, B, andt.

Let A, be the original connectivity matrix. Equation 3.19 is usedjenerateX
matrix, from the connectivity matriR, initial samplexg (at timet = 0), andB, for
various time samples

The procedure described above is applied to genétateatrix, which in turn is
used to re-estimate the connectivity matdxby applying the method proposed in
the current work. Shown below are t#e X, Bp, andt data used for the above
simulated example:

0 651 315 O 0 471

-033 O 0 649 152 O

A 2.38 0 O 435 058 O
0 2087 1587 O 0 2156
0 542 494 O 0 445

241 0 0O 571 191 O
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3.1. Proposed Method

—-0.24 -125 -094 -094 -0.24 -—-125
-040 -132 -099 -162 -041 -132
X=| -059 —144 —1.08 —234 —059 —1.44
-0.78 -160 -120 -3.13 -0.78 —-1.60
—-100 -182 -136 —4.01 -1.00 —-182

001 -073 -055 003 001 -0.73

| -0.05 -0.78 059 -020 —-0.05 —-0.78
7| -018 —002 -001 -071 -0.18 —0.02
—-0.24 -057 -043 -0.95 -0.24 -0.57

tz(o 001 002 003 0.04)

3.1.2 Estimates using the Proposed methodology

A set of two random noise components are added t& timatrix and the first step of
the proposed methodology as indicated in section 3.1, iBeapplhe consistency
of the estimates below will indicate the significance of édesng the noise in the
methodology.

Two random noise components with standard deviation of 8r2fl0.05 are added,
to the simulated gene matrk given in the section 4.1. The connectivity matrices
A1, andA,, are estimated for the two noise components.

Noise with 0.01 Standard DeviationFor noise with standard deviation 0.01, the

57



3.1. Proposed Method

loading matrix,P;, and the score matriX;, as suggested in Equation 3.16 are:

—-0.1795
—0.4048
—0.3036
—0.7180
—-0.1795
—0.4049

2.0576
2.6797
3.3835
4.1856

01527
—-0.4757
—0.3569

06110

01527
—-0.4757

08750

04956

01450
—0.2033

The connectivity matriXd; estimated in the first step of the methodology is:

0.00
151
1.13
0.00
0.00
151

530 398
000 000
000 Q00
2120 1590
530 398
000 Q00

000
603
453
000
000
603

000
151
113
000
000
151

530
000
000
2120
530
000

Ay =

Noise with 0.05 Standard DeviationFor noise with standard deviation 0.05, the
loading matrix,”, and the score matriXp, as suggested in Equation 3.16 are:

—0.1795
—0.4050
—0.3036
—0.7178
—-0.1799
—0.4050

01533
—0.4743
—0.3569

06106

01545
—-0.4769

58



3.1. Proposed Method

2.0578 08774
2.6815 04948
3.3858 01398
4.1870 —0.2033

Similar to the first case, the connectivity matAx estimated in the first step of the
methodology is found to be:

—0.03 53563 403 -0.10 -0.03 537
153 -0.04 -003 613 154 -005
115 -005 -0.04 460 116 -0.06

—-011 2138 1607 -0.39 —-0.13 2145

—-003 538 404 -010 -0.04 540
154 -008 —-006 614 155 -0.09

The sum of squared error of between the two estimadesand Ay, is given as
follows: ¥ 5 (Aq —A2)2 =0.64. Therefore, the estimated matricAg,andA,, are
quite similar in the presence of noise. Based on the aforeamsd two estimates,
A; andAy, the following conclusions can be drawn.

1. The connectivity matrix estimated using the proposechodlogy helps in
obtaining true values for some of the coefficients in the eatimity matrix.

2. Itdoes not give the true estimate for all coefficients em¢bnnectivity matrix.
The limitation in the proposed method, in estimating all¢befficients in the
connectivity matrix, is explained in a later section.

To further highlight the significance of the proposed metiogy, a simulated case
study is performed by selecting a set of 100 different randorse components with
standard deviations of 0.01 and 0.05 each. Two sets of 1@€relit connectivity
matrices are estimated, using the proposed methodologgafth of the two noise
components.

Figure 3.1, is the histogram plot of the variance of the coieffits in the connectiv-
ity matrices for the two different noise components witmstad deviation of 0.01
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3.1. Proposed Method

Variance of estimates for proposed method
30 :
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Figure 3.1: Histograms of the variance of the entries of du®vered connectivity
matrices estimated by the proposed method. The variancbeotaefficients
estimated by the proposed methodology for noise compomneittisstd. of 0.01
(top panel) and std. of 0.05 (bottom panel) are presente@. s€hle in the plots
suggest a consistent estimate of the entries in the comitgctiatrix.
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3.1. Proposed Method

and 0.05. The figure highlights the robustness of the estignatthe presence of
noise in the data. Smaller variances for the coefficientBénconnectivity matrix
as shown in Figure 3.1, indicates the robustness of the mekbgy proposed in the
presence of noise.

3.1.3 Limitations

The method proposed in this work assumes that the gene siqmasatrix, X is
correlated. That is, a few linear combinations of the genptaé the gene expres-
sion matrix,X = TPT. The connectivity matrix estimated using this assumption,
may not be the true estimate of the connectivity matrix. Gigegene expression
data from a given microarray experiment, the solution otibrenectivity matrix es-
timated is not necessarily the true estimate for all thefaoents of the connectivity
matrix. The limitation that only a few of the connections ¢tenestimated based on
the assumption thaX is correlated is highlighted using an illustrative examgée
shown below:

An illustrative example in the form of a small case study if@ened. The simu-
lated example involves obtaining various time samples fatysis given an initial
vector, xj (0), connectivity matrix,A, and an external stimuli matribB;. Let A,
%1(0), B1 be given as shown below.

>~<1(0)=[1 o] Bi=| : : (3.20)
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3.1. Proposed Method

Equation 3.19 is used to calculatgi], Vi € N, at various times and the result is:

%1(1)) = |10
%12) = |10
i = [1 0

(3.21)

Additional number of time samples does not gives additiorfarmation regarding
the data. The time samples get trapped into a subspace givibie vector

The loading matrixPy, and the score matrixi;, obtained from Equation 3.16 are
given as follows:

PFH ri=[1]

The connectivity matrixA;, estimated using the methodology proposed in this
work is:

A -1 0

A =

The solutionA;, does not give a true estimate for all the coefficients in thenec-
tivity matrix. It gives the exact estimate for all the contieas in the first column
of the A matrix. To get a true estimate for all the coefficients in tbarectivity
matrix, another case study is performed.

The case study involves obtaining various time samplesrfalyais given an initial
vector,X(0), A, andB; as shown:

-1 0

-1 1

A=
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3.1. Proposed Method

22(0):[0 1] B, — :
0 -1

Once again, Equation 3.19 is used to calcukate),” Vi € N, at various times:

%1 = |0 1
%02 = |0 1
X() = |0 1

(3.22)

The loading matrixP,, and the score matrixip, obtained from Equation 3.16 are
given as follows:

0
P = [ 1] = [ 1 }
The connectivity matrix A, estimated using the methodology proposed in this

work now:
A 00
Ao =

The true estimate of the connectivity matri, as obtained by taking the sum of
both the estimatedy; andA, is:

. -1 0

A=

Note that the matrix formed by the loading vectors from the tase studiesP}
P,], form a basis irlR2. Therefore, there exists an underlying relationship betwe
the two case studies shown in this section. This relatignis€ips in estimating the
coefficients of the connectivity matrix in entirety. In th@lbwing section, a general
procedure for estimating all the coefficients in connettimmatrix is illustrated.
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3.2. Independent Microarray Experiments for Estimatingé&letwork

3.2 Independent Microarray Experiments for Esti-
mating Gene Network

Microarray experiments referred in this work constitutegiven gene expression
matrix, X, and a prescribed external stimuli matr(Gardner et al., 2003; Yeung
et al., 2002). The external stimuli matr& has a direct effect on tha matrix.
Therefore a suitable external stimuli matrB, is needed to estimate the original
connectivity matrix A.

As indicated in the previous section, from a given microgeaperiment, the so-

lution obtained is only a portion of the connectivity matri¥or estimating the

complete connectivity matrix, a series of different mienway experiments have to
be performed. This section deals with a methodology of egtimg the complete

connectivity matrixA.

Any given matrix,A, can be partitioned as follows:

~ a a ~
A—P 11 12 PT (3_23)
dp1 a2
A= PayP" +Payy(PH)T +Ptay P +Pray(PH)T (3.24)

The matrix,A, given in Equation 3.24, will represent the general formafreectiv-
ity matrix, A, given in Equation 3.15 if and only if the right-hand side afuation
3.24 and Equation 3.15 are the same.

The general form of the connectivity matrix as given in EquaB.15 is as follows:
A=Ag+C(PHT (3.25)

whereAl =P(TTT)"1TT((AX)T — (Bp)T). The estimatéy obtained can be rewrit-
ten as follows:

Ao=((TTT)TT((aX)T — (Bp)T))TPT = &P’ (3.26)
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3.2. Independent Microarray Experiments for Estimatingé&letwork

whereag = (TTT)1TT((AX)T — (Bp)"))T.
Equating right-hand side of Equations 3.25 and 3.24 leattettollowing equality:

Ag+C(PH)T = Pay1PT + Pagy(PH)T + Plag P’ + Pray(PH)T (3.27)

Post multiplying both sides of Equation 3.27 wiRtand substituting Equation 3.26,
leads to the following equation:

aoP"P = Pay1PTP + PtayPTP (3.28)
ao = Pagy+ Prap; (3.29)

Again, post multiplying both sides of Equation 3.29 with, leads to the following
equation:
Ag = aoPT = PallPT + PLa21PT (3.30)

Equation 3.30 refers only to a portion of estimate,= Ao, of gene connectivity
matrix A which is estimated by using the first step of the proposed odetlogy.
The estimated;, only gives the true estimate for some of the connectionfién t
original connectivity matrix. To obtain the true estimate &ll connections in
the connectivity matrix, a series of independent experisiare needed to be per-
formed. The following section gives a methodology to esteal the coefficients
of the connectivity matrix.

3.2.1 Independent Experiments

Starting with the gene expression mati, = T1P", and external stimuli matrix,
B, satisfying the equationf(l — AX; + By, the solution A, obtained in the first
step of the proposed method is given as shown in Equation BIg4l is,

Al =Ap= (Pa11+ P¢a21) PT (331)
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3.3. Concluding Remarks

By an independent experiment, starting with= T,(P+)T andB,, satisfying the
equationAf(z — AXy + By, the solution Ay, , obtained in the first step of the pro-
posed methodology is given by:

Ay = A, = (Paga+Payy)(PH)T (3.32)

Since the number of genes is much greater than the numbermfes possible
(n >> m> d), the estimateAq, given in Equation 3.32 cannot be estimated by
a single experiment. Therefore, a series of independermrigrpnts are needed to
be performed starting with the gene expression matriceslaexternal stimuli
matrices as shown

X = Tevik andBy Yk =2,3,4, .. (3.33)

wherev is the matrix formed by a subset of the vectors in the matix Vectors
in each subset matriy, form a partition for theP- matrix. Each of these gene
expression matrixX,, and external stimuli matrixgy, satisfy the equatioAX, =
AX + By

For each of the independent experiments shown in Equat&8) a.solutionA, =

Aok, is obtained using the proposed methodology. The final estirfor the gene
connectivity matrix,A, is the sum of all the estimates obtained from each experi-
ment:

A= iA (3.34)

where®8, is the number of independent experiments performkds the estimate
for the all the coefficients of the connectivity matrix.

3.3 Concluding Remarks

Gene networks is useful in getting a better understandingexfhanisms of com-
plex biological processes such as organ transplant refeaind breast tumors. It
is a well known fact that reverse engineering of such genearé&s from gene ex-
pression data tend to be underdetermined. Also, the gemessipn data obtained
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from microarray experiments are very noisy. In this worlg tthentification of the
gene network is treated as a step-wise problem. The gen®rketvas separated
into estimated and unestimated components based on tharegpes performed.
The robustness of the data in the presence of noise is alsosdisd in this article.
It is also shown, the limitations of the methods availabléim literature have also
been discussed. Simulated examples generated, illustisgemportance of this
work.

The model obtained gives true estimate for some of the caiomscin the gene
network. The method also suggests the need for further ami@yp experiments
to be performed for constructing the gene network topolaggntirety. Overall,

the importance of this work is get an understanding of varidiferent portions or
partitions of the gene networks and suggests a proceduestionating each one of
portions individually.
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Online Sensor for Monitoring a
Microalgal Bioreactor System Using
Support Vector Regressidn

4.1 Introduction

The biotechnological use of microalgae for the productibfiree chemicals and
biofuels is of growing interest due to the higher growth ratel productivity of
algae compared to higher plants (Chisti, 2007). Moreovestaaigae can be inten-

LA version of this chapter has been accepted for publicatidah.R. Nadadoor, H. De la
Hoz Siegler, S. L. Shah, W. C. McCaffrey, and A. Ben-Zvi, “@m.l Sensor for Monitoring a
Microalgal Bioreactor System Using Support Vector Regoess Accepted for publication in the
Chemometrics and Intelligent Laboratory Systems, 2011.
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4.1. Introduction

sively grown in traditional bioreactors, reducing the greg over cropland (Singh
et al., 2011). Several microalgae species are remarkabtado capacity to pro-
duce and store large amounts of oil. For example, lipid adnteA. protothecoides
can represent up to 57.8% of the cell dry weight when growerbé&ibphically
(Xiong et al., 2008). In the heterotrophic growth mode, agaaic substrate is used
as both the carbon and energy source. It has been shown teatgubwing either
heterotrophically, or photoheterotrophically microadgaxhibits a higher produc-
tivity in terms of either biomass or oil when compared to phatphically cultured
algae (Liu et al., 2011; Liang et al., 2009).

Oil production in algae has been shown to be dependent aurewdonditions (De
la Hoz et al., 2011), and therefore appropriate monitorimg)@ntrol of these con-
ditions are required in order to maximize oil productivirom a process control
perspective, it is desirable to know, at any given momer,cdll concentration,
oil content, and substrate concentration in the reactoes&tguantities, however,
are rarely directly measured, as their quantification wea series of elaborate
and time consuming steps. For example, cell concentratitimel reactor is usually
expressed in terms of cell dry weight per unit volume. Drygieidetermination
requires the removal of a sample from the reactor, cenattiog and washing, and
further drying of the sample until constant weight is achkvThis procedure can
take anywhere from two hours up to a day, to be completed. |&iyiintracel-
lular oil content and extra-cellular nutrient concentyatrequire several hours or
even days to be determined. Oil is generally quantified byesdlextraction of a
dry algal sample or by derivatization and chromatographigngjfication, and the
substrate concentration is determined by gas or liquidroatography. Further-
more, highly qualified personnel are required for measuttiegcell and substrate
concentrations along with quantifying the oil content.

In this work, an online multivariate sensor based on suppector regression is
developed to monitor the concentrations of biomass, gki@xl oil content in
microalgal cultures in a bioreactor system. A portion of stedy is dedicated
for comparing and highlighting the superior performancehef proposed method
with respect to other techniques available to build onlerssrs. Also, the effect of
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several preprocessing techniques on the goodness of mddeldsessed. A review
of the current status of Raman spectroscopy, as a tool fordieps monitoring is
presented in the next section.

4.2 Background

Developing sensors for online monitoring of bioprocesdesys has been exten-
sively studied and successfully applied using variousediifit types of spectro-
scopic methods including fluorescence spectroscopy (Magbal., 1998; Skibsted
et al., 2001) and near-infrared spectroscopy (Landgrebé,e2010; Yeung et al.,
1999). Furthermore, performance improvement methodsritbn@ monitoring of
bioprocess systems by reducing the prediction error of dmeentration estimates
have also been studied (Dabros et al., 2009). However, theofadetailed struc-
tural information obtained by these spectroscopic methiouts their use for the
identification of the chemical constituents in complex sk®pas in the case of
algal bioreactors.

Raman spectroscopy has the potential to be used as a proedgecahtechnology
to estimate several key process variables in algal bicvea¢Huang et al., 2010).
The Raman scattering is produced by the inelastic interadieiween light and
matter. These inelastic interactions are highly dependerthe vibrational char-
acteristics of the molecular bonds of the components indingpée under analysis.
As such, the Raman spectra will be a function of all of the ¢tallecomponents
(i.e., proteins, lipids, DNA, etc.) as well as constitueintshe growth media. Of
course, this implies that the generated spectra will belyigdnvoluted, due to the
presence of thousands of components in the cell and thereuitedia.

Shope et al. (1987) were the first to propose the use of Ramatrepeopy for

bioprocess monitoring, namely, the analysis of ethanoh&mtation products. The
Raman spectra were measured off-line and it was shown thetedégatures of the
spectra can be used for quantifying the concentration ofethreentation products.
However, no model was built and fluorescence was reportekdeasiéin predica-
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ment that hindered proper model building. To reduce theceéfefluorescence, Xu
et al. (1997) compared two different laser sources (Argareicb14.5 nm and solid
state diode laser at 785 nm) and removed the cells from thé.bitowvas reported
that the 785 nm laser substantially eliminated the backgtdiuorescence and
improved the limit of detection by a factor of 5, thereby aliog the simultaneous
measurement of concentration of glucose, glutamine, tead ammonia in the
fermentation broth. Shaw et al. (1999) followed the fermagat of glucose to

ethanol on-line by using a flow-thru cell (ex-situ), conéhglthat Raman spec-
troscopy is an ideal method for following biotransformasan a nondestructive
and noninvasive way. As in the case of Xu et al. (1997), ShaaV. €1999) used a
780 nm laser and removed the cells from the broth, through-tine filter, previous

to spectra acquisition.

The first on-line and in-situ application of Raman spectrpgd¢o monitor a biopro-
cess was reported by Cannizaro et al. (2003). A 785 nm lasex 42 mm immer-
sion Raman probe inserted in a side port of the bioreactor usse. The probe was
connected to the control unit with a fiber optic. Carotenoiaslpction byPhaffia
rhodozymawas quantified. Cannizaro et al. (2003) took advantage of tingue
enhanced Raman signal characteristic of carotenoids td buiialibration model
without the use of complex chemometric tools for signal ewotution and without
removing the cells from the sample. Lee et al. (2004) moedd&ischerichia coli
bioreactions using Raman both in-situ and off-line. Limiéaduracy of the on-line
measures was reported, which was associated to a change Rathan spectrum
of the sapphire window probe after steam-sterilization.n&rmometric model was
built using data from pure components spectra measurehef&nd before probe
sterilization.

The increasing interest in the technological applicatiohmicroalgae has arisen
the need for proper quantification of microalgal products.rréntly, analytical
methods for biomass and product quantification in micrdatgétures are time
consuming and prone to error. An on-line, multivariate,csfmescopic monitoring
tool has the potential to facilitate and speed algal biogsecdevelopment and
commercialization. Huang et al. (2010) stated that the Raspaotra are related
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to the key variables in a microalgal culture. Their studyéwer, did not involve
obtaining a relationship between the spectra and the coemp®im the culture. The
foremost application involving the quantification of ligieh a microalgal system
was proposed by Wu et al. (2010). The study demonstratedRaatan spec-
troscopy can directly obtain quantitative information lé tlipids, albeit in single
cells. Recently, Abbas et al. (2011) studied the distributibcarotenoids in single
algal cells using Raman spectroscopy. There is, howevergd fog a compre-
hensive understanding of a quantitative relationship betwthe spectra and the
components in the culture media.

The main aim of the present study is to construct chemometoidels, in a statis-
tical or mathematical framework, to estimate chemical cositppons in a faster and
noninvasive procedure. Chemometric models of spectrosciapa have previously
been built using known statistical and machine learningstawluding principal

component regression (PCR) (Estienne and Massart, 2001)aldaast squares
(PLS) (Goetz et al., 1995), and support vector machines (SVRissen et al.,
2004).

The use of principal components in regression was first sigddy Kendall (1957)
and Hotelling (1957). Since then PCR have been successipjiyied in vari-
ous fields including chemometrics ((Marbach and Helse, 18i@@s and Martens,
1988)), flow-injection analysis ((Blanco et al., 1993)), dndmedical studies for
multi-class cancer classification (Tan et al., 2005). Bhldast squares (PLS) was
first proposed by Herman Wold during mid-sixties (Wold, 1p&ad subsequently
found success in various applications in the field of chentoose(Sjostrom et al.,
1983; Wold et al., 2001), neuro imaging (Mclntosh and Lolhg&904), and pro-
cess control (Dayal and MacGregor, 1997). The robustne§C&t and PLS to
overfitting, makes it an important tool in the field of chemdros. One of the
major disadvantages of the PCR and the PLS is their inadequiaey applied to
nonlinear systems (Demiriz et al., 2001). To deal with thetesy nonlinearities,
the regression method based on support vector learningecasdal.

Along with handling of system nonlinearities, the suppetor learning methodol-
ogy has other advantages over the traditional PCR and PLSdetwhich include
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better performance in the presence of outliers in the ctitm dataset, superior
modeling with a smaller dataset, and a simpler model (in $esfrorder) obtained
based on the structural risk minimization (SRM) principleopposed to empirical
risk minimization (ERM), employed by the PLS and PCR methodsseBaon
SRM principle, SRM minimizes the loss function (empiricakjigs well as the
model complexity (structure of the model), thus avoidingritting. On the other
hand, ERM only minimizes the loss function (empirical Riskjiied for the task
(Khatibisepehr et al., 2011). The combined application ohBa spectroscopy and
support vector regression (SVR) was presented by Barman @04l0) for moni-
toring blood glucose levels. Barman et al. (2010) showedttteatise of nonlinear
SVR model represents a 30% enhancement in prediction amgcokeer the PLS
model, when measurements from multiple human volunteers sansidered.

4.3 Theory

4.3.1 Support Vector Regression

Support vector regression (SVR) was developed as an extensithe theory of
support vector machines(SVM) to regression problems (lBopband Smola, 2002).
The support vector algorithm was proposed by Vapnik in 198Pwas later devel-
oped over the years (Boser et al., 1992). The concept of supector learning
has been successfully applied to various classificatiorregeession problems in-
cluding the development of robust calibration models fonitaing blood glucose
levels (Barman et al., 2010), applying SVR for multivarianlinear processes
(Chitralekha and Shah, 2010; Khediri et al., 2010), matexpimization of salon
ceramics (Xu et al., 2006), and identification of time senexlels (Thissen et al.,
2003).

Given a training datasef(x1,y1)...(Xm,Ym)} C R" x R, regression involves mini-
mizing a loss function. In the case of a simple least squagression, the quadratic
loss function shown in Equation 4.1 is minimized.
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m

minL = _;(yi — f(x,w))? (4.1)

w

wherey = f(x,w) is the linear function used for the regression problemis the
number of sample pointsg andy; are theit" independent predictor variable and
observation respectivelyy is the parameter vector that defines the funcfion

In SVR, a newe-insensitive loss function,(]y— f(x,w)|¢), is defined as suggested
in (Vapnik, 1998):

L(ly_ f(XJW)|S) = ’y_ f(X7W)|S (42)
where,
B 0 ly—f(x,w)| <e€
y=TW)le = { ly— f(x,w)| —¢ otherwise (43)

For the case of linear regression, a linear functigrs defined as follows:

f(x,w,b) = (w,x) +b (4.4)

In SVR, the goal is to find the optimal variableg*(b*) that generate the function,
f*(x), that gives the minimum loss function. This problem is folated as a
constrained convex optimization problem:

min J= M +C 3 (& + &) (4.5a)
w.b,§j, & 2 i; ! ! .
f(xi,w) —yi <e+¢
subject toq y; — f(x,w) < £+ &* (4.5b)

Ei?Ei* ZO

whereC > 0 is the regularization parameter, which is a tradeoff betwtbe penalty
imposed onw and the tolerance on deviations larger tlgarg; andé;* are slack
variables that allow the constraints to have a trainingregreater thare and also
penalize them in the objective function; and 1,2, .., mare the training data points.
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Figure 4.1 is a graphical depiction of taéSVR model.

T,
o)
S~
|
J =
~ D g
—— R
X i y—f(x,w)

Figure 4.1: Graphical Representation of théSVR model for a linear case
(Chitralekha and Shah, 2010).

The use of arg-insensitive loss function has been previously investidah great
detail (Vapnik, 1998). The-insensitive loss function builds a tube of insensitivity
with only the points outside the tube being penalized so asnanize the resulting
errors in the objective function. The value®éffects the smoothness of the SVRs
response and also affects the number of support vectorspthotlie complexity
and the generalization capability depend on its value. Alsere is a considerable
investigation regarding the noise model of ##&VR method (Pontil et al., 2000;
Kwok and Tsang, 2003). Theinsensitive loss function can be used when the noise
affecting the data is assumed to be additive and GaussianmBan and variance
of the noise model, however, are random variables whoseapiittly distributions
can be computed explicitly (Pontil et al., 2000).

The constrained minimization, given in Equations 4.5a arkb4is a standard
problem in optimization theory. This can be solved by carding the Lagrangian
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for the objective function and the constraints. By solvirgltagrangian, the weight
vector,w, can be derived as follows:

W= i(ai — ai)x;, (4.6)

where{aj,a;} are the Lagrange multipliers associated with the trainioigntp;.
The linear function,in Equation 4.4, can be rewritten akfes:

m

(9= 3 (e a) %) +b (4.7)

Equation 4.6 indicates that the weight vectocan be described as a linear com-
bination of training vectors, which in turn leads to the prdp that, for evaluating
f(x) it is not required to explicitly calculate the weight vectar These observa-
tions become important when the linear SVR is extended todnéinear case.

The basic idea behind the nonlinear SVR is to profeg} onto a feature spade.
The aforementioned linear SVR algorithm is then appliechtoprojected dataset.
Let @(x) be a mapping that maps theaccording to the relatiop: R" — F. A
linear function,f, in the projected space is then defined as follows:

F(p(x)) = (W, @(x)) +b (4.8)

In short, the nonlinear SVR algorithm behaves like a lines,of the input vec-
torsx;’s are replaced by their corresponding feature vectiss). Projecting the
training data into a very high dimensional space is compartally expensive. Due
to the exclusive dot product form in Equation 4.8, the corapah complexity
involved in obtaining the projected training datasets caauwided with the help of
a “kernel trick” (Boser et al., 1992). The kernel functionépresented as follows:

k(X Xj) = (@(%), p(Xj)) (4.9)

Using the kernel function suggested in Equation 4.9, forrtbelinear case, the
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function f can be transformed to:

m

Flp(x)) = -Zf"" — o) (@), @(x)) +b= _i(ai — o )k(x,xj) +b  (4.10)

analogous to the linear case given in Equation 4.7.

The most used kernel functions are the Gaussian RBF-kéatgl; ) = e VPl ’2, y>
0; and the polynomial kernel with an ordercyfk(x;, xj) = (yx' x; +constanj?, y >

0. It can be seen that the linear kernel is a polynomial keniil order equal to
one d=1).

In this work, a Gaussian RBF kernel is used, as it is a very useifulel and its

application to support vector regression problems is witeesd (Chitralekha and
Shah, 2010). Application of the RBF-kernel based SVR is detnaiesl, in this

work, by building a multivariate sensor for monitoring thedhemical composition
of a microalgal bioreactor.

4.4 Materials and Methods

4.4.1 Experiment Setup

The algaeAuxenochlorella protothecoided TEX B25, was cultured heterotrophi-
cally in a 2L bioreactor (Sartorious Biostat A plus). The expental setup of the
bioreactor is shown in Figure 4.2. A solid-state fiber Braggtigg stabilized laser,
with an excitation wavelength of 785 nm and output power egua00 mW, was
used for obtaining the Raman spectra. The Raman spectroroetasied of an f/4
symmetrical crossed Czerny-Turner monochromator, with araQvide slit, and a
1024 x 58 pixels (2D array) Hamamatsu detector. Raman speeira acquired
using an immersion probe inserted in one of the upper porthefbioreactor.
The stainless steel immersion probe was chemically stedliby submerging it
in a mixture of benzalkonium chlorides (Roccal-D) for at leHS minutes prior to
its installation in the bioreactor. The bioreactor tempa@was kept constant at
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Figure 4.2: A picture depicting the 2L bioreactor systemtfanleft) and the digital
control unit (on the right)
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25°C. Raman spectra were collected every 10 minutes, and recandigatocessed
using MATLAB. For each measurement, the spectrometer gyatiannel was left
with a laser source turned off, in order to record the baakgdoradiation. These
background radiation spectra were subsequently subtr&cm the spectra of the
culture media.

For model building and validation, samples were withdravamf the bioreactor at

four hour intervals and analyzed, to determine the algateotration, oil content,

and substrate concentration. A model was built, using thibreséion dataset, for

measuring the concentration of three main components ibitdreactor, namely,

biomass, glucose and oil content. A brief description ofgfecedures used for the
off-line measurement of the concentrations of biomass;agle and oil content is
provided below.

Biomass concentration was determined as total suspendield $§05S), by cen-
trifuging 1.4 mL of cell suspension (RCF = 9335 g) for 10 minut€ke obtained
pellets were washed twice with a saline phosphate buffertisol (pH 6.2). The
washed pellets were centrifuged again and the resultingptates were vacuum
dried at a temperature of 90 and a pressure of 0.1 bar until the precipitate attained
a constant weight. The clear supernatant from the cenéiioig was filtered using

a 0.22um syringe filter in order to remove any residual cells.

Glucose concentration in the filtered supernatant was meddwy high perfor-
mance liquid chromatography (Agilent 1200 Series HPLC)ngisa SupelcoGel
Pb carbohydrate column at 70 (Internal diameter 7.8 mm, length 30 cm) with a
guard column. Sample injection volume was [10; eluent was deionized, sterile
water (MilliQ, MilliPore); elution flow-rate was set at 0.5fmin, and a refractive
index detector (RID) at 38C was used.

Oil content in the cells was determined by fluorospectroyneticells stained with
Nile Red. In this method, florescence intensity is linearlyrelated to the total
neutral lipid content of the cells. A 10L aliquot of a 10ug/mL Nile Red solution
in ethanol was added to the individual wells of a 96-micrtgleontaining 1QuL

samples of 10 g/L algal cells. The volume in each well was deted to 200
uL by adding a 30% (v/v) ethanol solution in water. Sampleseniecubated
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at 40°C for 10 min, and fluorescence emissions were recorded witliltiptate
reader spectrophotometer (Fluoroskan Ascent, Thermoylsédoss). Excitation
and emission wavelengths were selected at 530 nm and 604&spgatively. Nile
Red oil measurements were calibrated using algal cells fachwiil content had
been previously determined gravimetrically, followingetimethod developed by
Hara and Radin (1978). An algal sample of known oil contentdetermined
gravimetrically, was used in each micro-plate run as irgtkestandard. Fluorescence
measurements were performed in triplicate, and the avestagelard error was
5.6%.

Three different datasets were generated by running theareiscfed-batch mode
starting at different initial conditions and by varying tfeeds flowrate. The first
dataset (DS1) corresponds to a D-Optimal run, as report&iinsetty et al., 2010).
In this case, algae were cultured over a period of 360 h, andogk, glycine,
and minerals were supplemented to the reactor in order tergtn significant
perturbations in the bioreactor response. For the secotedeta(DS2), feed flow
followed a pseudo-random binary profile, as presented inléD¢oz et al., 2011).
In the third dataset (DS3), culture conditions were modifredrder to maximize
biomass production. A summary of the three datasets is mesén Table 4.1,
where the range of the three measured variables, and theemwhbata points in
each data set is presented.

Table 4.1: Number of samples and range of concentrationesalar biomass,
glucose, and oil content for all three datasets

Dataset Range of concentration values No. of samples
Biomass (g/l) Glucose (g/l) Oil content (% w/w)
DS1 0.75-39.36 0-101.90 14.27-65.07 79
DS2 0.50-38.20 0.01-52.30 19.40-79.10 78
DS3 2.40-144.29  0.05-45.59 32.88-82.06 57
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4.4.2 Preprocessing Methods
Raman Spectra Preprocessing

Before building a chemometric model, preprocessing of Ranp@tts is per-
formed. The advantages of preprocessing the Raman speicigavasious smooth-
ing and transformation methods have been extensivelyesiy@ifseth et al., 2006;
Chau et al., 2004). Chau et al. (2004) and Martens and Naes )(p98@de a

basic description of the preprocessing methods appliedarcurrent study. The
preprocessing techniques applied in this work are:

» Savitzky-Golay (SG) filtering: Savitzky-Golay filter is ansothing filter
based on polynomial regression. For the Savitzky-Golayhotkt a third
order polynomial with a section size of 7 points is used.

» Standard normal variate (SNV) transformation: A standawdnal variate
transformation is performed to the Raman spectra such tleatetbulting
spectra have mean zero and unitary variance.

 Linear polynomial baseline correction (Polyfit): In th@dar polynomial
baseline correction method, a peak selection algorithrsesl tio identify the
peaks. A linear polynomial is fitted to the baseline valuesefach of these
obtained peaks. The resulting polynomial curve (line) @thubtracted from
the raw Raman spectra.

» Combination of standard normal variate transformationlax@@r polynomial
baseline correction method (SNV&Polyfit): The Raman spdstfiast trans-
formed using standard normal variate and then linear pohyabbaseline
correction is performed on the resulting transformed spect

» Combination of Savitzky-Golay smoothing filter and staniddaormal vari-
ate transformation (SG&SNV): The Raman spectra is first shexbtising
the Savitzky-Golay filter and the resulting spectra is tfamsed using the
standard normal variate transformation.
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» Combination of Savitzky-Golay smoothing filter, standamal variate,
and linear polynomial baseline correction (SG&SNV&PolyfiRaman Spec-
tra is first smoothed using the Savitzky-Golay smoothingrfiind the re-
sulting spectra are preprocessed using the standard neaniate and linear
polynomial baseline correction techniques.

Preprocessing of the Measured Concentrations

The concentrations of the chemical components in the botoesystem are sus-
ceptible to measurement noise. Therefore, a preprocetgsihgique in the form of
a filter is necessary to reduce the effect of measuremeng nmothe data used for
model building. To this end, robust LOESS (locally weightgedratic regression)
method (Cleveland, 1979; Cleveland and Devlin, 1988; Hastiel&éshirani, 1986)

is used for smoothing the measurements along different lesmpThe filtered

data is subjected to further preprocessing by performiagdsrd normal variate
(SNV) transformation on the data. The final measured dater afmoothing and
normalization, is used for model building purposes.

4.4.3 Optimal Selection of Model Parameters

For building a chemometric model, it is necessary to deteerthie optimal number
of model parameters to obtain an accurate model, while agioverparameter-
ization. The non-linear radial basis function support gecegression algorithm
used in this work possesses three adjustable parametersofttrmargin C) for the
regression cost function, the threshold parametgrdiven in Equations 4.5a and
4.5b, and the radial basis function kernel parameter To determine the optimal
value of these three parameters, a systematic grid seafein (0 (Hsu et al., 2003)
for details) was performed in combination with a 10-foldsg<validation method
using the predicted residual sum of squares (PRESS) statisti

In the 10-fold cross-validation method, the calibrationadat is divided in 10
subsets. The regression model is calibrated using 9 of thdssets and the resulting
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model is evaluated in the remaining subset. The calibratioepeated 10 times,
leaving out at each iteration a different subset. The PRE&BSt is computed for
each one of the 10 regression models constructed, and theegeVBRESS value is
used as a measure of the goodness of fitting provided by theination ofC, &,
andy values. This procedure was performed for every value in #éinarpeter space,
to determine the parameter combination that reduces thage® RESS.

4.4.4 Model Building

For building a robust sensor for biomass, the datasets@utairom the three
experiments (DS1, DS2, and DS3 mentioned in Section 4.4eld@ided into
calibration and validation datasets. The calibration skttés obtained using the
equal-weighting (EW) method described as follows:

Step 1. The samples from the first dataset (DS1), the secdadeddDS?2), and the
third dataset (DS3), mentioned in Table 4.1, were combingdther into a
single combination dataset of 214 samples.

Step 2. The combined dataset was sorted in increasing ofd¢enoentration of the
component to be modeled.

Step 3. The sorted combined dataset was partitioned int@G38l subgroups based
on the maximum and minimum values in the component condeorital hat
is, theit subgroup is the partition that includes the samples whasgoaent
concentration value falls in the range,

| MIN (i = 1) 5 MXHN N - M

where MN and MX are the maximum and minimum concentrationeslof
the components to be modeled. A point to be noted is that théipa of

subgroups based on this approach can lead to the possddiltyme of the
subgroups being empty (containing zero samples).

Step 4. One sample was chosen from each of the 130 subgrolgss time subgroup
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was empty. Due to presence of these empty subgroups, les$3Basamples
were obtained for the calibration.

Step 5. The remaining samples from the combined datasetstaresl in the residual
dataset (RS).

The residual dataset (RS) obtained was used for validategnbdel. In total, 60
samples were obtained for calibration and the remainingsibdples were used for
validation. Figure 4.3 shows a flow chart that illustrates phocedure of obtaining
the calibration and validation datasets for the biomasseamation.

DS1 DS2 DS3

Y

Combination Dataset

L 4

F 3

Sorting in ascending order of biomass
¥ concentration

Biomass Dataset

L J

Calibration

Equal-Weighting Method dataset

L 4

k

| Remaining samples

Validation dataset

Figure 4.3: Flowchart illustrating the method used for obtey the calibration and
validation datasets for the biomass concentration
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The patrtition of the data is carried out to guarantee thatrtbasurements selected
for model building cover the entire range of biomass comegions. The biomass
concentration increased monotonically following a sigaabiprofile with regions
overloaded with data with a minor variation in the measumaalues and regions
with large variations in the measurements and very few daitetq In this case, the
application of a random selection method could lead to acehoii a large portion of
measurements with not enough variations and thereby hgialnon-robust model.

For building a sensor for glucose concentration and oil @anthowever, dataset
(DS3) was chosen for building calibration and validatiotedats. The reason for
choosing only the third dataset (DS3) for model building &atidation is due to

the existing correlation between glucose concentratioioditontent with biomass
concentration, as discussed below.

The effect of biomass on the Raman spectra is predominantar@ahpo that of the
glucose concentration and the oil content. Thereforedimgla sensor for glucose
concentration and oil content using a dataset where thesestsong correlation
between these two variables and the biomass concentratidd lead to a bias in
the model. In the first two datasets (DS1 and DS2), the chahgenaentration in
glucose and oil content is found to be related to the changeeibiomass concen-
tration. Table 4.2, shows the correlation coefficient valiee glucose concentration
and oil content with the biomass concentration, for thedldatasets (DS1, DS2,
and DS3).

Table 4.2: Correlation coefficient value between glucoselaadhass concentra-
tions and oil content and biomass concentrations for adldlttatasets (DS1, DS2,
and DS3)

Datasets Correlation Coefficient

Biomass and Glucose Biomass and Oil

DS1 0.4708 0.5197
DS2 0.6020 0.4353
DS3 0.0026 0.0088
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Based on the correlation coefficients, shown in Table 4.2etlegists a strong
correlation between glucose and biomass concentratiomngfasets DS1 and DS2.
Hence, it cannot be ascertained with a high confidence thaidehbuilt for glu-
cose concentration will not incorporate some of the refetinp (trend) that exists
between biomass and glucose concentration in the two dat@3®en the existing
cross correlation in the calibration dataset, it is not passto achieve a total
deconvolution for the individual effects of biomass andcgke on the Raman
spectra. Likewise, the significant correlation coefficiemiues, as shown in Table
4.2, between oil content and biomass concentration leadimmitar conclusion of
model bias.

The calibration and validation datasets for glucose comagon and oil content are
built by random data selection method, using only the thathget (DS3). As per
the random data selection method, a subset of 30 randomesimps chosen from
the dataset DS3 for building the calibration dataset ande¢h&ining 27 samples
were used for validating the model.

4.5 Results and Discussion

The unprocessed Raman spectra of microalgal cultures ahdyhtggmplex due
to the presence of thousands of components in the media. isThighlighted in
Figure 4.4, where the Raman spectra for two different algalpdas with varying
compositions are shown.

It is difficult to readily associate changes in the charasties for the two spectra,

presented in Figure 4.4, with changes in the culture contipasieven though the
respective concentrations of biomass, glucose, and oteobrare very different.

For an experimentalist untrained in advanced signal peiegs$echniques, trying to
use Raman spectra for estimating the chemical composititmeddlgal cultures, it

is practically impossible to extract the significant peaksgach of the components
in the sample matrix.

Additionally, the presence of other factors including séfluorescence (as men-
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Spectra (b)

N

Spectra (a)

Sa

1800 1600 1400 1200 1000 800 600 400 200 0
Raman shift (crﬁl)

Figure 4.4: Unprocessed Raman spectra of A. protothecamlas lcultures. The
concentration of glucose and biomass in the media, and tree@llular content of
oil were determined offline as: a) (Blue curve in online vemn$i®3.3 (in g/l), 2.07
(in g/l), and 35.3 (% w/w) respectively; and b) (Red curve ifir@version) 108.8
(in g/1), 40.0 (in g/l), and 53.0 (% w/w) respectively
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tioned in Section 2), turbidity, and bubbles in the systeauses variations in the
intensity of the spectra and introduces spurious peaks.seldesturbances add
to the difficulty in the extraction of relevant informationrfmodel building. To
emphasize the effect of fluorescence on Raman spectra, tbieaspéfreeze-dried
cells of A. protothecoides were collected ten times, at leegintervals. After
each collected spectra, the total exposure time of the satopthe laser source
was consequently higher. In Figure 4.5, it can be seen tleaithhl Raman count
decreased as exposure time to the laser increased. Thisinelicates that there
was background fluorescence coming from the sample, as-bierdching usually
results in a significant reduction in the intensity of the fegcent background.

a

12

101

Raman count
(2]
T

Increased laser
exposure

! ! ! ! !
1000 800 600 400 200 0

Raman shift (crﬁl)

0 ! ! !
1800 1600 1400 1200

Figure 4.5: Raw Raman spectra of algal biomass powder. Speeteacollected
one after the other, increasing at each collection the éxqadsure time to the laser.
Background fluorescence decreases with increasing expasiee

Signal processing techniques facilitate the extractian@ningful information out
of the spectra. For instance, baseline removal and spexiraialization enhance
several spectral features, allowing the identification @ie of the features as
associated to the biochemical composition of the cultu. dxample, the peaks
around 1440 and 1655 crh are related to the oil content in the cells. Similarly,
the peaks around 423, 516, 900, and 1360 tmere found to be dependent on the
glucose concentration in the culture media at a 95% confelénel. The peaks

89



4.5. Results and Discussion

identified here are in concordance with previously repovides for pure media
components and for oil (Alfano et al., 2008; Zou et al., 2009)

4.5.1 Effect of Processing on Correlation Coefficient

The Raman spectra may be affected by the physical and chepnogadrties of the
sample matrix as well as various other unknown disturbaimc® system (Afseth
et al., 2006). Signal preprocessing is performed to remoeeffect of noise while
retaining the maximum amount of information. Even thoughghimary objective
of a preprocessing method is removal of noise, it cannot laeagieed that all the
information in the signal is retained. Therefore, an appete preprocessing tech-
nigue needs to be chosen to de-noise the spectra and retsioftioe information.

The R? values for the calibration dataset, for different prepssiey techniques,
are shown in Table 3. Overall, it can be said, based orRfhealues, that the
SNV transformation provides the best model for all the thvagables of interest.
The Savitzky-Golay (SG) filter, however, produced a maigynaetter model in
the case of glucose. Whether this is due to a structural raagenms of spectral
characteristics associated with glucose or due to diffaenn the nature of the
error of the off-line measurements, was not investigatexlektheless, it is relevant
to highlight that the intensity of the spectral bands tha& due to the glucose
molecule was lower than the intensity of those peaks adsaciaith the oil and
biomass. Furthermore, the fluorescence background duetalgll cells almost
hid the presence of glucose peaks. A technique, such as 8filt that reduces
the noise in the spectra while preserving the peak featuigbtjmn the case of
glucose, be more suitable than one that scales up all th&rapec

Table 3 indicates that the combination of preprocessingigces, generally, show
a poor performance (lowd®? value) than the individual techniques. The loss of
information that results when multiple preprocessing médshare used for noise
reduction proves to be costly during the model building pchae.
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Table 4.3:R? value of the calibration dataset for different preproaegsechniques.
The cells in the table highlighted ibold indicate the preprocessing techniques
chosen for each of the three components.

R2 values for calibration dataset

Preprocess Biomass Glucose %0il
Datasets 1,2, & 3 Only Dataset 3 Only Dataset 3

SG 0.9950 0.9956 0.8741
Polyfit 0.9932 0.9878 0.9978

SNV 0.9975 0.9926 0.9985
SNV&Polyfit 0.9971 0.9602 0.9965
SG&SNV 0.9972 0.9905 0.9799
SG&SNV&Polyfit 0.9967 0.9880 0.9981

4.5.2 Model Validation

To assess the performance of the model built using SVR, thesuned concen-
trations (for biomass, glucose, and oil content) are coewpavith the predicted
concentrations. Plots of measured versus predicted ctiatiens of biomass,
glucose, and oil content are shown in Figures 4.6, 4.7, &hd 4.

Figure 4.6 shows the measured versus predicted valuesddnidimass concentra-
tion. The standard normal variate transformation was usegreprocessing the
Raman spectra, as it provides the highR$tvalue for calibration, as per Table
4.3. Datasets DS1, DS2, and DS3 were used for model buildidgalidation, as
indicated in Section 4.4.4.

The correlation coefficientR?, for the validation dataset between the measured
and the predicted biomass concentrations was 0.9822 (frigord=4.6), which

is comparable with thdR? value of 0.9975 obtained for the calibration dataset.
This indicates that the RBF-kernel based support vector segne is a satisfactory
method for sensor development, as it gave a correlatiorficesft close to unity

for both the calibration and validation datasets. Also,dbmparable correlation
coefficient for both datasets implies that there was inficamt model overfitting.
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Figure 4.6: Measured versus predicted biomass concemtrating the standard
normal variate transformation for preprocessing the Rarpants&a. RMSE value:
3.51 R value: 0.9822)
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The developed sensor is robust for the full range of the b&snwncentrations
(0.50— 14429 g/L) considered in this study. The performance of the oekils
quite remarkable, given that the algal bioreactors are éexrgystems with unde-
fined chemical composition and, in addition, the algal ceflange their chemical
composition along a single batch. These complexities irstmaple matrix intro-
duce unknown interferences in the Raman spectra. Figurehdwssthe measured
versus predicted values for the glucose concentrationpfémrocessing the Raman
spectra, the Savitzky-Golay filtering was used for building model for glucose
concentration and only dataset DS3 was used for model hgilaind validation, as
indicated in Section 4.4.4.

The correlation coefficient value for the validation datdsetween the measured
and the predicted glucose concentrations was 0.8081, whighite satisfactory
but not very close to th&? value of 0.9956 obtained for the calibration dataset.
This indicates that there is significantly more overfittinghe glucose model than
in the case of biomass. Nonetheless, the predictive cafyatilthe model built
for the glucose concentration is fairly good, based on bb&R value and the
observations in Figure 4.7.

The lower prediction accuracy of the glucose model couldusfdwer number of
measurements available for model building. More expertalnmeasured glu-
cose concentrations (decoupled with biomass concentjatauld prove beneficial
in the model building exercise. These data could be obtaivitdcells growing

under nitrogen limited conditions which favour the conuansof glucose to bio-oil
rather than to biomass.

Figure 4.8 shows the measured versus predicted concentrairve for the oil

content. The standard normal variate transformation was @ preprocessing
the Raman spectra. Only dataset DS3 is used for model buitdidgalidation, as
indicated in Section 4.4.4.

In Figure 4.8, it can be seen that the predicted oil contesah@ositive correlation
with respect to the experimental measurement. The cdoelabefficient R?

= 0.6422) for the validation dataset, however, was signifigalower than that
of the calibration dataset. The lower correlation coeffitienplies that caution
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Figure 4.7: Measured versus predicted glucose concerirasing Savitzky-Golay
filtering for preprocessing the Raman spectra, for DS3. Thdes (red in the

online version) marked around the points correspond to teasarements in the
initial lag phase (these are initial measured values; sedetkt in Section 5.4 for
details) which are predominantly outliers. Excluding thetliers the RMSE value
for predicted glucose concentration reduced from 5.6436.4@R? value: 0.8081

to 0.8867)
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Figure 4.8: Measured versus predicted oil content usingdstal normal variate
transformation for preprocessing the Raman spectra, for. B&ain, the marked
circles (red in the online version) corresponded to the onessents in the initial lag
phase (these are initial measured values; see the texttin®86ct for details) which
are predominantly outliers. Excluding the outliers the RM&kie for predicted oll
content reduced from 7.56 to 3.6R%(value: 0.6422 to 0.8597)
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should be exercised when using Raman spectroscopy for ¢istmad oil content
in microalgae.

The low correlation coefficient for the validation datasat il might be due to
noise in the experimental measurements. Oil content dicaiton can be per-
formed using several different techniques (Chen et al., 20@8vrik and Harriman,
2010; Halim et al., 2011). However, there is no one widelyepted standard
method, due to complexity of all methods and the relativejhterror (Lee et al.,
1998; Christie, 1993). Lee et al. (1998) compared the estidhatl content in
microalgae using different extraction solvents and csligition systems and found
up to 50% relative difference in the estimated oil contenikeWise, Chen et al.
(2009), compared the relative error of fluorescence andrgeaxic based oil con-
tent determination method and found a standard deviatiappfoximately 5 %.
The relative error associated to this standard deviatiothi® sample reported by
Chen et al. (2009) is 25%, at the 95% confidence level. In gérakshe existing
experimental procedures for measuring oil are prone to argbr. In this work,
as mentioned in Section 4.4.1, the average standard emrdhdomeasurements
was 5.6%, which corresponds to an average relative erroR @3% at the 95%
confidence level.

The average relative error for the validation dataset usiadRaman-based method
was 8.9%, assuming that the calibration measurements eeeofr error. This
value is lower than the average relative error associatéid tve Nile Red based
measurements obtained in this work, and to the reported femrdoth gravimetric
and fluorescence based oil quantitation methods. Conséyguertsupport vector
Raman spectroscopy based sensor can at least be considénedsaime level of
accuracy as the existing experimental procedures. In ¢odenprove the support
vector regression model performance, it would be requicegttiuce the relative
error in the calibration dataset. It is expected that, bygisi calibration dataset
generated with a more precise oil measuring technique,reehigprrelation coeffi-
cient can be achieved.

In summary, the proposed method was able to satisfactaglgligt the three main
components in the algal bioreactor, namely, biomass, gkicand oil content,
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within the normal error bounds. However, there is still ssdpr improvement,

particularly in the case of glucose concentration and aitent. Performing more
experiments, in which the concentration measurementsedhtiee predicted com-
ponents (biomass, glucose and oil content) could lead tonaroved sensor build-
ing. Improving the signal to noise ratio in the Raman specétem could also have
a positive effect on the accuracy of the measurements.

4.5.3 Comparative study with other statistical methods

A comparative study is performed to illustrate the advamtaighe applied support
vector regression method over other statistical methadadimg principal compo-
nents regression (PCR), partial least squares (PLS) regnessid kernel principal
components regression (KPCR) for building an online momtpiensor. Both
PCR and PLSR techniques are used to convert a set of highlglated variables
to a set of independent variables by using linear transfboms, applying feature
reduction for large datasets. Kernel PCR is a nonlinear sidarof the principal

component regression method. The KPCR method uses the sentiplprreferred

to as the “kernel” trick, as mentioned in Sectioi.3

From Table 4.4, it can be seen that all of the four technique® la comparably
low root mean square error (RMSE) for the biomass conceatratFor glucose

composition and oil content, however, the performancef®fRCR, the PLS, and
the KPCR methods are significantly poorer when compared t8¥e method, as
seen by their higher root mean squares prediction errors M8 general, for

all components, the SVR method shows a consistently sugsiformance when
compared to the other three methods.

4.5.4 On-line Estimation of the Compositions in the Bioreactor

In Section 5.2, Raman spectra was successfully correlatiddta@ concentrations
of biomass, glucose, and oil content in the cells. In thigisecthe use of Raman
spectroscopy as an on-line, real-time multivariate serstested for microalgal
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Table 4.4: Root mean square error (RMSE) value for the diftestatistical
techniques used. The cells in the table highlightedatd indicate the method
chosen for each of the three components.

RMSE values for prediction estimates

Sensors Biomass Glucose %0il
SNV SG SNV
PCR 4.07 9.56 9.07
PLS 4.31 9.58 10.0
Kernel PCR 3.80 10.9 8.02
Nonlinear SVR 3.51 5.64 7.56

applications. For this purpose, the green microalygarotothecoidewvas cultured
in a 2L bioreactor, with the Raman probe inserted in the reastwollect the spectra
in situ. Chemical composition was estimated using the proposed viBos. The
dataset DS3 was created using off-line measurements frigraxperiment.

Raman spectra was collected every ten minutes with an integrtame equal to 20
seconds. The average time required for transforming tteerimdtion from spectra
to chemical composition was 0.058 seconds. The averagktitoi, including
spectra collection, was around 20 seconds with the predidf the composition
taking an insignificant amount of time compared to the spéattegration time.
The estimation of chemical properties of an algal culturehsrefore, solely de-
termined by the integration time. Compared to the algal caltlynamics, which
can be of the order of hours or sometimes days, the predittiom (around 20
seconds) is insignificant. Therefore, Raman spectra candzkfas real time on-
line estimation of the composition in the algal bioreactors

The predicted profiles for biomass, glucose, and oil cordemtshown in Figures
4.9,4.10, and 4.11 respectively. For comparison purptisesjf-line experimental
measurements are also included in the plots. There is a gatchrbetween the
Raman spectra based predictions and the experimental regauts for the full
range of concentrations.

During the initial 50 hours of culture time, the variancevbeen contiguous Raman
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Figure 4.9: Biomass concentration profile for an algal cettur) support vector
Raman spectroscopy -based measuremehtQff-line experimental measure
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Figure 4.10: Glucose concentration profile for an algaluwett () support vector
Raman spectroscopy-based measurementO(ff-line experimental measure. For

explanation regarding measurements enclosed in box ‘Aritefthe text in Section
3.5.4

100



4.5. Results and Discussion

751

700

65,

Oil content (%)

30 ‘
0

50 100 150 200
Culture Time (hrs)

Figure 4.11: Profile for the oil content in the algal cellg:qupport vector Raman
spectroscopy-based measuremdny); Qff-line experimental measure
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based predictions was higher than in the subsequent cuitoes. This indicates
that there are significant interferences from the sampleixraitthe start-up of the
culture. At the start of the culture (lag phase), there amgortant changes in both
the chemical composition of the culture media and the biost@& composition
of the algal cells. Rapid changes in the concentration ofetelements in the
initial culture medium, cell size and morphology, and cégjrpentation could be
responsible for the high variance observed in the initi®csm measurements.
Therefore, the spectral based estimations should be ugbadutmost precaution
during the lag phase. It is suggested that a moving averagdowi be used to
reduce the fluctuation in the predictions. In Figures 4.7 &48dthe data points
corresponding to the lag phase are circled. It can be setththdeviation between
the off-line measures and the estimated values is signifychaigher for this subset
of the data than for the other data points. Ignoring the lagspe data, the accuracy
of the prediction is improved as indicated by a reductiorhenRMSE values (and
an increase in thB? values).

From Figure 4.10, it can be seen that glucose estimates [affgphase) based on
Raman spectroscopy have a smoother profile than the expeahnesasurements.
Although, experimental measurements for glucose basedRirCHhave in general
a high precision, the samples drawn from the reactor and/ze@lin the HPLC
might not be representative of the bioreactor contentss Ehbecause, the con-
ditions in the sampling line may not be the same as the camditin the reactor.
Furthermore, the sample obtained from the reactor mighégudchanges during
the time lapsed for preparing the sample for HPLC and othalyais. These could
lead to reduced accuracy and reliability of the off-line sw@@ments.

An additional advantage of the on-line Raman based methbdistie composition
measurements can be taken at a considerably higher fregeentpared to the
off-line experimental measurements, given that the Ramaadmethod does not
require the removal of a sample from the reactor. The redéregghency for the
removal of a sample, in turn, reduces the chance of contdimmé&rom faster
growing bacteria and fungi. A higher measurement frequdmtgs in observing
the changes in the composition that will otherwise be owddal. For example,
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the variation in the glucose concentration between apprataly 75 and 90 hours
(enclosed in box ‘A’ in Figure 4.10) is not readily apparenoih the off-line experi-
mental measurements. Whereas, the Raman spectroscopiase#inte to clearly
identify these changes.

From Figure 4.11, it can be seen that the variance of conliguwml estimates
using the Raman spectra is lower compared to the one obtasiad off-line
measurements. This implies that the estimates providetdjRaman spectra are
more reliable than the off-line experimental measurements

Therefore, it can be concluded that Raman spectroscopy casdofor predicting
the glucose and oil estimates after the lag phase. Fromd-ig@; it can be seen
that for biomass estimates, however, Raman spectroscopyeaased for the entire
range of culture times (including the lag phase).

4.6 Conclusion

Appropriate monitoring and control of culture conditionsmicroalgal bioreactors
are required in order to maximize oil productivity. Ramanciein combination
with support vector regression can be used for building aivaumiate sensor for
the online-monitoring of the concentrations of the threemn@@mponents in the
bioreactor, namely, biomass, glucose, and oil contentarcéils. In heterotrophic
algal cultures, the substrate (glucose) concentratiosuslly the control variable.
Therefore, a control law can be defined for optimizing thecemrration of biomass
and the oil content.

The advantages of the proposed online sensor include: atredun the time
taken to obtain an estimate of the biochemical compositibthe system and
thereby enabling the use of several well known control sgias; a smaller variance
in the oil estimates was observed with Raman based measureswnpared to
the off-line measurements; and a solution for the problendigparity between
the measured sample and the reactor contents is achiewsdptbviding a more
reliable measurement than traditional off-line analysis.
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The effect of preprocessing techniques including Savi2kjay filtering, base-
line correction, and standard normal variate transforomatin the model building
exercise was studied. Standard normal variate is the maabiipreprocessing
technique for estimating biomass concentration and theamitent. Similarly for

a suitable estimation of glucose concentration, it is nemgsto use the Savitzky-
Golay filter.
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ldentifying Candidate Biomarkers for

Early Detection of Heart Transplant

Rejection Using Real Time Reverse

Transcription Polymerase Chain
Reaction (RT-PCR)

5.1 Introduction

Organ transplantation is one of the rapidly developing Siehdbiomedical studies.
Graft rejection remains to be a major barrier in organ triargption. The rejec-
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tion process involves an immune response against the fotisigue antigens. An
early detection of rejection is mandatory to effectivelgatr and prevent cardiac
dysfunction (Morris and Delves, 1998; Dallman and Delv&898). Assessment of
gene expression levels has produced insights for ideritditaf allograft rejection
(Erickson et al., 2001, 2004, 2003). Gene expression ni@paemerged as a im-
portant tool in the 1990s for measuring the gene expresei@id of protein coding
MRNA transcripts within a tissue (Schena et al., 1995). Okergast 20 years
they have become the dominant source used in transcriptothie study of said
MRNA transcripts. Researchers often compare expressiols lBveRNAS across
different types of tissues to find biomarkers that are dafftially expressed, i.e.
they produce different amounts of mMRNA. The theory is basetherassumption
that different levels of mMRNA in the tissues cause a similietknce in the amount
of proteins produced (Quackenbush, 2002). Differing kewélprotein can in turn
lead to, or indicate the manifestation of, sickness, ds@asiamage to the tissue.
Knowing which biomarkers are differentially expressed figjeat importance to
many applications: Pharmaceutical companies could dpwklags that target these
biomarkers (Walker., 2001). In clinical settings thesentaokers could be used in
diagnostic systems to aide doctors and clinicians (Mueliat., 2007). They could
also be used as good starting points for future researcholngy (Schena et al.,
1996; Carulli et al., 1998).

Much research effort has focused on identifying differalhtiexpressed genes (can-
didate biomarkers) from microarray datasets (Li et al.,200iller et al., 2003).
Researchers use class comparisons analysis to obtainfligémnes and gene sets
that are differentially expressed between the classestefest. To validate the
results a secondary analysis with a more accurate techyyadogh as northern
blotting or real-time polymerase chain reaction (RT-PCR)sedu(Chuaqui et al.,
2002). RT-PCR method is faster and more robust to small clsaingexpression.
Furthermore, the microarray datasets are highly corrupfiéid noise and higher
reliability of RT-PCR measurements provides a robust idieation of candidate
biomarkers (Allanach et al., 2008).

In this study, a novel procedure for obtaining candidatenaickers from a time
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series RT-PCR data for early detection of heart allogratatgpn. To the best
knowledge of the author and collaborators, this is first sstaldy of identification
of biomarkers using time series data. These chosen bionsankexe validated by
applying the k-means clustering algorithm on various irehefent renal allograft
microarray datasets obtained from the ncbi-geo websitepokthesis testing is
a commonly used technique in statistical analysis that camded for making
decisions on the data. A test of hypotheses (test procedugeinethod for using
sample data to decide between two competing claims. Hypsthesting has found
applications in the field of systems biology (Venkat et ab12) and organ trans-
plantation (Paya et al., 2004). Likewise, clustering alhons have been applied to
analyze gene expression datasets in diverse biomedicidatmms including skin
biopsies (Whitfield et al., 2003), diabetes (Koulmanda et2008), and kidney
transplant rejection (Flechner et al., 2004). Horwitz et(2004) has used hier-
archical clustering to demonstrate the ability of their &1 candidate markers to
distinguish control, rejection, and post rejection sarsplehe k-means clustering
algorithm, used in this study, has found application inctrce identification of the
dataset and recognizing any potential mislabeling in ppstrative liver transplant
monitoring (Melvin et al., 1997).

In this study, the syngeneic and allogeneic heart transjplaients were used to
differentiate the innate from the adaptive immune respdtimssiehelps in identifying

robust markers of rejection. Additionally, the work coresisl the identified robust
markers of rejection from heart transplant animal modeks g®cursor to working

with human data for use in medical problems.

5.2 Methods and Materials

5.2.1 Study Design

Serial changes in the transcript levels of 82 genes werg/zedlby real-time re-
verse transcriptase polymerase chain reaction (RT-PCR)dfférent, non-equally
spaced time pointg, € t1 < tp < < t14 (refer to Appendix A for the genes and

113



5.2. Methods and Materials

actual times when expression values were measured) dimnfirst 7 days after
allogeneic and syngeneic murine heart transplantation.

Mice: Eight to 12 wk old male BALB/cByJ (BALB/c) (H-2d), C57BL/68B6) (H-
2b) mice were obtained from Jackson Laboratory (JAX, Bar Biarblaine) and
housed under standard conditions in a pathogen free facilit

Transplant model: Heart grafts were transplanted in a agtpic cardiac trans-
plant model as previously described (Corry et al., 1973). fBribearts were har-
vested from freshly sacrificed donors and immediately pkamded into recipients
anaesthetized via intra peritoneal injection with 60 mggkgentobarbital sodium.
The donor aorta was anastomosed to the recipient abdonurtal lay end-to-side
anastomosis. The donor pulmonary artery was anastomogsktb-eide to the
recipient vena cava. All surgical procedures were comgligtéess than 60 minutes
from the time that the donor heart was harvested. Donor $i¢aat did not beat
immediately after reperfusion or stopped within 1 day feilog transplantation
were excluded % 95% of all grafts functioned at day 1 following transplanta-
tion). The recipient’s native heart was not surgically npattated and remained
functional. Donor allograft hearts were harvested immietijaafter transplantation
(O time point) and at 1, 3, 6, 9, 12, 15, 18, 21 hoursand at 1, 2, 8, 6 and 7
days following transplantation. Three BALB/c and three B6&amsplanted hearts
served as controls. The allografts were divided into eqealiens for extraction
of RNA and tissue sections for histology. Altogether 99 he#98 transplant, 6
control hearts) were harvested and analyzed. In the al®agdgransplant model
BALB/c donor hearts were transplanted into B6 recipients (BALinto B6), in
the syngeneic transplant model B6 donor hearts were trartgplanto B6 recipients
(B6 into B6) to analyze the innate response.

A-priori gene selection:

82 genes were selected for the kinetic analysis based onmiaroarray studies
(Mueller et al., 2003). All genes were manually classifiedaading to the bio-
logical processes they contribute to using the gene ongdBfg annotation system
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(Ashburner et al., 2000). If a gene contributed to more thaadistinct biological
process, the most appropriate for the current experimeattihgs was chosen. 12
functional classes were defined and further grouped intouneyrelated and non-
immune related gene sets. Information regarding the 8%iohaal genes, the 12
designated biological classes they are assigned to, thesie @ and GenBank
numbers, gene symbols, gene names and the sequences ointke pairs used
are presented in supplementary material of Mueller et 8032s work.

5.2.2 Applied method of transcript measurements

Real-time RT-PCR: Primer pairs were designed using Primerdssmoftware (Ap-
plied Biosystems, Foster City, CA). Forward (FW) and reverse (RE)ers were
chosen to have a length between 18 and 22 base pairs andetesogamplify an
amplicon length of 51 base pairs. All primer pairs were @#teboth immune-rich
tissue samples and non-template controls for specificitygy-dimer formation,
and reproducibility.

RNA extracted from the individual tissue samples was analyindividually to
control for both technical and biological variability. &tmurine RNA was iso-
lated from three hearts per time-point using TRl Reagent (&igidrich Corp.,
St. Louis, MO). All samples were treated with deoxyribomade to eliminate
DNA (Deoxyribonuclease |, Amplification Grade, Invitrogérfe Technologies,
Carlsbad, CA) contamination. 1j0g of RNA were reverse transcribed using Su-
perScript Il RNase Reverse Transcriptase (Gibco, Carlsbad, Tw)single cDNA
reaction product was aliquoted for the target and contrgbldications. For all
target primers the same cDNA sample was used.

The GeneAmp 5700 Sequence Detection System (Applied Besgstoster City,
CA) was used to perform RT-PCR using 250 ng of template cDNANMbof for-
ward and reverse primer and i@ of 10X SYBR Green PCR Master Mix (Applied
Biosystems, Foster City, CA) per well in a MicroAmp Optical 9@Hmeaction
plate (Applied Biosystems, Foster City, CA). The gene-speB@® products were
continuously measured by the increase in fluorescence dbe tonding of SYBR
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Green to double-stranded DNA during 40 cycles. Dye ROXuded in the SYBR
Green PCR Master Mix, served as a passive reference to naaral non-PCR-
related fluctuations in fluorescence signal.

Based on the constitutive expression across various expetarand further vali-
dated by the microarray results glyceraldehyde-3-phdsgtehydrogenase (Gapdh)
was chosen as endogenous control for normalization.

The relative quantitation of the amount of gene target wastban thé\Cr method
[Manual GeneAmp 5700, Applied Biosystems, Forster City, CAje Tifference

in the cycle thresholdGy) value of each target gene is calculated relative to the
Ct value of the endogenous reference Gapdh. The relative anobtarget gene
transcript is expressed as percentage of Gapdh, whichtis $80%. The quantities

of the individual target gene in each experimental sampmeeapressed as n-fold
difference relative to its quantity in the calibrator sasple. the un-transplanted
control hearts (BALB/c in the allogeneic experiments, B6 ia yngeneic). All
real-time RT-PCR experiments were run in triplicate, analyzsamples from 3
animals per group.

Analysis of the transcript measurements:

At each time stamp, t, the transplantation procedure isoateld. TheCr values
are obtained experimentally for all the replicates at thHké¢ime samples. The
ACt values for 85 genes for all replicates are calculated aethie®e instant; =
1,2,...,14. Tables 1 to 16 in Appendix A, show the values for the gendsgfarent
times for isograft (syngeneic) and allograft (allogeng@}ients. In this work,
the AACt values are calculated and analyses were performed on thepafty
detection of allograft rejection. The definitions and thegadure for obtaininGr,
ACr , andAACT values are as follows (Thiel et al., 2002; Pfaffl, 2001):

» Cr: The cycle values of the target gene.
The Ct value is the experimentally measured value for the transgli@mn
patient.

116



5.2. Methods and Materials

» ACt: The difference in threshold cycles for target and reference
TheACy values are calculated by subtracting @yevalues of the target gene
with respect to the house keeping gene, GAPDH. That is, fokithgene at
timet;, the correspondingCsy value is given by the Equation 5.1

AC:T (tl ’ k) = CT (tl ’ k) - CT (tia R) (51)

where ACr (ti, k), Cr(ti,k) are theACr, Cr values fork" gene at timet;
respectively an€r (i, k) is theCr value for the reference gene, in this case
GAPDH, at tim«;.

* AACt: The difference in normalized threshold cycles for experimatal
and calibrator sample The AACt values are calculated by subtracting the
ACt values of the experimental sample of a given gene with thenmA€a
values of the calibration sample of the same gene. Forkthgene the
correspondind\ACy value is given by the Equation 5.2

AACt (k) = ACt (k,€) — ACT (K, C) (5.2)

whereACr (k, e), is theACT value for thek!" gene for the experimental sample
and(fT(k, c) is the mea\Cy value for thekth gene for the calibration sample.

In the case of a missilyCt values for a particular gene, for one of its replicates, an
average value across the other replicates is chosen. Fstistd analysis, th&Cr
values for the genes at all time instants are required. Threrggenes with zerdCr
values for all the replicates at any given time are removerthfthe analysis. The
geneFOLbp3 has a lot of missing\Ct values (refer Appendix A) and therefore
is removed from analysis. Similarly, ge@K which has missing\Ct values on
day 4 for all replicates is also removed (refer Appendix A)tHeAACt values, the
impact of the house gene GAPDH is zero, and therefore is rechior the analysis.
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5.3 Statistical Methods and Data Analysis

To identify and validate the potential biomarkers that catedt allograft at early
stages, statistical analysis including hypothesis tgsdimd k-means clustering are
applied. Brief descriptions of the two methods are givenwelo

5.3.1 Hypothesis Testing:

A standard approach to the hypothesis testing problem sisnsi a series of steps
given below:

Step 1. Research and define the test hypothesis along wittsicigoihe variable to
be used in sample data.

Step 2. State the null hypothesidg) and the alternate hypotheslids|).

Step 3. Select the significance level for the test and deckdehatest is appropriate
while stating the relevant test statistic T.

Step 4. Consider the statistical assumptions being made gmsample in doing
the test.

Step 5. Compute all quantities appearing in the test statisti then the value of the
test statistic.

Step 6. Determine the p-value associated with the obserled of the test statistic.

Step 7. State the conclusion (which is to rejelgtif p-value and not to reject HO
otherwise) as per the context of the problem and the levabaffecance.

There are two kinds of hypothesis testing that can be peddror identifying the
differences between the two classes, namely, t-test whkiehtést statistic for the
differences between the means of two distributions andsEwich specifically
tests for difference in variances between the two clasdas pfocedure for obtain-
ing both the allogeneic and syngeneic datasets is the sameassumption that the
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variances in both the allogeneic and syngenic datasetsedalue to errors in the
measurements, is equal is a reasonable one. Therefost seams an appropriate
method for comparing the means of the two distributions@aasgithat the variance

of the two classes is known.

5.3.2 K-means clustering:

K-means Clustering is a method of cluster analysis (unsigehclassification)

which aims to partition n observations into K clusters in etheach observation
belongs to the cluster with the nearest mean. K-means methwdructs these par-
titions so that the squared Euclidean distance between lajegtaand the centroid
of its respective cluster is at least as small as the squasthdes to the centroids
of the remaining clusters. This procedure consists of thewWing steps (Ray and

Turi, 1999; Steinley, 2006):

Step 1. Choosing the K initial cluster centgrs, i3, ..., .

Step 2. The squared Euclidean distance, , betweeltbbject and thg'" cluster is

obtained as shown: <

(1) = (45— p”)? (5.3)
j=1

Objects are allocated to the cluster where 5.3 is minimum

Step 3. After initial object allocation, cluster centroslabtained for each cluster,
then objects are compared to each centroid (udfy j) ) and moved to the
cluster whose centroid is closest.

Step 4. New centroids are calculated with the updated clostenbership (by calcu-
lating the centroids after all objects have been assigned).

Step 5. Steps 2 and 3 are repeated until no objects can be roetxweeen clusters.

The K value is obtained by prior knowledge of the number obtus present in
the data. In this work, only two clusters are considered, elgnallogeneic and
syngeneic.
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5.4 Results

5.4.1 Potential Biomarkers
Identification of potentially diagnostic genes

It is a well known biological fact, that prior to rejectiont (aitial time) both the
allogeneic and syngeneic patients have the same gene sijorgalue. Therefore,
itis necessary to find biomarkers (genes) that do not ingl@ay inherent difference
between the gene expression value for allogeneic and sgitgpatients at initial
time (t = 0 hr). A pre-processing and feature selection poce is required to
obtain biomarkers which have similar gene expression galigg both classes, at
the initial time (t = O hr) and significantly different genepegssion values around
the final time (t = 7 days).

In this work a new approach to obtain biomarkers is proposeidtwexploits the
diverging trend between allogenic and syngeneic datas#tsime for illustrating a
transplant rejection. The pre-processing/feature geleteéchnique involves a sta-
tistical comparison of the population means for the twoss#asof data (allogeneic
and syngeneic), for each gene, at each time step. The gemeaftkers which
indicate that the allogeneic and syngeneic samples aretirersame population at
initial time and from differing populations at later timesazhosen.

The hypothesis testing method using a student t-distohutias used to compare
the two population means. The assertion flmat p, (difference of the population
means of the two classes) is equal to zero is the null hypisth@he alternative
hypothesis is thati; — L is not equal to zero. In this study, a normal distribution
will be assumed for the difference of the population meansagting significance
level,a =0.01 (99 % confidence level) to 0.99 (1 % confidence leveh@ngments
of 0.01.

For each time t, the maximum % confidence level at which the paypulation
means are statistically indistinguishable, is calculatddhe biomarkers (genes)
that show a higher confidence level for similarity of the ngeaninitial time,t,
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compared to the one at tintg which in turn show a higher % confidence level for
the similarity of means compared to the on&aso on so forth are chosen. In short,
the biomarkers which shows a decreasing level of confidearerhilarity of means
with increasing time is considered to be the best markerlfogaft rejection.

Metric Definition

For a given gene, Let= {y1,Y>,...,y14} be a sequence defined such thas the
maximum confidence level for the similarity of means at tené\s stated in Sec-
tion 5.3, allogeneic and syngeneic patients do not indiaateinherent difference

at initial time and hence a higher confidence level for sintjfaof the means is
required at the initial timé& = O hr. Therefore, a threshold of 0.5 is chosen for the
y1 value at timd; = 0 hr. A set of 20 genes are obtained as indicated in Table 5.1.

Table 5.1: The 20 genes obtained
Genes

4 granz B 7 MLC-2
3 TNF-a 3G-CSFR
1 Pro-C5a 2 MBL-2
4 perforin 8 GSH Px
2 SAA4 4 serglycin
1C4 3 IFN-b
9 MTHFD2 5TLR-7
10 B2-M 12 rp S24
3IL-1b 9 sepiapterin R
12rp L8
2 SAP

For the purpose of obtaining a meti@; various other parameters are defined as
shown:

Aij=(i—-yj+{) Vi=12.,n-1landj=i+1.n (5.4)
Aj=0 Vi=12.n—1landvj<i (5.5)
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Ideally the RHS term in Equation 5.4 should be greater thao farany{ >= 0
(tolerance value). This might not be the case when dealitig avreal biological
data such as the one in this study. A me@ics defined for a given gene as follows:

(5.6)
(5.7)

whereE andF are total number of positive and negative values in&henatrix,
respectivelyAy is a(n—1) x n matrix with elementgA; j} as given in Equations
5.4 and 5.5. Thé value is chosen based on the standard deviation of the conéde
values as suggested in Equation 5.8:

n
= 0?1 Zloi =0.03 (5.8)
i=

{
whereg; is the standard deviation of the confidence values of the 28gyendicated
in Table 5.1, at tima. The gene with a higher value of meti@&; shows a better
decreasing trend in the confidence level and hence is a batdter for early
detection of allograft rejection compared to the gene withwaer value ofG. Table
5.2, gives a list of the 20 genes in the decreasing order ofthalue. Table
5.2 shows the ranking of the selected 20 genes accordingeto gthitability to
differentiate allogeneic and syngeneic over the whole tomerse. In Table 5.2,
three genes are chosen based on the criteria of them beiaiggtiean 95 % of the
maximum achievable value of the metric G (=1).

Figure 5.1, gives the plot for the confidence level of thegsedlchosen genes
which show a generally decreasing trend from timto t14. The three best genes
out of the selected 20 were chosen. The figure shows the defssmilarity or
dissimilarity of these genes between allogeneic and sygiggratients. The higher
the confidence level (y axis) the more similar is the gene behnthe two groups.
The metric/figure shows that these 3 genes are most simildreagarliest time
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Table 5.2: The estimated meti@&for the 20 genes

Genes Metric G
1 1 Pro-C5a 0.9560
2 3 TNF-a 0.9556
3 4 granz B 0.9535
4 4 perforin 0.8791
5 2 SAA-4 0.7802
6 9 MTHFD2 0.7753
7 10 B2-M 0.7692
9 31IL-1b 0.7555
8 12rp L8 0.7555
10 2 SAP 0.7356

11 7 MLC-2 0.7111
12 3 G-CSFR 0.6923
13 2 MBL-2 0.6889
14 8 GSH Px 0.6813
15 4 serglycin 0.6593

16 1C4 0.6555
17 3IFN-b 0.6373
18 5 TLR-7 0.6067

19 12 rp S24 0.6043
20 9sepiapterin R 0.3297
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points and very dissimilar at the later times. As early ass3these genes become
dissimilar/differentiate allogeneic from syngeneic.

The three genes chosen for analysis are as follows:

The complement product Pro-C5a, the official name is hemolyti component
(Hc), aliases used are C5 or C5aThe protein encoded by the C5 gene plays
an important role in inflammatory and cell killing process@se C5a gene is an
anaphylatoxin that possesses potent chemotactic actinitlyis derived from the
alpha polypeptide via cleavage with a convertase. In tleealitire it is indicated
that the anaphylatoxin C5a might have potential as an eadyeable marker for
acute renal allograft rejection (Mueller et al., 1997)..

Tumor Necrosis Factor- (TNFa)y The TNF gene encodes a multifunctional pro-
inflammatory cytokine that belongs to the tumor necrositofad NF) superfamily.
Increased levels of TNF were demonstrated within the blobgatients during
episodes of renal allograft injection and thus have beegestgd as a useful early
and discriminatory marker of rejection (Tuschida et al920

Granzyme-B (GZMB): The protein encoded by GZMB gene is crucial for the
rapid induction of target cell apoptosis (programmed cehttl) by CTL in cell-
mediated immune response. The accurate diagnosis of apetgion by measuring
granzyme B mRNA in urinary cells, have been successfully detnated. Further-
more, it is stated that measuring the levels of granzyme Bldoeiused predict the
development of acute rejection (Lo et al., 2001).

The allogeneic and syngeneic time trends of the chosen bk@rsindicate the dif-
ference between successful and failed transplantatigor&b.2, shows a graphical
representation of the averagACy values of all replicates at each time instant for
the three chosen biomarkers aforementioned. The diveegehthe two curves
(allogeneic and syngeneic) from tirtye= 0 hr till t;4 = 7 days indicates the occur-
rence of allograft rejection.
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Figure 5.1: The chosen biomarkers based on hypothesiadesethod suggested
in this section. The chosen biomarkers are used for furthitation

125



5.4. Results

[%]
()
=
g Pro—Cb5a
'_
8 ; .
3 1) —=—Syngeneic
o Of: # -a-Allogeneic
=) oy A
CU 1 1 VRN
= A0 VAERRN A
[ -1 (W} N ’ \ ’
> A ’ \ ’
< A “ ’ \ K
-2 N A-. ~A_ - /,
-«
_3 L L L
0 50 100 150 200
Time in hours
(%]
()
>
g
= TNF-a
(@) i '
3 FEREN JA —=—Syngeneic
> v N |-a-Allogeneic
E _2 A‘& \‘K' \\
() \
> ‘\
e al a
\\ _ A
A< S<aA
_4 L L L
0 50 100 150 200
Time in hours
—‘\u
0
granz B
Gw.) \ ,A'A‘\
3 2l& Tw —=—Syngeneic
> T - a-Allogeneic
O .
g - s
(] \\
(@] \
S -6t %
(<] \
> \
< _87 ‘A - -A\
\\A
_10 L L L
0 50 100 150 200

Time in hours

Figure 5.2: Time trend indicating the difference betwees diata obtained from
allogeneic and syngeneic patients.

126



5.4. Results

5.4.2 Application of the three markers in a multivariate frame-
work

The three chosen biomarkers in Section 5.3, are subjectearimus preliminary
graphical analysis to illustrate the advantage of using livauate framework for
detection of allograft rejection.

Firstly, the three individual biomarkers are viewed in avaniate framework. At
each time instant, and for each of the three chosen biomarkers, mean and 95%
Confidence level of the replicates are calculated separftebach class. Figures
5.4.2 and 5.4.2, indicates the mean and 95% confidence mviHdAACT values

of the replicates grouped together for each of the 3 biomarkem initial time (O

hr) to 12 hr mark. An overlap between the allogeneic and sygigeconfidence
regions indicates a non-separable case.

Figures 5.4.2 and 5.4.2 indicate that the separation betwe allogeneic and
syngeneic classes happen on only at the 12 hr mark and onNfadlgene. Also,
the figures show that no separation between the allogendisyargeneic classes is
achieved at any time prior to 12 hours, for any of the threenbidkers when viewed
individually.

Similarly, in Figure 5.5 it can be seen that the three chogemérkers when viewed
in a multivariate framework shows a class separation ag aarbé hours. In Figure
5.5, 2 dimensional ellipses for all the possible combimati® biomarkers{Pro-
C5a(4), TNFa, {Pro-C5a(4), Granzyme B and{TNFa, Granzyme B) are plot-
ted. The ellipse are plotted with the meAACt value as center and 95% Confi-
dence level, of the biomarkers, as the major and minor axes.

Based on the aforementioned results from the plots, it canobeladed that a
multivariate framework of using the biomarkers for detextof allograft rejection

is advantageous. The three biomarkers chosen are valigsiteglindependent renal
transplantation microarrays obtained from the ncbi-gebsite.
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Figure 5.3: A univariate plot showing the meAACt values and 95% confidence

level (based on the replicates), for the three chosen bkergrat times O hr, 1 hr,
and 3 hr.
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5.4.3 Validation of the biomarkers in independent data sets

The obtained candidate biomarkers are validated to thre@nd publicly-available
microarray measurements on both human and animal renapteartation patients
for rejection. Before applying k-means algorithm to the m&ray datasets for
separating the classes (allogeneic and syngeneic), tasedatare normalized using
a standard normal variate (SNV) transformation acrosseaieg in the microarray.

Rat renal transplantation dataset

A well defined rat kidney transplantation model with stri@rtsplant and sample
preparation procedures to analyze genome wide changeseaggression four
days after syngeneic and allogeneic transplantation (fdetnal., 2008). From
the huge microarray dataset, the three chosen biomarkehssistudy, are used for
analysis. K-means clustering algorithm mentioned in $adii3.2 is used to cluster
the rat renal transplant dataset of 10 samples (With 5 saepleh of allogeneic and
syngeneic rats). Figure 5.6 shows the separated clusteadgenic and syngeneic
rat patients clustered using the k-means algorithm.

From Figure 5.6 it can be seen that by using the three chosemabkers the
microarray dataset obtained for rat experiments is clesharated into two groups
(allogeneic and syngeneic) with an accuracy of 100%. Theamiunderlying fact
that an animal experimental setup produces clean data ar@2tbenes chosen for
calibration were sufficient for identifying the candidaterbarkers and thus help in
obtaining a clear demarkation between the allogeneic anges\eic patients.

Human renal allograft dysfunction dataset

The Renal transplant data is received from recipients whe hadergone diagnos-
tic biopsies after transplantation from April 2004 to Det®mn2006 (Mao et al.,
2011). A set of 61 patients were chosen for analysis with 34eh showing acute
rejection and the remaining 27 of them showing a stable remetdtion. For the
purpose of this study only patients undergoing acute rejeand patients with
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Figure 5.6: Plot indicating the two separated clusters loganeic and syngeneic
rat samples using k-means algorithm for rat renal transaiem dataset. The three
chosen biomarkers, as suggested in Section 5.4.1, are aissdfaration of the
clusters. The centroids for the two clusters are also mlotte
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stable renal functions were chosen. The patients undeygaute tubular necrosis
were not selected for analysis. Figure 5.7 shows the segohehisters for allogenic
and syngeneic human patients clustered using the k-megmstiaim.

15
* Syngeneic
1 * Allogeneic
x Centroids
m
E 0.5 ®
V] * '.
O **** %
i ety ﬁ*ﬁ;*::: *
05 * -
-0.2
1
-0.4 0.5
0
TNF-a -0.6 -0.5 c5

Figure 5.7: Plot indicating the two separated clusters lloganeic and syngeneic
human samples using k-means algorithm for renal allogngdfuwhction dataset.
The three chosen biomarkers, as suggested in Section &rd.dsed for separation
of the clusters. The centroids for the two clusters are disibeal.

For this human renal allograft dysfunction dataset, k-mseguastering algorithm
achieved a separation between the two classes with an agooir@around 75%.
From Figure 5.7 it can be seen that by the three chosen biersadoes correctly
predict the patients undergoing allograft rejection. Hegvea small amount of
patients undergoing successful transplantation is abssitled as transplant rejec-
tion. The reason for this misclassification could be becatiige fact that the gene
expression profile for 82 genes obtained from RT-PCR datagedtisufficient for
choosing the candidate biomarkers needed for detectioran$plant rejection in
human patients.
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Human renal allograft dysfunction dataset

The Renal transplant data is received from recipients whe hadergone diagnos-
tic biopsies after transplantation from April 2004 to Det®n2006 (Mao et al.,
2011). A set of 74 patients were chosen for analysis with 26erh showing renal
dysfunction and the remaining 48 of them showing stablelremetion. For the
purpose of this study only patients undergoing acute riejecnd patients with
stable renal functions were chosen. The patients undeydmirderline rejection or
presumed rejection were not selected for analysis. Figifrsows the separated
clusters for allogenic and syngeneic human patients cktesing the k-means
algorithm.
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Figure 5.8: Plot indicating the two separated clusters lloganeic and syngeneic
human samples using k-means algorithm for renal allogngdtuhction dataset.
The three chosen biomarkers, as suggested in Section &rd.dsed for separation
of the clusters. The centroids for the two clusters are distbeal.

For this human renal allograft dysfunction dataset, k-mseguastering algorithm
achieved a separation between the two classes with an agooir@round 68%.
Again, from Figure 5.8 it can be seen that by using the threse biomarkers a
clear separation between the allogeneic and syngeneenpatiannot be achieved.
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5.5 Discussion

The procedure proposed in this work exploits the link betwa®anges in the RNA
extracted from individual tissue samples was analyzedlyiglcandidate biomark-
ers for transplantation. Furthermore, the three canditiatearkers obtained using
the proposed method is validated to new and publicly-avkalanicroarray mea-
surements on renal transplantation patients for rejecfitwe results shown in this
study demonstrate that the gene expression measurenmantsifie series RT-PCR
dataset can be a powerful and a fast strategy for discoveandidate biomarkers
for transplant rejections. Also, the biomarkers chosemftbe gene expression
profiles obtained from heart transplantation patients welpeist in identifying re-
jection even when applied on independent renal transpktigngs.

5.6 Conclusion

Heart transplantation is one of the fastest developing iawré@e biomedical field.
Heart allograft rejection is one of the biggest challengesngd transplantation.
Therefore, an early detection of allograft rejection calp irepreventing transplan-
tation rejection. In this work, a novel algorithm has beeiit lbor early detection of
transplant rejection.

The study is divided into two parts, firstly, a set of three didate biomarkers
were chosen from a time series RT-PCR dataset, obtained figithte 12 wk old
male BALB/cByJ (BALB/c) (H-2d), C57BL/6J (B6) (H-2b) mice patisntusing
hypothesis testing. A metriG is defined as a part of this work for quantifying the
chosen biomarkers.

Secondly, the chosen candidate biomarkers were validatadge new and publicly-
available microarray measurements, from ncbhi-geo websiteboth human and
animal renal transplantation patients for rejection. Thesen biomarkers were
able to separate the allogeneic and syngeneic classes With% accuracy in the
case of rat patients.
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For human patients, however, a separation between thesakig and syngeneic
classes is not clear. This is due to the fact that the humaongeinas more genes
compared to the mouse genome and the candidate biomarleysrcfrom the 82
relevant genes for mouse patients may not be exhaustiveufoah patients. A
comprehensive set of genes are needed for identifying tbeare biomarkers for
human patients.
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Conclusions, Summary, and Future
Work

6.1 Concluding Remarks

Biological engineering has many important application®imwng design, control

and operation of biological systems. Biological enginegemcompasses a wide
range of fields including bioprocess engineering, biomadagineering, systems
biology, cellular engineering, genetic engineering, #icthis thesis bioengineering
problems are viewed in the framework analogous to chemicalgss engineering
problems and statistical and machine learning tools aréesbm their analysis.

The three aspects of process systems engineering that éenetudied as a part of
this work are modeling, monitoring, and fault detection. Bstdearning algorithms
indeed have shown the potential to be used as tools to deasldevaluate the
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performance of bioengineering systems. Several statisticd machine learning
tools were used to solve some of the common complexitiescaged with bio-
engineering systems.

1. Obtaining a reduced complexity model:

a. For inferring the gene network, the number of connectpersgene
was reduced using the Akaike information criterion. The Ah€thod
achieves a trade-off between model accuracy and model eaihypl

b. For building multivariate sensors for monitoring the roaigal culture
conditions the model complexity was minimized using suppector
regression.

c. For identifying candidate biomarkers, the proposed pttlvas able
to choose the minimum number of biomarkers based on the define
guantification approach.

2. Obtaining statistically significant results:

a. In the gene network inference problem, statisticallygimsicant con-
nections (spurious connections) were eliminated usingel@ame-out
jackknifing.

b. In the Raman based sensor for monitoring the culture dondit a
statistically significant relation between the experiraénteasurement
and predicted outcomes (sample correlation coefficieny wsed for
choosing the suitable preprocessing technique.

c. For identifying candidate biomarkers, a statisticallyngficant confi-
dence level based approach was used to test the separatios wio
clusters (allogeneic and syngeneic).

3. Obtaining a noise-insensitive solutions:

a. The signal component of the gene expression measureoigaised
was extracted using the partial least squares (PLS) apprdduws the
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6.2. Summary

obtained connectivity matrix using the extracted signahponent was
insensitive to the noise in the measurements.

b. The noise in Raman spectral measurements obtained dugbiditiy
bubbles in the system, and background fluorescence wereaedis-
ing preprocessing techniques including Savitzky-Golagriihg, SNV
transformation, etc.

c. The presence of noise in the RT-PCR dataset measuremaetsaken
into account while defining the quantification measure faading the
biomarkers.

4. Obtaining a strategy for overcoming data scarcity:

a. For inferring the gene network, the proposed PLS/leae=aut jack-
knifing/AlIC algorithm used the knowledge of sparsity of treng con-
nectivity matrix to obtain a robust estimate.

b. For building a multivariate sensor, the advantage of S\gRrahm in
working with small sample datasets was exploited to obtaodel for
predicting the concentrations of glucose and oil content.

c. For identifying candidate biomarkers, the biologicabktedge of sep-
aration between the allogeneic and syngeneic clusters timih was
incorporated. This approach was able to overcome the datietey as
small number of measurements were enough to identify retédiamark-
ers for separation.

6.2 Summary

The thesis has presented three representative biologigateering systems and
new robust learning algorithms have been developed. Thefiolg points summa-
rize the contributions outlined in this thesis:
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6.2. Summary

6.2.1 Inferring Gene Networks

* In this thesis a new algorithm has been proposed for reesgmeering gene
networks from linear ODEs using bilinear transformatiod arcombination
of well known statistical tools including partial least sges (PLS), leave-
one-out jackknifing, and the Akaike information criterighiC).

» The proposed algorithm was tested on various simulatedanks and the
improved performance over the current existing technidoeke literature
was highlighted.

* Due to the underdetermined nature of the ODE system, \&iballenges
and limitations in inferring gene networks from microardatasets are also
addressed.

* Finally, the proposed algorithm applied to an experimlenitee-gene network
for E. Coliwas able to successfully outperform methods currentlylavis
in the literature.

6.2.2 Monitoring a Bioreactor System

* Inthis thesis, an online multivariate sensor to monitaraantrations of biomass,
glucose and oil content in microalgal cultures has beer.baih algorithm
combining Raman spectroscopy and support vector regressisrused for
building the multivariate sensor. Even though, the comibinge of Raman
spectroscopy and support vector regression has recerdly t@ported for
monitoring of blood glucose (Huang et al., 2010), monitgrari cellular and
intracellular metabolites concentration is a more comfask.

» The sensor built using support vector regression is coeapaith other tech-
niques including principal components regression (PCAfJjaddeast squares
regression (PLSR), and kernel PCA and the superior perforenahcthe
proposed method is quantified.
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6.3. Future Work

» As a part of the study, the effect of preprocessing tectesgucluding Savitzky-
Golay filtering, baseline correction, and standard norraakte transforma-
tion on the model building exercise were assessed. Suifabl@ocessing
technique for estimating the concentrations of biomassage, and oil con-
tent were also obtained based on the goodness of fit.

» The proposed sensor was able to successful monitor anttptieel concen-
trations of biomass, glucose, and oil content.

6.2.3 Detection of Transplant Rejection

* In this thesis, a novel technique for choosing candidaiebrkers for detect-
ing the allograft rejection is presented. The method usestimesis testing
to obtain a set of candidate biomarkers from a time serieB@R-dataset, ob-
tained from eight to 12 wk old male BALB/cByJ (BALB/c) (H-2d), CBI/6J
(B6) (H-2b) mice patients. A metriG is defined for quantifying the chosen
biomarkers.

» The chosen candidate biomarkers were validated using puklicly-available
microarray datasets, from ncbi-geo website, on both humdraaimal renal
transplantation patients.

» The chosen biomarkers gave a good separation betweendgeraic (trans-
plant rejection) and syngeneic (successful transplaagsels in the case of rat
patients. However, for separation between the classeswdhypatients more
work needed to be done to ensure the chosen genes

6.3 Future Work

The following areas of future work are suggested:

* Implementation of a control strategy in the algal bioreacta system for
maximizing the oil productivity: Optimizing the oil productivity requires
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building a model, developing a sensor, and defining a comdrel In a

previous work, De la Hoz et al. (2011) focused efforts onding a model
for the microalgal biotransformation. The present worloimed developing
a robust multivariate sensor for monitoring the conceitnatof the biomass,
glucose, and oil content in a microalgal bioreactor. Tharitvork involves
defining a control law for optimizing the concentration obimass and the oll
content by using the glucose concentration as the contrizbia.

» Suggesting an good experimental Strategy for obtaining cahdate biomark-
ers: As mentioned earlier, obtaining candidate biomarkers fedjgtion of
transplant rejection is one of the biggest challenges imbitical studies. A
good experimental strategy can help in obtaining a goodfsgsbmarkers for
early detection of rejection. For this purpose, a plot ofdady and hourly
values of the averagBACt (defined in Section 5.2.2) values are presented.
Significant variations between the hourly and daily ploidate the necessity
for performing more hourly experiments for early detectmtransplant
rejection. Figure 6.1, show the daily and hourly plot for thene TNF-
a indicating the need for more hourly experiments for earlyedegon of
transplantation failure.

Implementation of the proposed method, in Chapter 5, on thgesied dataset
could lead in obtaining a superior set of candidate bionrarkar effective
identification of transplant rejection.
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Figure 6.1: Daily and Hourly Plot of the TN&-for developing a good experimental
strategy. Variations between the hourly and daily plotsdaid the need for
conducting more experiments on the hourly basis.
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Heart Allograft Rejection Dataset

In this appendix, the list of genes and their gene symbolgresented along with
the actual times when th&C; (refer Chapter 4 for definition) values are calculated.
As suggested in Chapter 4, the gdr@Lbp3 has a lot of missind\Ct values and
therefore is removed from analysis. Likewise, the géKewhich has missing\Cr

values on day 4 for all replicates is also removed.
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Table A.1:ACy values for first 31 genes for the isograft Patients

ref Oh | Oh | Oh | 2h | 1h | 1h | 1h | 3h | 3h | 3h
Gene Symbol| Cy avg

GAPDH 00 00| 00O|00|O00O0|00|00|00f00]|O0.0|O00
Clg-a 6.3 | 62| 63| 55|56|62|57/64| 56 |6.1| 6.7
Cilg-b 51 | 42| 45| 40| 39| 41 42|44 3.7 |4.0]| 47
Clg-c 71 | 68|69|60|62|72|65/70 61|62 7.1
C1-Inh 30 | 27| 28| 19| 24| 23|26|28| 25 |22]| 29
C3 47 | 52| 50| 28| 49| 38|42|45| 42 |42| 52
C3aR 7.7 73|70 73| 70| 776777 63|68| 7.9
C4 71 | 76| 75| 54|77 |67|65/73 8171|738
Ch5aR 70 | 65|70|69|58|65|62/68| 55|54 6.1
C9 93 | 95(88| 93107/ 91|69|78| 75|7.8]| 85
compl H 35 | 27 21| 24| 28| 29|26|31 28 |21] 29
DAF-1 68 | 61|(59|54|59|63|67/69|63|63| 7.3
Pro-C5a 104 | 12.2|12.1|11.6|11.6|10.8|8.4(9.3|12.3|9.9|11.9
properdin 6.1 | 62| 63| 53| 59| 51|55|6.0 6.2| 6.8
APP 23 | 17|18 | 15|18 |22 (24|28 17 |12] 21
CRP 83 [10.1| 99 |111| 96| 84 |6.3/6.8| 95 |75| 94
MacManR 6.4 54| 57| 54]54|65|6.766| 53|53]| 5.8
Man6-PR 5.2 46 | 45| 44 | 47 | 49 (45|48 46 (41| 50
MBL-2 89 |10.2|10.0|11.1|10.2| 87 |6.7|7.6| 9.7 | 7.8| 9.7
SAA-2 84 /10388 |85|98|86|71|76| 70 |75] 9.3
SAA-4 96 |10.7|/10.7|11.4|108| 93 |7.6,8.1| 9.7 | 8.8|104
SAP 88 |109|114|121/10.1| 9.1 |/7.1|75|10.8|8.8|10.2
G-CSFR 81 [ 85|81, 79|76|86|66|7.7| 73|79 82
GM-CSFR2a] 81 | 92| 92|98 72| 78|58|72 80|71 77
IFN-b 94 |115|114|12.6|109| 98 | 7.5|8.1|10.6|8.6|10.2
IFN-g 5.7 53| 54| 53| 53|54 |53|57| 55|49 57
IL-1a 7.6 791 69| 71| 72| 74]59(65| 63|59 6.8
IL-1b 8.4 79| 84| 97| 48| 55|58|7.0| 46 |3.5] 50
IL-2 71 | 85(69| 77| 73|93|63|68| 57 (63| 81
IL-6 78 | 75| 71| 77|38|40|50|58| 33|18]| 24
IL-10 89 |11.3/11.1|116| 9.7 | 88 |7.4|8.3|10.1|8.2| 9.7
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Table A.2:ACy values for first 31 genes for the isograft Patients

6h | 6h | 6h | Sh | Sh | Sh | 12h | 12h | 12h | 12h | 18h | 18h | 18h
00|00, 0000|0000 00O0|00OO|00|] 00| O00|O00]|O0O0
65| 67| 64|67 65|69|64|68,66)| 71| 66| 62| 6.0
42 | 46 | 45| 44 | 43 | 45| 42| 45| 42 | 47 | 44 | 36 | 3.8
61, 67| 69| 70|66 7567|7269 77|71| 64| 64
29 |1 28| 32|32| 26| 28|29|25|28|31| 26| 23| 26
59 (52| 56| 59| 56|44 | 46| 43| 42| 53| 48| 36| 43
7981|7284 76|79|66| 70 65| 73| 77| 60| 6.0
84| 76|85|83|83|70|76|70 70| 75| 78| 60|71
56 | 60| 67| 64| 52| 55| 40| 40| 44| 47| 54| 33| 33
99 /104| 83| 94| 91| 9.0 |10.3| 9.0 | 10.2| 10.6| 10.6| 11.1| 10.6
34|130,33|36|32|31|29|28|30| 32|34 27| 26
66| 75| 68| 7568|7574 74|74 75|74 61| 66
12.8]13.1| 13.5| 12.9| 12.3| 13.3| 12.6| 11.4| 12.9| 13.0| 13.1| 13.0| 13.3
61,64| 71| 7363|5544 |51 48| 54| 51| 39| 3.7
2125|123 25](26|25(19|20| 21| 23| 19| 13| 15
10.1| 11.3|10.5| 11.1| 9.1 |109|10.3| 9.1 | 98| 9.8 | 9.4 | 10.1| 9.7
51|{53| 58| 57|56|57|50|59|51|54|54 50|55
48 | 51|52 |51 |52|51| 44| 46| 46 | 45| 45| 3.7 | 40
10.7}12.2|10.8| 11.2| 9.4 | 11.3| 10.1| 9.5 | 10.1 10.3| 10.2| 10.6
93| 54| 62|88|89|69| 97| 88| 97103 10.6| 9.0 | 10.6
11.8| 10.8| 10.0| 11.6| 10.8| 12.6| 10.9| 10.2| 11.7| 11.6| 12.1| 12.5| 12.0
11.3/ 119|114 9.9 |11.6|10.7| 9.6 | 10.9| 10.9| 11.0| 10.9| 9.8
80| 79| 76| 83| 65|65|49| 47| 48| 52|61 42| 4.2
70, 69| 77| 748381687572 75|79]| 70| 6.4
11.513.1| 115 125| 10.5| 124| 11.3| 10.2| 11.4| 11.0| 10.7| 11.9| 11.1
5351 | 56| 54| 52| 45| 47|46 | 50|54 |51 41| 41
71|78 75|86|77|85|73|6779|84|64|63]| 70
42 | 35|48 |46 | 29| 37| 34| 2543|4030 23| 25
9.5 67| 88| 95| 95| 7986|9191 82| 92| 82
32129 31| 37| 24| 30| 41| 40| 42| 41| 40| 34 40
10.2] 10.9| 10.6| 11.7| 95| 9.7 | 104| 9.3 | 10.8| 11.1| 11.0| 10.1| 10.5
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Table A.3:ACt values for first 31 genes for the isograft Patients

dli|dl|dl1|d2|d2|d2|d2|d2|d3|d3 d3
00,00, 00|00|]00|00| 00|00 O00O|O00]|O0O0
60| 69| 66| 50| 50| 58| 54|49 | 55| 57|58
46 | 50| 48| 27|22 |33|29|26| 29| 33| 31
67| 78| 74| 59| 59| 66| 58| 60| 57| 54| 6.2
32134130 23| 25|32|28| 20| 23| 23| 25
48 | 60| 44| 46 | 48| 50| 47| 35| 34| 40| 41
69| 83| 75| 47| 48| 60| 59| 57| 53|58 51
74183, 68|]65|63|66|65|58|54|62)| 63
50| 60 | 53| 40| 45| 47| 48 | 52| 46| 5.2 | 44
96 |10.3| 94 | 12.0| 10.0| 9.8 | 10.5] 9.1 |11.9| 13.0| 10.2
30,40, 34| 30| 30| 43|33|34)|36| 35| 35
72183 |71]68|67|78|69|64| 66| 68| 6.8
12.4)12.2]11.3|14.2|129|11.2| 12.1| 10.3| 13.7| 15.3| 12.1
47 |56 | 50| 33| 37|38| 38| 38| 33| 39| 38
221252216 |19| 21| 21|18 | 17| 22| 1.7
10.3/10.1) 9.1 111|111 9.7 | 10.1| 8.7 | 11.9| 14.2| 10.9
67|71 70| 51| 58| 66| 58| 57|55]| 58|56
48 | 49 | 46 | 39 | 42| 47 | 47 | 41 | 44 | 49 | 42
10.1| 10.6| 9.4 114} 9.6 | 10.3| 8.6 | 11.5| 13.5| 10.5
98 /103 89 |119|119| 103|105 9.2 |115|13.2|11.4
10.6| 11.3| 10.5| 13.2| 12.0| 11.3| 11.2| 9.9 | 13.3| 14.9| 11.7
10.5]10.9| 10.0| 12.7|11.1| 99 | 10.6| 9.3 | 12.2| 14.3| 10.7
51| 65| 66| 59|57 |53|56|59|65]| 70, 6.6
64| 79,79 | 78|73 |78| 76| 77|80| 86| 83
11.111.1}10.1|12.1| 13.2| 10.5 99 |12.6| 15.4| 11.9
48 | 54| 51|46 | 48| 54| 51|51|51)| 56|53
75|82 71|190|88|62|87|77|86| 92 84
37|46 | 40| 95| 58| 32|63|55|52]|56]| 54
78| 95|89 |114|10.7 95| 94 | 83 |10.8|12.3]| 10.7
46 | 53|49 /68| 66|61|65|63)|62]| 77|68
98 |11.2| 95| 11.3|104| 9.8 | 12.8| 9.2 |11.6| 11.7| 10.6
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Table A.4:ACy values for first 31 genes for the isograft Patients

d4 | d4 | d4 | d5 | d5 | d5 | d6 | d6 | d6 | d7 | d7 | d7
oo0jo00(00|00|00|00| 00O 00| 00| 00| 00|00
53|52 | 5553|5749 |58|56|51| 43| 48| 49
29 |1 32 132|30|34|25|34 |31 27|17 25| 25
54| 55|63|54|56|61|59|66| 56| 50| 45| 57
15/120| 22|22 | 23|18 |24 |22 17|09]| 17| 14
34|40 | 35|38 |43 |35|40|41|38| 22| 37|29
53| 63| 60| 56|68|56|67|6762| 36|52 56
52,6069 |59| 74| 74| 71| 71|58| 45| 54| 56
53| 55| 51| 48| 56| 51|59 |55|57| 25| 47| 43
12.1}10.7]11.1| 115|111 131} 91 | 9.1 | 125]| 10.2| 11.0
26|32 33|33|40|38]29|29|18| 24| 26| 3.1
61|67 |62|59|68|62)|67|65|63|49| 55|55
12.7|12.8|12.0| 12.9| 13.0| 13.4| 126 79 | 85 | 12.0| 9.1 | 10.2
42 | 42|48 | 44 | 50| 37| 56|43 |48 | 21| 39| 3.7
15/21|20|16|22 |13 |17 |17 | 1701|1112
13.2|12.6|11.5| 124|123/ 10.8|11.3| 75| 7.4 | 11.2| 9.2 | 9.2
55|62 |57 |57|67|61|67|67|55|39]|53)| 6.1
44 | 47 | 45| 46 | 53| 41| 36| 36| 33| 27| 36| 41
1411 11.9|11.0| 12.2| 11.9 11.8| 7.8 | 7.9 | 10.7| 9.2 | 10.1
114} 99 |116|111|116|116|11.7| 6.2 | 55| 84 |10.1| 6.0
13.71129|12.1|11.9| 119 13.2| 9.6 | 9.6 | 13.3| 11.0| 12.1
14.7|112.6|11.7| 12.3| 11.6| 129| 12.4| 89 | 8.9 | 11.6| 10.0| 10.6
67| 76|76 65|81 |-1785| 74| 76| 38| 70| 55
83,83 85|80|88|80|90|86|83|65| 78|75
14.0| 13.7|12.1| 14.2 16.8|12.0| 83 | 85| 13.3| 9.8 | 11.1
47 | 55| 55| 50| 58| 54| 60|61|54| 34|45 | 46
82|87 ,88|89|88|86|101| 99 88| 78| 96| 75
47 |1 64| 67|58 77|35| 48| 50| 44| 64 6.7

11.9|10.1|11.0|11.7|11.3|10.5,10.5| 7.7 | 7.2 | 10.7| 9.2 | 9.9
64| 78| 75| 73| 86|62|86|61|84| 3.7, 77| 6.7
12.3111.8|11.3|10.5|11.0| 104 | 12.6| 11.9| 11.4| 9.7 | 11.0| 9.7
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Table A.5:ACt values for next 29 genes for the isograft Patients

ref Oh | Oh | Oh | 1h | 1h | 1h | 1h | 3h | 3h | 3h
Genes | Cpavg

IL-11 89 102/ 8790|9287 ,69|76| 79| 78| 93
IL-12p35| 9.0 91|182/103| 95|86 | 68| 78| 95| 7.9 10.0
IL-12p40| 8.3 |10.5|10.2|10.7| 96 | 88| 6.7 | 7.5 |10.1| 7.7 | 9.3

TNF-a 99 |11.2/109|11.7|10.6(10.1| 79 | 89 | 9.0 | 89 | 9.9

granz B 9.1 |10.9|10.8|10.2|10.0| 87| 6.7 | 7.3 | 93| 83| 99
granz D 6.9 9294101 85| 70| 48| 53|94 | 65| 86
granz E 6.3 87|86 |98| 79| 65| 44| 48| 85| 57| 8.1
granz G 6.2 87|85, 96|81|62|41| 46| 88| 55| 80
perforin 8.6 96 |1 92| 95/90| 84| 67| 75|80| 70| 91
serglycin | 4.8 45|39 | 44| 3439|4143 | 36| 31| 35
TLR-1 86 |12.1|12.2(129|12.6|12.6|11.0|115|11.1|11.1|12.4

TLR-2 9.0 8919992 | 74|82 |75|83|76|67]|73

TLR-3 11.0 10.7| 10.6| 10.5| 12.0| 9.6 | 10.6| 12.3| 10.2| 11.2

TLR-4 6.5 61|68, 68| 71| 73|68|68|61|58] 6.2

TLR-5 6.5 61|49 53| 60| 67|54| 64| 48| 48| 5.8

TLR-6 88 |10.2| 98 |104| 94 | 90| 7.1 | 7.8 |105| 84 | 9.6

TLR-7 7.4 72| 75|76 |76 | 71|72 73| 75| 60| 6.6

TLR-8 9.0 971|197 ,98| 96|92 |77|85|98| 86| 94

TLR-9 95 |10.1|/10.3| 99 |10.5| 98| 9.0 | 8.7 |10.3| 9.6 | 10.1

Aldo-a -10 |-11/-12|-11|-11|-10|-03|-04|-09]|-15|-11
CARAT 8.4 79,76 | 78|75|88|83|86|76| 76|79
CatD 0.8 05|04, 05| 06|06|13|11|07| 03] 0.6

CK -05 (-11,-14,-10|-15|-04| 01 |-03|-13|-18]|-1.2
GDH 5.8 55|52 |36 |54|49| 39|45 |61 | 52| 6.2
IDO 8.2 93/89,89|89|88|69| 78| 83| 91| 88

LDH-2B 0.7 07{02,03]01|07|09]23|]03|21]0.2
MEP 2.9 23| 22|24 21|26|29)| 32| 27| 20| 25
ANK-1 90 |[105| 94 /103, 96| 95| 7.8 | 83 ]104| 9.0 |10.1
b-actin 2.3 15/19|15|15|19| 2430|1311 21
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Table A.6:ACt values for next 29 genes for the isograft Patients

6h

6h

6h

9h

9h

9h

12h

12h

12h

12h

18h

18h

18h

9.5
10.4
10.8
111
10.1

9.6

9.3

9.0
10.0

3.0
12.8

7.0
11.0

6.8

6.0
10.0

6.0

8.8
10.9
-1.1

8.2

0.5
-1.1

6.0

9.3

0.0

2.5
10.9

2.2

9.7
9.0
11.3
11.4
9.6
11.1
10.7
10.1
9.4
2.2
11.5
6.9
10.7
5.1
6.6
9.8
6.5
8.8
10.6
-0.8
7.0
0.9
-0.9
6.0
9.8
0.5
2.7
11.2
2.1

8.0
9.0
9.7
10.8
11.1
9.7
9.3
9.3
8.0
3.6
10.8
7.7
10.5
5.0
3.9
10.3
7.1
9.4
10.7
-0.8
6.6
0.8
-1.1
6.6

0.5
2.5
10.5
2.6

9.9
10.3
11.3
11.8
10.6
10.4
10.0

9.8

9.7

3.1
12.3

8.1
10.7

7.3

5.8
10.2

6.6

8.8
10.5
-1.1

6.9

0.7
-1.1

5.9

9.0

0.2

2.5
10.5

2.1

10.2
9.7
9.4

10.2
9.7
8.5
8.1
8.2
9.4
2.8

13.1
7.4

12.3
7.3
6.8
9.3
6.6
9.2

10.2
-0.9
9.8
0.8
-0.4
6.0
8.8
0.2
2.4

10.2
2.6

10.0
10.0
10.7
11.3
9.5
10.0
9.2
9.6
10.4
1.7
13.4
7.0
11.9
6.6
7.3
9.6
7.0
8.6
10.3
-0.9
9.4
0.7
-0.8
4.9
8.7
0.4
2.6
10.7
1.2

7.6
9.6
9.8
9.2
10.0
9.2
8.4
8.4
9.3
1.6
11.1
6.5
12.4
5.7
6.7
8.6
7.8
8.8
9.8
-0.7

0.5
0.1
6.1
9.4
15
2.2
10.1
0.2

8.6
8.6
8.6
8.6
9.3
8.2
7.4
8.0
9.1
11
12.3
6.8
12.9
6.9
6.8
8.0
7.7
8.8
9.9
-0.9
9.5
0.7
0.0
5.6
9.2
0.8
2.1
9.6
0.8

6.9
9.6
9.5
9.6
10.1
9.0
8.6
8.6
9.9
0.7
11.4
7.0
12.5
6.1
7.0
8.1
7.5
8.7
9.8
-1.1
8.9
0.3
-0.5
5.7
9.7
0.5
2.1
10.1
0.1

7.2
10.1
9.4
9.8
10.4
9.3
8.5
9.0
10.1
1.0
12.4
7.1
11.9
6.1
7.3
8.6
8.8
9.2
11.8
-0.9
10.0
0.5
-0.2
5.7
10.0
0.6
2.5
9.7
0.1

6.7
8.9
9.2
9.2
10.3
8.9
8.4
8.3
9.3
1.9
12.9
7.7
12.9
6.6
7.1
9.1
8.7
9.2
11.6
-0.8
9.6
0.7
0.1
6.7
10.0
1.3
2.8
11.0
0.6

6.6
9.4
9.5
8.3
9.8
8.8
8.4
8.3
9.7
0.6
11.5
5.9
12.4
6.2
6.8
8.1
7.2
8.6
9.7
-0.9
9.5
0.4
0.2
6.0
9.8
2.9
2.0
10.1
-0.5

7.2
8.8
9.6
8.8
9.9
9.3
8.7
8.9
9.6
0.9
11.2
5.9
12.9
6.2
6.1
8.1
7.3
8.3
9.8
-0.9
9.4
0.2
-0.4
5.3
9.8
0.4
1.7
10.2
-0.5
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Table A.7:ACt values for next 29 genes for the isograft Patients

dli|dl|dl|d2|d2|d2|d2|d2|d3|d3|d3

6581|7494 | 94| 95|98|90| 94113101
95(102) 93 |11.3| 98| 95| 99| 88| 9.2 | 12.0| 10.0
9.7 1101 9.0 |11.9|10.6| 9.3 |10.4| 9.0 | 11.6| 13.0| 10.2
10.2] 10.0| 9.4 |10.2| 10.5| 83 | 10.5| 9.3 | 9.8 | 10.6| 95
104} 10.1| 9.5 |10.2| 10.2| 10.0| 10.7| 9.0 | 10.6| 11.9| 10.6
96 | 93| 83105 9.7 | 87| 9.2 | 74105 13.2| 93
87|89 76]101| 96| 81| 88| 6.6 | 99 |12.0| 8.7
88| 85| 78|100| 94| 79| 86 | 6.8 10.1|11.8| 9.0
8.7 1100 93 |10.6| 9.7 | 9.7 | 10.0] 8.7 | 11.1|12.1| 10.2
14| 26| 18| 25| 27|28 29 30| 32| 42| 34
10.4| 125/ 126|10.6| 99 | 7.7 | 79 | 76| 7.6 | 8.9 | 111
721 84|76 |69|73|59|67|61|59]| 68|73
11.7}11.8122|11.1/119 89| 9.0 | 83| 86 | 9.8 | 11.9
55/ 66| 71|62|64|55]50|51]50|]61|70
70| 75| 70| 66|63 73] 68|64]69| 78|73
8.7/100, 90| 89| 85| 86| 89| 84| 9.1 |10.1| 9.2
781 86| 81|58|59|62|61|59|63| 65|65
93 /100, 93| 75| 75| 83| 82| 78| 84| 85| 82
10.2}109|10.7/ 86 | 78 | 86 | 7.8 | 7.0 8.0 | 84 | 8.7
-03|-04|-03|-04|-02]02|00|-06]-01|01| 01
89192, 95| 91|87 |83 76|70| 81|80 94
06| 06| 10|-05|/-03|/ 05| 04|-01| 03| 06| 06
05({01,07]10|15|24|17|15| 26| 32| 33
67| 62| 65| 52| 56|66)|66|65| 76| 77|75
95212 93 |11.1|10.7| 10.8| 10.2| 8.8 | 10.7| 12.7| 10.3
24112|13|11|15|40)| 26 |17| 31| 28| 3.5
35|30 |27 |16| 18| 27|29 |21| 26| 30| 26
10.4| 10.8| 10.2| 10.8| 10.0| 10.1| 10.6| 9.2 | 10.7| 12.2| 10.7
07,09, 09|03|]08|05|08|]08|04]|12] 0.7
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Table A.8:ACt values for next 29 genes for the isograft Patients

d4 | d4 | d4 | d5 | d5|d5 | d6 | d6 | d6 | d7 |d7 | d7
11.2| 9.9 | 10.2| 10.7|11.8|11.3| 11.6| 10.7| 11.4| 7.6 | 11.4| 9.9
114 89| 98 | 94 | 95 |10.8|11.5|10.5| 10.3| 9.2 | 10.6| 8.9
11.7112.0/10.8|11.5|11.4|13.4| 124 12.0| 11.2| 10.3| 11.4| 9.1
99 10.7,11.0| 10.7| 11.5| 10.0| 12.3| 11.8| 11.0| 8.8 | 10.4| 8.5
9.2 |11.3/,10.0/10.9|11.0/11.1|11.2| 11.8| 9.9 | 10.3| 11.4| 9.3
12.0, 10.8| 9.5 |10.0/10.7|11.8| 100 65| 65| 89 | 9.1 | 7.8
11.9/10.1| 93 | 96 | 10.3|10.7| 10.1| 99 | 10.0| 88 | 9.3 | 7.7
1141103 94 | 9.7 |10.2|10.3|10.1| 99 | 10.2| 86 | 94 | 7.7
99 /109 99 |10.6|109|12.0|11.6|11.6|10.0f 94 | 10.6| 9.1
41| 40| 47|42 50| 05|49 | 37|43 | 13| 38| 2.7
11.1}11.7/11.1|11.0| 13.0| 14.3 12.8| 12.6| 10.4| 10.6| 12.3
70|77 77| 75]|91|93| 85|80 77| 90 150| 95
11.0/12.0|12.4|11.8| 13.9| 149| 13.5| 13.6| 13.1| 11.8| 11.3| 125
6.7 68| 66 | 6.3 | 7.8 75| 79| 68| 56| 60|75
68| 68| 75| 64| 6.9 78| 77| 70| 51| 6.6 | 6.3
9.7 |10.6| 9.7 | 9.0 | 105 105/ 99| 97| 6.8 | 9.1 | 85
58 | 66 | 6.2 | 59| 6.7 70| 71| 64| 49| 55| 6.2
79 | 86 | 82| 78| 92 90, 89| 90| 64| 76| 80
80|90 85|86|97|10.1| 9.7 | 95| 92| 78| 85| 8.6
-03|-0.2|-05|-04]| -05 -05|-0.2|-0.7| -0.3| -0.3| -04
8.4 | 89 |10.7| 11.3| 10.9 12.0/ 11.9| 10.6| 11.9| 10.9| 10.8
03| 06| 07| 03] 0.9 05|05 02|-08| 00|-01
15|16 | 16| 1.7 | 15 191 20| 11| 47| 16| 1.7
67|73 ,65|70|68|71|70| 76|63 71 72|59
10.9| 11.0| 10.6| 10.7| 10.3| 11.9| 106| 7.8 | 7.8 | 10.1|10.1| 9.0
261927 | 27|18| 33| 21| 26 43 | 24 | 2.2
231251312333/ 00|26|25|23|00| 20, 18
11.1}10.7| 10.3| 10.5| 11.3 11.0| 11.3| 10.7| 8.8 | 10.6| 9.8
111213 06|12|01)|-04-06-09|-12| 03] 0.0
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Table A.9:ACt values for last 22 genes for the isograft Patients

ref Oh | Oh | Oh | 2h | 1h | 1h | 21h | 3h | 3h | 3h

Genes Co avg
gelsolin 02 | 07]07|-02/-0301|03|13|]09|24)| 00
MLC-2 27 |-22|-35|-34|-40|-30|-30|-31|-36|-35|-3.6
crystallin -12 |-05/-10|-11|-15|-11|-0.7|-12|-14| 38| -15
GSH Px 1.3 16| 11|-01|18| 06| 11|08| 25| 27| 16
Hsc70 -01 |10, 06| 08|-01{01|05|15[00]| 19 -01
INOS 109 | 93| 9.6 | 10.3| 9.8 |10.9|/10.9| 11.1| 10.6| 9.8 | 105
MGP 09 [ 04]05|-02/02|04|04|07]09|-03|01
DHFR 75 | 83|27 |76 ,80|78|64| 72| 7484|738
FOLbp3 8.4 82|76 |79 7962|7171 79| 72
GTP-CH | 86 | 9797|9991 |92| 72| 79|92 116]| 9.2
MTHFD2 74 |77 |182|74,83|78|66|75| 7810775
PTPS 45 | 43| 08|42 |41| 46| 45| 48| 40| 51| 3.9
sepiapterin R 5.6 65| 57|57 |56| 62| 64| 67| 53| 66| 58
B2-M 0.7 11,08 04|01 04, 08|08|05|26]|03
I-A-b one 56 | 57 |56|47|48| 49| 48| 65| 51| 96| 59
I-E-b 45 | 52|49 36|38| 40| 42| 48|49 | 44| 5.0
MHC-1 70 | 85|80 |78 |77, 79|61| 68| 86|98, 738
BLR-1 9.1 |11.3|/10.6|10.3, 9.7 88| 75| 84 |11.0|11.1| 9.7
EF-1a 02 | 01]-03/-05/-03|-02|-02|-02| 02| 12 ]-01
GAS-6 43 | 37|36 |37 |39| 48|46 | 54| 44| 42| 4.2
rp L8 09 /0903|0701 05|112/06|0409]05
rp S24 00 |-01|-06|-03|-09| 01 |-01|-05|-06| 15| -0.6
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Table A.10:ACy values for last 22 genes for the isograft Patients

6h | 6h | 6h | OSh | Sh | 9h | 12h | 12h | 12h | 12h | 18h | 18h | 18h
09,04, 0607030714/ 06|13|14)| 23|11/ 0.8
-25|-33|-36|-33|-36|-32|-28|-29|-32|-31|-25|-27]|-3.2
-11,-16|-14|-17|-14|-15|-1.7|-15|-23|-23|-21|-1.2]|-1.9
12|17} 272513 |13,09|-04 13| 16| 13| 0.0| 0.7
08(01,-01|00|06|-03]-05/01|-10|-09]00|01]|-11
10.5| 10.7| 10.4| 10.7| 10.9| 10.5| 9.1 | 7.7 | 6.8 | 84 | 10.2| 7.8 | 9.8
08/05,11}12|04|10]09|03]03]03|08]|-05|-03
89 | 84 86| 85,88|87|79|84|88 89| 85| 83
91| 88| 65| 74| 9.6 99| 94 10.0|10.6| 11.5| 11.4| 10.0
90, 88| 87|92| 94| 98| 95|90 96 |10.0|/10.6| 9.7 | 9.2
93| 77|84 79| 79| 71|67 |65|64|62| 73| 56|57
53| 47| 40| 44| 46 | 46| 49| 48| 47| 50| 56| 50| 44
68| 61| 49| 55| 63|60|66|66|66| 70 72|81|59
04,04, 06/ 04|06|01|06]05|02)|06)-02]-01|0.3
54151 50| 54| 53|55|53]60|6.1| 66| 65| 53|47
70| 48| 52| 45| 41| 44| 43 | 48| 52|58 | 57|43 | 4.1
102, 88 | 86| 82|82 |82 |76 |76| 77| 79|83|82|75
11.1)11.4|11.2| 10.9| 10.8| 10.1| 10.2| 89 | 9.6 | 10.0| 9.8 | 10.3| 95
01/01,02|05|03|-02|-08-07|-05|-06]-01|-08]|-1.3
45 | 51|43 | 47| 45| 49| 47 | 47| 45| 43| 50| 44| 41
06/ 09, 07|07|06|05]06]05|03]03]03|01|-01
00| 01,-03]-01| 00|-02]|-02]|-02]|-05]|-03|-0.7|-05|-0.8
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Table A.11:ACt values for last 22 genes for the isograft Patients

dli|dl|dl|d2|d2|d2|d2 d2|d3 | d3|d3

201221141 09|11|32)|20|11| 27| 25| 30
-28|-28|-24|-24|-22|-03|-19|-27|-03]|-1.6| -0.6
-15/-14|-13|-18|-16|-09|-13|-18|-14| -06| -1.0
182504 -01/02|11,08|0005|09] 11
-03|/-03| 02| 000418040216 |09 11
8198 |93|92| 87| 73]94]94)| 89 |106| 95
06|11, 06|-06|-03| 18| 01|-06] 21| 02| 10
88|95 ,85| 74|67 |78| 7670|383 85| 80
10.2/10.7| 93 | 81 |10.1|10.2| 9.7 | 83| 11.5|13.1| 10.9
99 104 11.3| 11.8| 10.9| 10.8| 10.8| 9.3 | 11.7| 12.5| 10.5
72|73, 6968|6581 69|62|73|74|71
57,162 | 59| 54|53|66)|67|49| 58| 64| 65
67| 74,82 | 74| 68| 93|68|68| 78| 83|82
16 (12|09 ,-01]02|09|16]00|01]09)| 11
61| 67| 62|52|51| 66| 56|44| 55| 57|54
51,68 | 51| 40| 43| 76| 45 |33| 43| 52| 50
83|87 83| 79| 77]91]93]80|91)| 90| 84
9.8 |{10.1| 95 |11.2| 105 9.5 | 10.6| 8.8 | 10.7| 12.2| 10.3
00|-03-03|-12]|-1.0 -0.6|-1.1,-08|-0.2| -0.5
48 | 52| 51| 33| 37| 43| 38|40| 43| 4.7 | 4.2
04,03, 06|01]03[09|11]02| 20| 16| 13
00,-03,00|-06|-04| 04| 00|-07] 07| 10|04
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Table A.12:ACy values for last 22 genes for the isograft Patients

d4 | d4 | d4 | d5|d5|d5|d6 | d6 |d6 | d7 | d7 | d7
10| 23|33 |29| 23| 33| 23| 28 23] 21| 18
-19|-24|-21|-13|-23|-0.7|-20] -1.5 06 |-19 -22
-05|-07|-15|-11|-16|-13|-14|-11 14| -04|-04
0v,10,12| 04|12 03]04]03[09|06)| 03|00
06 07,04|11| 09| 07| 08| 06 -0.1| 0.3 | 0.6
93 /104 98| 9.6 | 10.3| 9.3 | 10.1| 105 69| 99| 9.0
-09|-03|,07|-01|-01 -09|-05]|-0.8 20| -14|-14
83|82 |73|71|82|35|86|81|85|56|77]| 76
12.6|10.0|11.1|11.7/ 119, 10.1| 11.3| 86 | 8.7 | 11.5] 54 | 10.1
11.8/109|115|11.3| 98 | 10.8|10.8| 9.1 | 8.9 | 10.5| 11.0| 10.3
72| 72|66 70| 70|55| 73] 69 46 | 6.7 | 6.4
54|57 58|62|54|56| 59| 6.0 49| 53| 49
77|72, 78| 80|69 75| 80| 8.0 80| 7.8 | 6.9
0207|120/, 08| 09| 0.3 ] 03| 0.5 -0.8| -0.6 | -0.3
44 | 52| 57|50 |53|51|52|50|47| 36| 35| 3.7
36 | 37| 44| 38| 46| 42| 3.7 | 3.8 24| 24| 26
78|84 83|85|86| 94| 85| 93 64| 73| 7.3
124} 11.2111.0|11.7|11.8| 11.0| 12.4| 11.8 96 | 114 94
-0.7,-03|-06|-08|-02|-13|-06|-09|-06|-24|-13]|-1.1
36 | 47|46 | 38| 48| 42| 38| 35| 3.0 28 | 3.2
09, 09,11/10| 11| 08| 13| 10| 0.7 0.7 0.6
02|01,03]02|04)|-02] 05| 0.2|-03|-10|-0.2]-0.2
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Table A.13:ACy values for first 31 genes for the allograft Patients

dcT ref | Oh|Oh|Oh|1h|1h|1h|1h]| 1h]| 3h | 3h
Co avg

GAPDH O |00/ 00|00 00| 00| 00]|00]00] 00] 0.0
Clg-a 53 | 64| 64| 72|62|59|57|62| 60| 58|57
Clgb 44 | 50| 48| 57| 45| 49| 46| 51| 52| 43| 42
Clg-c 70 | 75| 76| 83| 71|61|79|79]| 77|59 74
C1-Inh 25 | 30| 28| 37| 21|30|28|30]|30]|24] 24
complC3 | 38 | 62| 44|72|52|76|56|72|71]|64]| 46
C3aR 77 | 85|80|90|84|92|74|86|82|80]78
c4 6.3 5.9 65| 90| 75| 81| 83 5.7
C5aR 67 | 71/ 80| 89| 78|88|73|85]|85]| 67|59
C9 10.2 | 11.4| 11.0| 13.4| 12.8 10.8| 10.8| 10.1| 12.3| 11.0
compl H 30 | 40| 33| 41|32|48| 30| 36| 36| 38|41
DAF-1 57 | 72| 69| 68| 6.3 61| 71|69 66| 7.1
Pro-C5a | 12.7 | 12.9|14.4| 15.2| 12.5 14.2| 12.7| 13.3| 12.9] 11.8
properdin | 61 | 70| 56| 70|67 |70|65| 76| 75| 74| 49
APP 18 | 24| 22| 32| 18|30|19|30|29| 19| 23
CRP 10.6 | 11.5|11.6| 12.9] 12.1| 13.6| 11.2| 10.7| 10.8| 11.9| 10.7
MacManR | 54 | 62| 61|72|60/| 74| 60)|69|69] 62| 6.1
Man6-PR | 43 |51 |52|56|50|60/| 49|58 62|57] 48
MBL-2 10.6 | 11.9] 11.7| 12.9| 14.9| 11.8| 11.6| 10.7| 10.8| 11.7| 10.6
SAA-2 12.0 | 10.7] 10.3| 13.3 11.7| 8.6 | 10.3| 9.7 | 11.4| 10.4
SAA-4 115 | 11.1] 13.7| 14.4| 16.0| 12.9| 11.9| 11.2| 11.0| 12.0| 11.5
SAP 10.6 | 11.4| 13.4| 14.1| 14.8| 13.1| 12.4| 11.0| 11.2| 12.6| 10.4
G-CSFR | 95 | 90| 9.9 92| 94| 85|89 89| 84|87
GM-CSFR2a 9.0 | 83| 94 |106| 95| 98| 83| 90| 91| 85| 6.7
IFN-b 11.4 | 12.2| 14.6| 14.4| 16.2 12.9| 12.0| 11.8| 11.9] 10.8
IFN-g 57 | 62| 59| 72| 63|67|57|66]| 66| 61|59
IL-1a 89 |91|87|102 98|89 | 73|87 84|81]80
IL-1b 9.6 | 82 |10.8|10.2| 9.9 77| 94| 87| 57| 38
IL-2 11.5 | 10.3 76| 89| 83 |11.4|10.6
IL-6 105 | 8.1 87| 64|89 7830 31
IL-10 11.1 | 12.2| 12.5| 135 10.1| 11.4| 10.8| 11.0| 9.5
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Table A.14:ACy values for first 31 genes for the allograft Patients

3h | 3h | 3h | 6h | 6h | 6h|9h|9nh | 9h [12h|12h|12h
00|00, 00| 00|00| 00| 00O|O00O0|O00]|O00]|O00]O00
65|62 65|63|65|67]|56|53|57]53] 61| 46
45| 50| 52| 45| 47| 46| 39| 37|43 | 40| 41| 23
80|74 77| 76| 83| 76|68 68| 75| 77| 68|59
231 29|31| 26| 30| 27|27 |25)|25| 29| 30| 22
39| 76| 82|49| 81|57 |62| 44| 57| 54| 68| 39
75182918287 81|73|6184| 76| 61| 49
6.0 87| 71|95 73| 7769 75| 70| 83| 6.2
58| 75| 79| 57| 69| 55| 56|46 | 75| 58| 43| 3.9
11.1} 9.2 | 11.3 11.1 10.5 10.1| 9.5
29| 43| 42| 33|45 29|30| 27 |37] 39| 31| 25
60| 77| 72|69| 76| 73|67|73|70| 77| 78] 6.3
13.4| 10.3| 14.0| 13.6| 14.1| 13.3| 12.4| 13.1| 13.6| 12.5| 12.5| 10.7
54| 74| 78| 58| 7262|5845 |51 |55]| 43| 3.2
20 27|30| 21| 28| 20| 20|18 27| 24| 22| 1.2
10.9| 8.7 | 11.7| 11.0| 12.4| 11.7| 10.4| 10.2| 10.9| 10.3| 10.1| 10.2
53| 78| 75| 57|65 |51|52|43|64)| 63| 47 | 3.7
45| 58| 60| 48| 55| 45| 49| 42| 57| 49| 48 | 3.8
11.0| 84 | 11.3| 10.8| 12.3| 11.1| 10.8| 10.3| 10.7| 10.8| 10.2| 9.7
92 | 86| 99| 96 |122104| 93 | 7.6 9.8 9.0
11.7 12.1|11.9|12.7, 12.9| 10.9| 10.5| 11.6| 10.9| 10.4| 10.6
12.0) 9.6 | 11.5| 11.8| 12.2| 12.0| 10.9 11.9| 11.0| 10.5| 10.0
88| 86| 9.2 | 8.2 87| 78| 69| 94 6.4 | 6.8
63| 77| 92| 66| 90| 66| 62|50 91| 64| 55| 45
11.7| 9.7 | 12.7|11.7| 12.0| 12.7| 11.3| 11.5| 11.9| 11.5| 10.9]| 10.6
596464 47|69 |53|52|42 |66 | 41| 48| 4.0
7318391 |79| 94 82| 81 89| 80| 72| 74
30/ 69,69]30|52|33|37|32|79)| 38|54 39
99| 86 |10.0| 95|10.8|109| 83 | 6.6 | 10.2| 9.8 | 8.0

13| 52|52 |17|39|18 36| 21| 50| 29| 37| 4.1
91| 92|118| 96 | 11.4|10.1|10.0/10.2| 9.7 | 9.2 | 9.8 | 9.2
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Table A.15:ACy values for first 31 genes for the allograft Patients

18h|18h|{18h| d1 | d1 | dl1|d2 | d2|d2|d3|d3 | d3
00| 00| 00|00|00| 00| 00|00|00|]00]|O00) 00
47 | 57 | 53 | 5.1 52|42 | 4146 29| 3.1 | 3.6
3042393836 |36 | 2729 |33 17| 17| 22
60| 69| 75| 63|67 |69 53|48|6.2| 38| 3.7| 56
221281303336 |29|29 37|31 23| 24|19
52| 54| 73| 50|68|55|40|52|50| 46| 41 36
65|64 | 77| 63|70|57 5764|511 54|58 44
6.6 | 6.7 98 | 6.3 6.7| 6.8 | 6.9 | 5.7
42 | 44 | 59| 41|50 41| 41 49| 46 | 46 | 4.2
98 |10.2| 8.7 |124|11.7/10.0/ 115 88 | 76| 11.2| 11.1| 11.3
341 31| 42| 40| 50| 30| 35|45 |34| 37| 37| 29
73| 73|87|69|68| 7359|7268 68|66| 6.0
115122 10.3|13.0|14.1| 115/ 12.3|10.1| 95| 11.7| 12.3| 13.1
49 | 45| 54 | 54| 55|46 | 45| 52 50| 41| 43| 3.7
1720|332 |24 25|19 21| 25|23| 20| 19| 15
99 |104| 8.7 |11.9|10.7| 99 | 110| 81 |7.5|11.1|10.8| 11.2
48 | 54 | 6.1 | 52|57 |51|44|53|52| 46| 44| 4.2
43 | 46 | 54 | 45| 53| 42| 42 | 48 (46| 42| 47 | 3.7
10.1| 10.3| 9.0 | 11.8| 11.4| 10.3|11.0| 8.0 | 8.3|11.4|11.1 | 11.8
86 |10.1| 93 |11.5|10.0| 86 |10.3| 7.7 | 8.0/ 10.8| 10.2| 8.1
10.0{ 11.4| 9.3 | 125|11.5/10.8|11.6| 94 | 9.2|11.5|11.8| 11.3
104|110 9.1 |12.6|11.0| 10.0| 11.2| 85 | 79| 11.1| 11.3| 12.2
69| 79| 78| 53|66 |47 |51|59|56|65| 66| 6.6
48 | 48 |1 60| 69| 81| 65|64 |66 64 78| 73| 6.8
10.8 96 126|121 10.4|12.0| 9.0 | 8.2| 11.8| 13.2| 12.5
46 | 45| 56 | 47| 55|52 | 50| 56|39 40| 45| 3.9
83| 75| 728094 | 78| 77]65({6989|89) 78
45| 36 | 36 | 42|63 | 47|36 | 33|61 42| 56| 54
95(103| 85| 99| 90| 59| 86| 7.2 9.3 | 10.1

45| 56 | 51|59|68|52|49 |56 50|57 |60]|51
95(10.2| 91 |11.2/111| 99 | 105 9.0 | 8.7|10.7| 11.0| 10.2
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Table A.16:ACy values for first 31 genes for the allograft Patients

d4| d4 | d4 |d5| d5 | d5|d6|d6|d6 | d7 | d7 | d7 | d7
00/ 00| 00O 00|00 00|00O/00O|0OO|00O|O00]|O 00,00
48| 3.7 | 34 33| 30| 26 28| 26| 32| 25| 26| 2.7
2211012 (2114120912 12| 07| 08| 07| 0.8
5841|5140 41 |50(32[37]50|31| 34| 35| 4.8
2613132314 |19|30(29|19 |08 | 23| 24| 23

231 33|36| 20| 29 |57 29|11 33| 31| 24
63| 54| 29|62 61|47 |41|49| 47| 40| 47 | 46| 34
6.7/ 51| 54 57| 49| 53 |54|57| 53|45 |49 | 46 | 4.7
51| 49| 27 55| 51|41 (323941 | 34| 36| 37| 29

11.1) 111 11.1] 9.6 96 |12.2|11.6| 11.2

38| 30/40| 42 5059|5850 35|61| 56|50
71,72 63|75 78| 61(84/88|59|61|82]| 80 59
94/11.3/119|9.0|11.7|11.2/9.9| 98| 11.2| 13.7| 11.9| 12.1| 10.3
47| 46| 24 50| 52| 38 |41|47| 38| 24| 39|41 29
23/ 16| 06 (28|19 |17 21/24| 17,04 21|19 14
7.6|10.5|10.7| 7.3 | 10.5| 9.9 | 8.8|8.3| 9.9 | 10.9| 12.0| 10.6| 9.2
57/ 48|39 ,65|6167 |70 72| 67|53 71|62 6.2
511 39| 28|44 35| 35(35/39| 35|20 32| 32| 34
8.4|11.0|10.0| 78| 11.0| 9.7 | 88| 83| 9.7 | 11.5|11.9| 10.7| 8.7
8.3|10.3| 9.3 | 8.1 7319490 73 |119|104|10.1| 6.9
9.0 11.1189]11.7/10.1|9.4|9.2|10.1|12.3|12.2| 11.4| 9.3
7.8|11.0| 115/ 75|10.3|10.1/9.1|8.7|10.1| 11.9| 11.2| 10.8| 9.8
59/ 69|56 /66|60 7161 66|58|50| 72|51 87
71, 79| 75|63 60|81 616781 57|66]| 61| 64
8.2(13.0|11.2| 73| 11.8| 9.1 | 9.0]9.2|12.7|12.3|12.1|11.5| 8.8
44| 29| 26 | 2.6 18 |27|35| 12| 07| 23| 23| 2.2
69191 75|74, 88| 73 |76|76| 73| 85| 86| 88| 6.4
36/ 60| 43 /52| 56|40 |41, 46| 40| 36| 41| 44 27
72] 95| 47 69| 84 83| 7.8 86 | 86| 87| 4.1
6.1 6.3 | 45|59 72| 50 |54|51| 52|46 | 49| 50| 44
93| 96 |106/83| 88| 78 |86(85| 78 | 74 | 85| 88 | 7.8
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Table A.17:ACy values for next 29 genes for the allograft Patients

| dCT | | Oh|Oh|[Oh|1h|1h|1h|1h|1h|3h|3h]|
IL-11 | 11.5] 9.3 [105[12.6]12.2]11.8 9.4 ] 91[109]10.1
IL-12p35| 10.8| 10.5| 11.6| 13.2| 13.3 9.7 | 105 9.8 | 11.6| 10.1
IL-12 p40| 10.7| 10.4| 13.0| 13.1 10.8|10.3| 11.5| 10.3
TNF-a |10.9/10.0| 12.3| 12.7| 12.9| 12.8| 10.7| 10.7| 10.5| 9.9 | 9.1
granz B | 10.8 11.6|12.7| 13.2| 11.8 10.6 9.9 | 10.0
granzD | 9.6 | 10.2| 11.8| 11.9| 13.5| 14.8| 10.8| 9.6 | 9.2 | 10.3| 9.3
granzE | 9.4 | 9.6 | 11.3] 11.7| 15.1 10.7| 9.0 | 89 | 9.7 | 88
granzG | 9.3 | 9.0 | 11.4| 11.9| 14.9 89|89 98|89

perforin | 9.8 | 10.1| 11.3| 11.7| 11.0| 126 96 | 9.1 | 9.7 | 9.6 | 105
serglycin| 46 | 36 | 46 | 48 | 41| 50| 39| 48| 46 | 36 | 2.6
TLR-1 |12.0| 9.2 | 94 | 10.2|10.4|11.1| 10.7| 10.5| 10.1| 10.3| 9.7
TLR-2 | 85| 76| 79|90|85|95| 77|87 )|86)| 72| 6.0
TLR-3 |[134| 81| 87|92|81|11.2] 88| 93| 96| 80| 8.8
TLR-4 | 70| 6.7| 65| 64| 6.7 | 84 | 55 6.2 | 65| 7.3
TLR5 | 65| 72|63|78| 7274|4763 |61 | 74|74
TLR-6 | 9.0 | 9.6 | 10.0| 10.6| 10.0| 12.0| 9.8 | 10.4| 10.4| 10.4| 9.9
TLR-7 | 76|72 71|79|69|82|72|78| 75|64 6.0
TLR-8 |11.0|10.2| 9.6 | 10.2| 95 |11.8| 94 | 99 | 80 | 10.1| 9.2
TLR-9 | 9.7 | 9.3 |10.0| 104 104 9.7 | 9.6 | 10.1| 9.8

Aldo-a | -04|-03|-07|-04|-04|-04|-09| 01]-01|-03]|-0.7
CARAT | 83| 61| 62| 66| 68| 6.8 68| 70| 7.2 | 6.6

CatD 10|10 07}13 11|11, 07 |12|12| 15| 0.6
CK -03|-05|-06| 01|-01]-03|-11|-08|-06|-04]-0.6
GDH 55|69 |55|87|56|76| 72| 73|77] 68|51
IDO 10.6 11.8| 11.8 10.5| 10.0
LDH-2B | 04 | 0.7 | 04 |/ 06 |/ 0.7/ 09| 01| 09| 10| 07| 04
MEP 26 |29 25|129|23|32| 23|33 29| 25|41
ANK-1 |11.1|10.3|11.2|11.9|12.2 10.7] 10.0| 10.2| 10.7 | 11.2
b-actin | 1.6 | 25| 26| 38| 21| 31| 23| 32| 34| 24| 22
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Table A.18:ACy values for next 29 genes for the allograft Patients

3h |3h| 3h | 6h | 6h | 6h | 9h | 9h | 9h |12h|12h|12h
10.7| 9.0| 10.0| 10.3| 11.7| 95 |10.0| 78 |11.2|10.3| 81 | 7.5
10.3| 8.6 | 10.9| 10.4| 12.3| 10.4| 10.4| 9.5 | 10.7| 95 | 9.3 | 9.5
10.8( 8.4 11.8|12.0|11.7| 11.3| 10.1| 10.1| 11.3| 10.8| 9.6 | 9.7
8890|112 10.1| 10.6| 10.2| 10.3| 9.4 | 11.4| 95 8.4
10.0|/9.0|11.1| 9.3 |11.1| 10.6| 9.8 | 6.2 | 11.7| 8.6 9.0
92]7.0)|10.3|10.3|10.9|10.2| 9.6 | 10.0|10.0] 93 | 9.1 | 87
8963|103 9.7 |10.2| 100 86 | 91| 95| 89| 86 | 83
91|6.4,100| 98 |106| 98| 89| 88| 9.2 | 87 | 86 | 82
95|83/103| 96 |11.1|10.2| 99| 75 |10.6| 9.8 | 9.2 | 9.0
2714243119 | 38| 22| 21|10 43| 17| 05| 16
9.8 | 84 98110 88| 93| 79| 96 | 88 | 7.7 | 6.2
54 |77 79| 59|69|52|56|52|79|55|69]53
84 /88|93, 75|86 | 75| 72|81|87|83]|91)| 77
5.8 59| 74 | 53| 55| 45| 73| 59| 41| 40
6.8 64| 67| 74)|67]59|53|69]| 64| 57|58
9.1 10.4) 9.0 | 105/ 91| 88 | 81 |104| 89| 81 | 7.2
6.0 70| 59| 63|62|54]59| 70| 57| 55| 56
9.1 104 859783 |81 74 ,101| 81| 81| 7.1
9.5 104| 9.3 1104| 9.7 | 9.2 | 86 |105| 84 | 89 | 6.9
-0.7 -0.1|-06|-01|-04|-0.7]-0.7|-01|-0.2| -0.3| -0.5
6.8 69 68| 72|,68|]66|63|79|65]| 74|69
11 1710|1812 12|07 17| 13| 14 0.2
-0.3 -06| -0.6| -0.2| -0.3| -0.9 02 01]-05| 0.3
64|82 72| 60| 87|72|67|63]|77|66| 77| 6.8
10.4| 8.8 10.1] 10.8 10.5| 9.6 8.9
1219120709, 01]04|02)|12)] 07| 11 10
24132322227 |23]16|20|33| 21| 07| 14
11.0 11.3]10.8|11.8| 11.1| 10.4| 10.4| 11.2| 10.5| 10.0| 9.6
21130, 31|15|27|13|14|07|23|14|02)-04
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Table A.19:ACy values for next 29 genes for the allograft Patients

18h|18h|{18h|  d1 | d1|dl1|d2|d2|d2|d3 | d3| d3
67| 79| 75| 76|90| 7488 |81|79|104|114

96 |10.2| 89 |12.1|11.3|,10.0|11.2| 8.7 | 8.6 | 11.7| 11.7| 10.4
96 | 104| 88 |124|121| 9.2 |11.2, 84 | 7.6 | 11.3| 12.1| 10.1
91| 88|89 96 103 97| 93| 86 |87|10.1| 99| 94
10.3|1 99| 9.2 |10.8] 9.7 | 9.8 | 9.6 | 8.2 78| 85| 7.6
85| 91| 75|97|93|88|83|63]|65|93]105| 9.1
8188699586 (81|81 58|56| 92]|100| 94
79| 86| 68| 90| 86| 8.1 57| 54| 86| 99| 93
9.2 | 10.3| 88 | 10.7/10.8/ 109, 99 | 84 | 83| 9.6 | 10.7

08| 10| 17|14 |34 | 22|24 |29 |38 28| 06| 3.7
70| 72| 82| 86|99 88| 94 65| 83| 89

5760|6959 80|58|55,66|61| 56| 63|51
10.0| 9.6 | 95| 10.9| 11.2 10.3| 10.3 10.1 6.9
46 | 45| 58| 58| 7.6 60|64 |40]| 6.2 | 6.3 | 3.9
67| 65|61|71|77|61|71|70|51 69| 77|56
80| 84|84|80|95|74|79|79|73|87| 88| 76
64| 68| 70| 74 66 | 66 | 66 | 65| 6.5| 6.2 | 57
86 | 83| 89 |113 110 76 | 85 | 80 |125| 9.7 | 11.7
84| 86| 94| 98 |104| 95| 9.7 1106| 85| 76| 9.2 | 7.6
-05,-04/03|02,03|-06| 03| 0.7/]-01] 0.3]-2.7|-0.6
66 | 66| 79 |11.4|10.2| 84| 9.2 |10.1| 85 |10.3| 7.8 | 9.8
07/06| 1409|1206 |07|14]12 03|-21| 05
-01, 010514, 13|/09|26|39|15| 37| 03| 26
69 67| 76| 63|93 |66 | 70 94|73| 86| 65| 7.2
9.2 103 84 |11.3/10.1|/10.3| 98 | 81| 89| 103|111

111017 |12| 27|09 | 17|51 |17| 34| 39| 25
1515} 20|15|23|18| 19|25 |27| 14 -07] 18
98 | 10.5| 93 |11.6|/11.9|10.4|10.6| 88 | 9.3 | 11.7| 9.1 | 11.9
040415 00|-03|/00|-03,03|10|00]|-01]| 0.2
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Table A.20:ACy values for next 29 genes for the allograft Patients

d4 | d4 | d4 | d5|d5|d5|d6 | d6 | d6 | d7 |d7 | d7 |d7
8519986 |84 |112 95| 79| 70| 95|88 | 75| 78| 77
89 114 89117, 90| 94| 91| 9.0 |10.3|12.1|11.4| 85
79| 95 |116| 78101 75| 87 | 87| 75| 92| 99| 99 | 84
83|78 81| 79| 72|67|76|82|67|66| 78| 76|69
72| 60| 6149|3807 |34|37)|28|06]| 16| 26| 1.8
6.3 100/ 89| 63| 92| 61| 71| 6.8 69| 70| 88 | 57
571941 85| 59| 86|58 67]65|81|64|66| 82|54
57195 87|60|87|59|71]65|76| 63| 67| 84|55
8183 | 79| 74| 67|38|52]62|51| 29|43 | 52|45
30|/ 33|16 |32|32|17|13| 24| 20| 10| 14| 22|09
87| 82| 50| 81| 80 8.2 | 89 11.5| 70| 6.9 | 5.3
62| 55| 45| 51|49 | 45| 44| 52|45 |58| 41| 48| 41
10.3] 9.2 | 6.5 |10.0| 9.1 11.1| 11.6 13.7110.9| 10.5| 7.2
62| 58| 34|61|61| 4458|5944 74| 54| 53| 3.8
65| 70| 48| 68| 76 | 50| 65|72 50| 58| 68| 78|50
778268758172 73|78|72|66| 77| 80|67
68| 62| 46| 66| 69| 55| 59|64 | 55| 57| 55| 62|51
10.4]11.8| 9.6 | 11.5] 9.9 | 116| 9.1 6.2 59| 71| 53|75
86 | 70|, 66| 73| 71|59|64]81|59|56|59|64]|6.1
06| 02-03|12|00|-06] 03] 07|-05/-09 03| 02]-04
9.5|10.9|10.0| 9.2 | 11.2| 10.1| 10.8| 11.0| 10.8| 10.9| 11.8| 11.6| 9.8
09|/07,-07]15|13|06|]09|11|05|02|06| 06|04

47 | 42 | 41 | 5.0 52|39 61| 67| 6.6
7692|101 81|91 |81|81|92|81|69|85| 97| 86
78, 80| 64| 75| 75| 44|68 73|63|52|61|64]|50
35|50, 60| 43| 43|33 |57|69|33| 29|44 |59]|54
2411902 26|25 |30|18|25|22)| 21| 27| 23|11
9.2 /106| 86| 94 | 114 96 | 9.3 | 9.0 | 11.6| 10.5| 12.0| 11.1| 8.2
0.7-06,-08|06|-04|-01] 02| 01|-05|-18|-0.7|-0.6]|-0.3
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Table A.21:ACy values for last 22 genes for the allograft Patients

dCT Oh | Oh | Oh|1h | 2h | 1h|1h | 21h | 3h | 3h
Co ref
gelsolin 02 |-03(-03|/07|-05/07|-0401]|04]| 0.0]-07
MLC-2 22 | -28|-27|-28|-28|-28|-29|-27|-23|-3.0
crystallin -08 |-10}-14,-08|-10|-15|-13|-09|-08|-11]|-15
GSH Px 10 | 18|-04|17]08|15|07]| 24| 22| 13| 0.7
Hsc70 03 |04/ 06| 06|00|11|-06,04|04| 07,04
INOS 9.0 | 9.3 |10.3/10.5| 99 |11.3|/10.5|10.9|11.3|10.7| 10.7
MGP 1.1 11,0318 |02|10| 08| 12|10 09|04
DHFR 84 | 84 |83| 93|89 96 84| 87| 92| 85
FOLbp3 10.6 11.1 8.7 | 7.7 10.6| 10.3
GTP-CH | 98 | 95 11.3| 10.3| 8.9 9.0 9.7 | 9.5
MTHFD2 83 | 81,9196 |78|87|79|88|88| 85|78
PTPS 4.3 51|46 | 50|47 | 50| 42| 49| 48| 46 | 4.6
sepiapterin R 5.8 62|59, 69|63|64|44 |59 |56 | 64| 6.8
B2-M 1.2 1411014, 08| 18| 06| 17| 14| 12| 07
I-A-b one 9.2 |14.4)| 152|139 18.4 14.5 79 | 7.6
I-E-b 44 | 55|52 |56|52|65|49|58|58| 53|42
MHC-1 80 | 90|87 |90| 87103/ 88|89 91|96 94
BLR-1 119 | 9.7 | 10.7| 12.1| 11.7 11.4] 10.2| 10.2| 11.2| 9.2
EF-la 0.2 01/-04/,08|-04]02)-02| 04| 03)|-03] 0.0
GAS-6 42 | 47 | 36| 52| 40|56 | 40|51 |52| 47| 45
rp L8 15 10|11 /1608|213 |08|13|12|07] 0.8
rp S24 05 {0003 01|-01]05|-02|02]03]|-03]|-0.2
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Table A.22:ACy values for last 22 genes for the allograft Patients

3h | 3h | 3h | 6h | 6h | 6h | 9h | 9h | 9h [12h|12h| 12h
-03/01/0203]04/04/01,04,05|04]09) 09
-21|-20|-28|-30|-28|-28|-27|-26|-21|-26|-27 | -19
-11,-05|-08|-10|-01|-08|-11|-05|-05|-08]|-14|-14
00(18, 18| 07| 2511|1311 |14 |14)| 12| 01
0211, 07|03|08|04|-02]-05]10|08]|-04]-0.6
10.5|12.3| 10.3| 10.3| 11.7| 10.2| 10.1| 95 | 11.7| 10.2| 9.0 | 8.0
08|12, 1107|14, 06| 04|13 09]08] 07] 01
85(81| 89| 86| 88| 95| 80 88| 86| 83| 6.8
98 | 84 9.2 110.6|10.3| 89| 9.3 |10.1| 9.0 8.9
8081 92| 77| 87| 81| 73 86| 72| 59 | 57
51|52 | 51|48 | 52|49 | 49| 48| 52| 49| 50| 50
71/ 66| 61|66| 71 71|55|47|66| 65| 58| 56
1120170212 |13, 07 04| 14| 04| 03] 00
8088 |90| 73| 92| 86| 82|56|88| 68| 60| 5.0
47 161|161 | 42| 59| 53|58|38|59|47]| 54| 41
9019198 |87|9586|82|83|96| 84| 79|77
9.7 | 93|126|10.1| 11.7| 11.6| 10.5| 10.8| 11.8| 9.5 | 10.0| 9.7
-01,03|]01|-04]05]06|-06|-02-03|-01]-11)-13
41 | 58| 49| 46| 54| 42| 40| 43| 48| 46 | 54 | 31
1383|1215 08|13 |15, 08|07| 07| 08| 01| 0.3
00,00,03-01{03/01|-01|-01|00]|-01]|-06]-03
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Table A.23:AC T values for last 22 genes for the allograft Patients

18h|18h|18h| d1 | dl1 |dl1|d2 | d2|d2|d3|d3|d3
03|10|12|09|16| 08|18 32|21 25|-09]| 23
-22|-22|-21|-12|-18|-12|-05/01|-09| 01 |-3.2]|-0.8
-15,-10|-08|-08-12|-19|-14|-05|-1.8| -0.8| -0.5| -1.7
06 03120424 |08|-02,14 07| 02]|-26]| 0.0
-04, 03] 03|-0213|-09|-03|12|-04] 08| 1.3

73| 78|93 70|98 |89 | 73|9410.6|10.1| 11.0| 9.4
-01| 08| 10| 07|-28| 41|-01, 04| 03] -0.8 -0.7
81/85|80|81|72|81|63|68|73|75|82|77
9.7 11.9] 105 99 | 8.2 11.2) 111

851991898192 |93 |77 76| 80| 87| 90

6.2 68|66 |62|65|63|57,61|75|64| 71|63
55| 55| 59|59|61|57|56|60|7761| 61|56
60| 67| 70|78 |85|71|63|76|74, 73| 77|67
05(07]14]1914 08| 20,14, 00| 06| 06| -0.3
6.2 64| 82|54/ 60|66|49 56| 46| 34| 40| 3.6
54 | 541625146 | 52|48 |53 38| 2.7 2.5
791 91| 79| 86|48 |125|/85|78| 70| 91| 6.1 | 88
90| 9.7 | 89 |116|11.5|10.6| 10.6| 88| 9.9 | 12.0| 11.6| 12.1
-12|-06|-03|-09-08|-08|-05|-1.2|-10|-16|-43|-14
50| 47| 59| 45|59 |55 |37 52| 59| 42| 20| 53
030708070706 |07|07| 12| 04 0.9
-05|-02| 01|-01, 00|-01|-04/-01|-03|-02| 0.1]-0.2
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Table A.24:ACy values for last 22 genes for the allograft Patients

d4

d4

d4

d5

d5

d5

do6

do6

do6

d7

d7

d7

d7

3.3
-0.4
0.3
0.9
15
9.4
-0.7
7.6
8.5
8.8
6.8
6.3
9.4
11
4.6
2.9
6.7
9.3
-0.9
5.3
0.8
-0.4

2.7

-0.4
0.2

0.6

0.5

9.3

-0.6
8.0

9.3
11.3
6.5

6.5

9.3

-1.2
2.5

0.5

9.7
10.8
-1.6
4.5

0.7

-0.2

2.5
4.2
2.2
0.4
-0.7
7.3
-1.1
6.2
9.5
9.5
5.1
5.6
6.9
-0.8
3.9

7.4
10.4
-2.4

4.8

0.1
-0.2

3.6
0.7
1.8
1.2
0.9
8.0
-0.5
7.5
8.7
7.8
6.7
7.0
9.4
-0.2
2.5
1.8
6.4
9.2
-0.8
5.6
15
0.5

2.4
-0.1
0.9
0.6
0.8
7.2
-0.3
8.2
9.8
9.0
6.2
6.9
8.4
-1.1
1.8
0.6
8.8
9.9
-1.3
4.5
0.9
0.5

3.5
-0.1
-0.8
0.8
-0.6
4.9
0.7
4.2
5.6
7.3
4.4
5.3
4.9
-1.5
0.5
-0.3
8.1
10.5
-1.7
8.1
0.8
-0.2

3.6
2.6
1.8
2.5
1.4
4.8
15
7.8
8.1
8.7

5.8
9.6
-0.6
0.7
0.0
7.9
9.5
-1.2
6.6
1.2
0.5

4.0
3.7
2.0
2.8
1.6
5.2
1.6
8.1
8.3
8.8
6.6
7.2
9.3
-0.6
1.1
0.7
8.1
9.2
-0.4
6.8
1.8
0.9

3.0
0.9
0.6
0.5
-0.5
7.1
-0.6
6.9
7.0

5.3

6.8

6.8

-1.2
0.5

-0.3
8.9
10.6
-1.5
6.6

1.0

-0.1

2.6
-0.9
-1.3
0.6
-1.0
4.7
-0.1

5.7

6.8

9.3
4.2

5.1

7.2
-2.8
-0.4
-1.0

7.5

9.9
-2.1

5.0
-0.3
-1.1

3.8
0.9
0.8
1.8
0.3
5.0
1.2
6.9
7.8
9.2
5.6
6.6
9.3
-0.9
0.4
-0.3
8.9
10.8
-1.4
6.7
0.7
0.2

3.9
1.6
1.6
1.7
1.0
5.4
0.9
7.6
7.7
9.9
6.1
6.6
9.3
-1.0
0.4
-0.5
8.2
9.9
-1.2
5.5
1.0
0.9

2.8
2.6
0.9
2.3
-0.5
3.3
0.0
3.5
5.5

5.2
4.5
-1.2
0.3
-0.6
7.6
9.5
-1.7
7.2
1.0
1.2
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