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Abstract

Reservoir management requires high resolution numerical geologic models of facies

and petrophysical properties. Facies are arguably the most important reservoir

heterogeneity. Many geostatistical facies modeling techniques have been proposed

during the years of heavily practiced geostatistics in reservoir assessment. Several

aspects in current practices, outside the modeling technique itself, induce potential

deficiencies in the representation of facies.

This thesis develops novel tools, techniques, and understanding that support

geostatistical literature and improve reservoir modeling practice. Notable features

of this thesis are (1) addressing information loss in facies upscaling process through

a proposed measure which captures variability on non-major facies; (2) proposing

a novel inverse modeling approach to estimate shale continuity in the form of a

probability distribution function; (3) introducing stochastic regridding to correct

the conventional approach of nearest neighbor assignment; (4) investigating the

construction of high resolution models in MPS aspect; (5) enforcing the connectivity

of disparate facies units such as levees by proposing an effective sequence of dilation-

erosion approach while preserving the global proportions; and finally (6) proposing

multiscale ranking that optimizes the selected realization performance over different

recovery settings, and introducing realization clustering as an alternative to ranking

when more than one factor is representative of the reservoir performance.
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Chapter 1

Introduction

The application of geostatistics to characterize petroleum reservoirs dates back to

the pioneering work of Matheron (1962). Geostatistics constructs high resolution 3-

D numerical geologic models of facies, porosity, permeability and other petrophysical

properties to provide an understanding of the reservoir. Constructing such models is

a challenging task due to complex geologic heterogeneity present in most reservoirs.

Despite this heterogeneity, each reservoir is a deterministic phenomena; for the

“true” distribution to be known, however, every single part of the reservoir should

be examined (Haldorsen et al., 1988).

In any reservoir study, uncertainty exists due to limited sampling (Kupfersberger

et al., 1998). The amount of data that can be practically collected from the reservoir

is small relative to its size. The wells are widely spaced and represent the reser-

voir with a very small volume. The lack of data combined with geologic variability

at different length scales and different degrees of precision (Deutsch and Hewett,

1996) lead to a partial understanding of the spatial distribution and a significant

level of uncertainty in reservoir estimation. Thus, geostatistics utilizes stochas-

tic techniques to quantify uncertainty. Stochastic simulation was developed and

popularized in reservoir modeling because of its ability to characterize the hetero-

geneity and improve uncertainty assessment (Haldorsen et al., 1988; Haldorsen and

Damsleth, 1990). This dates back to Matheron’s prominent work on regionalized

variables (Matheron, 1962, 1971). The Stochastic (probabilistic) approach aims at

bridging the gap between sampled data and unsampled locations.

Accounting for uncertainty differentiates the probabilistic method from the con-

ventional deterministic approach where only one numerical geologic model is used

to represent the reservoir (Haldorsen and Damsleth, 1990; Hatløy, 1995; Srivastava,
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1994). The importance of generating multiple realizations goes back to the under-

lying uncertainty and the fact that there exists many possible spatial distribution

of reservoir properties that reproduce the data while leading to different reservoir

responses (Srivastava, 1994; Deutsch and Srinivasan, 1996). The concept of generat-

ing stochastic realizations that permits transferring geological uncertainty through

recovery performance predictions is well established (Haldorsen et al., 1988; Isaaks

and Srivastava, 1988; Journel, 1989; Haldorsen and Damsleth, 1990; Journel and

Alabert, 1990; Englund, 1993; Rossi et al., 1993).

The fundamentals of stochastic simulation within the random function frame-

work can be found in excellent references including Journel and Huijbregts (1978);

Luster (1985); Isaaks and Srivastava (1988); Isaaks (1990); Goovaerts (1997); Deutsch

et al. (2002); Pyrcz and Deutsch (2014). Rossi et al. (1993) analogize the stochastic

simulation to a jigsaw puzzle for which (i) the true/complete picture is not available;

(ii) all pieces of the puzzle have the same shapes and sizes; and (iii) the number

of pieces is theoretically infinity. The only known thing is the position of some of

the pieces of the puzzle. Assuming that the known pieces can actually represent

the final image, they permit inference of some characteristics, such as univariate

statistics, or the greater likelihood for some specific pieces to be part of the final

image.

Stochastic numerical geostatistical realizations are considered in the evaluation

of resources and most importantly to study flow performances (Aziz, 1993). Under-

standing flow characteristics and properties around the wells is critical in decision

making at different stages of petroleum exploration and production (Hove et al.,

1992; Deutsch et al., 2002). These numerical models support a variety of deci-

sions including the number and location of exploration wells, development sequenc-

ing, comparing production alternatives and profitability/investment assessment in

general (Rose, 1987; Salomão and Grell, 2001). Decisions are often supported by

processing multiple realizations through a flow simulator with the anticipated de-

velopment strategy (Aziz and Settari, 1979; Deutsch et al., 2002). The uncertainty

in flow performance which is characterized by different responses of multiple re-

alizations (Deutsch et al., 2002) is considered in reservoir management by making

decisions optimized over a set of choices. A comprehensive study of optimal decision

making with reservoir uncertainty is available in Alshehri (2010).

The next section provides some background mainly on challenges specific to hor-
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izontal wells recovery in heavy oil unconventional reservoirs. Although the following

discussion is found to be the most relevant, the approaches and techniques addressed

in this thesis are not limited to any specific reservoir type or geostatistical workflow.

1.1 Background

A large amount of heavy oil deposits have been discovered in Canada, Venezuela,

California, and the North Slope of Alaska (Burton et al., 2005; Le Ravalec et al.,

2009b). Bitumen is a low value product, and therefore its recovery in commer-

cial operations requires the implementation of efficient processes (Edmunds, 1993).

The main difference between bitumen and conventional oil is the mobility of the

hydrocarbon. Conventional recovery techniques are not applicable to bitumen be-

cause of high viscosity. The McMurray Formation includes one of the biggest oil

sands deposits in Western Canada, estimated to be about 170 billion barrels of oil

(Labrecque et al., 2011). The McMurray consists of fluvial, estuarine and shoreface

deposits with remnant shales and other geologic structures. The bitumen with high

recovery potential is mainly located in thick high net to gross (NTG) ratio intervals

(Ranger and Gingras, 2006). The minable area of Fort McMurray is at its north,

along the Athabasca river valley (Wightman and Pemberton, 1997).

A significant number of oil sands deposits are deep underground so that sur-

face mining methods would not be applicable for extracting oil (ERCB, 2013). Oil

sands recovery techniques are developed so that bitumen movement is achieved

through different means. As temperature has an extremely strong influence on bitu-

men viscosity (with the latter decreasing exponentially with the former), increasing

the reservoir temperature is the principal means of recovering bitumen from the

oil sands (Butler, 1991). The basis of most in situ oil sands recovery techniques

is to achieve heating of the bitumen in the reservoir. Numerous technically and

commercially successful production techniques have been developed during the past

decades. These in situ techniques often utilize steam injection processes through

vertical or horizontal wells such as Cyclic Steam Stimulation, Steam Drive (SD),

Steam Stimulation, Pressure Cyclic Steam Drive, Horizontal Alternate Steam Drive

and Steam Assisted Gravity Drainage (SAGD), amongst others (Wong et al., 1994;

Hongfu et al., 2002; Butler and Yee, 2002).

SAGD is perhaps the most important recovery mechanism which is known to be

cost effective for reservoirs containing immobile bitumen (Nzekwu, 1997). SAGD
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was first introduced for bitumen recovery by Butler and his former colleagues at

Imperial Oil in the late 1970s (Butler et al., 1981; Butler and Stephens, 1981). The

success of SAGD was demonstrated at the Underground Test Facility (UTF) with

Alberta oil sands (Edmunds et al., 1994; Komery et al., 1995). SAGD outperforms

most in situ bitumen recovery techniques in terms of per-well production rates,

reservoir recovery and lower steam-oil-ratio (SOR) (ERCB, 2013).

One main feature of the SAGD is the utilization of horizontal wells for increased

contact with the reservoir; it involves drilling two parallel horizontal wells at the

bottom of a thick sandstone reservoir: A production well and a steam injection

well located 5 to 10 m above it (Butler, 1991, 1998). The idea is to heat the

reservoir using the latent energy of injected steam until the viscosity of the bitumen

decreases significantly and heavy oil is drained by gravity towards the production

well. Steam, coming from the steam injection well, forms a vapor phase chamber

that grows first vertically to the top of the reservoir and then laterally. The heated

bitumen is captured and recovered by the production well as it drains downward due

to gravity. However, the main mechanism in SAGD recovery is the steam chamber

formation which must grow upwards in the reservoir.

Establishing communication between the production and injection well pairs is

essential to SAGD initialization (Yang and Butler, 1992). It is important that steam

breakthrough in one portion of the well does not unduly upset the pressure profile

along the well. Steam trap control should be maintained and the steam chamber

must spread uniformly along the well pair. The pressure difference should stay

constant all along the horizontal wells. A non-uniform pressure difference would

result in a non-uniform steam chamber at the top of the injector, which in turn

may cause uneven bitumen flow in the production well. The injection rate must be

controlled so that a rise in steam pressure does not lead to the loss of steam from

the zone and distortion of the steam chamber.

Focusing on SAGD (currently the main practice in oilsand recovery in northern

Alberta), two issues regarding horizontal well performance arise (1) the reservoir

heterogeneity around the well pairs, and (2) the model resolution required for flow

simulation forecasting. The first issue will be considered with respect to the small

shales that could form local barriers that impede flow and the second issue will be

discussed with regards to the appropriate model scale for flow forecasting.
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1.1.1 Horizontal Wells and Stochastic Shales

Horizontal wells have proved to often be a better alternative than vertical wells in

terms of enhancing oil recovery, economics, and production development for recov-

ery of hydrocarbon reservoirs (Lien et al., 1992). It is also understood that shale

barriers may significantly reduce horizontal well performance (Yang and Butler,

1992; Belgrave and Bora, 1996; Chen et al., 2008; Jimenez, 2008). The performance

of horizontal wells decreases mainly due to the increase in tortuosity of flow paths

(Belgrave and Bora, 1996); the impermeable flow units destabilize the rise of the

steam chamber and have significant effects on well productivity, Cumulative Steam-

Oil Ratio (CSOR) and oil recovery (Pooladi-Darvish and Mattar, 2002; Le Ravalec

et al., 2009a).

The impact of shales is twofold. Firstly, shales are often saturated with water

characterized by large specific heat. Consequently, some steam or extra heat is

absorbed by the residual water inside the unproductive shale layers. The second

and more important negative effect of shale layers is caused by the flow resistance

of shales. For this reason, the characterization of thin shales is even more critical to

SAGD recovery where its performance highly depends on the vertical permeability

around the horizontal well pairs.

The effect of vertical permeability barriers have been accounted for in recovery

evaluation through analytical or simulation approaches (Lien et al., 1992; Belgrave

and Bora, 1996). In analytical studies of Giger et al. (1984); Joshi (1988), for exam-

ple, the horizontal to vertical production rate is shown to be directly proportional to

the vertical to horizontal permeability ratio. Or, Begg and Chang (1985) account for

the shale barriers in the simulation by considering reduction in the vertical perme-

ability. Lien et al. (1992) refers to Begg’s techniques as an implicit characterization

of impermeable barriers and compare its performance with Haldorsen’s proposed

technique in which the shale characterization is applied explicitly in simulations

(Haldorsen, 1989). The latter shows a better match with the theoretical approach

of Joshi (1988).

From a different perspective, shales as flow barriers are typically distributed with

random geometric configurations. High resolution models in the region of recovery

would be required to characterize the heterogeneity and capture the physics of the

flow.
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1.1.2 Horizontal Wells and High Resolution Models

Haldorsen and Damsleth (1993) discussed the challenges in reservoir modeling, ar-

guing that if everything about a reservoir were known—including the architecture

and properties, then what remained would be to (1) impose a sufficiently fine grid

network to characterize the flow interactions, recovery process, and heterogeneities;

and (2) optimize over many possibilities of reservoir distributions to select the op-

timal number of wells and their positions which requires extensive computational

capacities. Despite the immense improvements in computational technology since

more than twenty years ago when the paper was published, those challenges are yet

to be met: The construction of geostatistical models are still constrained to grid

cells or nodes of relatively coarse size to compromise between covering relatively

large volumes of reservoir (physical) and the computational capacity.

Necessity to generate detailed models is especially prevailing to the SAGD scheme

where the effect of small scale heterogeneity around the wells could be substantial.

The most attractive approach that has been advocated and practiced so far is to

construct the high spatial resolution models restricted to the area of interest con-

ditioned to the initially generated coarse resolution model. This process is often

known as model refinement or regridding since it is built on previously constructed

models of coarse resolution and could consider a different grid alignment than the

initial one. The initial model refers to a simulated 3-D model that is built at a

unified intermediate scale.

The most prominent work on the generation of high resolution models from the

coarse resolution ones is in global climate modeling (GCM). The developed tech-

niques in climate forecasting provide models for regional domains with coarse grid

cells of hundreds of kilometers (Jha et al., 2013) whereas the so called downscaled

models are implemented to provide the local weather forecasting. The coarse res-

olution regional model is not capable of capturing variability in local areas. The

downscaling methods are developed to capture small scale variability through in-

tegration of coarse resolution models and several local data sources that are not

considered in simulating global models. Empirical techniques are then utilized to

extrapolate spatial continuity to much higher resolution. Reference to large or small

scale in GCM application mostly implies the model covering global or local regions.

The need for more detailed models is also considered in different fields at which
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Figure 1.1: Illustration of downscaling, upscaling and regridding concepts. The sketch at the
top depicts the downscaling concept. The one in the middle illustrates upscaling and the last one
illustrates regridding in cell-based geostatistical simulation techniques. In the downscaling, the
coarse scale grid cell (big rectangle) is divided into 18 small scale cells (small squares) painted the
same color which could be considered as nearest neighbor approach. The upscaling is opposite:
The 6 small scale rectangles are averaged to one big rectangle. In the regridding, one centroid
is now represented by 12 centroids that are spaced regularly from each other.

the analysis are based on higher resolution images (i.e. super-resolution images)

than the ones initially provided. In geostatistics, Hosseini et al. (2008) established

an approach to characterize the uncertainty at small scale utilizing high resolution

core photos. The high resolution core photos provide information at the scale of

millimeters; the short scale variability is inferred from the resolution of the core

photos. Statistical tools would then be deployed to extrapolate from data on coarse

resolution models to fine resolution ones (Deutsch and Hewett, 1996; McLennan,

2005; McLennan and Deutsch, 2005a; Ren and Deutsch, 2005). In such techniques

as well as those in GCM, one important element is the utilization of local data to

extrapolate new information at the higher resolution. The problem addressed here

is to generate high resolution models from coarse resolution ones with no access to

small scale data. Thus, the high resolution model is constructed by regridding not

downscaling.

It is important to note that the variable is defined at the grid nodes (centre of

the grid cell) and not for the entire rectangular grid cell as shown in Figure 1.1.

All proposed geostatistical frameworks in this thesis are presented and built on

the Cartesian grid system. The properties are assigned to the centre point, but for
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visualization and some numerical calculations, it is assumed that the grid node value

defines the entire the entire grid cell. As can be observed in Figure 1.1, the upscaling

is unique: The result of averaging is only one value. However, many different sets

of small scale cell values could average into the value representing the coarse scale

value. That is why going from coarser scale to finer scale is challenging and non-

unique. The simple solution of assigning all small scale grid cells as coarse scale

grid cell is practiced which does not accurately reflect the small scale heterogeneity.

The same is true with the regridding sketched here. Defining data on the new grid

points is challenging, especially when no reference regarding data at that resolution

is available (i.e. regridding of geostatistical coarse scale models).

More Aspects

Thus far, the importance of improving facies representation is discussed through

characterization of the shales and model regridding. The evaluation of reservoir con-

nectivity, or more importantly, inter-well connectivity, is another important aspect

which benefits largely from improvements in facies representation. Connectivities

evaluated from 3-D models are not always representative, particularly if the stochas-

tic simulation generates excessive broken or disconnected facies events inconsistent

with the true geologic connectivity. The interest reader can consult recent studies of

Li et al. (2009); Kaviani and Jensen (2010); Kaviani and Valkó (2010) for quantifica-

tion of inter-well connectivity. In addition to the importance of correct assessment

of connectivity, proper selection of realizations is also crucial for accurate perfor-

mance forecasting. For clarity, the relevant literature on reservoir connectivity and

realization selection will be left out at this point; it is more concise to discuss them

in subsequent chapters where appropriate.

1.1.3 McMurray Formation

McMurray Formation is the host to the major Athabasca oilsands resources which

is probably the single largest accumulation of hydrocarbons in the world (Demai-

son, 1977)—containing about 900 billion barrels of oil (Wightman and Pemberton,

1997). McMurray Formation was deposited in a north-south trending depression

of Devonian limestone along the Athabasca River (Flach and Mossop, 1985). It

rests directly on the Devonian evaporates and carbonates creating a sharp contact

or unconformity. The three members of lower, middle and upper categorizes the
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McMurray Formation informally (Carrigy, 1959), despite the fact that the fossil

trace does not exactly support this generalization (Ranger et al., 2008). The overall

changes in characteristics of the lithology from base to top of the formation—from

fluvial to marine zone—support the division of the formation to three informal

members. However, the Middle and Upper McMurray could also be regarded as one

stratigraphic unit as proposed by Hein et al. (2000), since they have experienced the

same depositional environments (Flach, 1984; Flach and Mossop, 1985; Wightman

and Pemberton, 1997). The Lower McMurray (previously called Basal McMurray)

units, in turn, are lithologically distinct and have different biostratigraphic ages

(Hein et al., 2000).

The various depositional environments that results in heterogeneous geological

features and rapid and abrupt changes of facies laterally and vertically, has made

Athabasca lower Cretaceous sediments one of the most complex depositional sys-

tem in Western Canada Basin (Ranger, 1994). It is mainly believed that the lower

McMurray (Daphne Member) is dominated by fluvial origin, the middle McMurray

(Steepbank Member) has estuarine origin, and the upper McMurray (Chard Mem-

ber) includes marine environment. The thickness of McMurray Formation changes

upto 110 m (Ranger and Gingras, 2003). The lower member of McMurray For-

mation found to be below 60 m, the middle member from 20 to 60 m, and upper

member from above 20 m (Flach and Mossop, 1985).

The Middle McMurray contains stacked estuarine channel sands of 25—45 m

thick known as large scale cross-stratified sand that are mainly put together with

only bitumen. Cross-stratified sand bed sets have thickness of 0.5 m or more with

strong tidal signatures (Ranger and Gingras, 2003). The petrophysical property of

this part of deposit is exceptionally high with 33% to 35% porosity and 2—5 D per-

meability values (Cody et al., 2001). The thick reservoir sand interval in the Middle

McMurray is overlain by sand to mud dominated Inclined Heterolithic Stratifica-

tion, or IHS. The term IHS was first introduced by Thomas et al. (1987) to link the

internal architecture description as opposed to the original term of epsilon-cross-

stratification which communicates genetic bias. IHS describes three main charac-

teristics of IHS set regarding: depositional dip, lithologically heterogeneous compo-

sition, and wide variety of thicknesses.

The main mechanism responsible for the formation of inclined strata sets is point

bar lateral accretion within (20—45 m) meandering channel as also been recognized
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Figure 1.2: IHS core samples of McMurray Formation (taken from Lettley and Pemberton
(2004)). The core sample on the left represents a muddy dominated IHS and the one on the
right represents sandy dominated IHS.

in McMurray Formation (Mossop and Flach, 1983; Thomas et al., 1987). In fact,

the dip direction of point bar IHS sequences is mainly angled to the direction of

predominant flow (Thomas et al., 1987). In terms of McMurray Formation, the

original dip of IHS sets varies within a range of 4 to 22° as originally reported by

Mossop and Flach (1983). Upper McMurray Formation includes horizontal beds

of sands and silts that are laid in sharp contrast to the IHS sequences of Middle

McMurray (Ranger and Gingras, 2003).

The distribution and geometry of large-scale sandstone/mudstone IHS couplets

in Lower Cretaceous McMurray Formation is believed to be responsible for the con-

trol over the oil migration pathways during genesis of Athabasca oilsands (Mossop

and Flach, 1983). IHS can be lithologically classified into homogeneous “homolithic”

or heterogeneous “heterolithic” units. As can be observed in Figure 1.2, IHS typi-

cally consists of interbedded sand and mud in varying amount. The feature of IHS

in this deposit varies largely from containing mainly sand to being shale dominated.

The lateral continuity of low permeability IHS beds depend on the presence/absence

of erosional surfaces, and the size of the channels (Fustic et al., 2011).

The clean sand deposit which is free of IHS is the main target to SAGD and

similarly, the sand dominated IHS deposit could be of recovery potential. The
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mud dominated IHS with extensive lateral continuity could become problematic

to the rise of SAGD steam chamber, or the heated oil flow. Mud dominated IHS

(IHS silestone) from McMurray Formation are too thin to be identified by seismic

imagining. They also cannot be correlated using delineation wells (Fustic, 2007).

Thus, their characterization for reservoir modeling purposes are quite challenging.

Throughout the examples in this thesis, sand dominated IHS and mud dominated

IHS are used frequently, either to represent permeable or impermeable facies, or to

indicate reservoir or non-reservoir domain. Where appropriate the porosity and

permeability values are considered distinctively for each one of these facies from

sand the most permeable to shale the least permeable.

1.1.4 Facies and Facies Modeling

In reservoir studies, facies are the most important variable to define distinct reservoir

quality. The variations in petrophysical properties, including porosity and perme-

ability, within each facies is not as important as it is between the facies. Thus,

facies in geostatistical reservoir modeling are considered as the foundation to sup-

port modeling other variables. Pyrcz (2004) defines a facies model as a generalized

model that captures the essence of the depositional setting, lithofacies and architec-

tures. The importance of facies modeling as a basis of geostatistical analysis, and

the subsequent flow modeling, is well appreciated in reservoir management (Eidsvik,

2015; Pyrcz and Deutsch, 2014).

The meaning of facies has gone through changes in the past few decades. Today,

facies are widely used and understood in their original context that was introduced

by Glossy in 1838 (Cross and Homewood, 1997). The concept of facies, in the

form used today, and its evolution is well documented by Dunbar and Rodgers

(1957). According to Walker (1984), facies refers to rock units within stratigraphic

layers that are separated by a sharp contact. The measurement within each unit

is different from those above and below it. In early days, the classification was

mostly descriptive. Thanks to the growth of sedimentary knowledge and increase

in understanding of processes and environment, the term facies has also been used

in a more genetic form, considering a body of rock through its formation. Reading

(2001) provides a comprehensive description of the evolution of facies terminology

and facies modeling. The key is to consider a limited number of categories with

specific sedimentary or diagenetic properties that differentiates different geologic
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units (Mikes and Geel, 2006); they are homogeneous units in which the relevant

attributes are expected to behave similarly.

Despite different ways to define facies, and different factors to distinguish among

them, facies in this thesis refer to categorical variables that define rock with distinct

reservoir quality (Pyrcz and Deutsch, 2014). There has been much research devoted

to improve facies representation and facies modeling in reservoir assessment due

to the impact on all the subsequent modeling processes and reservoir evaluations.

The information on facies modeling methods that follows is largely taken from the

second edition of Geostatistical Reservoir Modeling by Pyrcz and Deutsch (2014).

According to the facies discussion in this boos, the facies modeling techniques can be

categorized into (i) variogram-based models; (ii) multiple-point-based models; (iii)

object-based models; and (iv) process mimicking models. Among these, variogram-

based models have popularity among practitioners because of their ability to re-

produce local data, gain the required input statistics from well data (variograms),

and construct reasonable geological variability (since relevant user-friendly tools are

available) especially when no clear geometry is detectable from the reservoir. The

variogram-based models include sequential indicator simulations (SIS), and trun-

cated Gaussian simulation (TGS) techniques (Emery, 2007; Armstrong et al., 2003;

Matheron et al., 1987). These technique are mostly appropriate when characterizing

the geological features in the reservoir using two-point statistics is reasonable.

Multiple-point simulation (MPS) is mostly utilized when variogram-based simu-

lation techniques are deemed inadequate to reproduce complex (geometrically struc-

tured) geological features. The MPS technique was introduced by Guardiano and

Srivastava (1993) and developed for practical purposes by Strebelle (2000a). In

MPS, statistical input regarding spatial heterogeneity of the reservoir is inferred

from a training image that is a rasterized depiction of features that are expected

in the geological model (Boisvert et al., 2007; Lyster, 2009; Boucher, 2009). The

availability of a training image enables the inference of multi-point statistics as

opposed to two-point statistics of variograms. That is why MPS techniques are

especially appealing when the reservoir has nonlinear and complex features. The

recent advancement in MPS is mostly directed towards handling nonstationarity in

the reservoir modeling process (Chugunova and Hu, 2008; Straubhaar et al., 2010).

Similar to variogram-based models, MPS are built on grid cells (cell-based models)

and their implementation is sequential.
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Figure 1.3: Demonstration of facies modeling techniques as the engine of facies character-
ization framework, in which the input are data prepared using pre-processing techniques, and
the output are 3-D facies realizations that most probably need to go through post-processing
techniques to get prepared to be considered in reservoir management. The aim of this thesis is
to improve facies representation not through the engine, but through the side operations that
their importance is often overlooked in geostatistical practices.

The main shortcoming of cell-based facies methods is the generation of unrealis-

tic short scale variations (noise) that is undesired. This noise is partially controlled

by image-cleaning techniques adopted as post-processing techniques. This is not

an issue with object-based facies modeling technique. Object-based modeling is

considered when there are distinctive geological units in the reservoir that can be

characterized with geometric parametrization. In those reservoirs, the heterogene-

ity is only characterized when the reservoir elements are distinctively generated and

placed all over the model. For example, fluvial reservoirs contains objects of channel,

levee, splay that could only be modeled through hieratically object-based modeling.

In fact, the desire to model the fluvial reservoirs in the Norwegian North Sea estab-

lished the use of objects-based methods in reservoir modeling (Tyler et al., 1992;

Clemensten et al., 1990; Stanley et al., 1990).

Process-mimicking facies modeling has been developed recently with the hope

to integrate more geological concepts into geostatistical models. This technique is

similar to object-based modeling technique, but is not widely-used due to difficulty

in conditioning to well and seismic data especially if dense data are available. One

example of its application is the Deepwater reservoir as implemented in Pyrcz et al.

(2012).

If the central geostatistical framework could be reduced into three pieces shown

13



in Figure 1.3, the focus of this thesis is on the input and the output that will be

discussed further in the next section.

1.2 Problem Setting

The main goal of this thesis is to improve facies representation in geostatistical prac-

tice. Note that facies representation differs from assigning the appropriate facies to

the grid cells which is achieved by facies modeling. The aim of facies representation

is to associate more information and/or geological realism to the facies model so

that improved reservoir management decisions are ultimately made. Other than

facies modeling techniques (the engine of this process), the input (pre-processing)

and output (post-processing) of the system significantly contribute in the ultimate

facies representation of the reservoir: There are several techniques available to pre-

pare data for the modeling process, and several others to deal with the model after

its construction. Their importance in the final outcome, however, has not been

properly acknowledged: Many techniques are still practiced, despite their notable

flaws. One aspect of this thesis is to raise selected overlooked issues that either

appear prior to facies modeling or after the process, and establish approaches that

can improve facies representation in the reservoir model.

This thesis encompasses six problems/techniques related to facies representation.

The subjects are ordered according to the sequence of operations in a normal geo-

statistical workflow. Facies upscaling or blocking, therefore, comes first. Upscaling

is an early step in any geostatistical modeling to unify the scales from all data to a

target scale that should be considered in building the 3-D numerical models. Well

log data comes at high resolution on order of 10 cm scale vertically. The vertical size

represented in most geostatistical reservoir models is between 0.25 and 1 m; thus,

unifying the data is achieved by pre-processing the well data to the chosen scale for

reservoir modeling.

Averaging is considered to represent the upscaled intervals when the variable of

interest is continuous; however, averaging cannot be applied to categorical variables

such as facies. A reasonable solution to facies upscaling is to assign the upscaled

interval with the majority facies. Although the majority could be the most effective

facies in the upscaling interval in many cases, there will certainly be information

loss. When the reservoir contains four or five main facies, there is always a good

probability that the majority facies may have less than 50-60% proportion. De-
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pending on how variable the interval is and how different the facies are (in terms

of their petrophysical properties), the loss of information regarding non-major fa-

cies could be crucial. Although upscaling is a well-established process, the concern

regarding loss of information in facies upscaling has hardly received any attention.

This thesis identifies facies upscaling as one conventional operation in geostatistical

pre-processing workflow and treats it to the level of detail that is appropriate to its

importance.

The next challenge addressed is the shale characterization. The importance of

shale characterization was discussed above. Only limited knowledge on the conti-

nuity of thin shales can be gained from well data. The presence of shales in the

region of flow could be problematic; small shales that are laterally extensive can re-

duce recovery. Although this has sometimes been raised in the literature, it remains

an important challenge in practice. Considering realistic lateral continuity of the

shales is essential to accurate recovery assessment. Note that the study of this topic

is mainly centred around variogram-based facies modeling techniques and is applied

independently utilizing only well data.

Another consideration in the mis-representation of the thin remnant shales is

the process of discretization and gridding. The facies units that are small relative to

the scale of the grid cell are particularly prone to mis-representation. The gridding

system and scale chosen to represent numerical models are fundamental elements in

a geostatistical study. Selecting the “right” scale is a crucial task; the grid scale is

selected accommodating for at least two factors simultaneously (a) sufficiently small

to capture the heterogeneity; and (b) possibly large to cover the entire reservoir

with the minimum number of grid blocks; the numerical storage and calculations

of flow simulations are of computational concern even with the ongoing growth in

computing capacity and resources.

Although the grid size is selected based on the purpose of the model, data

spacing, variogram determinations, and depositional scale of events, it is largely

constrained by computational capacity. This becomes more challenging when real-

izations are required at higher resolution than initially generated during the geosta-

tistical workflow. One way around this is to limit the high resolution model to the

area of interest. A common practice to model regridding is nearest neighbor assign-

ment. The nearest neighbor approach can only replicate the same features to the

new grid cells within the coarser grid cells. This is considered as poor practice since
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nearest neighbor assignment is not capable of reproducing smaller scale geological

heterogeneity and representing a realistic distribution of short scale variability.

The importance of generating high resolution models could also be recognized

in appropriate characterization of the remnant shales. The coarse scale models are

not adequate to properly characterize the small scale geologic features of the shales

(as will be more discussed in Chapter 4; see Figure 4.2). The effect of misrepresen-

tation of small scale features in the reservoir could be demonstrated in the vertical

permeability which is a good flow performance metric especially in terms of SAGD

recovery.

In terms of MPS, the deficiency of facies representation at smaller scale could

also be due to the scale constraint of the training image. Training images should

represent the correct scale of variability for the geological features that are being

modeled. There are situations where a smaller scale than that of the training image

is required. In variogram-based simulation techniques, the two-point statistics could

be inferred at any scale smaller than the scale of measured data by extrapolating

the variogram to smaller lag distances (see Figure 5.1 in Chapter 5). However, MPS

techniques do not have such flexibility as the minimum scale at which the deposit

can be modeled is the resolution of the training image. Therefore, to generate

realizations at higher spatial resolution than that of the training image, the necessary

spatial information could not be inferred directly from the corresponding training

image. The investigation of this matter is one of the six main problems addressed

in this thesis.

One other subject addressed in this thesis is the failure of simulation technique

to preserve the connectivity of geologic units. The primary focus of most variogram-

based stochastic simulation techniques is on honoring the small/large scale variabil-

ity measured by the variogram; details of geologic realism may not be reproduced.

The connectivity of net reservoir (mainly sand) is the potential environment for

recovery. If different facies are coming in broken intervals rather than being fully

distributed in the reservoir, the well placement and recovery evaluation will be

faulted. Post-processing the generated realizations to impose the correct continuity

could improve the facies representation and subsequent decision making process.

Connecting the broken objects could be achieved using methodologies such as those

in mathematical morphology.

Lastly, realization selection is often required prior to flow simulation and decision-

16



making. In practice, geostatistical modeling and post-processing techniques are

constrained by computational limitations. The resolution and the number of real-

izations that can be generated and analyzed are limited. Flow simulation analysis of

realizations is computationally expensive; it is intractable to process a large number

of realizations in most reservoirs. Realization selection is the step to link the geo-

statistics to flow simulation process. Ranking selects those realizations that would

span the uncertainty over a specific reservoir performance. Ranking could be im-

proved in two aspects (1) consider multiple production volumes in ranking so that

the selected realizations represent local regions as well as large scale regions; (2)

consider grouping or clustering realizations when choosing arbitrary quantiles is

not representative of the character of the realizations, or, more than one feature is

required to asses the realizations performances.

Thesis statement: In addition to facies modeling techniques, several other pro-

cesses – whether as input or output – contribute to studying facies, which are the

main representation of reservoir heterogeneity. This thesis focuses on the develop-

ment/refinement of facies characterization to improve the probabilistic representa-

tion of reservoir heterogeneity.

1.3 Thesis Outline and Approach

The second chapter addresses the information loss within facies upscaling and pro-

poses a metric to account for the small scale information. The proposed metric

associates the expected property (i.e. upscaled average porosity) of every facies to

its proportion in the corresponding upscaling interval to quantify its potential influ-

ence on the final property of block interval. The deviation from expected property

explains the type and amount of mixing. Factors like distance to dissimilar facies

and contact are also considered. It is argued that preserving the information on

non-major facies and accounting for them in estimation of petrophysical variables

could potentially improve subsequent reservoir characterization and forecasting.

The third chapter discusses the importance of identifying and characterizing

the stochastic shales in the reservoir, specifically in the region of recovery. A novel

method to estimate the lateral continuity of such shales based on an inverse modeling

approach is proposed; its framework is established independent of any gridding,
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scaling, and/or resolution constraints. The estimation of the probability distribution

of shale continuity relies on the data information gained from well pairs, the well

spacing, and the overall well configuration in the reservoir. The knowledge of shale

lateral extent provides additional information on reservoir connectivity assessment.

The fourth chapter addresses model regridding and proposes stochastic regrid-

ding to create appropriate small scale variability. While this chapter mainly dis-

cusses the proposed stochastic approach, it also compares it to the commonly prac-

ticed deterministic approach of assigning the finer grid cells with the closest coarse

grid value. The latter, because of its nature, is unable to reproduce the spatial vari-

ability at smaller scale better than what the coarse scale already represents. The

proposed methodology extracts the identified areas of interest, characterizes the lo-

cal variability and simulates models at higher resolution conditioned to the coarse

scale simulated model.

The fifth chapter studies the generation of high resolution models in the context

of MPS. It discusses the challenges to infer multi-point statistics at smaller scale than

that of the training image. As will be demonstrated in this chapter, investigating

data interactions for different possible template configurations can be challenging

since the number of patterns and within n-point arbitrary configurations increase

exponentially. The chapter proposes to enhance the resolution of the training image

and infer statistics at smaller scale, directly from the constructed high resolution

training images. Interpolation tools and techniques are developed to extrapolate

data from larger scale to grid points at smaller scale.

Chapter six raises the issue of realistic connectivity of facies events and pro-

poses a technique based on two mathematical morphology of dilation and erosion,

to enforce the realistic continuity on such disconnectivity. Developed methodology

considers the disconnected intervals as individual objects and determines an object’s

maximum and minimum anisotropy for a controlled connecting approach. The pro-

posed algorithm is established considering both 2-D and 3-D models that could be

practiced as a post-processing technique. The professional interpretation regarding

the unrealistic discontinuity should be made prior to applying the proposed tool.

Chapter seven addresses the limitations and shortcoming of ranking that has not

been effectively discussed in literature in two parts (1) multiscale ranking is proposed

as one way to improve ranking’s limitations. Its idea is driven by the importance

of local connectivity for recovery specifically in case of heterogeneous reservoirs.
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Multiscale ranking scheme selects realizations considering different well placement

and recovery scales, simultaneously; (2) clustering of realizations is considered as

an alternative to ranking when a simple ranking process is not adequate. Unlike

ranking, clustering uses an array of response variables to partitions realizations into

groups that expect to perform similarly at the time of flow simulation.

This thesis closes with the conclusion chapter which summarizes the contribu-

tions of this thesis and suggest some research directions for future work. Finally,

details on using model stochastic regridding program (Chapter 4) and enforcing

connectivity programs (Chapter 5) are provided in Appendix A and B, respectively.

These programs are developed in FORTRAN platform in GSLIB-like format.
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Chapter 2

Measure of Facies Mixing

In geostatistics, upscaling is the process of increasing the support of information at

the wells; going from data resolution to a larger target resolution of the model scale

(Lake and Srinivasan, 2004). In facies upscaling, the upscaled interval is typically

assigned based on the majority of the facies present in the corresponding interval.

The process of assigning the majority facies results in a loss of information on

the other facies in the interval (Pyrcz and Deutsch, 2014). This chapter addresses

the information loss by retaining as much information as possible in the upscaling

process and proposes a metric to account for small scale information that is lost

during the process; such a metric is referred to as facies mixing measure (FMM). The

first section introduces the problem and motivates the research. The second section

introduces the FMM for evaluation of small scale information in facies mixing. The

factors considered in this metric are studied in detail. The remainder of the chapter

presents a workflow to account for facies mixing during subsequent geologic modeling

of continuous variables.

2.1 Introduction

In reservoir modeling, different scales are considered for different purposes of ge-

omodeling such as understanding the distribution of petrophysical properties, the

geology of the reservoir and most importantly the flow behavior. The available data

is often collected at a small scale e.g., 10 cm, which is not appropriate to be used

in the construction of numerical models of the reservoir due to computational con-

straints (Pyrcz and Deutsch, 2014). The most common practice is to move from the

measured data scale to a coarser scale closer to that of the ultimate flow simulation

models; this is a process known as upscaling in the application of reservoir studies
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(Christie, 1996; Li et al., 1995; Durlofsky et al., 1997; Boschan and Nœtinger, 2012;

Durlofsky, 2005). In the upscaling process, the data at small scale are grouped

into intervals of intermediate scales, e.g. 0.5 or 1 m, depending on the character-

istics of the reservoir. The resulting upscaled intervals are represented with a set

of attributes, including facies, porosity (ϕ), volume fraction of shale (Vsh), water

saturation (Sw), and other properties of interest.

There are many publications devoted to the problem of upscaling. Many tech-

niques have been developed to better identify the heterogeneity in the upscaling

process, such as the ones proposed in Christie and Blunt (2001); Li et al. (1995);

Lake and Srinivasan (2004); Durlofsky et al. (1997); Chu et al. (1998); Farmer (2002),

amongst others. Most techniques focus on the flow properties such as permeability

and the impact of upscaling on their behavior. A comprehensive review of the up-

scaling techniques which is basically a focus on the mathematical aspects is provided

by Farmer (2002). Christie and Blunt (2001) also demonstrate a special compara-

tive SPE project aimed at comparing upscaling methods. What is limited in this

collection though, is the number of works that study facies and facies upscaling

impact on the reservoir assessment; see for example Mikes and Geel (2006); Burns

et al. (2010); Schaaf et al. (2002); Boschan and Nœtinger (2012). Although this

chapter is not aimed at developing upscaling methods to examine flow behaviors,

the idea of preserving information loss, in the context of facies upscaling, is believed

to augment the representation of facies in reservoir modeling.

Regardless of the scale the model is prepared at, it is always advisable to under-

stand the facies distribution in the reservoir: a suitable facies modeling technique

should be applied first to obtain the stationary environments, and then properties

are modeled within the relevant facies (Hatløy, 1995; Deutsch, 2006; Pyrcz and

Deutsch, 2014; Eidsvik, 2015). Thus, this chapter is best described as a promising

attempt in facies modeling improvements by retaining the information loss in the

upscaling process and utilizing that information to better capture the facies distri-

bution in the reservoir. Note that upscaling in this chapter is 1-D in contrast to

the conventional reference to 3-D upscaling from fine scale models to coarser scale

models.

21



2.2 Facies Upscaling

Facies upscaling may be achieved when defining a coarser interval containing multi-

ple small scale intervals by the majority facies. The facies with the highest propor-

tion is considered as the most representative of the corresponding upscaled interval.

Upscaling could be thought of as a mixing process. In mixing, the varying quality of

different small scale intervals influences the average quality of the entire interval. For

instance, the quality of sand often diminishes in proximity to the lower quality facies

(e.g. shale) while the quality of shale often increases in proximity to higher quality

facies (e.g. sand). In terms of petrophysical properties (continuous variables) such

as porosity and Vsh, the upscaled interval is assigned by the arithmetic average of

these variables. As a result, the upscaled interval represents a mixture of properties

of the high resolution data. When scaling up from the scale of data, the proportions

of facies could be considered similar to upscaling of continuous variables. However,

assigning facies to the upscaled intervals is far more appealing, as discussed in 1.1.4.

An indicator formalism is commonly adopted for categorical variables modeling,

e.g. facies (Goovaerts, 1997). The main reason for indicator utilization is that the

estimation of uncertainty can be achieved directly (Journel, 1983). If uα denotes

a spatial location, and i(uα) indicates its corresponding categorical variable where

there are K mutually exclusive categories, then:

i(uα; k) =

{
1, if facies k prevails at location uα

0, otherwise.

Assuming well data consists of N varying lengths of data intervals, l, if upscaled

to intervals of length L, containing NL data, then the amount of facies k at spatial

location uβ,α, α = 1, . . . , NL, where β denotes the upscaled spatial location is as

follows:

pk(uβ) =
1

NL

NL∑
α=1

i(uα,β; k), k = 1, . . . ,K

and

K∑
k=1

pk(uβ) = 1

The spatial location, uβ, is identified by the majority facies which is the ar-

gument of max{pk(uβ)}. This process of assigning majority facies to the upscaled
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interval results in information loss regarding the facies with non-majority propor-

tions. Babak et al. (2013) quantifies the information loss in facies upscaling pro-

cess by adopting the concept of entropy. Entropy is a well known measure of the

information content introduced by Shannon (Shannon, 1948) and has been used ac-

cordingly by Babak et al. (2013). The proportions of different facies available in the

corresponding upscaled intervals are considered to calculate the information loss as

follows:

E(u) = −
K∑
k=1

pk(u) log pk(u) (2.1)

in which the value zero for E denotes no information loss, and as E increases, so

does the information loss. By convention, the base value of logarithmic term is 2,

which refers to the binary variables in information theory where Shannon defined

it originally. Similarly the logarithm base of 2 has been considered by Babak et al.

(2013) for simplicity.

Entropy is a bounded value between zero, which indicates minimum entropy

and no mixing, and a maximum value that varies depending on number of available

facies in the upscaled interval. The maximum entropy occurs when there are equal

facies proportions of 1/K for all facies in the interval. In terms of information,

zero entropy indicates 100% certainty in the majority vote (the interval contains

100% of one facies); there is zero information loss regarding other facies. Whereas

the maximum entropy indicates 100% uncertainty in the majority vote; no facies

stands out to be assigned to the upscaled interval. For example, if the number

of facies is five, then the entropy is at its maximum when the upscaling interval

consists of all the five facies with an equal amount; the entropy is calculated to be

Emax = −5×[0.2×log(0.2)] = 2.32. In the upscaling of five facies, any combination of

different number of facies with different proportions has an information loss greater

than 0 and less than 2.32. The higher the entropy, the more the information loss,

that is, more mixing occurs during the upscaling process. The smaller the entropy,

the less the uncertainty is. In the context of upscaling, smaller entropy means that

the majority facies is strongly dominant within the upscaling interval.

Limitations of Entropy: Conditional Entropy

As shown in (2.1), entropy as a function of facies proportions would help only to

identify the mixing intervals and quantify them. For instance, an interval containing
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only sand results in the entropy value of 0 (= log(1)), and an interval containing

only shale has also a zero entropy. However, apart from quantifying the amount

of information loss, it is also important to retain information regarding the actual

facies mixed which is a factor in the quality of upscaled interval. In the context

of facies upscaling however, entropy fails to identify (1) what are the facies in the

upscaling interval; and (2) what are the corresponding proportions.

Considering the two cases shown in Figure 2.1, sand as the majority facies occu-

pies 40% of the interval, and the other 60% is filled with two other facies with equal

proportions. Measuring entropy to be 1.571 for both cases, the interval on the left

contains facies similar to the sand in terms of petrophysical properties, i.e., sandy

IHS (SIHS), whereas the interval on the right contains facies somewhat different from

the sand, i.e., mudstone (see subsection 1.1.3). This results in different properties

of the two upscaled intervals which is not reflected on the entropy value. Note that

throughout this thesis, five common facies in the McMurray formation, including,

sand, breccia, sandy IHS (SIHS), muddy IHS (MIHS) and mudstone (with average

porosities of 0.32, 0.25, 0.24, 0.16 and 0.05, respectively) are considered in different

examples. IHS facies are common in the upper part of the McMurray Formation.

Figure 2.1: Illustration of the deficiency of entropy in identifying different mixing in the
upscaling interval. The interval on the left hand side contains three facies of sand, breccia and
SIHS with proportions of 40%, 30%, and 30%, respectively. The right interval, on the other hand,
contains MIHS and mudstone instead of breccia and SIHS. In terms of petrophysical properties,
the non-major facies in the left-hand side intervals are more similar to the major facies of sand
than the ones on the right. Although the same entropy value for both intervals indicate similar
mixing, the nature of these two mixing is different when the properties of upscaled interval is
under investigation.

Babak et al. (2013) introduced the concept of conditional entropy, Ec, in or-

der to make the entropy value more sensitive to the type of facies that are mixed
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Figure 2.2: Three cases of facies mixing are shown. The similar proportions of different
facies result in same entropy values for both cases in (a) and (b) while the type of mixed facies
are not exactly similar. The difference in conditional entropy indicates that the mixing in case
(a) is less sever.The example in (c) shows that although entropy is much smaller than the other
two cases, the upscaled petrophysical property is expected to degrade more. Equal values for
entropy and conditional entropy indicate that mixed facies have no similarity.

with the majority facies in the interval. Similarity between the mixed facies in the

upscaled interval mitigates the effect of mixed facies on petrophysical attributes of

the upscaled intervals. Thus, the similarity is utilized as a decreasing factor in the

entropy value which is equivalent to less information loss. The difference between

the conditional entropy and the entropy indicates if the mixed facies are similar to

the majority facies.

Yet, the conditional entropy cannot describe the mixing in all its aspects. First

of all, conditional entropy has no meaning in terms of petrophysical attributes.

Second of all, conditional entropy cannot distinguish between the facies. In other

words, the same value of entropy and/or conditional entropy could refer to different

types of mixing in the interval. For example for the case of 60/40 of sand and shale,

the entropy is about 0.97; this value stays the same if shale is the majority. The

conditional entropy is also similar in both cases.

Figure 2.2 demonstrates examples of different facies with different forms of mix-

ing. The entropy value for cases (a), and (b) are similar, even though the nature of

mixing is different. Assuming the similarity factor of 0.5 between sand and breccia

and 0.25 between sand and SIHS result in different conditional entropy values for

both cases. The listed measurements show that there is 31% discrepancy between

entropy and conditional entropy for case (a). This value is 13% for case (b) and
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is zero for case (c). In this example, the conditional entropy helps to differentiate

between the nature of mixing: mixing is most destructive for the upscaled interval

of case (b), and least destructive for the case of (a). Moreover, the entropy value for

case (c) is 0.99 which is about half the entropy for cases (a) and (b). It is however,

easy to see that presence of 49% mud within the sand interval results in a more

severe mixing in terms of influencing the petrophysical attributes compared to 25%

mud in other two cases, while both entropy and conditional entropy are smaller for

case (c).

Figure 2.3: This example demonstrates the deficiency of conditional entropy in measuring the
specific and direct influence of mixing types. Unlike the conditional entropy, FMM can address
the mixing difference.

The next section introduces a new measure of facies mixing based on the discrep-

ancy between the average porosity of the upscaled interval and the effective porosity

of the corresponding facies to address the shortcomings of conditional entropy. The

effectiveness of the proposed measure—facies mixing measure (FMM)—which will

be discussed in detail momentarily, is demonstrated for three cases shown in Fig-

ure 2.3, where conditional entropy fails to differentiate between the mixing types.

The values of entropy, conditional entropy and FMM are listed for the upscaled

intervals. The conditional entropy is equal to the entropy value for cases (d) and

(f). Because of the drop in conditional entropy for case (e), it can be inferred that

mixing in this case is less severe; the facies are porosity-wise more similar to each

other. However, the conditional entropy cannot help to differentiate between the

other two cases. FMM is therefore proposed to address such cases; FMM value is
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not the same for the three cases in Figure 2.3.

If the upscaled interval should mainly represent the average porosity of the ma-

jority facies, then the porosity of the interval should be close to the effective porosity

of the majority facies. Considering this logic, the deviation from the effective poros-

ity is an indication of the quality of mixing. For example, if the upscaled interval

is assigned sand, and the upscaled porosity is smaller than the effective porosity of

the sand in the dataset, say 0.32, it can be concluded that some mixing is involved

(entropy is larger than zero). The FMM deviation from the effective porosity of

sand is 43% for case (d), 35% for case (e), and 39% for case (f). Therefore, the

mixing in case (d) is said the most severe, and case (e) the least severe.

2.3 Facies Mixing Measure

Facies mixing measure (FMM) is designed to quantify the loss of information during

the facies upscaling process with respect to the amount and type of facies that

are mixed. The FMM considers the details of mixing with special attention to the

distance to the nearest dissimilar facies and its type. In a particular geologic setting,

each facies, on average, is identified by a certain range of values of a petrophysical

property. For example, porosity is typically within 0% to 40% and might be a

reasonable measure of reservoir quality. Thus, porosity is selected in this work as

the main factor to weigh the facies proportions in quantifying mixing. When mixing

occurs, the property of the upscaled interval deviates from the expected property of

the corresponding facies. The expected property is the property that a particular

facies (in a dataset) behaves on average, and can be obtained by considering the

average property of all upscaled intervals of the corresponding pure facies. The

mixed upscaled intervals are likely to not behave sufficiently close to its expected

property of the major facies. This deviation is normally positive for low quality

facies like shale, and negative for high quality facies like sand. The quality of sand

degrades when mixed with other facies and the opposite is true for shale.

The proposed measure integrates the expected porosity value of the available

facies in the upscaled interval as well as their proportions, and compute FMM which
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is a volume-based average measure and it follows:

FMM(u) = pk(u) ϕk(dk,k′ )︸ ︷︷ ︸
major facies

+
K−1∑
k=1

pk(u) ϕk︸ ︷︷ ︸
non-major facies

(2.2)

where k denotes facies and k
′
refers to the nearest dissimilar facies to the major

facies. In the proposed relation, expected porosity value of facies k, ϕk, could be

persecuted as the weighting factor to the proportion of mixed facies. The average

porosity, ϕ, is a function of distance, d, between upscaled facies to the nearest

dissimilar facies (see Figure 2.4).

Figure 2.4: An illustration of what average porosity identifies different facies in FMM cal-
culation. The weighting factor of average porosity for every assigned facies associated with the
upscaled interval is evaluated from the intervals of pure facies. This is a simplified version FMM
evaluation with no regard to the factor of distance.

The upscaled porosity is the arithmetic average of the data scale porosity, ϕ(uβ) =

1
L

∑
l ϕl(uα) (l refers to the small scale interval) which contains some information

regarding the mixing in the upscaled interval. In the limits of 100% of facies k, the

FMM value is ϕk(dk,k′ ) which is the mean porosity value for facies k at a certain

distance from dissimilar facies. Therefore, the FMM value for pure upscaled inter-

vals of facies k, is equivalent to the expected porosity. FMM as a measure of facies

mixing in upscaling takes all these parameters into account to quantify the facies

in relation to its average quality over all the reservoir (see Figure 2.5). A simplified

version of (2.2), FMM =
∑

k pkϕk, can be utilized when the effect of distance is

negligible on the major facies in upscaled interval property. In principle, distance
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Figure 2.5: An illustration of how distance is integrated in the evaluation of average porosity
which is eventually utilized in the calculation of FMM. Two facies of sand and mudstone are
illustrated to be in contact within varying distances of 1 and 2 upscaled intervals. The distance
therefore, is only considered to one other facies. Four different average porosity values are
extracted: average porosity of sand at one-interval distance, average porosity of sand at two-
interval distance, average porosity of mudstone at one-interval distance, and average porosity
of shale at two-interval distance. Recall that distance is considered from the nearest dissimilar
facies.

mainly matters to the facies with extreme petrophysical properties such as sand, in

which the proximity to another facies like shale could highly degrade the expected

quality of sand interval, or when a particular facies is present in form of large thick-

nesses, such as the case of IHS in the McMurray Formation in Northern Alberta as

discussed in subsection 1.1.3.

As shown in Equation (2.2), the quality of the upscaled intervals not only de-

pends on the amount and type of mixing but also on the distance from other facies

and what facies are nearby. The larger the distance between facies, the quality of

that interval is closer to the average quality of the corresponding facies (see Fig-

ure 2.5). To precisely integrate the property of majority facies into FMM, the

expected porosity of majority facies is evaluated with respect to the distance from

other facies, and contact to every other facies. This is established by defining the

expected porosity for the majority facies, k, as a function of distance d to dissimilar

facies, k
′
. Thus, in a dataset including five facies, four functions are defined to

determine the expected porosity of facies, k, when in contact with dissimilar facies

at any distance. In other words, the upscaled porosity as a function of distance in
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Figure 2.6: The average porosity of upscaled intervals are plotted against the distance for
the case of sand (top) and shale (bottom). The quality of an upscaled interval of sand degrades
the most in the direct contact with other facies (d = 0). It then, increases quickly and stabilizes
after a few meters depending on the size of upscaled interval. A growing exponential curve,
shown in red, approximates the behavior of the average porosity of sand intervals as a function
of distance. The opposite is true for shale. The quality of upscaled shale interval is at its
maximum in direct contact with the dissimilar facies. As the distance increases the quality of
shale intervals drops quickly to its expected quality. A decaying exponential curve, shown in red,
approximates the behavior of the average porosity of shale intervals as a function of distance.
Note that as distance increases, the average porosity becomes insensitive to the distance.

proximity to shale is different than that of sand in proximity with SIHS.

In Figure 2.6, the upscaled porosity value for pure intervals of sand as a function

of distance to the dissimilar facies of shale is shown in scatterplot at the top. As

can be observed from the shape of the distribution, the influence of distance is at

its maximum when the sand interval is in direct contact with shale, and the effect

of distance diminishes as distance increases. A similar conclusion could be drawn
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for the second scatterplot in which the average porosity of shale is at its maxi-

mum in direct proximity with sand. The effect of distance reduces as the dissimilar

facies is further away. To utilize these distributions into FMM evaluation, curve

fitting could be applied. Exponential functions are a good candidate to parameter-

ize the average porosity when distance to dissimilar facies is a factor. As can be

observed in Figure 2.6, a decaying exponential function for the case of sand and a

growing exponential function for the case of shale can provide a good estimate of

the behavior of average porosity of the upscaled intervals of sand and shales. To

parameterize the functions, some approximations to the parameters of exponential

distribution are proposed. The average porosity of sand as a function of distance

can be approximated as follows:

ϕsand(dsand,k′ ) = g (1− exp(−dsand,k′/a)) + c

a ∼ 1/median(dsand,k′ )

c ∼ median(ϕsand(dsand,k′ ∼ 0))

g ∼ median(ϕsand(dsand,k′ ))− c

And the following approximation is used to fit the porosity for shale as a function

of distance:

ϕshale(dshale,k′ ) = g (1 + exp(−dshale,k′/a)) + c

a ∼ 1/median(dshale,k′ )

c ∼ median(ϕshale(dshale,k′ ∼ 0))

g ∼ median(ϕshale(dshale,k′ ))− c

The fitting curves in Figure 2.6 are evaluated applying the approximations above.

The dissimilar facies, k
′
, is shale for the case of sand at the top and is sand for the

case of shale at the bottom.

FMM not only identifies the pure intervals from the mixed ones, but also differ-

entiates between the pure intervals in terms of what facies contains the interval. In

case of a pure upscaled interval, the entropy is always zero which says nothing about

what facies has filled up the interval. FMM, however, distinguishes the pure interval

from the mixed one as well as identifying its facies type. Figure 2.7 represents the

FMM value and entropy of upscaled intervals of sand versus their corresponding

porosity value. While entropy is 0 for any pure interval which is shown by the blue
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horizontal line, FMM is changing between 0.32 and 0.37. The higher the average

porosity (shown on the x-axis), the higher the FMM value is (shown on the right

y-axis).

Figure 2.7: For all ranges of porosity representing the upscaled sand interval, the entropy
for the pure interval is always zero. The FMM value however differs depending on the distance
from the dissimilar facies.

Larger porosity values are mainly associated with higher FMM that would in-

dicate the interval is further away from dissimilar facies. Recall that the quality of

sand is lower when closer to other facies and it stabilizes at higher values as it gets

away from other facies. Thus, it is reasonable to assume that the lower horizontal

black lines which mostly associate with lower porosity values belong to the pure

sand intervals in direct contact with shale intervals. It could also be concluded that

the highest black horizontal line which is mostly associated with larger porosity

values belong to sand intervals of large thickness with the closest dissimilar facies

of SIHS, for example. The increasing trend of FMM in relation with the porosity

could be of any combination with mixed facies and different distances. The number

of such horizontal values depend on different combinations of distance and contact

that occur in the well data for any specific upscaling size.

Differentiation between pure intervals when using FMM becomes important in

the modeling process. Considering the facies mixing as the secondary variable, the

entropy constant value of 0 for all pure intervals would not contribute into the

modeling the same way that FMM does. FMM basically, identifies the quality of

the interval using the porosity-type weighting factor, the distance, and the type of

contact. For example, the continuous property associated with an upscaled interval

of sand closer to shale would not be modeled the same as the one closer to breccia.
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Figure 2.8: The proposed simulation workflow which utilizes FMM metric as a secondary
variable to condition the geostatistical simulation workflow.

2.4 Proposed Modeling Workflow

FMM is proposed to account for facies mixing in reservoir modeling and integrate

this information as a secondary variable to improve the property modeling process.

The proposed modeling workflow that could account for the small scale variability

which is lost during upscaling process is described as follows (also see Figure 2.8):

• Upscaling data (majority rule).

• Determining the corresponding variables such as porosity, volume shale fraction

(Vsh) and FMM for the upscaled intervals.

• Processing 3-D facies modeling.

• Generating 3-D distance model corresponding to facies model using horizontal to

vertical anisotropy.

• Generating FMM model by facies, considering 3-D distance model as exhaustive

secondary data for collocated cokriging using proper correlation coefficient.

• Generating porosity model by facies, considering 3-D FMM model as exhaustive

secondary data for collocated cokriging using the proper correlation coefficient.

• Generating horizontal permeability (Kh) model by facies, considering 3-D poros-

ity model as exhaustive secondary data for collocated cokriging using the proper

correlation coefficient.

33



Figure 2.9: The high resolution facies model shown at the top is upscaled 5 times in both
X and Z directions. The corresponding upscaled entropy, FMM and permeability maps are also
present. All units are in meter.

• Generating vertical permeability (Kv) model by facies, considering 3-D Kh model

as secondary data for collocated cokriging using the proper correlation coefficient.

The FMM variable is also readily adoptable into multivariate modeling framework.

It can be considered as one of the many variables in the geostatistical multivariate

modeling workflow proposed by Barnett (2015).

2.4.1 Synthetic Example

A 2-D example is designed at this point to demonstrate the improvement in modeling

the reservoir property when facies mixing in the form of FMM, is considered. One

well data from the Silver Willow project is considered to model a small 2-D reservoir

around the well (Khan, 2014). The model has dimensions 150 m × 1 m × 115 m
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Figure 2.10: The relationships between Keff and entropy values for upscaled blocks (top),
and relationships between Keff and FMM values for upscaled blocks (bottom). The scatterplots
on the left represent the upscaled blocks assigned sand, and the ones on the right represent the
upscaled blocks assigned shale.

which is generated using sequential indicator simulation (SIS) (Deutsch and Journel,

1998). The model is then upscaled 5 times to the dimension 30 m × 1 m × 23 m.

In the upscaling process, for every interval, the corresponding entropy and FMM

are evaluated using proportions of every facies in the corresponding interval and the

mean porosity evaluated from data. As noted, the expected porosity for every facies

is evaluated from pure upscaled intervals of well data. The effective permeability

(Keff) map is the result of harmonic average of high resolution permeability map; a

constant value for permeability is assigned to every facies of the high resolution map.

The upscaled permeability map will be considered as the reference throughout this

example. Figure 2.9 shows the upscaled facies map, the corresponding Keff map,

the entropy map and the FMM map.

The idea is to estimate the permeability map for the upscaled model using FMM

and entropy relation with Keff values. These relations would normally come from

the well data. The relationship between entropy and Keff, and FMM and Keff should
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Figure 2.11: The upscaled well data is considered for the purpose of estimating Keff once
considering Entropy (top), and once considering FMM (bottom).

be found through fitting the upscaled well data. Figure 2.10 shows the scatterplots

of effective permeability versus (1) entropy, and (2) FMM for upscaled blocks of

the map that are assigned sand or shale. Also, the scatterplots and fitting curves

for well data are shown in Figure 2.11. Visually inspecting the fitting curves, the

ones closely representing the scatterplots of upscaled maps shown in Figure 2.10

would do better in permeability estimation. This is true for FMM curves as they

resemble the relationship for upscaled blocks relatively close. The fitting function

that is specific to every facies provides a reference table that enables the assignment

of Keff for the corresponding entropy or FMM value. The FMM and permeability

relationships follow the fitting curves from the well data.

The Keff by Entropy and Keff by FMM maps in Figure 2.12 are the result of

table reference assignment. The resulting permeability map by FMM which is on

the right of Figure 2.12 shows more continuity compared to the one resulting from

entropy assignment on the left. The reference values for Keff (true) versus the

estimated ones for both cases of FMM and entropy are shown in scatterplots in
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Figure 2.12: The effective permeability maps resulting from reference table assignment using
FMM and entropy.
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Figure 2.13: True (reference Keff) versus estimation of permeability based on entropy fitting
function (left), and FMM fitting curve (right). The MAE quantifies the difference between
estimates and true vales which is 1.39 for the case of entropy and 0.62 for FMM case. The
mean squared error (MSE) percentage for the case of FMM is almost a quarter of the case of
entropy which makes it a very strong candidate for conditioning.

Figure 2.13. For comparison purposes between the true and the estimate, the mean

absolute error (MAE) is considered as follow:

MAE =
1

n

n∑
1

∣∣∣∣Est(n)− Tru(n)

Tru(n)

∣∣∣∣ .
MAE, therefore, quantifies the difference between true values and their estimates.

The MAE is 1.39 for the case of estimating permeabilities by entropy, and this value

drops quickly to 0.62 for FMM case which is half of the estimated error for estima-

tion by entropy. This example confirms the stability of FMM in the estimation of

petrophysical or flow related variables when considering facies mixing into account.
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Figure 2.14: Evaluating the mean value of porosity for sand and shale in contact with other
facies as a function of distance by adopting the fitting exponential curve.

In the following subsection, a case study is considered to evaluate FMM values

for upscaled intervals and utilize them in modeling workflow. A cross validation

technique is applied to compare the true values with the estimated ones.

2.4.2 Case Study

Twenty five Silver Willow well data with 0.25 m resolution are available for this

study. Five facies of sand, breccia, SIHS, MIHS, and shale are identified in this

dataset. The data is upscaled to an intermediate scale of 2 m for this example.

The facies intervals are upscaled and FMM and entropy are calculated for every

upscaled interval. In FMM evaluation, the relationship between the porosity and

distance as a function of contact is being considered for non-mixed facies of sand

and shale. Figure 2.14 represents the fitting functions for sand and shale that model

the relationship of upscaled porosity and distance to other four dissimilar facies.
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Figure 2.15: The data resolution is at 2 m interval. The relationships between normal score
of porosity and normal score of distance (top), entropy (middle), and FMM (bottom). The
scatterplots on the left represent the relationships for stationary domain of sand, and the ones
on the right represent relationships for stationary domain of shale.

These fitting functions are considered in FMM evaluation of upscaled intervals as

discussed earlier.

To demonstrate the effect of FMM (as a secondary variable) in reservoir model-

ing, cross validation is applied to compare the estimation with the true values. The

two variables of distance and entropy are also considered as the secondary variable

to model the upscaled porosity values. This is to compare the FMM performance

in the estimation process. Figure 2.15 shows the relationship between porosity and
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Figure 2.16: Porosity cross validation for 25 upscaled Silver Willow well data (sand): (1)
simple kriging, MSE: 1.12 (2) collocated cokriging with distance, MSE: 0.87 (3) collocated
cokriging with entropy, MSE: 0.63 (4) collocated cokriging with FMM, MSE: 0.38. There is a
clear improvement when FMM is considered as collocated cokriging in the estimation of porosity.

distance (top), porosity and entropy (middle), and porosity and FMM (bottom), in

the normal score domain. The cross validation study is applied by removing one

well at every iteration and trying to estimate based on the other well data infor-

mation. In the first trial, the estimates are evaluated using simple kriging. The

simple kriging is applied to estimate the porosity value for the data of the removed

well. The cross validation plot with the corresponding data statistics are shown in

Figure 2.16 at the top. The cases of collocated cokriging with distance, entropy, and

FMM are also shown in the same figure for 441 data.

The same cross validation scatterplots are shown for shale in Figure 2.17. There

are 92 upscaled intervals that are assigned shale. The MSE improves gradually from

the case of estimation with no secondary variables to the case with FMM collocation

cokriging. The cross validation is quite poor for the simple kriging case with MSE

of 1.08. When distance is considered as collocated variable, the MSE improves to

0.83. In another case, entropy is considered for collocation cokriging by which MSE

improves to 0.64. This value even drops further to 0.4, when FMM is considered as

the secondary variable for collocated cokriging estimation. The statistics of cross
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Figure 2.17: Porosity cross validation for 25 upscaled Silver Willow well data (shale): (1)
simple kriging, MSE: 1.08 (2) collocated cokriging with distance, MSE: 0.83 (3) collocated
cokriging with entropy, MSE: 0.63 (4) collocated cokriging with FMM, MSE: 0.4. There is a
clear improvement when FMM is considered as collocated cokriging in the estimation of porosity.

validation study for sand are summarized in Table 2.1.

Table 2.1: Summary statistics for sand cross validation of porosity with different cases shown,
in Figure 2.16.

Simple CCK- CCK- CCK-
Kriging distance entropy FMM

MSE 1.12 0.87 0.63 0.38

Correlation 0.1 0.38 0.59 0.78

Covariance 0.05 0.22 0.38 0.6

The same study is repeated with the type of estimation from simple kriging to

collocated kriging using exhaustive secondary variables. The second cross validation

plot is generated when estimating using the distance as secondary variable with

correlation coefficient of 48% which is calculated from data. The MSE improves

from about value 1.12 to 0.87. In the second plot the same process is applied with

entropy as the secondary variable. The correlation coefficient between the porosity

values and entropy for upscaled intervals is -65%. The cross validation results,

shown in third plot, indicate an improvement comparing with distance collocation.
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Figure 2.18: The scatterplot at the top shows upscaled porosity values versus the calculated
FMM. There is 76% correlations between porosity and FMM. The presence of vertical lines in the
scatterplot indicates pure upscaled intervals. The second scatterplot shows only those upscaled
intervals that are assigned sand (in black) and shale (in pink). A clear trend could be observed
for FMM with the increase of porosity.

The MSE has dropped to 0.63. In the last trial, shown in the last plot, FMM is

considered as the exhaustive secondary variable for collocated cokriging estimation

of well data. The correlation coefficient between the porosity values and FMM

is 82%. As shown in the cross validation plot, the estimation has been improved

significantly and the mean squared error value has dropped to almost half, 0.38.

CCG Micromodeling Data

This subsection presents another dataset. In this dataset, the correlations between

different variables are smaller than the previous case. Figure 2.18 shows the scat-

terplot of porosity versus FMM (top) for all upscaled data with 76% correlation.

The vertical dots in this scatterplot represent the pure interval where the resulting

FMM is only the average porosity of corresponding facies (1 × ϕk). The second
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scatterplot includes the upscaled intervals that are assigned sand or shale. There

are more vertical lines of similar FMM values and different porosity for the case of

sand, and a few for shale. This is because the average porosity in case of sand and

shale differs for different combinations of contact and distance.
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Figure 2.19: Porosity cross validation for CCG micromodeling data (sand): (1) simple
kriging, MSE: 1.0 (2) collocated cokriging with distance, MSE: 0.91 (3) collocated cokriging
with entropy, MSE:0.93 (4) collocated cokriging with FMM, MSE: 0.78.

Similar to the previous example, three secondary variables of (1) distance (2)

entropy and (3) FMM are considered in the estimation of porosity. Provided there

are enough data, cross validation is a reliable technique to compare the estimated

values with the true in all estimation cases. Using the common simple kriging ap-

proach to estimate porosity results in the largest mean squared error. A significant

improvement can be observed in the estimation of porosity when FMM is used for

collocated cokriging in comparison to distance and entropy. One well is removed at

every estimation, and associated porosity for upscaled intervals of the removed well

are estimated every time. The mean squared error for this estimation is minimum

(= 0.78) when FMM is considered as the collocated variable. Figure 2.19 illustrates

the estimated porosity versus the true values considering simple kriging (top-left),

collocated with distance (top-right), collocated with entropy (bottom-left), and col-
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located with FMM (bottom-right). There is a clear improvement in the estimation

of porosity when FMM is considered as the secondary variable.

2.5 Chapter Summary

The motivation for this chapter is mitigating the amount of information loss in facies

upscaling. Although the well data upscaling process is an important step in reservoir

modeling, it also results in a loss of small scale information due to averaging. There

is no doubt that what really limits the reservoir models is the physical constraints in

data collection. Retaining information loss through upscaling process is addressed

in this chapter by introducing FMM which results in a solid improvement to the

work done previously by Babak et al. (2013). They propose conditional entropy to

account for the mixing in the upscaling process. Entropy can only quantifies the

amount of mixing. It does not explain the type of mixing or identify the facies

involved. Conditional entropy was proposed to provide information regarding the

mixing intensity by similarity measure. Depending on how similar the facies in up-

scaling intervals are, the amount of entropy would be reduced to a smaller value.

This is consistent with a smaller value of entropy representing less mixing. Condi-

tional entropy, however, has some shortcomings which is discussed in detail. Thus,

FMM is proposed to address the entropy’s limitations and provide the reservoir

modeling with valuable small scale information.

FMM is a volume-based average metric. The value of FMM is an explicit ac-

counting for mixing, and for the proximity of the interval to other facies. FMM is

defined to distinguish between pure and mixed intervals, and differentiate between

facies. In other words, FMM can be seen as a porosity type measure with specific

ranges for every facies, and specific values within the ranges for pure and mixed

intervals associated with each facies. Then, the reservoir modeling workflow con-

siders FMM as an intermediate (secondary) variable that informs the petrophysical

properties to be modeled with precise evaluation of amount of mixing, proximity to

other facies and the type of facies they are in contact with. FMM is required to be

calculated at the upscaling process and treated as a pseudo-petrophysical attribute

that corresponds to upscaling data interval. Using two different dataset, the cross

validation results confirm the improvements in porosity estimation.
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Chapter 3

Lateral Continuity of Stochastic
Shales

Characterizing small shale local barriers in reservoirs is important for recovery fore-

casting, particularly for heavy oil reservoirs. High NTG ratio reservoirs such as

the bitumen deposits in the McMurray formation contain small shale intervals that

impede local flow of steam and bitumen. The information collected from vertical

delineation wells provides only limited knowledge on the horizontal extent and con-

nectivity of these intervals. The main challenge is that such flow barriers are not

correlated between relatively widely spaced delineation wells; the shales are later-

ally discontinuous. Even if such shale barriers are detected by the delineation wells,

their lateral continuity cannot be easily ascertained. This chapter proposes a novel

methodology based on an inverse modeling scheme to estimate the lateral extent of

thin shale barriers. The chapter begins with some background and motivation on

thin shale studies, and continues with the principles and methodology with support-

ing examples; the required mathematics will also be developed.

3.1 Introduction

Shale, in the context of relatively high NTG ratio sandstone reservoirs, was aptly

described by Haldorsen and Lake (1984). Shale includes shale lamina, shale streaks,

shale drapes, and massive shales. Shales are indurated sedimentary rocks with finely

laminated structures that are related to the orientation of micaceous clay mineral

constituents. Each type of shale has a different length scale as discussed by Larue

and Hovadik (2006); Hovadik and Larue (2007); Larue and Hovadik (2008); Marren

et al. (2006); Michel et al. (2010).

45



Small discontinuous shale intervals that are uncorrelated between well data, are

referred to as stochastic shales in the literature (Haldorsen and Lake, 1984). Stochas-

tic shales could be reasonably considered as remnant objects that are distributed

with various lateral continuities in the reservoir (Pyrcz and Deutsch, 2014). This

is in contrast to deterministic shales that can be correlated between well data; see

sketch in Figure 3.1.

(a) (b)

Shale
Shale

Sand

W
e
ll

Figure 3.1: Sketch of a cross section showing (a) stochastic shales; (b) deterministic shales
(after Haldorsen and Lake (1984)).

The characteristics of shale intervals are a strong function of their depositional

environment. Over the past few decades, a significant amount of stratigraphic lit-

erature on the nature and character of mud beds in fluvial and tidal settings has

been published (Henriquez et al., 1990; Galloway and Hobday, 1996; Miall, 1996;

Dalrymple and Choi, 2007; Ichaso and Dalrymple, 2009; Johnson and Dashtgard,

2012). A detailed description of the shale barrier characteristics associated with

different depositional environments can be found in Richardson et al. (1978). The

detailed geometry and structure of remnant shales in dominantly sandy sediments,

however, is not well documented which motivates studies such as this one.

Haldorsen and Lake (1984) note that the information regarding shale distribu-

tion can be gained (1) empirically from an observed sand/shale sequence; or (2)

statistically from outcrops of similar depositional environments. Zeito (1965) pro-

vides tabulated statistics on the proportions of shales and their lateral continuity

for different outcrops. In this table, the outcrops are identified with their lengths

and thicknesses within the channel, deltaic and marine environments. Similarities

between the geometry, frequency, and lithology of shales in reservoirs largely de-

pend on the environment of depositional rocks. This is supported by Zeito (1965);

46



Verrien et al. (1967); Sneider et al. (1978); Richardson et al. (1978); Pryor and Ful-

ton (1978). Extensive studies on different distributions and continuity of sandstone

reservoirs provide many conceptual models for these purposes (Le Blanc, 1977).

Stochastic shales generation has been a common approach to account for dis-

continuous shales. The distributions of discontinuous shales can be hardly charac-

terized in geologic models of reservoirs. Although the distribution of shale barriers

is mainly determined by the geology of the reservoir, such flow barriers could not

typically be correlated from the drilled data. Assuming rectangular, square, and el-

lipsoidal shapes for the barriers, and randomly placing them in the recovery region,

has proved to reasonably approximate the shale distributions and their influence on

performance (Haldorsen, 1989; Belgrave and Bora, 1996).

The statistical method of Begg and Chang (1985) accounts for the effect of shale

barriers in the simulation process by considering reduction in the vertical perme-

ability. Lien et al. (1992) refer to Begg’s method as an implicit characterization of

impermeable barriers and compare its performance with the technique proposed by

Haldorsen (1989) in which the shale characterization is applied explicitly in simula-

tions. The latter shows a better match with the theoretical approach of Joshi (1988).

The study carried out by Belgrave and Bora (1996) also shows the strong influence

of the shale size on the productivity of the horizontal wells, and how the size of

horizontal wells relative to the size of shales influences the recovery performance.

Lien et al. (1992) show that shale density around the horizontal well pairs is an

important factor in adversely affecting the recovery performance of the horizontal

wells.

Shale does not always form a barrier. Depending on the nature of the shale, its

continuity, its relative distribution and/or position relative to the production well,

the fluids may bypass the shale within the time frame of the process and make the

effect of the shale negligible (Sharma et al., 2002). In most cases, the use of the

word “barrier” implies a significant influence on fluid flow. For example, in the

following statement, the shales are referred to as barriers that adversely affect the

SAGD recovery project: The Peace River oilsand deposit, located in central Alberta,

contains relatively large amount of marine shale in the form of discontinuous and

continuous barriers (Webb et al., 2005).

Most of the bituminous reservoirs of the McMurray formation in Alberta occur in

sequences of channel sands cutting through previously deposited marine sediments
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(Pooladi-Darvish and Mattar, 2002). The channel sands are generally characterized

by high porosity and permeability with seldom inter-bedded shale barriers or baffles.

These shales, if present in the recovery region, create tortuous flow or may even

prevent flow depending on their distribution (Haldorsen and Lake, 1984). In the

case of SAGD, which is an important recovery technique in oilsand deposits of

Northern Alberta, the adverse effect of the continuity of shales between the injector

and producer is well documented (Peaceman, 1993).

SAGD relies on the vertical expansion of a steam chamber. Shale would alter

steam rise and could even prevent the steam chamber from expanding vertically with

significant effects on well productivity, cumulative steam-oil ratio (CSOR) and oil

recovery (Pooladi-Darvish and Mattar, 2002; Le Ravalec et al., 2009a). The findings

and analysis of Christina Lake SAGD project by Zhang et al. (2007) demonstrate

the strong influence of shale barriers on the steam chamber growth in the near-

well region. Numerical analysis by Chen et al. (2008) also shows the nonuniform

distribution of the steam rise and oil drainage in different regions of the reservoir as

a result of the heterogeneity.

The presence of shale barriers results in permeability anisotropy which was not

initially considered in Butler’s SAGD theory (Butler and Stephens, 1981). Analyzing

and modeling the effect of permeability anisotropy on the distortion of steam cham-

ber has attracted numerous studies in the past few decades, including: Kamath et al.

(1993); Sharma et al. (2002); McLennan and Deutsch (2006); Chen et al. (2008);

Azom and Srinivasan (2011); Azom (2013). Although this chapter is not directly

concerned with the details of modeling such effects, developing methods to estimate

the lateral extents of shales will substantially help with similar analysis—(Lajevardi

et al., 2015) proposes another approach to estimate lateral continuity of shales.

An example is shown at this point to demonstrate the effect of shale barriers on

the recovery of horizontal wells. The vertical permeability is determined for models

of different sizes and different shale lateral extents. The size of the model is con-

sidered to reasonably indicate a window for recovery. As the model size increases

with constant shale sizes, the effective vertical permeability increases. Whereas, for

a given model size with the given shale proportion, as the shale continuity increases,

the effective vertical permeability decreases. In other words, it becomes more diffi-

cult for the fluid to find vertical pathways with larger shale barriers in the reservoir.

Figure 3.2 illustrates the changes in effective vertical permeability with respect to
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Figure 3.2: The effective vertical permeability versus the shales horizontal to vertical (H:V)
ratio for the model sizes changing from 20 to 160 m is shown at the top. The plot at the bottom
is the illustration of the same concept but a different metric which is the ratio of CHV over the
total amount of net reservoir. The CHV-net ratio drops quickly for smaller H:V ratio of the
shale barriers.

the shale anisotropy ratio for seven different models where the size is changed from

20 to 140 m with intervals of 20 m. An object based modeling technique, specifically

ELLIPSIM program from GSLIB by Deutsch and Journel (1998) is used to generate

the models with the ellipsoid-like shales in this example.

The same behavior can be observed when connected hydrocarbon volume (CHV)

is considered as the reservoir response (Fenik et al., 2009b). CHV basically measures

the amount of net reservoir that can be potentially produced. Figure 3.2 shows the

increase of CHV for model sizes changing from 20 to 160 m. Also, for a given model

size, as the barrier lateral continuity increases, the CHV decreases. Note that the

NTG ratio is the same for all the models. The challenge is to infer the horizontal

extent of the shale barriers so that their influence can be predicted and managed.
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3.2 Proposed Methodology

The proposed methodology to estimate the lateral continuity of shales in this chapter

is based on an inverse modeling approach. The inverse modeling approach proposes

a framework to incorporate the information from well data, well placement, and

well spacing to reach an educated estimate for the shale continuity. This approach

is basically a function of well configuration in the area which mimics the reservoir

with close NTG ratio. This might imply that geology is overlooked in this approach.

Of course, geological understanding provides context and critical supporting infor-

mation. For example, in the lower McMurray formations the shales are believed to

be 5 to 100 m in lateral extent.

If a close pair of vertical delineation wells both intersect a shale barrier, the shale

length could be assumed larger than the spacing of the well pair. The same analogy

is at the heart of the proposed methodology in this chapter. The shale intervals

detected from data are paired up between nearby wells and the possibility of their

connection is investigated. Yet, it is difficult to confidently pair up shale intervals

from sparse wells and assign them as connected; there is a possibility that two differ-

ent shales appear connected, but are not. That is why the definition of connection

here is only “apparent,” that is, the shale intervals appear to be connected. The

lateral continuity of shales is then represented by a distribution that is a function

of the number of apparent connected shale intervals by performing a Monte Carlo

simulation study, as will be described shortly. Performing the simulation would al-

low a probabilistic assessment of how many apparently connected shales could be

actually connected.

The scheme of this approach can be broken up into three main steps of measuring

the apparent total shale connectivity (TSC) for (1) real data (2) simulated data and

(3) random data. The connected shale intervals of the random data help validate the

measurements from the real data and simulation case contains actual information.

Also, the comparison provided by connected shales of simulated data and the real

case provides quantified knowledge on the possible shale continuities that could

result in TSC measured from the real data which is referred to as observed TSC

throughout this chapter. In fact, the term “inverse” refers to the process in which

the corresponding shale continuity is inferred from TSC intersection measured from

well data.
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Figure 3.3: The schematic representation of inverse modeling approach: the x-axis represents
the H:V ratio of the shales for scenarios generated. The y-axis represents TSC variable where
the solid blue line indicates the observed TSC and the cloud indicates measured TSC of the
simulated scenarios.

Figure 3.3 summarizes the proposed framework in form of a scatterplot. The

clouds represent the connected shales for simulated scenarios and the area where

the measured connected shales of the real wells matches the ones from simulated

realizations provide information on the shale lateral extent. Thus, establishing the

proper simulation scenarios is important. The idea is to simulate many realizations

with specified shale continuity of specified amount of shales. The realizations should

be generated mimicking the reservoir properties to the extent known by the geologic

understanding and data analysis. The key is to keep all known parameters such as

the NTG ratio, well configuration, and size of the area of study consistent within the

framework. Incorporating the geological understanding of the area is an important

factor: the correct NTG imposes the direct relation between the number of shale

objects of certain anisotropy.

Note that shale continuity and H:V anisotropy ratio of shale might be used

interchangeably in this chapter. Also, it is worth mentioning that the initial choice

on the fixed shale continuities in the simulation scenarios comes from a geological

understanding of the reservoir. The knowledge on the characteristics of the reservoir

provides an a priori distribution of the shale lateral continuity as a reference for the

fixed continuity scenarios.
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Figure 3.4: A schematic depiction of identifying the connected shale intervals of adjacent
wells. Assuming α is the angle of apparatus, the roman numbers of I, II and III count the
potential connected shale intervals. The first α represents a case where two shales from nearby
wells are candidate for connectivity. The second α represents a case where a shale with large
thickness is in the line of sight of a very small shale interval. Although aspect ratio is almost
non-uniform all throughout the shale continuity but too much tortuosity is also not expected
unless backed up with geological evidence.

3.2.1 Calculating Total Shale Connectivity

Total shale connectivity or TSC is a primary factor in the inverse modeling approach

proposed in this chapter. The TSC measures the number of connected shale intervals

that can be observed from the specific well configuration. An algorithm is designed

to calculate the amount of apparent connected shale intervals from the well data,

that is, to determine if two shale intervals seen by a close pair of vertical wells could

be one shale barrier.

Important parameters in TSC calculations include (a) the size (thickness) of

the shale intervals and (b) their presence in nearby wells along the direction of

stratigraphic correlation. Figure 3.4 demonstrates some different situations for shale

intervals seen by nearby wells. As can be seen from Figure 3.4, among all these shale

intervals captured by the well pairs, only three pairs meet the criteria to have an

apparent connection. For example, if there is another shale interval in the adjacent

well in which it is placed at the other shale’s line of sight within 5° deviation and its

size is within 40% of the size of the other shale interval, the two will be considered

as connected. In this analysis, shale intervals of any thickness cannot be considered
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as stochastic thin shales; a detected 10 m shale interval cannot be a small barrier

in reservoir but is probably part of the non-reservoir region, that is, a mud plug

formed by an abandoned channel. A maximum thickness of 3 m could probably

be a reasonable assumption for small shale intervals. Note that these numbers are

not definite and could change depending on the knowledge of the reservoir. One

could also examine a well pair from a place where its geology is known and decide

on these parameters by observing how the shales seem to be extending over the

area. Adjusting the required parameters and analyzing the results relative to what

is known and what is expected are also recommended.

A similar procedure to identify the connected shales should be carried out for

all the well pairs since the final TSC value is total connected shale over all the

well pairs. TSC fraction is used to report the amount of connected shale intervals

instead of the TSC number. The TSC fraction is defined by the TSC value over

the number of “qualified” shale intervals to be connected. For example, the three

shale intervals in the middle of schematic in Figure 3.4 are qualified for connection.

However, the choice of parameters only accepts 2 out of 3 pairs as having apparent

connections. The TSC fraction is therefore 2/3. Note that any reference to TSC

from here on would imply the fraction of total number of connected shales to the

potential intervals.

Another important point in calculating the connected shale intervals is seeing

the nearby shale from both wells. Note that in Figure 3.4 the connection is seen

from the well on the left to the well on the right. The shales connection could be also

seen from the other well. The connections identified when seen from both sides are

considered in the measure of total connected shales unless some anisotropic geologic

information lead to a precise decision on the direction that connection should be

examined.

It is essential to consider the exact same parameters when calculating the TSC

for simulated realizations as from the original well data. Therefore, for any given

H:V scenario, a corresponding TSC fraction represents the probability of connected

shales. Note that when the two shale intervals are marked as connected, the cor-

responding continuity of the connected shale is inferred from the spacing between

the well pairs. Thus, the final shale continuity would be represented by a distribu-

tion spreading over the possibilities of H:V ratio concentrating around the point of

intersection.
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Figure 3.5: A schematic representation of the scatterplot of TSC relative to TSC random
versus the H:V ratio of simulated shales. The solid green line represents the relative observed
TSC, and the dashed red line represents the relative random TSC which is indeed 1. The well
configuration influences the amount of cloud under the random TSC.

Random TSC

Among all parameters contributing to TSC analysis, well spacing is one main vari-

able and stays fixed throughout the analysis. For example, if two shale intervals

are said to be apparently connected between nearby wells, the spacing between the

wells is an important constraint on the understanding of the lateral extent of the

shale. Two questions arise while relating TSC to the well spacing (1) does observed

TSC suggest a value smaller than what could be observed randomly? (2) does the

observed TSC suggest too small well spacing relative to shale continuity?—The first

question refers to inadequate data. However, the second question relates to what

happens if the wells are too close relative to the shale continuity; this may confound

the number of connected shales, that is, many will appear connected.

To study these questions further, the meaning of random TSC should first be

clarified in this context. The remainder of this subsection discusses how to eval-

uate the corresponding random TSC for a particular configuration of wells and to

calibrate it to different shale sizes. The observed TSC can only be meaningful rela-

tive to the random TSC with everything but the lateral extent fixed. The random

TSC for every case is evaluated by covering the non-net reservoir with random shale

continuity and using the same well configuration as what is studied. Note that

selecting the range of shale continuity for the random case could come from the a

priori distribution of shale lateral extents that is typically gained from a geological
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perspective. Thus, the random TSC is not unique: Firstly, it is evaluated relative

to the well configuration and other simulation factors. Secondly, it depends on all

the factors discussed in TSC measurement.

The amount of information gained regarding the shale continuity depends on how

the cloud of simulated TSC, the observed TSC, and the random TSC are placed

relative to each other. Figure 3.5 is a schematic view of these parameters. The

larger the gap between the observed TSC and random TSC, the more informative

is the data, and the more reliable is the estimation of shale continuity. The cloud

below the random TSC is directly related to the well configuration. More well pairs

and/or closer wells relative to shale continuity would result in a decrease of the area

below the random TSC.

3.2.2 Sensitivity Analysis

Since the quantification of shale continuity is a direct result of well spacing, some

comparison could be discussed. The TSC accounts for the shale intervals that

seem to be connected to the one at the right size and elevation, being observed

at the adjacent well. The continuity of the connected shale intervals can then be

determined based on the spacing between the adjacent wells. Adding more wells

in the area results in capturing more shale intervals and possibly higher number

of connection (larger TSC). The rate of the increase in TSC depends on the well

distribution covering the area of interest, as well as the shale distribution. More

wells provide more information which results in the growth of TSC.

The TSC algorithm with fixed parameters is applied to the simulated realizations

to count the shale intervals appeared to be connected. On average, the counted

connected shales observed by adjacent wells increase with the increase of the shale

continuity relative to its vertical thickness.

The other factor, well spacing, determines the number of shale connections that

could be captured. These factors are all relative. Closer well spacing does not

necessarily result in TSC growth, but depends on the shale continuity, too. For

example, if the shale intervals in the area are less than 30 m long and the wells

are spaced more than 60 m from each other, no true shale connection is captured.

But if the wells are 20 m apart, then the possibility of more shale intervals being

identified is higher. The influence of the number of wells and the well spacing are

dependent; the interdependence between the two factors in addition to the shale
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Figure 3.6: Changes in TSC for the increase in the number of wells and/or well spacing.
For specific well spacing shown on the x-axis, the TSC is calculated for many realizations. A
systematic drop of TSC can be observed as the well spacing grows larger. Note that 10 well
pairs are available in every scenario. The red line connects the mean TSC for every scenario,
and the dashed green lines is the mean for TSC values when the number of well pairs is growing
larger from 2 to 10 well pairs. The black line represents the mean TSC when 10 well pairs are
available and every well pair has a different spacing.

continuity makes the parametrization of their correlation challenging. What could

be said is that TSC increases in the presence of more number of wells, with the

proper spacing relative to the shale continuity. Figure 3.6 illustrates these factors

in a TSC versus well spacing plot. Recall that such interdependency is established

by the Monte Carlo simulation in the proposed inverse modeling approach.

An example is designed to discuss the implementation details in terms of main

TSC evaluation and simulating and calculating the random TSC as well as discussing

the relationship between the shale continuity and well spacing. A synthetic reservoir

volume with dimensions of 1100 m × 2200 m × 60 m and 94% NTG is generated

for this example. Wells are drilled at 9 regular spacings of 100 m, 500 m, and 900 m

along easting, and 200 m, 1000 m, and 1800 m along northing. Then the well pairs

are placed at certain spacing to the east of all the 9 wells, with well spacing of 30,

60, 80, 100, 120 and 140 m. The model is filled with isotropic shales of the same

continuity which occupies 6% of the volume. The lateral continuity of shales are
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Figure 3.7: The scatterplot of TSC versus the shale continuity for well spacing of 100, 120,
140, and 160 m. As can be observed the area of the cloud above random TSC decreases as the
well spacing increases.

changed from 10 to 400 m. The main idea is to have a large range of shale continuity

which covers from half the well spacing to about 4 times the well spacing. As the

well spacing increases, relative TSC seems to flatten off and become closer to the

relative TSC of 1 since less information regarding shale continuity can be collected.
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Figure 3.8: The three regimes defined considering the interdependency between shale conti-
nuity and well spacing.

The scatterplots of relative TSC (fraction of TSC over the random TSC) versus

shale continuity for well pairs of constant spacing are shown in Figures 3.7. The

P10, P50, and P90 are shown instead of the entire cloud of TSC values. The area of

the cloud under the value 1 (where TSC equals the random TSC) increases as well

spacing increases. Looking at these plots, the following regimes could be defined

as (a) shale continuity is smaller than well spacing (H < 1S), then the observed

TSC would be very close to random TSC; (b) shale continuity is between the well

spacing and 3 times larger than well spacing (1S 6 H 6 3S), then the observed

TSC is reliable and inference of shale continuity is more precise; (c) shale continuity

is significantly larger than the well spacing, by more than 3 times larger (H > 3S),

then the results are not representative and those wells spaced further apart should

be selected for the shale continuity inference (see Figure 3.8).

3.3 Formulation of Inverse Stochastic Approach

This section discusses the approach to estimate the distribution of the shale lat-

eral continuity from observed TSC. The inverse modeling approach determines the

probability for every simulated H:V ratio to contribute to the estimation of the prob-

ability distribution function of the shale continuity. The probability distribution of

shale continuity given TSC is proposed to be inferred inversely from the intersection

of the observed TSC with the cumulative distribution function (cdf) of simulated
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Observed TSC

Figure 3.9: Estimating the probability distribution of lateral continuity of shale barriers from
cdf of TSC for different H:V anisotropy ratios. The cumulative distribution function of TSC is
determined for every H value. This is depicted in the top plot where FTSC are shown for some
shale continuity of H1, H2, H3 and H4. The solid blue line represents the observed TSC which
intersects with all these cdfs at some points. This intersection is considered as the probability
value for the corresponding H once forming the probability distribution of shale continuity. This
probability value is evaluated by comparing the intersection point on the cdf with the 0.5 value.
Thus, the mode of the a posteriori distribution is where the observed TSC intersects the cdf at
the value of 0.5.

TSC for every H:V ratio. This information is contributed into the shale continuity

by the following proportionality

f∗
H|TSC(h) ∝ (0.5− |0.5− FTSC|H=h(TSCobs)|) (3.1)

which basically forms the probability distribution function of H given TSC. In other

words, if the intersection point of TSCobs and H distribution is considered to be the

mode of the probability distribution function of H—TSC, then deviation from 0.5

on the cdf of TSC—H, is the amount of contribution of that corresponding H value

in f∗
H|TSC=TSCobs

(h); see Figure 3.9. This value is still altered with the weighting

factor of fH(h), as will be described momentarily.
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The inference of shale continuity from observed and simulated TSC is now de-

scribed. Considering both shale continuity, H, and TSC, the following relation of

conditional cdf holds true:

FH|TSC(h) FTSC(tsc) = FH(h) FTSC|H(tsc) (3.2)

Recall that H is considered instead of H:V ratio to simplify the written formulas.

In (3.2), FH|TSC(h) is being calculated, and FTSC|H(tsc) is measured from the

simulation of the particular shale continuity with fixed NTG and well configuration.

Taking the derivative of both sides of (3.2) with respect to the variable H, the

following will result:

d

dh
[FH|TSC(h)] FTSC(tsc) =

d

dh
[FH(h)] FTSC|H(tsc)

fH|TSC(h) =
fH(h)

FTSC(tsc)
FTSC|H(tsc) (3.3)

The relationship in (3.3) could be interpreted as the probability distribution

function (pdf) of shale continuity for a given TSC is proportional to the conditional

cdf of TSC given shale continuity and the weighting factor of marginal distribution

of shale continuity. Thus, the approximation shown in (3.1) shows the following

proportionality exists:

fH|TSC=TSCobs
(h) ∝ fH(h)× FTSC|H(TSCobs).

For the case where there is no real a priori knowledge on the distribution of H,

considering uniform distribution is reasonable which results in:

fH|TSC=TSCobs
(h) ∝ FTSC|H(TSCobs).

One way to validate the proposed approximation is to design an example with

Gaussian assumption where the conditional distributions can be determined with

an exact mean and a variance. Thus, the exact probability density function of the

conditional distribution could be compared with the estimated pdf when derived

from Relation 3.3. If TSC and H are denoted by variables Y and X, respectively,

for a given Y in a joint Gaussian distribution, the probability distribution function

of X, fX|Y (x), can be written as a Gaussian distribution with the mean, mc, and

standard deviation, σc, where

mc = mx + ρ σx
y0 −my

σy
,
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Figure 3.10: The illustration of the exact conditional Gaussian distribution, fX|Y (x),
and the approximated one, f∗

X|Y (x), from the cdf approach of (3.1) which is evaluated
for the Gaussian example. There is a clear match between the two conditional pdfs
when the Gaussian marginal distribution of fX(x) is also applied as the weighting factor
to the cdf approximation when y0 = −1.0.

and

σc
2 = σx

2 (1− ρ2).

Now, considering the proportionality in (3.3), the approximation of probability

distribution of X|Y , is as follows:

f∗
X|Y=y0

(x) ∝ FY |X=x(y)× fX(x)

where

FY |X=x(y) ∼ N(mc, σc),

and

mc = my + ρσy
x−mx

σx
,

and

σc
2 = σy

2(1− ρ2).

Without loss of generality, mX and mY are assumed to be 0, and σX and σY are

assumed to be 1. Also, the correlation factor of ρ =
√
0.5 is considered for the joint

distribution of fXY . The point of y0 = −1.0 is the at which the conditional probabil-

ity is of interest. As can be observed in Figure 3.10, the approximated distribution

of X given Y, f∗
X|Y=y0

(x) closely follows the exact distribution, fX|Y=y0(x).
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3.4 Case Study

This section implements the inverse modeling approach to an area covered with 8

wells of varying spacing shown on the top left of Figure 3.11. The TSC is determined

for 5 well pairs with specific parameters of 4° line of sight and 20% size deviation of

the shale intervals between the two adjacent wells. Note that as discussed earlier, the

parameters for TSC evaluation should be adjusted based on geological understanding

or knowledge of wells configuration. Also, for this case, the shale intervals of less

than 3 m thickness are considered in TSC evaluation. The study requires generating

many realizations with shales having different H:V ratio with the same NTG as

the study area which is about 92%. The realizations are generated for H:V ratio

changing within the range of 10—300 with intervals of 10. For every H:V ratio,

40 realizations are generated covering the same region as the study region. The

available well data is approximately 60 m thick over an area 1400 m along east and

2400 m along north. The TSC algorithm with the same parameters is applied to

every realization of every H:V ratio. Note that the selection of H:V ratio is not

arbitrary: it is originated from the geological understanding of the area, data and

well configuration. When the observed TSC reaches some conclusive information

with regards to the simulated shales and the wells configuration (correlating the

shale intervals), the validation of this inverse modeling approach is confirmed.

A grid-free scheme is implemented to ease computational cost of the shale gen-

eration, well drilling, and TSC evaluation to avoid dealing with large 3-D volumes

which for this study would be at least 1200 (= 40 × 30) models. The idea is to

evaluate the number of objects (e.g. ellipsoids), in order to cover the non-net reser-

voir, i.e. 8%. Then those amount of objects are randomly placed in the region of

study. Depending on what shale continuity is applied, the volume of the shale is

considered to be equivalent to the volume of an ellipsoid with circular plan view.

Then, to calculate the number of objects required to cover the non-net reservoir is

straightforward: it is determined by dividing the non-net reservoir volume by the

volume of the shale (ellipsoid). Note that since objects are randomly placed in the

model, there is a probability that the shales will overlap. However, since the volume

of non-net reservoir is small relative to the net reservoir, accounting for a very small

percentage overlap is neglected.

After the shales are placed in the model with the proper geometry and coor-
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Figure 3.11: Map of the well configuration for the case study for the case study (top left
corner). TSC is determined for cases of H:V ratio changing from 10 to 300 m. There are 40
realizations simulated using object based modeling technique for every case of H:V ratio (shales
are modeled as ellipsoids shown in Figure 3.8). The specific well configurations must remain
unchanged for inference from inverse approach study. The observed TSC calculated from the
real data, shown in solid red, is about 0.304 (number of connected shales over the number of
potential intervals for connection). The TSC distribution generated from 1200 realizations is
also shown. The same well configuration captures TSC of about 0.1 (shown in solid black), if
the non-net reservoir is covered with random shales of different continuity and locations.

dinates, the overlap between the shales and wells are studied. Any overlap is the

detection of a shale interval. Depending on how the shales are distributed, the thick-

ness of the shale interval varies. For example, if a few shale intervals are stacked

on top of each other, then the shale thickness appears large. Note that the simula-

tions in this approach are performed unconditionally since conditional object based

modeling algorithms are non-standard and not available to this study.
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Figure 3.12: Relative TSC which is the ratio of TSC over the random TSC is calculated for
the realizations in Figure 3.11. The mean TSC for every case of specific H:V ratio is shown in
solid green and the P10 and P90 quantiles are shown in dashed black. As can be seen the P10
quantile is above the value 1 which represents the relative random TSC. This basically means
that 90% of the time the evaluated TSC for the proposed scenarios are higher than random
TSC. This could be considered as an insurance to the inference of probability distribution of
shale continuity.

The advantage of this grid-free scheme over the simulation of grid cells is that it

is not actually required to place the objects within the volume and store them. Once

the centres of objects are randomly assigned in the area, the surrounding occupied

grid cells could be identified with simple geometry. The well locations are also

known from the well configuration, therefore, the portions of shales that intersect

with the wells could be readily determined and the TSC evaluation could proceed

with wells’ intervals of shale and sand.

Figure 3.11 shows the scatterplot of TSC values for the range of simulated shale

continuity. The mean of TSC for all 40 realizations is shown with the solid green

in the plot. The mean value for TSC of different scenarios grows larger with an

increase in H:V ratio as expected; as the lateral continuity of shale increases, the

chances for a shale interval to be identified as connected to another shale interval

also increases. Also, the solid black line in this figure represents the random TSC

which is determined from the average TSC over many realizations with random

shale continuity in the same reservoir model and well configuration.
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Figure 3.13: The modeled distribution of TSC for every case of H:V ratio. In this study, kernel
estimation is used to model the distribution non-perimetrically. The vertical black line indicates
the observed TSC which is shown in red in Figure 3.14. The observed TSC line intersects
the probability distributions at different values. The second plot shows the TSC probability
that intersects with the observed TSC which occurs for the H:V ratio of 170 m. This is also
considered as the mode of the a posteriori distribution of the shale continuity distribution.

The results show that the 5 well pairs over the study area with specific well

spacing and locations detect 0.304 of shale intervals to be connected. In Figure 3.11,

it can be observed that the gap between 0 and random TSC is almost empty. The

random TSC which has been calculated from random shale continuity realizations is

very close to 0.1 as well. This value is almost 33% of the observed TSC. This confirms

that the observed TSC is reliable and has information regarding the shale continuity.

In other words, if the observed TSC was just random, it should have stayed around

0.1. Interestingly, most realizations in all different H:V ratio cases have their TSC
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Figure 3.14: The empirical estimation of the horizontal continuity of the shale barriers is
mostly distributed around 30 to 220 m. The empirical cdf of shales continuity distribution is
plotted in red. The P50 is about 115 m, while there is also 50% probability for the shale to
have an areal continuity between 50 to 160 m. It can be concluded that the shales in the study
region most probably have an H:V anisotropy ratio of 115.

larger than the TSC value of the random case. Looking at the Figure 3.12 where

the y-axis represents the relative TSC (fraction of TSC over random TSC), 90% of

the TSC of simulated scenarios are above the minimum threshold which is indicated

in solid blue.

As the scattered points in the same figure represents, there is a TSC distribution

for every case of H:V ratio. The observed TSC intersects with these distribution

at a different point; see Figure 3.13. For some of the distributions, the intersection

happens at higher end of the probability distribution and for some it happens at the

lower tail. The CDF of TSC for shale anisotropy of 170 m intersects with observed

TSC at 0.5 value. Thus, applying the proposed inverse modeling approach, this H:V

ratio represents the mode of the a posteriori distribution of shale continuity as shown

in solid black in Figure 3.14. The solid red is the cumulative distribution function

of the inferred probability distribution of the shale continuity. The median of this

distribution is around H:V ratio of 100 m and the P25 and P75 of the estimation are

changing between 50 m to 150 m. Thus, it could be concluded that in this reservoir,

based on the data and well configuration, the shales mostly have 100 m of shale

continuity if the thickness is 1, and this value could vary from 50 to 150 m.
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The agreement between the expected shale continuity (imposed in generating

the shales) and the conclusions that are drawn from TSC evaluation support the

validity of the proposed inverse modeling methodology.

3.5 Chapter Summary

Uncertainty in reservoir characterization comes from the lack of knowledge of reser-

voir geometry, property distribution, fluid flow and response to external stimuli. In

this chapter, the lateral continuity of thin stochastic shales is addressed. An inverse

modeling approach is proposed to quantify the lateral continuity of shale barriers

in the regions with high NTG. The basis of this approach is on measuring the shale

intervals seen by well pairs that appear to be connected within the constraints of

some defined parameters such as the line of sight, and difference in the size of the

shale intervals. This measurement is called TSC and once calculated for well data

would be considered as the reference point for the inverse modeling approach. The

basis of inverse modeling approach is to infer the shale continuity from the TSC

measured for cases of simulated realizations with shales of certain continuity to

cover the study area. The shale continuity simulated in the realizations is changing

for a range of values that best represents the characteristics of the reservoir (a priori

distribution of shale continuity based on geologic understanding of the reservoir).

The intersection of observed TSC and simulated TSC would be considered to infer

the probability distribution of shale continuity.

Monte Carlo simulation permits incorporating all the factors in an inverse infer-

ence process. The well configuration is one main factor in this whole analysis which

is also the important parameter in TSC evaluation. The comparison of evaluated

TSC for a random case mimicking the reservoir, the real case, and many simulated

realizations for fixed shale continuity provide understandings on shale continuity dis-

tribution which is discussed in this chapter. Considering the proposed methodology

to predict the lateral continuity of shales in reservoir with presence of facies trend

has the potential for the future direction. Although the proposed inverse modeling

approach is sensitive to the number of wells, well spacing, and well configuration,

it is considered as a consistent analysis since all parameters, measurements and

comparisons are specific to the study region and well configuration.
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Chapter 4

Stochastic Model Regridding

Regridding geological models to a higher resolution for flow simulation is an impor-

tant problem in geostatistical modeling. For practical reasons, over a large area,

models can only be built at a relatively coarse resolution. Subsequently, the resolu-

tion of specified regions of interest must be increased before upscaling for flow mod-

eling. It is standard practice to implement nearest neighbor interpolation to increase

the resolution of models. Despite its wide use, nearest neighbor introduces spatial

continuity artifacts that are often unrealistic. This chapter proposes a stochastic

model regridding approach along with implementation of the automated program to

generate high resolution realizations conditioned to coarse resolution models. The

advantage of this workflow is discussed in a comparison to conventional nearest

neighbor regridding. The chapter closes with a case study and related conclusions.

4.1 Introduction

In petroleum application, different types of reservoir evaluations and applications re-

quire models with different levels of detail and precision (Aziz, 1993; Durlofsky, 2003;

Manchuk, 2010; Pyrcz and Deutsch, 2014). While a coarse resolution model might

be adequate to serve purposes such as volumetric characterization of the reservoir, it

might not be capable of providing suitable input to capture physics of flow near the

well region. Models of higher resolutions may be required for detailed flow analysis

and subsequent optimal well placement (Hewett, 1993; Norrena and Deutsch, 2002;

McLennan and Deutsch, 2005b; Pyrcz and Deutsch, 2014). Detailed analysis is ac-

complished by implementing a regridding scheme which can introduce appropriate

small scale heterogeneity. The ability to vary the resolution of numerical models

to meet specific conditions for reservoir characterization is a longstanding problem
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Figure 4.1: Schematic representations of the coarse resolution grid configuration for gener-
ating geostatistical realizations of the reservoir along with a horizontal well pair (left), and the
high resolution grid configuration to be considered for flow simulation (right).

(Pyrcz and Deutsch, 2014). As mentioned in Chapter 1, many factors contribute to

model grid selection including, the underlying reservoir geology, scale and amount

of data available, types of fluid present in the reservoir, location and types of wells,

development plans, objective of the simulation study, desired numerical accuracy,

and available computer resources (Aziz, 1993). Yet, it is important to recognize the

need for the proper resolution of the model for different regions and applications to

avoid over/under representation of geological features.

In the SAGD recovery scheme, flow performance is mainly determined based on

the connectivity of net reservoir near the horizontal well pairs. Small scale hetero-

geneities in between the wells, such as shales (as discussed in the previous chapter),

disrupt the connectivity of net reservoir; this can lead to serious difficulties in ac-

curate reservoir prediction (Nzekwu, 1997). This suggests the need for a thorough

study of flow around the well pairs (Ding, 2004) which requires high resolution re-

alizations to represent the reservoir at finer scale than what it is typically modeled;

see Figure 4.1. Ding (2004) discusses the impact of different resolution models when

studying well performances. Understanding the flow behavior is even more crucial

when the reservoir is highly heterogeneous and coupled with non-linearity of the

fluid-flow processes (Deutsch, 1987; Nœtinger and Zargar, 2004; Nœtinger et al.,

2005). The flow velocity is higher near the wells and slower away from wells. Thus,

it is reasonable to facilitate the numerical models with higher resolution to solve for

flow equations involving more information. The precise flow analysis in heteroge-

neous reservoirs has been tackled by different approaches in literature. For example,
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Ding (1996) and Durlofsky et al. (2000) addressed this problem by refining the near-

well grid cells so that the problem of flow is reduced into homogenous permeability

variations between refined cells.

True Model 

with Small Scale 

Heterogeneity

(barriers)

Coarse Sampling 

with Nearest Neighbor 

representation

A

B

Figure 4.2: Illustration of the grid cell assignment based on well data. Model A represents the
true reservoir with small shales distributed randomly. The three wells shown in A, sample three of
the present shales. In model B, data samples are assigned to coarse grid cells. The shale on the
left is overestimated to the coarse grid cell and the shale on the right is almost overestimated but
mainly mis-located in the grid model. As a result, the effective vertical permeability is evaluated
to be smaller than the true model in A.

The amount of grid cells to characterize the reservoir geology in numerical models

are typically in the order of millions (Durlofsky, 2003). The amount of grid cells

that could be handled in different modeling software packages has increased almost

linearly with time (Durlofsky, 2005) thanks to the rapid advancement in computing

technology. Also, parallel processing has augmented the capacity of handling models

with larger number of grid cells. Despite computing advancements, generation of

higher resolution models is still constrained by the amount of grid cells.

Depending on the grid size and its relative scale to the size of geological features,

the gridding limits the features that can be represented, see Figure 4.2. Any mis-

representation at this level could be transferred into finer scale model when a higher

resolution is required. For instance, a shale continuity of 25 m is overestimated when

generating a coarse scale model of 50 m by 50 m cell size. This model, if regridded

to 25 m by 25 m grid cells, would not correctly locate the shale to one grid block.

Using a nearest neighbor approach, the shale would be represented by at least four

grid cells of 25 m areal size.

The nearest neighbor interpolation is especially inadequate when the small scale

variability is high. Nearest neighbor is of earliest interpolation methods in which
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Figure 4.3: Two scenarios demonstrate the difference between nearest neighbor assignment
and stochastic regridding approach when generating high resolution models conditioned to coarse
resolution one. Using nearest neighbor, the effective vertical permeability could be estimated
too large or too small relative to the true distribution due to improper shale distribution.

every new grid location is deterministically defined by assigning the nearest coarse

grid value to the finer grid points (Gonzalez et al., 2009). This understates the

spatial variability that is expected at smaller scales (Pyrcz and Deutsch, 2014) that

could also introduce bias in the flow analysis of the reservoir. Figure 4.3 demon-

strates the possible bias in two scenarios (1) the shale is not detected by the coarse

resolution model at the top; (2) the shale is detected by the coarse resolution model

at the bottom. In the first scenario, using nearest neighbor interpolation, no shale

is assigned to the grid cells around the well, thus, the upscaled vertical permeabil-

ity will be overestimated. The stochastic regridding however, generates some shale

variability which reduces the vertical permeability. The second scenario illustrates

the opposite in which the shale is detected by the coarse resolution model. When

characterizing the new grid nodes, the shale is inevitably enlarged applying nearest

neighbor. The upscaled vertical permeability could drop to a very low value due to

the generated shale barriers. The stochastic regridding shown on the right, depicts

more realistic distributions of shale.

Grid Cell

Gridding is, of course, not part of nature; no reservoir or geologic feature comes

inherently gridded. Gridding, however, is a convenient way to represent geologic

heterogeneity of reservoirs and solve flow equations (Aziz, 1993). Defining reservoir
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Figure 4.4: The 2-D schematic view of imposed grid system on geological models which
results in inevitable deformation of objects.

models using a gridding system is equivalent to populating the spaced points with

some representative properties. The grid points at the scale of the well data are

typically considered to be placed at the centre of the grid’s geometric shape (i.e. a

rectangular parallelepiped), and the space between two grid points is the size of the

grid cell. This space could be filled with points and assigned with corresponding

values of interest. Although regular Cartesian grid cells are not necessarily compu-

tationally efficient, they are widely utilized in geostatistical practice and software.

As explained by Pyrcz (2004), the inefficiency of the regular grid system is due to

the constant level of discritization which may be different along every direction but

is same everywhere in that direction. This implies that the same amount of precision

to characterize the homogeneous and heterogeneous parts of the reservoir is a waste

of computational capacity. A number of suggestions on model cell size selection has

been discussed in (Pyrcz and Deutsch, 2014), under Gridding for Geologic Modeling

subsection, in Chapter 3.

In addition to computational inefficiency, the grid system is a source of misrepre-

sentation: constraining the geology into grid cells and deforming geological features

into irregular shapes. For example, at facies transitions, the boundaries may be en-

larged or reduced to fit with the geometric form of the regular grid shapes as can be

observed in Figure 4.4. In general, as shown in Figure 4.5, the gridded distribution

is different than realistic shapes encountered in the reservoir.

The following section discusses the proposed stochastic regridding approach and
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Figure 4.5: The 2-D schematic view of moving from true geology to representing the samples
on models with grid system.

its implementation details to characterize small scale variabilities in high resolution

models.

4.2 Methodology

The regridding process includes extracting coarse resolution information from a

region of interest and characterizing the corresponding geology at a finer grid res-

olution. The approach presented in this chapter is to apply stochastic simulation

to generate high resolution realizations conditioned to the coarse resolution simu-

lated values. This method consists of implementing stochastic simulation, where

the geologic characteristics at the new grid locations are determined via a stochastic

process that accounts for the spatial structure of the geologic setting (Lajevardi and

Deutsch, 2015). Thus, the simulation approach has the advantage of generating a

set of realizations that accounts for uncertainty by imposing the expected variability

at the small scale.

Stochastic regridding could easily become a professional and computational de-

manding approach as it involves constructing high resolution models of many vari-
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ables. For example, in reservoir studies, a typical dataset contains facies, a primary

variable (e.g. porosity or Vsh) and a secondary variable (e.g. seismic data) which

are available at a coarser grid resolution (about 100 realizations). Therefore, the

stochastic regridding process would require the calculation of the variogram for each

variable (facies, porosity, and other variables such as directional permeability and

residual saturations), and then simulation which is conditioned to coarse resolution

model should be applied separately within each facies to satisfy the assumption of

stationarity (Pyrcz and Deutsch, 2014). In some cases, the secondary variable might

also need to be modeled at higher resolution to be considered in collocation of the

primary variable when simulating the high resolution model. Often, geostatistical

practitioners avoid sensitivity analysis and local studies of the reservoir due to lack

of automated tools available and time constraints. Developing a stochastic regrid-

ding workflow that automatically extracts the relevant information in the area of

interest and applies the sequence of the simulation processes would be professionally

and computationally beneficial to reservoir characterization.

The fundamentals of stochastic regridding workflow could be summarized by (1)

model extraction within the region of interest (2) local variogram determination to

capture local variability, and (3) generation of 3-D model at small scale grid cells;

data defined on the centroid of the coarse resolution grid cells are considered as

conditioning data (McLennan, 2005).

As mentioned, in geostatistical modeling every grid cell is defined at a point

rather than over an entire interval or block. In the regridding approach, the new

simulated values define the corresponding properties for the grid nodes placed at

higher resolution. This is more important when the initial grid system has large

spacing in any of the three directions. Although, in general, the overall continuity

and structure of the region should have been well captured by the initial simulation,

the locally varying structure in a local part of the region will be influenced by local

conditioning and stochastic variations. The stochastic regridding process is driven

by the initial coarse resolution model through data conditioning. Determining the

horizontal variograms of each facies is fundamental to understanding the spatial

correlation of the geological structure of the reservoir. Types of facies present in the

model, their spatial continuity, statistical inferences, the variables of study, and the

volume of interest should be established before the regridding process starts.

One main feature that has been considered in the automation of the regridding
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process is its ability to prepare such statistical information and subsequent variog-

raphy determination with a limited amount of professional input. After extracting

the volume of interest and acquiring the data statistics regarding the facies, their

proportions, other variables of interest, and the horizontal and vertical variograms

are determined for the subsequent simulation process. The local variogram is cal-

culated for a number of directions so that the anisotropy of each facies is captured.

This step could be omitted if global variograms are considered.

4.2.1 Stochastic Regridding Program

The regridding process has been automated and developed in scripting and custom

programs. The process includes the extraction of specified regions of interest, defini-

tion of corresponding local variograms, and implementation of sequential Gaussian

simulation (SGS) and/or SIS to characterize continuous and/or categorical vari-

ables, respectively. In each specified region, the local variography can be defined by

either implementing automatic fitting algorithms or assigning the global variogra-

phy initially used to build the coarse scale model. All inputs and outputs of this

process are implemented in a Cartesian restored geological coordinate system. The

data from the coarse scale model is assigned to the centre point of every grid cell.

The refined grid size is specified by the user and the entire process of regridding is

applied to each realization within each sub area under consideration.

To generate a high resolution model, the area of interest should first be identified

using an origin, the length of the region of interest in all directions, and the rotation

angle from the x-axis. The details of implementation and utilization of the proposed

stochastic regridding approach are fully described in Appendix A. Regridding is

applied on every coarse resolution realization one at a time. The realizations that

are considered for regridding could be selected by the user. For example, if the

user would like to have high resolution realizations for only P10, P50, and P90

selected realizations of the model, the user could execute the program only for

those realizations. The resulting high resolution realizations are then created in a

separate directory with specific names. Generating multiple regridded realizations

from multiple coarse resolution realizations is considered as good practice since it

enables the user to understand and exploit the variability of uncertainty of the high

resolution realizations within and between the original coarse resolution realizations.

The local coordinate system for simulation may be rotated with respect to the initial
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reservoir model (see Figure 4.6).

Figure 4.6: Schematic representation of the Cartesian grid for simulation and data extraction.
The blue boundary represents the limits of the area of interest. The red dots represent the coarse
scale nodes extracted. The angle θ is the horizontal rotation of the region studied.

After the region of interest and all its specifications have been determined, the

procedure for re-simulation must be established. This decision is based on the

combination of categorical and continuous variables to be processed. For the case of

categorical data, the data statistics of the facies within the volume of interest must

be determined. The facies proportions in the area of interest should be considered for

the regridding process. In presence of continuous variables only, the entire domain

of interest is assumed stationary following conventional geostatistical assumptions.

At this point, the continuity of the data variables must be determined. The vari-

ogram for every variable within each stationary facies domain is automatically calcu-

lated for a number of directions. Normally, the Z direction is orthogonal to the strati-

graphic correlation and that direction is computed separately. Then, anisotropy in

the horizontal X-Y plane can be determined by pre-specified directions or calculat-

ing the variogram in a number of directions with varying azimuth. There is always a

chance that one category has a shortage of pairs for the variogram to be determined

reliably. One option is to combine the data from different facies together. Such

considerations are embedded in the program.

Note that to determine the variogram of continuous variables, the input data

needs to be in normal score units since they will be used in simulation. In general, it

is strongly recommended to fix the nugget effect to zero and consider two structures.

It is very common to observe variograms with such variograms of different ranges
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Figure 4.7: Flowchart of the stochastic regridding process.

and structures. Considering only one structure may compromise the fit for the short

scale lags, which is critical for the correct short scale variability. Local variography

determination is placed within the process, however, checking for the variogram

outside the regridding process is always recommended.

The simulation is implemented on the new grid specification based on the dimen-

sions of the region of interest and the resolution of the re-simulation. The parameters

for simulating the regridded realizations are selected automatically although some

checking is warranted. The number of facies, the facies codes, and their proportions

are all extracted from the simulated values at the region of interest. The maximum

search radii could be reliably kept to 4 times the original coarse grid size. Through-

out the regridding process, strong conditioning from the coarse scale model permits

this screening approach. Regardless of the variogram range, the closer grid nodes

will get the main influence and more distant data will receive much smaller weights

or even negative weights. In the presence of secondary variables, collocated cokrig-

ing could be implemented. The correlation coefficient of the primary and secondary

variables is evaluated by the program for the collocated simulation.

Sequential Gaussian Simulation (SGS) is considered to stochastically regrid con-

tinuous variable at the area of interest. In SGS, the lower and upper tails of each

variable distribution are required to be known. The maximum and minimum data
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associated with every variable could be used in simulation. Of course, there is a

small probability of even lower or greater values, but the dense conditioning due to

the coarsely gridded model reduces the impact of this decision. The separate realiza-

tions of variables corresponding to different facies are then merged to fill the entire

domain. The final merged models at this point are the ones which will be transferred

to the specific directory of high resolution realizations. Figure 4.7 summarizes the

stochastic regridding workflow which is considered in the process of automation.

Example

A data file contains 40 realizations with 100 grid nodes in the X direction, 130 grid

nodes in the Y direction, and 1 in the Z direction. The cell size is 24.0 m by 24.0 m

in the horizontal plane and 1.0 m in the vertical direction. The regridding is applied

on the area of interest which is at (20, 20) of the original domain with the rotation

angle of 10° and 240 m along the X direction and 480 m along the Y direction. The

regridding process generates the models with 24×24 times higher resolution than

that of the coarse resolution model (i.e. cell grid size has reduced from 24.0 m to

1.0 m).

The simulation in the regridding process exploits the spatial variability by gen-

erating multiple realizations of facies conditioned to the coarse resolution facies and

the indicator variograms. The variograms for all three categories are modeled with

two spherical structures and zero nugget. Figure 4.8 shows two realizations that are

the result of regridding process.

The amount of variability in the simulated high resolution realizations condi-

tioned to one coarse resolution model depends on the additional resolution to the

coarse resolution model and variogram model which impose the spatial continuity.

Applying the stochastic regridding conditioned to multiple coarse resolution real-

izations, and subsequently simulating high resolution realizations for every coarse

resolution model result in generation of a large number of high resolution realiza-

tions characterizing the local spatial distribution. This large number of realizations

is later considered to characterize the reservoir uncertainty and improve decision

making regarding well placement and recovery evaluation.

Figure 4.9 shows high resolution realizations conditioned to a number of real-

izations from a set of simulated coarse resolution models. It can be observed that

when the extracted area of interest is small relative to the size of the entire domain
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Figure 4.8: Regridded realizations of facies for the region of interest with the specifications
mentioned in the Example section.

(i.e. less than one third of the entire domain), the local variogram is more direc-

tionally anisotropic which results in more variation among re-simulated realizations.

However, when the extracted area of interest is relatively large (i.e. more than half

the entire domain), the local variogram resembles the global variogram very closely.

This can also be seen in Figure 4.10 where two regridded realizations conditioned

to two different coarse resolution realizations have very similar spatial distributions

although the variogram has been determined locally.

4.2.2 Analysis of Variance for Realizations

A large number of realizations could be generated to reproduce the local data and

geological features yet present different possible spatial distributions. The realiza-

tions typically consider relatively widely spaced grid nodes. So far, the proposed

stochastic approach to generate high resolution realizations over a region of interest

is discussed. This is achieved by applying the regridding scheme which has been

automated, implemented and discussed in detail.

This section discusses the variability between realizations utilizing a transfer

function for performance quantification of multiple but equiprobable realizations.

CHV is a highly correlated metric to some recovery performance parameters (espe-

cially in terms of SAGD recovery); such as cumulative oil production rate, and/or
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Figure 4.9: Illustration of realizations at high resolution extracted from 100 realizations at
coarse grid size. Local variography and strong conditioning result in different spatial distribution.

CSOR (Fenik et al., 2009a). The CHV metric measures the connectivity considering

net reservoir distribution with a local recovery window around the SAGD injector

and producer well pairs. Here, the net reservoir refers to high permeability facies

such as sand and/or SIHS (see the discussion on McMurray facies associations in

subsection 1.1.3). For this example, the CHV is determined considering the recov-
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Figure 4.10: Illustration of two resulting realizations of re-simulation with resolution of 12
times higher. Since the area of interest is not much smaller than the entire domain, the local
variogram does not change direction too quickly unlike the realizations in Figure4.9.

ery window around a hypothetical well pair near the middle of the region of interest

in which the regridding process has been applied. The variability in CHV mea-

surements represents the spatial variability explained by the regridded realizations.

An LxM matrix with entries of CHV values, represents the spatial variability of

regridded realizations both globally (column-wise) and locally (row-wise). The vari-

ability column-wise depends on the spatial variability of the domain and ergodic

fluctuations.

Here, in the regridding process, L realizations, simulated at coarse resolution

grid cell are selected and regridded. For every coarse resolution realization, M

realizations are simulated to model the spatial distribution at high resolution. The

M regridded realizations corresponding to every coarse resolution realization honor

the same dense conditioning data while addressing uncertainty associated with local

variability. This confirms that re-simulated realizations at finer grid cells originating

from different L realizations would represent sufficient variability despite the strong

conditioning. Nevertheless, given the small area, these local fluctuations reasonably

represent the local uncertainty.

Considering M columns of regridded realizations conditioned to L rows of coarse

resolution realization, every coarse resolution realization determines the spatial dis-
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Figure 4.11: Illustration of dispersion of CHV values along the columns (top) and rows (bot-
tom). Realizations along the columns replicate the ergodicity of simulation while the realizations
along the rows replicate the features of deposit of the corresponding coarse scale realizations.

tribution and set the main features at its corresponding row (M realizations). In

other words, realizations at every column, L, model global spatial distribution while

the realizations row-wise display local variability. For example, if the 10th coarse

resolution realization (l = 10) has high permeability in the area of interest, the high

permeability features will be replicated along the rows when regridding is carried

out. As can be observed from the top plot in Figure 4.11, the variability between

the columns are very similar which is the result of ergodicity. The bottom plot in

Figure 4.11 illustrates the variability within and among the rows. As expected, the

variability shown is different for every row as it represents the local variability and
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Figure 4.12: The boxplot illustrates the ranked realization based on locally re-simulated CHV
values (see Figure 4.11).

features of deposit represented by its corresponding coarse resolution realization.

In the example shown in Figure 4.11, 50 realizations containing three facies

(L = 50) are considered at coarse resolution with grid specifications of 100×100×2

and cell size of 24 m in X-Y plane and 1 m in vertical direction. The area of interest

that should be extracted is 40 m in X and 20 m in the Y direction, with a rotation

angle of 10° clockwise from the x-axis and the length of 720 m along the x-axis and

120 m along the y-axis. The length of the extracted area of 30 and 50 in X and

Y respectively. The re-simulation is applied to the area of interest to regrid the

realization to 12 times higher resolution (new cell size would be 2 m) in 50 new real-

izations (M =50). For CHV determination, a hypothetical well-pair is horizontally

placed at the middle of regridded realization; the local window of recovery around

the well-pair is almost the entire area in the regridded realization. Figure 4.11

show the variability in CHV measurements when regridded realizations are locally

conditioned. The variability shown through the re-simulation of coarse resolution

realizations can be utilized in further analysis such as ranking for post-processing

purposes. Figure 4.12 illustrates the ranked realizations based on the CHV values

determined for high resolution re-simulated realizations using the regridding scheme.

The following section shows a case study comparing the stochastic regridding scheme

proposed in this chapter with the conventional approach of nearest neighbor.
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Figure 4.13: Illustration of an arbitrary slice extracted from coarse resolution model to be
considered for regridding process.

4.3 Case Study

The main purpose of this section is to demonstrate how the regridding approach

affects the evaluation of the flow within the region of interest. After generating

high resolution models using stochastic regridding and nearest neighbor, the per-

formance of the regridded models are evaluated in terms of flow by calculating the

vertical permeability which is an essential factor in recovery performance in SAGD

productions (Deutsch, 2010).

The available model for this study is the P50 coarse resolution realization as part

of a model of the middle McMurray Formation. The size of the model including

the null part is 8.46 km East, 11.64 km North, and 55.5 m vertically in the form of

423×582×111 grid cells with cell size of 20 m × 20 m × 0.5 m. The reservoir contains

six different facies: sand, breccia, sand-319, SIHS, mixed IHS, MIHS. Typically, IHS

facies containing less than 30% shale is considered recoverable, and MIHS and mud

are expected to be less permeable in terms of flow, as also discussed in 1.1.3. In this

case study, these two facies are considered as the non-net reservoir in the model.

Figure 4.13 shows a slice of the region of interest which has been extracted with

a rotation angle of 20° clockwise from the x-axis. The origin of the extracted part

is selected to be (30, 40) grid cells from the origin on X-Y plane of the coarse
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Figure 4.14: Illustration of two arbitrary slices from regridding an area of interest of the case
study model. The maps at the top are generated models using the automated stochastic regrid-
ding and the ones at the bottoms are generated models using nearest neighbor interpolation.

resolution model. The extracted region is 1600 m long in X direction, 3200 m long

in Y direction, and 10 m long in Z direction. This region contains about 60% of less

permeable facies, with low permeability values. In this case study, facies have been

modeled to construct the high resolution models at 10 times of the original scale.
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Therefore, the regridded model is built at scale of 2 m × 2 m × 0.5 m, relative to

the cell size of 20 m × 20 m × 0.5 m of the coarse scale model. The regridding

is applied to the horizontal plane since the model has high resolution in vertical

direction because of the excessive data availability from the well log data, which

is almost always the case in practice. Two slices of the simulated high resolution

models from the case study are shown in Figure 4.14. The surface grid of the top

are generated using automatic stochastic regridding approach, and the surface grids

of the bottom are the results of nearest neighbor interpolation.
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Figure 4.15: Scatter plot of effective vertical permeability of stochastic regridding approach
versus nearest neighbor approach.

To compare the high resolution realizations resulting from stochastic regridding

proposed in this chapter, and the conventional approach of nearest neighbor inter-

polation, flow performances could be considered. This is in addition to the visual

evaluation of the bulky edges at the facies boundaries and the generation of unre-

alistic continuity that result from nearest neighbor interpolation. The distribution

of facies in the region of study influences flow in the volume. Such unrealistic con-

tinuity especially in terms of non-net reservoir or impermeable rock types could

adversely affect the evaluation of flow performance. The nearest neighbor approach

could create blockage to the flow because of the exaggeration of continuity in lateral

direction that could make it difficult for the flow to find its way up; the evaluated
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flow would be less realistic and underestimated. The implementation of stochas-

tic regridding introduces the required variability and realistic continuity: The flow

paths created this way are more realistic and reliable for decision making.

The flow performance is evaluated in terms of vertical permeability (Kv) because

of its role in the recovery performance of SAGD (Deutsch, 2010). Kv is highly

influenced by the flow path and the distribution of non-net reservoir. A pressure

solver is utilized to calculate Kv for the upscaled grid blocks at the region of interest.

Figure 4.15 compares the performance of high resolution models by the scatterplots

of Kv for the upscaled blocks of stochastic approach versus those of nearest neighbor

approach. Kv is changing from 0 to 1500 mD as shown in the scatterplot. The

45° line is also shown to ease the comparison. For many blocks of low or medium

Kv from nearest neighbor approach, there are high values of Kv from regridding

approach. Figure 4.16 isolates (a) medium Kv blocks of nearest neighbor approach

and the corresponding Kv for stochastic approach, and (b) the Kv values for upscaled

blocks of regridding approach with their corresponding Kv from nearest neighbor

approach. As can be seen, for the moderate values of Kv for nearest neighbor

approach which is changing from 130 mD to 650 mD, the corresponding stochastic

regridding blocks have Kv values changing up to 1400 mD and for most blocks the

Kv for regridding block is larger. However for case (b) the corresponding nearest

neighbor blocks of moderate Kv are smaller than that of regridding approach. The

continuity of the impermeable facies seems to be larger in terms of nearest neighbor

which results in poor vertical permeability for many blocks relative to stochastic

approach.

The regridding is not a downscaling problem, but an increase in resolution and

small scale information. New information is required to be added to the model in

order to represent smaller scale variability compared to the a priori model. The

conventional method of nearest neighbor does not add any new information when

representing smaller scale. It only replicates the old information representing the

coarse resolution model. Although nearest neighbor is an easy technique but it is

not the solution to the recovery of small scale information. However, the stochastic

regridding approach imposes new information to the finer scale grid cells which

describes the small scale variability based on local variography and coarse resolution

data. Therefore, it is reasonable to conclude that for the specified region (e.g. SAGD

local recovery region) of the case study, the continuity of the small scale variability

87



100 200 300 400 500 600 700
0

200

400

600

800

1000

1200

1400

1600
meanKzNN 314.0402  meanKzRG 397.9811

Kv NN, mD

K
v R

eg
rid

, m
D

0 100 200 300 400 500 600 700 800 900 1000
100

200

300

400

500

600

700
meanKzNN 282.8777  meanKzRG 333.0086

Kv NN, mD

K
v R

eg
rid

, m
D

Figure 4.16: The Kv performance is compared for two approaches of nearest neighbor and
stochastic regridding. For the moderate Kv of nearest neighbor changing from 130 to 650 mD,
the corresponding stochastic regridded blocks are changing from 40 to 1500 mD. For moderate
Kv values of stochastic regridding approach, the corresponding nearest neighbor Kv results are
lower. In other words, the nearest neighbor interpolation is overestimating the continuity of
impermeable facies in this case.

is overestimated laterally for the case of nearest neighbor approach compared to

stochastic regridding.

88



4.4 Chapter Summary

A workflow has been developed to automatically regrid portions of coarse resolution

realizations to higher resolutions. The proposed process is an automatic stochastic

regridding approach based on simulation. The simulation is conditioned to the ini-

tial coarse resolution model. The value of stochastic regridding is discussed through

a comparison to the nearest neighbor interpolation that is commonly implemented

in most petroleum software packages. It is shown that the nearest neighbor interpo-

lation is not the best approach when small scale variability is high. The advantage of

stochastic approach is in the improvement in the realistic spatial variability features

of small scale geologic heterogeneity. The importance of building high resolution

models are discussed for a case study in the McMurray formation, through the eval-

uation of vertical permeability. An advantage of the stochastic regridding approach

over the nearest neighbor technique can be observed in vertical permeability that is

underestimated in the latter case. Moreover, the stochastic approach results in a set

of realizations that characterizes a more realistic variability through a response dis-

tribution while the nearest neighbor approach is deterministic and can only generate

one model.

Overall, stochastic regridding is a better alternative because it introduces new

information in the new fine scale grid cells thus, it is more realistic; the realistic

variability in the stochastic regridding approach provides improved characterization

of flow parameters. The evaluation of Kv for both cases of stochastic regridding

and nearest neighbor in case study confirms that realistic distribution of reservoir

at finer scale could make a difference in understanding the flow behavior around the

well.
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Chapter 5

MPS Aspects of Model
Resolution Enhancement

Current MPS implementations generate geostatistical models at the scale of the

training image; there is an assumption that the categories are exclusive at smaller

scales. This is a potential limitation that is discussed through “model resolution

enhancement” in this work. The goal is to generate high resolution models with

MPS to characterize the geologic features at a higher resolution than that of the

available training image. This chapter addresses model resolution enhancement in

the context of MPS by studying the scale-dependence of spatial structure in MPS

based models. The first approach investigates through the manipulation of MPS

probabilities. A number of challenges in characterizing smaller scale variability

using high-order statistics are documented. The chapter concludes by advocating

the direct rescaling of the training image to generate models at higher resolution.

5.1 Introduction

In MPS, the relationship between categories at different locations is provided through

high-order statistics inferred from a training image that represents the type of struc-

tural characteristics that are expected in the geological setting of the deposit. The

training image must be representative of the geology under study in terms of its

complexity and scale. As discussed in the previous chapter, numerical models at

higher resolution are often required as the study progresses; precise assessment of

connectivity for instance may warrant models at higher resolution (Larue and Hov-

adik, 2006; Hovadik and Larue, 2007). A training image, however, is often available

only at a fixed scale.
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Extrapolation of spatial statistics to different scales than that of the conditioning

data has been considered in many conventional geostatistical technique. In terms

of simulation, data reconciliation at different scales is often addressed through sim-

ulation at the point scale of the data then averaging to larger scales (Frykman

and Deutsch, 1999). Variogram extrapolation from the smallest lag distance to the

nugget effect, permits specifying statistics at a higher resolution than data spacing

(Kupfersberger et al., 1998; Frykman and Deutsch, 1999) (see Figure 5.1). MPS

techniques, however, do not have this flexibility as the minimum scale at which the

deposit can be modeled is the resolution of the training image.

γ

Distance

Short-scale extrapolation

Figure 5.1: A schematic of extrapolating variogram to smaller scale, with the intention
of modeling short scale variability. The distanced red dots represent experimental variogram
values at a specific distance. The red horizontal line underneath the distance axis shows that
the extrapolation of first experimental variogram value to zero value permits the variogram
determination for distances smaller than the average data spacing.

The spatial high-order statistics in MPS simulations are captured through occur-

rences of patterns of n-point (limited to four, six and nine in this chapter) template

configurations. The number of patterns for a template configuration is KN , where

K is the number of facies and N is the number of locations. For example, five

rock types (K=5), and six locations (N = 6) will result in 15625 (= 56) possible

configurations. The possibility that all these combinations are found in a training

image is low.

Similar to the variogram that determines the variability of two-point data statis-

tics as a function of lag distance, the increase or decrease of the frequency of occur-

rence of high-order patterns also represents the variability in terms of lag distance.

Some patterns are expected to be more common at a particular scale, while some

others would appear infrequently. If one pattern occurs more, the remaining pat-

terns of the same configuration must occur less.
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Figure 5.2: Example on pattern extraction in training image in terms of lag distance. The
two patterns on the right are extracted on the map with 3 units distance lag shown in yellow
and orange.

The key concept developed here is to predict the frequency of patterns (FOP)

at smaller scales by extrapolating the FOP plot to shorter lag distances as done for

the variogram. The variations in FOP depend on the training image, the continuity,

and the scale of the structures. Patterns that appear more frequently at a zero

lag distance represent the structuredness of the training image. With the increase

of lag distance, patterns become more random. Thus, the proposed FOP plot is

expected to reveal the structuredness (as opposed to the randomness) of patterns

in the model. This is analogous to nature where the geological features are often

highly structured at small scale and become less predictable at large scale.

Figure 5.2 illustrates two examples of pattern extraction for lag distances of 3

units and two patterns that are identified according to indexing shown in Figure 5.3.

In the image depicted in Figure 5.2, 14 patterns of 3 units lag could be extracted

(= (10− 3)× (5− 3)). The patterns with high frequency represents some essential

structure of the training image. As the lag distance between points on the pattern

increases, the structure likely diminishes and patterns become more random.

5.1.1 Quantification of Structuredness/Randomness

The frequency or proportion of patterns can be understood as the ratio of occurrence

of a specific pattern to the total number of patterns of the same configuration. This

ratio depends on the global proportion of facies (categories); the continuity and

spatial structure of the model interacts with the global proportions. For instance,

if there is more black than white, the frequency of patterns that contain more black

will be larger than those that have more white. Standardized or SFOP is defined

to present the occurrence of pattern independent of the univariate proportions of
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Figure 5.3: Template configuration for 2×2 binary patterns. Any reference to a 2×2 template
configuration in this chapter refers to this image.

2 by 2 template 2 by 3 template

3 by 3 template

Figure 5.4: Three templates of 2×2, 2×3 and 3×3 are applied for FOP determinations.

categories. The ratio is scaled by
∏

Pi, where i indicates a location in the pattern,

varying between 1 and N , and P represents the global proportion of the specific

category. This product can be redefined as the proportion of a specific pattern

if the image was random. The inverse of
∏

Pi could also be interpreted as the

maximum occurrence of a particular pattern since the value 1 in the numerator

could indicate the case that a pattern has occurred 100% in the map. Therefore, it

is reasonable to redefine the independent FOP as a factor of its maximum possible

occurrence. If Prp stands for proportion and rnd for random, the following describes

the presented logic in the so called SFOP definition:

FOP = Prppattern,

Prprnd =
∏

Pi, i ∈ locations

FOPmax = 1/Prprnd

SFOP = FOP× FOPmax. (5.1)
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Table 5.1: Frequency of occurrence for binary pattern in 2×2 configuration for a map consists
of 60% black and 40% white.

pattern Prprnd Total FOP

1 0.1296 0.1296

2–5 0.0864 0.3456

6–11 0.0576 0.3456

12–15 0.0384 0.1536

16 0.0256 0.0256

Prprnd for every pattern converges to 1/KN if the global proportions are equal for

all facies and the map is random. The lower limit of SFOP is 0 which occurs when

the frequency of a specific pattern is 0, and the upper limit is FOPmax, when the

frequency of a specific pattern is 1.

An example is shown to demonstrate how global proportions of categories di-

rectly influence the probability of occurrence of specific patterns. Figure 5.5 illus-

trates the probability of occurrence, FOPmax, for all 16 patterns in 5 groups for

the binary template of 2×2 configuration for a noisy map consisting 60% black and

40% white. The 16 patterns are grouped into 5 categories based on the number

of locations devoted to each of the binary facies; see Table 5.1. The grouping is

justified as the probability of every pattern is evaluated based on facies proportions

(Pb and Pw); neighboring is not considered. For the considered map, the patterns

2, 3, 4 and 5 in Figure 5.3 (3 blacks and 1 white) have the maximum occurrence of

(0.63× 0.41 = 0.0864) which is greater than the FOPmax of the same patterns if the

global proportions for black and white were 50/50 (=0.0625), as expected. It can

also be observed from Table 5.1, that the chances for patterns containing 1 black

and three white is less than half the probability of occurrence for patterns with 3

black and 1 white, although the global proportion of black is only 1.5 times that of

white. This confirms that the global proportions impact the occurrence of patterns.

5.1.2 Odds Ratios for FOP Evaluations

Odds ratios are another representation of association. The interpretation of proba-

bilities of events relative to other events in the form of odds ratios are quite popular

in statistics and medical literature. Odds ratios are mainly used when the study
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Figure 5.5: Illustration of probability of occurrence of patterns in binary 2×2 configuration in
5 groups of Table 5.1. The curves of blue, green, orange, cyan and purple represent the indexed
patterns indicated in every row in Table 5.1, respectively. Assuming pattern 1 and 16 to be
the ordered ones and the rest to be non-ordered, the maximum of non-ordered would be 0.875
shown as dashed blue line. Similarly, considering patterns 8 and 9 to be the least structured as
opposed to the rest, the maximum of these two occurring would not go more than 0.125 shown
in dashed red line.

is designed in the form of case-control. To analyze the frequency of patterns inde-

pendent of the global proportions of category, the model with random occurrence of

patterns with same proportions could be selected as the control case (Grimes and

Schulz, 2008). The odds of occurrence of a specific pattern relative to its associated

control model could be used to discuss structuredness in MPS models. Therefore,

the Odds-FOP is the ratio describing the odds that pattern n occurs relative to the

rest of the patterns in the template, which is the probability of the occurrence of

pattern n to the probability of occurrence of all other patterns. For example, for a

total number of templates in a map (M), and m number of occurrence for pattern n,

the odds of pattern n is evaluated as the proportion of m/(M −m). In other words,

Odds-FOP explains the probability of pattern n occurs to the probability that it

does not occur (Bland and Altman, 2000). Also, the odds of occurrence of every

pattern in a model of study relative to its occurrence in its corresponding random

model (baseline model) could be expressed in the odds ratio:

odds FOP = FOP/(1− FOP),

odds Prprnd = Prprnd/(1− Prprnd)

odds ratio = odds Prp/odds Prprnd,

odds ratio =
SFOP(FOPmax − SFOP)

FOPmax − SFOP
(5.2)
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Figure 5.6: A binary training image is shown on the top-left representing a random map with
equal proportions of black and white. This leads to equal FOP of 1/16 for all 2×2 patterns.
The plots for odds ratio (=1) and log odds (=0) have been represented. The order of structure
is very small value at all lag distances.

This ratio has a lower bound of 0 indicating no occurrence of a specific pattern and

has no upper bound. For 100% FOP, the odds ratio is undefined since SFOP reaches

FOPmax. Also, The odds ratio is 1 when FOP is equivalent to Prprnd. Thus, the

value 1 for odds ratio could be expresses as the case of independency.

In two-point statistics, the assumption of stationarity provides a standardization

of the variogram. The sill is the maximum data variance for a stationary model. A

similar concept could be applied to the multiple-point (MP) statistics. As discussed

above, 1 is the reference value for the random case. Thus, in the context of occur-

rence of patterns, the SFOP or odds ratio of every pattern converges to a value of 1

at a very large lag distance, since the model commonly loses its structure when the

lag distances increase (see Figure 5.6). Therefore, it is reasonable to interpret any

deviation from the baseline (=1) to be an indication of some form of continuity or

structuredness as opposed to randomness, as defined below.
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A relation that represents structuredness in MPS, “Order of Structure”, is in-

troduced at this point. The order of structure is the result of adding up absolute

values of all deviations from the reference value of 1 at every lag distance. In the

random case, odds-ratio for patterns are very close to 1. This summarizes the FOP

behavior for all patterns in a covariance type plot which is more illustrative than

following KN (e.g. 16) lines on one graph.

Order of Structure ≡
∑KN

k=1 | odds ratio− 1 |
KN

. (5.3)

Examples

Six binary maps of different structure and continuity are considered to examine

and understand the FOP introduced in this section (see Figure 5.7). The maps are

roughly ordered from the most structured to least. The behavior of 16 patterns in

Figure 5.3 are studied as a function of lag distance. The 2×3 and 3×3 configurations

are also considered in this section, but the results are only documented in summary

to avoid plotting a very large number of curves on one graph (i.e. 26=64, or 29=512).

Figure 5.8 represents the FOP of all 16 patterns as a function of lag distance ranging

from 0 to 150. Figure 5.9 represents the odds proportions in the standard mode

defined in Equation (5.1). For the six images, two patterns of 1 and 16 have

their odds proportions decreasing as the lag distance increases. These two patterns

represent the structuredness in the maps. For larger lag distances, all 16 patterns

appear to converge at some point. The natural logarithm of odds ratio are more

interpretable as discussed above. The logarithm of odds ratio is shown in Figure 5.10.

The logarithm is often used to exaggerate the values larger than the reference value.

As can be seen, the logarithm of patterns is between -4 and 4 where 0 is the reference

value. The values are constrained by a maximum of 4 and minimum of -4.

An interesting observation is that the two patterns of 1 and 16 switch position in

Figures 5.9 and 5.10 compared to Figure 5.8. The one having the maximum odds for

FOP has its maximum occurrence because of the larger proportion of corresponding

category. Also, the first map with the black circle has the most structuredness; some

patterns have zero probabilities throughout the range of lag distance. A few patterns

have very small occurrences and start at later lags. The same is true for the second

image. As can be seen in Figure 5.10, the odds ratio of frequency of patterns 8 and

9 is very small until lag distance of about 40. Figure 5.11 illustrates the order of
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Figure 5.7: The maps are listed from left to right and up to bottom from 1 to 6 (ima,
e,d,b,a,c). The results and analysis on every training image have listed in the same order in the
following figures.

structure for patterns of 2×2 configuration. At 0 lag distance, the deviation from 1

is at its maximum and the order of structure drops as the lag distance increases. The

minimum value for order of structure is 0 at very large lag distances and represents

randomness in the map. A variogram plot represents the nugget effect, variogram

range and how the variability increases with the lag distance. Similarly, the order

of structure can point out similar concepts in multiple-point data interactions. The

structure factor starts at a value greater than 0 at zero lag distance and falls as

the lag distance increases. The slope of the decay represents how quickly the order

of structure is decreasing within the model A zero structure factor suggests noise.

For example, in Figure 5.11, the structure factor for the 4th map stabilizes at some
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Figure 5.8: The occurrence of all 16 patterns of 2×2 configuration are plotted as a function
of lag distance. The dominant patterns of 1 and 16 at zero lag distances are shown in blue and
violet; these two patterns are the most structured as they are at their maximum at lag 0. The
other three lines represent group patterns of (1) one white, three black (2) two white, two black
(3) one black, three whites. These 14 patterns represent non-structured (noise) in the map. The
proportion increase with the lag distance as the continuity of the structure discontinues with the
continuity of spatial structure.

point and falls very slowly with lag distance. This indicates that the corresponding

map has large scale structure. The steep fall of the structure factor suggests small

scale structure. For example, the maximum structure factor at zero lag distance

for the first tree is at least four times of that of the second tree. This could be the

result of short scale features repeating over the model.
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Figure 5.9: The standardize frequency of every pattern are shown for the six images. SFOP
has been determined as shown in (5.1). The two patterns of maximum occurrence or the more
structured ones which are shown in blue and green revert position compares to odds proportions
of patterns plot. The standardization of the odds proportions account for the available data and
probability of occurrence.

Figure 5.12 illustrates the order of structure for the same templates for all 6

training images in one plot. The figure at the top is for 2×2 patterns, the one in

the middle illustrates the order of structure for 2×3 configurations and finally the

one at the bottom corresponds to 3×3 templates. It can be observed that the more

structured images start at higher order of structure and decline slowly. Therefore,

higher data interactions deal with larger deviation from the baseline. The maximum
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Figure 5.10: The log of odds ratio for 16 patterns of 2×2 configuration are shown for the six
images. The lag distance starts at 0 and goes for a range of 150. All log ratios are constrained
to the range of -4 and 4. Occurrence of real zero is represented by -∞ in the plot and any log
odds less than -4 or greater than 4 would be represented as the minimum of -4 or maximum of
4.

also increases as the number of locations in the template increases. However, it

seems that the increase is stable for all the images. For example, the red curve in

three plots of Figure 5.12 belongs to the third image representing a tree which has

the largest order of structure at zero lag in all three pattern extraction. This is

not shown for template configuration of 3×3 as the maximum value is very large.

Another observation is that the order of structure for the template configuration of
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Figure 5.11: An analogy to the standardized variogram plot that represents the spatial
continuity within 0 and 1. The FOP ratio in y-axis are determined by calculating the ratio of
non-ordered structure as a function of all patterns FOP. The jump from zero is analogous to
nugget effect in variogram plot. The first two maps are the least noisy and have nugget effect
of almost zero value.

3×3 is not as smooth. The overall behavior of the order of structure however is very

similar in all three pattern configurations; it starts at higher values and falls slowly

as the lag distance increases.

Figure 5.13 illustrates the estimation for FOP values at scale 0 based on the

information regarding FOP at scales 1 and 2. This is analogous to extrapolation at

smaller scales with variograms. This estimation is calculated from two points, that
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Figure 5.12: The figure at the top represents the summary of order of structure for templates
of 2×2 which includes 16 patterns for the six images. The second figure similarly represents the
summary of order of structure for templates of 2×3 that includes 64 patterns. And finally, the
last figure represents the summary of order of structure for 512 patterns of 3×3 configurations.
All configurations contains only two categories.

is why an FOP curve with linear behavior at smaller scale predict more precisely. As

can be seen in the corresponding figure, characterization of occurrence of patterns

103



−6 −4 −2 0 2 4
−6

−5

−4

−3

−2

−1

0

1

2

3

4

log−odds estimate

lo
g−

od
ds

 a
ct

ua
l

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

log−odds estimate

lo
g−

od
ds

 a
ct

ua
l

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

log−odds estimate

lo
g−

od
ds

 a
ct

ua
l

−6 −4 −2 0 2 4
−6

−5

−4

−3

−2

−1

0

1

2

3

4

log−odds estimate

lo
g−

od
ds

 a
ct

ua
l

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

log−odds estimate

lo
g−

od
ds

 a
ct

ua
l

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

log−odds estimate

lo
g−

od
ds

 a
ct

ua
l

Figure 5.13: These scatter plots represent how the FOP can help with characterizing the
short scale variability. The scatter plots on the left belong to the most structured case of the
circle shown in Figure 5.7, and the scatter plots at right belong to the case that shows the
tree with lots of branches. The two scatter plots at the top represents the predicting log FOP
for 16 patterns of 2×2 configuration. The second row is 3×3 configuration and last row is
prediction for 9×9 configuration. It can be observed that the estimation becomes less precise
as the configuration scheme becomes more complicated. Similarly, when the map has more
complex structure, the estimation becomes more complicated.

at smaller scales is more accurate when the selected template is smaller in size

and the map is less spatially complex. The bottom right plot represents the FOP

predication scatter plot for 3×3 patterns at the map of the complex tree (with too

many branches) which is a relatively poor estimation.
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Figure 5.14: Illustration of the occurrence of patterns plot and the corresponding training
image. The occurrence of patterns are shown for 16 patterns of a binary 2×2 configuration as a
function of lag distance for interval of 0 to 48 m. The first row represents the original map and
its corresponding occurrence plot, the second row represents the upscaled map (block of 3×3)
and its corresponding occurrence plot, and the last row represents the upscaled map (blocks of
6×6) and its corresponding occurrence plot.

5.2 Challenges in Utilizing FOP

In this section, an exercise is designed to discuss the relationship between the train-

ing image, at different resolutions, and their respective FOP profiles. The 16 pat-105



terns of 2 × 2 binary configurations are considered. The preferential patterns are

scanned and detected for two different training images depicting petroleum reser-

voirs. The first training image is the typical channel type petroleum reservoir (Stre-

belle, 2002; Liu, 2006) that has been considered in three maps of high, medium and

low resolution. The high resolution map is identified by utilizing the original train-

ing image. The medium and low resolution maps are the result of performing facies

upscaling on the original training image in two stages. The facies are upscaled based

on assigning the most common facies (Deutsch, 2002); 3 × 3 grid cells in original

training image is translated to 1× 1 grid cell in medium resolution map, and 6× 6

grid cells in original training image is translated to 1× 1 grid cell in low resolution

map. The corresponding FOP plots are determined for lag distances changing from

1 to 48 m. The y-axis of FOP represents the occurrence of patterns in logarithmic

units. The FOP values for all 16 patterns versus the lag distances are shown in

Figure 5.14.

The frequency of every pattern in the corresponding training image is determined

as follows: (1) the training image is scanned for a specific lag distance and data is

extracted for the template configuration (i.e. 4-points template); (2) the probability

of binary facies is evaluated on the extracted data, i.e., Pw and Pb. For example,

for the classic training image shown in Figure 5.14 at the top, Pw is approximately

28% and Pb is approximately 72% (these proportions correspond to the lag 0 in

original map). Then; (3) the number of occurrence of a pattern is counted in the

scanned model; (4) finally, the FOP independent of global proportion is evaluated

as in Equation (5.1). If the scale of grid cell in original training image is assumed

to represent 1 m, then a 48 m lag distance in FOP covers about 1/5 of the domain

in the corresponding 2-D map (250 × 250). As can be seen in Figure 5.14, the

occurrences of 16 patterns somewhat converge after relatively large lag distances.

This confirms an earlier claim that the patterns with higher orderness are more

probable at smaller lag distances as opposed to the more random patterns. This

suggests the models tend to get more random at larger lag distances and therefore

the probability of occurrences for all patterns become similar (FOP converges for

16 patterns when lag distance is relatively large).

It can also be concluded that inferring information about high resolution maps

from low resolution (upscaled) maps is not trivial; the information regarding small

lag distance variability is not preserved in the upscaled process. Thus, to enhance
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the resolution of a training image, the information regarding frequency of patterns

of a coarse resolution training image would not be sufficient to characterize smaller

scale variability. Another observation is that some patterns do not appear until

certain lag distances at higher resolution. Extrapolating such patterns from large

scale information would be impossible.

For the sake of illustration, the same process is applied to another training image

that is shown in Figure 5.15. The first map (top) is the original training image of

size 256×256 and its corresponding FOP is determined for up to 50 m lag distance

(almost 1/5 of the domain). The second map (middle) is upscaled 5 times so that 5

m lag distance in its corresponding FOP translates to 1 m in high resolution map.

The last map (bottom) has 10 times less resolution than the original training image;

less continuity could be detected at the edges. The same conclusions are drawn

for this training image. Almost after 25 m of lag distance, FOP plot for the high

resolution map appears to stabilize for all 16 patterns.

The next section investigates the reproduction of FOP for the maps that their

resolution are enhanced differently at some point and upscaled to the original scale.

The high resolution maps cannot be reconstructed without making explicit assump-

tion as there is no unique relationship, in this missing region, between fine and

coarse scale.

Constructing High Resolution Models

The extrapolation of missing fine scale spatial variability information when coarse

training images are considered is discussed. The coarse resolution map (bottom)

in Figure 5.15 is considered as a reference to reconstruct the high resolution maps.

The reconstruction of a training image at higher resolution is performed using con-

ventional methods. Two high resolution maps are constructed using regridding

approach of chapter 4, in which the resolution of first map is increased 5×5 times

with zero nugget in spatial continuity and is enhanced 25 times and 40% nugget in

variography.

After generating two models at smaller scale, the frequency of pattern plots

regarding 2×2 templates are determined for lag distances changing from 1 to 50 m;

see Figure 5.16. In the second case that was reconstructed with 40% nugget, the

edges are noisy compared to the case with no nugget. As can be observed from

their corresponding FOPs (Figure 5.16), the frequency of patterns are different.
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Figure 5.15: Illustration of the occurrence of patterns plot and the corresponding training
images. The occurrence of patterns are shown for 16 patterns of a binary 2×2 configuration as
a function of lag distance for interval of 0 to 50 m. The first row represents the original map and
its corresponding occurrence plot, the second row represents the upscaled map (block of 5×5)
and its corresponding occurrence plot, and the last row represents the upscaled map (blocks of
10×10) and its corresponding occurrence plot.

The high resolution maps are then upscaled to the same resolution as the reference

map. The upscaled maps and corresponding frequency of pattern plots are shown in

Figure 5.17. The first row of the figure corresponds to upscaled model of the case (1)

where no nugget considered in reconstruction of the training image, and the second
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Figure 5.16: Illustration of reconstructed high resolution models and the corresponding
occurrence of patterns plot. The first one represents case (1) when no nugget is assumed and
the second one is the representation of case (2) when 40% nugget is considered in the simulation
process. Note that the reconstruction relies on strong conditioning of coarse resolution training
image depicted in previous section. The occurrence of patterns plot is shown for 16 templates
of 2×2 for up to 50 m lag distance.

row is the upscaled model of case (2) where 40% nugget effect was considered in

the resolution enhancement process. Although the upscaling map of case (2) is not

visually appealing, the FOP of both cases seem to be very similar. This is despite

of the fact that both high resolution models have different degrees of smoothness on

the edges of facies transition. The occurrence of pattern plots for the cases of high

resolution with different nugget is more different than that of the corresponding

upscaled maps.

The results at this section support the point was made earlier; the information

from coarser resolution maps is insufficient to identify the high resolution maps. In

other words, reconstruction of high resolution maps using FOP of coarser grid maps

is not unique.

The next section discusses the proposed solution in which the resolution of the

109



0 10 20 30 40 50
0

1

2

3

4

5

6

7

lag distance

lo
g(

oc
cu

re
nc

e)

0 10 20 30 40 50
0

1

2

3

4

5

6

7

lag distance

lo
g(

oc
cu

re
nc

e)

Figure 5.17: Illustration of upscaled models for Figure 5.16 and the corresponding occurrence
of patterns plots. The first one represents upscaled map of case (1) when no nugget is assumed
and the second one represents upscaled map of case (2) when 40% nugget is considered in the
simulation process. Note that the reconstruction relies on strong conditioning of coarse resolution
training image depicted in previous section. The transition occurrence plots are determined for
16 templates of 2×2 for up to 50 m lag distance. Note that regardless of their high resolution
training images, the corresponding upscaled occurrence of patterns are very similar.

training image is increased directly.

5.3 High Resolution Training Image

The generation of high resolution training images is studied for specific types of de-

posits with smooth features like channels. Techniques like those in image processing

are widely available. Such techniques could be similarly implemented on a training

image in order to enhance its resolution. Most image resolution enhancement tech-

niques suffer from undesired smoothness at high frequency regions of the image. The

high frequency regions typically attribute to the edges that are essential to people’s

visual perception. There is a different aspect to edges in geological modeling; fea-

tures of natural phenomena have rounded and smooth edges. For example, specific
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Figure 5.18: The left image is a binary channel depiction of size 500×500 with 100 sampled
for conditioning realizations. The right map is a training image of 256×256 and cell size of 8
containing 5 categories of Crevasse like reservoir.

types of fluvial channels, including straight, meandering, and anastomosis present

smooth features due to erosion during deposition processes (Nichols, 2009). The

smoothing aspect of interpolation techniques could therefore come into advantage

in the process of enhancing the resolution of the training image.

Of the most well-known and simplest interpolation techniques are nearest neigh-

bor, bilinear, bicubic and sinc interpolations (bi refers to 2-D image). As discussed

in previous chapter, nearest neighbor interpolation simply replicates the pixels to

estimate the new grid points which result in blocky edges. Bilinear method employs

a 2×2 (4 pixels) neighborhood pixels and average them to define new grid cells.

Bicubic interpolation employs 4×4 (16 pixels) surrounding pixels and averages for

the new location. The results of averaging methods are typically improved when

some form of weighting is considered. The interpolation techniques are discussed

considering 2 dimensional maps. The sinc method applies interpolation in the fre-

quency domain. Utilizing more surrounding pixels at the stage of averaging could

lead to a better quality high resolution image. The spline interpolation techniques

tend to preserve the low frequency content of image and lose the high frequency

content (Hou and Andrews, 1978). This could result in artifacts in regions where

the map contains more detailed information. Recently, research in image resolution

enhancement is directed towards the preservation of high frequency content of data.

These methods include nonlinear techniques, interpolation techniques in frequency

domain, and techniques that utilize the image geometry.

These interpolation methods along with the signed distance function kriging
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of geostatistics are applied to generate high resolution 2-D maps. Two examples

are designed to demonstrate the performance of interpolation tools generating high

resolution training images. The first one is a binary depiction of a channel which

is sampled and simulated at coarse resolution. Interpolation techniques are then

utilized to construct the high channel at the original scale from the low resolution.

In the second example, a more complex training image containing 5 categories is

considerate (see Figure 5.18). The coarse resolution maps—in both examples—are

constructed by extracting every forth pixel in both directions uniformly.

Example: Binary Training Image

A binary example illustrates the interpolation process to enhance the resolution of

the available training image. An original channel depiction of 500×500 shown on

the left side of Figure 5.18 is considered as the initial high resolution training image.

100 samples are selected randomly from the original 2-D map to be considered as

the only available data to the simulation process. The realizations are generated

utilizing stochastic simulation at 20×20 grid nodes and cell sizes of 25 m × 25 m.

This coarse scale realization is considered as the available training image at this

point. Different approaches could be taken at this stage to enhance the coarse res-

olution model to that of the original map. One is to follow geostatistical methods

and determine the distance function to be considered in the kriging process and fur-

ther in the generation of high resolution realizations. The other approaches relate

to known interpolation techniques in image processing discussed earlier as shown in

Figure 5.19). The resulting estimation at higher resolution for different techniques

could be compared visually and further through the comparison of high-order statis-

tics (i.e. FOP) with that of the original training image (see Figure 5.20).

Recall in Chapter 4, the high resolution model of area of interest is supposed

to reveal more information regarding the small scale variability that could not be

captured or preserved by the large scale model. This was achieved by applying a

stochastic process considering a local variogram.

Example: Non-binary Training Image

This example is conducted to investigate complications that arise with more cate-

gories. Dealing with more than two categories can easily make the process complex.

For the purpose of this exercise a Crevasse sinusoidal training image with 5 cat-
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Figure 5.19: The figures should be read from left to right and top to bottom: The coarse
map realization that is simulated at the coarse resolution conditioning 100 samples data of binary
channel in Figure 5.18, its resolution enhanced once using nearest neighbor interpolation (map
in top right), using bilinear interpolation (map in middle left), using bicubic interpolation (map
in middle right), using sinc function interpolation (map in bottom right), and using distance
function kriging (map in bottom left).

egories is considered. An X-Y slice of the training image, shown in right side of

Figure 5.18), is extracted and considered as the training image for this exercise. It

can be visually examined that presence of more than two categories in the reservoir

results in more abrupt changes from one category to another which makes it harder

for the features to be captured.

The training image in this example has 256×256 grid cells with size of 8 m × 8

m. The map is coarsen by extracting every 4 grid cells in both X and Y directions.

Notice that, conventional simulation of the sample data in this case does not result
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Figure 5.20: These scatterplots illustrate the precision in data statistics at smaller scale based
on interpolation of two known statistics at larger scale in logarithmic form of FOP. The first row
represents the scatter plot for the 2×2 configuration, second row for 2×3 configuration and last
row is 3×3 configuration. The first column represents the relationship of FOP for zero lag of
coarse map compared to its associated lag in the original map. The second column represents
the relationship of FOP for lag zero of nearest neighbor map compared to its associated lag in
the original map. And finally, the third column represents the relationship of FOP for lag zero of
distance function kriging map compared to its associated lag in the original map Extrapolation
of FOP values to smaller scale for generated high resolution map using nearest neighbor has less
accuracy compared to the generated high resolution map using distance function kriging.

in any realistic modeling of the reservoir. The similar interpolation methods as

previous example are applied to the coarsen map of 64×64 with cell size of 32 m ×

32 m.

5.3.1 Discussion on Methods’ Performances

The resulting high resolution maps are shown for nearest neighbor, bilinear, bicubic,

sinc and distance function kriging in Figure 5.21. Most interpolation algorithms lead

to similar results for the binary image. Whereas, in the second example, the results

are more different. It is important at this point to limit the interpolation technique

to only one, so that it could be considered regularly for further study. The visual

goodness and absence of artifacts are important criteria to consider in the selection
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Figure 5.21: Resolution enhancement is applied through interpolation techniques on the
Crevasse training image. The plots represent the coarsen map of, nearest neighbor interpolation,
bilinear interpolation, bicubic interpolation, sinc function, and distance function kriging from left
to right and top to bottom. For three cases of bilinear, bicubic and sinc function, the transition
between categories should happen slowly. The green lines in between two facies of orange and
dark blue is evident to such an observation. This is not the case for nearest neighbor interpolation
and distance function kriging.

of technique. One other criterion is the robustness; a preferred algorithm should be

widely applicable to different images. As can be observed from Figure 5.21 that the

spline like interpolations are blurry, meaning that transitions happen slowly. For

example, the green lines in between the dark blue and orange at the bottom of the

map are blurred. This is not the case for the nearest neighbor and distance function

kriging. Nearest neighbor, however, leads to blocky edges. Among these techniques,

115



2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Figure 5.22: The coarse resolution map at the top left represents the training image which is
considered to be accessible to this example. The resolution of training image is enhanced to the
resolution of interest shown in maps (1) original (right top), (2) using DF kriging interpolation
(bottom left), and (3) using nearest neighbor interpolation (bottom right).

distance function kriging interpolation seems to be a good candidate because of

its simplicity, stability and visually appealing results. Another advantage of this

technique is its flexibility to be manipulated accordingly. For instance, one can

specify the variogram specification at the process of kriging, or the distance function

could be modified through dilation/erosion to preserve some geological continuity

and preferences of its user (see Chapter 6).

The constructed high resolution training image is considered to generate high

resolution realizations in the following discussion.

5.3.2 Simulation with Resolution-Enhanced Training Image

This subsection conducts an exercise assuming the available training image (top left

in Figure 5.22) does not have the adequate resolution (top right in Figure 5.22).

The coarse resolution training image is constructed by extracting the cells regularly

from the channel image at 25×25 cells. As can be observed in Figure 5.22, the high

resolution image is generated using DF kriging (bottom left), and nearest neighbor

interpolation (bottom right). Each of these high resolutions images are considered
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Figure 5.23: The map at the top left is the unconditional realization that has been simulated
using MPS and the original training image. The 100 samples are selected randomly (as shown)
to condition the further simulation using high resolution training image. The map at top right
is the generated realization using MPS simulation, the conditioning data and the enhanced-
resolution training image (original one). The realization at bottom left is generated similarly but
using DF training image, and the one in the bottom right results from the smaller simulation
but enhanced-resolution training image of nearest neighbor interpolation.

Figure 5.24: The maps at the top represent the high resolution realizations, the ones in
the middle are ore proportion in upscaled map and the ones shown in the last row are the final
upscaled binary map based on cut off value of 25%. Colored edges indicate the blocks with
mixed material of ore and waste. First column refers to upscaling of first scenario, the middle is
upscaling of second scenario and the last column refers to third case.

as the training image in three scenarios to construct MPS-based conditional real-

izations.

To provide conditioning data to this exercise, an unconditional MPS-based re-

alization is generated using SNESIM program (Strebelle, 2000b) with the channel

depiction as its training image. Then, 100 samples are regularly extracted from

117



0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

12000

14000

cut off

m
ix

e
d

 m
a

te
ri
a

l

TI

DF

NN

realization

0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

12000

14000

cut o!

m
ixe

d 
m

at
er

ia
l

 

 
TI
DF
NN
realization

Figure 5.25: Curves for mixed material as a function of cut off values for the three scenarios
(upscaled 10×10). The curves are average value of the amount of mixed material for 100
realizations. The curve at top represents the generated high resolution case conditioned to 100
samples; the one at bottom is generated high resolution case conditioned to 300 samples. With
strong conditioning DF scenario performs very closely to original training image and reference
case.

this realization. This is shown in Figure 5.23 at the top right. This unconditional

realization consists of 30% channel. Having 100 samples as conditioning data, the

SNESIM considers the three high resolution training image of channel, enhance-

resolution based on DF kriging, and enhanced-resolution based on nearest neighbor

in three scenario of 1 (baseline), 2 and 3, respectively, in order to simulate 100 re-

alizations. One realization of each scenario is shown at top left, bottom left, and

bottom right in Figure 5.23. The performance of the high resolution realizations

are now examined through an upscaling problem. The upscaling cell size of 10×10

is considered as the target block size. The small scale features in the high reso-

lution realizations are transferred into block features in the upscaled maps, shown

in Figure 5.24. The block assignments of categories are based on exceeding cut off
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Figure 5.26: Boxplots for amount of mixed material of 100 realizations at every cut off value
for all three scenarios. The one at top represents the first scenario with original training image,
the one in the middle is the second scenario with enhanced-resolution training image generated
using distance function kriging, and the last illustrates the third scenario with enhanced-resolution
training image generated using nearest neighbor.

values. This is mostly due to the exclusive assignment of categories into upscaled

blocks. This proportion indicates the amount of high quality reserve present in the
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block. The performance of three scenarios is compared by measuring the fraction

of upscaled blocks that are mixed. Figure 5.25 shows the average amount of mixed

material as a function of cut off.

The amount of mixed material for 100 upscaled realizations and the three sce-

narios are summarized in Figure 5.25. The plot at the top represents the average

amount of mixed material for 100 realizations–conditioned to 100 sample–as a func-

tion of cut off. As can be seen, the curves for first and second scenarios perform

very closely and also close to a realization sample. The black curve belongs to

the realizations generated using enhanced resolution training image with nearest

neighbor interpolation. The figure at the bottom demonstrates the curve of mixed

material for three scenarios and reference case, conditioned to 300 samples. The

strong conditioning takes over in this case and curves overlap. The third scenario’s

performance is slightly poor compares to the rest. Figure 5.26 shows the boxplots

for the three scenarios in terms of variability in amount of mixed material. The

boxplots illustrate the variability for every 5% cut off values. The boxplot for sce-

nario of nearest neighbor interpolation shows relatively larger variance with slightly

larger means which indicate the overestimation. This must be due to blocky edges

that results in unrealistic transitions. However, in general, there is no significant

impact on the dispersion between the three scenarios. The main influence of using

different training images is in the mean.

5.4 Chapter Summary

The smallest scale statistics that can be extracted from a training image is at its na-

tive resolution. This makes the generation of high resolution models challenging in

the context of MPS. The frequency of patterns (FOP) for specific configurations are

utilized to determine data interactions through high-order statistics. The indepen-

dence of occurrence of patterns is defined relative to a random map with the same

global proportions of facies. The FOP is then re-expressed as the natural logarithm

of odds ratio and determined as a function of lag distance for lags changing from

0 to some large value. The FOP evaluations are then utilized to demonstrate the

challenges in generation of high resolution models. The FOP of the training image

at different scales suggest that prediction at smaller scales is not possible.

Later, the resolution of a training image is enhanced directly to account for small

scale data interactions. To reach data statistics at scales smaller than that of train-
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ing image, spatial resolution enhancement interpolation techniques are considered.

Different interpolation techniques generate data in between coarse scale grid cells

differently. Kriging signed distance function is advocated as a robust approach.
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Chapter 6

Enforcing Connectivity to
Categorical Variables

Most realizations generated by cell-based geostatistical simulation techniques present

artifacts that are unavoidable. These artifacts often contain noise or unrealistic con-

nectivity/disconnectivity of high or low quality reservoir units. In reservoir geosta-

tistical modeling, understanding the connectivity of net reservoir flow conduits and

non-net flow barriers/baffles may be essential for reservoir decision making; unrealis-

tic connectivity of conduits or barriers would lead to biased production performance

forecasting. Identifying the disparate facies units and enforcing the realistic connec-

tivity is addressed in this chapter. A robust methodology is proposed on the basis of

two mathematical morphology operations: dilation and erosion. This chapter elab-

orates on the proposed methodology in a 2-D context in the first part, and provides

details of 3-D implementations along with examples in the second part.

6.1 Introduction

Model cleaning has been considered in geostatistical model post processing in the

past few decades; see (Schnetzler, 1994; Stoyan et al., 1987; Journel and Xu, 1994;

Deutsch, 1998a). In geostatistics, most image cleaning algorithms developed to date

are focused on removing noise and smoothing facies boundaries. The problem tack-

led in this chapter, however, is beyond model cleaning; it is to enforce geological

connectivity when necessary. The term “connectivity” establishes the fundamen-

tal flow setting in the reservoir and is influential in reserve evaluation (Larue and

Hovadik, 2006; Hovadik and Larue, 2007; Larue and Hovadik, 2008).

Mathematical morphology has been widely practiced in image processing owing
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to its founders Matheron (1975) and Serra (1982, 1988). Similarly, geostatistical

post processing techniques have deployed morphological operations to clean models

and remove noise (Stoyan et al., 1987; Schnetzler, 1994). The application of such

techniques, however, were limited to binary models. More importantly, those tech-

niques did not have explicit control over the global proportions in the model which

is quite vital in reservoir assessment. This led to the work of Deutsch (1998a) in

which the model cleaning was approached through maximum a-posteriori selection

(MAPS). This technique maintains global proportions and visual realism but cannot

enforce specific continuity. Later, Pyrcz and Deutsch (2004) facilitated MAPS with

homotopic transformation to enforce realistic connectivity while cleaning the model.

This work is explicitly intended on post processing binary and non-binary mod-

els to identify unrealistic discontinuities and enforce connectivity on the basis of

dilation and erosion. The methodology is established considering two aspects of (1)

preserving the objects’s geometry and shape (to the greatest extent possible), and

(2) maintaining the original proportions. Both of these objectives are to be tackled

through the definition of ideal connection: Intuitively, the ideal connection occurs

when the objects are (a) expanded along their maximum directions of anisotropy,

and (b) eroded orthogonal to the direction of dilation.

Applying dilation and erosion in sequence is known as closing in mathematical

morphology (Haralick et al., 1987). In the definition given for ideal connection,

dilation is the main operation as it is in closing operation. The distortion that results

from dilation of the image is then taken care of by applying the erosion. Erosion

and dilation operations are directly related to the shape of the objects and are

conventionally applied by structure elements (Haralick et al., 1987). One undesired

result of using the structure element scheme is the indiscriminate distortion of all

regions in the image. This is in contrast to the purpose of merging objects in

a controlled manner. Thus, the ideal connection is proposed to achieve by (1)

identifying the disparate objects; (2) evaluating their anisotropy directions; and

(3) quantifying the minimum amount of mass added to connect the objects. The

implementation of this process is broken down into (1) dilate the targeted objects

until merged; and (2) erode the merged unit, using a fast and efficient algorithm.

For simplicity and illustrative purposes, the proposed methodology is described

in 2-D context. The development of the methodology in 2-D helps to investigate

the robustness, and recognize the control parameters before moving forward to the
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Figure 6.1: The binary map on the left represents two objects that should be unified to one
object. The second binary map on the right depicts a levee with broken pieces. The objective
of this chapter is to propose a robust method to connect such broken pieces in the model while
preserving conditions such as reservoir global proportions.

3-D implementation. Also, it is noted that the terms connectivity and continuity

are used interchangeably in this chapter, while they can have different meanings in

other contexts.

6.2 Methodology

The first step in merging objects is to expand them to the point that they touch.

This is achieved by applying dilation which results in the increase of the mass of

the objects and therefore altering the global proportions. The dilation will be kept

as “efficient” as possible; the uncontrolled growth of objects is inadmissible. The

term “efficient” implies (1) dilating only along the preferential directions; and (2)

eroding back from directions where there is no potential connection. The preferential

direction is the direction that will make the object connect to the other object of the

same category nearby. To identify the preferential direction, the potential connection

need to be first identified. The potential connection depends on several factors such

as the objects’ relative distances, sizes, and geologic expectations.

In a 2-D implementation, visual inspection helps asses the objects’ positions, di-

rections of anisotropy, sizes, and their relative distance. These parameters basically

determine how realistic it is to connect the objects. The objects’ separation influ-

ences whether or not they should be merged. For example, if the objects’ lengths

must increase by 100%, then connecting them would not be reasonable. Things

become more complicated when dealing with objects in 3-D; objects’ relative dis-

tances cannot be readily detected. Also, in 3-D models, it is difficult to determine

if a particular object is enlarged, what other object it would connect to.
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Thus, to apply dilation along the preferential direction, the anisotropy of the ob-

jects must first be identified. If the objects are grown in their direction of anisotropy,

the amount of mass added to the object is mostly along the direction of potential con-

nection. Applying Dilation utilizing a distance map is known to be a more efficient

and flexible approach (Laÿ, 1987) compared to the initial use of structure element.

The desired dilation can be attained by selecting the appropriate threshold value

on the distance map (Ragnemalm, 1992). Then, to dilate in the potential direction,

the distance map is proposed to be modified by object’s direction of anisotropy. To

determine the direction of anisotropy, parameters such as radii, azimuth, dip, and

plunge should be determined.

The two binary maps shown in Figure 6.1 will be considered to discuss the

proposed workflow and the performance of methodology. The two disconnected

objects in the map on the left are supposed to be a unified object and the six

disparate objects in the map on the right are supposed to be two parts of a levee so

two sets of three objects should be connected.

6.2.1 Dilation Approach

In the proposed dilation operation, the object’s expansion is controlled by applying

the anisotropy of the object on the distance map. The distance map is evaluated on

the binary image by calculating the Euclidean distance of the object of one type to

the boundary of the other one. After identifying the rock types, depending on the

geologic setting of the deposit, the sequence of the formation of the reservoir, and

the properties of the rock types, the process of object connection could be treated

sequentially. Thus, for every rock type, it is necessary to identify the disconnected

intervals. Also, the most important facies or objects are suggested to be processed

last, in case their connections disturb any other previous enforced connectivity.

The identification of the object is equivalent to determining its size, orientation,

and position of the object. The non-net intervals are identified by scanning through

the realization and calculating connected regions. Connected regions are defined by

face-connected voxels (Deutsch, 1998b). Each connected region of non-net interval

is defined as a separate non-net geo-object; the geo-obj program of Deutsch (1998b)

is used to identify the isolated goe-objects. After identifying the geo-objects, the

moment of inertia approach is applied, assuming that all non-net voxels have equal

mass, to determine anisotropy and orientation. In the sequence of connecting dis-
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Figure 6.2: The distance maps on the left are determined with no respect to anisotropy of
the objects. The ones on the right are calculated considering the anisotropy of the objects.

parate objects of one particular facies, the rest of the facies will be represented

by one code while the target facies is identified with another code. The distance

map for an object is evaluated from a binary model (the model of target against all

others).

Complex geological settings such as fluvial deposits that contain channel features

have different continuity in different regions. Thus, the intervals selected will also

have different orientations and distributions. To be able to deal with different direc-

tions of anisotropy, every object should be studied separately. The distance function

of the object is modified with its rotation-anisotropy matrix. This way the points

along the direction of anisotropy are represented with lower distances relative to the

other points. This approach controls the object’s expansion. Figure 6.2 illustrates

the influence of considering anisotropy of the objects on the distance map for the

two cases of objects and levee.

A dilation parameter Dp is defined to allow the expansion of the object by

introducing a threshold to the distance function of the object. Thus, the dilation

parameter could be chosen as a function of object’s size. As a result of this approach,

the object expands honoring the magnitudes of the anisotropic directions. That is

to grow faster along the direction of maximum anisotropy, and slower along the

direction of minimum anisotropy.

Note that determining the ranges of anisotropy is not straightforward. The

geo-object are approximated by a same-size ellipsoid as proposed by (Babak and
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Deutsch, 2008; Lajevardi and Deutsch, 2011; Lajevardi et al., 2015) to utilize the

ellipsoid’s relationship between principal directions and its radii for the range cal-

culations.

6.2.2 Anisotropy of the Object

To characterize the geo-object’s anisotropy, the moments of inertia tensor is consid-

ered as proposed in Hassanpour and Deutsch (2007, 2008). In this technique, the

objects’ three principal axis are evaluated by the moment of inertia, also known as

mass moment of inertia (or the angular mass of a body). Moment of inertia is the

rotational analog of mass; it relates to the distribution of the mass throughout the

body. The moment of inertia is the inertia of a rigid rotating body with respect to

its rotation:

I =

∫
r2dm

where m is the mass and r is the perpendicular distance of the point mass to the

axis of rotation.

The moment of inertia has two forms: a scalar form that is used when the axis

of rotation is known and the tensor form that summarizes all moments of inertia

for different axes of rotation. For a rigid body consisting of N point masses mi, the

moment of inertia tensor is defined as (Rana and Joag, 2001):

I =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 , with (6.1)

Ixx =

N∑
i=1

mi (yi
2 + zi

2); Ixy = Iyx = −
N∑
i=1

mi xi yi

Iyy =

N∑
i=1

mi (xi
2 + zi

2); Ixz = Izx = −
N∑
i=1

mi xi zi

Izz =
N∑
i=1

mi (xi
2 + yi

2); Iyz = Izy = −
N∑
i=1

mi yi zi

where xi, yi and zi are the distances of point i from the coordinate axes. Ixx can

be interpreted as the moment of inertia around the x-axis when the objects are

rotated around the x-axis and Ixy is the moment of inertia around the y-axis when

the objects are rotated around the x-axis. Note that the matrix I is symmetric

by definition. This means that its eigenvalues are all real, and its eigenvectors are
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Figure 6.3: Dilation is applied by calculating the distance map of each object separately;
note the objects are colored differently. The distance map of the entire model is determined by
combining the two distance maps of the two objects. The two objects connect as a result of the
growth considering a proper threshold value of -30 on the distance map. The global proportion
of the objects increases from the initial fraction of 12% to 31%.

orthogonal to one another. To determine the principal axis of the geo-object, the

coordinate system in which the moments of inertia is calculated should align with

the principal axis of the object. Therefore, the moments of inertia tensor could be

represented as a diagonal matrix in which using the eigenvalue decomposition, the

principal values are eigenvalues of the diagonal matrix and the principal directions

are its eigenvectors.
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Figure 6.4: The distance function of the two objects are calculated considering the anisotropy
of every object. The distance function of the entire map results from combining the two distance
maps of the two objects. The two objects connect considering a threshold value of -15 on the
distance map shown in dilated figure. The global proportion of the objects is increased from the
initial fraction of 12% to 22%. Therefore, the objects are merged with less addition of the mass
compared to Figure 6.3.

Distance Function and Rotation-Anisotropy Matrix

The distance function or signed distance function is determined by minimizing the

distance between every point on the map to the boundary of the object. The distance

of a given point x from the boundary of a set Ω is mathematically defined by

f(x) =

{
d(x,Ωc) if x ∈ Ω
−d(x,Ω) if x ∈ Ωc
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Figure 6.5: The distance map is evaluated for two levees considering the anisotropy of
the objects (top), and no anisotropy (bottom). The minimum distance map is the one with
anisotropy consideration.

where d(x,Ω) = infy∈Ω d(x, y) and infimum which indicates the greatest lower

bound. In Figure 6.3, the distance function for every object is determined dif-

ferently and the minimum distance of both is the resulting distance function of the

map. The dilation map is calculated by applying the threshold to the distance map

so the two objects merge.

As proposed, applying the rotation-anisotropy function of the objects into the

distance map is to allow an efficient dilation. As shown in Figure 6.4, the distance

map of every object is modified by its direction of anisotropy. The two objects are

connected by applying the threshold on the distance function map of the two objects.

Compare to Figure 6.3, the amount of mass added to merge the objects is smaller.

Figure 6.5 shows the distance map of the levee map in which the rotation-anisotropy

function of every objects is applied to its distance map at the top. The map at the

bottom is the distance function of levee model with no anisotropy consideration.

The minimum distance function for every point is distance map which is evaluated

considering the anisotropy of objects. This confirms that the minimum distance

achieves when the orientation-anisotropy of objects are considered in the distance

evaluation.

The mathematical expression to evaluate the rotation-anisotropy matrix is as
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follows (Deutsch and Journel, 1998). Angle α is obtained by rotating the original

X and Y axes in the horizontal plane about the original z-axis. Similarly, β is the

angle rotation around y-axis and θ is the rotation angle around the x-axis.

 Xinitial

Yinitial
Z

 = [R1]

 X
Y
Z

 =

 cosα −sinα 0
sinα cosα 0
0 0 1

 X
Y
Z


 Xinitial

Yrotated
Zinitial

 = [R2]

 Xinitial

Yinitial
Z

 1 0 0
0 cosβ sinβ
0 −sinβ cosβ

 Xinitial

Yinitial
Z


 Xrotated

Yrotated
Zrotated

 = [R3]

 Xinitial

Yrotated
Zinitial

 cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

 Xinitial

Yrotated
Zinitial


Now, consider that the point dv with components of dx, dy, and dz in XYZ

coordinate system should be translated to the coordinates of the anisotropy of the

object. The new coordinates are evaluated by:

av = anisotropy mtx× rotation mtx× dv

where the rotation matrix is [R3]× [R2]× [R1] and the anisotropy matrix is deter-

mined by 
range1
range2 0 0

0 range1
range1 0

0 0 range1
range3


where range1 is aligned along the y direction, range2 is aligned along the x direc-

tion and range3 is aligned the z direction. Recall that the angles α, β, and θ are

determined from principal directions calculated in the previous section.

The next section discusses the proposed erosion process to smoothen the dilation

and maintain the facies global proportions.

6.3 Erosion: Proportion Map

In the proposed erosion process, the conventional use of structure element is consid-

ered since eroding orthogonal to the anisotropy of the merged object is challenging

to implement. The structure element is proposed to be applied in an iterative man-

ner through a search template. The search template scans over the dilated map and
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Figure 6.6: A 3×3 template is selected to scan the initial map for erosion. Every grid cell
in the proportion map is assigned by the value representing the proportion of template which
is inside the object of interest. The erosion is then applied by considering a threshold over the
proportion values in proportion map to whether keep or erase the grid cell.

verifies the portion of template that is inside the target object. The result would

be a proportion map that represents every grid cell with proportions of the search

template being inside the object.

Figure 6.6 demonstrates the generation of the proportion map that results from

the scan of the template over the model. As can be observed, the proportion map is

sensitive to (i) the size of the search template (ii) the shape of the search template.

If the template is very small, a big portion of the target object will be identified by

1 in the proportion map. However, if the template is large, a much smaller portion

of the dilated object that is typically closer to the centre of the object will have

the proportion value of 1. The utilization of “map” in the proportion map does not

limit its usage to 2-D models. Proportion map could be made for 3-D models as

well.

In addition to the template’s size and shape, a proportion value should be se-

lected on the proportion map to decide on keeping or removing the target grid cell.

This proportion value is referred to as “erosion control parameter” in this work.

The choice of the control parameter matters on the result of the eroded object.

This process is applied iteratively until the global proportion of the dilated model

approaches the facies global proportions of the initial model. For instance, a control

parameter of 0.9 erodes a big chunk of the object in only one attempt while a control

parameter of 0.6 erodes the object more slowly. This is why using a large template
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Figure 6.7: The proportion map for the dilated image is shown at the top. The histogram of
the proportion map for first iteration is shown on the left, and the one associated to iteration 4
is shown on the right. The resulting dilated map with the NTG of 0.18 is shown at the bottom.

is not recommended since it makes it harder to tune the erosion control parameter

to avoid a thick deletion of the object at once.

The erosion is best implemented when the cell deletion preserves the (1) shape

of the objects, and (2) the generated connection bond. It is important to see that

after connecting the broken objects through dilation, the connection interval cannot

be as thick and stable, therefore, any uncontrolled erosion process might result in

destroying the connection which is truly undesirable. It is noteworthy to recall that

the objective of this work is specifically connecting the disconnected intervals which

is attained by the dilation process. The necessity of applying erosion is to maintain

the global proportions which is distorted when objects are dilated (although the

proposed dilation process limits the global proportion distortion to the creation

of the connection bond). In Figures 6.7 and 6.8, the erosion is applied on the

dilated map of the connected lobes so that the global proportions is adjusted and

the connection stays stable. The global proportion is maintained after 11 iterations
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Figure 6.8: The proportion map for the dilated image at iteration 8 is shown at the top.
The histogram of the proportion map for iteration 8 is shown on the left, and the one associated
to iteration 11 (which is the last iteration to maintain global proportion) is on the right. The
resulting dilated map with the NTG of 0.12 is shown at the bottom.

using a small search template. The decrease in the proportion of the object could

be observed in four attempts in applying erosion.

For the case of levees shown in Figure 6.9, the initial proportions of geo-objects

is 6%. After the dilation process, the facies proportions increases to 21%. This

amount of expansion is reasonable since some of the objects are quite further apart.

As discussed so far, selecting the (a) search template, (b) the erosion parameter, and

(c) the number of iterations are subjective matters. It is important to try different

combinations and make sure that the number of geo-objects stay the same after the

erosion is applied. In the levee example, the number of objects goes from 6 to 2

when dilation is applied. This means that, the number of objects should remain 2

in the erosion process, while the global proportions is adjusted to its initial fraction.
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Figure 6.9: The dilation map is generated using a threshold over the minimum distance
function. This results in the same rate dilation for all the objects since the threshold value is
constant. The proportion map approach is considered for erosion. The global proportions are
achieved after 25 iterations of applying erosion.

6.4 Examples and Considerations

Dilation can be performed considering different conditions. For example, in the

levee example, disconnected intervals have different sizes, widths and orientations.

135



100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550
Proportion map

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550
Proportion map

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5
x 104 Proportions within the object

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Proportions within the object

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550
Attemp 11     NTG 0.12

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550
Attemp 22     NTG 0.06

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550

Figure 6.10: The dilation is based on maximum length parameter over every object separately.
This results in different rate of growth for every object. The proportion map approach erodes
the map as needed. The global proportions are achieved after 22 iterations of applying erosion.

The geological realism requires every three intervals on each side to form an evenly

distributed channel levee. The dilation with the same rate on all the objects helps to

meet this condition. For all objects to expand with the same rate, a threshold should

be applied on the distance map; the relatively small objects have the same chance
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of expansion as larger objects. Figure 6.9 represents this case where all objects have

grown uniformly. The erosion of the dilated objects is implemented by considering

the proportion map approach and applying it iteratively.

Alternatively, the merging could be applied honoring the objects’ sizes and

lengths in the realization. This could be implemented by defining the threshold

on the object’s distance function using a ratio factor of its size or maximum range.

This form of dilation is applied to the same levee exercise in Figure 6.10. The

non-uniform rate of expansion can be observed in this example in which the bigger

objects dilate faster than the smaller ones. Subsequently, the erosion process would

preserve the shape of the larger objects relatively more than the smaller ones. It can

be observed from Figures 6.9 and 6.10 that the resulting eroded maps also differ.

Although pursuing different objectives, both approaches connect broken levees in a

visually appealing manner and maintain model global proportions.

Lastly, there are cases where the regions of fragments honor the conditioning

data and could be removed after implementing erosion. This aspect must be verified

during the process; the control parameter can only chose to remove the grid cell if

it is not conditional data. Note that the 2-D examples of objects and levees are not

considering any conditional data.

The basis of enforcing realistic continuity is dilating along the principal axis

of the anisotropy of the objects. Intuitively the erosion is expected to be applied

opposite to the direction of dilation. This would be challenging as dilated objects

are now connected, and eroding in the orthogonal direction of dilation is different for

different parts. Such erosion would not necessarily maintain the global proportions

while preserving the connection. Figure 6.11 demonstrates the result of erosion

process which is applied on the dilated levee model of Figure 6.9. The distance map

is modified by the orthogonal anisotropy matrix of the objects that are connected in

the dilated map (The orthogonal anisotropy matrices of objects have been obtained

from the original map.) The distance map is eroded by applying a threshold value.

The threshold value is tuned so that some amount of added mass is reduced while

merged objects are not broken. The resulting map is shown at the bottom right of

Figure 6.11. The global proportion of targeted facies at this point is 13% which is

more than twice the original proportion. The proposed erosion process is applied

further to maintain the target proportion of 6%. The global proportion is reached

after 44 iterations shown at the bottom left of the same figure.
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Figure 6.11: The dilation is based on a threshold on the minimum distance map. The
orthogonal rotation-anisotropy matrix is used for erosion. The erosion at this point results in
global proportion of 0.14. Proportion map is later considered to maintain the initial proportion.
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Figure 6.12: The dilation is done considering a ratio of the maximum length with respect
to every object separately. The orthogonal rotation-anisotropy matrix is used for erosion which
results in global proportion of 0.13. Proportion map technique is used to erode further and
maintain global proportion.
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Figure 6.12 demonstrates the same procedure applied to the dilated map of

example in Figure 6.10 in which the growth of objects is based on their length of

continuity or size. Similarly, the proposed erosion map needs to be applied further

to maintain global proportion. The global proportion is achieved after 28 iterations.

It is interesting to compare the number of erosion iterations in Figure 6.9 which is 25

and Figure 6.11 which is 44. In the latter, the erosion is applied along the opposite

direction of dilation. The channels do not look as smooth and realistic when the

erosion is applied along the direction opposite to the direction of dilation.

Based on the above results (1) controlling the amount of dilation with the object’s

size; and (2) applying erosion through the proportion map is considered for the 3-D

implementation which comes next.

6.5 3-D Implementation

The proposed methodology is implemented in Fortran for 3-D models. The program

accepts 3-D models that are to be considered for connecting disparate objects. The

parameter file asks for a dilation parameter that varyies between 0 and 100. This is

the parameter applied to distance function of every object to control the expansion

by a factor of object’s size. The parameter must be tuned until the connections

of objects is reasonable. In the implementation context, the most efficient dilation

occurs when with largest decrease in the number of objects and the least increase

in the facies proportion. The output file dilated.mod contains the information

regarding the processed dilated model which is generated automatically. This is a

subjective process and requires iterative judgment. The dilation parameter should

be tuned in order for the connection to happen with small changes in global pro-

portions, but the connection also needs to be stable and moderately insensitive to

the erosion process.

One aspect of the proposed dilation is that the expansion of the objects happens

only if the connection will be followed. For example, if the dilation parameter is

10%, the objects in the model should be enlarged by 10% of their sizes along their

direction of anisotropy. There is no guarantee that the grown objects are going to be

connected. If the enlarged object does not touch any other object, it will be return

back to its original size. A similar consideration is taken into account in the erosion

process. The erosion process aims at maintaining the original global proportion in

the model while keeping the connection region intact. Three erosion parameters are
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considered in the algorithm: the number of iterations, the threshold factor for the

control parameter, and the minimum size of objects. After the dilation process, the

program identifies the news objects with new sizes. The minimum size ratio makes

sure the unified object does not erode uncontrollably.

Table 6.1: The number of objets, their sizes and model global proportions are listed for every
stage.

model geo-object size global proportion

1 708

initial 2 682 0.26

3 493

4 464

dilated 1 1876 0.31

2 889

eroded 1 1726 0.26

2 616

A small 3-D model of 30×30×10 is considered here. The output file of the

program, geo-obj.sta shows that the global proportion of targeted facies is 26%

with 4 objects. The output file of geometry.sta provides mass and direction of

anisotropy of the 4 objects. The program utilizes this information to dilate along

the anisotropy of the objects as described above. Table 6.1 tabulates the number of

objects, their sizes, and global proportions for three models of initial, dilated and

eroded models.

3-D Examples

Three examples are shown to demonstrate different aspects of the program, the

parameter file, and most importantly the functionality and effectiveness of the pro-

posed methodology. A levee training image is selected from the training image

library constructed by Pyrcz et al. (2008). The size of the TI is 256×256×128 grid

cells with cell sizes of 16 m × 16 m × 0.156 m with a levee proportion of 20%.

Three different parts of this TI have been considered in the following examples. In

Figure 6.13, the extracted part has 64×64×40 grid cells.

In the first example, the objective is to connect two objects and not the rest of

the objects. Using a dilatation parameter of 15 and applying it to all the objects

(option 0) will result in more connections required. The program provides an option
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Figure 6.13: This is the first 3-D case explained in the 3-D example section. In this case,
the objective is to connect the two objects at the right side of the TI shown at top. The dilation
is controlled to be applied to the specific objects rather than the entire model.
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Figure 6.14: This is the second 3-D case explained in the 3-D example section. In this case,
the dilation is applied in two processes. In the first dilation process two of the objects connect
with smaller dilation parameter, and in the second process, 4 other objects connect with larger
dilation parameter. This approach prevents the unnecessary growth of objects that are already
connected with smaller dilation parameter.
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Figure 6.15: This is the third 3-D case explained in the 3-D example section. The selected
dilation parameter results in more connection which is not desired. The option of what objects
to dilate is considered at this point to control the connectivity.

for the user to specify the objects to dilate. The user can always find out about the

objects’s number by visualizing the geo-obj.model file using different colors, or by
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visualizing the growing objects in different iterations. The dilation parameter may

have to be changed before any connection occurs. For this specific case, the dilation

is only applied to two objects which are identified with number 4 and 6 using a

dilation parameter of 15. In this process, the number of objects reduce from 7 to 6

(two objects connect), also the net proportion increases from 9.17% to 9.3%. The

change in this example is very small. This always depends on the objects relative

distances, their distributions, and the number of objects that connect. The erosion

is also applied with a 3×3×1 template. The threshold on proportion map is set

to be 17.5% and the restricting size ratio is 1. The erosion is only applied in one

iteration. The number of objects after erosion stays the same as the dilated case (=

6 objects), and the facies proportion reduces to the initial of 9.18%.

In the second example shown in Figure 6.14, another approach is taken. A model

size of 40×40×30 grid cells has been extracted from the same TI as the previous case.

In the first round of dilation, the dilation parameter of 17 is sufficient to connect the

two large objects on the left side of the model. A template size of 3×3×2 has been

selected to apply the erosion in this case. The threshold for the control parameter

on proportion map is 20% and the limiting size ratio set to be 4. The erosion is

applied in 4 iterations before the initial global proportions are achieved. Applying

the dilation in sequence, in this example, prevents the unnecessary growth of objects

that connect faster than the rest. Controling dilation in this aspect helps the erosion

to also be applied more efficiently.

The third example, shown in Figure 6.15, is a model of size 30×30×10 filled with

different size ellipsoids like barriers with the NTG of 80%. The dilation process is

only applied on the first three largest objects with dilation parameter of 22.4. As

a result of the dilation process, the number of objects changes from 5 to 3 and

NTG decreases to 77%. Erosion is then applied to bring the proportions back to

the original one while keeping the number of objects same as the dilated ones (the

erosion should not break the connections that dilation has created). The erosion

in this case is applied using a template of 2×3×2, and a proportion threshold of

21.75%. The limiting size ratio for erosion is set to be 1 and the erosion process is

applied in 5 iterations. The resulting eroded model has 3 objects and NTG of about

80%.
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6.6 Chapter Summary

This chapter proposes a methodology using erosion-dilation operations to enforce

connectivity of disconnected objects in simulated realizations. Considering the max-

imum direction of anisotropy in the dilation process is promising in the development

of the proposed methodology. Utilizing the proportion map as a tool for erosion pur-

poses and performing it iteratively also works reasonably well; it erodes the objects

smoothly and maintains the global proportions. The proposed methodology could

be summarized as sequential dilation and erosion. The first step is to make sure

the disconnected intervals should be connected. Such intervals are then identified

as geo-objects and their size and orientation is evaluated using moments of iner-

tia. The dilation: (a) determines the distance function for objects of the targeted

facies; (b) modifies the distance function by object’s orientation-anisotropy matrix;

(c) calculates the model distance function resulting from the minimum distance of

object’s distance models; and (d) applies the threshold value on the distance model

to dilate. This is a subjective matter and requires judgment for objects to merge

with minimal alteration of global proportions.

The erosion steps to maintain the global proportions (a) selects a search tem-

plate to scan the dilated model; (b) evaluates the proportion map by assigning the

fraction of the template being inside the object; (c) keeps or removes the object’s

boundary based on the selected proportion threshold (histograms could be observed

to tune the threshold); and (d) performs erosion iteratively to get to the initial

global proportions while preserving the connections created in the dilated model.
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Chapter 7

Improvements in Realization
Selection Techniques

The “true” reservoir is unknown and the realizations are constructed to understand

the space of uncertainty (Deutsch et al., 2002). It is important to realize that re-

alizations are generated by stochastic simulation and no realization is “better” or

more probable than another. Processing all realizations is often time-consuming

and computationally expensive. Realization selection has been practiced for a few

decades. Criteria which are applied to select the realizations are profoundly influen-

tial to the final understanding and decision making (Deutsch, 2002). Two ranking

enhancements are proposed in this chapter: (1) development of a multiscale rank-

ing approach that considers realizations in different regions and different scales;

(2) proposing realization clustering as an alternative to ranking when ranking is

inadequate.

7.1 Introduction

There is nearly an infinite number of realizations that reproduce the data equally

well yet result in different performances (Haldorsen and Damsleth, 1990; Deutsch

and Srinivasan, 1996; Deutsch and Hewett, 1996). Although this might suggest gen-

erating as many realizations as possible, processing many realizations through flow

simulation is not practical. As such, despite the rapid growth of CPU technology,

ranking is still a necessary practice in reservoir modeling. The cost of full flow sim-

ulation remains as prohibitive as in the past, as each realization is now represented

in much greater detail and with more complete physics. This contradicts the notion

that advances in computing power will render the necessity for selecting realizations
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obsolete (Deutsch and Srinivasan, 1996). In view of this, it is perhaps advisable to

allocate some portion of the new computing power to develop more advanced real-

ization selection techniques, as processing many realizations in the flow simulator

may never be the most efficient approach.

Providing detailed information on the relative performance of realizations before

applying flow simulation is useful. Ranking is a popular tool in the field of geostatis-

tics to select realizations based on one metric of performance. Ranking provides a

probabilistic view to the realization performance by ordering realizations and re-

ducing the dimensionality of input to the flow simulation process. The ranking can

be non-unique considering many performance metrics such as original oil-in-place

(OOIP), recovery factors, production rates, and different measurements of connec-

tivity of realizations. The selected realizations will then be considered for production

evaluation; the realizations’ performance provides an estimate for reservoir response

distribution (Garb, 1988).

The idea of ranking was processed by Journel and published by Ballin and coau-

thors in the context of stochastic reservoir modeling (Ballin et al., 1992). Their

approach relies on quantile-preserving approximated responses of the flow simulator

which is the main method practiced today. Deutsch and Srinivasan (1996) describe

ranking as a method that selects the realizations to span the production uncertainty.

Ranking considers a simplified transfer function that permits selecting a few real-

izations for further studies of the reservoir performance as illustrated in Figure 7.1.

In the past few decades, different criteria have been introduced for ranking such

as the ones introduced by Hird and Dubrule (1995); Deutsch and Srinivasan (1996);

Saad et al. (1996). Two main ranking methods are (1) static ranking, and (2)

dynamic ranking. The static type is based on evaluating the volume of high qual-

ity reservoir, its connectivity, and tortuosity; whereas the dynamic type estimates

the flow simulations using some approximate physical setups such as streamlines or

a proxy model. Dynamic ranking is a more complicated procedure that requires

more parameters and effort. While Deutsch and McLennan (2005) argue the ef-

fect and simplicity of the static method compared to the dynamic one, Yazdi and

Jensen (2014) demonstrates the inefficiency of static measures and proposes a form

of harmonic average of permeability as a dynamic average that overperforms the

realizations selection. An ideal simplified transfer function would lead to a large

correlation between the simplified ranking measure and the real production variable
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Figure 7.1: A schematic of acquiring the probability distribution of flow performance by
applying a full flow simulation (top row) compared to Applying a simple transfer function to
approximate response variable distribution through selecting realization to span the uncertainty
in the evaluation of production performance.

(see Figure 7.2); it approximately identifies the rank order of every realization based

on a quick measurement (Fenik et al., 2009a).

The most reliable measurement in terms of oil productions especially in SAGD

recovery is one that evaluates local connectivity of drainage area in terms of flow

while considering the net distribution in the reservoir (Deutsch and Hewett, 1996;

Deutsch and McLennan, 2005). This implies that the location of the wells is an im-

portant aspect for reservoir production (Aziz et al., 1996) and crucial to connectivity

measurement. A number of studies have investigated ranking methods considering

the connectivity for well placement decisions and the SAGD process (McLennan and

Deutsch, 2005b; Fenik et al., 2009a).

The number of realizations, perhaps based on different geological scenarios,

should be considered for flow simulations in order to improve the robustness of

the decision making process. Detailed studies of decision-making in the presence of

uncertainty can be found in da Cruz (2000) and Alshehri (2010).

7.2 Multiscale Ranking

There are many engineering decisions that influence recovery performance, one of

which is well placement. Since ranking results in only a few realizations, the ones
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Figure 7.2: A schematic illustration of the correlation between ranking realizations based on
their response to comprehensive flow simulation or real transfer function (TF) shown on y-axis
with the ranking based on their response to simple transfer function (STF) shown on x-axis.
The ranking results of a reliable simple transfer function could show a strong correlation with
the ranking quantiles of full flow simulation.

chosen are important for well-placement. Similarly, the connectivity of the high

quality reservoir and the low quality barriers are important aspects in the ranking

process. The measurements of local connectivity are also influenced by where the

injectors and producers are placed. Depending on the recovery plan and geological

heterogeneity, the drainage can take place in multiple scales of interest as shown in

Figure 7.3; there are multiple well pairs within a drainage area. The shale barrier

distribution is never uniform and the evaluated connectivity for different recovery

windows could be significantly different. That is why the realization selection for

recovery evaluation in SAGD is not as straightforward: it is quite possible that

one realization in one drainage setup is ranked high while its response to another

recovery scenario is actually low. Then the question is how to integrate the response

variables from different scales and recovery settings to select the low, median and

high realizations?

A practical methodology is introduced to incorporate multiple recovery setups

in evaluating SAGD performance. The proposed ranking uses optimization over

all recovery settings of different well placements and scales simultaneously which

is referred to as multiscale ranking. Consolidating possible setups and different

recovery scales results in considering more scenarios than is typically practiced in

reservoir studies. The objective is to establish an optimization approach to select

the realization that ranks the closest to the required quantile for all recovery setups.

When considering such schemes, the selected P10 model is expected to be a close
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Three smaller windows of drainage

Entire area of drainage 

Figure 7.3: Illustration of multiscale well pair drainage within a large drainage region. As-
suming that every well pairs is represented by two circles (one on top of another), three well pairs
are placed at different locations in the recovery region with different window sizes represented by
dashed ellipses around them. Evaluating the realization performance for each of these well pairs
and considering their response simultaneously in realization selection is referred to as multiscale
ranking.

quantile to P10 for all different areas of recovery drainage.

In conventional ranking techniques, global continuity to well locations may be

considered, but not multiple areas simultaneously. In terms of heterogeneous reser-

voirs, the connectivity of the reservoir determines the ultimate recovery. The mul-

tiscale ranking scheme considers this aspect and evaluates recovery for different

well-placement configurations with different scales of recovery.

Implementation

To select the specific ranked (quantile-preserved) models, Equation (7.1) is proposed

to be considered as an objective function. This function is defined to minimize the

distance between the overall drainage rank and the target rank as well as minimizing

the difference between realization ranks for different well pairs and the target rank.

Every realization represents an actual rank for different drainage well pairs. The

realization which its actual rank in all scales is closer to the target quantile will be

selected as the representative realization of that quantile. This realization has the

least penalty according to the following:

Ol =
w0

2
(rloverall − rtarget)

2 +
w1

2

1

nset
(rlset − rtarget)

2 (7.1)

where, l, refers to a quantile, and w indicates a weighting factor. This objective

function is minimized when rloverall and rlset are as closely possible to the target

quantile, rtarget. Thus, the minimization algorithm considers all the realizations to

find the realization that results in the smallest loss when considered by Equation
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Figure 7.4: Illustration of the advantage of multiscale ranking over the ranking using only
one drainage area for the three settings described in the example. The plots on the left show
the actual rank of the P10, P50 and P90 realizations (ranked by overall drainage) considering
the other well pairs. The similar is illustrated on the plots on the right, except that P10, P50
and P90 realizations are selected based on multiscale ranking approach. First row corresponds
to the first setting, second row to the second setting and third row to the third setting.

(7.1).

An example is designed to demonstrate the advantage of multiscale ranking over

the widely-use simple ranking. In this example, 100 3-D realizations are considered

to be ranked based on their response to CHV value which is evaluated using “CHV”
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program (Wilde and Deutsch, 2012). The CHV calculates the connectivity within

the specified recovery window size and to the well pairs. Three settings of recovery is

considered in this example. Note that all setting include the main well pairs which is

located in the middle of the reservoir and its recovery window size covers the entire

region. The first setting contains two more well pairs located each at one side of

the main well pair and covers almost half a window size as the main well pair. The

second setting adds two more well pairs to the first setting by now locating two well

pairs at every side of the main well recovery. The window size for each one of the

four well pairs is about a quarter of the main well pair. Finally, the third setting

includes eight well pairs, with four of them located uniformly at every side of the

main well pair (elevation of well pairs are similar).

For all three settings, the representative realizations of P10, P50 and P90 are

once selected using the overall drainage assuming no other well pairs is available,

and once by proposed multiscale ranking. Figure 7.4 demonstrates how the actual

ranks vary for every selected realization. The plots on the left are those selected

realizations ranked by overall drainage, and the plots on the right are ranked using

optimization approach. The rank on the y-axis, shows the actual rank of the specified

well pairs for the selected realization. For example in the first row which represents

the first setting, 9 points are shown in three different colors each representing one

of the well pairs. Thus every three points belong to one realization which is selected

to represent P10, P50, or P90, as shown on x-axis, but its actual rank is different

if it was considered as the ranking measure. Since the ranking is based on overall

drainage, the triangular points representing the entire drainage are the actual ranks

as well.

However, as can be observed from the plots on the right, even the overall drainage

does not always have the same rank as the selected realization represents. When

considering the performance of all well pairs to perform ranking, the two realizations

selected as P10 and P90 differ from the main setting. The CHV performance of the

selected realization by optimizations is closer for all three well pairs. The advantage

of multiscale ranking is even more clear for the second setting where four well pairs

are included with the main well pairs. The selected P50 and P90 by optimization

approach, have very similar performance if ranking considered every one of the 5

well pairs. As emphasized by Figure 7.5, realization # 52 which is selected by overall

drainage to represent P50 actually represents a significantly low rank in terms of one
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Figure 7.5: Ranking based on only one drainage area could result in the variations in the
actual rank of the selected realization if ranked by another well placement. Realization # 52
which is selected as the representative of P50 quantile has a low rank of about 15 in terms of
set2. Also, realization # 88 represents P90 quantile while it has the actual rank of about 55
if ranked by set4. Multiscale ranking can effectively reduce the spread of actual ranks for the
selected realizations when different well pairs are of interest.

of the well pairs. This could also been observed for realization # 88 that performs

P50 if ranked by one other well pairs. The optimization process controls (to some

extent) such variations; selected realizations stay within their region of actual ranks

for all different well pairs.

The optimization also becomes more challenging as can be observed in the last

row of Figure 7.4. For the third setting which includes 8 well pairs in addition to
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the main well pairs, the performance of the selected P50 realizations is not exactly

different than what has been selected when ranking based on overall drainage. Al-

though the P90 selection still shows a significant advantage over the simple ranking

process.

The importance of this study is to make sure that the selected realization would

be in the desired ranking position in any kind of drainage plan. As was mentioned

before, in every reservoir study three models for P10, P50 and P90 is achieved

regardless of the number of well pairs or the scale of recovery setups. In the presence

of heterogeneity and non-uniform distribution of barriers, it is possible that a model

for the smaller window drainage has a very low recovery while the same model

considering bigger window results in a good recovery.

The next section discusses the second proposed approach in improving the real-

ization selection which is clustering realizations.

7.3 Realization Clustering

Ranking does only select the realizations considering one-dimensional reservoir per-

formance; one metric might not fully characterize the reservoir since the recovery

performance could be coupled to a number of equally important factors. Clustering

of realizations is developed as an alternative to ranking when a simple ranking pro-

cess is not adequate. Unlike ranking, clustering can consider more than one ranking

measure for each realization. Although some features are more/less correlated or

important, they could all be simultaneously considered when performing clustering.

Also the use of grouping or clustering is in order when choosing arbitrary quantiles

is not representative of the character of the realizations—ranking might not lead

to a continuous gradation from poor to good performing realizations, instead, they

might naturally form clusters.

Clustering is a classical procedure for data description in data mining and data

analysis (Jain et al., 1999). The main purpose of clustering is to understand the data

by identifying its natural clusters. Clustering algorithms group data whether or not

the data have natural clusters. However, if the clusters exist then some algorithms

cluster the data better than others (Ghosh and Strehl, 2006). Clustering partitions

the realizations into different groups such that the realizations in one group share

more similarities (Guha et al., 1998).

There are many algorithms to perform data clustering in literature. An inter-
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ested reader is referred to the works of Kogan et al. (2006); Halkidi et al. (2001);

Jain et al. (1999) for comprehensive reviews of different clustering techniques, their

place of applicability, and comparison of their characteristics. Since evaluating clus-

tering performance is not the main concern in this chapter, the discussion will be

focused on a reasonable, simple clustering algorithm to group the realizations. The

k-means ensures these mutually exclusive groups are as far as possible unless they

are not linearly separable. A transformation of the realizations attributes to higher

dimensional domain using kernel functions could be considered in non-linear cases.

The next section demonstrates different cases utilizing several examples. Note

that selecting the proper clustering approach and deciding on the number of groups

is not trivial (Berkhin, 2006). This chapter proposes to partition data using well-

known techniques.

7.3.1 K-means Clustering

K-means (centroid-based) clustering is one of the earliest clustering technique which

was introduced by Steinhaus (1957) and popularized as k-means clustering by Mac-

Queen (1967). K-means clustering is a simple, effective and widely-used clustering

algorithm (Jain et al., 1988; Jain, 2010) which clusters the data into K mutually

exclusive groups by maximizing the similarities between the members of a group and

minimizing the similarities to the members of other groups (Zhang and Rudnicky,

2002). Every group could then be described by a representative (e.g. centroid).

This concept is appropriate for realization clustering proposed in this chapter, as

the members of every cluster are expected to perform similarly at the time of re-

covery. The main verification of this clustering approach is in evaluating the (1)

compactness, and (2) separation of groups (Berry and Linoff, 1997), where com-

pactness refers to the closeness of members of every group, and separation refers to

the maximum distance to the members of other groups.

The given data set χ = x1, x2, · · · , xN , is the set of N d-dimensional data to be

partitioned into K clusters of C1, C2, · · · , CK , with centroids of m1,m2, · · · ,mK . In

k-means clustering, when a vector belongs to a cluster, its Euclidean distance to the

centre of that cluster should be smaller than to other centroids.

E(m1, · · · ,mK) =
N∑

n=1

K∑
k=1

I(xn ∈ Ck)∥xn −mk∥2 (7.2)

where I indicates the existence of a vector in a specific cluster.
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The goal is to minimize the sum of squared error over all clusters which is known

to be an NP-hard problem even for small K (Drineas et al., 2004). That is why,

in this minimization, k-means tends to trap into a local minima (MacQueen, 1967;

Selim and Ismail, 1984). The most common solution is to apply an iterative algo-

rithm that minimizes the sum of distances between objects and their corresponding

centroids over all clusters. This algorithm continues moving the objects in between

clusters until the sum of distances over all clusters does not drop any further (Davies

and Bouldin, 1979). The result is a set of clusters that are as compact and well-

separated as possible. The algorithm could be described as follows:

1. Select K realizations randomly and assign them as the centroid of the clusters.

2. Evaluate the distance between every realization and the initial centroids.

3. Assign every realization to the closest centroid.

4. Calculate the new centroid for every cluster: the average position of current

members

5. Go back to step 2.

6. Iterate until no realization moves where Equation (7.2) should be a minimum.

Various measurements have been introduced in the literature to quantify the

similarities between the data for clustering purposes including conversion from a

distance matrix (Euclidean, Manhattan, Minkowsky, etc), cosine measure, pearson

correlation and many others (Jain, 2010). Selecting the proper attributes associ-

ated with the data and the similarity measures are influential factors in clustering

performance that should be considered carefully. The similarity matrix should be

selected with respect to the nature of data for the clusters to be meaningful (Jain

et al., 1999).

One other consideration in the distance evaluation is the tendency for larger

scaled features or the variable ones to dominate the distance function. It is important

to normalize the scale of features for all realizations and then perform the distance

evaluation (Wilson and Martinez, 1997; Herbrich and Graepel, 2001; Ghosh and

Strehl, 2006). The normalization is applied by scaling the feature by its range of

variability (Wilson and Martinez, 1997; Graf and Borer, 2001),

x̃ =
x

∥x∥
∈ Rd.
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Figure 7.6: Illustration of the X-Z slice of one realization from all four generated scenarios.
The lean zone consists of shale (black) in the middle of the first and second scenarios and the
thief zone consists of SIHS (blue) at the top of the first and third scenarios are readily detectable.

This becomes even more tricky if one of the features is in categorical form; some

algorithms are developed to take care of such situations such as the one by Wilson

and Martinez (1997).

In the k-means clustering, or unsupervised clustering algorithms in general, the

number of clusters, K, should be determined prior to data clustering (Xiong et al.,

2009). There are many works in machine learning literature concentrating on this

issue and suggesting global k-means clustering to resolve the initialization problem

incrementally (Tzortzis and Likas, 2009). One general solution is to apply k-means

for several K values and select the one with the minimum error. The complexity of

selecting the number of groups is not considered in this chapter.

The remainder of this chapter investigates cases where clustering could be more

beneficial than ranking. The applicability of k-means is also demonstrated where

appropriate and compared with a case where kernel function could help with the

process.

7.3.2 Scenario Example

An example is conducted to show the applicability of the k-means algorithm to

cluster realizations with three specific features to four groups that are visually de-

tectable. An example reservoir is generated with dimensions of 50 grid cells in

X-direction, 50 grid cells in Y-direction and 140 grid cells in Z-direction. The cell
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Table 7.1: The reservoir types that could be identified in the scenario example.

Reservoir Description Probability

thin reservoir with a lean zone and a thief zone 35%
thin reservoir with a lean zone 15%
thick reservoir with a thief zone 35%
thick reservoir with no thief zone 15%

size is 25 m × 25 m × 0.5 m. In this example, the reservoir has four scenarios: the

first scenario includes a lean zone and a thief zone, the second scenario contains a

lean zone and no thief zone. The third scenario includes no lean zone but a thief

zone, and the last scenario has neither a lean zone nor a thief zone. There are 100

realizations in total. The first and third scenarios have 35 realizations each, and the

second and forth scenarios have 15 realizations each. The lean zone consists of 80%

impermeable and 20% permeable facies which if it exists is 7 m thick, and placed

at the depth of 28 m from top. The thief zone is made up of a mixed facies, e.g.

SIHS, with porosity of 25% and permeability of 500 mD, which if it exists, is placed

at the top of the reservoir and is 10 m thick. One slice of every scenario is shown in

Figure 7.6.
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Figure 7.7: CDF illustration of the CHV distribution for 100 simulated realizations. The
CHV response is distributed in a few intervals instead of following a continuous increasing plot.
The selection of P10, P50 and P90 cannot be representative.

The impact of the thief zone on recovery performance relates to the CSOR as

it reduces the efficiency of the process. The presence of a lean zone with lower

permeability impedes the flow and reduces efficiency of the process as well. To

select the realizations through a common approach of ranking based on CHV value,

the CDF in Figure 7.7 will follow. This distribution is not a continuous distribution;
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Figure 7.8: Visualization of data distribution, in scenario example, with three dimension of
CHV, Keff and geo-objects. Because of the form that data is distributed in the space, k-means
is the appropriate algorithm to group the realizations. The histograms (bottom) also show that
the distribution of data for all three variables is discrete.
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utilizing P10, P50 and P90 realizations would not capture uncertainty.

The three features considered in this example are CHV, Keff, and the amount

of geo-objects in a continuous form. The distribution of the 100 realizations is

shown in Figure 7.8 where after applying k-means, the four clusters are shown with

a different color. The descriptions of the clusters are shown in Table 7.1. As can

be observed from this figure, the distribution of data inherits the requirements for

suitability of k-means algorithm to perform clustering. For example the realizations

are distributed in ellipsoid-like groups which could be separated with linear hyper-

planes in the space. The number of groups is visually detectable in this case which

enables the utilization of k-means with no sensitivity analysis.

Figure 7.9 presents the distribution of data in 2-D scatterplots colored to their

own groups. As can be observed from the first and third scatterplots, the Keff feature

has an important role in identifying the fourth cluster; the presence of 4th cluster

would have not been appreciated if only the other two dimensions were considered

in realizations clustering. This is an interesting aspect of clustering that reveals new

dimensionality in the data analysis.

Finally, Figure 7.10 demonstrates realizations of every cluster in one plot. Since

the synthetic example here is the generation of an extreme case, every scenario

results in one cluster. It is interesting to investigate the variability of attributes for

scenarios of different characteristics as summarize in Table 7.1.

Recovery performance compared to Ranking

The purpose here is to investigate the characteristics of the typical P10, P50 and

P90 realizations with regards to the clusters. The P10, P50 and P90 for every case

would be discussed considering all three ranking conditions. Figure 7.11 ranks the

realizations three times, each time with one of the features. The realizations are

colored by their clusters. In the plot at the top, the realizations are ranked based

on CHV values. As can be seen in this figure, the realizations are increasing in

three distinct intervals instead of following a continuous curve. The P10 and P50

quantiles are both selected from the lower part of this distribution which makes

ranking in this case not reliable. The second plot is the ranked realizations by Keff

values. The realizations are placed in four distinctive intervals. Again, P10 and

P50 realizations are selected from the very small interval. In the last plot which

the realizations are ordered based on the amount of geo-objects, the population is
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Figure 7.9: The three features of realizations are shown in 2-D scatterplots with points
colored to their specific groups. The presence of Keff provides new information regarding data.
The fourth cluster can only be detected after the identification of the three clusters by the two
features of CHV and geo-objects.

divided into two intervals. Similar to earlier cases, there is a big gap between the

P90 quantile and the low- and medium-ranked values.

The selected realizations could also be analyzed from a clustering perspective.

It is interesting to see that realizations in red are mostly ranked high in all three

ranking results. P90 belongs to the red cluster in the CHV and Keff rankings. The

selected P90 realization in geo-object ranking belongs to the blue cluster which is

in fact part of the lower-rank realizations. Although the P90 in geo-object ranking
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Figure 7.10: Every scenario is shown in its own colored cluster in the 3-D space. The CHV
for both scenarios of 1 and 2 that contain a lean zone in the middle of the reservoir are about
the same. The CHV for the third and fourth scenarios are also very similar, as expected. The
effective permeability seems to be highest for the third scenario (thick reservoir) and the lowest
for the second scenario (thin reservoir). The amount of geo-objects also appear to be slightly
higher for third and fourth scenarios because of the absence of the lean zone.

is from the blue cluster, the red cluster however, is part of higher-rank range in

all three ranking results. It would be reasonable to select the P90 from the red

cluster. Interchangeability of the two clusters colored green and orange could be

observed in the last plot of Figure 7.9. Enforcing the selection of orange member

as the representative of P10 quantile is also a reasonable choice. Such observations

are only possible by considering all important features in grouping the realizations

as opposed to ranking them by a single metric.

7.3.3 Clustering Index

There are many metrics in the literature to quantify the clustering performance.

None of these metrics outperform the others and most of them share the same
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Figure 7.11: All three features are considered to rank the realizations. The top plot is the
realizations ranked by CHV and colored by k-means clusters. The one in the middle represents
realizations ranked by Keff, and the one at the bottom is ranked by number of geo-objects. The
selected P10 based on CHV and Keff ranking happens to be a member of the orange group
which differs in the case of geo-objects ranking.

concept. A clustering index is proposed at this point which follows similar concepts

from other performance metrics. The k-means clustering performs comparatively
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well when the clusters of data are clearly separated from each other and the members

of each cluster form an ellipsoidal or spherical shape in the space. This could be

thought of in terms of fraction of variance of the cluster’s centroids relative to the

variance of data and the centroid within each cluster. Or, geometrically, the fraction

of the size of the macro cluster (pseudo-cluster of centroids) over the sum of sizes of

all other small clusters. Since the size of every cluster can be defined by the average

of the distance of members from the centroid, the numerator is the mean distance

of ck and cM , where ck is the centroid of cluster k, and cM is the centroid of all

ck’s. Intuitively, the greater the distance between centroids and the macro centroid,

the clusters are more stable given that the distance between the members of every

cluster to its centroid are relatively small. Thus, the clustering index, CI could be

written as follows:

CI =
1
K

∑K
k=1

√
(cM − ck)2∑K

k=1
1
Nk

∑Nk
n=1

√
(xn − ck)2

=
1

K

d(ck, cM )∑Nk
n=1 d(xnk, ck)

where nk refers to a member of the group k with population of Nk, and d(y1, y1) is

the Euclidean distance between two vectors of y1 and y2. The clustering index is zero

for the case of K=1, since the macro centroid is going to be equal to the centroid.

For the maximum number of groups which occurs for K = N , the clustering index

is undefined.

Figure 7.12 determines the clustering index for the scenario case which described

earlier in the chapter. To draw any conclusions from the CI value, the random

distribution of the case should be considered. N data is generated randomly within

the example domain in which k-means is applied to cluster data with the same

number of K as the case data. The plot at the top shows the CI value for the data

and the histogram for so many number of iterations for the random case. The farther

the distance between the random distribution and the CI value, the more stable and

reasonable the resulting clusters are. In the second plot of Figure 7.12, the same

procedure is applied for a range of K changing from 1 cluster to 25 clusters. CI

starts with the zero value for K = 1 on the plot and diverges for the data case and

random case. As the number of clusters grow, the CI becomes smaller on average;

the amount of change in CI for the random case is very small. The clustering index

is at its maximum at K = 4. The last plot illustrates the relative CI of data to
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Figure 7.12: The clustering performance is demonstrated by comparing the clustering index
to the case of clustering the random data within the same range of data distribution.

its corresponding case of random data. The relative index of 1 indicates the base

case in which the clustering performance is equivalent to the case if the data was

random.

To transit to the next section, an example is demonstrated in Figure 7.13 in
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Figure 7.13: Demonstration of realization data in 3-D space in which clustering is not an
effective approach.

which clustering is not an effective approach; the data reveals no particular groups of

realizations. The clustering index is considered to investigate further and compare

the performance of k-means approach with the case of random data as shown in

Figure 7.14. The fluctuations of relative CI around the base 1 indicates realizations

inherit no natural clusters.

One important aspect of using geostatistical tools is to apply every technique

where it is appropriate. The next section discusses the limitations of k-means algo-

rithms to cluster realizations and propose the use of Kernel function if suitable.

7.4 Kernel k-means

Although k-means clustering is recommended because of its simplicity, it is not

always the best partitioning method. There are several characteristics of the data

that limit the usage of k-means. One relates to the number of clusters; k-means is

not the best option when the number of clusters is not known. Different iterative

algorithms have been considered to overcome this limitation and find the appropriate

number of clusters based on k-means performance over different number of clustering

groups. The shape of data distribution is also very important. K-means performs

well when the data is packed in ellipsoidal-shape groups. It functions by separating

data linearly; for close unstructured data, linear separation is not always possible.
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Figure 7.14: Illustration of the case shown in Figure 7.13 where there is no evidence of data
being positioned in specific groups in the space. The clustering index for the real data is within
the distribution of clustering index for the random data. As shown in the second and third plots,
for number of groups changing from 1 to 25, the clustering index for the data is very close to
the one from the random case.

A kernel function can account for non-linearity by mapping the data from input

space, Rn×p to the feature space, F (n×n), where n indicates number of data, and
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p is number of features (dimensions) (see Figure 7.15). There are several different

kernel function that transform the data non-linearly such as polynomial kernel (its

dot product with order 2), Gaussian kernel, Laplacian kernel, Spline kernel, wavelet

kernel, radial basis function (RBF) kernel, and many more. Note that discussing

the characteristics of different kernel functions is not considered relevant in this

chapter. Kernel function, Kij = ϕ(xi)
Tϕ(xj), directly provides the inner products

in feature space. This transformation is nonlinear; it expands the input dimension

but captures the structure of the data (Shawe-Taylor and Cristianini, 2004). When

data is available at higher dimension, the linear separation becomes possible; the

k-means could be applied to group data to non-overlapping clusters.

Figure 7.15: Kernel function transfers data from non-linear input space to feature space
which data is more linearly separable (Shawe-Taylor and Cristianini, 2004).

The increase of dimensionality, with the use of kernels could suggest the mis-

conception that it contradicts the initial purpose of data compression. Principal

component analysis could be considered in case of very large datasets to reduce

the dimensionality of the data first and then utilize kernel k-means clustering on

the data with reduced dimension. In case of clustering geostatistical realizations

however, the increase in dimensionality is not a real concern because the maximum

number of realizations is normally in the order of 100s that would result in kernel

dimensions of 10,000—still a very low dimension with no computational difficulties.

The first step in kernel k-means clustering is to stabilize the centroids of the

clusters. The initial centroids are selected randomly. This requires the algorithm

to look for the minimum distance between every kernel data ϕ(Xn) and all centroid

of clusters ∥ϕ(Xn) − mk∥2 where 1 ≤ k ≤ K. The cluster which is equivalent to

argmink(∥ϕ(Xn) − mk∥2) includes ϕ(Xn). Recall that data should be normalized

prior to clustering: K̃(x, y) = K(x,y)√
K(x,x)K(y,y)

∈ R. As in k-means algorithm, the

objective of kernel k-means is to minimize the clustering error in feature space
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Figure 7.16: Illustration of the clusters in the input space using k-means algorithm (top),
and the clusters in real space using kernel k-means on the feature space.
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Figure 7.17: Illustration of the clusters in the feature space using k-means algorithm (top),
and the clusters in feature space using kernel k-means on the feature space.

where the data vector is replaced by its kernel transform:

E(m1, · · · ,mK) =
N∑

n=1

K∑
k=1

I(xn ∈ Ck)∥ϕ(Xn)−mk∥2 (7.3)

This algorithm is believed to converge when kernel matrix is positive semidefinite

(The kernel matrix generated from the direct use of inner products of data set is

always positive semidefinite and suitable for the purpose of realization clustering

at this stage). At the end of this procedure, every centroid is equivalent to mk =∑N
n=1 I(xn∈ Ck)ϕ(xn)∑N

n=1 I(xn∈ Ck)
.

Example

A small area of a deposit which contains 100 grid cells in X direction, 20 in Y

direction and 100 in Z direction is modeled by 100 realizations. Every realization

is described by several attributes such as (1) CHV (2) the amount of geo-objects

(3) Keff and (4) the local connectivity. As shown in Figure 7.16, k-means algorithm
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Figure 7.18: Comparing clustering index for both k-means clustering and kernel k-means
clustering. Looking at the relative index in the third plot makes it clear that kernel k-means in
this case which contains no obvious cluster, is a way better option to group data.

and kernel k-means are both adopted to cluster the realizations. No exact clustering

forms is evident in the input space, however, clustering in higher dimension seems

to perform much better in grouping data to three similar clusters. Figure 7.17 could

be adapted to achieve the separation in higher dimension better than what k-means
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Figure 7.19: Illustration of the realization selection using ranking based on CHV. The order
of realization shown in the second plot follow the groups much closer relative to the order of
groups in the first plot.

can achieve in input space. Sum of the distances of data from their centroids in the

k-means case is 0.45, for the kernel k-means case 0.27 on average.

Clustering index for both cases of k-means and kernel k-means clustering is

applied for a range of group numbers changing from 1 to 25 on the realizations. As

shown in Figure 7.18, there is a clear improvement in k-means clustering performance

when higher dimension is considered using kernel function. The last figure of this

chapter, Figure 7.19 demonstrate the order of realizations in terms of CHV colored

with their own cluster for both clustering approaches. The CHV features ranking is

very close to the order that they are colored.
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7.5 Chapter Summary

Ranking is a common practice in reservoir modeling which provides a practical alter-

native to processing all realizations (typically 100 or more) through flow simulation.

Processing the selected realizations provides an understanding of the performance

of the set of realizations. The choice of a ranking index varies depending on the ap-

plication and the complexity of the process. This chapter introduces two techniques

to improve the process of realization selection, i.e. multiscale ranking (1) ranking

simultaneously with multiple areas, and (2) clustering realizations when ranking is

inadequate. SAGD drainage mostly happens at a number of scales and regions while

only one model for every quantiles of P10, P50 and P90 is considered to character-

ize the heterogeneity for multiple well pairs in a single drainage area. Although

it is challenging to select the proper model with the similar rank at all settings,

the selection of proper model is equivalently crucial to the well-placement and final

recovery. Multiscale ranking scheme is introduced to optimize the ranking using a

single metric by considering a few recovery settings of different well placements, well

pair numbers and scales of recovery.

The second technique developed in this chapter provides practitioners with the

information that could not be possibly gained from ranking the realizations using a

single metric. A single metric can never represent the entire recovery performance.

Clustering is also required when selecting the typical quantiles is not representative.

This is mostly the case when distribution of data is not continuous. Overall, applying

clustering on the realizations is not as straightforward as ranking. Depending on

the reservoir distribution, the spatial correlation of realizations, heterogeneity and

the measured variables, the approach and results could be different. Sometimes the

realizations are quite homogenous and many variables are too correlated that they

are basically redundant in the clustering analysis. Also, sometimes some variables

may carry no specific structure that they would be treated as noise in clustering.

Such variables may introduce randomness in the clustering.
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Chapter 8

Concluding Remarks

Geostatistical tools are widely applied to provide support for uncertainty quantifi-

cation and reservoir forecasting. This thesis aims at developing tools and techniques

to facilitate the use of improved multiple realizations for modern reservoir forecast-

ing, particularly heavy oil reservoirs. The improvements in this thesis are directed

towards one of the most important factors in representing reservoir heterogeneity,

namely, facies. Unlike most geostatistical studies that improve the facies represen-

tation through facies modeling techniques, this thesis enhances facies representation

through side operations that support facies modeling. The challenges discussed here

are quite common in the practice of geostatistics but they have not been researched

intensively. A reasonable geostatistical workflow often requires the practitioners to

go out of their way to examine details that are easy to ignore or miss. This thesis

helps geostatisticians with some overlooked aspects and subtle issues; practical ap-

plicability is a main feature of this thesis. Regardless of the technique utilized to

construct 3-D numerical models, the research in this thesis is of potential benefit.

8.1 Thesis Contributions

The contributions of this thesis can be summarized by the following six points (with

each point representing a substantial piece of research):

Facies upscaling: Blocking facies information to a constant length prior to

3-D modeling is a necessary process with current 3-D geostatistical modeling tech-

niques. The typically high resolution information from core and well logging must

be upscaled. A downside is the inevitable loss of information when the majority

facies is assigned to each upscaled interval. A measure of facies mixing (FMM) is

proposed in this thesis to account for the loss of information and incorporate it
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in the estimating process. Porosity is simulated by facies and collocated to FMM

which indirectly helps the facies to be reflected more accurately in the estimation

of the porosity. A case study shows that FMM is promising to improve reservoir

modeling.

Shale continuity: The second contribution of this thesis is related to the con-

tinuity of shale barriers. High net-to-gross reservoirs could contain a significant

amount of small shales that act as local barriers for flow. This is particularly impor-

tant in the McMurray formation. Although these shales could adversely impact the

recovery performance, they cannot be efficiently characterized by current practices.

An inverse modeling methodology is proposed to infer the lateral continuity of the

thin shales. Information from the facies data, well spacing, and well configuration

are used with a proposed factor known as total shale connectivity or TSC. The

proposed approach characterizes the shale continuity with a probability distribution

function of aspect ratio of horizontal to vertical range. Shales with the identified as-

pect ratio could then be imposed in facies models during pre/post-processing. This

technique improves facies modeling by establishing a more realistic shale distribution

in the model.

Model regridding: The third contribution addresses the need for high res-

olution models for heavy oil recovery flow simulation. A coarse resolution model

may mask relevant information during reservoir evaluation and decision making.

This thesis dismisses the common use of nearest neighbor assignment as regridding

approach and advocates the stochastic regridding as the correct way to generate

the high resolution models conditioned to coarse scale realizations. The proposed

framework of the stochastic regridding utilizes the information of the spatial distri-

bution of facies and/or continuous variables provided by the coarse scale model to

reproduce the small scale variability at finer scales by generating multiple realiza-

tions that could use local variography of the area. Over/under estimation of small

features in the reservoir would be corrected with stochastic regridding whereas such

features would cause bias in flow models when regridding is applied using nearest

neighbor assignment.

MPS aspect of regridding: The generation of high resolution models with

MPS is the next contribution of this thesis. The initial steps in this investiga-

tion leads to defining frequency of patterns (FOP) to resemble variogram in two-

point statistics which measures variations of geological features at different scales.

174



The high resolution model is primarily considered through extrapolation of FOP to

smaller scale. This is shown to be theoretically and practically intractable. Instead,

the problem is reformulated to enhancing the resolution of training image so that the

generated models are simulated at the fine resolutions. Distance function kriging is

considered to extrapolate data from larger scale of coarse grid cells to smaller scales.

The case study suggests that rescaling TI to the desired resolution and considering

it for generation of realizations works better than simple nearest neighbor to the

coarse scale model.

Unrealistic disconnectivity: The fifth contribution is related to correcting

unrealistic discontinuities of facies units. The connectivity is applied while (1)

maintaining the global proportions; and (2) preserving the geological realism. Both

requirements are implemented carefully, in the methodology that is proposed based

on two operations of dilation and erosion. Dilation is performed for the objects to

connect through a so-called “efficient dilation”, in which the connection is applied

at the direction of anisotropy. This is to ensure the least changes in the initial facies

proportions. The proposed erosion algorithm utilizes a search template that scans

over the dilated model and verifies the fraction outside the object with a threshold

parameter. The proper use of erosion technique preserves connectivity while erasing

the boundaries.

Realization selection: The last contribution of this thesis relates to selecting

realizations for reservoir management. Realization selection is discussed from two

perspectives. One is to improve the ranking process through the proposed approach

of multiscale ranking which selects realizations by optimizing over different settings

of well placement and scales of recovery. The objective function in multiscale rank-

ing scheme is defined so that the distance between the overall drainage ranks and

the target ranks for multiple locations are minimized simultaneously. The second

aspect is to approach realization selection when there is more than one measure-

ment to evaluate the response variable. Realization clustering is therefore proposed

to cluster the realizations into groups that would expect to perform similarly. The

clustering methodology is based on K-means technique in which the realizations are

grouped to have smallest distance from the members of their group and furthest

distance from the members of other groups. As the case study in chapter 7 shows,

clustering is proven to be a promising alternative when ranking cannot represent the

realization performance adequately, or one single measure is not enough to represent
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the recovery performance of the reservoir.

8.2 Limitations and Future Work

Many research directions stem from the research developed in this thesis. Keeping

that in mind, future research directions follow:

Facies blocking: Facies blocking is a lossy operation. One way to entirely pre-

vent the loss is to consider facies intervals directly in 3-D modeling. Meaning that

instead of simulating fixed size blocks, a certain grid cell parameter can accommo-

date for the associated intervals of facies at its position. The current geostatistical

practices cannot yet support such simulations. Developing a system to be able to

take into account this process could introduce significant improvements into the 3-D

reservoir modeling framework.

Shale characterization: Acquiring knowledge about the shale continuity uti-

lizing only data and well configuration is challenging. Although the proposed tech-

nique in this thesis is novel and promising, it could be inconclusive if the considered

factors in the methodology (amount of data, well spacing, etc) are not sufficiently

informative relative to each other. With the new method of ground-penetrating

radar, new information regarding the shale distributions can be easily extracted

from the 3-D images of outcrops. This information if integrated with the proposed

method could provide insightful knowledge about the shales.

High resolution models: Although stochastic regridding approach is auto-

mated and practical, re-simulation of the coarse-scale realizations could become an

extensive work. The entire process of modeling at coarse-scale grid cells might need

to be applied to build models at higher resolutions at some occasions. That could

become tedious if global variograms are not applicable, and local variograms are

determined for large number of facies in the model. Recall that local variography

is automated in developed program but the offline checks over the variograms are

recommended. Thus, one way to discuss this research, is through a paradigm in

which many changes in resolutions or scales are no longer relevant, i.e., the grid free

paradigm. If the facies are simulated using the grid-free simulation scheme, then

the processes such as facies upscaling for data preparation or model regridding to

generate realization at higher resolution would no longer be an issue (Zagayevskiy,

2015).

A similar argument could be discussed in MPS context. The proposed approach
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to rescale TI utilizes interpolation techniques which have the feature of smoothing

edges. This could limit the application of this technique to smooth domains such as

channel like deposits. This is no longer a problem if grid-free scheme is practiced.

Enforcing connectivity: One way to view this is if the disconnectivity could

be predicted and expected from its initial source, i.e. simulation. The proposed

methodology in this thesis, provides the necessary tool to enforce the connectivity

satisfying geostatistical modeling conditions but it does not directly identify the

situations that disconnectivity should be treated. This concept could also be per-

ceived from the shale continuity point of view. Most connectivity evaluations are

concerned with the presence of stochastic shales. The precise knowledge of shales

positions and distributions that is gained previously could be integrated into recog-

nizing the discontinuity of shale units.

Selecting realizations: The limitation comes from the term “selecting”. To

fully transfer the quantified uncertainty into prediction of production performance,

“all realizations” should be considered. Any other way is only an approximation.
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Appendix A

Stochastic Model Regridding
Program

The regridding process has been automated and developed in two combined forms of

Shell Script and FORTAN programming. All inputs and outputs of this process are

practiced in Cartesian grid system. Data are assigned to the center point of every

grid block where the grid block sizes are the same in the entire network. The entire

process of regridding is assembled in a directory. The directory includes the main

script run-regriddingMaster.bsh, the parameter file “regridding.par” which is

modified by the user, and a folder of all required execution programs (Regridding.exe,

nscore-mv.exe, VariogramParameters.exe, gamv2004.exe, varfit.exe, corrmat.exe, sgsim.exe,

sisim.exe, mergemod.exe), called “03-Executable”. Except for the main program of

“Regridding” and “VariogramParameters”, which are implemented during the de-

velopment of regridding program, the rest is borrowed from GSLIB (Deutsch and

Journel, 1998). The implemented FORTRAN program in this automation of regrid-

ding process is responsible for preparing the corresponding parameter files while the

scrip takes care of executing each one of them in the proper order.

At first, the input data file should be added to the directory by the user. Data

file should be in GSLIB-style (the header, the number of variables, the title of

variables, and finally the columns of variables). Also, it is required that the user

prepares the input with “.dat” extension (the master script will then move it into

the right directory). After preparing the input file, the user should modify the main

parameter file; “regridding.par” which follows:

Similar to all GSLIB-like programs, three lines are reserved for grid specifica-

tions (i.e. lines 7–9). It can be specified on line 2 whether the regridding is applied

on categorical variable model (i.e. facies), continuous variablae, or a combination of
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Parameters for REGRIDDING
****************************

START OF PARAMETERS:
1 ../01-DataFiles/*.dat -initial simulation data file
2 2 -categorical(=0), continuous(=1), or combined (=2) model
3 4 2 -number of variables for regridding, TO MODEL
4 1 2 5 -facies column, variable columns
5 4 -secondary variable column
6 100 -number of initial realizations
7 100 12.0 24.0 -nx,xmn,xsiz
8 150 12.0 24.0 -ny,ymn,ysiz
9 50 0.5 1.0 -nz,zmn,zsiz
10 RLZ -which realizations?
11 20 20 -new origin in X, new origin in Y
12 20 -rotation angle (in degrees clockwise)
13 30 80 -length for data extraction in X and Y direction
14 50 50 -zmin, zmax for depth of data extraction
15 1.0 1.0 -size of refined grids in X and Y
16 10 -number of realizations per re-simulation
17 5 -number of variogram directions 0° to 90° (3,5,7,..)
18 2 -number of nested structure (2 is recommended)

both. If regridding is applied for more than one continuous variable, the columns

could be specified on line 4. Most information in parameter file relates to the spec-

ifications of data extraction and geometry of the area of interest, length of area of

interest in the X direction, length of area of interest in the Y direction, the rotation

angle (defined as positive if clockwise, starting at origin), the depth of elevation by

determining the minimum and maximum levels at Z, and how many realizations

per initial realization to be generated (i.e. lines 11–16). The target refined grid size

can be specified on line 15. The only part which should stay untouched is where it

asks for which realization on line 10. This should remain as RLZ variable. Note

that regridding is not considered in Z direction since data in the vertical direction

is typically available at reasonably high resolution.

Regridding is applied one at a time for every realization (at coarser grid size)

in this program. The user will be prompted to enter the range of the realizations

that he wishes to simulate the model at finer grids. For example, if 5 number of

re-simulated realizations are required to be conditioned to coarse scale realization

ranging from 20 to 50, then 5 is entered on line 16, and 20, space, 50 are entered as

soon as the master script runs. The script then sends the realization number to the

variable RLZ so that in the data extraction, the right realization is selected. From

then on, everything will be automated and at the end the simulated realizations

are collected in directory “04-SimResults”. Every file in this folder is named as

179



“string+number+Realization+number”. The first number refers to the correspond-

ing primary (to model) variable and the second refers to the coarse scale realization.

For a case where two variables of permeability and water saturations are to be re-

gridded (assuming type 2), the “merg1Realization13” contains the simulated values

for permeability with higher resolution in 5 realizations. The regridding has been

applied to the initial realization number 13, which belongs to the original simulated

results. This is considered a good practice as it enables the user to exploit the

variability of uncertainty of the finer realizations within and between the original

coarse realizations.

After the program is given its parameter file, it begins with finding the required

realization and grid specifications and rotation on the input data file. It then extracts

the grid nodes information and save them in a data file called “dataExtracted.out”.

Remember that all these output files are created for the user’s record or sanity check

and there is absolutely no need for the user to be concerned about them. Another

file called, “coordinates.out” records the extracted data with all the coordinate

specifications, realization number and coordinates in the user’s specified Cartesian

domain (see Figure 4.6). Now that the area of interest and all its specifications have

been determined, the program decides on which procedure to take for re-simulation.

This will be decided based on the type of the data input that the user specifies

on line 2 where categorical data is indicated by 0, continuous by 1, and the most

common case of combined (facies+primary+secondary) is indicated by 2. For the

case of categorical data file, before the program creates the necessary parameter

file, it has to determine some data statistics regarding stationary domain of rock

types. The program divides the extracted data file into the available categories

(stationary domain) and determines the proportions of facies and saves them in a

non-GSLIB-style file of proportions.data. This process is also required to be

applied for the data type of 2 (combined). For the case in which the available

variables are continuous, the entire domain of interest is assumed stationary since

no facies distribution is available.

At this point, the continuity of data should be determined. To have this stage

as part of the automatic process, the variogram is been automatically calculated

for number of directions. In the parameter file, the user is asked to enter an odd

number, which would represent the number of directions of variogram calculations in

the range of 0° to 90°. For example, specifying 5 means that gamv2004 will calculate
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the variogram of the required variable in 9 directions in the range of 0° to 180°.

The developed program “VariogramParameters” evaluates azimuth (its tolerance

and bandwidth), dip (its tolerance and bandwidth), as well as the number of lags

and lag separations and the tolerance on the horizontal plane based on the geometry

specifications that the user specifies at the main parameter file. These parameters

are used by gamve2004 to evaluate the variogram at the specified directions for

every considered variable in the area of interest. Note that data for variogram

determination should be in normal score since simulations is done in the Gaussian

domain. Thus, “nscore-mv” should be applied on extracted data beforehand. The

transformed data is recorded in the output file called DataNS.dat in the directory

01-DataFiles. In case of combined model, the generated normal score data file is as

many as the number of facies available in the area of interest. For example, if three

categories of 2, 4 and 5 exist in the area of interest, there will be three data files

of DataC1NS.dat, DataC2NS.dat and DataC3NS.dat. The file DataNS.dat would

be generated regardless of input data file, to keep all normal score transformation

of extracted data. This is because the shortage of pairs to determine variogram is

possible; if the simulation process does not find the required variogram, it uses the

so-called back up.

All necessary parameter files for the regridding process are collected in the direc-

tory 02-BashFiles to enable sanity check. The program applies the entire process

of regridding on every realization for all the involved variables at once. In case

secondary variables exist, a different bash file variogramSec.bsh includes the nec-

essary parameter files to calculate the variogram for the secondary variables. The

fitting of all variables is possible using a previously developed GSLIB program

called “varfit” which can fit the variogram in several directions simultaneously. The

varift program includes the principal (e.g., number of variograms, number of struc-

tures, number of directions, and minimum number of points) options and more

advanced ones such as fixing structure type, fixing nugget effect, fixing the sill, etc.

The preference of the regridding program is to keep these options limited. Yet,

regridding.par has this option for the user to specify the number of structures;

however, 2 number of structures with spherical type (type is fixed) is strongly rec-

ommended as it reliably captures the short range and long range variograms. For

the same reason, the nugget effect is fixed to zero to avoid discontinuity at short

ranges.
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In the presence of secondary variables, collocated cokriging is the preferred

method of simulation in this program. Throughout the regridding process, strong

conditioning of data at regular grid points is a good reason to rely on screening

approach. This, however, requires the program to find out about the correlation

coefficient of the primary and secondary variables. This program only considers

one secondary variable; strong conditioning justifies this simplification. For exam-

ple, in case there are two variables of interest and one secondary variable available

at coarse grids, correlationSecVar1.bsh and correlationSecVar2.bsh provide

the correlation coefficient for the first variable and secondary data and second vari-

able and secondary data. The “corrmat” program uses these parameter files to

generate the correlation coefficient. Although, “corrmat” is able to determine the

correlation coefficient matrix for as many variables, separation of the files eases the

following process of capturing the corresponding coefficient and input them to the

sequential Gaussian simulation. Note that the entire previous process is applied

to “DataNS.dat”, which contains all the extracted variables in one file regardless

of the associated category type. All previous variogram specifications apply to the

secondary data as well.

The last part of regridding process is devoted to simulation. The simulation is

done on the new grid specification that the program figures out based on length of

area of interest and the resolution of new simulation. The regridding program pre-

pares the appropriate parameters for simulating the regridded realizations. For the

categorical data in both cases of type 1 or 2 input file, BlockSIS.bsh is created to

generate realizations as many as user’s option (specified in regridding.par file) for the

facies modeling. The number of categories, the categories and their proportions are

all extracted from proportions.data file. The information regarding columns for

X, Y, Z, and variables are also gained from coordinates.datMaximum search radii

for all types of simulation is kept to 4 times the original coarse grid size. This choice

is justifiable considering how kriging works. The input data is available through

realizations which are aligned in Cartesian system and when kriging is applied, it

assigns higher weights to the closer grid nodes and much smaller weights or even

negative weights to the further ones. In other words, having bigger search radii does

not change the simulation results as the closest grid nodes are the most influential

in the kriging system; this is also known as the screening effect in geostatistics.

The associated variogram models for all the categories in the area of interest are
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attached to the simulation parameter file. The file “run-VarIndicator” is the cor-

responding parameter file to determine the variogram for every category in several

directions and fit them automatically. The minimum pairs of variogram calculations

is been fixed to 40. In case the variogram model is not created, the process of sim-

ulation captures the total variogram model (back up). For the case of continuous

variables, however, SGSIM simulation should be applied. This requires the program

to create the corresponding parameter file which best suits the specific variable and

sequential Gaussian simulation in GSLIB. These files could be found in the direc-

tory “02-BashFiles”. For example, the bash file run-SGSIM3-var2.bsh corresponds

to simulation of the second variable of interest associated with the third facies in

the area of interest. The corresponding columns for X, Y, Z and the variable are all

detected from extracted data files (DataC3.dat for run-SGSIM3-var2.bsh).

In sequential Gaussian simulation also, the lower and upper tails of variable

should be known. The regridding program at the beginning records the maximum

and minimum data associate with every variable. Therefore, considering the ex-

tracted variable in the simulation rather than the normal scored ones allows the

program to not have to determine the minimum and maximum of data values in

the Gaussian domain. Fortunately, the “sgsim” program in GSLIB is capable of

doing the transformation inside. This option is fixed on in the developed regridding

process. The associated debugging and output files are all named in a way to be

easily distinguishable from each other. In case there is a secondary variable, the

“run-sgsim” bash file includes the corresponding parameter file to apply simula-

tion for the secondary variable on the re-simulation data grid. The secondary data

should be simulated differently for different facies as they fill up different grid nodes.

After the simulation is over, if the input type is 2, the process is not finished until

merging is applied. Separate simulation of variables corresponding to different facies

should come together to fill up the domain. Merging parameter file is attached to

the end of BlockSIS.bsh (if the regridding type is 2). The final merged models at

this point are the ones which will be transferred to the final destination directory

“04-SimResults”. The user can always choose to plot the generated realizations to

compare with the coarse realizations.
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Appendix B

Enforce Realistic Connectivity
Program

The fundamentals of approach taken to establish connectivity over disparate units

is discussed in Chapter 6. The developed program is called “ED-SE” standing for

Efficient Dilation - Smart Erosion. ED-SE is designed to generate many auxiliary

files associated with the original model, dilated model, and the eroded one. These

files are generated to help with understanding parameters, entailing visualization

and providing further checks. Three stat files are generated for all three models.

Each one of these stat files lists the number of objects identified in the model from

largest to smallest with its corresponding size. Geo-obj.model is the initial data

file identifying the target object cells with object’s number and the rest with 0.

This file is helpful to visualize the distribution of the objects in the model and their

relative distances. Note that if there are a number of facies having broken objects,

the dilation process is applied hierarchically in which the model become a binary

one recognizing the target facies.

The parameter file of “ED-SE” program is shown below. The option to specify

objects to connect is on line 7. In case, the growth of all objects does not result in un-

desired connection, option 0 can be set. Since the dilated cells are eroded back when

no connection occurs, option 0 can be applied safely. This feature stabilizes the dila-

tion process in addition to dilation along the direction of anisotropy. Two generated

files associated with dilation are potential-dilate.out and added-cells.out.

Potential-dilate.out contains as many columns as twice the number of objects

in the model. Every two columns are same except for the added cells after dilation

is applied which would be indicated as 1. If the added cells confront the same cells

in other columns, it means the corresponding object is connected with the other
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object. Otherwise, the added-cells will get back to zero. added-cells.out contains

the finalized changes in the model.

Parameters for ED-SE
********************

START OF PARAMETERS:
1 ../model.out - input rock type model
2 ../data.dat - conditioning data file with coordinates
3 30 30 10 1 - nx, ny, nz, num realizations
4 1.0 1.0 1.0 - xsiz, ysiz, zsiz
5 1 0 - number of net facies, code facies to connect
6 ../dilated.out - dilated model
7 4 1 4 5 8 - how many, objects to connect (0 for all)
8 ../eroded.out - eroded model
9 15 - dilation parameter
10 3 3 1 - offset template size for erosion: x, y, z
11 10 0.3 4 - erosion parameter:

iteration, control threshold, size ratio

Dilation parameter can be specified on line 9. Parameter value of 50 will grow the

object twice as big. The file threshold.out contains the threshold values that have

been used for every object on its distance function model to grow; dist-obj.out

also contains all the distance value and a column listing the closest object to the cell.

The file proportionMap.out records the proportion of template inside the object

while scanning the model. The file has as many columns as the dilated objects. The

template size can be specified along X, Y, and Z directions on line 10. The template

can only form to a box but with varying size. The three erosion parameters of

number of iterations, threshold on the distance map (changing between 0 and 1),

and size ratio are specified on line 11. The parameter of size ratio is implemented

in the program to control the reduction in object’s size. For example, the value 4

ensures the erosion stops over the object which the size of the objects reaches its

quarter.
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