
Hardness of Firewall Analysis

Ehab S. Elmallah
Department of Computing Science

University of Alberta
Edmonton, T6G 2E8, Canada
E-Mail: elmallah@ualberta.ca

Mohamed G. Gouda
Department of Computing Science

University of Texas at Austin
Austin, Texas 78712, USA

E-Mail: gouda@cs.utexas.edu

Abstract—We identify 13 problems whose solutions can sig-
nificantly enhance our ability to design and analyze firewalls and
other packet classifiers. These problems include the firewall equiv-
alence problem, the firewall redundancy problem, the firewall
verification problem, and the firewall completeness problem. The
main result of this paper is to prove that every one of these
problems is NP-hard. Our proof of this result is interesting in
the following way. Only one of the 13 problems, the so called slice
probing problem, is shown to be NP-hard by a reduction from
the well-known 3-SAT problem. Then, the remaining 12 problems
are shown to be NP-hard by reductions from the slice probing
problem. The negative results of this paper suggest that firewalls
designers may need to rely on SAT solvers to solve instances of
these 13 problems or may be content with probabilistic solutions
of these problems.

Keywords: Firewalls, Packet Classifiers, Logical Analysis,
Equivalence, Redundancy, Verification, Completeness, 3-SAT,
and NP-hard

I. INTRODUCTION

A firewall is a packet filter that is placed at a point
where a private computer network is connected to the rest
of the Internet [1]. The firewall intercepts each packet that
is exchanged between the private network and the Internet,
examines the fields of the packet headers, and makes a decision
either to discard the packet or accept it and allow it to proceed
on its way.

The decision that a firewall makes to discard or accept a
packet depends on two factors:

1) The values of the fields in the packet headers
2) The sequence of rules in the firewall that are specified

by the firewall designer

A firewall rule consists of a predicate and a decision, which
is either accept or discard. When the firewall receives a packet,
the firewall searches its sequence of rules for the first rule,
whose predicate is satisfied by the values of the fields in the
packet headers, and then applies the decision of this rule to
the packet.

Note that there are three sets of packets that are associated
with each firewall: (1) the set of packets that are discarded
by the firewall, (2) the set of packets that are accepted by the
firewall, and (3) the set of packets that are neither discarded
nor accepted by the firewall. This third set is usually empty.

The task of designing, verifying, and analyzing a firewall
(especially one with thousands of rules, as usually is the case)

is not an easy one [2], [3], and [4]. Performing this task
properly usually requires solving thousands of instances of the
following problems:

1) Firewall Verification:
Show that a given firewall discards or accepts a given
set of packets

2) Firewall Implication:
Show that a given firewall discards (or accepts,
respectively) every packet that is discarded (or ac-
cepted, respectively) by another given firewall

3) Firewall Equivalence:
Show that two given firewalls discard or accept the
same set of packets

4) Firewall Adequacy:
Show that a given firewall discards or accepts at least
one packet

5) Firewall Redundancy:
Show that a given discard (or accept, respectively)
rule in a given firewall can be removed from the
firewall without changing the set of packets that are
discarded (or accepted, respectively) by the firewall

6) Firewall Completeness:
Show that any given firewall discards or accepts every
packet

Efficient algorithms for solving these six problems can
benefit the design, verification, and analysis of firewalls.
For example, consider the next three scenarios that occur
frequently during the design phase, verification phase, and
analysis phase of firewalls.

Scenario 1: A firewall designer designs a firewall that is
required to accept some specified sets of packets and to
discard other specified sets of packets. After the firewall design
is completed, the designer needs to verify that indeed the
designed firewall accepts every set of packets that it should
accept and discards every set of packets that it should discard.
Thus, the designer needs to apply an algorithm, that solves the
above firewall verification problem, on the designed firewall.
Moreover, if the verification shows that the firewall discards
a set of packets that should be accepted or accepts a set of
packets that should be discarded, then the designer needs to
modify the designed firewall and repeat the verification.

Scenario 2: A firewall can be designed through a series of
refinement steps that proceeds as follows. Initially, the firewall
is designed to accept all packets. Then at each refinement step,



2

the designer modifies the firewall slightly to make the firewall
discard one more set of packets (that the firewall is required
to discard). To check the correctness of each refinement step,
the designer needs to apply an algorithm, that solves the above
firewall implication problem, to check that indeed the firewall
at the end of the refinement step discards every packet that is
discarded by the firewall at the beginning of the refinement
step.

Scenario 3: After a firewall designer completes the design of
a firewall, the designer needs to identify the redundant rules
in the designed firewall and remove them from the firewall.
(Note that removing the redundant rules from a firewall does
not affect the sets of packets that are discarded by or accepted
by the firewall.) To identify the redundant rules in the designed
firewall, the designer needs to apply an algorithm that solves
the above firewall redundancy problem, to check whether each
rule in the firewall is redundant.

Recognizing the importance of these problems (to the
task of designing, verifying, and analyzing firewalls), many
researchers have attempted to develop efficient algorithms that
can solve these problems in polynomial time. But the efforts of
these researchers (including the authors of the current paper)
have failed to develop polynomial algorithms for solving any
of these problems. And the time complexity of the best known
algorithm to solve any of these problems remains exponential.

In this paper, we show that in fact each one of these
problems is NP-hard! This paper is the first to show that any
significant problem related to the logical analysis of firewalls
is NP-hard. Note that the paper not only proves that one or two
of these problems are NP-hard but it also proves that many of
these problems are NP-hard.

The rest of this paper is organized as follows. In Section II,
we formally define the four main concepts of firewalls, namely
fields, packets, rules, and firewalls. In Section III, we formally
state 13 problems related to the logical analysis of firewalls.
In Sections IV through X, we prove that each one of the
13 problems in Section III is NP-hard. Then in Section XI,
we outline three research directions that can still enhance our
ability to design and analyze firewalls, in light of these negative
results. Concluding remarks are in Section XIII.

II. FIELDS, PACKETS, RULES, AND FIREWALLS

In this section, we define the four main concepts of
firewalls: fields, packets, rules, and firewalls. We start our
presentation by introducing the concept of a field.

A field is a variable whose value is taken from a nonempty
interval of consecutive integers. This interval is called the
domain of the field. A nonempty interval X of consecutive
integers can be written as a pair [y, z], where y is the smallest
integer in interval X , z is the largest integer in X , and X
contains only every integer that is neither smaller than y nor
larger than z. Note that if X is [y, y], then X contains only
one integer, y.

In this paper, we assume that each packet has d fields,
named f1, f2, · · · , and fd. The domain of each field fj is
denoted D(fj).

(Examples of the d fields in a packet are the source IP
address of the packet, the destination IP address of the packet,
the transport protocol of the packet, the source port number of
the packet, and the destination port number of the packet.)

Formally, a packet p is a tuple (p1, · · · , pd) of d integers,
where each integer pj is taken from the domain D(fj) of field
fj .

A rule in a firewall consists of two parts, a < predicate >
and a < decision >. A rule is usually written as

< predicate >→ < decision >

The < predicate > of a rule is a conjunction of d con-
juncts of the form:

((f1 ∈ X1) ∧ · · · ∧ (fd ∈ Xd))

where each fj is a field, each Xj is a nonempty interval of
consecutive integers taken from the domain D(fj) of field fj
, and ‘∧’ is the logical AND operator.

The value of each conjunct (fj ∈ Xj) is true iff the value
of field fj is taken from the interval Xj .

The < decision > of a rule is either discard or accept.

A rule whose decision is discard is called a discard rule
and a rule whose decision is accept is called an accept rule.

A packet (p1, · · · , pd) is said to match a rule of the form:

((f1 ∈ X1) ∧ · · · ∧ (fd ∈ Xd))→ < decision >

iff the predicate ((p1 ∈ X1) ∧ · · · ∧ (pd ∈ Xd)) is true.

A firewall is a sequence of rules.

A firewall F is said to discard (or accept, respectively) a
packet p iff F has a discard (or accept, respectively) rule rl
such that the following two conditions hold:

1) Packet p matches rule rl
2) Packet p does not match any rule that precedes rule

rl in firewall F

A firewall F is said to ignore a packet p iff p matches no
rule in F .

It follows that for any firewall F and any packet p, exactly
one of the following three statements holds:

(a) F accepts p
(b) F discards p
(c) F ignores p

Two firewalls F and F ′ are said to be equivalent iff for
every packet p, exactly one of the following three statements
holds:

1) Both F and F ′ accept p
2) Both F and F ′ discard p
3) Both F and F ′ ignore p

A packet is said to match a firewall F iff the packet matches
at least one rule in F .

A firewall F is called complete iff every packet matches
F .



3

A rule of the form:

((f1 ∈ X1) ∧ · · · ∧ (fd ∈ Xd))→ < decision >

is called an ALL rule iff each interval Xj is the whole domain
D(fj) of field fj .

Note that every packet matches each ALL rule. Thus, each
firewall that has an ALL rule is complete.

A property of a firewall has the same form as a rule in a
firewall:

((f1 ∈ X1) ∧ · · · ∧ (fd ∈ Xd))→ < decision >

where each fj is a field, each Xj is a nonempty interval of
consecutive integers taken from the domain D(fj) of field fj ,
and < decision > is either discard or accept.

A property whose decision is discard is called a discard
property, and a property whose decision is accept is called an
accept property.

A discard property of the form:

((f1 ∈ X1) ∧ · · · ∧ (fd ∈ Xd))→ discard

is said to discard a packet (p1, · · · , pd) iff the predicate ((p1 ∈
X1) ∧ · · · ∧ (pd ∈ Xd)) is true. Similarly, an accept property
of the form:

((f1 ∈ X1) ∧ · · · ∧ (fd ∈ Xd))→ accept

is said to accept a packet (p1, · · · , pd) iff the predicate ((p1 ∈
X1) ∧ · · · ∧ (pd ∈ Xd)) is true.

A firewall F is said to satisfy a property pr iff one of the
following two conditions holds.

a) pr is a discard property and each packet that is
discarded by pr is discarded by F

b) pr is an accept property and each packet that is
accepted by pr is accepted by F

We end this section by identifying two special classes
of firewalls, named discard slices and accept slices. Later
in this paper we show that two problems concerning these
two special firewall classes are NP-hard. From the fact that
these two problems are NP-hard, we show that many problems
concerning the design and analysis of general firewalls are also
NP-hard.

A firewall that consists of zero or more accept rules
followed by an ALL discard rule is called a discard slice.
Similarly, a firewall that consists of zero or more discard rules
followed by an ALL accept rule is called an accept slice.

III. FIREWALL ANALYSIS

In this section we identify 13 problems that need to be
solved in order to carry out the logical analysis of firewalls.
As discussed below, these problems include firewall verifica-
tion, firewall implication, and firewall equivalence. Later, we
show that each one of these 13 problems is NP-hard. These
results indicate that the logical analysis of firewalls is hard,
at least theoretically from an asymptotic worst case analysis
perspective.

The 13 problems that we identify in this section can be
classified into 7 classes: Problems of Slice Probing, Problems

of Firewall Adequacy, Problems of Firewall Verification, Prob-
lems of Firewall Implication, Problems of Firewall Equiva-
lence, the Problem of Firewall Redundancy, and the Problem
of Firewall Completeness.

Problems of Slice Probing: There are two Slice Probing prob-
lems, which we denote SP-D and SP-A. These two problems
are defined as follows.

SP-D: Probing of Discard Slices:
Design an algorithm that takes as input a discard slice S
and determines whether S discards at least one packet

SP-A: Probing of Accept Slices:
Design an algorithm that takes as input an accept slice S
and determines whether S accepts at least one packet

Problems of Firewall Adequacy: There are two Firewall
Adequacy problems, which we denote FA-D and FA-A. These
two problems are defined as follows.

FA-D: Discard-Adequacy of Firewalls:
Design an algorithm that takes as input a firewall F and
determines whether F discards at least one packet

FA-A: Accept-Adequacy of Firewalls:
Design an algorithm that takes as input a firewall F and
determines whether F accepts at least one packet

The Problem of Firewall Completeness: The Firewall Com-
pleteness problem, which we denote FC, is defined as follows:

FC: Completeness of Firewalls:
Design an algorithm that takes as input a firewall F and
determines whether every packet is either discarded or
accepted by F

Problems of Firewall Verification: There are two Firewall
Verification problems, which we denote FV-D and FV-A. These
two problems are defined as follows.

FV-D: Discard-Verification of Firewalls:
Design an algorithm that takes as input a firewall F and a
discard property pr and determines whether every packet
that is discarded by pr is also discarded by F

FV-A: Accept-Verification of Firewalls:
Design an algorithm that takes as input a firewall F and
an accept property pr and determines whether every packet
that is accepted by pr is also accepted by F

Problems of Firewall Implication: There are two Firewall
Implication problems, which we denote FI-D and FI-A. These
two problems are defined as follows.

FI-D: Discard-Implication of Firewalls:
Design an algorithm that takes as input two firewalls F1 and
F2 and determines whether every packet that is discarded
by F1 is also discarded by F2

FI-A: Accept-Implication of Firewalls:
Design an algorithm that takes as input two firewalls F1 and
F2 and determines whether every packet that is accepted
by F1 is also accepted by F2



4

Problems of Firewall Redundancy: There are two Firewall
Redundancy problems, which we denote FR-D and FR-A.
These two problems are defined as follows.

FR-D: Discard-Redundancy of Firewalls:
Design an algorithm that takes as input a firewall F and
a discard rule rl in F and determines whether the two
firewalls F and F \ rl discard the same set of packets,
where F \ rl is the firewall that is obtained after removing
rule rl from firewall F

FR-A: Accept-Redundancy of Firewalls:
Design an algorithm that takes as input a firewall F and
an accept rule rl in F and determines whether the two
firewalls F and F \ rl accept the same set of packets,
where F \ rl is the firewall that is obtained after removing
rule rl from firewall F

Problems of Firewall Equivalence: There are two Firewall
Equivalence problems, which we denote FE-D and FE-A.
These two problems are defined as follows.

FE-D: Discard-Equivalence of Firewalls:
Design an algorithm that takes as input two firewalls F1

and F2 and determines whether F1 and F2 discard the same
set of packets

FE-A: Accept-Equivalence of Firewalls:
Design an algorithm that takes as input two firewalls F1

and F2 and determines whether F1 and F2 accept the same
set of packets

IV. HARDNESS OF THE SLICE PROBING

In this section, we show that the first Slice Probing problem
SP-D is NP-hard by a reduction from the 3-SAT problem. We
then show that the Slice Probing problems SP-A is NP-hard by
a reduction from SP-D. For convenience, we state the 3-SAT
problem next

3-SAT:
Design an algorithm that takes as input a Boolean formula
BF of the form BF = C1 ∧ C2 ∧ · · · ∧ Cn where each
clause Ck is a disjunction of 3 literals taken from the set
of Boolean variables {v1, · · · , vd}, and determines whether
BF is satisfiable (i.e. determines whether there is an
assignment of Boolean values to the variables {v1, · · · , vd}
that makes BF true)
The 3-SAT problem is known to be NP-hard [5]. This

means that the time complexity of any algorithm that solves
this problem is very likely to require exponential time of
O(n × 2d), where n is the number of clauses and d is the
number of variables in the Boolean formula BF .

(To date, progress in solving the 3-SAT problem has
resulted in both deterministic and randomized algorithms with
reduced complexity. For example, in [6] the authors present
a deterministic algorithm that runs in O(1.473n) time, and in
[7] the authors present a randomized algorithm that runs in
O(1.32113n) time on average.)

Next, we describe a polynomial translation of any instance
of the 3-SAT problem to an instance of the SP-D problem such
that any solution of the 3-SAT instance yields a solution of the

SP-D instance and vice versa. The existence of this polynomial
translation indicates that the SP-D problem is NP-hard and that
the time complexity of any algorithm that solves this problem
is very likely to be exponential.

Translating an instance of 3-SAT to an instance of SP-D
proceeds as follows:

1. The 3-SAT instance is defined by a Boolean formula
BF and the SP-D instance is defined by a discard
slice S

2. Each Boolean variable vj that occurs in formula BF
is translated to a field fj in slice S.

3. The domain of values for each variable vj is the set
{false, true} and the domain of values for each field
fj is the set {0, 1}. Value false of each variable vj
is translated to value 0 of the corresponding field fj .
Similarly, value true of each variable vj is translated
to value 1 of the corresponding field fj .

4. Each clause Ck in formula BF is translated to an
accept rule Rk in slice S as follows. First, if the literal
vj occurs in clause Ck, then the conjunct (fj ∈ [0, 0])
occurs in the predicate of rule Rk. Second, if the
literal vj occurs in clause Ck, then the conjunct (fj ∈
[1, 1]) occurs in the predicate of rule Rk. Third, if no
literal of vj occurs in clause Ck, then the conjunct
(fj ∈ [0, 1]) occurs in the predicate of rule Rk

5. Add an ALL discard rule at the bottom of slice S

From this translation, an assignment of values
(val(v1), · · · , val(vd)) makes a clause Ck true iff the
corresponding packet (val(f1), · · · , val(fd)) does not match
the corresponding accept rule Rk. Thus, we draw the
following two conclusions:

1) If there is an assignment of values
(val(v1), · · · , val(vd)) that makes the Boolean
formula BF true, then the corresponding packet
(val(f1), · · · , val(fd)) does not match any of the
accept rules in the discard slice S and matches only
the last ALL discard rule. In other words, if the
Boolean formula BF is satisfiable, then the discard
slice S discards at least one packet

2) If the discard slice S discards at least one packet,
then the Boolean formula BF is satisfiable

Therefore, any solution of the 3-SAT instance yields a
solution of the SP-D instance and vice versa. This completes
our proof of the following theorem.

Theorem 1. Problem SP-D is NP-hard.

Having established that problem SP-D is NP-hard, we can
now use this problem to establish that problem SP-A is also
NP-hard.

Theorem 2. Problem SP-A is NP-hard.
Proof: We describe a polynomial translation of any instance
of the SP-D problem to an instance of the SP-A problem such
that any solution of the SP-D instance yields a solution of the
SP-A instance and vice versa.

Translating an instance of SP-D to an instance of SP-A
proceeds as follows:



5

1. An instance of SP-D is defined by a discard slice S
2. Replacing every discard (or accept, respectively) de-

cision in S by an accept (or discard, respectively)
decision yields an accept slice denoted S′

3. The accept slice S′ defines an instance of SP-A

From this translation, packet p is discarded by slice S iff
packet p is accepted by slice S′. Thus, we draw the following
two conclusions:

1) If slice S discards at least one packet, then slice S′

accepts at least one packet
2) If slice S′ accepts at least one packet, then slice S

discards at least one packet

Therefore, any solution of the SP-D instance yields a solution
of the SP-A instance and vice versa.

V. HARDNESS OF FIREWALL ADEQUACY

In this section, we employ problem SP-D, which we have
shown to be NP-hard in the previous section, to show that
the two Firewall Adequacy problems FA-D and FA-A are also
NP-hard. First, we show that the FA-D problem is NP-hard
by a reduction from the SP-D problem. Then we show that
the FA-A problem is NP-hard by a reduction from the FA-D
problem.

Theorem 3. Problem FA-D is NP-hard.
Proof: We describe a polynomial translation of any instance
of the SP-D problem to an instance of the FA-D problem such
that any solution of the SP-D instance yields a solution of the
FA-D instance and vice versa.

Translating an instance of SP-D to an instance of FA-D
proceeds as follows:

1. An instance of SP-D is defined by a discard slice S
2. Because each discard slice is a special case of a

firewall, the discard slice S can be viewed as a
firewall denoted F

3. Firewall F defines an instance of FA-D

From this translation, packet p is discarded by slice S
iff packet p is discarded by firewall F . Thus, we draw the
following two conclusions:

1) If slice S discards at least one packet, then firewall
F discards at least one packet

2) If firewall F discards at least one packet, then slice
S discards at least one packet

Therefore, any solution of the SP-D instance yields a solution
of the FA-D instance and vice versa.

Theorem 4. Problem FA-A is NP-hard.
Proof: We describe a polynomial translation of any instance
of the FA-D problem to an instance of the FA-A problem such
that any solution of the FA-D instance yields a solution of the
FA-A instance and vice versa.

Translating an instance of FA-D to an instance of FA-A
proceeds as follows:

1. An instance of FA-D is defined by a firewall F
2. Replacing every discard (or accept, respectively) de-

cision in F by an accept (or discard, respectively)
decision yields a new firewall F ′

3. Firewall F ′ defines an instance of FA-A

From this translation, we conclude that firewall F discards at
least one packet iff firewall F ′ accepts at least one packet.
Therefore, any solution of the FA-D instance yields a solution
of the FA-A instance and vice versa.

VI. HARDNESS OF FIREWALL COMPLETENESS

In this section, we employ problem SP-D, which we have
shown to be NP-hard in Section IV, to show that the Firewall
Completeness problem FC is NP-hard.

Theorem 5. Problem FC is NP-hard.
Proof: We describe a polynomial translation of any instance
of the SP-D problem to an instance of the FC problem such
that any solution of the SP-D instance yields a solution of the
FC instance and vice versa.

Translating an instance of SP-D to an instance of FC
proceeds as follows:

1. An instance of SP-D is defined by a discard slice S
2. Let F denote the firewall that results from removing

the last (ALL discard) rule from slice S
3. Firewall F , which consists entirely of accept rules,

defines an instance of FC

From this translation, we conclude that the discard slice S
discards at least one packet iff firewall F is not complete (i.e.,
F ignores at least one packet.) Therefore, any solution of the
SP-D instance yields a solution of the FC instance and vice
versa.

VII. HARDNESS OF FIREWALL VERIFICATION

In this section, we employ problem SP-A, which we have
shown to be NP-hard in Section IV, to show that the two
Firewall Verification problems, namely FV-D and FV-A, are
also NP-hard. First, we show that the FV-D problem is NP-
hard by a reduction from the SP-A problem. Then we show
that the FV-A problem is NP-hard by a reduction from the
FV-D problem.

Theorem 6. Problem FV-D is NP-hard.
Proof: We describe a polynomial translation of any instance
of the SP-A problem to an instance of the FV-D problem such
that any solution of the SP-A instance yields a solution of the
FV-D instance and vice versa.

Translating an instance of SP-A to an instance of FV-D
proceeds as follows:

1. An instance of SP-A is defined by an accept slice S
2. Because each accept slice is a special case of a

firewall, the accept slice S can be viewed as a firewall
denoted F

3. Firewall F and the ALL discard property pr together
define an instance of FV-D



6

From this translation, we conclude that the accept slice S
accepts at least one packet iff this packet is discarded by
property pr and not discarded by Firewall F . Therefore, any
solution of the SP-A instance yields a solution of the FV-D
instance and vice versa.

Theorem 7. Problem FV-A is NP-hard.
Proof: We describe a polynomial translation of any instance
of the FV-D problem to an instance of the FV-A problem such
that any solution of the FV-D instance yields a solution of the
FV-A instance and vice versa.

Translating an instance of FV-D to an instance of FV-A
proceeds as follows:

1. An instance of FV-D is defined by a firewall F and
a discard property pr

2. Replacing every discard (or accept, respectively) de-
cision in F and in pr by an accept (or discard,
respectively) decision yields another firewall F ′ and
an accept property pr′

3. Firewall F ′ and the accept property pr′ together
define an instance of FV-A

From this translation, we conclude that every packet that is
discarded by property pr is discarded by firewall F iff every
packet that is accepted by property pr′ is accepted by firewall
F ′. Therefore, any solution of the FV-D instance yields a
solution of the FV-A instance and vice versa.

VIII. HARDNESS OF FIREWALL IMPLICATION

In this section, we employ problem FV-D, which we have
shown to be NP-hard in the previous section, to show that
the two Firewall Implication problems, namely FI-D and FI-
A, are also NP-hard. First, we show that the FI-D problem
is NP-hard by a reduction from the FV-D problem. Then we
show that the FI-A problem is NP-hard by a reduction from
the FI-D problem.

Theorem 8. Problem FI-D is NP-hard.
Proof: We describe a polynomial translation of any instance
of the FV-D problem to an instance of the FI-D problem such
that any solution of the FV-D instance yields a solution of the
FI-D instance and vice versa.

Translating an instance of FV-D to an instance of FI-D
proceeds as follows:

1. An instance of FV-D is defined by a firewall F and
a discard property pr

2. Because each property is a special case of a firewall,
the discard property pr can be viewed as a firewall
denoted F ′

3. The two firewalls F and F ′ together define an in-
stance of FI-D

From this translation, we conclude that every packet that is
discarded by property pr is discarded by firewall F iff every
packet that is discarded by firewall F ′ is discarded by firewall
F . Therefore, any solution of the FV-D instance yields a
solution of the FI-D instance and vice versa.

Theorem 9. Problem FI-A is NP-hard.
Proof: We describe a polynomial translation of any instance
of the FI-D problem to an instance of the FI-A problem such
that any solution of the FI-D instance yields a solution of the
FI-A instance and vice versa.

Translating an instance of FI-D to an instance of FI-A
proceeds as follows:

1. An instance of FI-D is defined by two firewalls F
and F ′

2. Replacing each discard (or accept, respectively) de-
cision by accept (or discard, respectively) decision in
firewalls F and F ′ yield the two firewalls G and G′

3. The two firewalls G and G′ together define an in-
stance of FI-A

From this translation, we conclude that every packet that is
discarded by firewall F is discarded by firewall F ′ iff every
packet that is accepted by firewall G is accepted by firewall G′.
Therefore, any solution of the FI-D instance yields a solution
of the FI-A instance and vice versa.

IX. HARDNESS OF FIREWALL REDUNDANCY

In this section, we employ problem FV-D, which we have
shown to be NP-hard in Section VII, to show that the two
Firewall Redundancy problems FR-D and FR-A are also NP-
hard. First, we show that the FR-D problem is NP-hard by a
reduction from the FV-D problem. Then, we show that the FR-
A problem is NP-hard by a reduction from the FR-D problem.

Theorem 10. Problem FR-D is NP-hard.
Proof: We describe a polynomial translation of any instance
of the FV-D problem to an instance of the FR-D problem such
that any solution of the FV-D instance yields a solution of the
FR-D instance and vice versa.

Translating an instance of FV-D to an instance of FR-D
proceeds as follows:

1. An instance of FV-D is defined by a firewall F and
a discard property pr

2. Because each property can be viewed as a rule, the
discard property pr can be viewed as a discard rule
denoted rl. Let F ′ denote the firewall that results
from placing rule rl at the top of firewall F . (Note
that firewall F is the same as firewall F ′ \ rl.)

3. Firewall F ′ and its top (discard) rule rl together
define an instance of FR-D

From this translation, we conclude that every packet that is
discarded by the discard property pr is discarded by firewall F
iff the two firewalls F and F ′ discard the same set of packets.
Therefore, any solution of the FV-D instance yields a solution
of the FR-D instance and vice versa.

Theorem 11. Problem FR-A is NP-hard.
Proof: We describe a polynomial translation of any instance
of the FR-D problem to an instance of the FR-A problem such
that any solution of the FR-D instance yields a solution of the
FR-A instance and vice versa.



7

Translating an instance of FR-D to an instance of FR-A
proceeds as follows:

1. An instance of FR-D is defined by a firewall F and
a discard rule rl in F

2. Replacing each discard (or accept, respectively) de-
cision in firewall F by an accept (or discard, re-
spectively) decision yields a new firewall F ′. Let rl′
denote the accept rule in F ′ which corresponds to the
discard rule rl in F .

3. Firewall F ′ and the accept rule rl′ in F ′ together
define an instance of FR-A

From this translation, we conclude that the two firewalls F
and F \ rl discard the same set of packets iff the two firewalls
F ′ and F ′ \ rl′ accept the same set of packets. Therefore, any
solution of the FR-D instance yields a solution of the FR-A
instance and vice versa.

X. HARDNESS OF FIREWALL EQUIVALENCE

In this section, we rely on the NP-hardness of the FR-D
problem, which is established in the previous section, to show
that the two Firewall Equivalence problems FE-D and FE-A
are also NP-hard. First, we show that the FE-D problem is
NP-hard by a reduction from the FR-D problem. Then, we
show that the FE-A problem is NP-hard by a reduction from
the FE-D problem.

Theorem 12. Problem FE-D is NP-hard.
Proof: We describe a polynomial translation of any instance
of the FR-D problem to an instance of the FE-D problem such
that any solution of the FR-D instance yields a solution of the
FE-D instance and vice versa.

Translating an instance of FR-D to an instance of FE-D
proceeds as follows:

1. An instance of FR-D is defined by a firewall F and
a discard rule rl in F

2. Let G and G′ denote the two firewalls F and F \ rl
respectively

3. The two firewalls G and G′ together define an in-
stance of FE-D

From this translation, we conclude that the two firewalls F and
F \ rl discard the same set of packets iff the two firewalls G
and G′ discard the same set of packets. Therefore, any solution
of the FR-D instance yields a solution of the FE-D instance
and vice versa.

Theorem 13. Problem FE-A is NP-hard.
Proof: We describe a polynomial translation of any instance
of the FE-D problem to an instance of the FE-A problem such
that any solution of the FE-D instance yields a solution of the
FE-A instance and vice versa.

Translating an instance of FE-D to an instance of FE-A
proceeds as follows:

1. An instance of FE-D is defined by two firewalls F
and F ′

2. Replacing each discard (or accept, respectively) deci-
sion by an accept (or discard, respectively) decision

in firewalls F and F ′ yield two new firewalls G and
G′

3. Firewalls G and G′ together define an instance of
FE-A

From this translation, we conclude that the two firewalls F
and F ′ discard the same set of packets iff the two firewalls G
and G′ accept the same set of packets. Therefore, any solution
of the FE-D instance yields a solution of the FE-A instance
and vice versa.

XI. WHERE WE GO FROM HERE

Figure 1 shows an outline of our proof, presented in the
five sections IV through X, that each one of the 13 problems
in Section III is NP-hard. This proof outline is a directed
graph where each node represents one problem and where each
directed edge from node P to node P ′ indicates that problem
P ′ is shown to be NP-hard by a reduction from problem P .
Note that in this graph, each node P has exactly one incoming
edge labeled by a number k to indicate that the NP-hardness
of problem P is proven in Theorem k.

From this proof outline, each one of the 13 problems is
shown to be NP-hard by an ultimate reduction from the 3-SAT
problem. As mentioned in Section IV, the time complexity of
any algorithm that solves the 3-SAT problem is very likely to
be of O(n × 2d), where n is the number of clauses in the
Boolean formula and d is the number of Boolean variables in
the Boolean formula.

Thus, assuming that the firewall fields are all binary, the
time complexity of any algorithm that solves any of the 13
problems in Section III is very likely to be of O(n×2d), where
n is the number of rules in a firewall, and d is the number of
bits that are checked by the firewall rules in the headers of
every packet. For most firewalls, n is at most 2000 rules, and
d is at most 120 bits. Therefore, assuming that the firewall
fields are all binary, the time complexity of any algorithm that
solves any of the 13 problems in Section III is very likely to
be of O(2000× 2120).

At first, this large time complexity may discourage many
researchers from trying to solve any of the 13 problems in
Section III. But it turns out that researchers can take advantage
of the following three techniques in order to avoid this large
complexity in many practical situations.

1. Using SAT-Solvers:
As discussed in [8], each instance of the 13 problems in
Section III can be translated into an instance of the SAT
problem and then can be easily solved (in many practical
situations) using any of the available SAT-solvers, such as
Minisat [9].

Indeed the experimental results reported in [8] are im-
pressive. For example, it is shown that many instances of
the Firewall Equivalence problem, the Firewall Implication
problem, and the Firewall Redundancy problem can all be
solved using the Minisat solver [9] and the firewall generator
Classbench [10]. More importantly, solving each of these
problem instances, which involves one or two firewalls of
about 2,000 rules each, takes less than 5 Seconds.



8

FE-AFR-A

FE-D

FA-A

FV-A

FR-D

FA-DSP-D

FC

FV-D

SP-A

FI-A

FI-D

3-SAT
1 5

2
3

4

6

7

8

9

10

11

12

13

Fig. 1: Hardness reductions between 13 firewall analysis problems

2. Adopting Integer Fields:
The large time complexity of O(2000×2120) for solving any of
the 13 problems in Section III is based on our assumption that
the firewalls in these problems have a large number (around
120) of Boolean fields. Technically, this assumption can be
replaced by assuming that the firewalls in these problems have
a small number (around 5) of integer fields. Adopting this new
assumption, it is shown in [11], [12], [13], [14], and [15] that
there are algorithms, whose time complexity is of O(ne+1),
that solve the Slice Probing problem, the Firewall Verification
problem, and the Firewall Redundancy problem. In this case,
n is the number of rules in a firewall and e is the number
of integer fields that are checked by the firewall rules in the
headers of every packet. For most firewalls, n is at most 2000
rules, and e is at most 5 integer fields. Therefore, the time
complexity of any algorithm that solves any of the 13 problems
in Section III is very likely to be of O(20006) which is much
smaller than O(2000× 2120).

3. Accepting Probabilistic Solutions:
The large time complexity of O(ne+1) for any algorithm to
solve any of the 13 problems in Section III is based on the
implicit requirement that the algorithm be deterministic. It
is possible to drastically reduce this time complexity if one
is willing to accept probabilistic algorithms that solve these
problems.

For example, a probabilistic algorithm for solving the
Firewall Verification problem is proposed in [16]. This algo-
rithm determines whether any given firewall satisfies any given
property. The time complexity of this algorithm is optimally
linear of O(n×e), where n is the number of rules in the given
firewall and e is the number of integer fields that are checked
by the firewall rules in the headers of each packet. The only
problem of this algorithm is that sometimes when the algorithm
returns a determination that the given firewall satisfies the
given property, the returned determination is incorrect. A large
simulation study showed that the probability of an incorrect
determination is negligible.

XII. RELATED WORK

The importance of the logical analysis and verification of
firewalls has been recognized since the year 2000 [1]. This

recognition has led early on to some attempts to identify
configuration errors and vulnerabilities in firewalls that were
in operation at the time [2], [3], and [4]. These early attempts,
though useful in practice, did not develop into a mature theory
for the logical analysis and verification of firewalls.

Later on, a robust and full theory for the logical analysis
and verification of firewalls was developed [11]–[15]. The
objective of this theory was to design efficient algorithms
that can solve: firewall equivalence problems [14], firewall
redundancy problems [12], and [13], and firewall verification
problems [11] and [15].

It turns out that the time complexity of each algorithm that
was designed in this theory is exponential! Yet until the current
paper, no one was able to prove that any problem in this theory
is NP-hard. The current paper not only proves that one or two
problems in this theory are NP-hard but it also proves that
many problems in the theory are NP-hard.

The fact, that the time complexity of all algorithms in
the theory of logical analysis of firewalls is exponential, was
alarming. This alarm led researchers to propose two new
research directions. First, some researchers proposed to design
probabilistic algorithms for solving the problems in the theory
[11]. Second, other researchers proposed to rely on SAT
solvers to solve the problems in the theory [8] and [9]. The
results in the current paper will undoubtedly bolster and add
credence and significance to these new research directions, as
discussed in Section XI.

XIII. CONCLUDING REMARKS

In this paper, we identified 13 important problems related
to the analysis of firewalls and showed that each one of these
problems is NP-hard. This means that the time complexity of
any algorithm that can solve any of these problems is very
likely to be exponential.

Our proofs of these NP-hardness results were based on
reductions from the relatively new problem of Slice Probing.
This fact confirms the central role that the Slice Probing
problem plays in the analysis of firewalls. Future research in
the analysis of firewalls should be mindful of this problem.

Some of the 13 problems discussed in this paper can be
shown to be NP [5]. Examples of these problems are the Slice



9

Probing problems. The remaining problems can be shown to
be co-NP [5]. Example of these problems are the Firewall
Implications problems.

It is possible to think of other problems related to the
analysis of firewalls and show that these problems are also
NP-hard by reductions from the 13 problems in Section III.
For example consider the following problem

Firewall Exclusion:
Show that if any given firewall discards (or accepts, re-
spectively) a packet, then another given firewall does not
discard (or does not accept, respectively) the same packet

We believe that this problem can be shown to be NP-hard
by a reduction from the Firewall Implication problem.

In Section XI, we pointed out three research directions that
can be pursued in order to enhance our ability to design and
analyze firewalls, in light of the NP-hardness results in this
paper.

REFERENCES

[1] A. Mayer, A. Wool, and E. Ziskind, “Fang: a firewall analysis engine,”
in IEEE Symposium on Security and Privacy, 2000, pp. 177–187.

[2] A. Wool, “A quantitative study of firewall configuration errors,” Com-
puter, vol. 37, no. 6, pp. 62–67, 2004.

[3] S. Kamara, S. Fahmy, E. Schultz, F. Kerschbaum, and M. Frantzen,
“Analysis of vulnerabilities in internet firewalls,” Computers and Secu-
rity, vol. 22, no. 3, pp. 214 – 232, 2003.

[4] D. Hoffman and K. Yoo, “Blowtorch: a framework for firewall test
automation,” in Proceedings of the 20th IEEE/ACM international Con-
ference on Automated software engineering, ser. ASE ’05, 2005, pp.
96–103.

[5] M. R. Garey and D. S. Johnson, Computers and intractability : A guide
to the theory of NP-completeness. San Francisco: W. H. Freeman,
1979.

[6] T. Brueggemann and W. Kern, “An improved deterministic local search
algorithm for 3-SAT,” Theoretical Computer Science, vol. 329, no. 13,
pp. 303 – 313, 2004.

[7] K. Iwama, K. Seto, T. Takai, and S. Tamaki, “Improved randomized
algorithms for 3-sat,” in Algorithms and Computation, ser. Lecture
Notes in Computer Science, O. Cheong, K.-Y. Chwa, and K. Park,
Eds. Springer Berlin Heidelberg, 2010, vol. 6506, pp. 73–84.

[8] S. Zhang, A. Mahmoud, S. Malik, and S. Narain, “Verification and
synthesis of firewalls using SAT and QBF,” in 20th IEEE International
Conference on Network Protocols (ICNP), 2012, pp. 1–6.

[9] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and
Applications of Satisfiability Testing, ser. Lecture Notes in Computer
Science, E. Giunchiglia and A. Tacchella, Eds. Springer Berlin
Heidelberg, 2004, vol. 2919, pp. 502–518.

[10] D. Taylor and J. Turner, “Classbench: A packet classification bench-
mark,” IEEE/ACM Transactions on Networking, vol. 15, no. 3, pp. 499–
511, 2007.

[11] H. B. Acharya at al., “Projection and division: Linear space verification
of firewalls,” in Proceedings of the 30th International Conference on
Distributed Computing Systems (ICDCS), 2010, pp. 736–743.

[12] H. B. Acharya and M. G. Gouda, “Firewall verification and redundancy
checking are equivalent,” in Proceedings of the 30th IEEE Interna-
tional Conference on Computer Communication (INFOCOM), 2011,
pp. 2123–2128.

[13] A. X. Liu et al., “Complete redundancy removal for packet classifiers
in TCAMs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 21, pp. 424–437, 2010.

[14] A. X. Liu and M. G. Gouda, “Diverse firewall design,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 19, pp. 1237–1251,
2008.

[15] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. Elbadawi, “Network
configuration in a box: towards end-to-end verification of network
reachability and security,” in 17th IEEE International Conference on
Network Protocols (ICNP), 2009, pp. 123–132.

[16] H. B. Acharya et al., “Linear-time verification of firewalls,” in Proceed-
ings of the 17th IEEE International Conference on Network Protocols
(ICNP), 2009, pp. 133–140.


