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ABSTRACT 

Genetic association studies have adopted for a long time a traditional analytic approach that 

focuses on individual genetic markers, usually single nucleotide polymorphisms (SNPs), in 

association with disease or phenotype. A standard single-SNP analysis that ignores combined 

effects of multiple SNPs and furthermore their interactions with environmental exposures, 

explains a small portion of disease heritability: an often cited issue of ‘missing heritability’. A 

comprehensive approach that accounts for these interactions carries the potential for identifying 

novel susceptibility loci and is more suited to decipher causal relationships and underlying 

molecular mechanisms of disease. The overall goal of this dissertation is to develop a 

methodologically sound framework that examines interactions in genetic association studies that 

is able to represent the biologic underpinnings of disease and yield interpretations that are 

statistically valid and of clinical and/or public health relevance. 

We first examined interactions between genetic variants at the gene level in genome-wide 

association study (GWAS) data of six common chronic diseases of the Wellcome-Trust-Case-

Control-Consortium (WTCCC): bipolar disorder (BD); coronary artery disease (CAD); 

hypertension (HT); rheumatoid arthritis (RA); type 2 diabetes (T2D); and type 1 diabetes (T1D). 

We used logic regression to search for biologically plausible forms of SNP-set interactions 

within genes. Next, we extended our approach to test for gene-environment interaction (GEI) 

effects at the pathway level and applied it to the population-based case-control data of the Diet, 

Activity and Lifestyle as a Risk Factor for Colorectal Cancer Study.  We focused on the 

candidate pathway of angiogenesis and three hypothesized environmental exposures: dietary 

protein intake; smoking; and alcohol consumption. Our approach consisted of 3-steps: the first 
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two summarized the within gene effects and the full pathway effects; and the third step modelled 

the GEI effects on colon and rectal cancer risk and survival.   

Our interaction analysis was able to detect an appreciable number of susceptibility loci showing 

strong evidence of association with the six diseases in WTCCC, including novel signals 

supported by biologically plausible links to the diseases.  The number of genes with strong 

evidence of association was: 13 for BD; 16 for CAD; 15 for HT; 72 for RA; 105 for T1D; and 19 

for T2D. The top significant genes were: NFIA with BD, CDKN2B with CAD, COL4A4 with 

HT, BTNL2 with RA, and TCF7L2 with T2D. The majority of strong single-SNP signals of 

WTCCC and on average 46% of recent GWAS meta-analyses signals were confirmed in our 

analysis. The results of the GEI pathway analysis also yielded an appreciable number of 

significant and novel interactions. Overall the magnitudes of gene interaction odds and hazard 

ratios increased with increasing levels of the interacting environmental exposure. This observed 

positive gradient supported the plausibility of the interactions. We found five statistically 

significant GEIs associated with colon cancer risk and three GEIs with colon cancer survival 

involving all three environmental exposures. For rectal cancer, we found eight significant GEIs 

in association with risk involving six genes and five GEIs with survival.  

This dissertation showed how exploring interactions of all measured SNPs within each gene can 

identify appreciable numbers of novel susceptibility loci in GWAS. We also showed that GEI 

effects on colorectal cancer risk and survival can be identified by adopting a comprehensive 

candidate pathway approach that emphasizes the biologic hypothesis in the selection of the 

pathway genes and environmental exposures and carries that logic through the analysis. 
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CHAPTER 1   

INTRODUCTION 

1.1 Genetic association studies  

Genetic association studies aim to detect associations between genotypes and a disease or trait, 

as well as their joint effects with social, behavioral, and environmental exposures (Cordell et al. 

2005). The two approaches towards gene association studies are candidate gene or pathway 

studies and genome-wide association studies (GWAS). GWAS became popular following the 

remarkable completion of the Human Genome Project in 2003, and identification of an estimated 

10 million single nucleotide polymorphisms (SNPs) transmitted across generations in blocks 

allowing the majority of variation within each block to be captured by ‘tag’ SNPs based on the 

linkage disequilibrium (LD) phenomenon. In GWAS, the entire human genome is explored 

through examination of millions of common SNPs aiming at identification of those associated 

with disease or phenotype (Pearson2009). A GWAS employs an agnostic data-driven approach 

where prior knowledge of SNP function is not required. In fact, SNPs identified through GWAS 

are unlikely to be the functional variants themselves and rather serve as markers for an 

underlying haplotype containing the functional variant (Manolio2010). Feasibility of GWAS 

grew with the rapid advances in genotyping technologies and is expected to increase with the 

emergence of next generation sequencing allowing for whole-exome and whole-genome 

sequencing, all coupled with a steady decline in cost (Stranger et al. 2011).  

In contrast, candidate gene studies are hypothesis-driven (Rebbeck et al. 2004), which carries the 

potential of elucidating underlying biological mechanisms of disease. A comprehensive approach 

to candidate gene studies would be a focus on groups of genes in a biological pathway critical to 
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the development and outcome of disease. This carries the advantage of reducing the 

dimensionality of the search while integrating the biological hypothesis.  

1.2 Interactions in genetic studies 

Genes are inherently coordinated and when searching for genetic associations with disease, it is 

imperative to account for this inherent coordination among genes (Franklin et al. 1970). 

Traditionally in genetic association studies (GWAS or candidate gene) the individual SNPs are 

examined one at a time in association with a phenotype or disease. This approach has potential 

drawbacks: it ignores potentially larger effects of multiple functional SNPs in several genes in 

determining disease susceptibility; and the independent marginal effects of single-locus SNPs 

may overlook the effects of interacting loci whose contribution to disease susceptibility is 

captured only in combination with other loci. Furthermore, reported measures of association 

(most commonly odds ratios for case-control studies or risk estimates for cohort studies) are 

often of minimal clinical/ public health significance at the population level (the ORs are small 

despite their high statistical significance) and their reproducibility is limited. The median OR 

reported from GWAS is 1.28 (interquartile range (IQR) =1.17 to 1.55 for binary traits) (Witte 

2010). Common alleles, however, based on their prevalence are expected to explain a larger 

proportion of the population attributable risk compared to the rare, high risk alleles. This is 

supported by the “common disease–common variant” hypothesis, which states that common 

diseases are a result of common genetic variants with appreciable frequency in the population at 

large (Reich et al. 2001). GWAS will thus have good statistical power to detect genetic variants 

with small to modest effects as long as they are common. This has formed the basis for GWAS 

and eventually led genotyping arrays to primarily measure common SNPs (e.g., MAF >5%) 

reducing the ability of GWAS to evaluate rare SNPs regardless of their effect size (Figure 1.1). 
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Common diseases, however, are undoubtedly also due to rare variants. Limited detection of rare 

SNPs and the detected small effect sizes, therefore, only explain a limited amount of the total 

inherited risk of disease. This has been referred to as the missing heritability (Goldstein2009, 

Manolio et al. 2009). This unexplained heritability could result from GWAS typically testing for 

only the marginal effects of individual SNPs, while gene-gene and gene-environment 

interactions still remain largely unexplored (Manolio et al. 2009, Cordell2009a).  

 

Figure 1.1: Feasibility of identifying genetic variants by risk allele frequency and strength of genetic 

effect (odds ratio). Most emphasis and interest lies in identifying associations with characteristics shown 

within diagonal dotted lines. (Extracted from reference (Manolio et al. 2009)) 

1.2.1 Gene-Gene and Gene-Environment Interactions  

An analysis approach that aims to detect only significant marginal effects of an individual SNP 

on a disease would be successful if that individual SNP’s function is in some way biologically 

critical to acquire the disease. ‘Epistasis’ is the term used in population genetics to describe 

Feasibility of identifying genetic variants by risk allele 

frequency and strength of genetic effect (odds ratio). 
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modification of the effects of one gene by one or several other genes (gene –gene interactions) 

(Cordell2002). In an epistatic model, the joint effect of, for example, two SNPs will be 

inadequately captured by the sum of the modest effects anticipated for each SNP independently 

(Culverhouse et al. 2002). In fact, interactions of variants with opposite effects in the two 

different exposure groups (i.e. a crossing interaction) will not show a main effect and therefore 

will not be identified using standard approaches (Murcray et al. 2009). 

In complex diseases the relationship between the phenotype and genotype is argued to 

fundamentally depend on the interaction between disease susceptibility loci and gene-

environment interactions. That is to say the SNPs and a specific environmental exposure are 

working jointly to influence disease risk. Assuming genes and environment are interacting 

together in influencing disease is sensible based on a wide range of environmental and cultural 

diversity within and among human groups. Failure to incorporate genetic and environmental 

factors in a joint analysis potentially weakens the observed association because pools of 

susceptible and non-susceptible individuals are mixed together and the observed association 

between a true risk factor and disease occurrence tends to be shifted to the null (Khoury et al. 

2009). 

Studies of gene-gene and/or gene- environment interactions are relevant for several reasons. In 

addition to potential contribution to missing heritability, discoveries can generate new 

hypotheses for future replication and functional studies. Gene-environment interactions can 

identify environmental exposures that affect only a subpopulation of genetically susceptible 

individuals, which may explain failure of replication of earlier studies and the heterogeneity of 

main effects results across studies through showing the differences in environmental exposure 

distributions.  Furthermore, statistical models of joint effects can be useful for individual 
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prediction of disease risk, prognosis, or modification of lifestyle or environmental factors that 

could change an individual’s risk. Therefore, the discovery of relationships among genes and 

between genes and environmental factors has important implications for both public health and 

personalized medicine in targeting therapeutic and prevention strategies (Thomas2010a).  

1.2.2 Pathway analysis  

Coordination between genes can be described with a pathway structure where a pathway is 

composed of multiple genes with coordinated biological functions. A pathway-based analysis 

acknowledges the complexity of disease by accounting for multiple loci simultaneously, 

including gene-gene and gene-environment interactions, and relating them to biologic functions 

(Kraft et al. 2009).  Recently, more attention is focused on several candidate genes in a single 

pathway perceived as more critical, or conversely depending on purely data-driven approaches 

from genome-wide scans to elicit important pathways. Some methods for pathway analyses have 

been proposed for both approaches (Thomas2010b). Several methods rely on searches of 

pairwise (two-way) interactions, including exhaustive searches (Marchini et al. 2005); Bayesian 

model selection (Zhang et al. 2007); and two-step analysis approaches (Wu et al. 2010,Tao et al. 

2012). Another example includes modifications to pathway approaches originally developed for 

gene expression data such as gene set enrichment analysis (Wang et al. 2007). Nevertheless, the 

degree to which statistical modeling can elucidate the underlying biological mechanisms is likely 

to be limited. Searching for higher order interactions and moreover involving hypothesis-driven 

pathway-based approaches is more likely to elucidate the underlying biological mechanism of 

disease.  
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In the first study of this thesis we present an analysis that examined biologically plausible forms 

of SNP-set interaction effects within-genes using GWAS data for six chronic diseases. In the 

subsequent two studies we went a step further by considering a systematic biologically-based 

pathway approach to examine gene-environment interaction effects on colon and rectal cancer 

risk and survival. A critical biologic pathway in CRC carcinogenesis is the essential process of 

formation of new blood vessels from preexisting ones, known as angiogenesis. We focused on 

three exposures that are potentially enhancing the process of angiogenesis: dietary protein, 

alcohol intake and smoking.   

1.3 Colorectal cancer  

1.3.1 Epidemiology of Colorectal Cancer 

Colorectal cancer (CRC) is one of the multi-factorial diseases where molecular approaches can 

help in the understanding of its complex etiology and the underlying biologic mechanisms. It is a 

pressing public health problem estimated worldwide as the second most prevalent cancer, with 

over 1 million new cases diagnosed annually (International Agency for Research on 

Cancer2008). The highest incidence rates are found in the western world mainly New Zealand, 

Australia, North America, and Europe and most recently Japan (Figure 1.2). The worldwide 

economic burden is large; and research providing a better understanding of the multi-factorial 

nature of the disease is crucial. Worldwide mortality attributable to CRC is approximately half 

that of the incidence and the five-year survival following detection and treatment is around 50% 

(International Agency for Research on Cancer2008). 



7 

 

 

Figure 1.2: Estimated age-standardized colorectal cancer worldwide rates per 100,000.  

Source: GLOBOCAN 2012 Colorectal Cancer Estimated Incidence, Mortality and Prevalence Worldwide 

in 2012, International Agency for Research on Cancer (IARC), Lyon (France), 2012. Available from 

http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx 

1.3.2 Combined effects of genes and environmental exposures on colorectal cancer risk 

and survival 

Epidemiological and molecular evidence indicate CRC is related to both genes and environment.  

Majority of CRC tumors occur sporadically. An adenoma-carcinoma sequence was proposed as a 

http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx
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multi-hit theory involving several genetic mutations or multiple gene activating or inactivating 

events (e.g. mutation or loss of APC gene, mutation of KRAS gene, loss of tumor suppressor 

gene p53). Inherited susceptibility is present in individuals with family or personal history of 

CRC or adenomatous polyps; hereditary syndromes (familial adenomatous polyposis and 

hereditary nonpolyposis colorectal cancer); and other high risk conditions (e.g. inflammatory 

bowel disease and Crohn’s disease).  

Specific environmental exposures have been identified in the etiology pf CRC. The prominent 

role of environmental exposures in CRC etiology is suggested through the marked geographical 

variations across countries (International Agency for Research on Cancer2008) and data showing 

that migrant populations moving from low-risk to high risk countries adopt the disease rates of 

the host country. The most important factor is diet. Evidence suggests diet low in fiber, fruit and 

vegetables, and high in calories, refined grains, fat content and red and processed meat is 

associated with an increased risk of CRC. Lifestyle factors have also been suggested to increase 

risk including smoking and alcohol consumption, while physical activity, use of non-steroidal 

anti-inflammatory drugs, increased intake of vitamin D and calcium have a reduced risk of CRC 

(Johnson et al. 2013).  

Few studies have examined the association between lifestyle environmental exposures and 

survival in CRC. Evidence suggests pre-diagnostic and post-diagnostic body weight and physical 

activity may impact CRC survival (Haydon et al. 2006). Factors with less studied effects on CRC 

survival include dietary patters, smoking, and alcohol consumption. Smoking was found to be 

associated with increased mortality risk after CRC diagnosis (McCleary et al. 2010,Phipps et al. 

2011) Patients conforming to dietary guidelines and following a healthy diet was also associated 

with lower CRC mortality (Pelser et al. 2014). Among other key prognostic factors of CRC is 
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classic disease staging and microsatellite instability (MSI). The MSI phenotype results from 

inactivation of the DNA mismatch repair (MMR) system which leads to the shortening or 

lengthening of DNA by 1-6 repeating base pain units (Thibodeau et al. 1993). It has been shown 

that the incidence of MSI differs between stage II and stage III disease, and that its prognostic 

impact seems to be significantly stronger in stage II than in stage III (Saridaki et al. 2014).  The 

limited available evidence on factors associated with CRC survival warrants more research 

where specific exposure effects could be better characterized through examination of their 

interactions with genetic CRC risk factors. 

1.3.3 Angiogenesis pathway in colorectal cancer 

Angiogenesis is one of the hallmarks of cancer as described by Hanahan and Weinberg (Hanahan 

et al. 2000). Although angiogenesis may not be unique to CRC, it is a key biological process in 

CRC carcinogenesis necessary for tumor proliferation and progression from colorectal adenoma 

to carcinoma (Sillars-Hardebol et al. 2010). Angiogenesis is the fundamental process of 

sprouting and expansion of blood vessels from preexisting vessels that provides the tumor with 

the blood supply it needs to grow and expand (Folkman et al. 1992). The process of 

transformation of normal human cells into hyperplastic then into neoplastic cells is critical for 

tumorigenesis. In CRC carcinogenesis, the process involves the formation of adenomatous 

polyps and the subsequent progression into malignancy. This multi-step process reflects 

sequential events of genetic alteration and activation of molecular cancer-related pathways that 

drive the progressive transformation of cells. Interestingly, the process of angiogenesis can be 

visualized in hyperplastic tissues prior to their transformation into neoplastic solid tumors, 

highlighting the role of angiogenesis in premalignant disease (Zhang et al. 2001). Induction of 

angiogenesis, therefore, seems to be an early event important for conversion of normal 
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epithelium into a cancer and sustained angiogenesis is essential for tumor expansion, ultimately 

influencing patient mortality (Ross 1989). The ability of the tumor to induce and sustain 

angiogenesis is acquired during its transition from a pre-vascular to a vascular phase through 

tumor progression, referred to as the ‘angiogenic switch’ (Hanahan et al. 1996). The tumor 

activates the angiogenic switch by balancing the effects of pro- and anti-angiogenic factors. 

Shifting this balance involves alteration in gene transcription, underscoring the importance and 

relevance of the study of polymorphisms in key genes of the angiogenesis pathway to explain 

variation in cancer susceptibility and survival. 

A state of tissue ischemia is by nature toxic to both normal and tumor cells; cancer cells undergo 

genetic and adaptive changes that allow them not only to survive but also proliferate (Harris 

2002). Main drivers of angiogenesis include vascular endothelial growth factor (VEGF) (Ferrara  

1999,Lohela et al. 2009) and hypoxia-inducible factor 1 (HIF-1) (Semenza 2010). VEGF 

expression, potentiated in response to hypoxia, contributes to the development of solid tumors by 

promoting tumor angiogenesis. The VEGF isoforms bind to two tyrosine-kinase receptors, 

VEGFR-1 (FLT1) and VEGFR-2 (KDR), expressed almost exclusively in endothelial cells 

(Neufeld et al. 1999). An association between tumor angiogenesis and overall survival of CRC 

patients was demonstrated by identifying SNPs on the VEGF gene as prognostic markers for 

CRC (Kim et al. 2008). HIF-1 is composed of two subunits, HIF-1α and HIF-1β, and neither is 

expressed in normal tissue. HIF-1α is the oxygen regulated subunit of HIF-1 and its increased 

expression has been detected in the majority of solid tumors including colon cancer (Talks et al. 

2000). HIF1-α was over expressed in premalignant lesions of colon cancer (Zhong et al. 1999), 

and increased levels of HIF-α have been associated with an aggressive phenotype and decreased 

patient survival (Rajaganeshan et al. 2008,Schmitz et al. 2009). Additional experimental 
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evidence demonstrated a loss of function of HIF-1α in colorectal cell lines resulting in decreased 

tumor growth (Imamura et al. 2009), while gain of function led to opposite results (Ravi et al. 

2000). Other key angiogenic genes and angiogenesis-related genes are involved in tumor 

development and progression based on biological plausibility. A pathway approach is well suited 

to capture their interactions with one another and with environmental factors to induce tumor 

angiogenesis, and influence CRC risk and prognosis (Mizukami et al. 2007). 

1.3.4 Hypothesis on environmental factors in association with colorectal cancer  

We hypothesized that the effects of three specific lifestyle exposures (dietary protein intake, 

smoking, and alcohol consumption) on CRC risk and survival (Potter1999b, Gonzalez et al. 

2010, Haggar et al. 2009) are modified by angiogenesis genes. We based our hypothesis on the 

biological information that a state of local tissue ischemia, mainly oxygen deprivation (hypoxia) 

and glucose deprivation (hypoglycemia) are a main driving force for angiogenesis (Dor et al. 

2001). We hypothesized that high animal-based protein intake and heavy smoking patterns were 

associated with hypoxia and high alcohol intake was associated with hypoglycemia.  

Dietary protein, angiogenesis and CRC risk 

Macro level epidemiological evidence in support of associations between an increased protein 

diet and CRC risk comes from Japan, a country with a historically low incidence of CRC. A 

rapidly increasing trend of CRC incidence has been observed in recent years associated with a 

major shift of the traditional Japanese diet partly in the form of an increased protein intake 

(Potter1999b, Oba et al. 2006,Takachi et al. 2011). A higher incidence of CRC among migrant 

Japanese Americans compared to their white counterparts also suggests gene-environment 

interaction is playing an important role in their increased susceptibility (Marchand1999, Flood et 
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al. 2000). More recent studies have focused on specific nutrient effects on CRC including animal 

protein. Positive associations were observed between animal protein intake and colorectal 

adenoma (Yang et al. 2012) and a meat-based pattern of diet (rich in animal protein among other 

nutrients of red meat) and CRC (De Stefani et al. 2012).Although there are no studies available 

on effects of non-animal protein effects on CRC, evidence suggests a protective effect of fruit 

and vegetable intake on disease outcomes which  is more pronounced for distal colon compared 

to proximal colon and rectal tumors (Voorrips et al. 2000,Annema et al. 2011).  

Experimental evidence from studies performed on the Drosophila flies can be extended to 

humans based on a tight similarity of the hypoxic signaling pathways, especially the HIF-1 

pathway (Vigne et al. 2006). Cell survival was diminished in the presence of a chronic hypoxic 

condition, and when dietary protein was restricted, maintaining the hypoxic condition, the cell 

survival improved indicating an increased hypoxic tolerance (Vigne et al. 2006, Min et al. 2006).  

From this evidence, it can be deduced that an increased protein diet in the presence of the 

hypoxic condition will decrease the tolerance to the hypoxic state. Additional evidence show that 

dietary proteins and amino acids in the chronic hypoxic conditions can directly shorten the life of 

cells (Vigne et al. 2008, Grandison et al. 2009). A decrease in hypoxia tolerance, mediated by the 

high protein diet, is potentially enhancing angiogenesis. 

Smoking, angiogenesis and CRC risk 

Epidemiological evidence of a probable association between cigarette smoking and CRC has 

been suggested based on prolonged and intense smoking patterns and following a significant lag 

period (Slattery et al. 1997b, Luchtenborg et al. 2007, Cleary et al. 2010). Nicotine is the main 

bioactive component of tobacco smoke and was found to stimulate angiogenesis and tumor 



13 

 

growth in lung (Heeschen et al. 2001), gastric cancer (Shin et al. 2005), and colon cancer cells 

(Wong et al. 2007,Mousa et al. 2006). Although human data on how hypoxia, as a major driver 

of angiogenesis, is influenced by smoking status is not yet available (Nieder et al. 2008), 

experimental evidence using a hypoxic model in mice demonstrated that nicotine stimulates 

angiogenesis under ischemic conditions (Heeschen et al. 2006). Furthermore, both local and 

systemic administration of nicotine was associated with an increase in VEGF expression in colon 

cancer cells while the oral, systemic route generated increased capillary density. Interaction 

effects of polymorphisms on HIF1-α gene with tobacco smoke and alcohol were also observed to 

increase the risk of hepatocellular carcinoma (Hsiao et al. 2010). A similar mechanism is 

potentially operating in CRC. Based on experimental and epidemiological evidence, it is, 

therefore, plausible that cigarette smoking is interacting with angiogenesis genes and influencing 

risk of CRC.  

Alcohol intake, angiogenesis and CRC risk 

Epidemiological studies identified increased alcohol consumption as a major risk factor for upper 

alimentary tract and liver cancers (Poschl et al. 2004), and to a lesser extent in association with 

CRC (Potter1999b, Ferrari et al. 2007). Studies of alcohol consumption and CRC risk either 

report an increased or no association; an increased risk was generally reported to be more in 

association with distal or rectal tumors. Pure ethanol in alcohol is not carcinogenic, but may act 

as a solvent that enhances penetration of other carcinogens through the mucosal cells of the large 

intestine (Poschl et al. 2004). Experimental studies, however, showed that ethanol stimulates 

angiogenesis and increases VEGF expression in cell cultures and chick embryos (Gu et al. 2001, 

Gu et al. 2005), and increased the tumor growth and progression in a mammalian mouse model 

of melanoma, a skin cancer (Tan et al. 2007). The influence of alcohol intake on glucose 
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metabolism has long been studied and was shown to induce hypoglycemia especially if 

consumed without food (van de Wiel 2004). It is plausible that alcohol is enhancing angiogenesis 

under ischemic conditions. 

OBJECTIVES 

1.4 Overall objective 

The overall goal of this dissertation research is to contribute to the understanding of the biologic 

and causal mechanisms of complex diseases through studying gene effects and pathway gene-

environment effects on disease outcomes. The general purpose is to investigate a sound 

methodology that is able to represent the biologic underpinnings of disease and yield 

interpretations that are not only statistically valid but of clinical and/or public health relevance as 

well. 

1.5 Specific aims 

The specific aims are: 

1. To examine the SNP-set interaction effects at the gene level for six chronic diseases using 

genome-wide association data  

2. To assess effect modifications of dietary and lifestyle factors (dietary protein intake, 

alcohol intake, and smoking) on colon and rectal cancer risk and survival by angiogenesis 

pathway genetic variants  
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GENERAL METHODS 

1.6 Study populations 

The analyses in this dissertation were based on data from two studies: The Wellcome Trust Case 

Control Consortium (WTCCC) GWAS data (Wellcome Trust Case Control Consortium2007) 

and a large US-NIH-funded study entitled “Diet, Activity and Lifestyle as a Risk Factor for 

Colorectal Cancer” (PI: Dr. Martha L Slattery, PhD, MPH, University of Utah).   

1.6.1 The WTCCC  

The WTCCC GWAS examined seven diseases, six of which were re-analyzed in this study: 

bipolar disorder (BD), coronary artery disease (CAD), hypertension (HT), rheumatoid arthritis 

(RA), type 1 diabetes (T1D), type 2 diabetes (T2D). (Our work on the seventh disease, Crohn’s 

disease, has been previously published (Dinu et al. 2012)).  The WTCCC sample included 

individuals living within England, Scotland and Wales who were self-identified as white 

Europeans. The controls came from the 1958 British Birth Cohort and the UK Blood Services 

project. For each of the diseases studied, approximately 2000 cases and 3000 matched controls 

were included. We followed the WTCCC recommendations when excluding cases and controls 

for the analysis based on the sample call rates and evidence of recent non-European ancestry.  

Genotyping of samples and Quality Control 

All 17,000 samples were genotyped using the Affymetrix GeneChip 500K Mapping Array Set. 

We followed the genotype calling of WTCCC produced by its CHIAMO calling algorithm. 

Accordingly, we only considered genotype calls with a confidence score of 0.9, and treated the 

rest of the calls as missing genotypes. SNPs with SNP call rates less than 95% were removed. 
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We also removed SNPs based on their minor allele frequencies: the default minor allele 

frequency cut-off in the GenABEL R package was used (2.5/ N where N is the number of 

subjects), resulting in cut-offs of 0.05% for the WTCCC database. We used a cut-off of 0.2 for 

the Hardy-Weinberg Equilibrium test’s false discovery rates, based on controls. SNP-gene 

mapping files were retrieved from the OpenBioinformatics website: 

(http://www.openbioinformatics.org/gengen/tutorial_calculate_gsea.html#_Toc210887414). 

Before running the analysis, we removed SNPs within each gene sequentially, such that no pair 

of remaining SNPs within a gene had linkage disequilibrium (r2≥0.8). Genes that included a 

single SNP following the quality control process were excluded from our SNP-set interaction 

analysis. Following the analysis and to ensure the quality of the genotype calls, we performed 

visual inspection of the SNP genotype cluster plots for SNPs in the statistically significant genes. 

For both cases and controls, we generated SNP genotype cluster intensity plots. SNPs whose 

plots indicated potential genotyping errors were excluded. This process aimed to exclude false-

positive associations. 

1.6.2 The Diet, Activity and Lifestyle as a Risk Factor for Colorectal Cancer Study 

The study is a multicenter, population-based, case-control study of colon and rectal cancer. The 

colon cancer study was conducted at three centers: the University of Utah, Salt Lake City, Utah; 

the Kaiser Permanente Medical Care Program of Northern California (KPMCP), Oakland, 

California; and the University of Minnesota, Minneapolis, Minnesota. The rectal cancer study 

was conducted at the Utah and KPMCP centers only. The University of Utah served as the 

coordinating center of the studies. 

http://www.openbioinformatics.org/gengen/tutorial_calculate_gsea.html#_Toc210887414
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 All eligible participants were identified from residents of defined geographical areas: an eight-

county area in Utah (Davis, Salt Lake, Utah, Weber, Wasatch, Tooele, Morgan, and Summit 

counties); KPMCP members in Northern California; and the metropolitan Twin Cities area 

(Anoka, Carver, Dakota, Hennepin, Ramsey, Scott, and Washington counties) in Minnesota 

(except for rectal cancer cases). Final case eligibility was determined by the Surveillance 

Epidemiology and End Results (SEER) Cancer Registries in Northern California and Utah for 

California and Utah study participants respectively, and through the Centers for Disease Control 

and Prevention funded Minnesota Tumor Registry for study participants identified in the Twin 

Cities Area of Minnesota. These are population- based cancer registries and all newly diagnosed 

cancer cases (100%) were captured by their respective registries. All registries are operating 

under a state law that requires cancer reporting from hospitals which have cancer registrars that 

report cancer cases.  The cases from Kaiser in California are representative in terms of 

demographics as the broader state registry. 

Eligiblity criteria: 

- Age 30 to 79 years old at time of diagnosis; 

- A tumor registry verified, first diagnosis of: primary colon cancer  between October 1991 

and September 1994 (International Classification Diagnosis – Oncology 2nd edition 

codes 18.0 and 18.2 – 18.9);  or primary cancer in the rectosigmoid junction or rectum 

between May 1997 and May 2001; 

- English speaking;  

- Mentally and physically competent to complete the interview; 

- Non-Hispanic white, Hispanic, or black and for the rectal cancer study Asian and 

American Indian people were included 
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Cases were identified using a rapid-reporting system with the majority of cases interviewed 

within four months of diagnosis. Cases with a history of previous CRC or known familial 

adenomatous polyposis, ulcerative colitis, or Crohn’s disease as indicated on pathology reports 

were not eligible. Patients with Crohn’s disease and ulcerative colitis have a unique pathology 

and their etiology differs from the broader group of colorectal cancer cases and hence they were 

excluded.  

Criteria for eligibility for controls were the same as for cases. Controls were frequency matched 

to cases by sex and 5-year age groups in each geographical area. Controls were randomly 

selected at KPMCP of Northern California from health maintenance organization membership 

lists; in Utah controls aged 65 years or more from Health Care Financing Administration lists, 

and controls aged less than 65 years from driver’s license lists; and in Minnesota from driver’s 

license lists (Slattery et al. 1995). Of colon cancer study subjects contacted, 64.5% of cases and 

63.7% of controls were interviewed. For rectal cancer study subjects contacted, 65.2% cases and 

65.3% controls were interviewed. The response rates from the study were not greatly different 

than those reported in other epidemiologic studies (Slattery et al. 1995).  

Interview data 

A detailed in-person interview was conducted by trained and certified interviewers using laptop 

computers. All interviewers were trained centrally prior to the beginning of field operations. 

Interviewers were blinded to the case/control status of the participant and every interview was 

audio-taped; of the taped interviews, 1 in 10 of the first 50 and 1 in 20 after that was reviewed for 

quality control purposes including whether the interviewer asked the questions exactly as written 

and used the probes appropriately. Interviewers were provided immediate feedback and any 
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problems were addressed (Edwards et al. 1994). The interview lasted approximately two hours 

and consisted of two parts: a) the health and lifestyle questionnaire (including data on 

demographic characteristics, medical history, family history of cancer and polyps, meal patterns, 

smoking information, and alcohol consumption); and b) the diet history questionnaire (DHQ) 

(including data on dietary intakes). The DHQ was adapted from the validated CARDIA diet 

history (Slattery et al. 1994,Liu et al. 1994). Participants were asked to recall foods eaten, the 

frequency with which they were eaten, foods eaten as additions to other foods, and use of fats 

during food preparation. Nutrient values for specific foods, rather than broad grouping of foods, 

were calculated using the Nutrition Coordinating Center Nutrient Database version 19 (Dennis et 

al. 1980). The referent period for the study questionnaires was the calendar year two to three 

years prior to diagnosis for cases or selection for controls.  

Tumor registry data  

Local tumor registries provided data on disease stage at diagnosis, months of survival after 

diagnosis, cause of death, and contributing cause of death. Disease stage was categorized 

according to SEER cancer staging criteria (in-situ, local, regional, distant, and unknown) (Young 

et al. 2001). Disease staging was coded centrally by one pathologist in Utah and was missing for 

3.3% of colon cancer cases and 1.5% of rectal cancer cases.  Survival status was obtained for the 

Colon Cancer Study up to the year 2000 and for the Rectal Cancer Study up to 2007. At that time 

all study participants had over five years of follow-up. 

Genotyping of samples 

TagSNPs were selected using the following parameters: LD blocks using a Caucasian LD map 

(International HapMap Consortium2003) and an r2=0.8; MAF >0.1; LD block range= -1500 bps 
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from the initiation codon to +1500 bps from the termination codon; and 1 tagSNP for each LD 

bin. All markers were genotyped using a multiplexed bead-array assay format based on Golden 

Gate chemistry (Illumina Human Hap550k, San Diego, California). A genotyping call rate of 

99.85% was attained. Blinded internal duplicates represented 4.4% of the total sample set; the 

duplicate concordance rate was 100%.  TGFβ1 gene was not included in the Illumina BeadChip 

platform; alternatively representative markers were genotyped using a TaqMan assay from 

Applied Biosystems (Foster City, California).  Each 5µl PCR reaction contained 20ng of 

genomic DNA, primers, probes, and TaqMan Universal PCR Master Mix (containing AmpErase 

UNG, AmpliTaq Gold enzyme, dNTPs, and reaction buffer).  PCR was carried out under the 

following conditions: 50
o
C for two minutes to activate UNG, 95

o
C for 10 min, followed by 40 

cycles of 92
o
C for 15 sec, and 60

o
C for one minute using a 384 well duel block ABI 9700.  

Fluorescent endpoints of the TaqMan reactions were measured using a 7900HT sequence 

detection instrument. Individuals with missing genotype data were not included in the analysis 

for that specific marker. 

Although colon and rectal cancers share many risk factors, there is evidence of differences in 

population characteristics and in the cancers etiology which justifies this approach (Potter1999a, 

Wei et al. 2004). Accordingly, colon cancer and rectal cancer data were analyzed separately 

based on expected site-specific associations with genetic and environmental factors. The two 

main outcomes of interest were cancer risk and survival and we combined the reporting of their 

results for each cancer.  
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1.7 Biologic interactions between genetic variants 

For the WTCCC analysis we examined SNP-set interactions within genes and identified genes 

with statistically significant associations with the six diseases. For the colon and rectal cancer 

studies the objective was to model the overall interaction effects of the angiogenesis gene-

pathway and the three environmental exposures. Accordingly, the SNP-set interactions within 

genes were considered as gene-level summaries and used as a first preliminary step to the full 3-

step candidate pathway gene-environment interaction approach. More details are described in the 

individual studies.   

Specifically, we explored two forms of SNP-set interactions: SNP intersection and SNP union. 

Both forms are derived from set-theory terminology. A SNP intersection is a form of interaction 

where disease risk is elevated only if all of the SNPs in a specified set (e.g., a gene) carry their 

respective high-risk genotype. A single SNP, or subsets, of the set carrying the high-risk 

genotype are insufficient to elevate disease risk. For example, for a set of three SNPs, all three 

SNPs (SNP 1 and SNP 2 and SNP 3) may have to carry their high-risk genotype for disease risk 

to be elevated. A SNP union describes a form of interaction where disease risk may be elevated 

through several independent ways (i.e., genetic heterogeneity) which may include a SNP 

intersection (e.g., SNP 1 and SNP 2) or an individual SNP carrying the high-risk genotype. We 

applied the logic regression to search for these biologically plausible forms of SNP-set 

interactions within genes (Ruczinski et al. 2003). 

1.8 Logic regression  

The logic regression methodology was developed over a decade ago (Ruczinski et al. 2003) to 

address the problem of detecting high-order interactions and “patterns” of these interactions 
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among binary predictors within a regression framework. The primary interest is revealing the 

interaction. Although the methodology can be applied in any setting with binary predictors, it 

was initially intended for genetic association study applications, e.g., to identify interacting SNPs 

in association with an outcome. The method employs Boolean logic and searches for Boolean 

combinations of binary predictors (e.g. SNPs) that improve outcome prediction. 

1.8.1 The logic expressions 

- Boolean operators are: Λ (AND), V (OR), 
c
 (NOT) 

- A binary predictor is a “leaf”  

- The Boolean expression/statement is a combination of “leaves” joined by Boolean 

operators referred to as a “logic tree”; a logic tree can consist of one leaf. Since the 

predictors are binary, these combinations are binary as well, i.e., the logic tree takes the 

value of “0 and 1” or “True and False” or “Yes and No”. 

- The Boolean expression of a logic tree can be represented by the following equation:  

L = (X1Λ X2
c
) V X3

 

where L denotes a logic tree; X1, X2, X3 are binary predictor variables (leaves) with 0 or 1 values. 

This Boolean statement is read as “X1 and not X2 are true or X3 is true”.  

The Logic Tree is the graphical representation of the Boolean expression as follows: 
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Figure 1.3: Graphical representation of a logic tree.  

The logic tree is evaluated in a bottom-up fashion, this graph shows one logic tree with three binary 

variables/leaves (S1D, S2D and S3R): the top node of the tree is referred to as the “root”; leaves are in boxes. 

The variables connected by an operator (e.g. S1D, S2D combined by AND) are each other’s “siblings”. The 

shaded box represents the complement of the variable (represented in the Boolean expression by the NOT 

operator). Adapted from reference (Schwender et al. 2010). 

 

1.8.2 The regression model 

The logic regression method involves characteristics specific to the search methodology in 

addition to those unique to the selected regression class. The logic model can take the form of 

any other ‘regression’ model, as long as a scoring function or performance measure reflecting the 

‘quality’ of the model under consideration can be defined. For binary outcomes we fit logic 

models for logistic regression and the score is the binomial deviance, and for survival outcomes 

we fit exponential survival models and the score is negative log likelihood. Note that logic 

models for exponential survival models yielded the same results as Cox proportional hazards 

model yet with much less computational load. 

The logic model with logit link is in the form 

log (Pr[Y=1]/ Pr[Y=0]) = 0 + 1 L1 + 2 L2 + … + p Lp 
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where Y is a binary response variable, 0, 1,… p are the parameters, and L1, L2, …, Lp are the 

Logic Trees. 

The logic model for exponential survival took the form: 

log  λ(c) =0 + 1 L1 + 2 L2 + … + p Lp 

where λ(c) is the hazard rate, a function of the marginal cumulative hazard c, 0, 1,…, p are 

the model parameters, and L1, L2, …, Lp are the Boolean combinations of SNPs.  

1.8.3 The search for the optimal model 

The search space, defined by the number of binary predictors and all their possible Boolean 

combinations, is huge in genetic association studies (whether GWAS or candidate gene studies). 

This requires an efficient search strategy. In logic regression this involves: the move set, the 

search algorithm, and the objective function that quantifies and compares logic models 

(Schwender et al. 2010).  

The move set 

Figure 1.4 shows the set of six permissible moves from which, in a finite number of moves, a 

logic tree can be reached from another tree by a single move at a time.  
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Figure 1.4: The move set of the logic regression algorithm. Initial tree is in the bottom left and the 

remaining panels represent the six permissible moves in the tree-growing process. Details can be found in 

reference (Ruczinski et al. 2003), figure adapted from same reference. 

 

The search algorithm 

One of the search algorithms to select the logic trees implemented in logic regression is the 

simulated annealing algorithm. Although it has a high computational demand, the algorithm 

allows the search for a global optimum avoiding getting stuck in local optima (Schwender et al. 

2010). It basically involves, given a certain logic tree, randomly picking a move from the set of 

permissible moves that leads to a new logic tree. Each move has a counter move which allows 

getting back from the new tree to the old tree. The acceptance probability of the new model is 

dependent on the scores of both the old and new models and the stage of the annealing process 



26 

 

(referred to as the temperature). The probability of accepting the move is one if the score is better 

for the new model, and is still positive if the score is worse for the new model, however, it 

converges to zero as the annealing process progresses and cools down. The further ahead in the 

annealing scheme the lower the acceptance probability if the new model has a worse score.  

Model selection 

To avoid over-fitting in logic regression models especially in the presence of noise in the data, a 

model selection procedure for the simulated annealing algorithm is employed. To determine the 

optimal model size, a definition of model size as a measure of model complexity is needed. The 

model size was defined as the total number of logic trees and leaves in the logic trees. For the 

WTCCC GWAS analysis, we used a fixed model size of maximum two logic trees and a total of 

five leaves (SNPs) to reduce the high computational demand of searching for the best tree/leaf 

combinations in a large space in GWAS. For the colon and rectal cancer analysis we applied the 

cross-validation method of model selection in order to find the optimal model size. Generally, 

logic models chosen by cross-validation or permutation tests rarely exceed sizes of four or five 

leaves as indicated by the developers of the logic regression. To determine the best overall model 

using cross-validation, the first step was to state a desired, fixed, model size. The algorithm 

prohibits further moves that increase the tree if the desired size is reached. This does not 

necessarily mean that the final model is of the stated desired size but it is up to that desired size. 

Usually it is of smaller size.  We implemented 10-fold of cross-validations for all models with a 

maximum desired size of nine logic trees and 20 leaves.   

Final model iteration 
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To correct for the inherent instability of the performance measure when searching a large space, 

we refitted the logic models using the obtained optimal model size a 20 times for the WTCCC 

analysis and a 100 times for the colon and rectal cancer analysis, each time with a different 

starting search point to reach the best solution.  

1.9 Measure of statistical evidence 

Methods of estimation of statistical evidence are described in detail under their respective 

studies. 

1.10 Ethical approval  

The studies included in this dissertation were submitted for review and were approved by the 

Human Research Ethics Board of the University of Alberta. The WTCCC analyses used existing 

data and no participant contact was made. There were no risks to subjects of the Colorectal 

Cancer study, since the studies involved analyzing data from stored DNA and did not involve 

any further procedures or questionnaires administered to study subjects. The analyses only 

included data from participants who agreed to use of their information for further studies 

(roughly 99%). All previously conducted study procedures were approved by ethics committees 

at their respective study locations.  
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CHAPTER 2  

Within-Gene Interactions in GWAS Identifies Novel Susceptibility Loci – The WTCCC 

Data Revisited 

2.1 Introduction  

In genome-wide association studies (GWAS), up to several million common single nucleotide 

polymorphisms (SNPs) are examined in association with disease risk, comparing large numbers 

of disease cases and disease-free controls (Christensen et al. 2007). Feasibility of GWAS keeps 

growing with the continual advances in genotyping technology, increased affordability and 

computational power, and formation of study consortia. A typical GWAS explores SNP-disease 

associations following the common practice of analysis of a single SNP at a time in association 

with disease.  In the single-SNP analysis, only marginal effects of individual SNPs are 

considered and effects of interacting loci to disease variability is not captured, which may 

contribute to the unexplained or missing heritability in GWAS (Manolio et al. 2009, 

Cordell2009b). Furthermore, the commonly reported marginal measures of association, usually 

odds ratios (ORs), are often very small despite their high levels of statistical significance 

(YasuiMay 2012, Ku et al. 2010); hence the discovered associations themselves are of limited 

clinical/public health significance. 

In an attempt to address this missing piece of the puzzle in GWAS analysis, we focus here on 

examination of SNP-set interaction effects within-genes on disease risk. Several strategies have 

been developed to search for interactions on a genome-wide scale, including exhaustive searches 

(Marchini et al. 2005), Bayesian model selection (Zhang et al. 2007), and two-step analysis 

approaches (Wu et al. 2010, Tao et al. 2012). These methods rely on exhaustive searches of 
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pairwise (two-way) interactions while a search for higher order interactions, however, is more 

likely to elucidate the underlying biological mechanism of disease. Current searches of higher 

order interactions are limited to small sets of markers such as sets of tagging SNPs or markers 

from a candidate gene study (Schwender et al. 2010). In this report we apply the logic regression 

(Ruczinski et al. 2003) to search for biologically plausible forms of SNP-set interactions at the 

genome-wide level. We explored two forms of SNP-set interactions: SNP intersection and SNP 

union. Both forms are derived from set theory terminology. A SNP intersection is a form of 

interaction where disease risk is elevated only if all of the SNPs in a specified set (e.g., a gene) 

carry their respective high-risk genotype. A single SNP, or subsets, of the set carrying the high-

risk genotype are insufficient to elevate disease risk. For example, for a set of three SNPs, all 

three SNPs (SNP 1 and SNP 2 and SNP 3) may have to carry their high-risk genotype for disease 

risk to be elevated. A SNP union describes a form of interaction where disease risk may be 

elevated through several independent ways (i.e., genetic heterogeneity) which may include a 

SNP intersection (e.g., SNP 1 and SNP 2) or an individual SNP carrying the high-risk genotype. 

We consider each gene as a set of SNPs and search for SNP-set interactions only within the same 

gene: this is justified by a recent work that found the number of significant unique expression 

quantitative trait locus (eQTL) SNPs are much larger than the number of significant unique 

eQTL-regulated genes, indicating that multiple SNPs within a gene are related to the expression 

level of the gene (Westra et al. 2013). SNPs within each gene in linkage disequilibrium (r
2 

≥ 0.8) 

were removed sequentially before the logic regression to reduce the redundancy of the SNP sets.  

We apply our method to the Wellcome Trust Case Control Consortium (WTCCC) GWAS data 

(Wellcome Trust Case Control Consortium2007) which examined seven diseases, six of which 

are re-analyzed in this study: bipolar disorder (BD), coronary artery disease (CAD), hypertension 
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(HT), rheumatoid arthritis (RA), type 1 diabetes (T1D), type 2 diabetes (T2D), and Crohn’s 

disease. We have previously reported in detail on the genetic association results for Crohn’s 

disease which has been published elsewhere (Dinu et al. 2012). 

2.2 Methods 

2.2.1 Study samples and genotyping 

The WTCCC sample included cases self-identified as white Europeans living in Great Britain, 

and controls from the 1958 British Birth Cohort and the UK Blood Services project (Wellcome 

Trust Case Control Consortium2007). For each of the diseases studied, approximately 2000 cases 

and 3000 shared controls were included and samples genotyped using the Affymetrix GeneChip 

500K Mapping Array Set. We followed the genotype calling of WTCCC produced by its 

CHIAMO calling algorithm (Wellcome Trust Case Control Consortium2007). To further ensure 

the quality of calls, SNP genotype clusters were visually inspected. Specifically, genotype cluster 

intensity plots were generated for SNPs included in the logic trees of the statistically significant 

genes to exclude false-positive associations. The task was performed for both cases and controls 

(Supplementary Figure 2.1). Observing clearly separated genotype clusters indicated a high 

quality genotype call (Supplementary Figure 2.1A and 2.1B), while no clear boundaries or 

overlapped clusters indicated a potential genotyping error that may lead to a false-positive result 

from the logic regression (Supplementary Figure 2.1C and 2.1D).  Supplementary Figure 2.2 

shows the genotype cluster plots for the Logic Tree SNPs of the top significant genes associated 

with the six diseases. We followed the WTCCC recommendations when excluding cases and 

controls for the analysis; details of the quality control process is described detail elsewhere (Dinu 
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et al. 2012).  Genes that included a single SNP following the quality control process were 

excluded from our SNP-set interaction analysis. 

2.2.2 Estimation of SNP-set interaction effects 

Logic regression is a methodology used primarily to detect higher-order interactions between 

binary predictors (Ruczinski et al. 2003, Schwender et al. 2010). The procedure forms new 

predictors, referred to as logic trees, from a given set of binary predictors (referred to as leaves) 

through combining them by Boolean operators.   

A Boolean logic statement can be expressed as:  

L = (X1 Λ X2c) V X3 

where L is a logic tree; X1, X2, X3 are binary predictor variables with 0 and 1 values; Λ (AND), 

V (OR), c (NOT) are operators. In the genetic association study setting the binary predictors are 

the SNP effects. Thus the above statement when true can be interpreted as ‘IF SNP X1 carried 

the high-risk genotype AND SNP X2 is NOT of the high-risk genotype OR SNP X3 carried the 

high-risk genotype, THEN a person has a higher risk to  develop a particular disease’.  

Logic regression uses a simulated annealing algorithm to select the logic trees which basically 

involves, given a certain state, picking a move from a set of permissible moves that leads to a 

new state. It compares the scores of the old and new states and accepts the move if the score is 

better for the new state. The logic model can take the form of any other ‘regression’ model, as 

long as a scoring function assessing model goodness-of-fit can be defined.  We fitted logic 

models for logistic regression and model fit was measured by the binomial deviance statistic. 

Specifically, the logic model took the form: 
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log (E[Y]/ (1- E[Y])) = 0 + 1 L1 + 2 L2 + … + p Lp 

where Y is a binary response variable, 0, 1,…, p are the model parameters, and L1, L2, …, 

Lp are the Boolean combinations of SNPs.  

We studied one gene at a time, including all measured SNPs on that gene in the search. We 

limited the logic combinations so that each logic regression fit is set to allow for a maximum of 

two logic trees (Ls) and a total of five leaves (SNPs). This is done to reduce the high 

computational demand of searching for the best tree/leaf combinations in a large space in GWAS 

which can be very large depending on the number of SNPs in the gene. By limiting the number 

of trees and leaves, we were able to search for major SNP-interaction structures in each gene, 

although it may not be the full description of the interaction structure. R codes, data examples, 

and a ReadMe file are available for download from our website: 

http://www.ualberta.ca/~yyasui/yutaka.html.  

2.2.3 Statistical significance of associations  

We followed the WTCCC’s framework of using two methods for measuring evidence of 

associations of each gene with disease risk: p-value and the Bayes Factor (BF). Each gene was 

considered as a set of SNPs and explored for SNP intersections and unions. We repeated the 

search for the best logic combinations through refitting the logic regression model 20 times each 

with a different random seed to ensure that the best combination is likely to be attained. The 

minimum deviance fit of the 20 models was selected as the best fit and represented the final 

model from the original dataset. We then created 20 permuted datasets that shuffle the phenotype 

labels of cases and controls. The above mentioned process was applied to the original dataset and 

to each of the 20 permuted datasets yielding a p-value and an approximate BF for each gene. The 

http://www.ualberta.ca/~yyasui/yutaka.html
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BF is approximated by the corresponding likelihood ratio, the denominator is the median of 19 

(log10) maximum likelihoods from the 19 permuted datasets (20 minus one because BF of a 

permuted dataset does not use its own BF in calculating the median of BF from the permuted 

datasets). The denominator standardizes for the higher potential for genes with larger numbers of 

SNPs to over fit. The comparison of the best fit of the original data to that of the permuted data 

for each gene takes into account the size and LD structure of that gene. 

The p-value calculation properly took into account the performance of multiple testing. It was 

calculated for each gene as the proportion of all permuted BF values of all genes larger than the 

gene’s observed BF. Supplementary Figure 2.3 shows histograms of the empirical p-value 

distributions for the six diseases to assess their consistency with the theoretical distribution of 

our test. The theoretical distribution of p-values in our test is a mixture of the uniform 

distribution in [0,1], corresponding to the null genes, and a right-skewed distribution with a peak 

at zero, corresponding to the non-null susceptibility genes (Storey et al. 2003): the shape of the 

latter depends on the number of non-null susceptibility genes and the study power to detect them.  

2.2.4 Statistical significance threshold  

Significance thresholds above which there is strong evidence of association of a gene with a 

disease were set. The p-value threshold was 3.82x10
-6

 corresponding to a p-value of 0.05 with a 

Bonferroni correction for multiple testing. A BF threshold was calculated for each disease based 

on the number of genes examined. The calculation of this threshold was based on a prior odds 

calculation, as follows. If we suppose N genes are investigated, of which 10 genes are assumed 

to be truly associated with disease risk, then the prior odds for disease risk association for any 

gene is 10/(N-10).  To make the posterior odds of disease risk association for a gene 10 (i.e., 
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probability that the gene is associated with disease risk is 10/11, or approximately 0.91), a 

likelihood ratio for the association over no association (i.e., the BF under the same-size logic-

regression model) has to be (N-10).  The number of genes we examined in the WTCCC datasets 

ranged from 13,083-13,106 genes, which yielded a BF threshold (in logarithm with base 10) of 

approximately 4.12 for all diseases under study.  

2.3 Results  

We report from our analysis many novel signals in addition to previously established 

associations, both in light of previous reports and in contrast with the single-SNP WTCCC 

analyses and most recent GWAS meta-analyses (Table 2.1). Genes were ranked based on 

strength of evidence of association using the Bayes Factor (BF) also used by WTCCC as the 

measure of strength of evidence in their single-SNP analysis. Genes with potential false-positive 

associations due to potential genotyping errors were separated. Many genes with strong evidence 

for association had to be removed from the list of significant genes if one SNP or more in the 

logic trees had a genotype call that appeared erroneous. In Table 2.2 we present the top five 

genes showing strong associations with disease risk (all genes with evidence of strong disease 

associations are shown in Supplementary Tables 2.1 – 2.6). We also present the logic structures 

and odds ratios of association for top statistically-significant genes and show how specific risk 

groups could be identified from the genotypes of the logic tree SNPs: reference risk, high risk 

and/or low risk groups (Table 2.3, panels A-E).  

2.3.1 Bipolar disorder (BD) 

Overall, a total of 13,085 genes were examined in association with BD, out of which 13 genes 

showed strong statistical evidence of association. The one strong signal reported from the 



35 

 

WTCCC single-SNP analysis was at chromosome 16p12. This signal was, however, mapped to 

the PALB2 gene which included only one SNP in the WTCCC data following our quality control 

process: since we excluded all genes with only one SNP post quality control, this gene was 

excluded and was not included in our analysis. One of the 13 genes we detected as BD 

susceptibility loci was near the TENM4 (Teneurin Transmembrane Protein 4) gene. This gene 

was reported as the single novel locus with a statistically significant association from a recent 

BD GWAS meta-analysis of 60,000 samples (Psychiatric GWAS Consortium Bipolar Disorder 

Working,Group2011) (Table 2.1). 

BD is a chronic recurring illness characterized by cyclic episodes of mania -extremely elevated 

mood and energy, disturbed thought patterns and psychotic features such as delusions and 

hallucinations- and depression (Anderson et al. 2012).  Heritability of BD is high, with a 10-fold 

increased risk among first degree relatives of affected individuals (Smoller et al. 2003), yet 

identifying genetic variants associated with BD has been limited. Limitations have been 

attributed mainly to genetic heterogeneity of the disease, and possible small effects of many 

variants. An interaction based analysis between variants of small effect would be consistent with 

the nature of a multifactorial trait such as BD. Considering clinical subphenotypes of the disease 

may also help define genetic risk in more homogenous subsets of patients. The very recent 

findings of a GWAS comparing seasonal pattern subtypes of mania have identified a 

susceptibility locus for BD(Lee et al. 2013) that is indeed our top statistically significant gene, 

the NFIA (Nuclear Factor I/A) gene [BF=6.2]. Nuclear factor I/A is identified as a key 

transcription and regulatory factor involved in glial cell differentiation in the developing central 

nervous system (Deneen et al. 2006,Mason et al. 2009). Against initial perceptions, glial cells 

have been proven to play an important role in synaptic neurotransmission and neuron 
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communication (Volterra et al. 2005), which coincides with growing evidence involving glial 

cell alterations in psychiatric diseases such as BD (Rajkowska2003).  

The NFIA gene lies on chromosome 1p31.3 –p31.2 which has been previously implicated as a 

region of bipolar disorder susceptibility by genome-wide linkage studies (Kremeyer et al. 2010). 

Other regions on chromosome 1 have also been implicated by recent GWAS as susceptibility 

loci for BD (Greenwood et al. 2012).  The logic structure of the NFIA gene consisted of two 

logic trees: four SNPs for Logic 1 and one SNP for Logic 2. High risk groups could be identified 

from the SNP genotypes: a reference risk group (552 cases /1080 controls), the highest risk 

group (Logic 1 = No and Logic 2=Yes: 384 cases/ 413 controls; OR=1.82) (Table 2.3, Panel A). 

2.3.2 Coronary artery disease (CAD)  

Our interaction analysis yielded strong evidence of association with CAD for 16 genes out of a 

total of 13,099 genes examined. The single strong signal of association reported from the 

WTCCC single-SNP analysis showed the strongest evidence of association in our analysis. 

Recently, a meta-analysis of 14 GWAS of CAD comprising 86,995 European descent individuals 

reported on 23 susceptibility loci, 7 (30%) were identified in our analysis (Schunkert et al. 2011).   

CAD is a leading cause of death and disability worldwide with both environmental and genetic 

risk factors contributing to its etiology. The pathogenesis involves buildup of an astherosclerotic 

plaque in the coronary arteries; narrowing of the arteries and erosion of the plaque and thrombus 

formation could cause angina or acute myocardial infarction (Crea et al. 2013). The strongest 

signal of association in our analysis was for the CDKN2B (Cyclin-Dependent Kinase Inhibitor 

2B) gene [BF=10.8]. The 9p21.3 region, with CDKN2B being the nearest gene, has been 

repeatedly replicated in association with cardiovascular disease. Our results thus confirm the 
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association initially detected by the WTCCC single SNP analysis and which was confirmed in 

several subsequent GWAS studies not only in populations of European or Eastern Asian descent 

(Guo et al. 2013) but of African ancestry as well (Saade et al. 2011,Lettre et al. 2011). 

Despite the consistent finding of an association between CDKN2B variants and CAD, the 

mechanism by which the expression of the CDKN2B gene confers risk remains unclear. The 

association appears to be independent of established risk factors including smoking, elevated 

lipid levels, and diabetes suggesting a non-inflammatory role in disease pathology (Leeper et al. 

2013). The CDKN2B gene and its adjacent CDKN2A gene are tumor suppressor genes involved 

in the regulation of cell growth. Recent experimental studies suggest a potential role in the 

development of cardiovascular pathology through altered expression of these genes in the 

myocardial and vascular tissue. Reduced CDKN2B expression was detected in the 

astherosclerotic plaque and found to accelerate the vascular smooth muscle cell proliferation 

contributing to the increased risk of CAD (Pilbrow et al. 2012). The logic structure of CDKN2B 

shows the SNP genotypes identifying the different CAD risk groups (Table 2.3, Panel B). 

2.3.3 Hypertension (HT) 

The WTCCC single-SNP analysis was not able to identify any variants strongly associated with 

HT. Upon examination of 13,099 genes with HT for SNP-set interaction, our analysis, however, 

was able to identify 15 genes with evidence of strong associations with HT. A recent meta-

analysis of HT single-SNP GWAS involving 200,000 individuals of European descent reported 

on a total of 27 loci out of which 8 (30%) were detected in our analysis (International 

Consortium for Blood Pressure Genome-Wide Association,Studies et al. 2011) (Table 2.1). 
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HT, also referred to as arterial hypertension, is a chronic medical condition in which the arterial 

blood pressure is elevated. It is a widely prevalent disease and a major risk factor for 

cardiovascular and other related diseases (Mancia et al. 2007). The COL4A4 (Collagen, Type IV, 

Alpha 4) gene showed the strongest statistical evidence of association in our analysis [BF=5.4]. 

It encodes one of six identified subunits of type IV collagen: the major structural component of 

the glomerular basement membrane which together with its capillary wall constitutes the 

functional glomerular filtration barrier. Mutations in COL4A4 cause glomerular disease 

characterized by proteinuria and progression to renal failure (Chen et al. 2012). Specific diseases 

have been commonly described in association with COL4A4 mutations: thin basement membrane 

neohropathy, characterized by persistent glomerular bleeding, and Alport syndrome, a genetic 

disorder characterized by additional cochlear and ocular involvement (Kashtan 1993). HT is an 

important factor in the progression of renal disease, potentially explaining the observed 

association of COL4A4 variants to HT risk. Indeed the main line of treatment of Alport 

syndrome involves routine treatment of HT. 

Collagen is among proteins accumulated in extracellular spaces in cases of fibrosis, representing 

the main pathologic feature of progressive fibrotic disease including renal fibrosis, heart failure 

and HT. Antifibrotic and antiproteinuric effects recently demonstrated for traditional 

antihypertensive drugs indicates a potential novel therapeutic target related to the observed 

Collagen Type coding genes (Gross et al. 2011). 

COL4A4 lies on chromosome 2q35-q37 which has been detected by genome-wide linkage 

analyses in association with the quantitative traits of HT (systolic, diastolic and pulse pressure) 

(Aberg et al. 2009). Despite the implication of the chromosome 2q region in linkage with the 

blood pressure related traits, no replicated candidate genes have been identified: this underscores 
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the potential discoveries of the SNP-set interaction analysis. Table 2.3, Panel C shows the logic 

structure of the COL4A4 gene in association with increased risk of HT.  

2.3.4 Rheumatoid arthritis (RA) 

We examined 13,083 genes in association with RA, of which 72 genes showed strong evidence 

of association, covering the two regions of strong association detected in the WTCCC single-

SNP analysis. Six (60%) out of ten RA loci reported from a RA GWAS meta-analysis of 41,282 

individuals of European descent were included in our significant genes (Stahl et al. 2010) (Table 

2.1).  

RA is a chronic inflammatory auto-immune disease causing damage to the synovial joints 

especially those of the hands and feet leading to pain and stiffness and could progress to joint 

deformity and disability (Escalante 2013). The human leukocyte antigen (HLA) region has long 

been established as a genetic contributor to RA susceptibility (Viatte et al. 2013). Variants have 

been consistently linked to the major histocompatibility complex (MHC) region including MHC 

class II genes HLA-DQB1 and HLA-DRB1. Indeed that is confirmed by the top associations from 

our analysis, many of which are shared with T1D (Table 2.2). Less specifically investigated is 

the MHC class II-associated region that yielded the top significant association in our analysis 

with the BTNL2 (Butyrophilin-Like 2) gene. BTNL2 belongs to the immunoglobulin superfamily 

suggested to play a role in the T-cell activation pathway that is key to the pathogenesis of 

autoimmune diseases such as RA and T1D (Orozco et al. 2005). Previous GWAS identifying 

BTNL2 variants in association with RA have attributed it to being in strong linkage 

disequilibrium with the confirmed MHC genes HLA-DQB1 and HLA-DRB1 (Cui et al. 2009). 

Recently, the independent association of BTNL2 with RA has been corroborated through exome 
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sequencing which identified BTNL2 variants associated with RA independent from other RA 

candidate genes (HLA-DRB and NOTCH4) (Mitsunaga et al. 2013). The documented 

associations of  BTNL2 with other auto-immune diseases (Morais et al. 2012) renders an 

independent BTNL2 – RA association worthy of further investigation.  Based on the genotypes 

specified in the logic trees for the association of BTNL2 and RA, carrying the high-risk 

genotypes infers an appreciably increased risk of RA (Table 2.3, Panel D).  

2.3.5 Type 1 diabetes (T1D) 

Among a total of 13,101 genes examined, 105 showed evidence of strong association with T1D. 

All regions reported from the WTCCC single-SNP analysis in strong association with T1D were 

detected in our interaction analysis. Twelve out of a total of forty one (29%) novel and known 

chromosomal regions reported from a combined T1D GWAS and meta-analysis of over 16,000 

samples were also included in our significant genes (Barrett et al. 2009) (Table 2.1). 

T1D is an autoimmune disease mediated by both genetic and environmental triggers. Disease 

pathogenesis involves lymphocytic infiltration of pancreatic islets, destruction of beta cells, and 

lifelong dependency on exogenous insulin (Gan et al. 2012). The top associations were 

unsurprisingly for the established HLA regions on chromosome 6 including MHC genes 

(Erlich1991). Specifically, several MHC class II [HLA-DQ] genes showed the strongest 

evidence of association with T1D in our analysis. T1D and RA shared associations with HLA-

DQ genes in our analysis, which have also been suggested to represent a continuous spectrum of 

genetic association from typical T1D, through latent autoimmune diabetes in adults, to T2D (Lin 

et al. 2008).  
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2.3.6 Type 2 diabetes (T2D) 

A total of 19 genes among 13,083 genes examined in our interaction analysis showed strong 

evidence of association with T2D. Our interaction analysis detected all strong signals reported 

from the WTCCC single-SNP analysis (Savic et al. 2012, Herder et al. 2011). A recent meta-

analysis of T2D GWAS of over 25,000 East Asian individuals identified seven new T2D loci; 

two (29%) of which were included in our results (Cho et al. 2012) (Table 2.1). 

Type 2 diabetes mellitus is a chronic metabolic disease characterized by high blood glucose 

levels traditionally attributed to insulin resistance (Roglic et al. 2005). Genes linked to insulin 

resistance, obesity, and other aspects of glucose metabolism are seldom identified. More 

commonly, GWAS has typically implicated genes with recognized roles in the beta cell 

development and the function of the adult pancreas (Florez2008). The strongest association 

signal reported from both the WTCCC single-SNP analysis and our analysis was for the TCF7L2 

(Transcription Factor 7-Like 2) gene [BF=8.7]. Genetic variants on TCF7L2 were first identified 

from an Icelandic population and have since been replicated repeatedly across different 

populations (Grant et al. 2006). The gene encodes a transcription factor implicated in blood 

glucose homeostasis predisposing to T2D through impairment of beta cell function and insulin 

secretion rather than mechanisms of insulin resistance (Pearson2009). 

Genetic predisposition to beta cell dysfunction could be one of the determinants of individual 

susceptibility to T2D; exogenous factors inducing insulin resistance are then needed for 

manifestation of the disease. This may include further genetic or environmental factors including 

lifestyle factors. In line with this hypothesis, variants on the FTO (Fat Mass And Obesity 

Associated) gene seem to affect T2D risk mediated through its clear effect on obesity risk 
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(Herder et al. 2011).  The FTO gene was in fact reported among the strong signals of WTCCC 

single-SNP analysis and from our analysis, yet not among the top genes. T2D being one of the 

diseases with a complex pathogenesis, interaction between genotypes and lifestyle and treatment 

factors might lead to a more complete understanding of the genetic contribution to T2D risk.  

Some evidence indicates a suggestive reduction of a TCF7L2 related T2D risk in response to 

lifestyle changes (Florez et al. 2006), however it is not consistent and calls for further 

investigation.   The OR estimates from the logic regression are less dramatic compared to the 

other diseases studied which emphasizes a potential larger effect if environmental interaction 

effects are examined (Table 2.3, Panel E). 

2.4 Discussion 

Multiple disease susceptibility loci including novel signals with biologically plausible links to six 

of the diseases under study by WTCCC were detected in our interaction analysis. GWAS results 

are based on an agnostic type of search for SNP-disease associations with no SNP having a priori 

higher probability of being associated with a disease (Hunter et al. 2010). Discoveries like the 

ones presented here from the SNP-set interactions illustrate the additional power of GWAS 

which has not been revealed previously by the standard single-SNP analysis. An interaction 

analysis does not, however, preclude the importance of association signals reported from single-

SNP analyses. The majority of previously reported strong associations were detected in our 

analysis - almost all single-SNP WTCCC strong signals and on average 46% of the most recent 

GWAS meta-analysis reported loci (Table 2.1) - yet they were not necessarily our most 

significant results. The added value of an interaction analysis is the emergence of strong 

evidence implicating new genes that were not detected before but are supported by apparent 

biological links to disease. For example, strong evidence of genetic associations of the top 
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significant genes such as the COL4A4 gene with HT risk, have never been reported from GWAS 

before. Our results provide confirmation of previous linkage analyses implicating specific 

chromosomal regions and diseases (e.g., 1p31 near NFIA gene in association with BD and 2q35 

near COL4A4 gene in association with HT). Other recent discoveries were confirmed in our 

analysis such as BTNL2 with RA and TCF7L2 with T2D and are worthy of further in depth 

investigation. The fact that such discoveries were detected from an interaction-based analysis in 

GWAS adds strength to our approach of analysis and emphasizes the importance of searching for 

SNP-set interaction effects, in addition to the standard single-SNP analysis in GWAS. 

The ORs, a measure of SNP-disease associations, typically reported from single-SNP based 

GWAS analysis are in the range of 1.1-1.5 which, despite the high statistical significance, are in 

themselves of minimal clinical and public health importance. On the other hand, the SNP-set 

interaction analysis of GWAS yielded ORs with substantially larger magnitudes indicating 

strong associations that are more readily interpreted. Our results also allowed us to identify a 

larger number of genes in association with the six diseases that help determine their genetic risk. 

These results help to further explain the genetic roles in the pathogenesis of these diseases and 

opens avenues for refined risk identification and risk prediction. Of specific value are diseases 

with a less clearly identified genetic risk such as BD, CAD and HT. For example, the single-SNP 

based analysis reported from WTCCC failed to identify any strong association signals for HT, 

while our interaction analysis was able to detect both novel and previously reported association 

signals providing new insights into the genetic profile of HT. 

The numbers of novel and significant genes detected from our analysis are not merely the results 

of lowering the significance threshold by analyzing genes rather than SNPs which reduces the 

number of multiple testing, or by using Bayes Factors rather than p-values as a measure of 
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statistical evidence for associations.  Rather, they are the consequences of our analysis approach 

that attempts to systematically identify interactions across SNPs within each gene. The results of 

the SNP-set approach would not be achieved by simply lowering the threshold for single-SNP 

analysis. In support of the SNP-set approach compared to a single-SNP analysis, we plotted 

Bonferroni corrected p-values from the single-SNP analysis against our SNP-set interaction 

analysis (Supplementary Figure 2.4). All genes whose Bonferroni corrected p-values were < 

0.1 by either of the two tests were plotted.  These plots show that under the same criterion of 

Bonferroni corrected p-values, the majority of the genes were at the bottom of the plots but not 

necessarily near the origin, indicating greater numbers of significant signals by our SNP-set 

interaction approach. Thus, lowering the significance threshold for single-SNP analysis will not 

yield similar significant and novel signals as those detected from our SNP-set interaction 

approach. We also repeated all steps of the analysis on 10 permuted datasets using RA as an 

example. Out of the 10 permuted datasets each involving 13,083 genes, only one gene of one of 

the 10 datasets was statistically significant using the Bonferroni corrected p-value threshold. 

Thus, the huge search space for the logic regression does not explain our findings.  

Our logic regression analysis, despite its utility, is not without limitations. To manage the large 

computational demand of the logic regression search, we had to limit the search of SNP-set 

interactions to a single gene at a time and fix the size of SNP interactions searched for within 

each gene. Our assessment of SNP-set interactions, however, has a much higher power of signal 

discovery compared to a SNP-set interaction test for a pair of SNPs since a significantly fewer 

number of tests are performed.  We did not consider gene-gene interactions in the analysis; it is 

possible that more complex SNP interactions exist but were not discovered in our analysis. Our 

use of Boolean logic through logic regression may capture a subset of cis-regulatory modules if 
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they exist; a fuller more comprehensive modeling of the modules would require consideration of 

gene-gene interactions.  Another potential problem is identifying false-positive associations from 

GWAS. The problem is mainly attributed to genotype-calling errors. Visual inspection of 

genotype clusters is a common approach to identify markers with errors. We further excluded 

markers based on the visual inspection process demonstrating the importance of adopting quality 

control criteria beyond algorithms designed for specific arrays such as the CHIAMO algorithm 

used in WTCCC. 

Despite the limited form of logic regression that we applied in our analysis, searching for 

specific forms of SNP-set interactions is a step towards addressing the complexity of genetic 

associations in a GWAS compared to a marginal assessment of individual SNP effects on 

disease. It is important to note that although it is impossible to validate discoveries made by logic 

regression analysis with single-SNP analyses; our SNP-set interaction-based analysis was able to 

detect the majority of previous single-SNP associations including those of large meta-analysis 

datasets. Thus, confirmation of our novel signals need to be further investigated in larger datasets 

and using a gene-level interaction-based analysis. 
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Table 2.1: Summary numbers of SNP-set interaction signals overlapping with WTCCC single-SNP 

strong signals and single-SNP Meta-analysis signals
¥
 

 

Disease  Logic-Based SNP-set 

Interaction 

WTCCC single-SNP  Meta-Analysis 

 Number of Significant 

Signals 

Number of  

Strong 

Signals   

Overlap  Number of 

Loci 

Overlap
*
  

BD   13 1 0/1 (0%) 1 1/1(100%)  

CAD   16 1  1/1 (100%) 23  7/23 (30%) 

HT 15 NA NA 27  8/27 (30%) 

RA   72 2 2/2(100%) 10  6/10 (60%) 

T1DM   105 5 5/5(100%) 41  12/41 (29%) 

T2DM 19 3 3/3 (100%) 7   2/7 (29%) 
¥
Bayes Factor used as measure of evidence of association of each gene and disease risk; 

*
Overlap within 

100 kb or less of the reported meta-analysis locus; (BD) Bipolar disorder(Psychiatric GWAS Consortium 

Bipolar Disorder Working,Group2011) ; (CAD) Coronary artery disease (Schunkert et al. 2011); (HT) 

Hypertension (International Consortium for Blood Pressure Genome-Wide Association,Studies et al. 

2011); (RA) Rheumatoid arthritis(Stahl et al. 2010); (T1D) Type 1 diabetes(Barrett et al. 2009); (T2D) 

Type 2 diabetes (Cho et al. 2012); (SNP) Single nucleotide polymorphism; (WTCCC) Wellcome Trust 

Case Control Consortium; (NA) Not Applicable. 
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Table 2.2: Top 5 genes showing the strongest evidence of association with each disease 

Disease Chromosomal Location Gene Name #SNPs BF P-value 

BD 1p31.3-p31.2 NFIA 113 6.20 1.15 × 10
-5

 

 1q44 NLRP3 9 5.87 1.53× 10
-5

 

 12q15 PTPRR 42 5.52 4.97× 10
-5

 

 2q12-q21 DBI 4 5.23 6.88× 10
-5

 

 5q15 RIOK2 36 5.06 8.79× 10
-5

 

      

CAD 9p21 CDKN2B 24 10.85 <3.81× 10
-6

 

 11p15.3-p14 TPH1 4 7.22 <3.81× 10
-6

 

 11p14.3 USH1C 22 5.68 1.91× 10
-5

 

 9p13.3 RECK 13 5.57 2.67× 10
-5

 

 3p21.31 CDCP1 26 5.45 3.44× 10
-5

 

      

HT 2q35-q37 COL4A4 10 5.40 4.58× 10
-5

 

 15q14 GJD2 28 5.34 4.58× 10
-5

 

 2q11.2-q12.1 ST6GAL2 77 5.19 6.49× 10
-5

 

 15q22.31 MTFMT 3 5.18 6.49× 10
-5

 

 4p16.1 BOD1L1 107 5.04 7.63× 10
-5

 

      

RA 6p21.3 BTNL2 10 95.34 <3.82 × 10
-6

 

 6p21.3 HLA-DRA 12 93.87 <3.82 × 10
-6

 

 6p21.3 C6orf10 13 91.71 <3.82 × 10
-6

 

 6p21.3 HLA-DQB1 7 82.23 <3.82 × 10
-6

 

 6p21.3 NOTCH4 15 64.9 <3.82 × 10
-6

 

      

T1D 6p21.3 HLA-DQB1 7 Inf <3.82 × 10
-6

 

 6p21.3 HLA-DRA 10 230.25 <3.82 × 10
-6

 

 6p21.3 BTNL2 10 214.04 <3.82 × 10
-6

 

 6p21.3 C6orf10 12 206.30 <3.82 × 10
-6

 

 6p21.3 HLA-DQA1 4 203.42 <3.82 × 10
-6

 

      

T2D 10q25.3 TCF7L2 38 8.70 <3.82 × 10
-6

 

 4q27 TMEM155 8 7.58 <3.82 × 10
-6

 

 5q15 FAM172A 12 6.96 <3.82 × 10
-6

 

 16q13 GPR56 12 6.20 <3.82 × 10
-6

 

 13q12.12  C1QTNF9 4 5.07 1.22× 10
-4

 

(BD) Bipolar disorder; (CAD) Coronary artery disease, (HT) Hypertension, (RA) Rheumatoid arthritis, 

(T1D) Type 1 diabetes, (T2D) Type 2 diabetes, (SNP) Single nucleotide polymorphism, (BF) Bayes 

Factor.  
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Table 2.3: Logic structures, frequencies, and associated disease odds ratios of the top significant 

gene   

 

A. Bipolar disease and NFIA gene 

 

 

 

 

 

 

 

 

 

 

 

 

A. Logic structure consisted of two logic trees with a total of five SNPs identifying two risk groups: 

reference risk group (552 cases / 1080 controls), *high risk groups (Logic 1= No and Logic 2=Yes: 384 

cases/ 413 controls; OR=1.82; Logic 1 and 2 =No: 638 cases / 895 controls; OR = 1.39; Logic 1 and 

2=Yes: 294 cases/ 548 controls; OR = 1.05).  

Logic-based Risk Groups  

Cases 

 

Controls 

 

Odds Ratio Logic 1 Logic 2 

Yes No 552 1080 1.0 (Ref) 

No Yes 384 413 1.82* 

No No 638 895 1.39* 

Yes Yes 294 548 1.05* 

rs12034076=ACor CC 

Cases:289 (15.5%) 

Cont:496 (16.9%) 

 

rs10493302=TT 

Cases:1288 (69.0%) 

Cont:2092 (71.3%) 

 

rs2989476= GG 

Cases: 509 (27.3%) 

Cont:991 (33.8%) 

 
rs10889215=CT or TT 

Cases: 311 (16.7%) 

Cont: 556  (18.9%) 

 

rs6676020=CC or CG 

Cases: 678 (36.3%) 

Cont: 961 (32.7%) 

 

Logic 1 

and 

or 

or 

Logic 2 
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B.  Coronary artery disease and CDKN2B gene 

 

 

 

 

 

 

 

 

 

 

 

 

B. Logic structure consisted of two logic trees with a total of five SNPs identifying three risk groups: 

reference risk group (946 cases / 1381 controls), *high risk group (Logic 1 and 2=Yes: 564 cases/ 628 

controls; OR = 1.31and 
¥
low risk groups (Logic 1 and 2 =No: 375 cases / 857 controls; OR = 0.64; Logic 

1 = No and Logic 2=Yes: 41 cases/ 70 controls; OR=0.86).  

Logic-based Risk Groups  

Cases 

 

Controls 

 

Odds Ratio Logic 1 Logic 2 

Yes No 946 1381 1.0 (Ref) 

Yes Yes 564 628 1.31* 

No No 375 857 0.64
¥
 

No Yes 41 70 0.86
¥
 

rs10965266=TT 

Cases:1437 (74.6%) 

Cont:2173 (74.0%) 

 

rs7864275=CC 

Cases:658 (34.2%) 

Cont:979 (33.3%) 

 

rs10757283= TT 

Cases: 388 (20.2%) 

Cont:458 (15.6%) 

 
rs2891168=AG or GG 

Cases: 1543 (80.1%) 

Cont: 2132  (72.6%) 

 

rs2891168=GG 

Cases: 605 (31.4%) 

Cont: 698 (23.8%) 

 

Logic 1 

or 

and 

or 

Logic 2 
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C. Hypertension and COL4A4 gene 
 

 

  

 

 

 

 

 

 

 

 

 

C. Logic structure consisted of two logic trees with a total of five SNPs identifying three risk groups: 

reference risk group (1185 cases / 1877 controls), *high risk groups (Logic 1 =No and Logic 2 = Yes: 8 

cases/ 1 control; OR = 12.7; Logic 1 and Logic 2 =No: 758 cases/1023 controls; OR=1.17), and a 
¥
low 

risk group (Logic 1 =Yes and  Logic 2 =No: 1 case/ 35 controls; OR=0.05). 

 

 

 

 

 

 

 

 

 

Logic-based Risk Groups  

Cases 

 

Controls 

 

Odds Ratio Logic 1 Logic 2 

Yes Yes 1185 1877 1.0 (Ref) 

No Yes 8 1 12.7* 

No No 758 1023 1.17 

Yes No 1 35 0.05
¥
 

Logic 1 

or 

rs4566357=AA or AG 

Cases:1186 (60.8%) 

Cont:1912 (65.1%) 

 

or 

rs2222869=AA 

Cases:583 (29.9%) 

Cont:871 (29.7%) 

 

rs10190621=CT or TT 

Cases:1486 (76.1%) 

Cont:2274 (77.5%) 

 

and 

rs4566357=AA or AG  

Cases:1186 (60.8%) 

Cont:1912 (65.1%) 

 

rs3754846=AA 

Cases: 23 (1.2%) 

Cont: 25 (0.9%) 

 

Logic 2 
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D. Rheumatoid arthritis and BTNL2  gene 
 

 

  

 

 

 

 

 

 

 

D. Logic structure consisted of two logic trees with a total of five SNPs identifying two risk groups: 

reference risk group (381 cases and 1321 controls) and high risk groups (Logic 1 = No and Logic 2 = 

Yes: 574 cases/ 313 controls; OR=6.36 and Logic 1 = No and Logic 2 = No: 905 cases/ 1300 controls; 

OR =2.41). 

  

Logic-based Risk Groups  

Cases 

 

Controls 

 

Odds Ratio Logic 1 Logic 2 

Yes No 381 1321 1.0 (Ref) 

No Yes 574 313 6.36* 

No No 905 1300 2.41* 

Yes Yes 0 2 0 

Logic 1 

or 

rs3763308=AA or AG 

Cases: 67 (3.6%) 

Cont: 215 (7.3%) 

 

or 

rs9268557=TT 

Cases:206 (11.1%) 

Cont:790 (26.9%) 

 

rs2076533=CC 

Cases:267 (14.4%) 

Cont:906 (30.9%) 

 

and 

rs2076533=TT  

Cases:714 (38.4%) 

Cont:589 (20.1%) 

 

rs9268557=CC 

Cases: 791 (42.5%) 

Cont: 686 (23.4%) 

 

Logic 2 
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E. Type 2 diabetes and TCF7L2 gene 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

E. Logic structure consisted of two logic trees with a total of five SNPs identifying two risk groups: 

reference risk group (586 cases / 1196 controls), high risk groups (Logic 1 and 2=Yes: 591 cases/ 636 

controls; OR=1.90; Logic 1 = Yes and Logic 2 =No: 114 cases / 133 controls; OR = 1.75; Logic 1= No 

and Logic 2=Yes: 633 cases/ 971 controls; OR = 1.33). 

 

  

Logic-based Risk Groups  

Cases 

 

Controls 

 

Odds Ratio Logic 1 Logic 2 

No No 586 1196 1.0 (Ref) 

Yes Yes  591 636 1.90* 

Yes  No 114 133 1.75* 

No Yes 633 971 1.33* 

rs10885429=AT or TT  

Cases:283 (14.7%) 

Cont:361 (12.3%) 

 

rs567584=CC or CT 

Cases:501 (26.0%) 

Cont:655 (22.3%) 

 

rs7077039=CC 

Cases: 537 (27.9%) 

Cont: 587(20.0%) 

 
rs4917647 =CC 

Cases: 1113 (57.9%) 

Cont: 1681  (57.3%) 

 

rs4132670=AA or AG  

Cases: 1224 (63.6%) 

Cont: 1607 (54.7%) 

 

Logic 1 

or 

and 

or 

Logic 2 
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Within-Gene Interactions in GWAS Identifies Novel Susceptibility Loci – The WTCCC 

Data Revisited 

Supplementary Information 

 
A 

 

B 

 

C 

 

D 

 

 

 

Supplementary Figure 2.1: Visual inspection of genotype cluster intensity plots. Genotype cluster 

intensity plots were generated for SNPs included in the logic trees of the statistically significant genes. 

The task was performed for both cases and controls. Plots on the left are for Bipolar Disease cases (A& 

C) and plots on the right are for controls (B & D). The x and y axes on the plots denote the intensity 

measurements for the two alleles at the SNP. Each point represents the measurement for a single 

individual. Plots A & B show an example of correct genotype calling for SNP rs6014572 on CBLN4 gene 

indicating a high quality marker. In Plots C & D incorrect genotype calling was observed for SNP 

rs17480050 on CSGALNACT1gene with clear overlap of the homozygous alleles (GG and TT) indicating 

a genotyping error that may lead to a false-positive association.  
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BD Cases 

 

BD Controls 

  

  

  



55 

 

  

  

 

CAD Cases 

 

CAD Controls 
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HT Cases 

 

HT Controls 
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RA Cases 

 

RA Controls 
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T1D Cases 

 

T1D Controls 
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T2D Cases 

 

T2D Controls 
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Supplementary Figure 2.2: Genotype cluster plots for SNPs in the logic trees of the top significant 

genes by disease. 
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Bipolar Disorder 

 

Coronary Artery Disease 

 
Hypertension 

 

Rheumatoid Arthritis 

 
Type I Diabetes 

 

Type II Diabetes 

 
Supplementary Figure 2.3 Histograms of the empirical p-value distributions for the six diseases.  The 

theoretical distribution of p-values in our test is a mixture of the uniform distribution in [0,1], 

corresponding to the null genes, and a right-skewed distribution with a peak at zero, corresponding to the 

non-null susceptibility genes: the shape of the latter depends on the number of non-null susceptibility 

genes and the study power to detect them. The histograms of p-values allow assessment of the 

consistency of the empirical distributions of p-values with the theoretical mixture distribution.  
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Supplementary Figure 2.4 Plots of Bonferroni corrected p-values from the single-SNP analysis and our 

SNP-set interaction analysis in the abscissa and ordinate, respectively. For a given gene, the abscissa 

plotted the smallest p-value of all SNPs in the gene, testing each SNP’s dominant, recessive, and co-

dominant associations and selecting the most significant association.  All genes whose Bonferroni 

corrected p-values were < 0.1 by either of the two tests were plotted.  These plots indicate that the 

majority of the significant genes detected from our SNP-set interaction analysis were at the bottom of the 

plots but not necessarily near the origin, showing greater numbers of significant signals by our SNP-

interaction approach, under the same criterion of Bonferroni correction applied to both methods. Note that 

Bipolar disorder and Hypertension had no SNPs with a Bonferroni corrected p-value <0.1 by either of the 

two tests.   
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Supplementary Table 2.1: Significant genes showing the strongest evidence of association with 

Bipolar Disease (N=13 genes) 

Chromosome Location Gene Name #SNPs Bayes Factor (BF) P-value  

1p31.3-p31.2 NFIA 113 6.20 1.15 × 10
-5

 

1q44 NLRP3 9 5.87 1.53 × 10
-5

 

12q15 PTPRR 42 5.52 4.97 × 10
-5

 

2q12-q21 DBI 4 5.24 6.88 × 10
-5

 

5q15 RIOK2 36 5.06 8.79 × 10
-5

 

1p22.1 GCLM 7 5.00 9.17 × 10
-5

 

8p23-p22 BLK 24 4.70 0.000198701 

2q37.3 COPS8 32 4.60 0.000248376 

21q22.3 B3GALT5 18 4.58 0.000256018 

12q24 P2RX7 13 4.56 0.000256018 

11q14.1 TENM4 299 4.27 0.000420328 

7q36.1 GIMAP2 7 4.14 0.000576997 

20p13 CDC25B 6 4.13 0.000596102 

 

Supplementary Table 2.2: Significant genes showing the strongest evidence of association with 

Coronary Artery Disease (N=16 genes) 

Chromosome Location Gene Name #SNPs Bayes Factor (BF) P-value  

9p21 CDKN2B 24 10.85 <3.82 × 10
-6 

11p15.3-p14 TPH1 4 7.23 <3.82 × 10
-6 

11p14.3 USH1C 22 5.69 1.91 × 10
-5

 

9p13.3 RECK 13 5.58 2.67 × 10
-5

 

3p21.31 CDCP1 26 5.46 3.44 × 10
-5

 

1p22 TTF2 5 5.38 4.96 × 10
-5

 

5q31.3 SPRY4 21 5.31 5.34 × 10
-5

 

2q37.1 RNF7 7 5.20 7.63 × 10
-5

 

2q35 ALLC 143 4.98 9.92 × 10
-5

 

2p11.2 DNAH6 5 4.97 9.92 × 10
-5

 

10q25.1-q25.2 ACSL5 8 4.65 0.000171768 

11q24 SIAE 4 4.54 0.000240476 

5p13.1 MROH2B 14 4.52 0.000248111 

15q22.3-q23 NEO1 18 4.49 0.00027483 

3p12.3 GBE1 123 4.24 0.000473319 

6p21 PPARD 11 4.20 0.000507672 

 

http://www.genenames.org/data/hgnc_data.php?hgnc_id=10070
http://www.genenames.org/data/hgnc_data.php?hgnc_id=26857
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Supplementary Table 2.3: Significant genes showing the strongest evidence of association 

Hypertension (N=15 genes) 

Chromosome Location Gene Name #SNPs Bayes Factor (BF) P-value  

2q35-q37 COL4A4 10 5.40 4.58 × 10
-5

 

15q14 GJD2 28 5.34 4.58 × 10
-5

 

2q11.2-q12.1 ST6GAL2 77 5.19 6.49 × 10
-5

 

15q22.31 MTFMT 3 5.18 6.49 × 10
-5

 

4p16.1 BOD1L1 107 5.03 7.63 × 10
-5

 

11q13.4 PGM2L1 10 4.89 0.000114513 

20p13 DEFB129 7 4.67 0.000175586 

7q21.11 SEMA3E 50 4.56 0.000213757 

12q23.2 MYBPC1 29 4.55 0.000225208 

3p24.1 ZCWPW2 44 4.50 0.000248111 

6q14-q15 TBX18 61 4.40 0.000305366 

10p11.21 CREM 5 4.34 0.000362623 

2q11.2 NCAPH 2 4.24 0.000450416 

3p24.1 EOMES 41 4.21 0.000477136 

14q32.33 C14orf80 3 4.16 0.000519124 

 

Supplementary Table 2.4: Significant genes showing the strongest evidence of association with 

Rheumatoid Arthritis (N=72 genes) 

Chromosome Location Gene Name #SNPs Bayes Factor (BF) P-value  

6p21.3 BTNL2 10 95.34 <3.82 × 10
-6 

6p21.3 HLA-DRA 12 93.87 <3.82 × 10
-6 

6p21.3 C6orf10 13 91.71 <3.82 × 10
-6 

6p21.3 HLA-DQB1 7 82.23 <3.82 × 10
-6 

6p21.3 NOTCH4 15 64.91 <3.82 × 10
-6 

6p21.3 HLA-DRB1 2 45.91 <3.82 × 10
-6 

6p21.3 HLA-DQA1 4 45.15 <3.82 × 10
-6 

6p21.3 TNXB 3 31.67 <3.82 × 10
-6 

6p21.3 TAP2 7 22.99 <3.82 × 10
-6 

1p13.2 RSBN1 4 22.72 <3.82 × 10
-6 

6p21.33 APOM 2 21.34 <3.82 × 10
-6 

6p21.3 HLA-DOA 16 20.08 <3.82 × 10
-6 

6p21.3 PRRC2A 3 19.89 <3.82 × 10
-6 

1p12-p11.2 MAGI3 21 17.55 <3.82 × 10
-6 

6q12-q13 RIMS1 75 16.18 <3.82 × 10
-6 

6p21.3 BAG6 6 15.69 <3.82 × 10
-6 

http://www.genenames.org/data/hgnc_data.php?hgnc_id=13918
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3p13 GXYLT2 9 14.49 <3.82 × 10
-6 

6p21.3 HLA-B 15 13.60 <3.82 × 10
-6 

6p21.3 HCP5 19 13.24 <3.82 × 10
-6 

6p21.33 MICA 11 13.07 <3.82 × 10
-6 

6p21.3 HLA-DPA1 7 10.45 <3.82 × 10
-6 

6p21.3 COL11A2 12 10.45 <3.82 × 10
-6 

6p21.3 TRIM26 8 10.34 <3.82 × 10
-6 

6p21.3 HLA-F 18 10.30 <3.82 × 10
-6 

6p21.3 HLA-DPB1 11 10.13 <3.82 × 10
-6 

6p21.3 C6orf15 12 9.92 <3.82 × 10
-6 

14q23.1 DACT1 52 9.90 <3.82 × 10
-6 

6p21.3 TRIM31 7 9.28 <3.82 × 10
-6 

11p15 ART1 3 9.21 <3.82 × 10
-6 

6p21 SKIV2L 2 8.78 <3.82 × 10
-6 

6p22.1 TRIM40 7 8.72 <3.82 × 10
-6 

6p21.3 DDR1 7 8.43 <3.82 × 10
-6 

6p21.3 AGPAT1 2 8.23 <3.82 × 10
-6 

11q13.4 LRP5 10 8.16 <3.82 × 10
-6 

6p21.3 HLA-A 17 7.88 <3.82 × 10
-6 

6p21.33 VARS 3 7.59 <3.82 × 10
-6 

1p13.2 PTPN22 3 7.55 <3.82 × 10
-6 

6q23 TNFAIP3 25 7.54 <3.82 × 10
-6 

6p21.33 DPCR1 3 7.48 <3.82 × 10
-6 

6p22.1 RPP21 18 7.39 <3.82 × 10
-6 

6p21.3 HLA-DMB 7 7.38 <3.82 × 10
-6 

6p21.3 TRIM39 4 7.21 <3.82 × 10
-6 

17q23.2 NACA2 8 7.10 <3.82 × 10
-6 

6p21.32 MUC21 10 6.99 <3.82 × 10
-6 

12q12 ADAMTS20 50 6.30 3.82 × 10
-6 

6p21.3 BAK1 6 6.16 3.82 × 10
-6 

6p22.1 FLJ45422 7 6.11 3.82 × 10
-6 

6p21.3 UBD 6 6.02 3.82 × 10
-6 

1p13 PHTF1 2 5.92 7.64 × 10
-6

 

6p21.33 LY6G6C 3 5.60 2.29 × 10
-5

 

6p22.1 ZFP57 3 5.59 2.29 × 10
-5

 

6p22 TRIM27 9 5.36 2.68 × 10
-5

 

6p21.31 UQCC2 7 5.31 3.06 × 10
-5

 

2p24 ASAP2 25 5.11 5.73 × 10
-5

 

19p13.2-p13.1 NOTCH3 5 5.03 6.88 × 10
-5

 

4p15.2 ANAPC4 14 4.88 0.000110831 

1p13.2 HIPK1 2 4.82 0.00012994 
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Supplementary Table 2.5: Significant genes showing the strongest evidence of association with Type 

1 Diabetes (N=105 genes) 

Chromosome Location Gene Name #SNPs Bayes Factor (BF) P-value  

6p21.3 HLA-DQB1 7 Inf <3.82 × 10
-6 

6p21.3 HLA-DRA 10 230.25 <3.82 × 10
-6 

6p21.3 BTNL2 10 214.04 <3.82 × 10
-6 

6p21.3 C6orf10 12 206.30 <3.82 × 10
-6 

6p21.3 HLA-DQA1 4 203.42 <3.82 × 10
-6 

6p21.3 NOTCH4 15 177.52 <3.82 × 10
-6 

6p21.3 HLA-DRB1 2 163.01 <3.82 × 10
-6 

6p21.3 TNXB 3 108.40 <3.82 × 10
-6 

6p21.3 PRRC2A 3 94.87 <3.82 × 10
-6 

6p21.3 HLA-DOB 8 92.12 <3.82 × 10
-6 

6p21.3 BAG6 6 90.17 <3.82 × 10
-6 

6p21.3 HCP5 19 78.27 <3.82 × 10
-6 

6p21.3 MSH5 4 75.48 <3.82 × 10
-6 

6p21.33 MICA 11 73.98 <3.82 × 10
-6 

6p21.3 AIF1 4 73.81 <3.82 × 10
-6 

6p21.3 C6orf15 12 57.05 <3.82 × 10
-6 

6p21.3 MICB 5 47.59 <3.82 × 10
-6 

6p21.3 HLA-C 18 44.60 <3.82 × 10
-6 

6p21.3 BRD2 2 43.44 <3.82 × 10
-6 

6p21.3 DDR1 7 40.67 <3.82 × 10
-6 

6p21 SKIV2L 2 38.08 <3.82 × 10
-6 

1p36.3 TP73 4 4.80 0.000133761 

6p21.31 IP6K3 4 4.70 0.000171979 

6p21.3 RNF39 2 4.66 0.000183444 

2p22-p21 THUMPD2 18 4.63 0.000198731 

10p15-p14 IL2RA 16 4.61 0.000210196 

1p21.3 GPR88 10 4.54 0.000252236 

19p12 ZNF254 14 4.53 0.000263701 

1q21.1 PRKAB2 17 4.47 0.000290453 

7q32-q33 PODXL 45 4.45 0.000309562 

7q22-qter CNOT4 17 4.37 0.00037071 

6p21.3 KIFC1 2 4.35 0.000378354 

20q13.2-q13.3 EDN3 37 4.31 0.000416571 

8p23.2 CSMD1 746 4.28 0.000431858 

20p13 DEFB129 7 4.21 0.000485363 

20q11.2-q12 EPB41L1 6 4.19 0.00050065 

http://www.genenames.org/data/hgnc_data.php?hgnc_id=13918
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6p21.3 HLA-A 16 37.74 <3.82 × 10
-6 

6p22.1 RPP21 18 36.22 <3.82 × 10
-6 

6p21.3 HLA-E 7 34.52 <3.82 × 10
-6 

6p21.32 MUC21 10 30.85 <3.82 × 10
-6 

6p21.3 AGPAT1 2 27.94 <3.82 × 10
-6 

6p21.33 TUBB2A 2 27.80 <3.82 × 10
-6 

6p21.33 DPCR1 3 26.31 <3.82 × 10
-6 

6p21.3 HLA-DOA 16 26.31 <3.82 × 10
-6 

1p13.2 RSBN1 4 22.66 <3.82 × 10
-6 

6p21 MAS1L 7 20.34 <3.82 × 10
-6 

6p21.3 OR2H2 5 20.04 <3.82 × 10
-6 

6p21.3 TAP1 4 19.63 <3.82 × 10
-6 

6p21.3 TRIM10 2 19.07 <3.82 × 10
-6 

6p22.1 FLJ45422 7 18.65 <3.82 × 10
-6 

6p21.3 HLA-G 19 18.58 <3.82 × 10
-6 

6p21.3 HLA-F 17 17.58 <3.82 × 10
-6 

6p22.1 OR10C1 3 16.77 <3.82 × 10
-6 

6p21.3 TRIM26 8 16.47 <3.82 × 10
-6 

6p22.1 OR14J1 3 14.48 <3.82 × 10
-6 

6p22.1 ZNF311 4 14.22 <3.82 × 10
-6 

6p22.2-p21.31 OR12D2 4 14.12 <3.82 × 10
-6 

6p21.3 ZNF165 7 13.73 <3.82 × 10
-6 

6p21.3 ZKSCAN8 5 13.50 <3.82 × 10
-6 

6p22.1 OR12D3 3 13.12 <3.82 × 10
-6 

6p22.1 HIST1H2BL 7 13.12 <3.82 × 10
-6 

6p22.1 BTN3A2 8 12.64 <3.82 × 10
-6 

6p21.31 GABBR1 6 12.57 <3.82 × 10
-6 

6p22.1 OR2J3 4 12.32 <3.82 × 10
-6 

6p22.1 HIST1H2BJ 10 12.23 <3.82 × 10
-6 

6p21.3 ZSCAN9 4 11.97 <3.82 × 10
-6 

6p21.33 ATAT1  2 11.82 <3.82 × 10
-6 

12q24.13 NAA25 5 11.72 <3.82 × 10
-6 

6p22.1 BTN2A1 6 11.52 <3.82 × 10
-6 

6p22.2-p21.31 OR2J2 2 11.13 <3.82 × 10
-6 

6p22.1 OR2W1 4 11.12 <3.82 × 10
-6 

6p22.1 ZSCAN16 3 11.04 <3.82 × 10
-6 

6p21.33 VARS 3 11.01 <3.82 × 10
-6 

1p13.2 PTPN22 3 10.57 <3.82 × 10
-6 

6p22.1 HIST1H4H 3 9.86 <3.82 × 10
-6 

6p21.33 PSORS1C3 2 9.18 <3.82 × 10
-6 

12q13 ERBB3 3 9.08 <3.82 × 10
-6 

http://www.genenames.org/data/hgnc_data.php?hgnc_id=12984
http://www.genenames.org/data/hgnc_data.php?hgnc_id=21186
http://www.genenames.org/data/hgnc_data.php?hgnc_id=25783
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6p21.3 TCF19 4 8.83 <3.82 × 10
-6 

6p21.3 DAXX 2 8.43 <3.82 × 10
-6 

1p13 PHTF1 2 7.90 <3.82 × 10
-6 

6p21.3 ZNF184 5 7.51 <3.82 × 10
-6 

12q24.13 TMEM116 4 7.26 <3.82 × 10
-6 

6p22.3-p22.1 ZSCAN31 6 7.16 <3.82 × 10
-6 

6p22.1 VN1R10P 9 7.14 <3.82 × 10
-6 

12q13.2 SUOX 2 7.07 <3.82 × 10
-6 

6p22.1 LOC651503 2 6.99 <3.82 × 10
-6 

12q13 RAB5B 3 6.95 <3.82 × 10
-6 

6p21.3 BTN3A3 2 6.94 <3.82 × 10
-6 

6p21.3 SLC17A3 10 6.90 <3.82 × 10
-6 

6p21.3 SYNGAP1 2 6.57 <3.82 × 10
-6 

6p21.31 POU5F1 3 6.56 <3.82 × 10
-6 

1p13.2 BCL2L15 2 5.88 1.14 × 10
-5

 

6p21.3 MLN 20 5.80 1.14 × 10
-5

 

6p21 ITPR3 10 5.70 1.91 × 10
-5

 

1p13.2 HIPK1 2 5.60 3.05 × 10
-5

 

6p21 PRSS16 5 5.54 3.05 × 10
-5

 

1p13.2 AP4B1 3 5.43 4.20 × 10
-5

 

3p21.31 CCR2 3 5.36 4.20 × 10
-5

 

12p13 CLEC2D 12 5.19 6.11 × 10
-5

 

6p22.1 GPX5 3 5.16 6.87 × 10
-5

 

12q24 SH2B3 4 5.13 8.01 × 10
-5

 

10p15-p14 IL2RA 16 5.08 8.01 × 10
-5

 

12q24 PTPN11 8 5.04 9.54 × 10
-5

 

6p21.3 DHX16 2 4.92 0.000129761 

12q24.2 ALDH2 3 4.86 0.00015266 

6p21.3 UBD 6 4.85 0.00015266 

12q24.11 MYL2 3 4.81 0.000167926 

6p21.3 HIST1H1E 2 4.78 0.000179376 

12q14.1  KCNC2 91 4.76 0.000187009 

16p13.13 CLEC16A 20 4.69 0.000206091 

3p21.31 FLJ78302 6 4.63 0.000217541 

4q27 ADAD1 3 4.53 0.000270972 

1p31 SERBP1 23 4.52 0.000270972 

12q24.12 ACAD10 3 4.50 0.000270972 

4q12 POLR2B 6 4.49 0.000270972 

3p21.3 CCR3 8 4.47 0.000282421 

4q27 KIAA1109 5 4.29 0.000435081 

3p25.2 TSEN2 10 4.20 0.000488512 

http://www.genenames.org/data/hgnc_data.php?hgnc_id=13550
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12q24 BRAP 2 4.20 0.000488512 

6p22.1 HIST1H3I 3 4.15 0.000572475 

 

Supplementary Table 2.6: Significant genes showing the strongest evidence of association with Type 

2 Diabetes (N=19 genes) 

Chromosome Location Gene Name #SNPs P-value  Bayes Factor (BF) 

10q25.3 TCF7L2 38 <3.82 × 10
-6 8.69 

4q27 TMEM155 8 <3.82 × 10
-6 7.58 

5q15 FAM172A 12 <3.82 × 10
-6 6.96 

16q13 GPR56 12 <3.82 × 10
-6 6.20 

13q12.12  C1QTNF9 4 0.000122 5.07 

6p12.1 GFRAL 9 0.000122 5.06 

10q11.22-q11.23 ZNF239 10 0.000141 4.99 

9q34.3 PPP1R26  22 0.000203 4.81 

6p21.1 TNFRSF21 28 0.000233 4.72 

1q24 NME7 10 0.000252 4.67 

12q21.2 BBS10 18 0.000252 4.67 

2q24.2 RBMS1 31 0.000264 4.65 

9p21.3 PTPLAD2 8 0.000355 4.49 

12p11.22 OVCH1 12 0.000394 4.43 

1q31.3 KCNT2 123 0.000489 4.28 

11q23 ABCC8 14 0.000615 4.17 

8p11.22 PLEKHA2 12 0.000623 4.15 

11p15 TRIM22 6 0.000631 4.14 

16q12.2 FTO 69 0.000646 4.12 

 

 

 

  

http://www.genenames.org/data/hgnc_data.php?hgnc_id=29089
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CHAPTER 3  

A Candidate Pathway Approach Identifies Multiple Gene-Environment Interactions in 

Association with Colon Cancer Risk and Survival  

3.1 Introduction  

Colon cancer is a good example of a multi-factorial disease with well-documented genetic and 

non-genetic risk factors (Potter1999a). Several lines of evidence indicate a prominent role of 

dietary and lifestyle factors in colon cancer etiology including wide geographical variations in 

incidence across countries (International Agency for Research on Cancer2008), and migrant 

populations, especially of Asian descent, moving from low-risk to high risk countries adopting 

the host country’s high levels of risk (Marchand1999,Flood et al. 2000). Additional evidence 

comes from Japan, a country with historically one of the lowest incidence of colon cancer 

becoming one of the highest incidence in the world over several decades (Oba et al. 

2006,Takachi et al. 2011,Potter1999a). Although evidence on lifestyle environmental exposures 

effects on colon cancer survival is limited, some evidence suggests pre- and/or post-diagnostic 

dietary patterns, physical activity, smoking, and alcohol consumption may have an impact on 

CRC mortality (Pelser et al. 2014).  

Considerable research efforts have been made towards identifying highly- and moderately-

penetrant rare variants in association with colon cancer, and more recently common low-

penetrance risk alleles through genome-wide association studies (GWAS), yet with limited 

success (Whiffin et al. 2014). This has enforced the hypothesis that the large unexplained 

hereditary component of colon cancer risk referred to as “missing heritability” may be partially 

explained by epistatic and/or gene-environment interactions (GEIs) (Manolio et al. 2009). A 
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standard “marginal” approach of analysis in genetic association studies that does not take into 

account the possibility of interaction between individual genetic variants by analyzing single 

nucleotide polymorphisms (SNPs) one at a time will, therefore, either fail to observe or detect 

weak associations. This practice ignores the inherent coordination between genes better 

described by a pathway structure composed of multiple genes with related biologic functions 

contributing to risk in different environmental contexts (Kraft et al. 2009).  

It is essential to focus on a biological pathway relevant to the disease, and environmental 

exposures relevant to the pathway. One of the genetic pathways of special interest to colon 

cancer outcomes is the angiogenesis pathway which mediates the process of sprouting of blood 

vessels from existing ones, allowing for tumor growth and progression. An ischemic tumor 

microenvironment with poor oxygen and nutrient supply is an important trigger of the 

angiogenesis process (Folkman et al. 1992). Several proteins are involved in tumor angiogenesis 

including the vascular endothelial growth factor (VEGF) which acts as one of the most potent 

angiogenic factors (Ferrara1999, Lohela et al. 2009). Another important factor that regulates 

gene expression in angiogenesis is the hypoxia-inducible factor 1 (HIF-1) (Semenza 2010). 

Activation of the HIF-1α signaling pathway under glucose deprivation has also been shown 

recently to lead to colon cancer cells acquiring anti-apoptosis properties (Nishimoto et al. 2014). 

We selected three environmental exposures with evidence of associations with colon cancer and 

relevant to the angiogenesis pathway: dietary protein intake; cigarette smoking; and alcohol 

consumption (Gonzalez et al. 2010, Poynter et al. 2009, Cheng et al. 2014). We hypothesized the 

three environmental exposures are biologically stimulating tumor angiogenesis under ischemic 

conditions (hypoxia and hypoglycemia) (Vigne et al. 2006, Wong et al. 2007,Gu et al. 2001).  
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In this study we examined GEIs of the angiogenesis gene-pathway and the three environmental 

factors in association with both colon cancer susceptibility and survival. We applied a candidate-

pathway approach that considered gene rather than individual SNP effects, and selected the 

candidate genes and the environmental variables based on biologic hypothesis. We also 

emphasized biologic plausibility in the form the SNP-set interactions within each gene might 

take. Our candidate-pathway approach involved three steps that summarized the individual gene 

and gene-gene interaction effects in the first two steps and modeled pathway GEIs in the third 

step. 

3.2 Methods 

3.2.1 Data Sources 

Study population 

The “Diet, Activity and Lifestyle as a Risk Factor for Colon Cancer” is a multicenter, 

population-based, case-control study of colon cancer conducted at three geographical areas in the 

United States: Utah, Northern California, and Minnesota (Slattery et al. 1997a). Colon cancer 

cases were identified using a rapid-reporting system during the period between October 1991 and 

September 1994 with the majority of cases interviewed within four months of diagnosis. Final 

case eligibility was determined by the Surveillance Epidemiology and End Results (SEER) 

Cancer Registries in Northern California and Utah for California and Utah study participants, 

respectively, and through the Minnesota Tumor Registry for study participants identified in the 

Twin Cities Area of Minnesota. Eligible cases were 30 to 79 years old at time of diagnosis, 

English speaking, and mentally and physically competent to complete the interview.  Cases with 

a previous history of colorectal cancer or known familial adenomatous polyposis, ulcerative 
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colitis, or Crohn’s disease (as indicated on pathology reports) were not eligible. Controls were 

frequency matched to cases by sex and 5-year age groups in each geographical area. 

Interview data 

A detailed in-person interview was conducted by trained and certified interviewers using laptop 

computers (Edwards et al. 1994). The interview took approximately two to three hours and 

consisted of two parts: a) the health and lifestyle questionnaire (including data on demographic 

characteristics, medical history, meal patterns, smoking and alcohol consumption among other 

information); and b) a diet history questionnaire adapted from the validated CARDIA diet 

history to be used as a computer-assisted questionnaire in case-control studies (Slattery et al. 

1994,Liu et al. 1994). The referent period for the study questionnaires was the calendar year two 

to three years prior to diagnosis for cases or to selection for controls.  

Tumor registry data 

Data obtained from local tumor registries were used to determine disease stage at diagnosis, 

months of survival after diagnosis, and vital status. Disease stage was categorized using the 

SEER staging criteria (in-situ, local, regional, distant, and unknown) (Young et al. 2001). The 

follow-up time was considered from the date of diagnosis up to date of last follow-up or death. 

Follow-up was terminated at the end of the year 2000 and all study participants had over five 

years of follow-up.  

TagSNP selection and genotyping 

TagSNPs were selected using the following parameters: LD blocks using a Caucasian LD map 

(International HapMap Consortium2003) and r
2≥0.8; minor allele frequency (MAF)>0.1; LD 
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block range= -1500 bps from the initiation codon to +1500 bps from the termination codon; and 

1 tagSNP for each LD bin. All markers were genotyped using a multiplexed bead-array assay 

format based on Golden Gate chemistry (Illumina Human Hap550k, San Diego, California). A 

genotyping call rate of 99.85% was achieved. Blinded internal duplicates represented 4.4% of the 

total sample set; the duplicate concordance rate was 100%.  TGFβ1 gene was not included in the 

Illumina BeadChip platform; alternatively representative markers were genotyped using a 

TaqMan assay from Applied Biosystems (Foster City, California).  Each 5µl PCR reaction 

contained 20 ng of genomic DNA, primers, probes, and TaqMan Universal PCR Master Mix 

(containing AmpErase UNG, AmpliTaq Gold enzyme, dNTPs, and reaction buffer).  PCR was 

carried out under the following conditions: 50
o
C for 2 minutes to activate UNG, 95

o
C for 10 min, 

followed by 40 cycles of 92
o
C for 15 sec, and 60

o
C for 1 minute using 384 well duel block ABI 

9700.  Fluorescent endpoints of the TaqMan reactions were measured using a 7900HT sequence 

detection instrument. Individuals with missing genotype data were not included in the analysis 

for that specific marker. 

Candidate Gene-Pathway 

Figure 3.1 shows the components of the angiogenesis pathway that we hypothesized to be 

relevant to colon cancer. We constructed it using several sources of information in an attempt to 

include important and relevant genes to best represent the angiogenesis pathway in relation to 

colon cancer. We extracted information from three recognized web-based resources using the 

search term “angiogenesis”:  

- The BioCarta Pathways: “VEGF, Hypoxia, and Angiogenesis Pathway” 

(http://www.biocarta.com/pathfiles/h_vegfPathway.asp) 

http://www.biocarta.com/pathfiles/h_vegfPathway.asp
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- KEGG (Kyoto Encyclopedia of Genes and Genomes) Pathway database: “VEGF 

Signaling Pathway” available from the KEGG (http://www.kegg.jp/kegg-

bin/highlight_pathway?scale=1.0&map=map04370&keyword=angiogenesis) 

- Cell Signaling Technologies Pathways: the “Angiogenesis Signaling Pathway” from the 

CST pathways (http://www.cellsignal.com/common/content/content.jsp?id=pathways-

angiogenesis) (See Supplementary Figures 1 - 3). 

We supplemented the information by reviewing available evidence on the biologic activity and 

function of the candidate genes and on experimental observations of biologic activities of the 

genes in relation to tumor angiogenesis through online gene databases and PubMed. The working 

pathway figure was used as a guide to the analysis, and genes were described as either major 

drivers of the angiogenesis process or interacting inflammatory genes (Table 3.1).  

Environmental Variables 

Smoking: 

Smoking status was based on regular cigarette smoking defined as smoking at least 100 

cigarettes during a lifetime. For smokers, the total years of smoking were determined by taking 

into account start and stop dates of smoking. Pack-years of cigarettes smoked were used to 

represent patterns of smoking and derived by multiplying the usual number of cigarettes smoked 

per day by total years of smoking cigarettes, and dividing by 20 (a pack of cigarettes). For this 

analysis, subjects were categorized as having 20 or more pack-years, less than 20 pack-years, or 

having never smoked.  

Alcohol: 

http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map04370&keyword=angiogenesis
http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map04370&keyword=angiogenesis
http://www.cellsignal.com/common/content/content.jsp?id=pathways-angiogenesis
http://www.cellsignal.com/common/content/content.jsp?id=pathways-angiogenesis
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Alcoholic beverages were defined in the diet history questionnaire as beer, wine, and hard liquor 

including alcoholic cocktails, whiskey, gin, vodka, scotch, bourbon, or rum. Participants were 

asked to report usual amounts consumed during the weekdays and during weekend days 

separately to better capture total consumption.  Additionally, participants were asked about 

alcohol consumption 10 and 20 years ago as part of the health and lifestyle questionnaire.  

Participants who responded with "no" to the question, "Did you ever drink an average of one or 

more alcoholic beverages a month for a year or longer?" were considered never to have drunk 

alcohol. Participants who responded "yes" to this question were then asked the usual number of 

12-ounce bottles of beer, 4-ounce glasses of wine, and 1.5-ounce shots of hard liquor consumed 

during the referent year, 10 and 20 years ago. Long-term exposure to alcohol, based on 

consumption of any type of alcoholic beverage 10 and 20 years prior to the referent year, was 

categorized in two levels (none to moderate and high alcohol consumption, cut-off was 

20gms/week for men and 10gms/week for women).  

Dietary Protein: 

Participants were asked to recall foods eaten, the frequency with which they were eaten, serving 

size, and whether fats were added in the preparation. Nutrient information was obtained by 

converting food-intake data into nutrient data using the Minnesota Nutrition Coordinating Center 

nutrient database.(Dennis et al. 1980) Total protein intake is the sum intake of animal proteins 

(meats, poultry, fish, dairy, and eggs) and vegetable proteins (legumes, tofu). We calculated an 

animal/vegetable protein intake ratio and used a cut-off corresponding to the median of animal 

protein proportion of total protein intake (i.e. 60% of total protein intake is animal protein 

equivalent to a 1.5 animal/vegetable protein intake ratio, which means 50% more animal protein 
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intake than vegetable protein intake). This resulted into two categories (Low and high 

animal/vegetable protein intake ratio). 

3.2.2 Statistical analysis 

Three step approach of candidate pathway-based gene-environment interaction analysis  

Our approach to examining gene-environment interactions (GEIs) at the pathway level, adjusting 

for gene and gene-gene interaction effects, attempted to integrate biologic and logical reasoning 

using a three-step analysis approach. The analysis was conducted for colon cancer risk and colon 

cancer survival separately, but the three-step procedure used for the two analyses was identical: 

thus, we will describe the procedure focusing on colon cancer risk below, supplementing specific 

differences for colon cancer survival as needed.   

Each step provided a “product” to be used in the following steps. Step 1: for each gene on the 

pathway we summarized SNP-set interactions within the gene that are relevant for colon cancer 

risk for the susceptibility analysis and colon cancer survival for survival analysis. Specifically, 

we developed gene-specific trees (GSTs) that captured SNP-set interactions in the gene using 

logic regression (see Supplementary Materials for details). Step 2: epistatic interactions of genes 

in the pathway (gene-gene interactions) were modeled using the GSTs from Step 1 to develop 

pathway tree(s). Pathway trees represented interactions of the genes without considering the 

environmental exposures, and were used as adjustment variable(s) in the GEI models of the next 

third step. Step 3: we modelled pathway GEIs between the GSTs and the three environmental 

exposures. We divided the full pathway into 9 sub-pathways and summarized GEIs in each sub-

pathway using backward selection. The GEIs that remained in the sub-pathway summary models 

at the 5% significance level were jointly tested in the final GEI model for the entire pathway. A 



79 

 

summary of the three steps of the analysis approach are shown in Tables 3.2A and 3.2B for 

colon cancer risk and survival, respectively. 

SNP-set interactions within a gene on the pathway: Step 1 

We started the analysis exploring two forms of SNP-set interactions, SNP intersection and SNP 

union, within each gene in order to summarize the gene’s SNP profile relevant to colon cancer 

risk. Both forms are derived from set-theory terminology reflecting biologically plausible 

interaction forms. A SNP intersection is a form of interaction where disease risk is elevated only 

if all of the SNPs in a specified set (e.g., a gene) carry their respective high-risk genotype. A 

single SNP, or subsets, of the set carrying the high-risk genotype are insufficient to elevate 

disease risk. For example, for a set of three SNPs, all three SNPs (SNP 1 and SNP 2 and SNP 3) 

may have to carry their high-risk genotype for disease risk to be elevated. A SNP union describes 

a form of interaction where disease risk may be elevated through several independent ways (i.e., 

genetic heterogeneity) which may include a SNP intersection (e.g., SNP 1 and SNP 2) or an 

individual SNP carrying the high-risk genotype. We applied logic regression (Ruczinski et al. 

2003) to search for these biologically plausible forms of SNP-set interactions within genes (Dinu 

et al. 2012). For each gene on the pathway, this step produced one or more GSTs that represented 

profiles of combinations of SNPs in the gene relevant to colon cancer risk and survival. The 

GSTs, instead of individual SNPs, were used as building blocks of gene-gene and gene-

environment interactions in the subsequent two steps. 

Pathway gene-set interactions: Step 2  

We used logic regression to search for gene-set interactions among all GSTs of the pathway 

developed in Step 1, except, instead of using individual SNPs as the binary predictors in the logic 
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regression models we used the GSTs. Note that each GST is a binary variable defined by 

multiple SNPs of the same gene. The final logic combinations of GSTs were considered as 

pathway tree(s) which provided a summary of the gene-gene interactions in the full pathway and 

were used as adjustment variable(s) in GEI modeling in Step 3. 

Modeling pathway gene-environment interaction (GEI) effects: Step 3 

The third and final step was guided by the working pathway figure (Figure 3.1) and used 

standard epidemiological modeling methods, i.e., logistic regression for colon cancer risk and 

Cox proportional hazards regression for colon cancer survival. The pathway genes were grouped 

into nine mutually exclusive sub-pathways of closely related genes (e.g., a gene and its gene 

receptors) as illustrated in the figure. To summarize GEIs within each sub-pathway, we used a 

backward variable selection procedure for model building (Harrell et al. 1996). For each sub-

pathway, the procedure started with a model including the interaction terms of the corresponding 

GSTs and the three environmental factors of interest and eliminated the least significant term(s) 

in a stepwise fashion. All interaction terms significant at p-value < 0.05 from each sub-pathway 

were tested simultaneously in the final pathway GEI model. All models were adjusted for the 

pathway trees from Step 2 in addition to age at diagnosis or selection, sex, race (white, Hispanic, 

or black race), and study center (University of Utah; the Kaiser Permanente Medical Care 

Program of Northern California; and the University of Minnesota). Baseline hazards for Cox 

proportional hazards models were stratified by colon cancer stage at diagnosis.  

3.3 Results  

The study included data on 1,541 colon cancer cases and 1,934 controls. Follow-up data and vital 

status for use in the survival analysis were available for only 1,408 of the 1,541 cases. Cases with 
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missing follow-up belonged mainly to the Northern California and Minnesota study centers; 

patients may have moved out of state or were not able to be tracked by their respective local 

tumor registry. They, however, did not differ from cases with follow-up information with regards 

to baseline variables (age, sex, race, or cancer stage). 

The angiogenesis candidate gene-pathway included a total of 257 SNPs in 34 genes (Table 3.1).  

The results of the first step of the analysis involved only the genetic components of the pathway: 

SNP-set interactions within each of the 34 genes. Details of the logic models that yielded the 

GSTs of the 34 pathway genes in association with colon cancer risk and survival are shown in 

Supplementary Tables 3.1 and 3.2, respectively. The tables show the optimal model size for 

each gene as determined by the cross-validation, the model score and structure of the final logic 

model. Some genes had more than one GST; hence the total number of logic trees for the 

pathway exceeded the number of the pathway genes. For example, the logic regression yielded 4 

GSTs for the FLT1 gene in association with colon cancer risk (Supplementary Table 3.1).  

Results of the second step of the analysis summarized the pathway by searching for GST 

interactions (gene-gene interactions). This process yielded one pathway tree in association with 

colon cancer risk (Supplementary Figure 3.4) and 4 pathway trees in association with colon 

cancer survival (Supplementary Figure 3.5). The figures show the GST of each pathway tree 

including the at-risk genotypes and frequencies. 

The third step of the analysis involved modeling for interactions between the GSTs and the three 

environmental exposures of interest. Only the statistically significant GEI results are displayed in 

Tables 3.3 and 3.4 in association with colon cancer risk and survival, respectively. Statistically 

significant interactions were observed between specific components of the angiogenesis gene-
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pathway and all three environmental exposures. Overall, the magnitude of the main effects of the 

significant GSTs increased with increasing levels of animal/vegetable protein intake ratio, 

smoking, and alcohol consumption. 

Genes among the major drivers of angiogenesis interacted with the three exposures in association 

with colon cancer risk. The FLT1 gene showed statistically significant interactions with ≥ 20 

pack-years of smoking (interaction odds ratio (ORINT) = 1.64, 95% confidence interval (CI) 

(1.11, 2.41), p-value=0.013) and high animal/vegetable protein intake (ORINT=1.69, 95% (1.03, 

2.77), p-value=0.037); and the KDR gene showed a statistically significant interaction with long-

term alcohol consumption (ORINT=1.53, 95% CI (1.10, 2.13), p-value=0.012). Among the 

inflammatory genes, interactions between BMP4 gene and ≥ 20 pack-years of smoking 

(ORINT=1.60, 95% CI (1.10, 2.32), p-value=0.013) and TLR2 gene and long-term alcohol 

consumption (ORINT=1.59, 95% CI (1.05, 2.38), p-value=0.027) were statistically significant. 

Three genes among the inflammatory genes had significant GEIs in association with colon 

cancer survival, each with one of the three exposures: TNF gene and high animal/vegetable 

protein intake ratio (interaction hazard ratio HRINT=1.74, 95% CI (1.09, 2.76), p-value=0.019); 

BMP1 gene and ≥ 20 pack-years of smoking (HRINT=1.79, 95% CI (1.03, 3.10), p-value=0.039); 

and BMPR2 gene and long-term alcohol consumption (HRINT=7.91, 95% CI (1.57, 39.74), p-

value=0.012).  

3.4 Discussion 

Prior to the advent of GWAS, candidate gene studies specified genes to be investigated a priori 

based on their biologic functional significance to the disease. An approach to investigate the 

entire pathway systematically, however, has been lacking and seldom has the biologic reasoning 
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used for the selection of candidate genes been carried through to the analysis (Thomas et al. 

2009). We developed a novel candidate-pathway framework to assess GEIs and illustrated its use 

for colon cancer risk and survival. We focused on only one gene-pathway, the angiogenesis 

pathway, and three angiogenesis-related lifestyle risk factors and identified several novel GEIs. 

Our framework emphasized the biologic hypothesis throughout the process starting from the 

selection of the candidate genes and the specific lifestyle exposures, and carried the logic to the 

three steps of the analysis. We started by developing GSTs that captured biologically plausible 

forms of SNP-set interactions within each gene, hence, our building blocks of gene-gene and 

gene-environment analysis represented the genes rather than individual SNPs. Our next step 

provided a summary of the full pathway’s genetic effects. Since the same environmental 

exposure could be interacting with different genes on the same pathway, whether through similar 

or different mechanisms (Cordell 2009a), guided by the working pathway figure, we dissected 

the pathway into mutually exclusive sub-pathways involving groups of genes sharing the same 

function or that are closely related. This grouping allowed for genes in the sub-pathways to 

interact with all three exposures and avoid potentially missing important GEIs. Indeed, we 

observed interactions between the same environmental exposure and different components of the 

angiogenesis gene-pathway. Our approach to use gene-level summaries rather than individual 

SNPs is a step ahead of a typical interaction analysis that considers pairwise interactions between 

SNPs for gene-gene interactions or interactions between an individual SNP and an environmental 

exposure for GEI testing.  

Interest in identifying GEIs in colorectal cancer has been on the rise. In genome-wide settings, 

GEI has been examined through genome-wide scans and/or a candidate approach focusing on 

previously identified GWAS loci and known colorectal cancer risk/survival factors. One GWAS 
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that used 3 methods to test GEI (a traditional case-control test, a case-only test and a 2-step 

method proposed by Murcray and colleagues that involves a screening test followed by a 

traditional case-control test of GEI) did not identify any genome-wide significant GEIs, yet using 

a candidate approach of analyzing previously reported colorectal cancer GWAS susceptibility 

loci they identified 7 nominally significant GEIs one of which was between alcohol and a SNP 

on CHD1 gene (chromosome 16q22.1) (Figueiredo et al. 2011). Another study that examined 10 

published colorectal cancer GWAS loci and 12 environmental risk factors identified a single 

interaction with vegetable consumption and a SNP on chromosome 8q23.3 (Hutter et al. 2012). 

A third study was able to identify an interaction with being overweight and a SNP on 

chromosome 11q23.3 but none were identified from the candidate approach (Siegert et al. 2013). 

In contrast to focusing on previous empirical GWAS findings as candidate genes for GEI testing, 

our approach to selecting candidate genes and the pathway was based on biologic relevance and 

hypothesis. Despite analyzing genes in only one pathway, we were able to identify a 

considerably large number of significant interactions with all three exposures on both cancer risk 

and survival with a magnitude of the interaction OR ranging between 1.53 to 1.69 for risk and 

1.80 to 7.78 for survival. We believe our findings could be increased by focusing on more colon-

cancer-related pathways and their relevant environmental exposures. 

Among the previously identified GEIs focusing on candidate variants was the interaction 

between low folate intake and an MTHFR polymorphism on increased risk of colorectal 

adenoma (Ulrich et al. 1999). A recent meta-analysis identified GEIs of heavy smoking and 

heavy alcohol drinking with another MTR polymorphism on increased colorectal cancer risk 

(Ding et al. 2013). Recent evidence also supported an association between prolonged cigarette 

smoking and colorectal cancer that is modified by specific variants in carcinogen metabolism 
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genes (Cleary et al. 2010). These findings suggest that choice and definition of specific 

components or patterns of the assessed environmental exposures are important elements in 

characterizing a strong GEI (Prentice 2011). For diet, for example, we focused on the specific 

nutrient effect of animal protein previously shown to be associated with colorectal adenoma 

(Yang et al. 2012) and colorectal cancer (De Stefani et al. 2012). Our approach, indeed, 

identified GEI of a high animal/vegetable protein intake ratio and both arms of the pathway: 

FLT1 among major angiogenesis genes on colon cancer risk and TNF among interacting 

inflammatory genes on colon cancer survival.  

Other significant GEIs that we detected included genes that have demonstrated strong 

associations with colorectal cancer in previous reports.  One example is for major drivers of the 

angiogenesis process: the VEGF receptor 1 and 2 genes (FLT1 and KDR, respectively) (Jang et 

al. 2013, Slattery et al. 2014).We were able to characterize significant GEIs of the FLT1 gene 

with smoking and animal protein intake, and the KDR gene with alcohol consumption in 

association with colon cancer risk. Our study is among few others that examined GEI in 

association with colon cancer survival after diagnosis. Previous studies that examined loci 

associated with colorectal cancer prognosis identified genetic variants affecting survival and 

recurrence in patients receiving chemotherapy (Xing et al. 2011, Dai et al. 2012). A study of 

postmenopausal women identified an association with a locus in SMAD7 and pre-diagnostic non-

steroidal anti-inflammatory drug use (Passarelli et al. 2011). In our results, we detected 

interactions between three genes TNF, BMP1 and BMPR2 genes and animal protein intake, 

smoking, and alcohol, respectively. These interactions have not been reported previously in 

association with colon cancer survival.  
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BMPs (bone morphogenetic proteins) are multi-functional growth factors part of the TGFβ 

superfamily (Chen et al. 2004). A special interest in BMP genes and colorectal cancer developed 

over the last decade with several studies demonstrating their tumor suppressor properties (Beck 

et al. 2006, Nishanian et al. 2004). Specifically, BMP2 is a cell differentiation and proliferation 

factor that has been shown in in vitro studies to inhibit colon epithelial cell growth inducing 

apoptosis and inhibiting cell proliferation (Hardwick et al. 2004). Evidence from gene expression 

studies indicates that expression levels of BMP2 were significantly lower in colorectal 

adenocarcinomas compared to adenomatous polyps since loss of BMP2 caused hyperplasia of 

intestinal epithelial cells and tumorigenesis (Xiang et al. 2012). BMP4 loci were also previously 

identified in association with colorectal cancer from a GWAS meta-analysis (Houlston et al. 

2008) and a fine mapping study of susceptibility loci in the BMP pathway including BMP2 and 

BMP4 genes (Tomlinson et al. 2011). We have previously published associations between SNPs 

on BMP-signaling pathway genes and colon cancer risk including BMP2, BMP4, and BMPR2 

(Slattery et al. 2012b). In this analysis, we identified GEIs with BMP genes in association with 

both colon cancer risk and survival. We observed GEIs between BMP4 gene and smoking on 

colon cancer risk; and BMP1 gene and smoking and BMPR2 gene and alcohol on colon cancer 

survival. Some of these interactions display clear dose response associations as shown by an 

increasing magnitude of gene OR with increasing levels of smoking. Our results, thus, provide 

additional evidence of the potential importance of BMP-related genes as components of the 

angiogenesis pathway, and their interactions in colon cancer etiology and outcomes.  

A GWAS employs an agnostic data-driven approach where prior knowledge of SNP function is 

not required and most GWASs have not investigated GEI, primarily due to lack of data on 

environmental exposures (Stranger et al. 2011).  On the other hand, a candidate pathway in a 
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candidate gene study is based on biological hypotheses derived from existing knowledge of 

candidate pathway, genes and/or SNPs defining that pathway. Approaches based on informed 

candidate gene selection may be more suited to examining GEI effects compared to GWAS loci. 

The low-penetrance GWAS loci are harder to identify, have smaller effect sizes, and are unlikely 

to be the functional variants themselves alone. The associated SNPs are markers of an underlying 

haplotype that includes the functional variants (Stranger et al. 2011). In contrast, our candidate 

pathway approach may carry several advantages over an empirical data-driven approach: (1) 

candidate genes and exposures were selected based on biologic relevance; (2) it allowed for the 

interaction of multiple SNPs within each gene potentially capturing the full gene effect; and (3) a 

multiple testing adjustment for testing many non-hypothesized associations in GWAS was not 

required for our candidate gene-pathway analyses because the associations were biologically 

hypothesized a priori (Tomlinson et al. 2011). Furthermore, GWAS analyses that focus only on 

SNPs with significant marginal effects will miss interactions with variants with weak or no 

marginal effects.  

A few limitations of our study are related to the design of the case-control study which suffers 

from inherent forms of bias such as recall bias. This was minimized by: using a rapid-reporting 

system to identify cases; conducting the majority of interviews within 4 months of diagnosis; and 

limiting the referent period of the study questionnaires to two to three years prior to diagnosis. 

With regards to our environmental exposures of interest, we obtained long-term alcohol 

consumption and cigarette smoking history.  The diet history used was extensive and able to 

capture more detail compared to that obtained when using self-administered questionnaires. We 

considered all colon cancer cases and did not stratify by distal and proximal site. We selected the 

genes of the angiogenesis pathway using a candidate approach. Not all genes in the human 
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genome have been characterized and, therefore, their pathway information may not be available; 

if such genes with little or no characterization existed and were relevant to the angiogenesis 

process they would have been missed. Due to the large size of the GEI models involving a large 

number of GST-environment interactions to be tested across the pathway, we limited the 

adjustment variables to select CRC risk and survival predictors. This limitation led to not 

adjusting for effects of other CRC-relevant factors such as tumor microsatellite instability (MSI) 

status. Our analysis was based on fixed datasets of available data and we had no control over the 

sample size. In addition, our study was not a null study and we did detect statistically significant 

GEIs and thus a power calculation was not needed.  The novel GEIs detected from our analysis 

in association with colon cancer risk and survival emphasize the need to employ an approach 

based on biologic hypotheses when examining GEIs.  The low-penetrance markers and the 

environmental exposures they interact with are common in the population, and the magnitude of 

the interaction is often larger than their individual effects. Identification of these interactions 

could potentially explain a large portion of the risk variation in the population (Le Marchand et 

al. 2008). Knowledge of the (theoretically modifiable) lifestyle factors influencing colon cancer 

risk and survival as modified by the individuals’ genetic susceptibility can be directly translated 

into practical public health applications. It also helps shift the notion of the deterministic role of 

susceptibility genes into one that reflects interacting effects of genes and lifestyle habits, and 

portrays colon cancer and death from colon cancer as a potentially avoidable disease while 

providing new insights into its prevention strategies.  
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Figure 3.1: Working figure of the angiogenesis pathway genes.  

Key gene components of the pathway are in blue frames; secondary genes are in black frames; environmental factors are in green text. 
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Table 3.1: Angiogenesis pathway gene list  

Genes  Name 

 

Major drivers of angiogenesis  

VEGFA Vascular endothelial growth factor A 

FLT1 Vascular endothelial growth factor receptor 1 

KDR Vascular endothelial growth factor receptor 2 

HIF-1α Hypoxia-inducible factor 1, alpha 

PDGF  Platelet-derived growth factor 

TIE2 Tyrosine-protein kinase receptor 

TGFβ Transforming growth factor, beta  

TGFβR Transforming growth factor, beta receptor 

IGF-IR Insulin-like growth factor-I receptor 

 

Interacting inflammatory genes 

NFKB1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 

IL8 Interleukin-8 

IL8RA Interleukin-8 receptor, alpha 

IL8RB Interleukin-8 receptor, beta 

IL1A Interleukin-1, alpha 

IL1B Interleukin-1, beta 

TNF Tumor necrosis factor 

MMPs Matrix metallopeptidases (MMP1, MMP3, MMP7, MMP9) 

BMPs Bone morphogenetic proteins (BMP1, BMP2, BMP4, BMPR1A, BMPR1B, BMPR2) 

TLRs  Toll-like Receptors (TLR2, TLR3, TLR4) 

EGR2 Early Growth response 2 

EGFR Epidermal growth factor receptor 

IRS1 Insulin receptor substrate 1 

VDR Vitamin D Receptor 
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Table 3.2: Summary of the 3-step candidate-pathway gene-environment interaction approach 

A. Colon cancer risk analysis steps 

Analysis 

Step 

Interaction of 

interest 

Variable of 

interest 

Model Specific 

Procedures 

Product 

Step 1: 

Summarize 

gene effects 

SNP-set 

interaction 

within gene 

SNPs on each 

gene separately 

Logic regression 

with logit link 

Cross-validation 

to determine 

optimal model 

size 

Gene-

Specific 

trees (GSTs) 

Step 2: 

Summarize 

pathway 

effects 

Gene-set 

interaction 

within 

pathway 

All GSTs on the 

pathway 

Logic regression 

with logit link 

Cross-validation 

to determine 

optimal model 

size 

Pathway 

Trees 

Step 3:  

Test gene-

environment 

interaction 

Gene-

environment 

interaction 

within 

pathway 

a. Sub-pathway 

specific  

GSTxE*  

b. Full pathway 

GSTxE 

Logistic 

regression model
¥
 

Statistical 

significance 

testing 

Pathway 

GEIs 

* GSTxE, gene-specific tree - environment interaction  
¥
Models adjusted for age, sex, race, study center, pathway tree 

 

B. Colon cancer survival analysis steps 

Analysis 

Step 

Interaction of 

interest 

Variable of 

interest 

Model Specific 

Procedures 

Product 

Step 1: 

Summarize 

gene effects 

SNP-set 

interaction 

within gene 

SNPs on each 

gene separately 

Logic regression 

fitting exponential 

survival models 

Cross-validation 

to determine 

optimal model 

size 

Gene-

Specific 

trees (GSTs) 

Step 2: 

Summarize 

pathway 

effects 

Gene-set 

interaction 

within 

pathway 

All GSTs on the 

pathway 

Logic regression 

fitting exponential 

survival models 

Cross-validation 

to determine 

optimal model 

size 

Pathway 

Trees 

Step 3:  

Test gene-

environment 

interaction 

Gene-

environment 

interaction 

within 

pathway 

a. Sub-pathway 

specific  

GSTxE*  

b. Full pathway 

GSTxE 

Cox Proportional 

Hazards model
¥
 

Statistical 

significance 

testing 

Pathway 

GEIs 

* GSTxE, gene-specific tree - environment interaction 
¥
Models adjusted for age, sex, race, study center, pathway trees, stratified by cancer stage 
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Table 3.3: Effects of gene-environment interactions significant at 5% level between colon cancer gene-specific trees and environmental 

factors on colon cancer risk 

Gene-

Specific 

Tree 

 

Gene Chr Cases 

(%) 

Controls 

(%) 

Gene OR* 

(95%CI) 

Env  

Factor 

Category 

 

N (%) Gene OR by 

Env Factor* 

(95%CI) 

ORINT* 

(95%CI) 

PINT* 

rs678714  

(TA or AA) 

FLT1 13q12 276  

(18.1%) 

417  

(21.5%) 
0.82 (0.69, 0.97) Smoking Non  1563 

(44.6%) 
0.72 (0.55, 0.94) Ref 

 

        < 20 PY  

 

668 

(19.1%) 
0.58 (0.40, 0.86) 0.80 (0.50, 1.28) 0.350 

       ≥ 20 PY  1272 

(36.3%) 

1.16 (0.88, 1.54) 1.64 (1.11, 2.41) 0.013      

rs2387632   

(CC or CT)  

FLT1 13q12 1,333 

(85.6%) 

1,738 

(88.8%) 
0.64 (0.51, 0.80) Animal/ 

Vegetable 

Protein 

Ratio 

Low 

 

1010 

(28.7%) 

 

0.40 (0.26, 0.61) 

 

Ref 
 

OR  
 

rs9513070  

(GG) 

   

 

238  

(15.3%) 

 

 

335  

(17.11%) 

    

 

High 

 

 

 

2506 

(71.3%) 

 

 

0.76 (0.59, 0.99) 

 

 

1.69 (1.03, 2.77) 

 

 

 

0.037 

rs6838752 

(TT) 

KDR 4q11-

q12 

925  

(59.9%) 

1,098 

(56.7%) 

1.11 (0.97, 1.27) Alcohol Non/Moderate 2744 

(77.0%) 

1.01 (0.86, 1.18) Ref 
 

        Heavy 

 

819 

(23.0%) 
1.53 (1.14, 2.04) 1.53 (1.10, 2.13) 0.012 

rs17563 

(CC or CT) 

BMP4 14q22-

q23 

1,193 

(76.6%) 

1,568 

(80.2%) 
0.84 (0.71, 0.99) Smoking Non  1562 

(44.6%) 
0.70 (0.54, 0.89) Ref 

 

        < 20 PY  668 

(19.1%) 

0.74 (0.51, 1.09) 1.05 (0.67, 1.65) 0.821 

       ≥ 20 PY  1271 

(36.3%) 
1.12 (0.85, 1.47) 1.60 (1.10, 2.32) 0.013      

rs3804099 

(TT or TC) 

TLR2 4q32 1,257 

(80.7%) 

1,531 

(78.2%) 
1.20 (1.02, 1.42) Alcohol Non/ Moderate 2714 

(77.3%) 

1.08 (0.89, 1.31) Ref 
 

        Heavy 

 

798 

(22.7%) 
1.72 (1.21, 2.45) 1.59 (1.05, 2.38) 0.027 

Abbreviations: Chr, Chromosome; Env, Environmental; PY, pack-years; OR, odds ratio; P, p-value; INT, interaction 

*Adjusted for age, sex, race, study center, pathway tree  
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Table 3.4: Effects of gene-environment interactions significant at 5% level between colon gene-specific trees and environmental factors on 

colon cancer survival 

Gene-

Specific 

Tree 

 

Gene Chr Cases 

(%) 

Gene HR* 

(95%CI) 

Env  

Factor 

Category 

 

N (%) Gene OR by Env 

Factor* (95%CI) 

HRINT* 

(95%CI) 

PINT* 

rs1800630 

(CA or AA) 

TNF 6p21.3 466 

(31.53%) 

0.93 (0.77, 1.14) Animal/ 

Vegetable 

Protein 

Ratio 

Low 

 

399 

(27.0%) 
0.62 (0.41, 0.93) Ref 

 

       High 1079 

(73.0%) 

1.07 (0.86, 1.35) 1.74 (1.09,  2.76) 0.019 

rs13257482  

(GG) 

BMP1 8p21 850 

(58.3%) 
1.45 (1.13, 1.87) Smoking Non  614 

(41.7%) 

 

1.12 (0.76, 1.65) 
 

Ref 
 

 

OR 
rs4075478 

(TC or CC) 

   

902 

(61.8%) 

    

< 20 PY  

 

279 

(19.0%) 

 

1.39 (0.68, 2.84) 

 

1.51 (0.68, 3.36) 
 

0.317 

      ≥ 20 PY 578 

(39.3%) 
2.04 (1.37, 3.04) 1.79 (1.03, 3.10) 0.039 

rs12477602 

(GG or GA) 

BMPR2 2q33-

q34 

1389 

(98.7%) 

1.09 (0.55, 2.18) Alcohol Non/Moderate 1060 

(74.9%) 

0.60 (0.28, 1.29) Ref 
 

       Heavy 

 

356 

(25.1%) 

2.64 (0.57, 11.33) 7.91 (1.57, 39.74) 0.012 

Abbreviations: Chr, Chromosome; Env, Environmental; PY, pack-years; HR, hazard ratio; P, p-value; INT, interaction 

*Adjusted for age, sex, race, study center, pathway trees, baseline hazard stratified by cancer stage  
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A Candidate Pathway Approach Identifies Multiple Gene-Environment Interactions in 

Association with Colon Cancer Risk and Survival  

Supplementary Information 

 

Logic Regression 

Logic regression involves a method that detects high-order interactions and patterns of 

interactions among (binary) predictors in association with an outcome within a regression 

framework. The method employs the Boolean logic searching for Boolean combinations of 

binary predictors (e.g., SNPs). The SNPs in a Boolean combination are referred to as “leaves” 

and the combination of the SNPs joined by the Boolean operators, Ù(AND), Ú  (OR), and 
c
 

(NOT), is referred to as a “logic tree”. The logic trees are also binary taking the value of “0” or 

“1”, or “Yes” or “No”. 

We used the logic regression implemented in R version 3.0.0 using the “LogicReg” R package 

(Charles Kooperberg and Ingo Ruczinski (2013). LogicReg: Logic Regression. R package 

version 1.5.5. http://CRAN.R-project.org/package=LogicReg). We used logic regression models 

fitting logistic models to assess colon cancer risk; and exponential survival models to assess 

colon cancer survival.  

Specifically, the logic model with logit link took the form: 

log (Pr[Y=1]/ Pr[Y=0]) = 0 + 1 L1 + 2 L2 + … + p Lp 

where Y is a binary response variable, 0, 1,…, p are the model parameters, and L1, L2, …, 

Lp are the Boolean combinations of SNPs. 

http://cran.r-project.org/package=LogicReg
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The logic model for exponential survival is equivalent to the proportional-hazards form: 

log  λ(c) =0 + 1 L1 + 2 L2 + … + p Lp 

where λ(c) is the hazard rate, a function of the marginal cumulative hazard c, 0, 1,…, p are 

the model parameters, and L1, L2, …, Lp are the Boolean combinations of SNPs.  

Considering the large search space, defined by the number of SNPs and all their possible 

combinations, the logic regression needs to employ an efficient search strategy. The LogicReg 

package in R uses a simulated annealing search algorithm that involves, given a certain model, 

randomly picking a move from a set of six permissible moves leading to a new model. A model 

selection procedure that determines model size for the simulated annealing algorithm (i.e., the 

number of combinations of SNPs or trees and the number of SNPs in a combination or leaves) is 

necessary to avoid over fitting. We derived the optimal size of the logic regression model using 

10-fold cross-validation up to a desired maximum size of 9 trees and 20 leaves. The search 

algorithm is designed to prohibit further moves if the desired maximum size is reached and more 

often the final model size is smaller than the desired size. We fitted the optimal-size model 100 

times, each with a different random seed (i.e. starting point for the search), and the best solution 

(based on lower deviance or negative log-likelihood function) was reached. Note that logic 

models for exponential survival models yield the same results as Cox proportional hazards 

models yet with much less computational burden. 
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Supplementary Figure 3.1: VEGF, Hypoxia, and Angiogenesis Pathway. Illustration reproduced 

courtesy of The BioCarta Pathways (http://www.biocarta.com/pathfiles/h_vegfPathway.asp). 

http://www.biocarta.com/pathfiles/h_vegfPathway.asp
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Supplementary Figure 3.2: VEGF Signaling Pathway. Illustration reproduced courtesy of KEGG, (Kyoto Encyclopedia of Genes and Genomes) 

Pathway database (http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map04370&keyword=angiogenesis). 

http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map04370&keyword=angiogenesis
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Supplementary Figure 3.3: Angiogenesis Signaling Pathway. Illustration reproduced courtesy of Cell 

Signaling Technology, Inc. (www.cellsignal.com). 

(http://www.cellsignal.com/common/content/content.jsp?id=pathways-angiogenesis). 

http://www.cellsignal.com/
http://www.cellsignal.com/common/content/content.jsp?id=pathways-angiogenesis
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-0.369 * (BMP2_L1) 

 

 

 

 

 

Supplementary Figure 3.4: Gene-Pathway Tree in association with Colon Cancer Risk. 

  

rs1979855 = TC or CC 

Cases: 542 (34.8%) 

Controls: 576 (29.4%) 

 

rs3178250 = TT or TC 

Cases: 1494 (95.9%) 

Controls: 1873 (95.7%) 

and 

Logic 1 
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Logic 1 

0.576 * (TGFBR_L1 and IL1B_L2) 
 

 
 
 
 
 
 

 
Logic 2 

0.924 * (TLR2_L1) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Logic 3 
-1.07 * (VEGF_L1) 

 
 
 
 
 
 
 

 
 

Logic 4 
1.06 * (PDGFB_L1) 

 
 
 
 
 
 

 

 

Supplementary Figure 3.5: Gene-Pathway Tree in association with Colon Cancer Survival.

rs3804099 = TC or CC 
Cases: 1022 (69.2%) 

 

rs10733710 = GG 
Cases: 912 (62.2%) 

 

rs1143634 = CT or TT 
Cases: 564 (38.2%) 

 

and 

rs5743708 = GG 
Cases: 1396 (94.5%) 

 

rs5743704 = CC 
Cases: 1355 (91.7%) 

and 

rs4696483 = CT or TT 
Cases: 379 (25.7%) 

or 

or 

rs3025035 = CT or TT 
Cases: 209 (14.5%) 

 

rs3025039 = CT or TT 
Cases: 407 (28.3%) 

and 

rs2247128 = GG or GA 
Cases: 1306 (88.7%) 

 

rs11704525 = CC 
Cases: 425 (28.9%) 

or 
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Supplementary Table 3.1: Colon cancer gene-specific trees and colon cancer risk 
 

Gene N of 

Trees 

N of 

Leaves 

Model 

score 

Model 

VEGF 1 3 4682.03 -0.234 +2.18 * ((rs3025033 and (not rs3025030)) and rs833069) 

FLT1 5 5 4709.211 -1.44 +1.16 * (rs2387632 and (not rs9513070)) +0.275 * rs12858139 +0.726 * (not rs2387632) 

+0.317 * (not rs678714) 

KDR 2 2 4770.181 -0.185 +0.549 * rs1870377 -0.641 * rs6838752 

HIF1 1 2 4813.678 -0.252 +0.631 * (rs2301113 and (not rs11549465)) 

PDGFB 1 1 4805.092 -0.221 -1.39 * rs6001512 

TEK 1 1 4891.394 -0.179 -0.148 * rs603085 

TGFB 2 2 4858.819 -0.537 +0.164 * rs4803455 +0.302 * (not rs1800469) 

TGFBR 3 3 4776.543 0.2 -0.287 * (not rs1571590) -0.16 * rs6478974-0.0976 * rs1571590 

IGF1R 1 1 4885.171 -0.196 -0.0785 * rs2139924 

NFKB1 1 1 4821.9 -0.215 -0.42 * rs4648110 

IL8 2 2 4818.652 -0.182 +0.472 * (not rs2227307) -0.666 * (not rs4073) 

IL8RA 1 1 4794.547 -0.261 +0.0929 * (not rs1008563) 

IL8RB 1 1 4822.595 -0.158 -0.0972 * rs4674258 

IL1A 1 2 4826.072 -0.298 +0.0838 * ((not rs3783546) or (not rs1878321)) 

IL1B 3 4 4814.134 -0.0784 -0.683 * (rs1143623 or ((not rs1143627) and (not rs1143633))) +0.505 * (not rs1143633) 

TNF 1 1 4823.367 -0.279 +0.17 * rs1800630 

MMPS 1 2 4872.371 -0.556 +0.371 * ((not rs1996352) or (not rs3918261)) 

BMP1 2 2 4760.828 -0.241 +0.898 * (rs12114940 and rs7592) 

BMP2 2 4 4802.057 -0.327 +0.321 * (rs1979855 and (not rs3178250)) +1.58 * ((not rs1979855) and rs3178250) 

BMP4 1 1 4818.195 -0.273 +0.209 * rs17563 

BMPR1A 1 3 4776.84 -0.119 -0.264 * ((rs6586034 or rs7088641) and (not rs7895217)) 

BMPR1B 1 1 4785.95 -0.293 +0.2 * (not rs9307147) 

BMPR2 1 1 4610.991 -0.273 +0.16 * rs6751210 

GDF10 1 1 4806.873 -0.216 -0.196 * rs7093975 

TLR2 1 1 4822.488 -0.197 -0.153 * rs3804099 

TLR3 1 1 4819.283 -0.582 +0.369 * (not rs3775292) 
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TLR4 1 1 4812.316 -0.916 +0.7 * (not rs11536898) 

EGR2 1 1 4820.473 -0.353 +0.142 * (not rs2295814) 

EGFR 2 2 3797.056 0.0183 -0.249 * (not rs2472520) -0.271 * rs6944906 

IRS1  1 1 5120.865 -0.141 +0.22 * IRS1 

VDR 1 1 4453.781 -0.306 +0.205 * VDRFok1 
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Supplementary Table 3.2: Colon cancer gene-specific trees and colon cancer survival 
 

Gene N of 

Trees 

N of 

Leaves 

Model  

score 

Model 

VEGF 1 2 476.336 -0.0166 +0.626 * (rs3025035 and rs3025039) 

FLT1 2 4 470.782 0.0524 -0.27 * rs17537653 +1.56 * (rs2256849 and ((not rs3936415) and (not rs9554320))) 

KDR 1 1 484.679 0.159 -0.269 * (not rs11941492) 

HIF1 2 4 368.132 -2.25 +2.35 * (rs2301113 and rs1951795) +2.25 * ((not rs1951795) and (not rs11549465)) 

PDGFB 1 2 489.5 -0.799 +0.82 * ((not rs2247128) or (not rs11704525)) 

TEK 1 1 500.886 -0.0129 +0.0482 * rs603085 

TGFB 1 1 497.861 -0.0234 +0.0473 * rs1800469 

TGFBR 1 1 484.8 -0.152 +0.24 * (not rs10733710) 

IGF1R 1 1 499.475 -0.00841 +0.249 * rs2139924 

NFKB1 1 1 492.632 -0.0109 +0.483 * rs4648072 

IL8 2 3 490.763 -0.131 +1.47 * (not rs4073) -1.29 * ((not rs4073) or (not rs2227307)) 

IL8RA 1 4 485.987 0.31 -0.335 * (rs1008562 or ((rs16858808 and rs1008563) or rs1008563)) 

IL8RB 1 1 492.01 0.119 -0.152 * (not rs4674258) 

IL1A 1 2 491.212 -0.135 +0.219 * (rs1878321 or rs3783546) 

IL1B 2 2 489.699 -0.205 +0.22 * rs1143627 +0.199 * rs1143634 

TNF 1 1 493.9038 0.0132 -0.0428 * rs1800630 

MMPS 1 4 488.361 0.155 -0.383 * (rs470215 or (((not rs470215) or rs3025066) and (not rs1996352))) 

BMP1 1 2 483.36 -0.348 +0.418 * ((not rs13257482) or rs4075478) 

BMP2 1 3 487.648 -0.239 +0.349 * (((not rs1979855) and (not rs1005464)) or (not rs3178250)) 

BMP4 1 2 492.0516 0.12 -0.185 * (rs17563 and (not rs2761887)) 

BMPR1A 1 2 483.277 -0.372 +0.461 * (rs6586034 or (not rs12765929)) 

BMPR1B 1 1 489.477 -0.0779 +0.208 * (not rs2719176) 

BMPR2 1 1 467.852 0.547 -0.556 * (not rs12477602) 

GDF10 1 1 490.678 0.0314 -0.346 * rs762454 

TLR2 2 5 483.326 -0.353 -0.558 * ((((not rs5743708) and (not rs5743704)) or rs4696483) or rs3804099) +0.884 * 

(not rs4696483) 

TLR3 1 2 492.134 0.0351 -0.258 * (rs3775291 and rs3775292) 
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TLR4 1 1 488.965 0.173 -0.243 * (not rs10759932) 

EGR2 2 3 488.955 3.88 -3.87 * rs9990 -3.88 * ((not rs9990) or rs2295814) 

EGFR 1 1 396.168 -0.182 +0.234 * (not rs845552) 

IRS1 1 1 595.49 0.0169 -0.12 * IRS1 

VDR 1 3 445.842 0.376 -0.434 * ((VDRBsm1 or (VDRCdx2)) or (not VDRFok1)) 
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CHAPTER 4  

Multiple Gene-Environment Interactions on the Angiogenesis Gene-Pathway Impact 

Rectal Cancer Risk and Survival 

4.1 Introduction  

Studying genetic variants in epidemiologic studies is of great value for identifying disease risk 

and outcomes. Compared to environmental exposures they are less sensitive to bias and represent 

valid, time-independent, biologically representative markers of disease (Le Marchand et al. 

2008). Coupled with rapidly evolving technological advances, they are increasingly attractive 

tools to researchers especially with the emergence of genome-wide association studies (GWAS) 

a decade ago typically linking individual single nucleotide polymorphisms (SNPs) to disease or 

phenotype.  GWAS have identified 18 susceptibility loci associated with colorectal cancer in 

European populations (Whiffin et al. 2014). Only a few of the identified SNPs have clear 

functional roles relevant to disease mechanisms. This is because SNP selection in GWAS is 

guided by linkage disequilibrium rather than functionality and it is difficult to determine whether 

the identified SNPs are causal or merely surrogates of the true causal variants (Hindorff et al. 

2009). GWAS can be viewed as a discovery tool, without any specific hypothesis of genetic 

associations or any biological relevance.  In addition, SNPs are typically of low-penetrance risk 

and despite being common, their effects are usually small and of limited preventive impact.  It is 

possible however, that individual loci are contributing to risk through a multi-gene model. 

A multi-gene model is best approached using a pathway of biological relevance to the disease of 

interest. One of the critical cancer-related biological processes necessary for tumor proliferation 

and progression in rectal cancer is the angiogenesis process: the fundamental process of 
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sprouting and expansion of blood vessels from preexisting vessels (Hanahan et al. 2011). 

Induction of angiogenesis seems to be an early event important for conversion of normal 

epithelium into cancer cells that influence risk of developing the disease, while sustained 

angiogenesis is essential for tumor expansion which may ultimately influence mortality 

(Ross1989, Folkman et al. 1989). In this study we focused on angiogenesis-related genes and 

aimed to construct a working pathway that captures the important genes working together to 

influence rectal cancer susceptibility and survival. The full risk model underlying rectal cancer, 

however, essentially involves interactions of genes with lifestyle environmental exposures 

(Lichtenstein et al. 2000). Identifying genetic risk modifying environmental exposure effects is, 

thus, critical from a prevention point of view (Giarelli et al. 2005).  

High-risk genotypes modifying the effects of high-risk environmental exposures on cancer 

outcomes, referred to as Gene-Environment Interactions (GEIs), have become a recent focus of 

molecular epidemiologic studies (Thomas 2010b). Identifying GEIs may well explain an 

important component of the “missing heritability” (Manolio et al. 2009, Thomas2010a). For 

specific exposures such as cigarette smoking and alcohol consumption, the evidence of 

association with rectal cancer has been inconclusive (Slattery et al. 1997b,Ferrari et al. 

2007,Potter1999a,Poynter et al. 2009,Cheng et al. 2014,Gong et al. 2012) and could be 

potentially strengthened by examining their association with rectal cancer in genetically 

susceptible individuals. Specifically, experimental evidence has shown that nicotine in tobacco 

smoke and ethanol stimulates angiogenesis under ischemic conditions (Heeschen et al. 2006, Gu 

et al. 2001). In addition, certain dietary patterns, specifically those that contain high consumption 

of red and processed meat, are associated with a moderate increased risk of rectal cancer 

(Gonzalez et al. 2010, Larsson et al. 2006, Chan et al. 2011).  Diet, however, is a complex 
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mixture of many nutrients and characterization of GEI could help determine the specific 

nutrients affecting the cancer risk and cancer-related mortality. We focused on protein as a 

nutrient based on its documented stimulatory effect on angiogenesis (Vigne et al. 2006, 

Grandison et al. 2009).  

Our approach to testing pathway GEI effects on rectal cancer risk and survival involved selection 

of candidate genes in the angiogenesis pathway and three environmental exposures relevant to 

angiogenesis. We hypothesized that high animal/vegetable protein intake ratio and prolonged 

intense pattern of cigarette smoking influence hypoxia (oxygen deprivation) and long-term 

alcohol intake influence hypoglycemia (glucose deprivation), both of which are ischemic 

conditions that enhance angiogenesis (Harris2002,Dor et al. 2001,Nishimoto et al. 2014).  We 

carried the logic of the biological hypothesis to the analysis by searching for biological forms of 

SNP-set interactions at the gene level, gene-set interactions at the pathway level, and modeled 

the pathway GEI effects guided by the hypothesized pathway structure. 

4.2 Methods 

4.2.1 Data Sources 

Study Population 

This analysis was based on a multicenter, population-based, case-control study of rectal cancer 

(The Diet, Activity and Lifestyle as a Risk Factor for Rectal Cancer) conducted at two 

geographical areas in the United States: Utah and Northern California (Slattery et al. 2003). 

Rectal cancer cases were identified using a rapid-reporting system during the period between 

May 1997 and May 2001. Case eligibility was determined according to the Surveillance 
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Epidemiology and End Results (SEER) Cancer Registries in Northern California and Utah. 

Eligibility criteria were: being 30 to 79 years of age at time of diagnosis, speaking English, and 

being mentally and physically competent to complete the interview.  Cases with history of 

previous colorectal cancer or known familial adenomatous polyposis (as indicated on pathology 

reports), ulcerative colitis, or Crohn’s disease were not eligible. Controls were frequency 

matched to cases by sex and 5-year age groups in each geographical area. 

Interview data 

Trained and certified interviewers conducted a detailed computerized in-person interview that 

took approximately 2 to 3 hours to complete (Edwards et al. 1994). Participants completed two 

questionnaires: a) the health and lifestyle questionnaire (among data collected were demographic 

characteristics, medical history, meal patterns, smoking and alcohol consumption information); 

and b) a diet history questionnaire on dietary intakes. Dietary intake was ascertained using an 

adaptation of the CARDIA diet history (Slattery et al. 1994, Liu et al. 1994,McDonald et al. 

1991). The referent period for the study questionnaires was the calendar year two to three years 

prior to diagnosis or from selection for controls.  

Tumor registry data 

Tumor registry data was obtained from local tumor registries to determine disease stage at 

diagnosis, months of survival after diagnosis, and vital status. Disease stage was categorized 

using the SEER staging criteria (in-situ, local, regional, distant, and unknown) (Young et al. 

2001). Follow-up was obtained for all study participants and was terminated at the end of the 

year 2007. At that time all study participants had over five years of follow-up. 
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TagSNP selection and genotyping 

TagSNPs were selected using the following parameters: LD blocks using a Caucasian LD map 

(International HapMap Consortium2003) and r
2≥0.8; minor allele frequency (MAF)>0.1; LD 

block range= -1500 bps from the initiation codon to +1500 bps from the termination codon; and 

1 tagSNP for each LD bin. All markers were genotyped using a multiplexed bead-array assay 

format based on Golden Gate chemistry (Illumina Human Hap550k, San Diego, California). A 

genotyping call rate of 99.85% was achieved. Blinded internal duplicates represented 4.4% of the 

total sample set; the duplicate concordance rate was 100%.  TGFβ1 gene was not included in the 

Illumina BeadChip platform; alternatively, representative markers were genotyped using a 

TaqMan assay from Applied Biosystems (Foster City, California).  Each 5µl PCR reaction 

contained 20ng of genomic DNA, primers, probes, and TaqMan Universal PCR Master Mix 

(containing AmpErase UNG, AmpliTaq Gold enzyme, dNTPs, and reaction buffer).  PCR was 

carried out under the following conditions: 50
o
C for 2 minutes to activate UNG, 95

o
C for 10 min, 

followed by 40 cycles of 92
o
C for 15 sec, and 60

o
C for 1 minute using a 384 well duel block ABI 

9700.  Fluorescent endpoints of the TaqMan reactions were measured using a 7900HT sequence 

detection instrument. Individuals with missing genotype data were not included in the analysis 

for that specific marker. 

Candidate Gene-Pathway 

We constructed a working figure of the angiogenesis gene-pathway relevant to rectal cancer to 

guide the analysis (Figure 4.1). The process involved extracting information from the standard 

pathway maps and pathway text descriptions from three recognized web-based resources: The 

BioCarta organization, KEGG (Kyoto Encyclopedia of Genes and Genomes), and Cell Signaling 
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Technologies (CST). We specifically searched these resources using the keyword “angiogenesis” 

and extracted information from the “VEGF, Hypoxia, and Angiogenesis Pathway” from the 

BioCarta Pathways (http://www.biocarta.com/pathfiles/h_vegfPathway.asp); the “VEGF 

Signaling Pathway” available from the KEGG Pathway database (http://www.kegg.jp/kegg-

bin/highlight_pathway?scale=1.0&map=map04370&keyword=angiogenesis); and the 

“Angiogenesis Signaling Pathway”  from the CST pathways 

(http://www.cellsignal.com/common/content/content.jsp?id=pathways-angiogenesis) (See 

Supplementary Figures 4.1-4.3). We also conducted supplementary searches of online gene 

databases and PubMed for information on biological function of the candidate genes and 

experimental observations of biological activities of genes in relation to tumor angiogenesis.  

Examination of the molecular interactions as illustrated in the pathway maps along with their 

descriptions, and the information on the biological activity of the genes guided the candidate 

gene selection and provided rationale for grouping genes in specific sub-pathways. Genes were 

included in the working pathway figure as either major drivers of the angiogenesis process or 

interacting inflammatory genes (Table 4.1).  

Environmental variables 

Smoking 

An individual was considered a regular cigarette smoker if smoked at least 100 cigarettes during 

a lifetime, and otherwise was classified as never having smoked. For smokers, pack-years of 

cigarettes smoked was determined by multiplying the usual number of cigarettes smoked per day 

by total years of smoking cigarettes (determined by taking into account start and stop dates of 

smoking), and dividing by 20 (a pack of cigarettes). For this analysis, subjects were categorized 

http://www.biocarta.com/pathfiles/h_vegfPathway.asp
http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map04370&keyword=angiogenesis
http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map04370&keyword=angiogenesis
http://www.cellsignal.com/common/content/content.jsp?id=pathways-angiogenesis
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using a cut-off of 20 pack-years (20 or more pack-years, less than 20 pack-years, and never 

smoked).  

Alcohol 

Participants were asked to report usual amounts consumed during the weekdays and during 

weekend days to better capture total alcohol consumption.  Additionally, participants were asked 

about alcohol consumption 10 and 20 years ago as part of the health and lifestyle questionnaire.  

Alcoholic beverages were defined as beer, wine, and hard liquor including alcoholic cocktails, 

whiskey, gin, vodka, scotch, bourbon, or rum. Participants who responded with "no" to the 

question, "Did you ever drink an average of one or more alcoholic beverages a month for a year 

or longer?" were considered as never to have drunk alcohol. Participants who responded "yes" to 

this question were then asked the usual number of 12-ounce bottles of beer, 4-ounce glasses of 

wine, and 1.5-ounce shots of hard liquor consumed 10 and 20 years ago. Long-term exposure to 

alcohol, based on consumption of any type of alcoholic beverage 10 and 20 years prior to the 

referent year, was categorized in two levels (none to moderate and high alcohol consumption, 

cut-off was 20gms/week for men and 10gms/week for women).  

Dietary Protein 

Nutrient information was obtained by converting food-intake data into nutrient data using the 

Minnesota Nutrition Coordinating Center nutrient database (Dennis et al. 1980). Total protein 

intake included animal proteins (meats, poultry, fish, dairy, and eggs) and vegetable proteins 

(legumes, tofu). We calculated an animal/vegetable protein intake ratio and used a cut-off 

corresponding to the median of animal protein proportion of total protein intake (i.e. 60% of total 

protein intake is animal protein equivalent to a 1.5 animal/vegetable protein intake ratio, which 
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means 50% more animal protein intake than vegetable protein intake). This resulted in two 

categories (low and high animal/vegetable protein intake ratio). 

4.2.2 Statistical analysis 

We applied a 3-step analysis framework to modeling candidate pathway GEIs consisting of the 

following steps: 

1. Step 1, developing a summary profile for each gene on the candidate pathway referred to 

as gene-specific tree (GST). We used logic regression (Ruczinski et al. 2003) to search 

for SNP-set interactions within each gene. Details on the method are provided in 

supplementary materials. The GSTs, rather than individual SNPs, were used as building 

blocks for the next two steps. 

2. Step 2, modelling gene-set interactions across the full pathway referred to as pathway 

tree(s) by searching for GST-set interactions using logic regression. Pathway trees are 

adjusted for in the GEI models of the next step. 

3. Step 3, modelling pathway GEIs between the GSTs and the three environmental 

exposures. Guided by the pathway figure (Figure 4.1), we first divided the full pathway 

into nine sub-pathways (grouped in boxes in the figure) and summarized GEIs in each 

sub-pathway using backward selection that eliminated the least significant interaction 

term(s) in a stepwise fashion. The GEIs that remained in the sub-pathway summary 

models at the 5% significance level were jointly tested in the final GEI model for the 

entire pathway. We fitted logistic regression models for rectal cancer risk and Cox 

proportional hazard regression models for rectal cancer survival. All models in addition 

to adjusting for the pathway trees, were also adjusted for age at diagnosis or selection, 

sex, race (white, Hispanic, or black race), and study center (University of Utah and the 
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Kaiser Permanente Medical Care Program of Northern California). Baseline hazards for 

Cox proportional hazards models were stratified by rectal cancer stage at diagnosis. The 

GEI models were fitted using Stata version 12.  

A summary of the three steps of the analysis approach are shown in Tables 4.2A and 4.2B for 

rectal cancer risk and survival, respectively. 

4.3 Results  

We analyzed data of 747 rectal cancer cases and 956 controls. The angiogenesis candidate gene-

pathway included a total of 257 SNPs belonging to 34 angiogenesis-related genes (Table 4.1). 

The GSTs developed from the first step of the analysis are shown in Supplementary Tables 4.1 

and 4.2 for rectal cancer risk and survival, respectively. The tables include a list of the genes, the 

corresponding optimal model size as determined by the cross-validation, the score of the final 

model, and the SNPs forming the GSTs.  The pathway trees resulting from the second step of the 

analysis are shown in Supplementary Figures 4.3 and 4.4. The third and final step of the 

analysis modeled the pathway GEIs; results are displayed in Tables 4.3 for rectal cancer risk and 

Table 4.4 for rectal cancer survival. For all significant GEIs, we observed a positive gradient in 

the magnitude of the main GST effects with increasing levels of animal protein intake, smoking 

and alcohol consumption. 

Eight significant GEIs were associated with rectal cancer risk involving six genes. Two genes 

were among the major drivers of angiogenesis: PDGFB rs4821877 with high animal/vegetable 

protein intake (interaction odds ratio (ORINT) = 1.75, 95% confidence interval (CI) (1.04, 2.92), 

p-value= 0.034) and IGF1R rs2139924 with long-term alcohol consumption (ORINT =1.69, 95% 

CI (1.04, 2.72), p-value= 0.033).  Other significant GEIs were: TNF rs1800630 (ORINT =1.85, 
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95% CI (1.10, 3.11), p-value= 0.021) with ≥ 20 pack-years of smoking and MMP1 rs470215 

(ORINT =2.44, 95% CI (1.24, 4.81), p-value= 0.010). Both complementary GSTs for TLR4 and 

EGR2 genes were interacting with both smoking and alcohol consumption. TLR4 rs1927911 

AND rs11536889 with ≥ 20 pack-years of smoking (ORINT =2.34, 95% CI (1.38, 3.98), p-value= 

0.002), TLR4 rs1927911 OR rs11536889 with long-term alcohol consumption (ORINT =2.10, 

95% CI (1.22, 3.60), p-value= 0.007); EGR2 rs2295814 with ≥ 20 pack-years of smoking (ORINT 

=2.23, 95% CI (1.04, 4.78), p-value= 0.040) with long-term alcohol consumption (ORINT =2.12, 

95% CI (1.01, 4.46), p-value= 0.048).  

Five GEIs were associated with survival, four of which were interactions with high 

animal/vegetable protein intake: KDR rs6838752 (interaction hazard ratio HRINT=4.12, 95% CI 

(1.52, 11.13), p-value= 0.005), TLR2 rs7656411 (HRINT=8.69, 95% CI (1.09, 69.12), p-value= 

0.041), EGR2 rs224082 (HRINT=2.41, 95% CI (1.40, 4.15), p-value= 0.002), and EGFR 

rs17151957 (HRINT=5.84, 95% CI (1.80, 18.94), p-value= 0.003). The fifth significant 

interaction was IL8RA rs1008562 with ≥ 20 pack-years of smoking (HRINT=2.05, 95% CI (1.12, 

3.76), p-value= 0.019). 

4.4 Discussion 

We focused on the angiogenesis pathway, a biologic pathway relevant to rectal cancer outcomes, 

selected three environmental exposures relevant to angiogenesis and applied a gene-environment 

interaction analysis approach that captured underlying biologic forms of interaction within genes 

and between genes and environmental exposures. Specifically, we constructed a working 

pathway figure of select angiogenesis-related genes and used it to guide the analysis. We used 

logic regression to summarize SNP-set interactions within each gene of the angiogenesis 
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pathway and gene-set interactions across the full pathway, and modeled gene-environment 

interactions crossing the gene-level summaries from logic regression with dietary protein intake, 

smoking, and alcohol consumption.  Eight interactions for rectal cancer risk and five for rectal 

cancer survival were statistically significant at the 5% level.   

A recent approach to evaluating gene-environment interaction in cancer is through investigating 

interactions between known common susceptibility loci (i.e., strong and statistically significant 

GWAS or candidate-gene findings) and established risk factors of the cancer.  These studies are 

generally of large sample size and may involve combined case-control and/or nested case-control 

samples. Despite the advantages of their size and design they have provided limited evidence of 

GEI in colorectal cancer (Figueiredo et al. 2011,Hutter et al. 2012,Siegert et al. 2013) and 

similarly in breast (Campa et al. 2011,Travis et al. 2010) and prostate cancers (Lindstrom et al. 

2011). It has been argued that these studies may be missing interactions that would have been 

found had they considered different environmental exposures, measured them differently, and/or 

used different models (Prentice 2011). Another possibility is relying on a hypothesis-driven 

approach that focuses on environmental factors relevant to the studied genes. 

Our choice of environmental variables was based on the hypothesis that protein intake, smoking 

and alcohol are enhancing angiogenesis and potentially interacting with the angiogenesis genes 

in the state of tumor ischemia. Lifestyle factors such as smoking and alcohol consumption could 

be considered more strictly “environmental”, having less genetic influence compared to other 

complex risk factors with more pronounced genetic influence (e.g., body mass index). We also 

focused on intense and long-term patterns of smoking and alcohol consumption (i.e., considering 

both amount and duration of exposure) as compared to never exposed participants which 

maximizes power of detecting an interaction with the gene and avoids dilution of risk by short-
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term and/or distant former users. It has also been suggested that modelling SNP genotypes as 

indicator variables for one and two minor alleles rather than the number of SNP minor alleles 

strengthens the detected association (Prentice et al. 2009). It is possible that certain 

environmental effects are localized to a specific SNP genotype (Prentice 2011). Logic regression 

models interactions of binary predictors and we used indicators of SNP genotypes to develop the 

gene-specific trees. These considerations embedded in the framework of our approach potentially 

enhanced its capacity to detect GEI in rectal cancer.  

Several studies supported a potential role of high intake of red and processed meat on colorectal 

cancer risk, yet the evidence remains insufficient (Alexander et al. 2010, Alexander et al. 2011). 

Plausible mechanisms were related to the content of meat (protein, iron) (Sun et al. 2012b)or 

compounds generated by the cooking process (N-nitroso compounds, heterocyclic aromatic 

amines) (Zhu et al. 2014). These compounds that are not absorbed by the small intestine are 

transferred to the lumen of the large intestine lumen and, when in excess, may have toxic effects 

on the large intestine mucosa (Kim et al. 2013). The higher intake of protein and a decrease in its 

digestibility leads to more undigested proteins reaching the colon and being fermented by 

colonic bacteria. Increased rate of protein fermentation may promote DNA damage and loss of 

large intestine epithelial cell homeostasis leading to an imbalance between new and dying cells 

and ultimately tumor growth (Kim et al. 2013). Protein fermentation mainly occurs in the distal 

parts of the colon and rectum (Silvester et al. 1995, Chao et al. 2005) and previously reported 

associations of meat intake have been generally stronger for distal colon and rectal cancer. High 

energy intake has also been linked with increased risk of colorectal cancer but not diet high in 

protein (Sun et al. 2012a); however animal protein intake specifically has been previously 

associated with colorectal adenoma (Yang et al. 2012).  
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In our results, four of the five observed GEIs on rectal cancer survival were with high animal 

protein intake. The mechanisms relating animal protein to rectal cancer and the specific gene 

functions could plausibly explain such observations. One of the observed interactions is with the 

KDR gene. KDR is the VEGF receptor that mediates VEGF-A induced production of Nitric 

Oxide (NO) by endothelial cells (Kroll et al. 1998). Apart from the processing of meat, a high 

protein diet leads to a high amine concentration (due to the excess intake and increased 

fermentation) which in the presence of NO yields the potentially carcinogenic nitrosoamines 

(Nitric Oxide (NO) added to the amine).  TLR2 and EGR2 genes are both related to the same 

signaling pathway, and evidence has shown TLR expression and signaling mediates the response 

of intestinal epithelial cells to bacterial antigens possibly increasing the rate of protein 

fermentation (Singh et al. 2005). Western style diet has been linked to colorectal cancer 

(Slattery2000,Slattery et al. 2000,Murtaugh et al. 2004) and experimental evidence showed 

EGFR was required for tumor promotion by the western style diet and fat rich diet (Dougherty et 

al. 2009,Dougherty et al. 2011). Western diet is rich in meat and although these studies describe 

the high fat content, this may help explain the EGFR and animal protein interaction effects on 

rectal cancer. 

Recently, a genome-wide analysis identified an interaction between a SNP on chromosome 

10p14 near the GATA3 gene and processed meat that modified colorectal cancer risk (Figueiredo 

et al. 2014). The authors suggested GATA3 transcription triggers a pro-tumorigenic 

inflammatory response of processed meat on colorectal cancer. In our results, we identified 

interactions of high animal protein intake on rectal cancer risk with MMP1 gene previously 

implicated in inflammatory mediated pathological processes including tumor progression 

(Brinckerhoff et al. 2000). Based on evidence that GATA3 transcription factor was found to 
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potentially mediate different expression levels of MMP1 (Affara et al. 2011), it is possible that 

our observed MMP1-animal protein GEI is providing further characterization of the GATA3-

processed meat interaction. This also supports a candidate pathway approach in identifying 

biologically plausible GEI effects. 

Toll-like receptors (TLRs) play a key role in the innate immune system and are important 

mediators of inflammation in the gut, potentially modulating colorectal cancer risk. Tissue 

expression studies suggest involvement of TLR2 (Nihon-Yanagi et al. 2012) and TLR4 

(Tchorzewski et al. 2014) in colorectal carcinogenesis. Functional polymorphisms in both genes 

were also recently found in association with colorectal cancer risk, and their effects were 

modified by obesity and smoking (Pimentel-Nunes et al. 2013). We have previously reported on 

associations of TLR2 and TLR4 SNPs with colon cancer risk and survival (Slattery et al. 2012a). 

In this analysis, we observed interactions of TLR4 with smoking and alcohol on rectal cancer risk 

and TLR2 with animal protein on rectal cancer survival. Tumor promotion by triggering an 

inflammatory response provides biological plausibility to these interactions. For example, 

cigarette smoke has been shown to activate NF-κB (Anto et al. 2002), one pathway through 

which the inflammatory response of TLRs is mediated. Inhibition of NF-κB dependent intestinal 

inflammation was recently attained by targeting an enteroglial-specific protein/TLR4 axis 

demonstrating therapeutic effects in ulcerative colitis (Esposito et al. 2013). Potential similar 

effects could provide insights into new drug targets for colorectal cancer. Further research 

implicating TLR genes and their interactions with lifestyle factors could provide important 

insights into drug targets for colorectal cancer. 

We performed secondary analysis of available case-control study data of rectal cancer and had 

no control over the sample size. , We detected statistically significant GEIs in our study and thus 
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a power calculation was not needed.  Data were collected through a standardized interview 

process to minimize interviewer bias, long-term exposure information for smoking and alcohol 

were collected, and availability of confounding variables for model adjustment were available. 

The interviewer-administered questionnaires were extensive and captured more detailed 

exposure information than is available from self-administered questionnaires. The major strength 

of the analysis, however, was our integration of the relevant biologic information in the 

construction of the pathway that was carried throughout the analysis process.  The GEI models 

were large in size involving a large number of GST-environment interactions across the 

pathway; accordingly we limited the adjustment variables to select CRC risk and survival 

predictors. Although we adjusted for important predictors (age, sex, race, study center, and 

cancer stage), we did not adjust for further CRC-relevant factors such as tumor microsatellite 

instability (MSI) status. Although it is possible that we missed important angiogenesis genes 

when developing the working pathway figure, our candidate pathway has involved a relatively 

large number of genes implicated in rectal carcinogenesis. We used cross-validation to specify 

model size for the logic regression models and as such summarization of the gene effects was 

limited by the specified model size in addition to the number of tagSNPs on each gene. Our 

candidate approach compared to a pure empirical approach to examining GEI, however, was able 

to detect an appreciable number of novel GEIs. Furthermore, since the candidate associations 

were biologically hypothesized a priori, a multiple testing adjustment for testing many non-

hypothesized associations in GWAS was not required for our candidate gene-pathway analyses.  

Our approach to pathway analysis provides a powerful tool to elucidate the overall effects of the 

angiogenesis pathway genes and their interaction with the three exposures on rectal cancer 

outcomes. The angiogenesis pathway is one of the hallmarks of cancer, and findings could be 
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potentially informative to other solid tumors. The diet and lifestyle factors are modifiable factors 

and are theoretically preventable and also considering the large magnitude of the detected GEIs 

the potential preventive impact is increased. In addition to essential insights for preventive 

strategies, GEI studies are useful for identifying drug targets and opens avenues for personalized 

preventive and treatment strategies.  
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Figure 4.1: Working figure of the angiogenesis pathway genes.  

Key gene components of the pathway are in blue frames; secondary genes are in black frames; environmental factors are in green text. 
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Table 4.1: Gene list in angiogenesis pathway 

Genes  Name 

 

Key components of angiogenesis pathway 

VEGFA  Vascular endothelial growth factor A 

FLT1 Vascular endothelial growth factor receptor 1 

KDR Vascular endothelial growth factor receptor 2 

HIF-1α Hypoxia-inducible factor 1, alpha 

PDGF  Platelet-derived growth factor 

TIE2 Tyrosine-protein kinase receptor 

TGFβ Transforming growth factor, beta  

TGFβR Transforming growth factor, beta receptor 

IGF-IR Insulin-like growth factor-I receptor 

 

Interacting inflammatory genes 

NFKB1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 

IL8 Interleukin-8 

IL8RA Interleukin-8 receptor, alpha 

IL8RB Interleukin-8 receptor, beta 

IL1A Interleukin-1, alpha 

IL1B Interleukin-1, beta 

TNF Tumor necrosis factor 

MMPs Matrix metallopeptidases (MMP1, MMP3, MMP7, MMP9) 

BMPs Bone morphogenetic protein (BMP1,BMP2,BMP4,BMPR1A,BMPR1B,BMPR2) 

TLRs  Toll-like Receptor (TLR2, TLR3, TLR4) 

EGR2 Early Growth response 2 

EGFR Epidermal growth factor receptor 

IRS1 Insulin receptor substrate 1 

VDR Vitamin D Receptor 
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Table 4.2: Summary of the 3-step candidate pathway gene-environment interaction approach 

C. Rectal cancer risk analysis steps 

Analysis 

Step 

Interaction of 

interest 

Variable of 

interest 

Model Specific 

Procedures 

Product 

Step 1: 

Summarize 

gene effects 

SNP-set 

interaction 

within gene 

SNPs on each 

gene separately 

Logic regression 

with logit link 

Cross-validation 

to determine 

optimal model 

size 

Gene-

specific 

trees (GSTs) 

Step 2: 

Summarize 

pathway 

effects 

Gene-set 

interaction 

within 

pathway 

All GSTs on the 

pathway 

Logic regression 

with logit link 

Cross-validation 

to determine 

optimal model 

size 

Pathway 

Trees 

Step 3:  

Test gene-

environment 

interaction 

Gene-

environment 

interaction 

within 

pathway 

a. Sub-pathway 

specific  

GSTxE*  

b. Full pathway 

GSTxE 

Logistic 

regression model
¥
 

Statistical 

significance 

testing 

Pathway 

GEIs 

* GSTxE, gene-specific tree - environment interaction  
¥
Models adjusted for age, sex, race, study center, pathway trees 

D. Rectal cancer survival analysis steps 

Analysis 

Step 

Interaction of 

interest 

Variable of 

interest 

Model Specific 

Procedures 

Product 

Step 1: 

Summarize 

gene effects 

SNP-set 

interaction 

within gene 

SNPs on each 

gene separately 

Logic regression 

fitting exponential 

survival models 

Cross-validation 

to determine 

optimal model 

size 

Gene-

specific 

trees (GSTs) 

Step 2: 

Summarize 

pathway 

effects 

Gene-set 

interaction 

within 

pathway 

All GSTs on the 

pathway 

Logic regression 

fitting exponential 

survival models 

Cross-validation 

to determine 

optimal model 

size 

Pathway 

Trees 

Step 3:  

Test gene-

environment 

interaction 

Gene-

environment 

interaction 

within 

pathway 

a. Sub-pathway 

specific  

GSTxE*  

b. Full pathway 

GSTxE 

Cox Proportional 

Hazards model
¥
 

Statistical 

significance 

testing 

Pathway 

GEIs 

* GSTxE, gene-specific tree - environment interaction 
¥
Models adjusted for age, sex, race, study center, pathway tree, stratified by cancer stage 
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Table 4.3: Effects of gene-environment interactions significant at 5% level between rectal cancer gene-specific trees and environmental 

factors on rectal cancer risk 

Gene-

Specific 

Tree 

 

Gene Chr Cases 

(%) 

Control 

(%) 

Gene OR* 

(95%CI) 

Env  

Factor 

Category 

 

N (%) Gene OR by 

Env Factor* 

(95%CI) 

ORINT* 

(95%CI) 

PINT* 

rs4821877 

(CC or CT)  

PDGFB 22q13.1 610 

(80.7%) 

 

746 

(77.6%) 

1.21 (0.95, 1.54) Animal/ 

Vegetable 

Protein 

Ratio 

Low 

 

612 

(35.6%) 

0.85 (0.57, 1.26) Ref 
 

         

High 

 

1106 

(64.4%) 

1.47 (1.08, 2.00) 1.75 (1.04, 2.92) 0.034 

rs2139924   

(AA)  

IGF1R 15q26.3 243 

(30.4%) 

 

287 

(28.5%) 

0.93 (0.77, 1.00) Alcohol Non/Moderat

e 

1396 

(77.4%) 

 

0.82 (0.66, 1.02) 
 

Ref 
 

        Heavy 

 

408 

(22.6%) 

1.36 (0.91, 2.05) 1.69 (1.04, 2.72) 0.033 

rs1800630 

(CA or AA) 

TNF 6p21.3 240 

(31.8%) 

267 

(27.8%) 

1.19 (0.96, 1.47) Smoking Non  834 

(48.7%) 

0.95 (0.70, 1.30) Ref 
 

       < 20 PY  400 

(23.4%) 

1.13 (0.71, 1.81) 1.14 (0.65, 2.01) 0.644 

         

≥ 20 PY  

477 

(27.9%) 
1.68 (1.11, 2.54) 1.85 (1.10, 3.11) 0.021 

rs470215 

(TT or TC) 

MMP1 11q22.3 715 

(90.3%) 

880 

(87.9%) 

1.23 (0.89, 1.69) Animal/ 

Vegetable 

Protein 

Ratio 

Low 

 

640 

(35.7%) 

0.67 (0.40, 1.14) Ref 
 

        High 

 

1153 

(64.3%) 
1.78 (1.18, 2.70) 2.44 (1.24, 4.81) 0.010 

            

 

(Table continues) 
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Table 4.3 (Continued).  

 

Gene-

Specific 

Tree 

 

Gene Chr Cases 

(%) 

Control 

(%) 

Gene OR* 

(95%CI) 

Env  

Factor 

Category 

 

N (%) Gene OR by 

Env Factor* 

(95%CI) 

ORINT* 

(95%CI) 

PINT* 

rs1927911 

(CC) 

TLR4 9q32-

q33 

396 

(52.4%) 

495 

(51.5%) 

0.93 (0.76, 1.15) Smoking Non  834 

(48.7%) 

0.80 (0.59, 1.08) Ref 
 

AND 
rs11536889 

  546 

(72.2%) 

684 

(71.1%) 

  < 20 PY  400 

(23.4%) 

0.65 (0.41, 1.04) 0.99 (0.57, 1.74) 0.980 

(GG)       ≥ 20 PY  477 

(27.9%) 

1.33 (0.90, 1.98) 2.34 (1.38, 3.98) 0.002 

rs1927911 

(CT or TT) 

OR 

TLR4 9q32-

q33 

360 

(47.6%) 

467 

(48.5%) 

1.07 (0.87, 1.32) Alcohol Non/Moderate 1326 

(77.2%) 

 

0.95 (0.75, 1.21) 
 

Ref 
 

rs11536889 

(GC or CC) 

  210  

(27.8%) 

278 

(28.9%) 

 

   Heavy 

 

408 

(22.6%) 

1.58 (1.01, 2.47) 2.10 (1.22, 3.60) 0.007 

rs2295814 

(GA or AA) 

EGR2 10q21.1 106 

(14.0%) 

115 

(12.0%) 

1.11 (0.83, 1.49) Smoking Non  834 

(48.7%) 

0.90 (0.58, 1.37) Ref 
 

       
< 20 PY  400 

(23.4%) 

1.21 (0.65, 2.28) 1.84 (0.83, 4.09) 0.130 

        ≥ 20 PY  477 

(27.9%) 

1.53 (0.89, 2.65) 2.23 (1.04, 4.78) 0.040 

rs2295814 

(GG) 

EGR2 10q21.1 650 

(86.0%) 

847 

(88.0%) 

0.90 (0.67, 1.20) Alcohol Non/Moderate 1326 

(77.2%) 

0.81 (0.57, 1.14) Ref 
 

        Heavy 

 

391 

(22.8%) 

1.21 (0.69, 2.11) 2.12 (1.01, 4.46) 0.048 

            

Abbreviations: Chr, Chromosome; Env, Environmental; PY, pack-years; OR, odds ratio; P, p-value; INT, interaction 

*Adjusted for age, sex, race, study center, pathway trees 
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Table 4.4: Effects of gene-environment interactions significant at 5% level between rectal gene-specific trees and environmental factors on 

rectal cancer survival 

Gene-

Specific 

Tree 

Gene Chr Cases 

(%) 

Gene HR* 

(95%CI) 

Env  

Factor 

Category 

 

N (%) Gene OR by Env 

Factor* (95%CI) 

HRINT* 

(95%CI) 

PINT* 

rs6838752  

(TT or TC) 

KDR 4q11-

q12 

705 

(93.6%) 

0.89 (0.55, 1.45) Animal/ 

Vegetable 

Protein 

Ratio  

Low 

 

258 (32.4%) 0.44 (0.21, 0.91) Ref 
 

       High 538 (67.6%) 1.43 (0.73, 2.83) 4.12 (1.52, 11.13) 0.005 

rs1008562 

(GG) 

IL8RA 2q35 211 

(27.9%) 

1.17 (0.89, 1.53) Smoking Non  348 (46.2%) 
 

1.04 (0.68, 1.60) 
 

Ref 
 

 

 

   

 

   < 20 PY  160 (21.2%) 0.88 (0.44, 1.75) 0.96 (0.46, 1.98) 0.905 

      ≥ 20 PY 245 (32.5%) 1.88 (1.20, 2.95) 2.05 (1.12, 3.76) 0.019 

rs7656411 

(GG) 

TLR2 4q32 61 

(8.1%) 

0.83 (0.48, 1.44) Animal/ 

Vegetable 

Protein 

Ratio 

Low 

 

244 (32.3%) 0.13 (0.02, 0.98) Ref 
 

   
 

  High 
512 (67.7%) 1.33 (0.74, 2.38) 8.69 (1.09, 69.12) 0.041 

rs224082  

(GA or AA) 

EGR2 10q21.1 455 

(60.2%) 
0.72 (0.56, 0.92) Animal/ 

Vegetable 

Protein 

Ratio 

Low 

 

244 (32.3%) 0.39 (0.25, 0.62) Ref 
 

   
 

  High 
512 (67.7%) 0.93 (0.68,1.23) 2.41 (1.40, 4.15) 0.002 

rs17151957 

(AA) 

EGFR 7p12 41 

(6.5%) 
1. 82 (1.16, 2.88) Animal/ 

Vegetable 

Protein 

Ratio 

Low 

 

244 (32.3%) 0.54 (0.19, 1.53) Ref 
 

   
 

  High 
512 (67.7%) 3.37 (1.95, 5.82) 5.84 (1.80, 18.94) 0.003 

Abbreviations: Chr, Chromosome; Env, Environmental; PY, pack-years; HR, hazard ratio; P, p-value; INT, interaction 

*Adjusted for age, sex, race, study center, pathway tree, baseline hazard stratified by cancer stage  
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Supplementary Information 

Logic Regression 

Logic regression is a methodology that searches for Boolean combinations of binary predictors 

(e.g., SNPs) to detect high-order interactions and their patterns within a regression framework. 

The SNPs in a Boolean combination are referred to as “leaves” and the combination of the SNPs 

joined by the Boolean operators, (AND),  (OR), and 
c
 (NOT), is referred to as a “logic tree”. 

The logic trees are also binary variables taking the value of “0” or “1”, or “Yes” or “No”. 

We implemented the logic regression in R version 3.0.0 using the “LogicReg” R package 

(Charles Kooperberg and Ingo Ruczinski (2013). LogicReg: Logic Regression. R package 

version 1.5.5. http://CRAN.R-project.org/package=LogicReg). We used logic regression models 

fitting logistic models to assess rectal cancer risk (scoring function: deviance); and exponential 

survival models (scoring function: negative log-likelihood) to assess rectal cancer survival. 

Categorical SNP genotype variables (coded: 0 for major-allele homozygotes (reference 

category), 1 for heterozygotes, and 2 for minor-allele homozygotes) were transformed into two 

binary dummy/indicator variables for having one and two minor SNP alleles. Specifically, the 

logic model with logit link took the form: 

log (Pr[Y=1]/ Pr[Y=0]) = 0 + 1 L1 + 2 L2 + … + p Lp 

where Y is a binary response variable, 0, 1,…, p are the model parameters, and L1, L2, …, 

Lp are the Boolean combinations of SNPs. 

The logic model for exponential survival took the form: 

log  λ(c) =0 + 1 L1 + 2 L2 + … + p Lp 

Ù Ú

http://cran.r-project.org/package=LogicReg
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where λ(c) is the hazard rate, a function of the marginal cumulative hazard c, 0, 1,…, p are 

the model parameters, and L1, L2, …, Lp are the Boolean combinations of SNPs.  

Considering the large search space, defined by the number of SNPs and all their possible 

combinations, the logic regression needs to employ an efficient search strategy. One of the 

search algorithms to select the logic trees implemented in logic regression is the simulated 

annealing algorithm (Schwender et al. 2010).  It basically involves, given a certain tree, picking a 

single move at a time from a set of six permissible moves (and counter moves) that leads to a 

new logic tree. The acceptance probability of the new model is dependent on the scores of both 

the old and new models and the stage of the annealing process. The further ahead in the 

annealing scheme the lower the acceptance probability if the new model has a worse score. To 

avoid over fitting in logic regression models it is necessary to employ a model selection 

procedure for the simulated annealing algorithm. Model selection involves determining the 

optimal model size defined as the number of logic trees and number of leaves in the logic trees. 

One of the methods implemented in the ‘LogicReg’ R package to derive the optimal model size 

is cross-validation. A desired maximum fixed size is indicated and if reached the search 

algorithm prohibits further moves that increase the trees/leaves over the desired size. The final 

model size is usually smaller. We implemented 10-fold of cross-validations for all models with a 

maximum desired size of 9 logic trees and 20 leaves.  We fitted the optimal-size model a 100 

times, each with a different random seed (i.e. starting point for the search), and the model with 

the smallest scoring function was considered as the best solution.  

Biological interactions between genetic variants 

We explored two forms of biologically plausible SNP-set interactions derived from set theory 

terminology: SNP intersection and SNP union. A SNP intersection is a form of interaction where 
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disease risk is elevated only if all of the SNPs in a specified set (e.g., a gene) carry their 

respective high-risk genotype. A single SNP, or subsets, of the set carrying the high-risk 

genotype are insufficient to elevate disease risk. For example, for a set of three SNPs, all three 

SNPs (SNP 1 and SNP 2 and SNP 3) may have to carry their high-risk genotype for disease risk 

to be elevated. A SNP union describes a form of interaction where disease risk may be elevated 

through several independent ways (i.e., genetic heterogeneity) which may include a SNP 

intersection (e.g., SNP 1 and SNP 2) or an individual SNP carrying the high-risk genotype. We 

applied logic regression (Ruczinski et al. 2003) to search for these biologically plausible forms 

of SNP-set interactions within genes (Dinu et al. 2012). 
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Supplementary Figure 1: VEGF, Hypoxia, and Angiogenesis Pathway. Illustration reproduced courtesy 

of The BioCarta Pathways (http://www.biocarta.com/pathfiles/h_vegfPathway.asp). 

 

http://www.biocarta.com/pathfiles/h_vegfPathway.asp
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Supplementary Figure 2: VEGF Signaling Pathway. Illustration reproduced courtesy of KEGG, (Kyoto Encyclopedia of Genes and Genomes) 

Pathway database (http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map04370&keyword=angiogenesis). 

http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map04370&keyword=angiogenesis
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Supplementary Figure 3: Angiogenesis Signaling Pathway. Illustration reproduced courtesy of Cell 

Signaling Technology, Inc. (www.cellsignal.com). 

(http://www.cellsignal.com/common/content/content.jsp?id=pathways-angiogenesis). 

http://www.cellsignal.com/
http://www.cellsignal.com/common/content/content.jsp?id=pathways-angiogenesis
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Logic 1 
1.68 * (((IGF1R_1) or EGFR_L1) and (FLT1_L1)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Logic 2 
2.65 * IL8_L1 

 
 
 
 
 
 
 

Logic 3 
-0.475 * TLR3_L1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Logic 4 
-0.555 * (not NFKB1_L1) 

 

rs17518446 = GG 
Cases: 525 (82.81%) 
Controls: 675 (79.41%) 
 

rs4947971 = CT or TT 
Cases: 329 (51.89%) 
Controls: 419 (49.29%) 
 

or 

rs2139924 = AA or AC 
Cases: 757 (94.74%) 
Controls: 972 (96.52%) 

or 

and 

rs2227543 = CC 
Cases: 269 (35.58%) 
Controls: 331 (34.41%) 
 

rs4073 = AA 
Cases: 178 (23.54%) 
Controls: 222 (23.08%) 
 

and 

rs4771249 = CG or GG 
Cases: 290 (38.56%) 
Controls: 384 (40.13%) 
 

rs7324547 = AA 
Cases: 44 (5.85%) 
Controls: 69 (7.21%) 
 

and 

rs3775292 = CC or CG 
Cases: 718 (94.97%) 
Controls: 923 (95.95%) 
 

rs11721827 = CC 
Cases: 12 (1.59%) 
Controls: 25 (2.6%) 
 

rs3775292 = CG or GG 
Cases: 260 (34.39%) 
Controls: 374 (38.88%) 
 

or 

rs3775291 = AA 
Cases: 59 (7.8%) 
Controls: 100 (10.4%) 
 

or 

and 

rs1609798 = TT 
Cases: 103 (13.66%) 
Controls: 93 (9.72%) 
 



134 

 

 
Logic 5 

1.03 * (((GDF10_L1) or (KDR_L1 and IL1B_L1)) or ((TGFBR_L1 or BMPR2_L1) or BMPR1A_L1)) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 4: Gene-Pathway Tree in association with Rectal Cancer Risk. 

 

or 

and 

rs7895217 = AA 
Cases: 124 (16.42%) 
Controls: 144 (15.02%) 
 

rs4934275 = CC 
Cases: 31 (4.11%) 
Controls: 22 (2.29%) 
 

and 

rs6478974 = TT 
Cases: 241 (31.92%) 
Controls: 270 (28.1%) 
 

rs1571590 = AA 
Cases: 492 (65.17%) 
Controls: 611 (63.58%) 
 

and 

rs10733710 =GA or AA 
Cases: 301 (39.87%) 
Controls: 344 (35.8%) 
 

or 

rs2228545 = GA or AA 
Cases: 59 (7.86%) 
Controls: 43 (4.52%) 
 

or 
or 

and 

rs762454 = GG 
Cases: 103 (13.64%) 
Controls: 97 (10.15%) 
 

rs11598444 = GG 
Cases: 582 (77.09%) 
Controls: 726 (75.94%) 
 

and 

rs7692791 = TC or CC 
Cases: 555 (73.71%) 
Controls: 685 (71.43%) 
 

rs11732292 = AA 
Cases: 326 (43.29%) 
Controls: 389 (40.56%) 
 

and 

rs2034965 = GA or AA 
Cases: 360 (47.81%) 
Controls: 416 (43.38%) 
 

and 

rs1143623 = GG 
Cases: 427 (56.56%) 
Controls: 496 (51.56%) 
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+1.35 * ( FLT1_L1) 

 

 

 

 

Supplementary Figure 5: Gene-Pathway Tree in association with Rectal Cancer Survival. 

rs9554320 = AA 
Cases: 145 (19.28%) 

 

rs9554314 = AC or CC 
Cases: 170 (22.61%) 

and 

Logic 1 
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Supplementary Table 1: Rectal cancer gene-specific trees and rectal cancer risk 

 

Gene N of 

Trees 

N of 

Leaves 

Model 

deviance 

Logic Model 

VEGF 1 1 2331.035 -0.13 -0.256 * (not rs2010963) 

FLT1 1 2 2330.264 -0.218 -1.69 * (rs4771249 and rs7324547) 

KDR 1 3 2333.108 -0.322 +0.538 * ((rs7692791 and (not rs11732292)) and rs2034965) 

HIF1 1 1 1711.391 -0.248 +0.335 * rs1951795 

PDGFB 1 1 2338.464 -0.198 -0.194 * rs4821877 

TEK 1 1 2437.349 -0.294 +0.177 * rs603085 

TGFB 1 2 2404.302 -0.241 +1.03 * (rs1800469 and rs4803455) 

TGFBR 1 3 2345.621 -0.291 +0.452 * (((not rs6478974) and (not rs1571590)) and rs10733710) 

IGF1R 1 1 2476.206 0.182 -0.432 * (not rs2139924) 

NFKB1 1 1 2341.393 -0.283 +0.385 * rs1609798 

IL8 1 2 2352.165 -0.255 +0.842 * ((not rs2227543) and rs4073) 

IL8RA 1 1 2327.882 -0.315 +0.33 * rs1008562 

IL8RB 1 1 2343.786 0.00499 -0.327 * (not rs1126579) 

IL1A 2 2 2352.195 -0.114 -0.218 * rs3783546 -0.123 * (not rs2856838) 

IL1B 1 1 2350.997 -0.351 +0.201 * (not rs1143623) 

TNF 1 1 2349.938 -0.295 +0.184 * rs1800630 

MMPS 1 1 2442.518 -0.208 -0.236 * rs470215 

BMP1 1 1 2328.169 -0.244 +0.685 * rs3924229 

BMP2 1 2 2347.41 -0.325 +0.307 * ((not rs235770) and (not rs7270163)) 

BMP4 1 1 2350.241 -0.383 +0.178 * (not rs2761887) 

BMPR1A 1 2 2346.542 -0.259 +0.648 * (rs7895217 and rs4934275) 

BMPR1B 2 3 2331.615 0.14 -0.513 * rs1863652 -0.488 * (rs7694043 or rs3796442) 

BMPR2 1 1 2327.704 -0.272 +0.588 * rs2228545 

GDF10 1 2 2335.894 -0.273 +0.833 * (rs762454 and (not rs11598444)) 

TLR2 1 2 2348.24 -0.253 +1.43 * (rs1898830 and rs7656411) 

TLR3 1 4 2342.684 -0.0836 -0.372 * ((rs3775291 or (rs11721827 or rs3775292)) and (not rs3775292)) 



137 

 

TLR4 4 6 2335.05 17 -0.553 * rs11536889 -17.9 * (rs1927911 or rs11536898) -17.3 * (not rs1927911) +0.746 * 

(rs1927911 or rs11536889) 

EGR2 1 1 2355.287 -0.265 +0.183 * rs2295814 

EGFR 1 2 2011.035 -0.946 +0.717 * ((not rs17518446) or rs4947971) 

IRS1 1 1 2425.874 -0.14 -0.11 * (not IRS1) 

VDR 2 2 2291.277 -0.319 +0.289 * ((not VDRBsm1) and (not VDRFok1)) 
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Supplementary Table 2: Rectal cancer gene-specific trees and rectal cancer survival 

 

Gene N of 

Trees 

N of 

Leaves 

Model 

deviance 

Logic Model 

VEGF 1 2 251.874 -1.51 +1.54 * ((not rs3025040) or (not rs3025035)) 

FLT1 1 2 250.173 0.0637 -1.23 * (rs9554320 and rs9554314) 

KDR 5 8 238.811 0.284 -1.11 * rs2305949 -0.534 * rs2305948 +0.447 * (rs11732292 and (not rs12498529)) -0.45 * 

(not rs6838752) +0.995 * ((not rs2071559) and ((not rs2125489) and rs2305949)) 

HIF1 1 1 181.896 -0.0509 +0.281 * rs1951795 

PDGFB 1 1 256.592 0.0269 -0.462 * rs5750781 

TEK 1 1 264.549 -0.392 +0.401 * (not rs603085) 

TGFB 1 1 261.178 -0.073 +0.259 * (not rs4803455) 

TGFBR 1 1 257.822 0.0687 -0.203 * rs1571590 

IGF1R 1 1 269.653 -0.0241 +0.414 * rs2139924 

NFKB1 2 2 248.503 0.0339 -2.74 * (not rs11722146) +2.7 * (not rs1609798) 

IL8 1 2 254.513 0.0414 -1.04 * ((not rs2227543) and rs2227307) 

IL8RA 1 1 255.545 0.21 -0.299 * (not rs1008562) 

IL8RB 1 1 255.825 0.245 -0.343 * (not rs1126579) 

IL1A 2 2 255.057 0.138 -0.425 * (not rs3783546) +0.285 * (not rs2856838) 

IL1B 1 1 257.29 -0.099 +0.232 * (not rs1143633) 

TNF 1 3 257.479 -0.298 +0.339 * ((rs1800630 or (not rs1799964)) and (not rs1799964)) 

MMPS 2 3 261.841 -0.353 -1.89 * (rs470215 and rs1996352) +0.424 * (not rs3025066) 

BMP1 1 1 254.868 0.183 -0.273 * (not rs3924231) 

BMP2 3 5 250.705 0.287 -0.25 * (not rs235770) +0.478 * rs235770 -0.767 * (((not s7270163) and (not rs3178250)) and 

rs235770) 

BMP4 1 1 257.334 -0.0355 +0.178 * rs2761887 

BMPR1A 2 3 253.986 1.2 -1.23 * (not rs6586034) -1.21 * (rs7895217 or rs7088641) 

BMPR1B 1 1 254.513 -0.119 +0.281 * rs13134042 

BMPR2 1 1 255.746 0.0839 -0.201 * rs13430786 

GDF10 1 1 253.259 -1.1 +1.14 * (not rs2853838) 

TLR2 2 2 256.084 -0.366 +0.528 * (not rs7656411) -0.219 * rs1898830 
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TLR3 1 1 256.736 -0.223 +0.304 * (not rs11721827) 

TLR4 1 1 257.131 0.0182 -0.951 * rs11536889 

EGR2 1 1 256.718 -0.112 +0.268 * (not rs224082) 

EGFR 1 1 222.601 -0.0397 +0.54 * rs17151957 

IRS1 1 1 266.786 0.0151 -0.123 * IRS1 

VDR 1 1 247.286 0.0292 -0.233 * (not VDRFok1) 
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CHAPTER 5  

DISCUSSION 

Chronic diseases are multifactorial by nature and their complex etiology involves interplay 

between multiple genetic factors and with environmental factors (Dempfle et al. 2008). A 

simplified approach that focuses only on effects of individual markers (e.g., single nucleotide 

polymorphisms (SNPs)) is ignoring this inherent nature of disease, hence explaining only a small 

portion of its heritability while a significant part remains unaccounted for, referred to as ‘missing 

heritability’(Manolio et al. 2009). Several possible explanations for the missing heritability 

include overestimation of the heritability component of complex traits, underestimation of the 

risk associated with currently identified alleles, or yet-to-be identified common and/or rare 

alleles. Another probable reason is the existence of unidentified gene-gene and gene-

environment interactions (GEIs) (Culverhouse et al. 2002).  

In this dissertation we presented a novel methodological strategy to examine interactions 

between genetic variants and between genetic and environmental factors at the gene and pathway 

levels. We introduced our approach by applying it to genome-wide association (GWAS) data of 

six common chronic diseases and searched for biologically plausible forms of SNP-Set 

interactions within genes. We then extended our approach to test for GEIs at the gene-pathway 

level and applied it to case-control data of colon and rectal cancer focusing on the candidate 

angiogenesis pathway and the hypothesized environmental exposures: dietary protein intake, 

smoking, and alcohol consumption. Our framework consisted of 3-steps: the first two 

summarized the gene effects within genes and across the full pathway and the third step 

modelled the GEI effects on colon and rectal cancer risk and survival.   
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5.1 Within-gene SNP-set interactions in GWAS 

In the first study of this dissertation we showed how exploring interactions of all measured SNPs 

within each gene can identify appreciable numbers of novel susceptibility loci in GWAS. We re-

analyzed six diseases of The Wellcome-Trust-Case-Control-Consortium (WTCCC) data 

(Wellcome Trust Case Control Consortium2007): bipolar disorder (BD), coronary artery disease 

(CAD), hypertension (HT), rheumatoid arthritis (RA), type 2 diabetes (T2D), and type 1 diabetes 

(T1D). We considered two biologically plausible forms of SNP-set interactions: SNP 

intersection and SNP union. A SNP-set included all measured SNPs on each individual gene. 

SNP-set interactions within each gene were searched for using logic regression. The number of 

genes that showed strong evidence of association was: 13 for BD, 16 for CAD, 15 for HT, 72 for 

RA, 105 for T1D and 19 for T2D. In addition, strong evidence emerged implicating a large 

number of new discoveries supported by apparent biologically plausible links to disease. Top 

significant genes were: NFIA with BD, CDKN2B with CAD, COL4A4 with HT, BTNL2 with 

RA, and TCF7L2 with T2D.  

5.1.1 Examining epistatic interactions using logic regression in GWAS 

Several methodological approaches have been developed to search for interactions on a genome-

wide scale including exhaustive searches of two-locus (pairwise) interactions (Marchini et al. 

2005), two-stage methods that involve screening for marginal effects and selecting a subset of 

loci that pass some single-locus significance threshold which are then carried to the second stage 

of an exhaustive search of pairwise interactions (Wu et al. 2010,Tao et al. 2012), and Bayesian 

model selection (Zhang et al. 2007). Exhaustive searches for higher order interactions in a 

genome-wide setting means that the number of tests, the amount of time, and the computational 
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load increases exponentially with an increase of the order of interaction considered. These 

methods cannot effectively handle the high dimensionality of GWAS data, require significant 

marginal effects of individual markers, and/or rely on searches for pairwise interactions rather 

than higher-order interactions. A search for higher order interactions, however, is more likely to 

elucidate the underlying biological mechanism of disease.  

Logic regression searches for models with binary predictors that are combined by Boolean 

combinations (Ruczinski et al. 2003). We used logic regression to identify epistatic interactions 

of biologically plausible forms of SNP interactions within each gene (SNP intersection which 

combines SNPs by “and”, e.g., SNP 1 and SNP 2 and SNP 3, SNP union which combines SNPs 

by “or”, e.g., SNP 1 or SNP 2: we can combine the two forms in one, e.g., (SNP 1 or SNP 2) and 

SNP 3). We demonstrated how it can be applied to GWAS data to identify novel susceptibility 

loci for six diseases in the WTCCC data through identification of higher order SNP-set 

interactions within genes.  These discoveries illustrate the additional power of GWAS which has 

not been revealed previously by the standard single-SNP analysis.  

Although replication of findings in independent samples has become the standard for assessing 

GWAS statistical results, this requirement may actually lead to missing real genetic effects 

(Greene et al. 2009). Comparing our findings to the single-SNP WTCCC analysis (Wellcome 

Trust Case Control Consortium2007), our interaction analysis was able to detect the majority of 

the previously reported strong signals. We also compared our findings to recently published 

GWAS meta-analyses of the six diseases detecting on average 46% of the reported loci. It is 

important to note that although it is impossible to validate discoveries made by logic regression 

analysis with single-SNP analyses, detecting the majority of previous single-SNP associations in 

our SNP-set interaction-based analysis is corroborating and providing support to our findings. 
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Proper validation of our novel signals would require further investigation in larger datasets and 

using a gene-level interaction-based analysis. 

5.1.2 Assessment of strength of evidence 

Exhaustive searches for interactions in GWAS raise the issue of multiple testing similar to the 

single-locus analysis of a GWAS. A Bonferroni correction is suggested appropriate when all 

tests are independent (Marchini et al. 2005) or using permutation to assess significance of testing 

for association while allowing for interactions and accounting for correlation of tests (Chapman 

et al. 2007). The latter may be computationally prohibitive for large numbers of GWAS loci. We 

followed the WTCCC’s framework of using the Bayes Factor (BF) as the measure of evidence of 

association of each gene and disease risk for all six diseases.  The BF was standardized taking 

the median fit score of 20 permuted datasets. Each gene’s strength of evidence was assessed by 

exceeding the calculated disease BF threshold which is based on the strength of evidence in the 

Bayesian philosophy. We also assessed statistical significance of association using a p-value cut-

off of 3.82x10
-6

 (corresponding to a p-value of 0.05 with a Bonferroni correction for multiple 

testing of approximately 13,000 genes per disease). Both statistical frameworks agreed on how 

genes were ranked based on statistical significance, however, more signals were considered 

significant by BF and did not reach significance using p-value.  We do not believe that lowering 

the significance threshold for a single-SNP analysis would yield as many signals as identified 

using BF. We plotted Bonferroni corrected p-values from the single-SNP analysis and our SNP-

set interaction analysis that showed greater numbers of significant signals by our SNP-interaction 

approach, under the same criterion of Bonferroni correction applied to both methods. We also 

repeated our analysis on 10 permuted datasets using RA as an example. Out of the 10 permuted 

datasets each involving 13,083 genes, only one gene of one of the 10 datasets was statistically 
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significant using the Bonferroni corrected p-value threshold. Thus, the huge search space for the 

logic regression would not explain our findings. 

5.1.3 Significance and interpretation of our findings 

In addition to statistical support of our top findings, they were also supported by apparent 

biological links to disease. For example, our results provided confirmation of previous linkage 

analyses implicating specific chromosomal regions and diseases such as chromosome 1p31 near 

NFIA gene in association with BD and chromosome 2q35 near COL4A4 gene in association with 

HT, the latter never been reported by GWAS before. We also confirmed other GWAS 

discoveries such as BTNL2 with RA recently corroborated through exome sequencing 

(Mitsunaga et al. 2013) and found an association with sarcoidosis, another auto-immune disease 

(Morais et al. 2012). Another association was TCF7L2 with T2D that has been repeatedly 

replicated across different populations (Grant et al. 2006) with evidence suggestive of a 

reduction of a TCF7L2 related T2D risk in response to lifestyle changes (Florez et al. 2006). 

Such previously reported associations confirmed in our interaction analysis are worthy of further 

in depth investigation.  

The magnitude of the odds ratios reported from our SNP-set interaction analysis of GWAS was 

substantially larger compared to those typically reported from single-SNP based GWAS analysis 

ranging between: 1.1 and 1.5. Besides adding strength to the associations, this made them more 

readily interpretable. We also identified a larger number of genes that may help determine the 

genetic risk of the six diseases and open avenues for refined risk identification and risk 

prediction. This is of specific value for diseases with a less clearly identified genetic risk such as 

BD, CAD and HT. For example, the single-SNP based analysis reported from WTCCC failed to 
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identify any strong association signals for HT, while our interaction analysis was able to detect 

both novel and previously reported association signals providing new insights into the genetic 

profile of a complex disease such as HT. 

The novel discoveries and previously reported associations detected from our interaction-based 

analysis in GWAS adds strength to our approach of analysis and emphasizes the importance of 

searching for SNP-set interaction effects, in addition to the standard single-SNP analysis in 

GWAS. 

5.2 Pathway gene-environment interaction in candidate gene studies 

In the second half of this dissertation we went steps further with our approach to ultimately 

examine candidate pathway GEIs on colorectal cancer risk and survival. The study of GEI on 

disease outcomes has several motivations and advantages: (1) to better characterize gene and 

environmental exposure effects; (2) to increase the power to detect genes with small marginal 

effects especially if the effect is relevant to a subgroup defined by a certain environmental 

exposure; (3) similarly, it strengthens the association of disease with environmental exposures by 

examining its effects in genetically susceptible groups; (4) defining environmental exposures and 

focusing on specific lifestyle components helps to determine which element of complex 

exposures  (e.g., diet) are important; (5) to gain insights into disease mechanisms by focusing on 

relevant biological pathways; and (6) the clinical relevance and public health impact is 

emphasized through its use in new preventive and therapeutic strategies including personalized 

approaches.  
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5.2.1 Methods to examine gene-environment interactions 

Some approaches proposed for examining gene-gene interactions (some of which described 

above) could be extended to GEIs (Dempfle et al. 2008)including single-stage approaches using 

ordinary or penalized regression frameworks, or a two-step strategy that involves a screening test 

followed by a traditional case-control test of GEI (Murcray et al. 2009). The case-only design 

has been proposed as more powerful alternative to the standard case-control test (Clayton et al. 

2001) based on the assumption that the genotype and environmental exposure are independent in 

the population under study. Violation of this assumption, however, can yield a severely inflated 

type I error (Piegorsch et al. 1994).  

A recent application of the traditional case-control test, case-only test and the 2-step method 

proposed by Murcray and colleagues on colorectal cancer GWAS data did not identify any 

genome-wide significant GEIs (Figueiredo et al. 2011). These authors also used a candidate 

approach to analyze previously reported colorectal cancer GWAS susceptibility loci and 14 

environmental exposures known to be involved in colorectal cancer etiology, they identified 

seven nominally significant GEIs one of which was between alcohol and a SNP on CHD1 gene 

(chromosome 16q22.1).  

Examining GEI at the gene-pathway level could depend on purely data-driven approaches from 

genome-wide scans to elicit important pathways, or through a focus on several candidate genes 

in a single pathway perceived as more critical. Some methods for pathway analyses have been 

proposed for both approaches (Thomas 2010b). Examples include data mining approaches (Kraft 

et al. 2009), and modifications to pathway approaches originally developed for gene expression 

data such as gene set enrichment analysis (Wang et al. 2007). Nevertheless, hypothesis-driven 
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pathway-based approaches that require prior knowledge of the underlying etiology can elucidate 

the underlying biological mechanisms (Thomas 2010b). Evidence on relevant pathways may 

involve biologic plausibility, as well as evidence available from experimental studies and prior 

epidemiologic reports (Jorgensen et al. 2009). Experimental studies in model organisms have, 

indeed, provided several evidences of interactions between genes and exposures which help 

suggest candidate gene-environment interactions to be examined in epidemiologic studies 

(Aschard et al. 2012). 

5.2.2 A 3-step analytic framework to identify candidate pathway gene-environment 

interactions 

We developed a novel candidate-pathway framework to assess GEIs and illustrated its use for 

colon and rectal cancer risk and survival. We focused on the angiogenesis pathway, and three 

angiogenesis-related lifestyle risk factors: dietary protein, smoking, and alcohol consumption. 

Our framework emphasized the biologic hypothesis throughout the process starting from the 

selection of the candidate genes and the specific lifestyle exposures, and carried the logic to the 

three steps of the analysis: a component that has been lacking in the study of candidate pathway 

analysis (Thomas et al. 2009). Building on our approach to examine within-gene SNP-set 

interactions using logic regression, the first step of our analysis framework produced gene-

specific trees (GSTs).  They formed the building blocks for the subsequent two steps of gene-

gene and gene-environment analysis. The second step provided a summary of the full pathway’s 

genetic effects. The third step modelled the pathway GEIs. We used standard logistic regression 

and Cox proportional hazards modelling that included the main effects of gene and environment 

variables, relevant interaction terms and adjustment variables, and built the models using 

stepwise backward elimination. This standard approach to testing an interaction is arguably the 
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most natural way given hypothesized genetic and environmental factors influencing disease 

outcomes (Cordell 2009a). We believe our approach to use the GSTs as a summary of each 

gene’s SNP profile rather than individual SNPs was a step ahead of a typical interaction analysis 

that considers pairwise interactions between SNPs for gene-gene interactions or interactions 

between an individual SNP and an environmental exposure for GEI testing. We analyzed data of 

colon cancer and rectal cancer cases and controls from the Diet, Activity and Lifestyle as a Risk 

Factor for Colon Cancer Study conducted in the United States (Slattery et al. 1997a,Slattery et al. 

2003). We selected a total of 257 SNPs in 34 genes of the angiogenesis candidate gene-pathway 

based on standard pathway maps, experimental and epidemiological evidence. We found five 

statistically significant GEIs associated with colon cancer risk and three GEIs with colon cancer 

survival involving all there environmental exposures. For rectal cancer, we found eight 

significant GEIs in association with risk between six genes and five GEIs with survival. 

5.2.3 Candidate gene and GWAS approaches to examine gene-environment interactions 

Most GWASs have not investigated GEI, primarily due to lack of data on environmental 

exposures (Stranger et al. 2011). Study consortia, although they carry the advantage of increased 

sample size, may face some challenges due to differences in exposure measurement protocols 

across studies, differences in the scale of reported gene-environment interaction effects, and 

differences in the distribution of exposures across studies (Aschard et al. 2012) all of which 

would require the investigation of between-study heterogeneity (Thompson et al. 2011). On the 

other hand, a candidate pathway study based on informed candidate gene selection with detailed 

information on environmental exposures may be more suited to examining GEI effects compared 

to GWAS loci which are harder to identify, have smaller effect sizes, and are unlikely to be the 

functional variants themselves (Stranger et al. 2011). In application of our candidate pathway 
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approach we selected the candidate genes and exposures based on biologic relevance; we 

included in the analysis all hypothesized genes in the pathway as opposed to focusing only on 

markers with significant marginal effects; the gene-level summaries are potentially capturing the 

full gene effect; and a multiple testing adjustment for testing many non-hypothesized 

associations in GWAS was not required for our candidate gene-pathway analyses because the 

associations were biologically hypothesized a priori (Tomlinson et al. 2011).  

5.2.4 Gene-environment interaction effects on colon and rectal cancer risk and survival 

Colon and rectal cancers may share genetic and environmental risk factors, yet there is evidence 

of differences in the characteristics of each cancer population (Potter1999a,Wei et al. 

2004,Annema et al. 2011,Shin et al. 2011), suggesting different mechanisms could be 

influencing the development of each type of cancer (Robsahm et al. 2013). We have previously 

shown that colon and rectal tumors differed in somatic mutation frequencies (microsatellite 

instability, CpG island methylator phenotype, and Ki-ras mutations were more frequent in 

proximal colon tumors, and p53 mutation more in distal colon and rectal tumors) (Slattery et al. 

2009). Thus, we analyzed the colon and rectal cancer data separately. Indeed our results show 

differences between colon and rectal cancer risk and survival GEI profiles. Although separating 

colon and rectal cancer analyses was justified, there was initially no specific scientific motivation 

to combining risk and survival reporting. Our results, however, show there were some 

similarities detected between the risk and survival profiles within each cancer (for example: 

GEIs with BMP genes on colon cancer risk and survival and TLR genes and EGR2 gene on rectal 

cancer risk and survival). 
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One interesting finding was the predominance of interactions of four genes (KDR, TLR2, EGR2, 

and EGFR) with animal dietary protein out of a total of five significant interactions on rectal 

cancer survival. A potential role for high intake of red and processed meat on colorectal cancer 

risk has been supported by many, yet not all studies (Alexander et al. 2010,Alexander et al. 

2011). Reported associations of meat intake have been generally stronger for distal colon and 

rectal cancer. A plausible explanation relates the increased rate of protein fermentation by large 

intestine bacteria mainly occurring in the distal parts of the colon and rectum (Silvester et al. 

1995,Chao et al. 2005) and tumor promotion (Kim et al. 2013).  It is possible that a 

characterization of GEI with a high animal/vegetable protein intake ratio that we observed 

provides some interpretation to the high red and processed meat associations with rectal cancer.  

Overall, we observed GEIs of genes among major drivers of angiogenesis and angiogenesis-

related inflammatory genes and with all three environmental exposures. Some of the interactions 

were with genes known to be strongly associated with colon and rectal cancer. More GEIs 

among those genes with all three environmental exposures, however, were associated with colon 

cancer risk compared to rectal cancer risk. For example, GEIs of FLT1 gene (VEGF receptor 1) 

with smoking and animal protein intake, and KDR gene (VEGF receptor 2) with alcohol 

consumption in association with colon cancer risk. For rectal cancer risk, GEIs of PDGFB with 

animal protein and IGF1R with alcohol consumption were detected.  

Other interactions were with genes that have become recently of interest in association with 

colon and rectal cancer such as BMP genes (Beck et al. 2006,Nishanian et al. 2004) and TLR 

genes (Nihon-Yanagi et al. 2012,Tchorzewski et al. 2014). We identified GEIs with BMP genes 

in association with both colon cancer risk and survival. We observed GEIs between BMP4 gene 

and smoking on colon cancer risk; and BMP1 gene and smoking and BMPR2 gene and alcohol 
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on colon cancer survival. On rectal cancer, we observed interactions of TLR4 with smoking and 

alcohol on rectal cancer risk and TLR2 with animal protein. Our results help define the full risk 

profile associated with these genes recently implicated in colorectal cancer carcinogenesis. Some 

of the GEIs we observed with smoking for both colon and rectal cancers displayed dose response 

associations as shown by increasing magnitudes of gene ORs with increasing levels of smoking. 

This observed positive gradient adds to the plausibility of the interactions. 

5.3 Strengths and Limitations 

The discoveries detected from our interaction-based analysis in GWAS add strength to our 

approach of analysis and emphasize the importance of searching for SNP-set interaction effects, 

in addition to the standard single-SNP analysis in GWAS.  We used logic regression to search 

for interactions between SNPs within genes. The logic regression method, despite its utility, is 

not immune to limitations. To manage the large computational demand of the logic regression 

search in the WTCCC GWAS analysis, we had to limit the search of SNP-set interactions to a 

single gene at a time and fix the size of SNP interactions searched for within each gene (up to 2 

trees and 5 leaves). It is possible that more complex SNP interactions exist but were not 

considered in our analysis. Our assessment of SNP-set interactions, however, has a much higher 

power of signal discovery compared to a pairwise SNP-SNP interaction since significantly fewer 

tests are performed. Despite the limited form of logic regression that we applied in our analysis, 

searching for specific forms of SNP-set interactions is a step towards addressing the complexity 

of genetic associations in a GWAS compared to a marginal assessment of individual SNP effects 

on disease. In this analysis, we analyzed SNPs within genes and did not consider gene-gene 

interactions and a more comprehensive approach would require consideration of gene-gene 

interactions. 
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The main strength of our candidate pathway GEI approach is integration of the relevant biologic 

information in the construction of the pathway (applied to both the pathway and environmental 

exposures) and throughout the analysis process. In the application of the logic regression in the 

first step of the colon and rectal cancer candidate pathway GEI analysis, we also searched for 

SNP-set interactions within each gene. Rather than fixing the size of the logic regression models, 

we used cross-validation to determine the optimal model sizes albeit specifying a maximum 

desired size (up to nine trees and 20 leaves). As such summary of the gene effects was limited by 

the reached model size in addition to the number of tagSNPs on each gene. We selected the 

genes of the angiogenesis pathway using a candidate approach and it is possible that some genes 

relevant to the angiogenesis process have been omitted inadvertently in developing the working 

pathway figure. The candidate pathway, however, involved a relatively large number of genes 

implicated in colorectal carcinogenesis. We also note that we focused on only one gene-pathway 

and three lifestyle risk factors, yet identified an appreciable number of novel strong interactions 

on both colon and rectal cancer risk and survival. Other limitations of our study were related to 

the design of the case-control study which suffers from inherent forms of bias such as recall bias. 

In this study this was minimized by: using a rapid-reporting system to identify cases; conducting 

the majority of interviews within four months of diagnosis; and focusing the referent period of 

the study questionnaires to two to three years prior to diagnosis. With regards to our 

environmental exposures of interest, we obtained long-term alcohol consumption and cigarette 

smoking history, and extensive diet history to capture more detail compared to self-administered 

questionnaires.  
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5.4 Conclusions and Public Health Implications 

It is important to note that there is no consensus yet about the best statistical method to model 

gene-gene interactions or GEIs and more research and applications to real data are required 

(Figueiredo et al. 2011). I attempted in this dissertation to provide a methodologically sound and 

biologically plausible approach to examining interactions with an emphasis on the biological 

hypothesis, whether in the form that the SNP-set interactions might take or the choice of 

candidate genes and environmental exposures, can yield novel and biologically plausible results. 

In addition to statistical significance, the findings were corroborated by previous evidence and 

biologic links to the diseases studied. 

The analysis of the WTCCC GWAS data emphasized the importance of adopting a method that 

can handle higher order SNP-set interactions and demonstrated its ability in discovering novel 

disease susceptibility loci in addition to confirming findings from standard single-SNP analysis 

in GWAS. This analysis formed the base for the candidate-pathway GEI framework that also 

yielded novel GEIs in association with colon and rectal cancer risk and survival. Knowledge 

generated from this research can be directly translated into practical clinical and public health 

applications. Susceptibility loci provide potential leads towards identifying drug targets, thereby 

helping to reduce the socio-economic burden of disease. Furthermore, identification of GEI loci 

of common genetic markers and theoretically modifiable lifestyle factors provides new insights 

into screening and preventive strategies and opens avenues for personalized strategies. 
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5.5 Future Directions 

In the candidate approach to identifying pathway GEIs, I focused on the angiogenesis pathway 

which is one of the hallmarks of cancer making the findings potentially informative to other solid 

tumors. One future direction would be extending the framework to other solid tumors. 

Personalized medicine and lifestyle recommendations based on the individual genetic profile are 

being promoted as the future of clinical and public health. One important application would be 

expanding this research to other colorectal-cancer-relevant genetic pathways and associated 

lifestyle risk factors to enrich and complete the findings. Primary and secondary colorectal 

prevention strategies could be developed and tested based on the findings. Specifically, 

innovative technologies for colorectal cancer primary prevention and screening would include: 

(1) offering genome sequence testing and profiling individual risk based on the gene-lifestyle 

interactions we and others identify; (2) monitoring lifestyle habits regularly. The idea would be 

to develop a risk profile for the individual based on their genetic-predisposition profiles and 

tailor specific interventions for their relevant lifestyle habits. Applications to provincial and 

national grant competitions for funding of future projects are planned. 

  



155 

 

REFRENCES 

Aberg, K., Dai, F., Viali, S., Tuitele, J., Sun, G., Indugula, S. R., Deka, R., Weeks, D. E., and 

McGarvey, S. T. 2009. Suggestive linkage detected for blood pressure related traits on 2q and 

22q in the population on the Samoan islands. BMC Med. Genet. 10: 107-2350-10-107.  

Affara, M., Dunmore, B. J., Sanders, D. A., Johnson, N., Print, C. G., and Charnock-Jones, D. S. 

2011. MMP1 bimodal expression and differential response to inflammatory mediators is linked 

to promoter polymorphisms. BMC Genomics 12: 43-2164-12-43. 

Alexander, D. D. and Cushing, C. A. 2011. Red meat and colorectal cancer: a critical summary 

of prospective epidemiologic studies. Obes. Rev. 12: e472-93.  

Alexander, D. D., Miller, A. J., Cushing, C. A., and Lowe, K. A. 2010. Processed meat and 

colorectal cancer: a quantitative review of prospective epidemiologic studies. Eur. J. Cancer 

Prev. 19: 328-341.  

Anderson, I. M., Haddad, P. M., and Scott, J. 2012. Bipolar disorder BMJ 345: e8508.  

Annema, N., Heyworth, J. S., McNaughton, S. A., Iacopetta, B., and Fritschi, L. 2011. Fruit and 

vegetable consumption and the risk of proximal colon, distal colon, and rectal cancers in a case-

control study in Western Australia. J. Am. Diet. Assoc. 111: 1479-1490.  

Anto, R. J., Mukhopadhyay, A., Shishodia, S., Gairola, C. G., and Aggarwal, B. B. 2002. 

Cigarette smoke condensate activates nuclear transcription factor-kappaB through 

phosphorylation and degradation of IkappaB(alpha): correlation with induction of 

cyclooxygenase-2 Carcinogenesis 23: 1511-1518.  

Aschard, H., Lutz, S., Maus, B., Duell, E. J., Fingerlin, T. E., Chatterjee, N., Kraft, P., and Van 

Steen, K. 2012. Challenges and opportunities in genome-wide environmental interaction (GWEI) 

studies. Hum. Genet. 131: 1591-1613.  

Barrett, J. C., Clayton, D. G., Concannon, P., Akolkar, B., Cooper, J. D., Erlich, H. A., Julier, C., 

Morahan, G., Nerup, J., Nierras, C., et al. 2009. Genome-wide association study and meta-

analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet. 41: 703-707.  

Beck, S. E., Jung, B. H., Fiorino, A., Gomez, J., Rosario, E. D., Cabrera, B. L., Huang, S. C., 

Chow, J. Y., and Carethers, J. M. 2006. Bone morphogenetic protein signaling and growth 

suppression in colon cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 291: G135-45.  

Brinckerhoff, C. E., Rutter, J. L., and Benbow, U. 2000. Interstitial collagenases as markers of 

tumor progression. Clin. Cancer Res. 6: 4823-4830.  

Campa, D., Kaaks, R., Le Marchand, L., Haiman, C. A., Travis, R. C., Berg, C. D., Buring, J. E., 

Chanock, S. J., Diver, W. R., Dostal, L., et al. 2011. Interactions Between Genetic Variants and 



156 

 

Breast Cancer Risk Factors in the Breast and Prostate Cancer Cohort Consortium. Journal of the 

National Cancer Institute 103: 1252-1263.  

Chan, D. S., Lau, R., Aune, D., Vieira, R., Greenwood, D. C., Kampman, E., and Norat, T. 2011. 

Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. 

PLoS One 6: e20456.  

Chao, A., Thun, M. J., Connell, C. J., McCullough, M. L., Jacobs, E. J., Flanders, W. D., 

Rodriguez, C., Sinha, R., and Calle, E. E. 2005. Meat consumption and risk of colorectal cancer. 

JAMA 293: 172-182.  

Chapman, J. and Clayton, D. 2007. Detecting association using epistatic information. Genet. 

Epidemiol. 31: 894-909.  

Chen, D., Zhao, M., and Mundy, G. R. 2004. Bone morphogenetic proteins. Growth Factors 22: 

233-241.  

Chen, Y. M. and Miner, J. H. 2012. Glomerular basement membrane and related glomerular 

disease. Transl. Res. 160: 291-297.  

Cheng, J., Chen, Y., Wang, X., Wang, J., Yan, Z., Gong, G., Li, G., and Li, C. 2014. Meta-

analysis of prospective cohort studies of cigarette smoking and the incidence of colon and rectal 

cancers Eur. J. Cancer Prev. .  

Cho, Y. S., Chen, C. H., Hu, C., Long, J., Ong, R. T., Sim, X., Takeuchi, F., Wu, Y., Go, M. J., 

Yamauchi, T., et al. 2012. Meta-analysis of genome-wide association studies identifies eight new 

loci for type 2 diabetes in east Asians. Nat. Genet. 44: 67-72.  

Christensen, K. and Murray, J. C. 2007. What genome-wide association studies can do for 

medicine N. Engl. J. Med. 356: 1094-1097.  

Clayton, D. and McKeigue, P. M. 2001. Epidemiological methods for studying genes and 

environmental factors in complex diseases. Lancet 358: 1356-1360.  

Cleary, S. P., Cotterchio, M., Shi, E., Gallinger, S., and Harper, P. 2010. Cigarette smoking, 

genetic variants in carcinogen-metabolizing enzymes, and colorectal cancer risk Am. J. 

Epidemiol. 172: 1000-1014.  

Cordell, H. J. 2009a. Detecting gene-gene interactions that underlie human diseases Nat. Rev. 

Genet. 10: 392-404.  

Cordell, H. J. 2009b. Detecting gene-gene interactions that underlie human diseases. Nat. Rev. 

Genet. 10: 392-404.  

Cordell, H. J. 2002. Epistasis: what it means, what it doesn't mean, and statistical methods to 

detect it in humans Hum. Mol. Genet. 11: 2463-2468.  



157 

 

Cordell, H. J. and Clayton, D. G. 2005. Genetic association studies. The Lancet 366: 1121-1131.  

Crea, F. and Liuzzo, G. 2013. Pathogenesis of acute coronary syndromes. J. Am. Coll. Cardiol. 

61: 1-11.  

Cui, J., Taylor, K. E., Destefano, A. L., Criswell, L. A., Izmailova, E. S., Parker, A., Roubenoff, 

R., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., et al. 2009. Genome-wide association study 

of determinants of anti-cyclic citrullinated peptide antibody titer in adults with rheumatoid 

arthritis. Molecular Medicine 15: 136-143.  

Culverhouse, R., Suarez, B. K., Lin, J., and Reich, T. 2002. A perspective on epistasis: limits of 

models displaying no main effect Am. J. Hum. Genet. 70: 461-471.  

Dai, J., Gu, J., Huang, M., Eng, C., Kopetz, E. S., Ellis, L. M., Hawk, E., and Wu, X. 2012. 

GWAS-identified colorectal cancer susceptibility loci associated with clinical outcomes 

Carcinogenesis 33: 1327-1331.  

De Stefani, E., Ronco, A. L., Boffetta, P., Deneo-Pellegrini, H., Correa, P., Acosta, G., and 

Mendilaharsu, M. 2012. Nutrient-derived dietary patterns and risk of colorectal cancer: a factor 

analysis in Uruguay. Asian Pac. J. Cancer. Prev. 13: 231-235.  

Dempfle, A., Scherag, A., Hein, R., Beckmann, L., Chang-Claude, J., and Schafer, H. 2008. 

Gene-environment interactions for complex traits: definitions, methodological requirements and 

challenges. Eur. J. Hum. Genet. 16: 1164-1172.  

Deneen, B., Ho, R., Lukaszewicz, A., Hochstim, C. J., Gronostajski, R. M., and Anderson, D. J. 

2006. The transcription factor NFIA controls the onset of gliogenesis in the developing spinal 

cord Neuron 52: 953-968.  

Dennis, B., Ernst, N., Hjortland, M., Tillotson, J., and Grambsch, V. 1980. The NHLBI nutrition 

data system J. Am. Diet. Assoc. 77: 641-647.  

Ding, W., Zhou, D. L., Jiang, X., and Lu, L. S. 2013. Methionine synthase A2756G 

polymorphism and risk of colorectal adenoma and cancer: evidence based on 27 studies. PLoS 

One 8: e60508.  

Dinu, I., Mahasirimongkol, S., Liu, Q., Yanai, H., Sharaf Eldin, N., Kreiter, E., Wu, X., Jabbari, 

S., Tokunaga, K., and Yasui, Y. 2012. SNP-SNP interactions discovered by logic regression 

explain Crohn's disease genetics. PLoS One 7: e43035.  

Dor, Y., Porat, R., and Keshet, E. 2001. Vascular endothelial growth factor and vascular 

adjustments to perturbations in oxygen homeostasis Am. J. Physiol. Cell. Physiol. 280: C1367-

74.  

Dougherty, U., Cerasi, D., Taylor, I., Kocherginsky, M., Tekin, U., Badal, S., Aluri, L., Sehdev, 

A., Cerda, S., Mustafi, R., et al. 2009. Epidermal growth factor receptor is required for colonic 



158 

 

tumor promotion by dietary fat in the azoxymethane/dextran sulfate sodium model: roles of 

transforming growth factor-{alpha} and PTGS2. Clin. Cancer Res. 15: 6780-6789.  

Dougherty, U., Mustafi, R., Wang, Y., Musch, M. W., Wang, C. Z., Konda, V. J., Kulkarni, A., 

Hart, J., Dawson, G., Kim, K. E., et al. 2011. American ginseng suppresses Western diet-

promoted tumorigenesis in model of inflammation-associated colon cancer: role of EGFR. BMC 

Complementary & Alternative Medicine 11: 111.  

Edwards, S., Slattery, M. L., Mori, M., Berry, T. D., Caan, B. J., Palmer, P., and Potter, J. D. 

1994. Objective system for interviewer performance evaluation for use in epidemiologic studies 

Am. J. Epidemiol. 140: 1020-1028.  

Erlich, H. A. 1991. HLA class II sequences and genetic susceptibility to insulin dependent 

diabetes mellitus Baillieres Clin. Endocrinol. Metab. 5: 395-411.  

Escalante, A. 2013. Chapter 51 - Rheumatoid Arthritis. In Women and Health (Second Edition) 

(Anonymous ), pp. 771-784. Academic Press, .  

Esposito, G., Capoccia, E., Turco, F., Palumbo, I., Lu, J., Steardo, A., Cuomo, R., Sarnelli, G., 

and Steardo, L. 2013. Palmitoylethanolamide improves colon inflammation through an enteric 

glia/toll like receptor 4-dependent PPAR-alpha activation. Gut .  

Ferrara, N. 1999. Molecular and biological properties of vascular endothelial growth factor J. 

Mol. Med. 77: 527-543.  

Ferrari, P., Jenab, M., Norat, T., Moskal, A., Slimani, N., Olsen, A., Tjonneland, A., Overvad, 

K., Jensen, M. K., Boutron-Ruault, M. C., et al. 2007. Lifetime and baseline alcohol intake and 

risk of colon and rectal cancers in the European prospective investigation into cancer and 

nutrition (EPIC) Int. J. Cancer 121: 2065-2072.  

Figueiredo, J. C., Hsu, L., Hutter, C. M., Lin, Y., Campbell, P. T., Baron, J. A., Berndt, S. I., 

Jiao, S., Casey, G., Fortini, B., et al. 2014. Genome-wide diet-gene interaction analyses for risk 

of colorectal cancer. PLoS Genet. 10: e1004228.  

Figueiredo, J. C., Lewinger, J. P., Song, C., Campbell, P. T., Conti, D. V., Edlund, C. K., 

Duggan, D. J., Rangrej, J., Lemire, M., Hudson, T., et al. 2011. Genotype-environment 

interactions in microsatellite stable/microsatellite instability-low colorectal cancer: results from a 

genome-wide association study Cancer Epidemiol. Biomarkers Prev. 20: 758-766.  

Flood, D. M., Weiss, N. S., Cook, L. S., Emerson, J. C., Schwartz, S. M., and Potter, J. D. 2000. 

Colorectal cancer incidence in Asian migrants to the United States and their descendants. Cancer 

Causes Control 11: 403-411.  

Florez, J. C. 2008. Newly identified loci highlight beta cell dysfunction as a key cause of type 2 

diabetes: where are the insulin resistance genes? Diabetologia 51: 1100-1110.  



159 

 

Florez, J. C., Jablonski, K. A., Bayley, N., Pollin, T. I., de Bakker, P. I., Shuldiner, A. R., 

Knowler, W. C., Nathan, D. M., Altshuler, D., and Diabetes Prevention Program Research 

Group. 2006. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention 

Program. N. Engl. J. Med. 355: 241-250.  

Folkman, J. and Shing, Y. 1992. Angiogenesis J. Biol. Chem. 267: 10931-10934.  

Folkman, J., Watson, K., Ingber, D., and Hanahan, D. 1989. Induction of angiogenesis during the 

transition from hyperplasia to neoplasia Nature 339: 58-61.  

Franklin, I. and Lewontin, R. C. 1970. Is the gene the unit of selection? Genetics 65: 707-734.  

Gan, M. J., Albanese-O'Neill, A., and Haller, M. J. 2012. Type 1 diabetes: current concepts in 

epidemiology, pathophysiology, clinical care, and research. Current Problems in Pediatric & 

Adolescent Health Care 42: 269-291.  

Giarelli, E. and Jacobs, L. A. 2005. Modifying cancer risk factors: the gene-environment 

interaction. Semin. Oncol. Nurs. 21: 271-277.  

Goldstein, D. B. 2009. Common genetic variation and human traits N. Engl. J. Med. 360: 1696-

1698.  

Gong, J., Hutter, C., Baron, J. A., Berndt, S., Caan, B., Campbell, P. T., Casey, G., Chan, A. T., 

Cotterchio, M., Fuchs, C. S., et al. 2012. A pooled analysis of smoking and colorectal cancer: 

timing of exposure and interactions with environmental factors. Cancer Epidemiol. Biomarkers 

Prev. 21: 1974-1985.  

Gonzalez, C. A. and Riboli, E. 2010. Diet and cancer prevention: Contributions from the 

European Prospective Investigation into Cancer and Nutrition (EPIC) study Eur. J. Cancer 46: 

2555-2562.  

Grandison, R. C., Piper, M. D., and Partridge, L. 2009. Amino-acid imbalance explains extension 

of lifespan by dietary restriction in Drosophila Nature 462: 1061-1064.  

Grant, S. F. A., Thorleifsson, G., Reynisdottir, I., Benediktsson, R., Manolescu, A., Sainz, J., 

Helgason, A., Stefansson, H., Emilsson, V., Helgadottir, A., et al. 2006. Variant of transcription 

factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 38: 320-323.  

Greene, C. S., Penrod, N. M., Williams, S. M., and Moore, J. H. 2009. Failure to replicate a 

genetic association may provide important clues about genetic architecture. PLoS One 4: e5639.  

Greenwood, T. A., Akiskal, H. S., Akiskal, K. K., and Kelsoe, J. R. 2012. Genome-Wide 

Association Study of Temperament in Bipolar Disorder Reveals Significant Associations with 

Three Novel Loci. Biol. Psychiatry 72: 303-310.  



160 

 

Gross, O., Girgert, R., Rubel, D., Temme, J., Theissen, S., and Muller, G. A. 2011. Renal 

protective effects of aliskiren beyond its antihypertensive property in a mouse model of 

progressive fibrosis Am. J. Hypertens. 24: 355-361.  

Gu, J. W., Bailey, A. P., Sartin, A., Makey, I., and Brady, A. L. 2005. Ethanol stimulates tumor 

progression and expression of vascular endothelial growth factor in chick embryos Cancer 103: 

422-431.  

Gu, J. W., Elam, J., Sartin, A., Li, W., Roach, R., and Adair, T. H. 2001. Moderate levels of 

ethanol induce expression of vascular endothelial growth factor and stimulate angiogenesis Am. 

J. Physiol. Regul. Integr. Comp. Physiol. 281: R365-72.  

Guo, J., Li, W., Wu, Z., Cheng, X., Wang, Y., and Chen, T. 2013. Association between 9p21.3 

genomic markers and coronary artery disease in East Asians: a meta-analysis involving 9,813 

cases and 10,710 controls. Mol. Biol. Rep. 40: 337-343.  

Haggar, F. A. and Boushey, R. P. 2009. Colorectal cancer epidemiology: incidence, mortality, 

survival, and risk factors Clin. Colon Rectal Surg. 22: 191-197.  

Hanahan, D. and Folkman, J. 1996. Patterns and emerging mechanisms of the angiogenic switch 

during tumorigenesis Cell 86: 353-364.  

Hanahan, D. and Weinberg, R. A. 2011. Hallmarks of cancer: the next generation Cell 144: 646-

674.  

Hanahan, D. and Weinberg, R. A. 2000. The hallmarks of cancer Cell 100: 57-70.  

Hardwick, J. C., Van Den Brink, G. R., Bleuming, S. A., Ballester, I., Van Den Brande, J. M., 

Keller, J. J., Offerhaus, G. J., Van Deventer, S. J., and Peppelenbosch, M. P. 2004. Bone 

morphogenetic protein 2 is expressed by, and acts upon, mature epithelial cells in the colon. 

Gastroenterology 126: 111-121.  

Harrell, F. E.,Jr, Lee, K. L., and Mark, D. B. 1996. Multivariable prognostic models: issues in 

developing models, evaluating assumptions and adequacy, and measuring and reducing errors 

Stat. Med. 15: 361-387.  

Harris, A. L. 2002. Hypoxia--a key regulatory factor in tumour growth Nat. Rev. Cancer. 2: 38-

47.  

Haydon, A. M., Macinnis, R. J., English, D. R., and Giles, G. G. 2006. Effect of physical activity 

and body size on survival after diagnosis with colorectal cancer. Gut 55: 62-67.  

Heeschen, C., Chang, E., Aicher, A., and Cooke, J. P. 2006. Endothelial progenitor cells 

participate in nicotine-mediated angiogenesis J. Am. Coll. Cardiol. 48: 2553-2560.  



161 

 

Heeschen, C., Jang, J. J., Weis, M., Pathak, A., Kaji, S., Hu, R. S., Tsao, P. S., Johnson, F. L., 

and Cooke, J. P. 2001. Nicotine stimulates angiogenesis and promotes tumor growth and 

atherosclerosis Nat. Med. 7: 833-839.  

Herder, C. and Roden, M. 2011. Genetics of type 2 diabetes: pathophysiologic and clinical 

relevance Eur. J. Clin. Invest. 41: 679-692.  

Hindorff, L. A., Sethupathy, P., Junkins, H. A., Ramos, E. M., Mehta, J. P., Collins, F. S., and 

Manolio, T. A. 2009. Potential etiologic and functional implications of genome-wide association 

loci for human diseases and traits Proc. Natl. Acad. Sci. U. S. A. 106: 9362-9367.  

Houlston, R. S., Webb, E., Broderick, P., Pittman, A. M., Di Bernardo, M. C., Lubbe, S., 

Chandler, I., Vijayakrishnan, J., Sullivan, K., Penegar, S., et al. 2008. Meta-analysis of genome-

wide association data identifies four new susceptibility loci for colorectal cancer. Nat. Genet. 40: 

1426-1435.  

Hsiao, P. C., Chen, M. K., Su, S. C., Ueng, K. C., Chen, Y. C., Hsieh, Y. H., Liu, Y. F., Tsai, H. 

T., and Yang, S. F. 2010. Hypoxia inducible factor-1alpha gene polymorphism G1790A and its 

interaction with tobacco and alcohol consumptions increase susceptibility to hepatocellular 

carcinoma. J. Surg. Oncol. 102: 163-169.  

 

Hunter, D. J. and Chanock, S. J. 2010. Genome-wide association studies and "the art of the 

soluble". J. Natl. Cancer Inst. 102: 836-837.  

Hutter, C. M., Chang-Claude, J., Slattery, M. L., Pflugeisen, B. M., Lin, Y., Duggan, D., Nan, 

H., Lemire, M., Rangrej, J., Figueiredo, J. C., et al. 2012. Characterization of gene-environment 

interactions for colorectal cancer susceptibility loci Cancer Res. 72: 2036-2044.  

Imamura, T., Kikuchi, H., Herraiz, M. T., Park, D. Y., Mizukami, Y., Mino-Kenduson, M., 

Lynch, M. P., Rueda, B. R., Benita, Y., Xavier, R. J., et al. 2009. HIF-1alpha and HIF-2alpha 

have divergent roles in colon cancer Int. J. Cancer 124: 763-771.  

International Agency for Research on Cancer. 2008. World Cancer Report 2008. International 

Agency for Research on Cancer, Albany, NY, USA.  

International Consortium for Blood Pressure Genome-Wide Association,Studies, Ehret, G. B., 

Munroe, P. B., Rice, K. M., Bochud, M., Johnson, A. D., Chasman, D. I., Smith, A. V., Tobin, 

M. D., Verwoert, G. C., et al. 2011. Genetic variants in novel pathways influence blood pressure 

and cardiovascular disease risk. Nature 478: 103-109.  

International HapMap Consortium. 2003. The International HapMap Project. Nature 426: 789-

796.  



162 

 

Jang, M. J., Jeon, Y. J., Kim, J. W., Cho, Y. K., Lee, S. K., Hwang, S. G., Oh, D., and Kim, N. 

K. 2013. Association of VEGF and KDR single nucleotide polymorphisms with colorectal 

cancer susceptibility in Koreans Mol. Carcinog. 52 Suppl 1: E60-9.  

Johnson, C. M., Wei, C., Ensor, J. E., Smolenski, D. J., Amos, C. I., Levin, B., and Berry, D. A. 

2013. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control 24: 1207-1222.  

Jorgensen, T. J., Ruczinski, I., Kessing, B., Smith, M. W., Shugart, Y. Y., and Alberg, A. J. 

2009. Hypothesis-driven candidate gene association studies: practical design and analytical 

considerations Am. J. Epidemiol. 170: 986-993.  

Kashtan, C. E. 1993. Alport Syndrome and Thin Basement Membrane Nephropathy. In 

GeneReviews (eds. R. A. Pagon, M. P. Adam, T. D. Bird, C. R. Dolan, C. T. Fong, and K. 

Stephens), University of Washington, Seattle, Seattle (WA).  

Khoury, M. J. and Wacholder, S. 2009. Invited commentary: from genome-wide association 

studies to gene-environment-wide interaction studies--challenges and opportunities Am. J. 

Epidemiol. 169: 227-30; discussion 234-5.  

Kim, E., Coelho, D., and Blachier, F. 2013. Review of the association between meat 

consumption and risk of colorectal cancer. Nutr. Res. 33: 983-994.  

Kim, J. G., Chae, Y. S., Sohn, S. K., Cho, Y. Y., Moon, J. H., Park, J. Y., Jeon, S. W., Lee, I. T., 

Choi, G. S., and Jun, S. H. 2008. Vascular endothelial growth factor gene polymorphisms 

associated with prognosis for patients with colorectal cancer Clin. Cancer Res. 14: 62-66.  

Kraft, P. and Raychaudhuri, S. 2009. Complex diseases, complex genes: keeping pathways on 

the right track Epidemiology 20: 508-511.  

Kremeyer, B., Garcia, J., Muller, H., Burley, M. W., Herzberg, I., Parra, M. V., Duque, C., Vega, 

J., Montoya, P., Lopez, M. C., et al. 2010. Genome-wide linkage scan of bipolar disorder in a 

Colombian population isolate replicates Loci on chromosomes 7p21-22, 1p31, 16p12 and 21q21-

22 and identifies a novel locus on chromosome 12q Hum. Hered. 70: 255-268.  

Kroll, J. and Waltenberger, J. 1998. VEGF-A induces expression of eNOS and iNOS in 

endothelial cells via VEGF receptor-2 (KDR). Biochem. Biophys. Res. Commun. 252: 743-746.  

Ku, C. S., Loy, E. Y., Pawitan, Y., and Chia, K. S. 2010. The pursuit of genome-wide association 

studies: where are we now? J. Hum. Genet. .  

Larsson, S. C. and Wolk, A. 2006. Meat consumption and risk of colorectal cancer: a meta-

analysis of prospective studies. Int. J. Cancer 119: 2657-2664.  

Le Marchand, L. and Wilkens, L. R. 2008. Design considerations for genomic association 

studies: importance of gene-environment interactions Cancer Epidemiol. Biomarkers Prev. 17: 

263-267.  



163 

 

Lee, H., Woo, H. G., Greenwood, T. A., Kripke, D. F., and Kelsoe, J. R. 2013. A genome-wide 

association study of seasonal pattern mania identifies NF1A as a possible susceptibility gene for 

bipolar disorder. J. Affect. Disord. 145: 200-207.  

Leeper, N. J., Raiesdana, A., Kojima, Y., Kundu, R. K., Cheng, H., Maegdefessel, L., Toh, R., 

Ahn, G. O., Ali, Z. A., Anderson, D. R., et al. 2013. Loss of CDKN2B promotes p53-dependent 

smooth muscle cell apoptosis and aneurysm formation. Arterioscler. Thromb. Vasc. Biol. 33: e1-

e10.  

Lettre, G., Palmer, C. D., Young, T., Ejebe, K. G., Allayee, H., Benjamin, E. J., Bennett, F., 

Bowden, D. W., Chakravarti, A., Dreisbach, A., et al. 2011. Genome-wide association study of 

coronary heart disease and its risk factors in 8,090 African Americans: the NHLBI CARe Project 

PLoS Genet. 7: e1001300.  

Lichtenstein, P., Holm, N. V., Verkasalo, P. K., Iliadou, A., Kaprio, J., Koskenvuo, M., Pukkala, 

E., Skytthe, A., and Hemminki, K. 2000. Environmental and heritable factors in the causation of 

cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343: 

78-85.  

Lin, J., Zhou, Z. G., Wang, J. P., Zhang, C., and Huang, G. 2008. From Type 1, through LADA, 

to type 2 diabetes: a continuous spectrum? Ann. N. Y. Acad. Sci. 1150: 99-102.  

Lindstrom, S., Schumacher, F., Siddiq, A., Travis, R. C., Campa, D., Berndt, S. I., Diver, W. R., 

Severi, G., Allen, N., Andriole, G., et al. 2011. Characterizing associations and SNP-

environment interactions for GWAS-identified prostate cancer risk markers--results from BPC3. 

PLoS One 6: e17142.  

Liu, K., Slattery, M., Jacobs, D.,Jr, Cutter, G., McDonald, A., Van Horn, L., Hilner, J. E., Caan, 

B., Bragg, C., and Dyer, A. 1994. A study of the reliability and comparative validity of the cardia 

dietary history Ethn. Dis. 4: 15-27.  

Lohela, M., Bry, M., Tammela, T., and Alitalo, K. 2009. VEGFs and receptors involved in 

angiogenesis versus lymphangiogenesis. Curr. Opin. Cell Biol. 21: 154-165.  

Luchtenborg, M., White, K. K., Wilkens, L., Kolonel, L. N., and Le Marchand, L. 2007. 

Smoking and colorectal cancer: different effects by type of cigarettes? Cancer Epidemiol. 

Biomarkers Prev. 16: 1341-1347.  

Mancia, G., De Backer, G., Dominiczak, A., Cifkova, R., Fagard, R., Germano, G., Grassi, G., 

Heagerty, A. M., Kjeldsen, S. E., Laurent, S., et al. 2007. 2007 Guidelines for the Management 

of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the 

European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J. 

Hypertens. 25: 1105-1187.  

Manolio, T. A. 2010. Genomewide association studies and assessment of the risk of disease N. 

Engl. J. Med. 363: 166-176.  



164 

 

Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., 

McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., et al. 2009. Finding the missing 

heritability of complex diseases Nature 461: 747-753.  

Marchand, L. L. 1999. Combined influence of genetic and dietary factors on colorectal cancer 

incidence in Japanese Americans. J. Natl. Cancer. Inst. Monogr. (26): 101-105.  

Marchini, J., Donnelly, P., and Cardon, L. R. 2005. Genome-wide strategies for detecting 

multiple loci that influence complex diseases. Nat. Genet. 37: 413-417.  

Mason, S., Piper, M., Gronostajski, R. M., and Richards, L. J. 2009. Nuclear factor one 

transcription factors in CNS development Mol. Neurobiol. 39: 10-23.  

McCleary, N. J., Niedzwiecki, D., Hollis, D., Saltz, L. B., Schaefer, P., Whittom, R., Hantel, A., 

Benson, A., Goldberg, R., and Meyerhardt, J. A. 2010. Impact of smoking on patients with stage 

III colon cancer: results from Cancer and Leukemia Group B 89803. Cancer 116: 957-966.  

McDonald, A., Van Horn, L., Slattery, M., Hilner, J., Bragg, C., Caan, B., Jacobs, D.,Jr, Liu, K., 

Hubert, H., and Gernhofer, N. 1991. The CARDIA dietary history: development, 

implementation, and evaluation J. Am. Diet. Assoc. 91: 1104-1112.  

Min, K. J. and Tatar, M. 2006. Restriction of amino acids extends lifespan in Drosophila 

melanogaster Mech. Ageing Dev. 127: 643-646.  

Mitsunaga, S., Hosomichi, K., Okudaira, Y., Nakaoka, H., Kunii, N., Suzuki, Y., Kuwana, M., 

Sato, S., Kaneko, Y., Homma, Y., et al. 2013. Exome sequencing identifies novel rheumatoid 

arthritis-susceptible variants in the BTNL2. J. Hum. Genet. 58: 210-215.  

Mizukami, ,Yusuke and Chung, ,Daniel. 2007. Hypoxia, angiogenesis, and colorectal cancer. 

Current Colorectal Cancer Reports 71-75.  

Morais, A., Lima, B., Peixoto, M. J., Alves, H., Marques, A., and Delgado, L. 2012. BTNL2 

gene polymorphism associations with susceptibility and phenotype expression in sarcoidosis. 

Respir. Med. 106: 1771-1777.  

Mousa, S. and Mousa, S. A. 2006. Cellular and molecular mechanisms of nicotine's pro-

angiogenesis activity and its potential impact on cancer J. Cell. Biochem. 97: 1370-1378.  

Murcray, C. E., Lewinger, J. P., and Gauderman, W. J. 2009. Gene-environment interaction in 

genome-wide association studies Am. J. Epidemiol. 169: 219-226.  

Murtaugh, M. A., Ma, K. N., Sweeney, C., Caan, B. J., and Slattery, M. L. 2004. Meat 

consumption patterns and preparation, genetic variants of metabolic enzymes, and their 

association with rectal cancer in men and women J. Nutr. 134: 776-784.  



165 

 

Neufeld, G., Cohen, T., Gengrinovitch, S., and Poltorak, Z. 1999. Vascular endothelial growth 

factor (VEGF) and its receptors. FASEB J. 13: 9-22.  

Nieder, C. and Bremnes, R. M. 2008. Effects of smoking cessation on hypoxia and its potential 

impact on radiation treatment effects in lung cancer patients Strahlenther. Onkol. 184: 605-609.  

Nihon-Yanagi, Y., Terai, K., Murano, T., Matsumoto, T., and Okazumi, S. 2012. Tissue 

expression of Toll-like receptors 2 and 4 in sporadic human colorectal cancer. Cancer Immunol. 

Immunother. 61: 71-77.  

Nishanian, T. G., Kim, J. S., Foxworth, A., and Waldman, T. 2004. Suppression of tumorigenesis 

and activation of Wnt signaling by bone morphogenetic protein 4 in human cancer cells Cancer. 

Biol. Ther. 3: 667-675.  

Nishimoto, A., Kugimiya, N., Hosoyama, T., Enoki, T., Li, T. S., and Hamano, K. 2014. HIF-

1alpha activation under glucose deprivation plays a central role in the acquisition of anti-

apoptosis in human colon cancer cells. Int. J. Oncol. 44: 2077-2084.  

Oba, S., Shimizu, N., Nagata, C., Shimizu, H., Kametani, M., Takeyama, N., Ohnuma, T., and 

Matsushita, S. 2006. The relationship between the consumption of meat, fat, and coffee and the 

risk of colon cancer: A prospective study in Japan. Cancer Lett. 244: 260-267.  

Orozco, G., Eerligh, P., Sanchez, E., Zhernakova, S., Roep, B. O., Gonzalez-Gay, M. A., Lopez-

Nevot, M. A., Callejas, J. L., Hidalgo, C., Pascual-Salcedo, D., et al. 2005. Analysis of a 

functional BTNL2 polymorphism in type 1 diabetes, rheumatoid arthritis, and systemic lupus 

erythematosus. Hum. Immunol. 66: 1235-1241.  

Passarelli, M. N., Coghill, A. E., Hutter, C. M., Zheng, Y., Makar, K. W., Potter, J. D., and 

Newcomb, P. A. 2011. Common colorectal cancer risk variants in SMAD7 are associated with 

survival among prediagnostic nonsteroidal anti-inflammatory drug users: a population-based 

study of postmenopausal women Genes Chromosomes Cancer 50: 875-886.  

Pearson, E. R. 2009. Translating TCF7L2: from gene to function. Diabetologia 52: 1227-1230.  

Pelser, C., Arem, H., Pfeiffer, R. M., Elena, J. W., Alfano, C. M., Hollenbeck, A. R., and Park, 

Y. 2014. Prediagnostic lifestyle factors and survival after colon and rectal cancer diagnosis in the 

National Institutes of Health (NIH)-AARP Diet and Health Study. Cancer 120: 1540-1547.  

Phipps, A. I., Baron, J., and Newcomb, P. A. 2011. Prediagnostic smoking history, alcohol 

consumption, and colorectal cancer survival: the Seattle Colon Cancer Family Registry. Cancer 

117: 4948-4957.  

Piegorsch, W. W., Weinberg, C. R., and Taylor, J. A. 1994. Non-hierarchical logistic models and 

case-only designs for assessing susceptibility in population-based case-control studies Stat. Med. 

13: 153-162.  



166 

 

Pilbrow, A. P., Folkersen, L., Pearson, J. F., Brown, C. M., McNoe, L., Wang, N. M., Sweet, W. 

E., Tang, W. H., Black, M. A., Troughton, R. W., et al. 2012. The chromosome 9p21.3 coronary 

heart disease risk allele is associated with altered gene expression in normal heart and vascular 

tissues. PLoS One 7: e39574.  

Pimentel-Nunes, P., Teixeira, A. L., Pereira, C., Gomes, M., Brandao, C., Rodrigues, C., 

Goncalves, N., Boal-Carvalho, I., Roncon-Albuquerque, R.,Jr, Moreira-Dias, L., et al. 2013. 

Functional polymorphisms of Toll-like receptors 2 and 4 alter the risk for colorectal carcinoma in 

Europeans. Dig. Liver Dis. 45: 63-69.  

Poschl, G. and Seitz, H. K. 2004. Alcohol and cancer Alcohol Alcohol. 39: 155-165.  

Potter, J. D. 1999a. Colorectal cancer: molecules and populations. J. Natl. Cancer Inst. 91: 916-

932.  

Potter, J. D. 1999b. Colorectal cancer: molecules and populations J. Natl. Cancer Inst. 91: 916-

932.  

Poynter, J. N., Haile, R. W., Siegmund, K. D., Campbell, P. T., Figueiredo, J. C., Limburg, P., 

Young, J., Le Marchand, L., Potter, J. D., Cotterchio, M., et al. 2009. Associations between 

smoking, alcohol consumption, and colorectal cancer, overall and by tumor microsatellite 

instability status. Cancer Epidemiol. Biomarkers Prev. 18: 2745-2750.  

Prentice, R. L. 2011. Empirical Evaluation of Gene and Environment Interactions: Methods and 

Potential. Journal of the National Cancer Institute 103: 1209-1210.  

Prentice, R. L., Huang, Y., Hinds, D. A., Peters, U., Pettinger, M., Cox, D. R., Beilharz, E., 

Chlebowski, R. T., Rossouw, J. E., Caan, B., et al. 2009. Variation in the FGFR2 Gene and the 

Effects of Postmenopausal Hormone Therapy on Invasive Breast Cancer. Cancer Epidemiology 

Biomarkers & Prevention 18: 3079-3085.  

Psychiatric GWAS Consortium Bipolar Disorder Working,Group. 2011. Large-scale genome-

wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. 

Nat. Genet. 43: 977-983.  

Rajaganeshan, R., Prasad, R., Guillou, P. J., Poston, G., Scott, N., and Jayne, D. G. 2008. The 

role of hypoxia in recurrence following resection of Dukes' B colorectal cancer Int. J. Colorectal 

Dis. 23: 1049-1055.  

Rajkowska, G. 2003. Depression: what we can learn from postmortem studies Neuroscientist 9: 

273-284.  

Ravi, R., Mookerjee, B., Bhujwalla, Z. M., Sutter, C. H., Artemov, D., Zeng, Q., Dillehay, L. E., 

Madan, A., Semenza, G. L., and Bedi, A. 2000. Regulation of tumor angiogenesis by p53-

induced degradation of hypoxia-inducible factor 1alpha Genes Dev. 14: 34-44.  



167 

 

Rebbeck, T. R., Spitz, M., and Wu, X. 2004. Assessing the function of genetic variants in 

candidate gene association studies Nat. Rev. Genet. 5: 589-597.  

Reich, D. E. and Lander, E. S. 2001. On the allelic spectrum of human disease Trends Genet. 17: 

502-510.  

Robsahm, T. E., Aagnes, B., Hjartaker, A., Langseth, H., Bray, F. I., and Larsen, I. K. 2013. 

Body mass index, physical activity, and colorectal cancer by anatomical subsites: a systematic 

review and meta-analysis of cohort studies. Eur. J. Cancer Prev. 22: 492-505.  

Roglic, G., Unwin, N., Bennett, P. H., Mathers, C., Tuomilehto, J., Nag, S., Connolly, V., and 

King, H. 2005. The burden of mortality attributable to diabetes: realistic estimates for the year 

2000 Diabetes Care 28: 2130-2135.  

Ross, R. 1989. Angiogenesis. Successful growth of tumours Nature 339: 16-17.  

Ruczinski, I., Kooperberg, C., and LeBlanc, M. 2003. Logic Regression. Journal of 

Computational and Graphical Statistics 12: 475-511.  

Saade, S., Cazier, J. B., Ghassibe-Sabbagh, M., Youhanna, S., Badro, D. A., Kamatani, Y., 

Hager, J., Yeretzian, J. S., El-Khazen, G., Haber, M., et al. 2011. Large scale association analysis 

identifies three susceptibility loci for coronary artery disease PLoS One 6: e29427.  

Saridaki, Z., Souglakos, J., and Georgoulias, V. 2014. Prognostic and predictive significance of 

MSI in stages II/III colon cancer. World J. Gastroenterol. 20: 6809-6814.  

Savic, D., Bell, G. I., and Nobrega, M. A. 2012. An in vivo cis-Regulatory Screen at the Type 2 

Diabetes Associated TCF7L2 Locus Identifies Multiple Tissue-Specific Enhancers PLoS One 7: 

e36501.  

Schmitz, K. J., Muller, C. I., Reis, H., Alakus, H., Winde, G., Baba, H. A., Wohlschlaeger, J., 

Jasani, B., Fandrey, J., and Schmid, K. W. 2009. Combined analysis of hypoxia-inducible factor 

1 alpha and metallothionein indicates an aggressive subtype of colorectal carcinoma Int. J. 

Colorectal Dis. 24: 1287-1296.  

Schunkert, H., Konig, I. R., Kathiresan, S., Reilly, M. P., Assimes, T. L., Holm, H., Preuss, M., 

Stewart, A. F., Barbalic, M., Gieger, C., et al. 2011. Large-scale association analysis identifies 13 

new susceptibility loci for coronary artery disease. Nat. Genet. 43: 333-338.  

Schwender, H. and Ruczinski, I. 2010. Logic regression and its extensions. Adv. Genet. 72: 25-

45.  

Semenza, G. L. 2010. Defining the role of hypoxia-inducible factor 1 in cancer biology and 

therapeutics Oncogene 29: 625-634.  



168 

 

Shin, A., Joo, J., Bak, J., Yang, H. R., Kim, J., Park, S., and Nam, B. H. 2011. Site-specific risk 

factors for colorectal cancer in a Korean population. PLoS One 6: e23196.  

Shin, V. Y., Wu, W. K., Chu, K. M., Wong, H. P., Lam, E. K., Tai, E. K., Koo, M. W., and Cho, 

C. H. 2005. Nicotine induces cyclooxygenase-2 and vascular endothelial growth factor receptor-

2 in association with tumor-associated invasion and angiogenesis in gastric cancer Mol. Cancer. 

Res. 3: 607-615.  

Siegert, S., Hampe, J., Schafmayer, C., von Schonfels, W., Egberts, J. H., Forsti, A., Chen, B., 

Lascorz, J., Hemminki, K., Franke, A., et al. 2013. Genome-wide investigation of gene-

environment interactions in colorectal cancer Hum. Genet. 132: 219-231.  

Sillars-Hardebol, A. H., Carvalho, B., de Wit, M., Postma, C., Delis-van Diemen, P. M., 

Mongera, S., Ylstra, B., van de Wiel, M. A., Meijer, G. A., and Fijneman, R. J. 2010. 

Identification of key genes for carcinogenic pathways associated with colorectal adenoma-to-

carcinoma progression Tumour Biol. 31: 89-96.  

Silvester, K. R. and Cummings, J. H. 1995. Does digestibility of meat protein help explain large 

bowel cancer risk? Nutr. Cancer 24: 279-288.  

Singh, J. C., Cruickshank, S. M., Newton, D. J., Wakenshaw, L., Graham, A., Lan, J., Lodge, J. 

P., Felsburg, P. J., and Carding, S. R. 2005. Toll-like receptor-mediated responses of primary 

intestinal epithelial cells during the development of colitis. Am. J. Physiol. Gastrointest. Liver 

Physiol. 288: G514-24.  

Slattery, M. L. 2000. Diet, lifestyle, and colon cancer. Semin. Gastrointest. Dis. 11: 142-146.  

Slattery, M. L., Caan, B. J., Benson, J., and Murtaugh, M. 2003. Energy balance and rectal 

cancer: an evaluation of energy intake, energy expenditure, and body mass index Nutr. Cancer 

46: 166-171.  

Slattery, M. L., Caan, B. J., Duncan, D., Berry, T. D., Coates, A., and Kerber, R. 1994. A 

computerized diet history questionnaire for epidemiologic studies J. Am. Diet. Assoc. 94: 761-

766.  

Slattery, M. L., Curtin, K., Wolff, R. K., Boucher, K. M., Sweeney, C., Edwards, S., Caan, B. J., 

and Samowitz, W. 2009. A comparison of colon and rectal somatic DNA alterations Dis. Colon 

Rectum 52: 1304-1311.  

Slattery, M. L., Edwards, S. L., Caan, B. J., Kerber, R. A., and Potter, J. D. 1995. Response rates 

among control subjects in case-control studies Ann. Epidemiol. 5: 245-249.  

Slattery, M. L., Herrick, J. S., Bondurant, K. L., and Wolff, R. K. 2012a. Toll-like receptor genes 

and their association with colon and rectal cancer development and prognosis. Int. J. Cancer 130: 

2974-2980.  



169 

 

Slattery, M. L., Lundgreen, A., Herrick, J. S., Kadlubar, S., Caan, B. J., Potter, J. D., and Wolff, 

R. K. 2012b. Genetic variation in bone morphogenetic protein and colon and rectal cancer. Int. J. 

Cancer 130: 653-664.  

Slattery, M. L., Lundgreen, A., and Wolff, R. K. 2014. VEGFA, FLT1, KDR and colorectal 

cancer: assessment of disease risk, tumor molecular phenotype, and survival Mol. Carcinog. 53 

Suppl 1: E140-50.  

Slattery, M. L., Potter, J., Caan, B., Edwards, S., Coates, A., Ma, K. N., and Berry, T. D. 1997a. 

Energy balance and colon cancer--beyond physical activity Cancer Res. 57: 75-80.  

Slattery, M. L., Potter, J. D., Friedman, G. D., Ma, K. N., and Edwards, S. 1997b. Tobacco use 

and colon cancer Int. J. Cancer 70: 259-264.  

Slattery, M. L., Potter, J. D., Ma, K. N., Caan, B. J., Leppert, M., and Samowitz, W. 2000. 

Western diet, family history of colorectal cancer, NAT2, GSTM-1 and risk of colon cancer. 

Cancer Causes Control 11: 1-8.  

Smoller, J. W. and Finn, C. T. 2003. Family, twin, and adoption studies of bipolar disorder Am. 

J. Med. Genet. C. Semin. Med. Genet. 123C: 48-58.  

Stahl, E. A., Raychaudhuri, S., Remmers, E. F., Xie, G., Eyre, S., Thomson, B. P., Li, Y., 

Kurreeman, F. A., Zhernakova, A., Hinks, A., et al. 2010. Genome-wide association study meta-

analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet. 42: 508-514.  

Storey, J. D. and Tibshirani, R. 2003. Statistical significance for genomewide studies Proc. Natl. 

Acad. Sci. U. S. A. 100: 9440-9445.  

Stranger, B. E., Stahl, E. A., and Raj, T. 2011. Progress and promise of genome-wide association 

studies for human complex trait genetics. Genetics 187: 367-383.  

Sun, Z., Liu, L., Wang, P. P., Roebothan, B., Zhao, J., Dicks, E., Cotterchio, M., Buehler, S., 

Campbell, P. T., McLaughlin, J. R., et al. 2012a. Association of total energy intake and 

macronutrient consumption with colorectal cancer risk: results from a large population-based 

case-control study in Newfoundland and Labrador and Ontario, Canada. Nutrition Journal 11: 

18.  

Sun, Z., Zhu, Y., Wang, P. P., Roebothan, B., Zhao, J., Zhao, J., Dicks, E., Cotterchio, M., 

Buehler, S., Campbell, P. T., et al. 2012b. Reported intake of selected micronutrients and risk of 

colorectal cancer: results from a large population-based case-control study in Newfoundland, 

Labrador and Ontario, Canada. Anticancer Res. 32: 687-696.  

Takachi, R., Tsubono, Y., Baba, K., Inoue, M., Sasazuki, S., Iwasaki, M., and Tsugane, S. 2011. 

Red meat intake may increase the risk of colon cancer in Japanese, a population with relatively 

low red meat consumption. Asia Pac. J. Clin. Nutr. 20: 603-612.  



170 

 

Talks, K. L., Turley, H., Gatter, K. C., Maxwell, P. H., Pugh, C. W., Ratcliffe, P. J., and Harris, 

A. L. 2000. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and 

HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages Am. J. Pathol. 

157: 411-421.  

Tan, W., Bailey, A. P., Shparago, M., Busby, B., Covington, J., Johnson, J. W., Young, E., and 

Gu, J. W. 2007. Chronic alcohol consumption stimulates VEGF expression, tumor angiogenesis 

and progression of melanoma in mice. Cancer. Biol. Ther. 6: 1211-1217.  

Tao, S., Feng, J., Webster, T., Jin, G., Hsu, F. C., Chen, S. H., Kim, S. T., Wang, Z., Zhang, Z., 

Zheng, S. L., et al. 2012. Genome-wide two-locus epistasis scans in prostate cancer using two 

European populations. Hum. Genet. 131: 1225-1234.  

Tchorzewski, M., Lewkowicz, P., Dziki, A., and Tchorzewski, H. 2014. Expression of toll-like 

receptors on human rectal adenocarcinoma cells. Arch. Immunol. Ther. Exp. (Warsz) 62: 247-

251.  

Thibodeau, S. N., Bren, G., and Schaid, D. 1993. Microsatellite instability in cancer of the 

proximal colon. Science 260: 816-819.  

Thomas, D. 2010a. Gene-environment-wide association studies: emerging approaches Nat. Rev. 

Genet. 11: 259-272.  

Thomas, D. 2010b. Methods for investigating gene-environment interactions in candidate 

pathway and genome-wide association studies Annu. Rev. Public Health 31: 21-36.  

Thomas, D. C., Conti, D. V., Baurley, J., Nijhout, F., Reed, M., and Ulrich, C. M. 2009. Use of 

pathway information in molecular epidemiology Hum. Genomics 4: 21-42.  

Thompson, J. R., Attia, J., and Minelli, C. 2011. The meta-analysis of genome-wide association 

studies. Briefings in Bioinformatics 12: 259-269.  

Tomlinson, I. P., Carvajal-Carmona, L. G., Dobbins, S. E., Tenesa, A., Jones, A. M., Howarth, 

K., Palles, C., Broderick, P., Jaeger, E. E., Farrington, S., et al. 2011. Multiple common 

susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the 

missing heritability of colorectal cancer. PLoS Genet. 7: e1002105.  

Travis, R. C., Reeves, G. K., Green, J., Bull, D., Tipper, S. J., Baker, K., Beral, V., Peto, R., Bell, 

J., Zelenika, D., et al. 2010. Gene-environment interactions in 7610 women with breast cancer: 

prospective evidence from the Million Women Study. Lancet 375: 2143-2151.  

Ulrich, C. M., Kampman, E., Bigler, J., Schwartz, S. M., Chen, C., Bostick, R., Fosdick, L., 

Beresford, S. A., Yasui, Y., and Potter, J. D. 1999. Colorectal adenomas and the C677T MTHFR 

polymorphism: evidence for gene-environment interaction? Cancer Epidemiol. Biomarkers Prev. 

8: 659-668.  



171 

 

van de Wiel, A. 2004. Diabetes mellitus and alcohol Diabetes Metab. Res. Rev. 20: 263-267.  

Viatte, S., Plant, D., and Raychaudhuri, S. 2013. Genetics and epigenetics of rheumatoid 

arthritis. Nat. Rev. Rheumatol. 9: 141-153.  

Vigne, P. and Frelin, C. 2008. The role of polyamines in protein-dependent hypoxic tolerance of 

Drosophila BMC Physiol. 8: 22.  

Vigne, P. and Frelin, C. 2006. A low protein diet increases the hypoxic tolerance in Drosophila 

PLoS One 1: e56.  

Volterra, A. and Meldolesi, J. 2005. Astrocytes, from brain glue to communication elements: the 

revolution continues Nat. Rev. Neurosci. 6: 626-640.  

Voorrips, L. E., Goldbohm, R. A., van Poppel, G., Sturmans, F., Hermus, R. J., and van den 

Brandt, P. A. 2000. Vegetable and fruit consumption and risks of colon and rectal cancer in a 

prospective cohort study: The Netherlands Cohort Study on Diet and Cancer. Am. J. Epidemiol. 

152: 1081-1092.  

Wang, K., Li, M., and Bucan, M. 2007. Pathway-Based Approaches for Analysis of 

Genomewide Association Studies Am. J. Hum. Genet. 81: .  

Wei, E. K., Giovannucci, E., Wu, K., Rosner, B., Fuchs, C. S., Willett, W. C., and Colditz, G. A. 

2004. Comparison of risk factors for colon and rectal cancer. Int. J. Cancer 108: 433-442.  

Wellcome Trust Case Control Consortium. 2007. Genome-wide association study of 14,000 

cases of seven common diseases and 3,000 shared controls. Nature 447: 661-678.  

Westra, H. J., Peters, M. J., Esko, T., Yaghootkar, H., Schurmann, C., Kettunen, J., Christiansen, 

M. W., Fairfax, B. P., Schramm, K., Powell, J. E., et al. 2013. Systematic identification of trans 

eQTLs as putative drivers of known disease associations Nat. Genet. 45: 1238-1243.  

Whiffin, N. and Houlston, R. S. 2014. Architecture of inherited susceptibility to colorectal 

cancer: a voyage of discovery Genes (Basel) 5: 270-284.  

Witte, J. S. 2010. Genome-wide association studies and beyond Annu. Rev. Public Health 31: 9-

20 4 p following 20.  

Wong, H. P., Yu, L., Lam, E. K., Tai, E. K., Wu, W. K., and Cho, C. H. 2007. Nicotine promotes 

colon tumor growth and angiogenesis through beta-adrenergic activation Toxicol. Sci. 97: 279-

287.  

Wu, J., Devlin, B., Ringquist, S., Trucco, M., and Roeder, K. 2010. Screen and clean: a tool for 

identifying interactions in genome-wide association studies. Genet. Epidemiol. 34: 275-285.  



172 

 

Xiang, L., Wang, S., Jin, X., Duan, W., Ding, X., and Zheng, C. 2012. Expression of BMP2, 

TLR3, TLR4 and COX2 in colorectal polyps, adenoma and adenocarcinoma Mol. Med. Rep. 6: 

973-976.  

Xing, J., Myers, R. E., He, X., Qu, F., Zhou, F., Ma, X., Hyslop, T., Bao, G., Wan, S., Yang, H., 

et al. 2011. GWAS-identified colorectal cancer susceptibility locus associates with disease 

prognosis Eur. J. Cancer 47: 1699-1707.  

Yang, S. Y., Kim, Y. S., Song, J. H., Chung, S. J., Lee, I. H., Hong, K. J., Lee, E. J., Kim, D. H., 

Yim, J. Y., Park, M. J., et al. 2012. [Dietary risk factors in relation to colorectal adenoma]. 

Korean Journal of Gastroenterology/Taehan Sohwagi Hakhoe Chi 60: 102-108.  

Yasui, Y. May 2012. Why odds ratio estimates of GWAS are almost always close to 1.0 COBRA 

Preprint Series. Working Paper 94 .  

Young, J. L. J., Roffers, S. D., Ries, L. A. G., Fritz, A. G., and Hurlbut, A. A. (. 2001. SEER 

Summary Staging Manual - 2000: Codes and Coding Instructions. National Cancer Institute NIH 

Pub. No. 01-4969,: .  

Zhang, X., Gaspard, J. P., and Chung, D. C. 2001. Regulation of vascular endothelial growth 

factor by the Wnt and K-ras pathways in colonic neoplasia Cancer Res. 61: 6050-6054.  

Zhang, Y. and Liu, J. S. 2007. Bayesian inference of epistatic interactions in case-control studies. 

Nat. Genet. 39: 1167-1173.  

Zhong, H., De Marzo, A. M., Laughner, E., Lim, M., Hilton, D. A., Zagzag, D., Buechler, P., 

Isaacs, W. B., Semenza, G. L., and Simons, J. W. 1999. Overexpression of hypoxia-inducible 

factor 1alpha in common human cancers and their metastases Cancer Res. 59: 5830-5835.  

Zhu, Y., Wang, P. P., Zhao, J., Green, R., Sun, Z., Roebothan, B., Squires, J., Buehler, S., Dicks, 

E., Zhao, J., et al. 2014. Dietary N-nitroso compounds and risk of colorectal cancer: a case-

control study in Newfoundland and Labrador and Ontario, Canada. Br. J. Nutr. 111: 1109-1117.  

 


